WorldWideScience

Sample records for visceral nervous system

  1. Role of sympathetic nervous system in rat model of chronic visceral pain.

    Science.gov (United States)

    Gil, D W; Wang, J; Gu, C; Donello, J E; Cabrera, S; Al-Chaer, E D

    2016-03-01

    Changes in central pain modulation have been implicated in generalized pain syndromes such as irritable bowel syndrome (IBS). We have previously demonstrated that reduced descending inhibition unveils a role of sympathoneuronal outflow in decreasing peripheral sensory thresholds, resulting in stress-induced hyperalgesia. We investigated whether sympathetic nervous system (SNS) exacerbation of pain sensation when central pain inhibition is reduced is relevant to chronic pain disorders using a rat colon irritation (CI) model of chronic visceral hypersensitivity with hallmarks of IBS. Rats were treated to a series of colorectal balloon distensions (CRD) as neonates resulting in visceral and somatic hypersensitivity and altered stool function that persists into adulthood. The visceral sensitivity was assessed by recording electromyographic (EMG) responses to CRD. Somatic sensitivity was assessed by paw withdrawal thresholds to radiant heat. The effects on the hypersensitivity of (i) inhibiting sympathoneuronal outflow with pharmacological and surgical interventions and (ii) enhancing the outflow with water avoidance stress (WAS) were tested. The alpha2-adrenergic agonist, clonidine, and the alpha1-adrenergic antagonist, prazosin, reduced the visceral hypersensitivity and WAS enhanced the pain. Chemical sympathectomy with guanethidine and surgical sympathectomy resulted in a loss of the chronic visceral hypersensitivity. The results support a role of the SNS in driving the chronic visceral and somatic hypersensitivity seen in CI rats. The findings further suggest that treatments that decrease sympathetic outflow or block activation of adrenergic receptors on sensory nerves could be beneficial in the treatment of generalized pain syndromes. © 2015 John Wiley & Sons Ltd.

  2. The functional role of the visceral nervous system. A critical evaluation of Cannon's "homeostatic" and "emergency" theories.

    Science.gov (United States)

    Recordati, G

    1984-09-01

    Cannon's view of the sympatico-adrenal system's functional role, the homeostatic concept and model, has been reexamined. The living being is an "open system" in which homeostasis, constancy of the internal psycho-chemical conditions, is essential for survival. This constancy is threatened by endangering stimuli. To safeguard it, physiological regulatory processes, work for stability, utility, and coordination: the body is wise. Along this teleological view, the sympathetic nervous system is the most important homeostatic agent. Sympathectomized animals, however, showed no evidence of instability of the fluid matrix. Cannon concluded that the sympathetic system is not essential for life and in emergency function is its main value for the individual. Homeostatic and emergency theory, when analyzed, reveal profoundly contradictory aspects. Emergency function cannot be interpreted homeostatically, because, in emergencies, is the sympathetic system which promotes changes, rather than resists them. Sympathectomized animals do not lack constancy of the fluid matrix; they lack rather the possibility to compensate, along patterns of responses, the internal organization of the visceral apparatus. In strong emotional reactions, moreover, it is the sympathetic system itself which may induce marked derangements in visceral function that damage the organism's stability. The a priori accepted view that all physiological regulatory processes, by necessity, work for the welfare of the body - the teleological explanation - masked the experimental evidence. The conclusion is drawn that homeostatic and emergency theories described only in part the functional role of the sympathetic nervous system in all its possible functional expressions.

  3. Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins.

    Science.gov (United States)

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Kirshblum, Steven C; McKenna, Cristin; Bauman, William A

    2017-01-01

    Interruption of sympathetic innervation to the liver and visceral adipose tissue (VAT) in animal models has been reported to reduce VAT lipolysis and hepatic secretion of very low density lipoprotein (VLDL) and concentrations of triglyceride-rich lipoprotein particles. Whether functional impairment of sympathetic nervous system (SNS) innervation to tissues of the abdominal cavity reduce circulating concentrations of triglyceride (TG) and VLDL particles (VLDL-P) was tested in men with spinal cord injury (SCI). One hundred-three non-ambulatory men with SCI [55 subjects with neurologic injury at or proximal to the 4th thoracic vertebrae (↑T4); 48 subjects with SCI at or distal to the 5th thoracic vertebrae (↓T5)] and 53 able-bodied (AB) subjects were studied. Fasting blood samples were obtained for determination of TG, VLDL-P concentration by NMR spectroscopy, serum glucose by autoanalyzer, and plasma insulin by radioimmunoassay. VAT volume was determined by dual energy x-ray absorptiometry imaging with calculation by a validated proprietary software package. Significant group main effects for TG and VLDL-P were present; post-hoc tests revealed that serum TG concentrations were significantly higher in ↓T5 group compared to AB and ↑T4 groups [150±9 vs. 101±8 (plipoproteins (i.e., TG or Large VLDL-P) and VAT volume or HOMA-IR was significant only in the ↓T5 group. Despite a similar VAT volume and insulin resistance in both SCI groups, the ↓T5 group had significantly higher serum TG and VLDL-P values than that observed in the ↑T4 and the AB control groups. Thus, level of injury is an important determinate of the concentration of circulating triglyceride rich lipoproteins, which may play a role in the genesis of cardiometabolic dysfunction.

  4. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  5. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  6. Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins.

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    Full Text Available Interruption of sympathetic innervation to the liver and visceral adipose tissue (VAT in animal models has been reported to reduce VAT lipolysis and hepatic secretion of very low density lipoprotein (VLDL and concentrations of triglyceride-rich lipoprotein particles. Whether functional impairment of sympathetic nervous system (SNS innervation to tissues of the abdominal cavity reduce circulating concentrations of triglyceride (TG and VLDL particles (VLDL-P was tested in men with spinal cord injury (SCI.One hundred-three non-ambulatory men with SCI [55 subjects with neurologic injury at or proximal to the 4th thoracic vertebrae (↑T4; 48 subjects with SCI at or distal to the 5th thoracic vertebrae (↓T5] and 53 able-bodied (AB subjects were studied. Fasting blood samples were obtained for determination of TG, VLDL-P concentration by NMR spectroscopy, serum glucose by autoanalyzer, and plasma insulin by radioimmunoassay. VAT volume was determined by dual energy x-ray absorptiometry imaging with calculation by a validated proprietary software package.Significant group main effects for TG and VLDL-P were present; post-hoc tests revealed that serum TG concentrations were significantly higher in ↓T5 group compared to AB and ↑T4 groups [150±9 vs. 101±8 (p<0.01 and 112±8 mg/dl (p<0.05, respectively]. VLDL-P concentration was significantly elevated in ↓T5 group compared to AB and ↑T4 groups [74±4 vs. 58±4 (p<0.05 and 55±4 μmol/l (p<0.05]. VAT volume was significantly higher in both SCI groups than in the AB group, and HOMA-IR was higher and approached significance in the SCI groups compared to the AB group. A linear relationship between triglyceride rich lipoproteins (i.e., TG or Large VLDL-P and VAT volume or HOMA-IR was significant only in the ↓T5 group.Despite a similar VAT volume and insulin resistance in both SCI groups, the ↓T5 group had significantly higher serum TG and VLDL-P values than that observed in the ↑T4 and the AB

  7. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  8. The enteric nervous system

    National Research Council Canada - National Science Library

    Sasselli, Valentina; Pachnis, Vassilis; Burns, Alan J

    2012-01-01

    The enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, consists of numerous types of neurons, and glial cells, that are distributed in two intramuscular plexuses that extend along the entire...

  9. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  10. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  11. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords...... and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  12. Visceral leishmaniasis complicating systemic lupus erythematosus

    OpenAIRE

    Wallis, P. J. W.; Clark, C. J. M.

    1983-01-01

    Active systemic lupus erythematosus in a 32-year-old Chinese woman was successfully controlled by plasmapheresis and steroids. However, occult visceral leishmaniasis was uncovered during therapy and responded to appropriate treatment.

  13. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  14. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  15. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  16. Measures of Autonomic Nervous System

    Science.gov (United States)

    2011-04-01

    nervous system (pSNS). The repercussions of the stress response are manifested physiologically through the following: pupillary dilation, increased...used to diagnose narcotic influence, head injury, Parkinson’s disease, rheumatoid arthritis or lupus . It may also be used to assess degeneration of...deployment - field Neuro-Optics Pupillometer (Galetta SL, Hariprasad R, Maguire MG, Plotkin ES, Volpe NJ, oral communication, 1999) • Pupil

  17. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  18. Aging changes in the nervous system

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004023.htm Aging changes in the nervous system To use the ... spinal cord to every part of your body. AGING CHANGES AND THEIR EFFECTS ON THE NERVOUS SYSTEM ...

  19. The Nervous System and Gastrointestinal Function

    Science.gov (United States)

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  20. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  1. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions...... or contractions in muscle preparations or isolated muscle cells from sea anemones. The various peptides are located in at least six distinct sets of neurons showing that sea anemone neurons have already specialized with respect to their peptide content. Using immuno-electronmicroscopy, we have found...

  2. Preventing nervous system sports injuries.

    Science.gov (United States)

    Lehman, L B

    1989-03-01

    Physical fitness and sports remain integral components of overall good health and a cornerstone of preventive medicine. When performed safely, under adequate supervision, and with appropriate protective gear, most of these activities are enjoyable, healthful and psychologically gratifying. When not performed safely by trained athletes, these same activities can be treacherous, injurious and permanently disabling. The goals of this article are to review and describe low-risk and high-risk sports activities. A number of underlying mechanisms responsible for a particularly alarming amount of morbidity in sports will be reviewed. Fundamentals of the diagnosis and emergency treatment of many injuries will be discussed. Most important, a series of steps to be taken to improve upon sports safety will be outlined. The responsibility for the prevention, diagnosis, evaluation and management of patients with nervous system sports injuries is one shared by participating athletes, coaches, trainers and the entire health care community.

  3. Is there anything "autonomous" in the nervous system?

    Science.gov (United States)

    Rasia-Filho, Alberto A

    2006-03-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate that no element shows "autonomy" in an integrated body. Nor are they solely "passive" or generated "without mental elaboration." In addition, to be "not consciously controlled" is not a unique attribute of these components. Another term that could be proposed is "homeostatic nervous system" for providing conditions to the execution of behaviors and maintenance of the internal milieu within normal ranges. But, not all homeostatic conditions are under the direct influence of these groups of neurons, and some situations clearly impose different ranges for some variables that are adaptative (or hazardous) in the tentative of successfully coping with challenging situations. Finally, the name "nervous system for visceral control" emerges as another possibility. Unfortunately, it is not only "viscera" that represent end targets for this specific innervation. Therefore, it is commented that no quite adequate term for the sympathetic, parasympathetic, and gastrointestinal divisions has already been coined. The basic condition for a new term is that it should clearly imply the whole integrated and collaborative functions that the components have in an indivisible organism, including the neuroendocrine, immunological, and respiratory systems. Until that, we can call these parts simply by their own names and avoid terms that are more "convenient" than appropriate.

  4. Extending the enteric nervous system.

    Science.gov (United States)

    Sbarbati, Andrea; Osculati, Francesco

    2007-08-01

    The work reviews the evidence suggesting that lingual components of the autonomic system may be considered the most rostral portion of the enteric nervous system (ENS) defining the concept of lingual ENS (LENS). The LENS is not dissimilar from the more distally located portions of the ENS, however, it is characterized by a massive sensory input generated by collaterals of gustatory and trigeminal fibers. The different neuronal subpopulations that compose the LENS operate reflexes involved in regulation of secretion and vasomotility. Systemic reflexes on the digestive and respiratory apparatus are operated by means of neural connections through the pharynx or larynx. The LENS can modulate the activity of distally located organs by means of the annexed glands.The LENS seems therefore to be a "chemical eye" located at the beginning of the digestive apparatus which analyses the foods before their ingestion and diffuses this information distally. The definition of the LENS supports the concept of an elevated degree of autonomy in the ENS and puts in a new light the role of the gustatory system in modulation of the digestive functions. For its characteristics, the LENS appears to be an ideal model to study the elementary connectivity of the ENS.

  5. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  6. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  7. Unihemispheric central nervous system vasculitis

    Directory of Open Access Journals (Sweden)

    Sikawat Thanaviratananich

    2017-06-01

    Full Text Available Patients with primary central nervous system vasculitis (PCNSV usually manifest with multiple enhancing bilateral hemispheric lesions. We presented an extremely rare clinical course and follow-up of a patient with PCNSV affecting only a single (right hemisphere. A 33-year-old previously healthy man presented with a left hand clonic seizure followed by a secondary generalized tonic-clonic seizure and dysarthria. MRI brain revealed multiple hyperintense lesions confined to only the right hemisphere with contrast enhancement, involving both white and grey matters. He was treated with a methylprednisolone for 5 days followed by prednisone for suspected acute disseminated encephalomyelitis without improvements. He was presented again with left-sided weakness, transient dysarthria and black objects in left visual field. MRI brain was unchanged. MR angiogram and conventional cerebral angiogram were normal. Autoimmune work-ups were all negative. A brain biopsy showed evidence of PCNSV. He was then successfully treated with intravenous cyclophosphamide followed by oral azathioprine. On a follow-up 3 years later, he remains asymptomatic on azathioprine and a repeat MRI showed all areas of enhancement were gone.

  8. Cystic Fibrosis and the Nervous System.

    Science.gov (United States)

    Reznikov, Leah R

    2017-05-01

    Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  10. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  11. Gangliosides in the Nervous System: Biosynthesis and Degradation

    Science.gov (United States)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  12. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  13. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  14. Neurogenesis in the adult peripheral nervous system

    National Research Council Canada - National Science Library

    Krzysztof Czaja Michele Fornaro Stefano Geuna

    2012-01-01

    Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system...

  15. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  16. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  17. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  18. Toxicoses of the Ruminant Nervous System.

    Science.gov (United States)

    Niles, Gene A

    2017-03-01

    This article discusses the etiology, mechanism of action, clinical signs, and diagnostic tests used to identify toxic agents that affect the nervous system of ruminants. The article is not intended to be an exhaustive review of each agent, but a reference for establishing a differential diagnosis when toxic agents are suspected as the cause of central nervous system disease in ruminants. The initial focus of the article is on agents that cause brain lesions consistent with polioencephalomalacia. Other neurotoxic disease agents include bovine bonkers, urea, organophosphate, organochlorine, cyanobacteria, zinc, aluminum, phosphide, metaldehyde, strychnine, botulism, tetanus, clostridium perfringens, and poisonous plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  20. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  1. Primary Angiitis Of The Central Nervous System

    Directory of Open Access Journals (Sweden)

    Sundaram Meenakshi

    2001-01-01

    Full Text Available An unusual case of primary angiitis of central nervous system (PACNS presenting with headache, seizures and focal deficits is presented. Despite multiple lesions noted on brain MRI, definitive diagnosis required a brain biopsy. A high index of clinical suspicious and the utility of brain biopsy for diagnosis are emphasized.

  2. The Cardiovascular Autonomic Nervous System and Anaesthesia

    African Journals Online (AJOL)

    QuickSilver

    Respiratory function can interfere with stimulus standard- ... TABLE IV: Practical Indicators of Abnormal Cardiovascular Autonomic. Function. Resting heart rate > 90 beats/minute. Abnormal heart rate variability (failure to change heart rate, R-R interval by ..... The structure of the sympathetic nervous system dictates that a.

  3. Migraine and Autonomic Nervous System Dysfunction

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2002-02-01

    Full Text Available Tests of autonomic nervous system (ANS function were administered to 80 adult patients with migraine (28 with disabling headaches and 85 matched controls, in a study at the Thomas Jefferson University Hospital, Philadelphia, PA, Johns Hopkins School of Hygiene and Public Health, Albert Einstein College of Medicine, and Montefiore Medical Center, Bronx, NY.

  4. Azole-Resistant Central Nervous System Aspergillosis

    NARCIS (Netherlands)

    van der Linden, Jan W. M.; Jansen, Rogier R.; Bresters, Dorine; Visser, Caroline E.; Geerlings, Suzanne E.; Kuijper, Ed J.; Melchers, Willem J. G.; Verweij, Paul E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  5. Central nervous system tuberculomata presenting as internuclear ...

    African Journals Online (AJOL)

    Central nervous system (CNS) tuberculoma can have variable presentation depending upon the site and number of tuberculomata. We are reporting a rare case of a 15 years old girl who presented to our hospital with binocular diplopia on right gaze. Clinical examination revealed left sided internuclear ophthalmoplegia ...

  6. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  7. Central nervous system tuberculosis | Cherian | African Health ...

    African Journals Online (AJOL)

    Central nervous system (CNS) involvement, one of the most devastating clinical manifestations of tuberculosis (TB) is noted in 5 to 10% of extrapulmonary TB cases, and accounts for approximately 1% of all TB cases. Definitive diagnosis of tuberculous meningitis (TBM) depends upon the detection of the tubercle bacilli in ...

  8. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  9. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  10. Influence of thyroid in nervous system growth.

    Science.gov (United States)

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  11. How viruses infiltrate the central nervous system.

    Science.gov (United States)

    Michalicová, A; Bhide, K; Bhide, M; Kováč, A

    Central nervous system is protected by the blood-brain barrier, which represents a physical, metabolic and transport barrier and is considered to be a part of a highly dynamic system termed neurovascular unit. Several pathogens, among them viruses, are able to invade the brain. Traversal of viruses across the blood-brain barrier is an essential step for the invasion of the central nervous system and can occur by different mechanisms - by paracellular, transcellular and/or by "Trojan horse" pathway. Penetration of viruses to brain can lead to the blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. Viruses causing the central nervous system infections include human immunodeficiency virus type 1, rhabdovirus, different flaviviruses, mouse adenovirus type 1, herpes simplex virus, influenza virus, parainfluenza virus, reovirus, lymphocytic choriomeningitis virus, arbovirus, cytomegalovirus, mumps virus, parvovirus B19, measles virus, human T-cell leukemia virus, enterovirus, morbillivirus, bunyaviruses, togaviruses and others. In this review we summarized what is known about the routes of how some viruses enter the brain and how neurons and glial cells react to infection.

  12. Time Perception Mechanisms at Central Nervous System

    OpenAIRE

    Rhailana Fontes; Jéssica Ribeiro; Gupta, Daya S.; Dionis Machado; Fernando Lopes-Júnior; Francisco Magalhães; Victor Hugo Bastos; Kaline Rocha; Victor Marinho; Gildário Lima; Bruna Velasques; Pedro Ribeiro; Marco Orsini; Bruno Pessoa; Marco Antonio Araujo Leite

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms...

  13. Measures of Autonomic Nervous System Regulation

    Science.gov (United States)

    2011-04-01

    the inhibition of the parasympathet ic nervous system (pSNS). The repercussions of the stress response are manifested physiologically through the...NeurOptics VIP 200 Pupillometer is widely used to diagnose narcotic influence, head injury, Parkinson’s disease, rheumatoid arthritis or lupus . It may also...forward operating base • Combat deployment - field Neuro-Optics Pupillometer (Galetta SL, Hariprasad R, Maguire MG, Plotkin ES, Volpe NJ, oral

  14. Turning neurons into a nervous system.

    Science.gov (United States)

    Grove, Elizabeth A

    2008-07-01

    The RIKEN Center for Developmental Biology recently held its 2008 Symposium ;Turning Neurons into a Nervous System' in Kobe, Japan. The program, organized by Masatoshi Takeichi, Joshua Sanes, Hideki Enomoto and Raj Ladher, provided a rich sampling from current work in developmental neurobiology. Researchers from Japan, Europe and the USA gathered at this meeting to share insights into neural development and to admire the opening of the cherry blossom season.

  15. LGI proteins in the nervous system.

    Science.gov (United States)

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R

    2013-06-25

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein-protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  16. LGI Proteins in the Nervous System

    Directory of Open Access Journals (Sweden)

    Linde Kegel

    2013-05-01

    Full Text Available The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat domain and a so-called epilepsy-associated or EPTP (epitempin domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe epilepsy also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features. LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions.

  17. Systemic arteriosclerosis and eating behavior in Japanese type 2 diabetic patients with visceral fat accumulation.

    Science.gov (United States)

    Fukuda, Shiro; Hirata, Ayumu; Nishizawa, Hitoshi; Nagao, Hirofumi; Kashine, Susumu; Kimura, Takekazu; Inoue, Kana; Fujishima, Yuya; Yamaoka, Masaya; Kozawa, Junji; Kitamura, Tetsuhiro; Yasuda, Tetsuyuki; Maeda, Norikazu; Imagawa, Akihisa; Funahashi, Tohru; Shimomura, Iichiro

    2015-01-16

    Visceral fat accumulation is a major etiological factor in the progression of type 2 diabetes mellitus and atherosclerosis. We described previously visceral fat accumulation and multiple cardiovascular risk factors in a considerable number of Japanese non-obese subjects (BMI arteriosclerosis, serum adiponectin concentration, and eating behavior in type 2 diabetic patients with and without visceral fat accumulation. The study subjects were 75 Japanese type 2 diabetes mellitus (age: 64.8 ± 11.5 years, mean ± SD). Visceral fat accumulation represented an estimated visceral fat area of 100 cm(2) using the bioelectrical impedance analysis method. Subjects were divided into two groups; with (n = 53) and without (n = 22) visceral fat accumulation. Systemic arteriosclerosis was scored for four arteries by ultrasonography. Eating behavior was assessed based on The Guideline for Obesity questionnaire issued by the Japan Society for the Study of Obesity. The visceral fat accumulation (+) group showed significantly higher systemic vascular scores and significantly lower serum adiponectin levels than the visceral fat accumulation (-) group. With respect to the eating behavior questionnaire items, (+) patients showed higher values for the total score and many of the major sub-scores than (-) patients. Type 2 diabetic patients with visceral fat accumulation showed 1) progression of systemic arteriosclerosis, 2) low serum adiponectin levels, and 3) differences in eating behavior, compared to those without visceral fat accumulation. Taken together, the findings highlight the importance of evaluating visceral fat area in type 2 diabetic patients. Furthermore, those with visceral fat accumulation might need to undergo more intensive screening for systemic arteriosclerosis and consider modifying their eating behaviors.

  18. Microglia: Architects of the Developing Nervous System.

    Science.gov (United States)

    Frost, Jeffrey L; Schafer, Dorothy P

    2016-08-01

    Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Did the ctenophore nervous system evolve independently?

    Science.gov (United States)

    Ryan, Joseph F

    2014-08-01

    Recent evidence supports the placement of ctenophores as the most distant relative to all other animals. This revised animal tree means that either the ancestor of all animals possessed neurons (and that sponges and placozoans apparently lost them) or that ctenophores developed them independently. Differentiating between these possibilities is important not only from a historical perspective, but also for the interpretation of a wide range of neurobiological results. In this short perspective paper, I review the evidence in support of each scenario and show that the relationship between the nervous system of ctenophores and other animals is an unsolved, yet tractable problem. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Epigenetic mechanisms underlying nervous system diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2018-01-01

    Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. PET imaging of the autonomic nervous system.

    Science.gov (United States)

    Thackeray, James T; Bengel, Frank M

    2016-12-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  2. The Enteric Nervous System in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Keith A Sharkey

    1996-01-01

    Full Text Available Since about the 1950s nerves in the wall of the intestine have been postulated to play a role in the pathogenesis of inflammatory bowel disease (IBD. Human and animal studies examining the role of nerves in intestinal inflammation are the focus of this review. Consideration is given to two possible ways that nerves are involved in IBD. First, nerves may play a role in the development or maintenance of inflammation through local release of transmitters. Second, once initiated (by whatever means, the processes of inflammation may disrupt the normal pattern of innervation and the interactions of nerves and their target tissues. Many of the functional disturbances observed in IBD are likely due to an alteration in the enteric nervous system either structurally through disruptions of nerve-target relationships or by modifications of neurotransmitters or their receptors. Finally, it appears that the enteric nervous system may be a potential therapeutic target in IBD and that neuroactive drugs acting locally can represent useful agents in the management of this disease.

  3. The autonomic nervous system and renal physiology

    Directory of Open Access Journals (Sweden)

    D'Elia JA

    2013-08-01

    Full Text Available John A D'Elia,1,2 Larry A Weinrauch1,2 1Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Boston, MA, USA; 2Department of Medicine, Harvard Medical School, Boston, MA, USA Abstract: Research in resistant hypertension has again focused on autonomic nervous system denervation – 50 years after it had been stopped due to postural hypotension and availability of newer drugs. These (ganglionic blockers drugs have all been similarly stopped, due to postural hypotension and yet newer antihypertensive agents. Recent demonstration of the feasibility of limited regional transcatheter sympathetic denervation has excited clinicians due to potential therapeutic implications. Standard use of ambulatory blood pressure recording equipment may alter our understanding of the diagnosis, potential treatment strategies, and health care outcomes – when faced with patients whose office blood pressure remains in the hypertensive range – while under treatment with three antihypertensive drugs at the highest tolerable doses, plus a diuretic. We review herein clinical relationships between autonomic function, resistant hypertension, current treatment strategies, and reflect upon the possibility of changes in our approach to resistant hypertension. Keywords: resistant hypertension, renal sympathetic ablation, autonomic nervous system, ambulatory blood pressure monitoring, blood pressure control

  4. Space exploration, Mars, and the nervous system.

    Science.gov (United States)

    Kalb, Robert; Solomon, David

    2007-04-01

    When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.

  5. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  6. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  7. Redescription of the meiofaunal gastropod Parhedyle cryptophthalma, with focus on nervous system and sensory organs

    DEFF Research Database (Denmark)

    Jörger, Katharina M.; Kristof, Alen; Klussmann-Kolb, Annette

    2010-01-01

    on the visceral nerve cord), we found a putative osphradial ganglion for the first time in the microhedylacean clade. No osphradium, no Hancock’s organ and, in contrast to the original description, no pigmented eyes could be detected. Bundles of sensory cilia were found laterally on the head-foot complex......, integumental spicules, and aberrant radula morphology by light and scanning electron microscopy. Our focus was on the central nervous system and sensory organs, using 3D reconstruction based on serial semi-thin sections and immunocytochemistry (staining of FMRFamide and Tyrosine Hydroxylase) in conjunction...

  8. Sympathetic nervous system and chronic renal failure.

    Science.gov (United States)

    Boero, R; Pignataro, A; Ferro, M; Quarello, F

    2001-01-01

    The aim of this work was to review evidence on the role of the sympathetic nervous system (SNS) in chronic renal failure (CRF). Three main points are discussed: 1) SNS and pathogenesis of arterial hypertension; 2) SNS and cardiovascular risk; 3) implication of SNS in arterial hypotension during hemodialysis. Several lines of evidence indicate the presence of a sympathetic hyperactivity in CRF, and its relationship with arterial hypertension. It is suggested that diseased kidneys send afferent nervous signals to central integrative sympathetic nuclei, thus contributing to the development and maintenance of arterial hypertension. The elimination of these impulses with nephrectomy could explain the concomitant reduction of blood pressure. Several experiments confirmed this hypothesis. Regarding SNS and cardiovascular risk, some data suggest that reduced heart rate variability identifies an increased risk for both all causes and sudden death, independently from other recognized risk factors. Symptomatic hypotension is a common problem during hemodialysis treatment, occurring in approximately 20-30% of all hemodialysis sessions and is accompanied by acute withdrawal of sympathetic activity, vasodilation and relative bradicardia. This reflex is thought to be evoked by vigorous contraction of a progressively empty left ventricle, activating cardiac mechanoceptors. This inhibits cardiovascular centers through vagal afferents, and overrides the stimulation by baroreceptor deactivation. Alternative explanations include cerebral ischemia and increased production of nitric oxide, which inhibit central sympathetic activity. It is hoped that therapies aimed at modulating sympathetic nerve activity in patients with CRF will ameliorate their prognosis and quality of life.

  9. Exercise and the autonomic nervous system.

    Science.gov (United States)

    Fu, Qi; Levine, Benjamin D

    2013-01-01

    The autonomic nervous system plays a crucial role in the cardiovascular response to acute (dynamic) exercise in animals and humans. During exercise, oxygen uptake is a function of the triple-product of heart rate and stroke volume (i.e., cardiac output) and arterial-mixed venous oxygen difference (the Fick principle). The degree to which each of the variables can increase determines maximal oxygen uptake (V˙O2max). Both "central command" and "the exercise pressor reflex" are important in determining the cardiovascular response and the resetting of the arterial baroreflex during exercise to precisely match systemic oxygen delivery with metabolic demand. In general, patients with autonomic disorders have low levels of V˙O2max, indicating reduced physical fitness and exercise capacity. Moreover, the vast majority of the patients have blunted or abnormal cardiovascular response to exercise, especially during maximal exercise. There is now convincing evidence that some of the protective and therapeutic effects of chronic exercise training are related to the impact on the autonomic nervous system. Additionally, training induced improvement in vascular function, blood volume expansion, cardiac remodeling, insulin resistance and renal-adrenal function may also contribute to the protection and treatment of cardiovascular, metabolic and autonomic disorders. Exercise training also improves mental health, helps to prevent depression, and promotes or maintains positive self-esteem. Moderate-intensity exercise at least 30 minutes per day and at least 5 days per week is recommended for the vast majority of people. Supervised exercise training is preferable to maximize function capacity, and may be particularly important for patients with autonomic disorders. © 2013 Elsevier B.V. All rights reserved.

  10. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  11. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  12. Endoplasmic Reticulum Malfunction in the Nervous System

    Directory of Open Access Journals (Sweden)

    Marek Michalak

    2017-04-01

    Full Text Available Neurodegenerative diseases often have multifactorial causes and are progressive diseases. Some are inherited while others are acquired, and both vary greatly in onset and severity. Impaired endoplasmic reticulum (ER proteostasis, involving Ca2+ signaling, protein synthesis, processing, trafficking, and degradation, is now recognized as a key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid synthesis, quality control, membrane assembly as well as sequestration of excess lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by interconnected pathways within the cellular reticular network, which includes the ER and Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes and luminal environment that enable optimal protein processing. Accumulating evidence suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct and negative impact on the health of the nervous system.

  13. Scaffolds for central nervous system tissue engineering

    Science.gov (United States)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  14. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  15. The Sympathetic Nervous System in Obesity Hypertension

    Science.gov (United States)

    Lohmeier, Thomas E.; Iliescu, Radu

    2013-01-01

    Abundant evidence supports a role of the sympathetic nervous system in the pathogenesis of obesity-related hypertension. However, the nature and temporal progression of mechanisms underlying this sympathetically mediated hypertension are incompletely understood. Recent technological advances allowing direct recordings of renal sympathetic nerve activity (RSNA) in conscious animals, together with direct suppression of RSNA by renal denervation and reflex-mediated global sympathetic inhibition in experimental animals and human subjects have been especially valuable in elucidating these mechanisms. These studies strongly support the concept that increased RSNA is the critical mechanism by which increased central sympathetic outflow initiates and maintains reductions in renal excretory function, causing obesity hypertension. Potential determinants of renal sympathoexcitation and the differential mechanisms mediating the effects of renal-specific versus reflex-mediated, global sympathetic inhibition on renal hemodynamics and cardiac autonomic function are discussed. These differential mechanisms may impact the efficacy of current device-based approaches for hypertension therapy. PMID:23677623

  16. Histamine, antihistamines, and the central nervous system.

    Science.gov (United States)

    Lieberman, Philip

    2009-01-01

    Histamine is a central nervous system (CNS) neurotransmitter. It acts in the brain via three receptors, H(1), H(2), and H(3). It is a mediator of "wakefulness" and its activity is necessary to maintain wakefulness, alertness, and reaction time. These activities can be impaired by H(1)-antagonists (reverse agonists) capable of penetrating the blood-brain barrier. By blocking the homeostatic effects of histamine in the CNS, drowsiness and functional impairment with or without drowsiness can occur. Several tests have been designed to assess the effects of antihistamines on the CNS. These include subjective measurements of drowsiness and more objective measurements of impairment. Second-generation antihistamines have been designed to minimize blood-brain barrier penetration by reducing lipophilicity and increasing the affinity for P-aminnoglycoprotein.

  17. Autoimmune Neurology of the Central Nervous System.

    Science.gov (United States)

    Tobin, W Oliver; Pittock, Sean J

    2017-06-01

    This article reviews the rapidly evolving spectrum of autoimmune neurologic disorders with a focus on those that involve the central nervous system, providing an understanding of how to approach the diagnostic workup of patients presenting with central nervous system symptoms or signs that could be immune mediated, either paraneoplastic or idiopathic, to guide therapeutic decision making. The past decade has seen a dramatic increase in the discovery of novel neural antibodies and their targets. Many commercial laboratories can now test for these antibodies, which serve as diagnostic markers of diverse neurologic disorders that occur on an autoimmune basis. Some are highly specific for certain cancer types, and the neural antibody profiles may help direct the physician's cancer search. The diagnosis of an autoimmune neurologic disorder is aided by the detection of an objective neurologic deficit (usually subacute in onset with a fluctuating course), the presence of a neural autoantibody, and improvement in the neurologic status after a course of immunotherapy. Neural autoantibodies should raise concern for a paraneoplastic etiology and may inform a targeted oncologic evaluation (eg, N-methyl-D-aspartate [NMDA] receptor antibodies are associated with teratoma, antineuronal nuclear antibody type 1 [ANNA-1, or anti-Hu] are associated with small cell lung cancer). MRI, EEG, functional imaging, videotaped evaluations, and neuropsychological evaluations provide objective evidence of neurologic dysfunction by which the success of immunotherapy may be measured. Most treatment information emanates from retrospective case series and expert opinion. Nonetheless, early intervention may allow reversal of deficits in many patients and prevention of future disability.

  18. Anterior herniation of lumbar disc induces persistent visceral pain: discogenic visceral pain: discogenic visceral pain.

    Science.gov (United States)

    Tang, Yuan-Zhang; Shannon, Moore-Langston; Lai, Guang-Hui; Li, Xuan-Ying; Li, Na; Ni, Jia-Xiang

    2013-01-01

    Visceral pain is a common cause for seeking medical attention. Afferent fibers innervating viscera project to the central nervous system via sympathetic nerves. The lumbar sympathetic nerve trunk lies in front of the lumbar spine. Thus, it is possible for patients to suffer visceral pain originating from sympathetic nerve irritation induced by anterior herniation of the lumbar disc. This study aimed to evaluate lumbar discogenic visceral pain and its treatment. Twelve consecutive patients with a median age of 56.4 years were enrolled for investigation between June 2012 and December 2012. These patients suffered from long-term abdominal pain unresponsive to current treatment options. Apart from obvious anterior herniation of the lumbar discs and high signal intensity anterior to the herniated disc on magnetic resonance imaging, no significant pathology was noted on gastroscopy, vascular ultrasound, or abdominal computed tomography (CT). To prove that their visceral pain originated from the anteriorly protruding disc, we evaluated whether pain was relieved by sympathetic block at the level of the anteriorly protruding disc. If the block was effective, CT-guided continuous lumbar sympathetic nerve block was finally performed. All patients were positive for pain relief by sympathetic block. Furthermore, the average Visual Analog Scale of visceral pain significantly improved after treatment in all patients (P herniation of the lumbar disc when forming a differential diagnosis for seemingly idiopathic abdominal pain. Continuous lumbar sympathetic nerve block is an effective and safe therapy for patients with discogenic visceral pain.

  19. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  20. Bilastine and the central nervous system.

    Science.gov (United States)

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  1. Myelin plasticity in the central nervous system.

    Science.gov (United States)

    Purger, David; Gibson, Erin M; Monje, Michelle

    2016-11-01

    Myelin sheaths, specialized segments of oligodendrocyte (OL) plasma membranes in the central nervous system (CNS), facilitate fast, saltatory conduction of action potentials down axons. Changes to the fine structure of myelin in a neural circuit, including sheath thickness and internode length (length of myelin segments between nodes of Ranvier), are expected to affect conduction velocity of action potentials. Myelination of the mammalian CNS occurs in a stereotyped, progressive pattern and continues well into adulthood in humans. Recent evidence from zebrafish, rodents, non-human primates, and humans suggests that myelination may be sensitive to experiences during development and adulthood, and that varying levels of neuronal activity may underlie these experience-dependent changes in myelin and myelin-forming cells. Several cellular, molecular, and epigenetic mechanisms have been investigated as contributors to myelin plasticity. A deeper understanding of myelin plasticity and its underlying mechanisms may provide insights into diseases involving myelin damage or dysregulation. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Central nervous system stimulants and sport practice.

    Science.gov (United States)

    Avois, L; Robinson, N; Saudan, C; Baume, N; Mangin, P; Saugy, M

    2006-07-01

    Central nervous system (CNS) stimulants may be used to reduce tiredness and increase alertness, competitiveness, and aggression. They are more likely to be used in competition but may be used during training to increase the intensity of the training session. There are several potential dangers involving their misuse in contact sports. This paper reviews the three main CNS stimulants, ephedrine, amfetamine, and cocaine, in relation to misuse in sport. Description of the pharmacology, actions, and side effects of amfetamine, cocaine, and ephedrine. CNS stimulants have psychotropic effects that may be perceived to be ergogenic. Some are prescription drugs, such as Ephedra alkaloids, and there are issues regarding their appropriate therapeutic use. Recently attention has been given to their widespread use by athletes, despite the lack of evidence regarding any ergogenic or real performance benefit, and their potentially serious side effects. Recreational drugs, some of which are illegal (cocaine, amfetamines), are commonly used by athletes and cause potential ergolytic effects. Overall, these drugs are important for their frequent use and mention in anti-doping laboratories statistics and the media, and their potentially serious adverse effects. Doping with CNS stimulants is a real public health problem and all sports authorities should participate in its prevention. Dissemination of information is essential to prevent doping in sport and to provide alternatives. Adequate training and education in this domain should be introduced.

  3. Time Perception Mechanisms at Central Nervous System.

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  4. So as we worry we weigh: Visible burrow system stress and visceral adiposity.

    Science.gov (United States)

    Foster, Michelle T

    2017-09-01

    The visible borrow system (VBS) simulates a natural rodent habitat that supports genuine stress provoking social interactions. This model allows investigation of behavioral, neural and endocrine alterations caused by chronic stress. The Sakai lab further used this model to investigate metabolic outcomes of stress in relation to dominance hierarchies formed within the VBS. Communal social conflict occurs among all VBS rats, but only the SUB rats succumb to the redistribution of lipids in the visceral cavity and consequent metabolic dysregulation, such as hyper-insulinemia. These increases in visceral adipose tissue occur after two cycles of VBS stress and recovery bouts and are associated with decreases in subcutaneous adipose tissue. Traditionally, distribution shift in lipid deposition is predominately thought to occur by characteristics specific to the visceral depot, but evidence supports that decreased subcutaneous adipose tissue deposition may be linked to enhanced visceral adipose expansion. This review will discuss VBS stress and redirection of adipose tissue in SUB rats. There will be specific focus on the enhanced adipogenic capacity of visceral adipose tissue as driven by glucocorticoid receptor density, 11-hydroxysteroid dehydrogenase type 1 (11-HSD1) and lipoprotein lipase (LPL). Additionally, the proposed contribution of decreased subcutaneous adipose expansion via stress-induced inhibition of lipid uptake, storage and cellularity will be discussed. Overall, this review will summarize how stress-induced visceral obesity may result from a combination of maladaptive responses within the visceral and subcutaneous depot. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Serotonin 5-HT(3) receptors in the central nervous system

    NARCIS (Netherlands)

    Chameau, P.J.P.; van Hooft, J.A.

    2006-01-01

    The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher

  6. Plasticity and Neural Stem Cells in the Enteric Nervous System

    NARCIS (Netherlands)

    Schaefer, Karl-Herbert; Van Ginneken, Chris; Copray, Sjef

    2009-01-01

    The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to

  7. Functional State of Puberty Aged Hockey Players’ Nervous System

    Directory of Open Access Journals (Sweden)

    I.V. Shichavin

    2012-06-01

    Full Text Available The article estimates age-specific indexes of nervous system, responsible for juveniles’ speed qualities, training in Children and Youth Ice Hockey School. The received data justifies the necessity for individual approach to each hockey player, considering his age peculiarities and, respectively the functioning of the nervous system in the course of training organization.

  8. Autonomic nervous system function in Huntington's disease.

    Science.gov (United States)

    Andrich, J; Schmitz, T; Saft, C; Postert, T; Kraus, P; Epplen, J T; Przuntek, H; Agelink, M W

    2002-06-01

    To investigate whether Huntington's disease (HD) affects autonomic nervous system (ANS) functioning. Twenty patients with HD who had positive genetic test results underwent standardised ANS function tests including sympathetic skin responses (SSRs) of the hands and feet, measurements of heart rate variability (HRV), both during five minutes of resting and deep respiration, and an orthostatic blood pressure test. Patients were classified according to the motor subscale of the unified Huntington's disease rating scale (UHDRS; mean (SD) score 26.4 (13.6)) and divided into two subgroups: UHDRS or =25 points (mid stages, M-HD). Autonomic indices were compared with those obtained for a group of well matched healthy controls (n=60). Overall, patients showed lower HRV indices than controls. Multivariate analysis with the independent factor of "group" (controls, E-HD, M-HD) showed a significant group effect on both the high frequency power (F=4.32, p=0.017) and the coefficient of variation (F=4.23, p=0.018), indicating a significant reduction in vagal modulation in the M-HD group. There was a shift in autonomic neurocardiac balance towards sympathetic predominance in the M-HD group compared with controls (F=2.89, p=0.062). Moreover, we found an inverse correlation between the severity of clinical HD symptoms (assessed by the UHDRS) and the modulation of cardiovagal activity (p=0.028). Vagal dysregulation was present in two patients; one of them also showed a pathological blood pressure test and a latency prolongation in the SSRs of the hands. Two other patients had pathologically reduced SSR amplitudes. Only patients of the M-HD group were affected. Autonomic dysfunction is present even in the middle stages of HD and affects both the sympathetic and parasympathetic branch of the ANS.

  9. Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system.

    Science.gov (United States)

    Imai, Janice H; Meinertzhagen, Ian A

    2007-03-20

    The peripheral nervous system of the ascidian tadpole larva comprises a distributed population of isolated receptor neurons, most of unproved function, organized along the trunk or tail epithelium. Previous reports using immunocytochemical methods failed to resolve the detailed morphology of the neurons and their axon pathways. Precleavage embryos of Ciona intestinalis transfected with the promoter of the neuron-specific synaptotagmin gene fused to a green fluorescent protein (GFP) gene yielded clearly labelled GFP profiles. These we examined in confocal image stacks of 31 larvae. Anchor cells, at least eight in each adhesive apical papilla, contribute axons to the papillar nerves that terminate in the sensory vesicle of the central nervous system. Two nerve bundles projected from each papilla, suggesting that at least two subpopulations of papillar neurons exist. Each bundle fasciculated with axons of the rostral trunk epidermal neurons (RTEN) in a stereotyped pattern. The RTEN had a hitherto unreported elaborate arbor of sensory dendrites within the tunic, suggesting that each has an extended sensorial field. Two subpopulations of apical trunk epidermal neurons (ATEN), anterior and posterior, were distinguished. As with the RTEN, these neurons extended dendritic arbors into the tunic. Two additional types of tail neuron, the caudal epidermal neurons (dorsal and ventral) as well as a novel bipolar interneuron, were identified. These identified neuron types are the substrate for the ascidian larva's entire peripheral sensory input, important during larval swimming and settlement. 2007 Wiley-Liss, Inc.

  10. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  11. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...

  12. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    NARCIS (Netherlands)

    A.J.P.E. Vincent (Arnoud)

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is

  13. Central nervous system stimulants and drugs that suppress appetite

    DEFF Research Database (Denmark)

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  14. Central nervous system infections in heart transplant recipients

    NARCIS (Netherlands)

    van de Beek, Diederik; Patel, Robin; Daly, Richard C.; McGregor, Christopher G. A.; Wijdicks, Eelco F. M.

    2007-01-01

    OBJECTIVE: To study central nervous system infections after heart transplantations. DESIGN: Retrospective cohort study. SETTING: Cardiac Transplant Program at Mayo Clinic, Rochester, Minnesota. Patients Three hundred fifteen consecutive patients who underwent heart transplantation from January 1988

  15. Involvement of the peripheral nervous system in primary Sjogren's syndrome

    NARCIS (Netherlands)

    P.J. Barendregt (Pieternella); M.J. van den Bent (Martin); V.J. van Raaij-van den Aarssen; A.H. van den Meiracker (Anton); C.J. Vecht; G.L. van der Heijde; H.M. Markusse

    2001-01-01

    textabstractBACKGROUND: Involvement of the peripheral nervous system in patients with primary Sjogren's syndrome (SS) has been reported, but its prevalence in neurologically asymptomatic patients is not well known. OBJECTIVE: To assess clinical and neurophysiological features of

  16. What Health-Related Functions Are Regulated by the Nervous System?

    Science.gov (United States)

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  17. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  18. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Seravalle, Gino; Grassi, Guido

    2016-09-01

    Experimental and clinical studies have clearly shown the role of the sympathetic nervous system in the pathophysiology of several cardiovascular and non-cardiovascular diseases. This short review will be aimed at focusing and discussing the new information collected on two specific clinical conditions such as obesity and metabolic syndrome. The paper will briefly describe the four main mechanisms that represent the common link between these two pathophysiological conditions and that through the sympathetic nervous system contribute to increase the cardiovascular risk.

  19. Role of the nervous system in cancer metastasis

    OpenAIRE

    Li, Sha; Sun, Yanlai; Gao, Dongwei

    2013-01-01

    The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process o...

  20. Role of the nervous system in cancer metastasis.

    Science.gov (United States)

    Li, Sha; Sun, Yanlai; Gao, Dongwei

    2013-04-01

    The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.

  1. Therapeutic Application of Electric Fields in the Injured Nervous System

    Science.gov (United States)

    Haan, Niels; Song, Bing

    2014-01-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required. Recent Advances: The observation that cultured neurons are able to respond to exogenous electric fields (EFs) by sprouting more neurites and directing growth along the field, along with the presence of endogenous EFs in the developing vertebrate nervous system have led to the suggestion of the use of EFs in a regenerative therapeutic setting. This review discusses the effects of EFs on nervous cells, and their use in the treatment of nervous injuries in the eye, limb nerves, and the spinal cord. Exogenous EFs have been shown to be neuroprotective in various injury models of the eye, including traumatic injury, congenital degenerative retinopathy, and glaucoma. In the PNS, EFs are able to stimulate regrowth and functional recovery in damaged limb nerves. In the spinal cord, axonal regeneration and improved quality of life may be achieved using EF stimulation. Critical Issues: The optimal paradigm for electrical stimulation has not been determined, and the mechanisms behind the effect of EF are still largely unknown. Future Directions: Although the therapeutic use of EFs in the nervous system is still in its infancy, it is a promising therapeutic avenue for otherwise hard to treat injuries. The cellular/molecular mechanisms of such regulation need to be fully investigated, and the efficiency of applied EFs during wound healing needs to be optimized in a systematic approach in both animal models and future clinical trials. PMID:24761356

  2. The Enteric Nervous System in Inflammation and Pain: The Role of Proteinase-Activated Receptors

    Directory of Open Access Journals (Sweden)

    Nathalie Vergnolle

    2003-01-01

    Full Text Available The enteric nervous system (ENS plays a pivotal role in inflammatory and nociceptive processes. Drugs that interact with the ENS have recently raised considerable interest because of their capacity to regulate numerous aspects of the gut physiology and pathophysiology. The present article summarizes recent research on proteinases and proteinase-activated receptors (PARs as signalling molecules in the ENS. In particular, experiments in animal models suggest that PAR2 is important to neurogenic inflammation in the intestine. Moreover, PAR2 agonists seem to induce intestinal hypersensitivity and hyperalgesic states, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with the proteinases that activate them, represent exciting new targets for therapeutic intervention on the ENS.

  3. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  4. The complex simplicity of the brittle star nervous system.

    Science.gov (United States)

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  5. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  6. Directional Spread of Alphaherpesviruses in the Nervous System

    Directory of Open Access Journals (Sweden)

    Lynn W. Enquist

    2013-02-01

    Full Text Available Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS, where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores commonly associated with herpes simplex virus (HSV and herpes zoster (shingles associated with varicella zoster virus (VZV. Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS. Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.

  7. Evolution of flatworm central nervous systems: Insights from polyclads

    Directory of Open Access Journals (Sweden)

    Sigmer Y. Quiroga

    2015-09-01

    Full Text Available The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  8. Monophyletic Origin of the Metazoan Nervous System: Characterizing

    Science.gov (United States)

    Watkins, Russell; Beckenbach, Andrew

    In the absence of additional cases to be studied, our understanding of the likelihood of intelligent life evolving elsewhere in the universe must be framed within the context of the evolution of intelligence on this planet. Towards this end a valid model of the evolution of animal life, and in particular of the nervous system, is key. Models which describe the development of complexity within the nervous system can be positively misleading if they are not grounded in an accurate model of the true relationships of the animal phyla. If fact the evolution of animal life at its earliest stages, from protists to the sponges, Cnidaria, and Ctenophora and onward to the bilateral animal phyla is poorly characterized. Recently numerous phylogenies of the early animal radiation have been published based upon DNA sequence data, with conflicting and poorly supported results. A polyphyletic origin for the animal nervous system has been implied by the results of several studies, which would lead to the conclusion that some characteristics of the nervous systems of higher and lower animals could be convergent. We show that an equally parsimonious interpretation of the molecular sequence data published thus far is that it reflects rapid speciation events early in animal evolution among the classical ``diploblast'' phyla, as well as accelerated DNA sequence divergence among the higher animals. This could be interpreted as support for a classical phylogeny of the animal kingdom, and thus of a strictly monophyletic origin for the nervous system.

  9. The alpha-herpesviruses: molecular pathfinders in nervous system circuits

    Science.gov (United States)

    Ekstrand, Mats I.; Enquist, L.W.; Pomeranz, Lisa E.

    2012-01-01

    Several neuroinvasive viruses can be used to study the mammalian nervous system. In particular, infection by pseudorabies virus (PRV), an α-herpesvirus with broad host range, reveals chains of functionally connected neurons in the nervous systems of a variety of mammals. The specificity of PRV trans-neuronal spread has been established in several systems. One attenuated strain, PRV-Bartha, causes a reduced inflammatory response and also spreads only from infected post- to pre-synaptic neurons. We review the basics of PRV tracing and then discuss new developments and novel approaches that have enabled a more detailed understanding of the architecture of the nervous system. As questions and techniques evolve in the field of neuroscience, advances in PRV tracing will certainly follow. PMID:18280208

  10. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    Science.gov (United States)

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  11. Toxocariasis of the central nervous system: with report of two cases

    Directory of Open Access Journals (Sweden)

    Moreira-Silva Sandra F.

    2004-01-01

    Full Text Available Clinical involvement of the nervous system in visceral larva migrans due to Toxocara is rare, although in experimental animals the larvae frequently migrate to the brain. A review of the literature from the early 50's to date found 29 cases of brain involvement in toxocariasis. In 20 cases, various clinical and laboratory manifestations of eosinophilic meningitis, encephalitis, myelitis or radiculopathy were reported. We report two children with neurological manifestations, in which there was cerebrospinal fluid pleocytosis with marked eosinophilia and a positive serology for Toxocara both in serum and CSF. Serology for Schistosoma mansoni, Cysticercus cellulosae, Toxoplasma and cytomegalovirus were negative in CSF, that was sterile in both cases. Improvement of signs and symptoms after specific treatment (albendazole or thiabendazole was observed in the two cases. A summary of data described in the 25 cases previously reported is presented and we conclude that in cases of encephalitis and myelitis with cerebrospinal fluid pleocytosis and eosinophilia, parasitic infection of the central nervous system should be suspected and serology should be performed to establish the correct diagnosis and treatment.

  12. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    Science.gov (United States)

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis. © The Author(s) 2013.

  13. Nervous system modification by transplants and gene transfer.

    Science.gov (United States)

    Doering, L C

    1994-11-01

    New possibilities to modify function and direct repair in the central nervous system (CNS) have been established by the merger of gene transfer technology with neural transplantation. Rapid advances in viral-mediated DNA-delivery procedures permit the study of novel gene expression in neurons and glial cells. Foreign genes, transferred by a virus vector, can be used to generate new cell lines, identify transplanted cells, and express growth factors or enzymes for neurotransmitter synthesis. In addition to CNS cell types, non-neural cells are also being studied with transgene technology in the nervous system. Functional effects have been obtained with grafts of genetically modified cells in animal models of several nervous system disorders, and the recent results set the stage for potential application of these techniques to human CNS gene therapy.

  14. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  15. Autonomic nervous system interaction with the cardiovascular system during exercise.

    Science.gov (United States)

    Freeman, James V; Dewey, Frederick E; Hadley, David M; Myers, Jonathan; Froelicher, Victor F

    2006-01-01

    There is considerable recent evidence that parameters thought to reflect the complex interaction between the autonomic nervous system and the cardiovascular system during exercise testing can provide significant prognostic information. Specific variables of great importance include heart rate (HR) response to exercise (reserve), HR recovery after exercise, and multiple components of HR variability both at rest and with exercise. Poor HR response to exercise has been strongly associated with sudden cardiac death and HR recovery from a standard exercise test has been shown to be predictive of mortality. In addition, there are limited studies evaluating the components of HR variability at rest and during exercise and their prognostic significance. Research continues seeking to refine these exercise measurements and further define their prognostic value. Future findings should augment the power of the exercise test in risk-stratifying cardiovascular patients.

  16. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  17. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  18. Role of neuroactive steroids in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Roberto Cosimo eMelcangi

    2011-12-01

    Full Text Available Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy.

  19. Dynamic regulation of neurotransmitter specification: Relevance to nervous system homeostasis

    Science.gov (United States)

    Borodinsky, Laura N.; Belgacem, Yesser Hadj; Swapna, Immani; Sequerra, Eduardo Bouth

    2013-01-01

    During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. PMID:23270605

  20. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...... (MS) and post-traumatic inflammation. We provide evidence that chemokines play a role in amplifying the inflammatory reaction in EAE (and, probably, MS). In the context of neural trauma, chemokines appear to be primary stimuli for leukocyte recruitment. Strikingly, expression of monocyte...

  1. Development of the nervous system in Platynereis dumerilii (Nereididae, Annelida).

    Science.gov (United States)

    Starunov, Viktor V; Voronezhskaya, Elena E; Nezlin, Leonid P

    2017-01-01

    The structure and development of the nervous system in Lophotrochozoa has long been recognized as one of the most important subjects for phylogenetic and evolutionary discussion. Many recent papers have presented comprehensive data on the structure and development of catecholaminergic, serotonergic and FMRFamidergic parts of the nervous system. However, relatively few papers contain detailed descriptions of the nervous system in Annelida, one of the largest taxa of Lophotrochozoa. The polychaete species Platynereis dumerilii has recently become one of the more popular model animals in evolutionary and developmental biology. The goal of the present study was to provide a detailed description of its neuronal development. The data obtained will contribute to a better understanding of the basic features of neuronal development in polychaetes. We have studied the development of the nervous system in P. dumerilii utilizing histo- and immunochemical labelling of catecholamines, serotonin, FMRFamide related peptides, and acetylated tubulin. The first neuron differentiates at the posterior extremity of the protrochophore, reacts to the antibodies against both serotonin and FMRFamide. Then its fibres run forwards along the ventral side. Soon, more neurons appear at the apical extreme, and their basal neurites form the basel structure of the developing brain (cerebral neuropil and circumesophageal connectives). Initial development of the nervous system starts in two rudiments: anterior and posterior. At the nectochaete stage, segmental ganglia start to differentiate in the anterior-to-posterior direction, and the first structures of the stomatogastric and peripheral nervous system appear. All connectives including the unpaired ventral cord develop from initially paired nerves. We present a detailed description of Platynereis dumerilii neuronal development based on anti-acetylated tubulin, serotonin, and FMRFamide-like immunostaining as well as catecholamine

  2. Feeding Intolerance in Children with Severe Impairment of the Central Nervous System: Strategies for Treatment and Prevention

    Directory of Open Access Journals (Sweden)

    Julie Hauer

    2017-12-01

    Full Text Available Children with severe impairment of the central nervous system (CNS experience gastrointestinal (GI symptoms at a high rate and severity, including retching, vomiting, GI tract pain, and feeding intolerance. Commonly recognized sources of symptoms include constipation and gastroesophageal reflux disease. There is growing awareness of sources due to the impaired nervous system, including visceral hyperalgesia due to sensitization of sensory neurons in the enteric nervous system and central neuropathic pain due to alterations in the thalamus. Challenging the management of these symptoms is the lack of tests to confirm alterations in the nervous system as a cause of symptom generation, requiring empirical trials directed at such sources. It is also common to have multiple reasons for the observed symptoms, further challenging management. Recurrent emesis and GI tract pain can often be improved, though in some not completely eliminated. In some, this can progress to intractable feeding intolerance. This comprehensive review provides an evidence-based approach to care, a framework for recurrent symptoms, and language strategies when symptoms remain intractable to available interventions. This summary is intended to balance optimal management with a sensitive palliative care approach to persistent GI symptoms in children with severe impairment of the CNS.

  3. Altered balance in the autonomic nervous system in schizophrenic patients

    DEFF Research Database (Denmark)

    Nielsen, B M; Mehlsen, J; Behnke, K

    1988-01-01

    .05). Heart-rate response to inspiration was greater in non-medicated schizophrenics compared to normal subjects (P less than 0.05), whereas no difference was found between medicated and non-medicated schizophrenics. The results show that the balance in the autonomic nervous system is altered in schizophrenic...... patients with a hyperexcitability in both the sympathetic and the parasympathetic division. Our study has thus indicated a dysfunction in the autonomic nervous system per se and the previous interpretations of attentional orienting responses in schizophrenia is questioned. Medication with neuroleptics......The aim of the present study was to evaluate the autonomic nervous function in schizophrenic patients. Twenty-eight patients (29 +/- 6 years) diagnosed as schizophrenics and in stable medication were included, together with ten schizophrenic patients (25 +/- 5 years) who were unmedicated. Eleven...

  4. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  5. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Science.gov (United States)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  6. Autonomic nervous system involvement in pulmonary arterial hypertension.

    Science.gov (United States)

    Vaillancourt, Mylène; Chia, Pamela; Sarji, Shervin; Nguyen, Jason; Hoftman, Nir; Ruffenach, Gregoire; Eghbali, Mansoureh; Mahajan, Aman; Umar, Soban

    2017-12-04

    Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.

  7. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    biology. Daya Maghani is the. Deputy Director of the. Depa rtment of N europa- thology and Applied. Biology, Medical. Research Center, Bombay. Hospital, Mumbai. She specializes in electron microscopy of muscle, ... update students about these important other cells of the nervous system. The present article highlights ...

  8. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...... of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy....

  9. Responses of the Autonomic Nervous System to Flavors

    NARCIS (Netherlands)

    Wijk, de René A.; Boesveldt, Sanne

    2016-01-01

    Multisensory flavor perception plays an important role in decision-making, for instance for food products. Autonomic nervous system (ANS) responses, such as heart rate and skin conductance responses, towards such flavor stimuli may provide insights into processes related to consumer acceptance

  10. Spontaneous nervous system concussion in dogs: a description of ...

    African Journals Online (AJOL)

    Ibrahim Eldaghayes

    ... 12/04/2017. Accepted: 19/10/2017. Published: 06/11/2017. Spontaneous nervous system concussion in dogs: a description of two cases and a review of terminology in veterinary medicine. Angelo Pasquale Giannuzzi, Antonio De Simone and Mario Ricciardi*. “Pingry” Veterinary Hospital, via Medaglie d'Oro 5, Bari, Italy ...

  11. Some Central Nervous System Activities of Nerium Oleander Linn ...

    African Journals Online (AJOL)

    Purpose: The purpose of the study was to evaluate the activity of 50 % hydroalcohol flower extract of Nerium oleander Linn. on the central nervous system (CNS) of mice. Methods: The effect of the 50 % hydroalcohol extract of N. oleander flowers at dosage levels of 100 and 200 mg/kg p.o. on the locomotor activity of mice ...

  12. Spontaneous nervous system concussion in dogs: A description of ...

    African Journals Online (AJOL)

    In human medicine, central nervous system (CNS) concussion is defined as a transient neurological dysfunction following a traumatic event, without evidence of structural abnormalities of the affected region on advanced diagnostic imaging. Depending on the anatomical region involved, three forms of concussive ...

  13. central nervous system lignocaine toxicity in an infant following ...

    African Journals Online (AJOL)

    2013-05-28

    May 28, 2013 ... CENTRAL NERVOUS SYSTEM LIGNOCAINE TOXICITY IN AN INFANT FOLLOWING VENTRICULO-PERITONEAL. SHUNT AND SPINA BIFIDA REPAIR: A CASE REPORT. N. Kituu .... under general anesthesia can be made with indirect signs such as muscular rigidity, hypoxemia without other causes ...

  14. Central nervous system depressant activity of Russelia equisetiformis

    African Journals Online (AJOL)

    A significant reduction (p< 0.05) in amphetamine – induced stereotype behavior was observed with 200mg/kg REC, but there was no protection against amphetamine – induced mortality. The results of this study suggest that Russelia equisetiformis methanol extract possesses central nervous system depressant activities.

  15. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    These accidents (RTA) have been attributed to various causes including driving under the influence of drugs that affect the central nervous system (CNS). Objective: This study was aimed at determining the role of CNS affecting drugs in the causation of RTA among these motorcyclists and also to make recommendations ...

  16. Sino-orbital aspergillosis with central nervous system complication ...

    African Journals Online (AJOL)

    A central nervous system (CNS) complication (cerebral abscess) was diagnosed following seizures in the patient. The patient died a few days later. Conclusion: The diagnosis of aspergillosis of the orbit was only made from fungal culture after the patient's death. It requires a high index of suspicion to make a diagnosis of ...

  17. Glial Cells: The Other Cells of the Nervous System ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. Glial Cells: The Other Cells of the Nervous System - Oligodendrocytes – Ensheathers of the CNS. Yasmin Khan Medha S Rajadhyaksha. Series Article Volume 7 Issue 6 June 2002 pp 6-13 ...

  18. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  19. Role of semaphorins in the adult nervous system

    NARCIS (Netherlands)

    de Wit, Joris; Verhaagen, J.

    2003-01-01

    In the developing nervous system, extending axons are directed towards their appropriate targets by a myriad of attractive and repulsive guidance cues. Work in the past decade has significantly advanced our understanding of these molecules and has made it increasingly clear that their function is

  20. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  1. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  2. Peripheral and Central Nervous System Involvement in Recently ...

    African Journals Online (AJOL)

    Peripheral and Central Nervous System Involvement in Recently Diagnosed Cases of Hypothyroidism: An. Electrophysiological Study. Gupta N, Arora M1, Sharma R, Arora KS2. Departments of Physiology and 1Medicine, Guru Gobind Singh Medical College, 2Department of Physiology, Dasmesh. Institute of Research and ...

  3. The Enteric Nervous System In The Goat: Regional Morphological ...

    African Journals Online (AJOL)

    Regional differences, submucosal and intramucosal organization of ganglia in the enteric nervous system (ENS) of large mammals are not yet clear. The ENS of eight adult goats was studied by S-100 protein, neurofilament proteins, and substance P immunohistochemistry. Numerical density was used to establish ...

  4. FMRFamide-like immunoreactivity in the nervous system of Hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Schot, L P

    1982-01-01

    FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles...

  5. Some central nervous system and blood pressure lowering effects of ...

    African Journals Online (AJOL)

    The methanol extract of the leaves of Spondias mombin (SP) was evaluated for some central nervous system and blood pressure lowering effect in albino wistar rats and mice. The extract was administered to pre-weighed mice (20-35 g), divided into five groups of five mice each at the doses of 50, 100 and 200 mg/kg for the ...

  6. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  7. Autonomic nervous system status and responsiveness and the ...

    African Journals Online (AJOL)

    increases in the activity of the sympathetic nervous system. However, it is now accepted that decreases in parasympathetic control, that is, decreases in the autonomic. 'brake' on heart rate, are much more important than previously assumed.1,2 Perhaps of greater concern with regard to anxiety disorders are indications of ...

  8. Autonomic nervous system status and responsiveness and the ...

    African Journals Online (AJOL)

    'brake' on heart rate, are much more important than previously assumed.1,2 Perhaps of greater concern with regard to anxiety disorders are indications of an autonomic inflexibility or decreased responsiveness in the face of a challenge.1,2 In view of the importance of the autonomic nervous system (ANS) to instantaneously ...

  9. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included...

  10. The nervous and the immune systems: conspicuous physiological analogies.

    Science.gov (United States)

    Sotelo, Julio

    2015-02-01

    From all biological constituents of complex organisms, two are highly sophisticated: the nervous and the immune systems. Interestingly, their goals and processes appear to be distant from each other; however, their physiological mechanisms keep notorious similarities. Both construct intelligence, learn from experience, and keep memory. Their precise responses to innumerable stimuli are delicately modulated, and the exposure of the individual to thousands of potential challenges integrates their functionality; they use a large part of their constituents not in excitatory activities but in the maintenance of inhibitory mechanisms to keep silent vast intrinsic potentialities. The nervous and immune systems are integrated by a basic cell lineage (neurons and lymphocytes, respectively) but each embodies countless cell subgroups with different and specialized deeds which, in contrast with cells from other organs, labyrinthine molecular arrangements conduct to "one cell, one function". Also, nervous and immune actions confer identity that differentiates every individual from countless others in the same species. Both systems regulate and potentiate their responses aided by countless biological resources of variable intensity: hormones, peptides, cytokines, pro-inflammatory molecules, etc. How the immune and the nervous systems buildup memory, learning capability, and exquisite control of excitatory/inhibitory mechanisms constitute major intellectual challenges for contemporary research.

  11. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  12. Elements of a 'nervous system' in sponges.

    Science.gov (United States)

    Leys, Sally P

    2015-02-15

    Genomic and transcriptomic analyses show that sponges possess a large repertoire of genes associated with neuronal processes in other animals, but what is the evidence these are used in a coordination or sensory context in sponges? The very different phylogenetic hypotheses under discussion today suggest very different scenarios for the evolution of tissues and coordination systems in early animals. The sponge genomic 'toolkit' either reflects a simple, pre-neural system used to protect the sponge filter or represents the remnants of a more complex signalling system and sponges have lost cell types, tissues and regionalization to suit their current suspension-feeding habit. Comparative transcriptome data can be informative but need to be assessed in the context of knowledge of sponge tissue structure and physiology. Here, I examine the elements of the sponge neural toolkit including sensory cells, conduction pathways, signalling molecules and the ionic basis of signalling. The elements described do not fit the scheme of a loss of sophistication, but seem rather to reflect an early specialization for suspension feeding, which fits with the presumed ecological framework in which the first animals evolved. © 2015. Published by The Company of Biologists Ltd.

  13. Uses of nanoparticles for central nervous system imaging and therapy.

    Science.gov (United States)

    Provenzale, J M; Silva, G A

    2009-08-01

    Applications of nanotechnology to medicine are leading to novel means of imaging living systems and of delivering therapy. Much nanotechnology research is focused on methods for imaging central nervous system functions and disease states. In this review, the principles of nanoparticle design and function are discussed with specific emphasis on applications to neuroradiology. In addition to innovative forms of imaging, this review describes therapeutic uses of nanoparticles, such as drug delivery systems, neuroprotection devices, and methods for tissue regeneration.

  14. The nervous systems of basally branching nemertea (palaeonemertea.

    Directory of Open Access Journals (Sweden)

    Patrick Beckers

    Full Text Available In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  15. Temporal encoding in a nervous system.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    2011-05-01

    Full Text Available We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.

  16. Vitamin A and the nervous system

    Directory of Open Access Journals (Sweden)

    Pavlović Dragan M.

    2014-01-01

    Full Text Available Vitamin A is essential for the early development and normal functioning of the brain throughout life. A deficiency of vitamin A is one of the leading causes of morbidity and mortality in developing countries, and subclinical deficiency is probably present worldwide. The main active molecule in vitamin A is retinoic acid, which is involved in vision, the immune system, skin health, olfaction and cognition (learning, memory, spatial functions, olfaction, etc. through processes of neuroplasticity and neurogenesis. Vitamin A is involved in the regulation of about one-sixth of the human genome. It has non-genomic actions in protein translation and paracrine actions. Retinal vitamin A aldehyde is crucial for day and night vision. The best-known manifestation of hypovitaminosis A is night blindness but in more severe cases, it causes blindness. In the hypothalamus, vitamin A, with information from the retina, acts in circadian and seasonal regulation. Increased retinoic acid levels in the blood are associated with increased risk of depression, and lower levels have been connected with Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, autistic spectrum disorders and schizophrenia. Higher doses and longer periods of treatment pose the threat of hypervitaminosis A. Vitamin A and its analogs are a promising new class of therapeutic agents in a wide spectrum of disorders, albeit with a narrow therapeutic window. [Projekat Ministarstva nauke Republike Srbije, br. 175033 i br. 175022

  17. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  18. The Central Nervous System and Inflammation in Hypertension

    OpenAIRE

    Marvar, Paul J.; Lob, Heinrich; Vinh, Antony; Zarreen, Faresa; Harrison, David G.

    2010-01-01

    In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system. Recent work suggests that the...

  19. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    Science.gov (United States)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  20. The Multifactorial role of Peripheral Nervous System in Bone Growth

    Science.gov (United States)

    Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios

    2017-09-01

    Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  1. The Multifactorial Role of Peripheral Nervous System in Bone Growth

    Directory of Open Access Journals (Sweden)

    Ioannis Gkiatas

    2017-09-01

    Full Text Available Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  2. D-Amino Acids in the Nervous and Endocrine Systems

    Science.gov (United States)

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  3. D-Amino Acids in the Nervous and Endocrine Systems

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Kiriyama

    2016-01-01

    Full Text Available Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS, such as Alzheimer’s disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems.

  4. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.

    Directory of Open Access Journals (Sweden)

    Raj Kumar Pan

    Full Text Available One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many different co-occurring processes at this level underlies the command and control of overall network activity. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost and communication efficiency (i.e., network path length. Even including information about the genetic relatedness of the cells cannot account for the observed modular structure. Comparison with other complex networks designed for efficient transport (of signals or resources implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including

  5. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  6. Novel mechanisms of central nervous system damage in HIV infection

    Directory of Open Access Journals (Sweden)

    Joy E Hazleton

    2010-03-01

    Full Text Available Joy E Hazleton1, Joan W Berman1,2, Eliseo A Eugenin11Department of Pathology and 2Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USAAbstract: Human immunodeficiency virus-1 infection of the central nervous system is an early event after primary infection, resulting in motor and cognitive defects in a significant number of individuals despite successful antiretroviral therapy. The pathology of the infected brain is characterized by enhanced leukocyte infiltration, microglial activation and nodules, aberrant expression of inflammatory factors, neuronal dysregulation and loss, and blood–brain barrier disruption. Months to years following the primary infection, these central nervous system insults result in a spectrum of motor and cognitive dysfunction, ranging from mild impairment to frank dementia. The mechanisms that mediate impairment are still not fully defined. In this review we discuss the cellular and molecular mechanisms that facilitate impairment and new data that implicate intercellular communication systems, gap junctions and tunneling nanotubes, as mediators of human immunodeficiency virus-1 toxicity and infection within the central nervous system. These data suggest potential targets for novel therapeutics.Keywords: AIDS, dementia, inflammation, gap junctions, nanotubes, chemokines

  7. Genome integrity and disease prevention in the nervous system.

    Science.gov (United States)

    McKinnon, Peter J

    2017-06-15

    Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease. © 2017 McKinnon; Published by Cold Spring Harbor Laboratory Press.

  8. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  9. Serotonin 5-HT(3) receptors in the central nervous system.

    Science.gov (United States)

    Chameau, Pascal; van Hooft, Johannes A

    2006-11-01

    The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT(3) receptors can be found. Presynaptic 5-HT(3) receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT(3) receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT(3) receptors play a role in the formation and function of cortical circuits.

  10. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Science.gov (United States)

    Tsioufis, Costas; Kordalis, Athanasios; Flessas, Dimitris; Anastasopoulos, Ioannis; Tsiachris, Dimitris; Papademetriou, Vasilios; Stefanadis, Christodoulos

    2011-01-01

    Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH. PMID:21331155

  11. Nervous system lyme disease: is there a controversy?

    Science.gov (United States)

    Halperin, John J

    2011-07-01

    Infection with the tick-borne spirochete, BORRELIA BURGDORFERI, affects the nervous system in well-defined ways. Accurate diagnostic tools and effective therapeutic regimens are now well established. Persistent misconceptions about (1) the role and interpretation of laboratory tests, (2) what is and is not evidence of nervous system infection, and (3) what constitutes an expected response to treatment have fostered widespread perceptions that this disease is highly controversial. Infection causes the classically described triad of meningitis, radiculoneuritis, and cranial neuritis; however, virtually every known neurologic disorder has been blamed on this infection. For most (multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease), evidence is scant, nonexistent, or coincidental. For some (cerebral vasculitis with stroke, optic neuritis) a few case reports suggest a rare possible causal link. © Thieme Medical Publishers.

  12. Central nervous system involvement in progressive muscular dystrophy.

    Science.gov (United States)

    Yoshioka, M; Okuno, T; Honda, Y; Nakano, Y

    1980-01-01

    Several abnormalities in the central nervous system were shown in patients with progressive muscular dystrophy using computerised tomography (CT) scans, electroencephalograms, psychometry, and ophthalmological methods. In congenital muscular dystrophy, the most characteristic finding in the CT scan was a low density area in the white matter, seen in 14 (56%) out of 25 cases. In Duchenne dystrophy, slight cerebral atrophy was observed in 20 (67%) out of 30 cases. It was interesting that in the case of Duchenne dystrophy the older the patient, the more severe were the CT findings. In congenital muscular dystrophy half the patients with a low density area showed a spike or a spike-and-wave complex in the electroencephalogram, and optic atrophy was evident in several cases. It is concluded that progressive muscular dystrophy is not only a myogenic disorder but also one which affects the central nervous system. Images Fig. 1 Fig. 2 PMID:7436514

  13. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  14. Dynamic regulation of neurotransmitter specification: relevance to nervous system homeostasis.

    Science.gov (United States)

    Borodinsky, Laura N; Belgacem, Yesser Hadj; Swapna, Immani; Sequerra, Eduardo Bouth

    2014-03-01

    During nervous system development the neurotransmitter identity changes and coexpression of several neurotransmitters is a rather generalized feature of developing neurons. In the mature nervous system, different physiological and pathological circumstances recreate this phenomenon. The rules of neurotransmitter respecification are multiple. Among them, the goal of assuring balanced excitability appears as an important driving force for the modifications in neurotransmitter phenotype expression. The functional consequences of these dynamic revisions in neurotransmitter identity span a varied range, from fine-tuning the developing neural circuit to modifications in addictive and locomotor behaviors. Current challenges include determining the mechanisms underlying neurotransmitter phenotype respecification and how they intersect with genetic programs of neuronal specialization. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    OpenAIRE

    Costas Tsioufis; Athanasios Kordalis; Dimitris Flessas; Ioannis Anastasopoulos; Dimitris Tsiachris; Vasilios Papademetriou; Christodoulos Stefanadis

    2011-01-01

    Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge po...

  16. Control of Prosthetic Hands via the Peripheral Nervous System

    OpenAIRE

    Anna Lisa eCiancio; Francesca eCordella; Roberto eBarone; Rocco Antonio Romeo; Alberto eDellacasa Bellingegni; Rinaldo eSacchetti; Angelo eDavalli; Giovanni eDi Pino; Federico eRanieri; Vincenzo eDi Lazzaro; Eugenio eGuglielmelli; Loredana eZollo

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are ...

  17. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Viral infections and malformations of the nervous system.

    Science.gov (United States)

    Johnson, R T

    1971-02-01

    Experimental viral infections are described which cause malformations of the developing nervous system. These include influenza virus infection of chick embryos causing defects in neural tube closure and flexion, parvovirus infections of rodents and cats resulting in a granuloprival cerebellar malformation, and myxovirus infections of rodents inducing stenosis of the aqueduct of Sylvius. In each experimental model the pathogenesis of the malformation is different, but in each the resultant noninflammatory malformation bears resemblances to malformations in man considered to have a genetic basis.

  19. Managing Atypical and Typical herpetic central nervous system infections

    DEFF Research Database (Denmark)

    Cag, Yasemin; Erdem, Hakan; Leib, Stephen

    2016-01-01

    There have been many studies pertaining to the management of herpetic meningoencephalitis (HME), but the majority of them have focussed on virologically unconfirmed cases or included only small sample sizes. We have conducted a multicentre study aimed at providing management strategies for HME. O...... the subtle nature of HME, CSF HSV PCR, EEG and MRI data should be collected for all patients with a central nervous system infection....

  20. Central nervous system manifestations of HIV infection in children

    Energy Technology Data Exchange (ETDEWEB)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur [University of Stellenbosch, Department of Radiology, Tygerberg Academic Hospital, Cape Town (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Tygerberg Academic Hospital, Cape Town (South Africa)

    2009-06-15

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  1. Epigenetics Components of Aging in the Central Nervous System

    OpenAIRE

    Zhao, Yue-Qiang; Jordan, I. King; Lunyak, Victoria V.

    2013-01-01

    This review highlights recent discoveries that have shaped the emerging viewpoints in the field of epigenetic influences in the central nervous system (CNS), focusing on the following questions: i) How is the CNS shaped during development when precursor cells transition into morphologically and molecularly distinct cell types, and is this event driven by epigenetic alterations?; ii) How do epigenetic pathways control CNS function?; iii) What happens to “epigenetic memory” during aging process...

  2. Are astrocytes executive cells within the central nervous system?

    OpenAIRE

    Sica, Roberto E.; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-01-01

    ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dement...

  3. Xenacoelomorpha: a case of independent nervous system centralization?

    OpenAIRE

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-01

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoel...

  4. Radon exposure and tumors of the central nervous system.

    Science.gov (United States)

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  6. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  7. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  9. Visceral pain hypersensitivity in functional gastrointestinal disorders.

    Science.gov (United States)

    Farmer, A D; Aziz, Q

    2009-01-01

    Functional gastrointestinal disorders (FGIDs) are a highly prevalent group of heterogeneous disorders whose diagnostic criteria are symptom based in the absence of a demonstrable structural or biochemical abnormality. Chronic abdominal pain or discomfort is a defining characteristic of these disorders and a proportion of patients may display heightened pain sensitivity to experimental visceral stimulation, termed visceral pain hypersensitivity (VPH). We examined the most recent literature in order to concisely review the evidence for some of the most important recent advances in the putative mechanisms concerned in the pathophysiology of VPH. VPH may occur due to anomalies at any level of the visceral nociceptive neuraxis. Important peripheral and central mechanisms of sensitization that have been postulated include a wide range of ion channels, neurotransmitter receptors and trophic factors. Data from functional brain imaging studies have also provided evidence for aberrant central pain processing in cortical and subcortical regions. In addition, descending modulation of visceral nociceptive pathways by the autonomic nervous system, hypothalamo-pituitary-adrenal axis and psychological factors have all been implicated in the generation of VPH. Particular areas of controversy have included the development of efficacious treatment of VPH. Therapies have been slow to emerge, mainly due to concerns regarding safety. The burgeoning field of genome wide association studies may provide further evidence for the pleiotropic genetic basis of VPH development. Tangible progress will only be made in the treatment of VPH when we begin to individually characterize patients with FGIDs based on their clinical phenotype, genetics and visceral nociceptive physiology.

  10. Central and autonomic nervous system links to the APUD system (and their APUDomas).

    Science.gov (United States)

    Baylis, B W; Tranmer, B I; Ohtaki, M

    1993-01-01

    The concept of the APUD system and the APUDomas associated with it has evolved significantly since Pearse's description in the 1960s. Part of this evolution has been an understanding of the relationships between the APUD system and the central and autonomic nervous systems. The APUD system now referred to as the diffuse neuroendocrine system, can be linked to the central nervous system and autonomic nervous system by genetics, embryology, cellular characteristics, anatomy, interaction of the systems, and the immune system. Awareness of these relationships may enable clinicians to better understand APUDomas and lead to better methods of detection of these tumours and their treatment.

  11. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  12. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System

    Science.gov (United States)

    ... Malformations and Other Vascular Lesions of the Central Nervous System Fact Sheet What are arteriovenous malformations? What are ... other types of vascular lesions affect the central nervous system? Besides AVMs, three other main types of vascular ...

  13. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  14. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  15. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system

    NARCIS (Netherlands)

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  16. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs... and circulation) of the central nervous system. The BBB is an area consisting of specialized cells...

  17. A history of the autonomic nervous system: part II: from Reil to the modern era.

    Science.gov (United States)

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.

  18. Involvement of central nervous system in the schistosomiasis

    Directory of Open Access Journals (Sweden)

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  19. Involvement of central nervous system in the schistosomiasis.

    Science.gov (United States)

    Ferrari, Teresa Cristina de Abreu

    2004-01-01

    The involvement of the central nervous system (CNS) by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS) is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR) present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resources available for treating NS. The outcome is variable and is better in cerebral disease.

  20. Central nervous system frontiers for the use of erythropoietin

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...... system (CNS). Preclinical studies have demonstrated the presence of EPO receptors in the brain that are up-regulated under hypoxic or ischemic conditions. Intracerebral and systemic administration of epoetin alfa have been demonstrated to elicit marked neuroprotective effects in multiple preclinical...

  1. D-Amino Acids in the Nervous and Endocrine Systems

    OpenAIRE

    Yoshimitsu Kiriyama; Hiromi Nochi

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and me...

  2. The nervous system of Xenacoelomorpha: a genomic perspective.

    Science.gov (United States)

    Perea-Atienza, Elena; Gavilán, Brenda; Chiodin, Marta; Abril, Josep F; Hoff, Katharina J; Poustka, Albert J; Martinez, Pedro

    2015-02-15

    Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper. © 2015. Published by The Company of Biologists Ltd.

  3. The Adverse Effects of Air Pollution on the Nervous System

    Science.gov (United States)

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  4. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity?

    Science.gov (United States)

    Lambert, Elisabeth A; Straznicky, Nora E; Dixon, John B; Lambert, Gavin W

    2015-07-15

    The sympathetic nervous system (SNS) plays a key role in both cardiovascular and metabolic regulation; hence, disturbances in SNS regulation are likely to impact on both cardiovascular and metabolic health. With excess adiposity, in particular when visceral fat accumulation is present, sympathetic activation commonly occurs. Experimental investigations have shown that adipose tissue releases a large number of adipokines, cytokines, and bioactive mediators capable of stimulating the SNS. Activation of the SNS and its interaction with adipose tissue may lead to the development of hypertension and end-organ damage including vascular, cardiac, and renal impairment and in addition lead to metabolic abnormalities, especially insulin resistance. Lifestyle changes such as weight loss and exercise programs considerably improve the cardiovascular and metabolic profile of subjects with obesity and decrease their cardiovascular risk, but unfortunately weight loss is often difficult to achieve and sustain. Pharmacological and device-based approaches to directly or indirectly target the activation of the SNS may offer some benefit in reducing the cardiometabolic consequences of obesity. Preliminary evidence is encouraging, but more trials are needed to investigate whether sympathetic inhibition could be used in obesity to reverse or prevent cardiometabolic disease development. The purpose of this review article is to highlight the current knowledge of the role that SNS plays in obesity and its associated metabolic disorders and to review the potential benefits of sympathoinhibition on metabolic and cardiovascular functions. Copyright © 2015 the American Physiological Society.

  5. Masquerade Syndrome of Multicentre Primary Central Nervous System Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvana Guerriero

    2011-01-01

    Full Text Available Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  6. Area 51: How do Acanthamoeba invade the central nervous system?

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Hypopituitarism as unusual sequelae to central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    S Mageshkumar

    2011-01-01

    Full Text Available Neurological tuberculosis can very rarely involve the hypophysis cerebri. We report a case of an eighteen year old female who presented with five months duration of generalised apathy, secondary amenorrhea and weight gain. She was on irregular treatment for tuberculosis of the central nervous system for the last five months. Neuroimaging revealed sellar and suprasellar tuberculomas and communicating hydrocephalus requiring emergency decompression. Endocrinological investigation showed hypopituitarism manifesting as pituitary hypothyroidism, hypocortisolism, hypogonadotropic hypogonadism, and hyperprolactinemia. Restarting anti-tuberculosis treatment, hormone replacement therapy, and a ventriculo-peritoneal shunt surgery led to remarkable improvement in the general condition of the patient.

  8. Masquerade syndrome of multicentre primary central nervous system lymphoma.

    Science.gov (United States)

    Guerriero, Silvana; Giancipoli, Ermete; Ciracì, Lorenza; Ingravallo, Giuseppe; Prete, Marcella; Di Leo, Elisabetta; Cimmino, Antonietta; Cardascia, Nicola

    2011-01-01

    Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  9. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  10. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  11. [Components of plastic disrupt the function of the nervous system].

    Science.gov (United States)

    Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna

    2013-05-27

    Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.

  12. [Neuroradiologic manifestations of central nervous system tuberculosis in 122 adults].

    Science.gov (United States)

    Kilani, B; Ammari, L; Tiouiri, H; Goubontini, A; Kanoun, F; Zouiten, F; Chaabène, T-B

    2003-02-01

    Central nervous system (CNS) tuberculosis remains a public health problem, particularly in developing countries. The aim of this study is to characterize neuroradiologic findings of various intracranial lesions. We retrospectively reviewed data of 122 patients with CNS tuberculosis, without immunosuppression. CT scan was performed in all patients, whereas 17 patients had CT scan and MRI. We included 74 women (61%) and 48 men (39%) with a mean age of 37 years (17 -88y). 18 patients (14,7%) had a history of tuberculosis. Tuberculous meningitis was the most frequent clinical presentation (119 cases). Mycobacterium tuberculosis was isolated in cerebrospinal fluid of 18 patients (15%). Several types of lesions were identified : hydrocephalus (35 cases), tuberculomas (29 cases), leptomeningitis (26 cases), infarction (15 cases), abcesses (2 cases). Hydrocephalus was associated to other lesions in 26 cases. Communication hydrocephalus was present in 28 cases. Multiple tuberculomas were seen in 23 cases (80%), with miliary aspects in some cases. In 3 cases, tuberculoma was present without meningitis. Patients with leptomeningitis showed thick meningeal contrast enhancement involving all basal cisterns. Infarction resulted from arterial englobement or embols, and involved the area of middle cerebral artery (12 cases). Central nervous system tuberculosis has different appearences, mostly hydrocephalus and tuberculomas. MR with contrast is necessary for diagnosis and for follow-up during treatment.

  13. Cerebrospinal fluid features in adults with enteroviral nervous system infection.

    Science.gov (United States)

    Ahlbrecht, Jonas; Hillebrand, Lilly Katrin; Schwenkenbecher, Philipp; Ganzenmueller, Tina; Heim, Albert; Wurster, Ulrich; Stangel, Martin; Sühs, Kurt-Wolfram; Skripuletz, Thomas

    2018-02-01

    The aim of the study was to investigate clinical and laboratory features in adults with enteroviral nervous system infection with special emphasis on cerebrospinal fluid (CSF). Data of 46 patients with positive PCR for enteroviruses in the CSF between 2002 and 2017 were evaluated. Meningitis was the most common clinical manifestation (89%), followed by encephalitis (7%) and isolated cranial nerve affection (4%). 20% of patients reported a sudden onset of severe headache that misled to the initial suspected diagnosis of subarachnoid hemorrhage. General signs of infection such as fever, elevated CRP values, or elevated white blood cell counts were only found in 61%. Most patients exhibited consistent inflammatory CSF changes with elevated cell counts (85%) and blood-CSF barrier dysfunction (83%). Patients with normal CSF cell counts were significantly older, presented less frequently as meningitis and exhibited lower peripheral white blood cell counts. Sequencing revealed species Enterovirus-B in all patients with most sequences related to Echovirus 30. The absence of CSF plecocytosis, isolated cranial nerve affection and only infrequent general signs of infection may impede the diagnosis of enteroviral nervous system infection. A thorough CSF analysis including PCR is essential for a reliable diagnosis. Copyright © 2018. Published by Elsevier Ltd.

  14. A Rare Case of Central Nervous System Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ravish Parekh

    2014-01-01

    Full Text Available Intracranial abscess is an extremely rare form of central nervous system (CNS tuberculosis (TB. We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as well as in the inferior parietal lobe on the left. The patient was placed on an empiric antibiotic regimen. Preliminary testing for infectious causes was negative. Chest radiography and CT of chest showed no positive findings. He was not on any immunosuppressive medications and human immunodeficiency virus (HIV enzyme immunoassay (EIA test was negative. A subsequent MRI one month later showed profound worsening of the lesions with increasing vasogenic edema and newly found mass effect impinging on the fourth ventricle. Brain biopsy showed focal exudative cerebellitis and inflamed granulation tissue consistent with formation of abscesses. The diagnosis of CNS TB was finally confirmed by positive acid-fast bacilli (AFB cultures. The patient was started on standard tuberculosis therapy but expired due to renal failure and cardiac arrest.

  15. Involvement of the autonomic nervous system in Chagas heart disease

    Directory of Open Access Journals (Sweden)

    Edison Reis Lopes

    1983-12-01

    Full Text Available The autonomic nervous system and especially the intracardiac autonomic nervous system is involved in Chagas' disease. Ganglionitis and periganglionitis were noted in three groups ofpatients dying with Chagas'disease: 1 Those in heart failure; 2 Those dying a sudden, non violent death and; 3 Those dying as a consequence ofaccidents or homicide. Hearts in the threegroups also revealed myocarditis and scattered involvement of intramyocardial ganglion cells as well as lesions of myelinic and unmyelinic fibers ascribable to Chagas'disease. In mice with experimentally induced Chagas' disease weobserved more intensive neuronal lesions of the cardiac ganglia in the acute phase of infection. Perhaps neuronal loss has a role in the pathogenesis of Chagas cardiomyopathy. However based on our own experience and on other data from the literature we conclude that the loss of neurones is not the main factor responsible for the manifestations exhibited by chronic chagasic patients. On the other hand the neuronal lesions may have played a role in the sudden death ofone group of patients with Chagas'disease but is difficult to explain the group of patients who did not die sudderly but instead progressed to cardiac failure.

  16. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  17. Wnt signaling through the Ror receptor in the nervous system.

    Science.gov (United States)

    Petrova, Iveta M; Malessy, Martijn J; Verhaagen, Joost; Fradkin, Lee G; Noordermeer, Jasprina N

    2014-02-01

    The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.

  18. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  19. [Central nervous system tumours in childhood: their clinical pathological aspects].

    Science.gov (United States)

    Ortega Aznar, A; Romero Vidal, F J

    Paediatric tumours affecting the central nervous system (CNS) constitute the second most frequent group of tumours at this age. Taking the WHO 2000 classification as our starting point, our intention was to describe the more important clinical and pathological features in the differential diagnosis of the different tumourous entities with the highest incidence in childhood. We highlight, above all, the characteristics that justify the need for a smooth flow of information between neurologists, neurosurgeons, neuroradiologists, neuropathologists and oncologists. We do not deal with familial tumourous syndromes, genetic aspects or clinical information derived from analyses of molecular alterations. Among CNS tumours, enough age related differences exist to be able to consider those appearing during childhood in their own right. Their topographic specificity is very characteristic and while 50% of them are infratentorial, 90% of those that occur in adults are supratentorial. Embryonic tumours are very frequent in childhood, but rare in adults, and the opposite happens with meningiomas. They are also different as regards their histological features, clinical characteristics, the early tendency to spread throughout the nervous system in the course of the disease and their biological behaviour. These data make us think that, in the pathogenesis of brain tumours in children, the molecular and epigenetic factors involved are different from those at play in the case of adults. A correct diagnosis requires a multidisciplinary approach and an understanding of the histological criteria and nomenclature by the health professionals involved in treating these patients.

  20. The central nervous system and inflammation in hypertension.

    Science.gov (United States)

    Marvar, Paul J; Lob, Heinrich; Vinh, Antony; Zarreen, Faresa; Harrison, David G

    2011-04-01

    In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system. Recent work suggests that the central actions of angiotensin II via the circumventricular organs lead to activation of circulating T-cells and vascular inflammation. The neuro-immune system plays an essential role in the pathogenesis of hypertension and further understanding of this relationship could lead to the development of new treatment strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. [Sleep, emotions and the visceral control].

    Science.gov (United States)

    Pigarev, I N; Pigareva, M L

    2013-01-01

    It is known that sleep is connected with sensory isolation of the brain, inactivation of the consciousness and reorganization of the electrical activity in all cerebral cortical areas. On the other hand, sleep deprivation leads to pathology in visceral organs and finally to the death of animals, while there are no obvious changes in the brain itself. It stays the opened question how the changes in the brain activity during sleep could be con- nected with the visceral health? We proposed that the same brain areas and the same neurons, which in wakefulness process the information coming from the distant and proprioreceptors, switch during sleep to the processing of the interoceptive information. Thus, central nervous system is involved into the regulation of the life support functions of the body during sleep. Results of our experiments supported this hypothesis, explained many observations obtained in somnology and offered the mechanisms of several pathological states connected with sleep. However, at the present level of the visceral sleep theory there were no understanding of the well known link between the emotional states of the organisms and transition from wakefulness to sleep, and sleep quality. In this study the attempt is undertaken to combine the visceral theory of sleep with the need- informational theory ofemotions, proposed by P. Simonov. The visceral theory of sleep proposes that in living organisms there is a constant monitoring of the correspondence of the visceral parameters to the genetically determined values. Mismatch signals evoke the feeling of tiredness and the need of sleep. This sleep need en- ters the competition with the other actual needs of the organism. In according with the theory of P. Simonov emotions connected with a particular need play important role in their ranking for satisfaction. We propose that emotional estimation of the sleep need, based on the visceral signals, is realized in the same brain structures which undertake this

  2. Materials directed to implants for repairing Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Moreno-Burriel, B.; Chinarro, E.

    2014-07-01

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  3. Control of Prosthetic Hands via the Peripheral Nervous System.

    Science.gov (United States)

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control.

  4. Programming and reprogramming neuronal subtypes in the central nervous system.

    Science.gov (United States)

    Rouaux, Caroline; Bhai, Salman; Arlotta, Paola

    2012-07-01

    Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish. Copyright © 2012 Wiley Periodicals, Inc.

  5. Control of prosthetic hands via the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Anna Lisa eCiancio

    2016-04-01

    Full Text Available This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e. PNS, and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control.

  6. Control of Prosthetic Hands via the Peripheral Nervous System

    Science.gov (United States)

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  7. Convection-enhanced delivery to the central nervous system.

    Science.gov (United States)

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  8. Autonomic nervous system correlates in movement observation and motor imagery

    Directory of Open Access Journals (Sweden)

    Christian eCollet

    2013-07-01

    Full Text Available The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding on the autonomic nervous system (ANS correlates in motor imagery (MI and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system. We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes.

  9. R1 autonomic nervous system in acute kidney injury.

    Science.gov (United States)

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  10. Engineered AAV vectors for improved central nervous system gene delivery

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution—a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function—to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors—which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo—can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury. PMID:27606332

  11. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  12. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  13. Neuronal regulation of immune responses in the central nervous system.

    Science.gov (United States)

    Tian, Li; Rauvala, Heikki; Gahmberg, Carl G

    2009-02-01

    The central nervous system (CNS) has traditionally been considered to be immunologically privileged, but over the years there has been a re-evaluation of this dogma. To date, studies have tended to focus on the immune functions of glial cells, whereas the roles of neurons have been regarded as passive and their immune-regulatory properties have been less examined. However, recent findings indicate that CNS neurons actively participate in immune regulation by controlling their glial cell counterparts and infiltrated T cells. Here, we describe the immune-regulatory roles of CNS neurons by both contact-dependent and contact-independent mechanisms. In addition, we specifically deal with the immune functions of neuronal cell adhesion molecules, many of which are key modulators of neuronal synaptic formation and plasticity.

  14. FMRFamide-like immunoreactivity in the nervous system of Hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Schot, L P

    1982-01-01

    FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles. The ...... Sephadex G-50 in several components emerging shortly before or after position of authentic FMRFamide. The presence of FMRFamide-like material in coelenterates shows that this family of peptides is of great antiquity........ The immunoreactive nerve perikarya in the lower peduncle region form ganglion-like structures. Radioimmunoassays of extracts of hydra gave displacement curves parallel to standard FMRFamide and values of at least 8 pmol/gram wet weight of FMRFamide-like immunoreactivity. The immunoreactive material eluted from...

  15. Engineered AAV vectors for improved central nervous system gene delivery.

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution-a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function-to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors-which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo-can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury.

  16. Fractals in the nervous system: conceptual implications for theoretical neuroscience

    Directory of Open Access Journals (Sweden)

    Gerhard Werner

    2010-07-01

    Full Text Available This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power-law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review.

  17. Optical cuff for optogenetic control of the peripheral nervous system

    Science.gov (United States)

    Michoud, Frédéric; Sottas, Loïc; Browne, Liam E.; Asboth, Léonie; Latremoliere, Alban; Sakuma, Miyuki; Courtine, Grégoire; Woolf, Clifford J.; Lacour, Stéphanie P.

    2018-02-01

    Objective. Nerves in the peripheral nervous system (PNS) contain axons with specific motor, somatosensory and autonomic functions. Optogenetics offers an efficient approach to selectively activate axons within the nerve. However, the heterogeneous nature of nerves and their tortuous route through the body create a challenging environment to reliably implant a light delivery interface. Approach. Here, we propose an optical peripheral nerve interface—an optocuff—, so that optogenetic modulation of peripheral nerves become possible in freely behaving mice. Main results. Using this optocuff, we demonstrate orderly recruitment of motor units with epineural optical stimulation of genetically targeted sciatic nerve axons, both in anaesthetized and in awake, freely behaving animals. Behavioural experiments and histology show the optocuff does not damage the nerve thus is suitable for long-term experiments. Significance. These results suggest that the soft optocuff might be a straightforward and efficient tool to support more extensive study of the PNS using optogenetics.

  18. Feeling good: autonomic nervous system responding in five positive emotions.

    Science.gov (United States)

    Shiota, Michelle N; Neufeld, Samantha L; Yeung, Wan H; Moser, Stephanie E; Perea, Elaine F

    2011-12-01

    Although dozens of studies have examined the autonomic nervous system (ANS) aspects of negative emotions, less is known about ANS responding in positive emotion. An evolutionary framework was used to define five positive emotions in terms of fitness-enhancing function, and to guide hypotheses regarding autonomic responding. In a repeated measures design, participants viewed sets of visual images eliciting these positive emotions (anticipatory enthusiasm, attachment love, nurturant love, amusement, and awe) plus an emotionally neutral state. Peripheral measures of sympathetic and vagal parasympathetic activation were assessed. Results indicated that the emotion conditions were characterized by qualitatively distinct profiles of autonomic activation, suggesting the existence of multiple, physiologically distinct positive emotions. (c) 2011 APA, all rights reserved.

  19. Central nervous system lymphoma: magnetic resonance imaging features at presentation

    Directory of Open Access Journals (Sweden)

    Ricardo Schwingel

    2012-02-01

    Full Text Available OBJECTIVE: This paper aimed at studying presentations of the central nervous system (CNS lymphoma using structural images obtained by magnetic resonance imaging (MRI. METHODS: The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. RESULTS: All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. CONCLUSION: Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  20. Anticholinergic activity in the nervous system: Consequences for visuomotor function.

    Science.gov (United States)

    Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Kavanagh, Justin J

    2017-03-01

    Acetylcholine is present in the peripheral and central nervous system, where it is involved in a number of fundamental physiological and biochemical processes. In particular, interaction with muscarinic receptors can cause adverse effects such as dry mouth, drowsiness, mydriasis and cognitive dysfunction. Despite the knowledge that exists regarding these common side-effects, little is known about how anticholinergic medications influence central motor processes and fine motor control in healthy individuals. This paper reviews critical visuomotor processes that operate in healthy individuals, and how controlling these motor processes are influenced by medications that interfere with central cholinergic neurotransmission. An overview of receptor function and neurotransmitter interaction following the ingestion or administration of anticholinergics is provided, before exploring how visuomotor performance is affected by anticholinergic medications. In particular, this review will focus on the effects that anticholinergic medications have on fixation stability, saccadic eye movements, smooth pursuit eye movements, and general pupil dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  2. Central nervous system infections caused by varicella-zoster virus.

    Science.gov (United States)

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management.

  3. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  4. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  5. Congenital and acquired mitochondrial disorders of the central nervous system

    Directory of Open Access Journals (Sweden)

    V. V. Nikitina

    2014-01-01

    Full Text Available Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liquor. Neuro-visual study (Magnetic resonance imaging of the brain, MR spectroscopy, tractography, diffusion-weighted magnetic resonance imaging of the brain, mitochondrial DNA typing is actually used for the differential diagnosing of mitochondrial diseases with other disorders that are accompanied by demyelinating disorders.

  6. Infection of the central nervous system due to Acanthamoeba.

    Science.gov (United States)

    Martinez, A J

    1991-01-01

    It is well established that Acanthamoeba castellanii, Acanthamoeba culbertsoni, Acanthamoeba polyphaga, and probably other species of free-living amebas are virulent opportunists capable of producing disease in humans and animals. Human infections involving brain, eyes, skin, and lungs have been reported from all continents. Central nervous system (CNS) infection due to Acanthamoeba species usually occurs in chronically ill, debilitated individuals, some of them receiving immunosuppressive therapy or taking broad-spectrum antibiotics. The disease runs a protracted, insidious clinical course and is known as granulomatous amebic encephalitis. Histopathologically, Acanthamoeba species may produce a multifocal, chronic, or subacute granulomatous encephalitis, with trophozoites and cysts present in CNS lesions. The portal of entry of the amebas into the CNS is probably the respiratory tract or a skin lesion, and the organisms reach the CNS by hematogenous spread. As of 1 January 1989, about 50 cases of granulomatous amebic encephalitis had been reported worldwide, 27 in the United States alone.

  7. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Mohamed R Habib

    Full Text Available Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.

  8. Immunological localization of Tritonia peptide in the central and peripheral nervous system of the terrestrial snail Helix aspersa.

    Science.gov (United States)

    Pavlova, Galina A; Willows, A O Dennis

    2005-10-10

    We report here evidence that the pedal peptides (Peps) first discovered in mollusks may be neurotransmitters with a general role in control of molluscan somatic and visceral muscles. Using Tritonia peptide (TPep) antiserum we obtained morphological evidence for such a role in Helix aspersa. We localized 1,200-1,400 small and medium-sized (5-40 microm) TPep-IR neurons in the central nervous system of Helix and demonstrated the presence of these neurons in each ganglion. Many TPep-immunoreactive (IR) neurons were motoneurons that sent axons to almost all peripheral nerves. TPep-IR fibers innervated the foot, esophagus, hermaphroditic duct, optic tentacles, salivary gland, heart, and proximal and distal aorta. In peripheral tissues TPep-IR fiber ramifications were mostly associated with muscles and with ciliated epithelia. In addition, TPep-IR fibers were in the neuropil of the ganglia, the commissures, and the connectives, and they formed axosomatic terminals in the central nervous system. TPep-IR neurons were found in the esophagus and hermaphroditic duct and as sensory receptors in the bulb of the optic tentacles. These results from Helix, and those reported elsewhere from other mollusks, suggest a general involvement of TPep-like substances in control of muscle- and ciliary-driven motor activities, including perhaps their antecedent sensory and central axosomatic integrative activity. (c) 2005 Wiley-Liss, Inc.

  9. Observation of action and autonomic nervous system responses.

    Science.gov (United States)

    Bolliet, Olivier; Collet, Christian; Dittmar, André

    2005-08-01

    Observing somebody performing an action has been shown to elicit neuronal activity in the premotor cortex. This paper investigated physiological effect of observing an effortful action at the peripheral level. As Autonomic Nervous System responses reflect central nervous system processes such as movement planning and programming, it was expected that observing an action would elicit a pattern of ANS responses matching those recorded during actual movement. 12 male subjects, ages 23 to 28 years (M = 25.5, SD = 1.9), were selected as they were experienced in weight lifting. They were asked to observe a squat movement followed by returning to the upright position under 3 different conditions: (i) observation of actual movement performed by somebody else, (ii) observation of a video of the subject himself (first-person video), and (iii) observation of a video of somebody else performing the same movement (third-person video). Moreover, each movement was observed when performed at 50% and 90% of each participant's personal best mark (% of the highest weight which could be lifted). Three ANS parameters were continuously recorded: skin resistance, temperature and heart rate. ANS responses varied as a function of movement intensity: autonomic responses recorded during movement observation at 90% were significantly higher and longer than those recorded during movement observation at 50%. Thus, autonomic responses were linked to the amount of observed effort. Conversely, no difference was found among the three conditions of observation. ANS responses from observation of actual movement were shown to resemble those recorded under the two conditions of video observation.

  10. Connexin32 expression in central and peripheral nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H. [Univ. of Pennslylvania, PA (United States)

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  11. Role of sensory nervous system vasoactive peptides in hypertension

    Directory of Open Access Journals (Sweden)

    R.E. Watson

    2002-09-01

    Full Text Available The goal of the present research was to elucidate the roles and mechanisms by which the sensory nervous system, through the actions of potent vasodilator neuropeptides, regulates cardiovascular function in both the normal state and in the pathophysiology of hypertension. The animal models of acquired hypertension studied were deoxycorticosterone-salt (DOC-salt, subtotal nephrectomy-salt (SN-salt, and Nomega-nitro-L-arginine methyl ester (L-NAME-induced hypertension during pregnancy in rats. The genetic model was the spontaneously hypertensive rat (SHR. Calcitonin gene-related peptide (CGRP and substance P (SP are potent vasodilating neuropeptides. In the acquired models of hypertension, CGRP and SP play compensatory roles to buffer the blood pressure (BP increase. Their synthesis and release are increased in the DOC-salt model but not in the SN-salt model. This suggests that the mechanism by which both models lower BP in SN-salt rats is by increased vascular sensitivity. CGRP functions in a similar manner in the L-NAME model. In the SHR, synthesis of CGRP and SP is decreased. This could contribute to the BP elevation in this model. The CGRP gene knockout mouse has increased baseline mean arterial pressure. The long-term synthesis and release of CGRP is increased by nerve growth factor, bradykinin, and prostaglandins and is decreased by alpha2-adrenoreceptor agonists and glucocorticoids. In several animal models, sensory nervous system vasoactive peptides play a role in chronic BP elevation. In the acquired models, they play a compensatory role. In the genetic model, their decreased levels may contribute to the elevated BP. The roles of CGRP and SP in human hypertension are yet to be clarified.

  12. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  13. An Electerophisioligic Study Of Autonomic Nervous System In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Noorolahi Moghaddam H

    2003-11-01

    Full Text Available Autonomic nervous system dysfunction in diabetics can occur apart from peripheral sensorimotor polyneuropathy and sometimes leads to complaints which may be diagnosed by electrodiagnostic methods. Moreover glycemic control of these patients may prevent such a complications."nMaterials and Methods: 30 diabetic patients were compared to the same number of age and sex-matched controls regarding to electrophysiologic findings of autonomic nervous system. Symptoms referable to autonomic disorder including nightly diarrhea, dizziness, urinary incontinence, constipation, nausea, and mouth dryness were recorded in all diabetic patients. Palmar and plantar SSR and expiration to inspiration ratio (E: I and Valsalva ratio were recorded in all diabetics and control individuals by electromyography device. In addition NCS was performed on two sensory and two motor nerves in diabetic patients."nResults: There was no relation between age of diabetics and abnormal D: I ratio, Valsalva ratio and degree of electrophysiologic autonomic impairment. Also no relation between peripheral sensorimotor polyneuropathy and electrophysiologic autonomic impairment was found. Plantar SSR was absent in 80% of diabetics with orthostatic hypotension (p~ 0.019. Palmar and plantar SSR were absent in many diabetics in comparison to control group (for palmar SSR p~ 0.00 and for plantar SSR p< 0.015. There was no relation between diabetes duration since diagnosis and electrophysiologic autonomic impairment."nConclusion: According to the above mentioned findings diabetic autonomic neuropathy develops apart from peripheral sensorimotor polyneuropathy and probably with different mechanisms. Remarkable absence of palmar SSR in diabetics with orthostatic hypotension can be due to its sympathetic origin. Absence of any relation between diabetes duration and electrophysiologic autonomic impairment can be due to late diagnosis of type 2 diabetes or no pathophysiologic relation between chronic

  14. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However, a considera...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors.......Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...

  15. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects.

    Science.gov (United States)

    Yokel, Robert A

    2016-10-01

    This critical review examines in vitro and in vivo evidence for the influence of engineered nanomaterial (ENM) physicochemical properties on their distribution into, and effects on, the nervous system. Nervous system applications of ENMs; exposure routes and potential for uptake; the nervous system and its barriers to ENM uptake; and the mechanisms of uptake into the nervous system and overcoming those barriers are summarized. The findings of English-language publications of studies that included at least two variations of an ENM physicochemical property and reported results of their pharmacokinetic and/or pharmacodynamic interaction with the nervous system that differed as a function of ENM physicochemical property(ies) are summarized in Supplementary Materials. A summary conclusion is drawn for each of the physicochemical properties on the strength of the evidence that it influences ENM-nervous system interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). V. Development of the nervous system.

    Science.gov (United States)

    Demian, E S; Yousif, F

    1975-01-01

    The nervous system is ectodermal in origin. All nerve ganglia arise separately by proliferation and later delamination from the ectoderm, not by invagination. They become secondarily connected to one another by commissures and connectives developing as extensions from the peripheral layer of ganglionic nerve cells. Rudiments of the cerebral, pedal, pleural and intestinal (parietal) ganglia arise almost simultaneously at a relatively early stage (Stage V). The cerebral ganglia develop from the ectoderm of the head plates. Rudiments of the pedal and pleural ganglia are separate at their inception. They later fuse (Stage VI) to form a pleuro-pedal ganglionic mass on each side. The 2 intestinal ganglia are symmetrical at the beginning, but they soon lose their symmetry as a result of torsion. The right ganglion crosses to the left over the gut and persists as the supraintestinal ganglion. The left or subintestinal ganglion shifts to the right and forward, and fuses with the right pleural ganglion (Stage VIII), thus obscuring the chiastoneury. The paired buccal and single visceral (abdominal) ganglia start differentiating in Stage VII. The former develop from the ectodermal wall of the stomodaeum, while the visceral ganglion delaminates from the right wall of the visceral sac, then shifts to the left during torsion. The statocysts develop early (Stage V) from 2 ectodermal invaginations on either side of the rudimentary foot. They later separate from the overlying ectoderm and statoconi appear in their lumina. Contrary to earlier reports on related ampullariids, the osphradium proved to be ontogenetically older than the mantle and mantle cavity. It starts differentiating as a thickened ectodermal plate in the right wall of the visceral sac (Stage V). During torsion, it becomes engulfed in the mantle cavity and shifts to the left side, then is carried forward as the mantlegrow. The eyes develop late (Stage IX) as ectodermal invaginations which rapidly separate from the

  17. The role of the autonomic nervous system in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Jack eHawksley

    2015-05-01

    Full Text Available Tourette Syndrome (TS is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics and one or more vocal (phonic tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS. Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an

  18. The role of the autonomic nervous system in Tourette Syndrome

    Science.gov (United States)

    Hawksley, Jack; Cavanna, Andrea E.; Nagai, Yoko

    2015-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder, consisting of multiple involuntary movements (motor tics) and one or more vocal (phonic) tics. It affects up to one percent of children worldwide, of whom about one third continue to experience symptoms into adulthood. The central neural mechanisms of tic generation are not clearly understood, however recent neuroimaging investigations suggest impaired cortico-striato-thalamo-cortical activity during motor control. In the current manuscript, we will tackle the relatively under-investigated role of the peripheral autonomic nervous system, and its central influences, on tic activity. There is emerging evidence that both sympathetic and parasympathetic nervous activity influences tic expression. Pharmacological treatments which act on sympathetic tone are often helpful: for example, Clonidine (an alpha-2 adrenoreceptor agonist) is often used as first choice medication for treating TS in children due to its good tolerability profile and potential usefulness for co-morbid attention-deficit and hyperactivity disorder. Clonidine suppresses sympathetic activity, reducing the triggering of motor tics. A general elevation of sympathetic tone is reported in patients with TS compared to healthy people, however this observation may reflect transient responses coupled to tic activity. Thus, the presence of autonomic impairments in patients with TS remains unclear. Effect of autonomic afferent input to cortico-striato-thalamo-cortical circuit will be discussed schematically. We additionally review how TS is affected by modulation of central autonomic control through biofeedback and Vagus Nerve Stimulation (VNS). Biofeedback training can enable a patient to gain voluntary control over covert physiological responses by making these responses explicit. Electrodermal biofeedback training to elicit a reduction in sympathetic tone has a demonstrated association with reduced tic frequency. VNS, achieved through an implanted device

  19. The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis.

    Science.gov (United States)

    Cole, Alison G; Meinertzhagen, Ian A

    2004-07-15

    Ascidian larvae develop after an invariant pattern of embryonic cleavage. Fewer than 400 cells constitute the larval central nervous system (CNS), which forms without either extensive migration or cell death. We catalogue the mitotic history of these cells in Ciona intestinalis, using confocal microscopy of whole-mount embryos at stages from neurulation until hatching. The positions of cells contributing to the CNS were reconstructed from confocal image stacks of embryonic nuclei, and maps of successive stages were used to chart the mitotic descent, thereby creating a cell lineage for each cell. The entire CNS is formed from 10th- to 14th-generation cells. Although minor differences exist in cell position, lineage is invariant in cells derived from A-line blastomeres, which form the caudal nerve cord and visceral ganglion. We document the lineage of five pairs of presumed motor neurons within the visceral ganglion: one pair arises from A/A 10.57, and four from progeny of A/A 9.30. The remaining cells of the visceral ganglion are in their 13th and 14th generations at hatching, with most mitotic activity ceasing around 85% of embryonic development. Of the approximately 330 larval cells previously reported in the CNS of Ciona, we document the lineage of 226 that derive predominantly from A-line blastomeres.

  20. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    Science.gov (United States)

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  1. Interleukin-6, a Major Cytokine in the Central Nervous System

    Science.gov (United States)

    Erta, María; Quintana, Albert; Hidalgo, Juan

    2012-01-01

    Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differentiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the immune response, but with many critical roles in major physiological systems including the nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons and glial cells), and in the response of mature neurons and glial cells in normal conditions and following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotrophin-like fashion, and seemingly makes understandable why the cytokine family that it belongs to is known as neuropoietins. Its expression is affected in several of the main brain diseases, and animal models strongly suggest that IL-6 could have a role in the observed neuropathology and that therefore it is a clear target of strategic therapies. PMID:23136554

  2. Coordination dynamics in a socially situated nervous system

    Directory of Open Access Journals (Sweden)

    Charles A. Coey

    2012-06-01

    Full Text Available Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing the requisite computational or representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via explanatory concepts such as common-coding and co-representation, and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization of human social interactions, there is good reason to question whether they should be accorded causal primacy. Specifically, research on interpersonal rhythmic motor coordination suggests that the organization of human behavior, including social behavior, can result from self-organizing processes and the lawful dynamics of animal-environment systems. Here we review this research, and in doing so propose that the role of the nervous system in joint action and interpersonal coordination be recast from the sole cause of behavior to one of many interdependent processes.

  3. Xenacoelomorpha: a case of independent nervous system centralization?

    Science.gov (United States)

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-05

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains). © 2015 The Author(s).

  4. Central nervous system involvement in systemic lupus erythematosus.

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    This paper deals with the clinical, immunological and pathological data of 5 eases of systemic lupus erythematosus (SLE). Each of the five cases has typical SLE damages on the skin and multiple organs. Among

  5. The role of microbiome in central nervous system disorders

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  6. Tumor interactions with soluble factors and the nervous system

    Directory of Open Access Journals (Sweden)

    Voss Melanie J

    2010-09-01

    Full Text Available Abstract In the genomic era of cancer research, the development of metastases has been attributed to mutations in the tumor that enable the cells to migrate. However, gene analyses revealed that primary tumors and metastases were in some cases genetically identical and the question was raised whether metastasis formation might be an inherent feature of certain tumor cells. In contradiction to this view, the last decade of cancer research has brought to light, that tumor cell migration, similar to leukocyte and fibroblast migration, is a highly regulated process. The nervous system plays an important role in this regulation, at least in two respects: firstly, neurotransmitters are known to regulate the migratory activity of tumor cells, and secondly, nerve fibers are used as routes for perineural invasion. We also summarize here the current knowledge on the innervation of tumors. Such a process might establish a neuro-neoplastic synapse, with the close interaction of tumor cells and nerve cells supporting metastasis formation.

  7. Glucose, epithelium, and enteric nervous system: dialogue in the dark.

    Science.gov (United States)

    Pfannkuche, H; Gäbel, G

    2009-06-01

    The gastrointestinal epithelium is in close contact with the various components of the chymus, including nutrients, bacteria and toxins. The epithelial barrier has to decide which components are effectively absorbed and which components are extruded. In the small intestine, a nutrient like glucose is mainly absorbed by the sodium linked glucose cotransporter 1 (SGLT1) and the glucose transporter 2 (GLUT2). The expression and activity of both transport proteins is directly linked to the amount of intraluminal glucose. Besides the direct interaction between glucose and the enterocytes, glucose also stimulates different sensory mechanisms within the intestinal wall. The most important types of cells involved in the sensing of intraluminal contents are enteroendocrine cells and neurones of the enteric nervous system. Regarding glucosensing, a distinct type of enteroendocrine cells, the enterochromaffine (EC) cells are involved. Excitation of EC cells by intraluminal glucose results in the release of serotonin (5-HT), which modulates epithelial functions and activates enteric secretomotorneurones. Enteric neurones are not only activated by 5-HT, but also directly by glucose. The activation of different cell types and the subsequent crosstalk between these cells may trigger appropriate absorptive and secretory processes within the intestine.

  8. Diffusion imaging in pediatric central nervous system infections

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J. [Dept. de Imagiologia, Hospital Geral De Santo Antonio, Porto (Portugal); Zimmerman, R.A.; Haselgrove, J.C.; Bilaniuk, L.T.; Hunter, J.V. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2001-12-01

    Our purpose was to investigate the role of diffusion imaging (DI) in central nervous system (CNS) infections in pediatric patients. It was anticipated that DI would be more sensitive than conventional MRI in the detection of the infarctive complications of infection, and possibly, in the detection of the infectious process as well. Seventeen pediatric patients, eight having meningitis'' five with herpes encephalitis, three with brain abscess or cerebritis and one with sepsis, were evaluated at 1.5-T with DI. All herpes patients had positive DI at the site of herpetic involvement, and two had the addition of watershed infarctions. DI demonstrated more lesions in three of the four cases of herpetic encephalitis. Half the meningitis cases had watershed infarction where DI was better and half had vasculitic infarctions in which DI was equal to or better than conventional MRI. Diffusion imaging was more sensitive than conventional MRI alone in detection of changes due to infections and ischemic lesions, but did not differentiate between them by DI or apparent diffusion coefficient (ADC), although anatomic distribution of lesions proved useful. (orig.)

  9. [The analysis of nervous system functions in dysmorphic syndromes].

    Science.gov (United States)

    Cianchetti, C; Marrosu, M G

    1993-01-01

    The involvement of the C.N.S. in dysmorphic syndromes is very frequent; therefore a systematic analysis of the functions of the nervous system is important in the clinical definition of these syndromes. Besides the morphological aspects, studied by magnetic resonance imaging, investigations should be carried out in the neuroelectrophysiological and neuropsychological fields. For the former, the following examinations are proposed: EEG in wakefulness and sleep, multimodal evoked potentials (VEP, BAEP, SEP), cortical magnetic stimulation and P300 (P3). For the neuropsychological field, a general intelligence test appropriate to the mental age of the subject (the Wechsler, Terman-Merrill, or Brunet-Lezine scale) and, whenever possible, the following complementary tests: Raven's Progressive Matrices, Bender's and Santucci's graphic tests, go-no go, Goodenough draw-a-person, reading and writing tests, Langeot's scale for development of the logical thinking, sorting test and verbal and spatial memory tests. In some cases, the behaviour should be defined, through Conner's scale for attention deficit-hyperactivity disorders, the Autism Diagnostic Interview, the Adaptive Behaviour Scale and the Brief Psychiatric Rating Scale.

  10. Nanotechnologies for the study of the central nervous system.

    Science.gov (United States)

    Ajetunmobi, A; Prina-Mello, A; Volkov, Y; Corvin, A; Tropea, D

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Microparticles: A New Perspective in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  12. Breast cancer subtypes and outcomes of central nervous system metastases.

    Science.gov (United States)

    Arslan, Ulku Y; Oksuzoglu, Berna; Aksoy, Sercan; Harputluoglu, Hakan; Turker, Ibrahim; Ozisik, Yavuz; Dizdar, Omer; Altundag, Kadri; Alkis, Necati; Zengin, Nurullah

    2011-12-01

    Central nervous system (CNS) metastases are detected in up to one third of patients with advanced breast cancer, but their incidence and outcomes by breast cancer subtypes are not precisely documented. Herein, we retrospectively analyzed clinicopathologic data of 259 breast cancer patients with CNS metastases to evaluate the association between breast cancer subtypes and CNS metastasis. The patient groups were classified according to their hormone receptor status and HER-2 expression. Median follow-up time among the patients was 42 months and median survival after CNS metastasis detection was 7.8 months. In HER-2 overexpressing group, median time period between the diagnosis of breast cancer and the detection of CNS metastasis (15.9 months) was significantly shorter compared to the other groups (p = 0.01). The triple negative group had the shortest median survival time after CNS metastasis (6.6 months), although statistically not significant (p = 0.3). In multivariate Cox regression analyses, having solitary CNS metastasis (HR 0.4, 95% CI; 0.2-0.7, p = 0.004), and receiving chemotherapy after CNS metastasis (HR 0.4, 95% CI; 0.287-0.772, p = 0.003) were independent prognostic factors for increasing survival after CNS metastasis. In conclusion, new and effective treatment strategies are required for breast carcinoma patients with brain metastasis considering the positive effect of the treatment on survival. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Scar-modulating treatments for central nervous system injury.

    Science.gov (United States)

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  14. Nanotechnologies for the study of the central nervous system.

    LENUS (Irish Health Repository)

    Ajetunmobi, A

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.

  15. Fractal Structure and Entropy Production within the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Andrew J. E. Seely

    2014-08-01

    Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.

  16. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    Science.gov (United States)

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  17. Central nervous system anomalies in craniofacial microsomia: a systematic review.

    Science.gov (United States)

    Renkema, R W; Caron, C J J M; Wolvius, E B; Dunaway, D J; Forrest, C R; Padwa, B L; Koudstaal, M J

    2018-01-01

    Extracraniofacial anomalies, including central nervous system (CNS) anomalies, may occur in craniofacial microsomia (CFM). This systematic review was performed to provide an overview of the literature on the prevalence and types of CNS anomalies and developmental disorders in CFM, in order to improve the recognition and possible treatment of these anomalies. A systematic search was conducted and data on the number of patients, patient characteristics, type and prevalence of CNS anomalies or developmental delay, and correlations between CFM and CNS anomalies were extracted. Sixteen papers were included; 11 of these described developmental disorders. The most common reported anomalies were neural tube defects, corpus callosum agenesis or hypoplasia, intracranial lipoma, Arnold-Chiari malformations, hydrocephaly, ventriculomegaly, and cerebral hypoplasia. The prevalence of CNS anomalies in CFM varied from 2% to 69%. The prevalence of developmental disorders, such as intellectual disability, language or speech developmental delay, and neuropsychomotor delay, varied from 8% to 73%. This study suggests that CNS anomalies and developmental disorders are seen in a substantial proportion of patients with CFM. Further research should focus on determining which features of CFM are correlated with CNS anomalies to allow adequate screening and timely care. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. All rights reserved.

  18. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  19. HCV-related central and peripheral nervous system demyelinating disorders.

    Science.gov (United States)

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  20. Peripheral nervous system insulin resistance in ob/ob mice

    Science.gov (United States)

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  1. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    Science.gov (United States)

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  2. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gary V.; Shihadeh, Ferial [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kantarjian, Hagop [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rondon, Gabriela; Kebriaei, Partow [Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); O' Brien, Susan [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kedir, Aziza; Said, Mustefa; Grant, Jonathan D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thomas, Deborah A. [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gidley, Paul W. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  3. Modulation of Autonomous Nervous System activity by gyrosonic stimulation

    CERN Document Server

    Ghatak, S K; Choudhuri, R; Bandopadhaya, S

    2010-01-01

    A novel audio binaural stimulus that generates rotational perceptions of sound movement in brain at a particular predetermined frequency is referred as gyrosonics. The influence of gyrosonics on autonomic nervous system of healthy subjects has been examined by analyzing heart rate variability (HRV) in time- and frequency- domain. The M-lagged Poincare plot shows that the parameters SD1, SD2 and ratio SD12 (SD1/SD2) increases with lagged number M, and M-dependence is well described by Pade' approximant $\\chi \\frac{1+\\beta M}{1+\\gamma M}$ where values of $\\chi$, $\\beta$ and $ \\gamma$ depend on parameters SD1,SD2 and SD12. The values of these parameters for different M are augmented after gyrosonic stimulation. The slope and magnitude of curvature of SD1 and SD12 vs M plot increase considerably due to stimulation. The DFA analysis exhibits decrease in value of exponent $\\alpha$ due to stimulation. This stimulation results slower Heart rate, higher values of the standard deviation SD and the root-mean squared suc...

  4. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  5. Nervous system development and regeneration in freshwater planarians.

    Science.gov (United States)

    Ross, Kelly G; Currie, Ko W; Pearson, Bret J; Zayas, Ricardo M

    2017-05-01

    Planarians have a long history in the fields of developmental and regenerative biology. These animals have also sparked interest in neuroscience due to their neuroanatomy, spectrum of simple behaviors, and especially, their almost unparalleled ability to generate new neurons after any type of injury. Research in adult planarians has revealed that neuronal subtypes homologous to those found in vertebrates are generated from stem cells throughout their lives. This feat is recapitulated after head amputation, wherein animals are capable of regenerating whole brains and regaining complete neural function. In this review, we summarize early studies on the anatomy and function of the planarian nervous system and discuss our present knowledge of the molecular mechanisms governing neurogenesis in planarians. Modern studies demonstrate that the transcriptional programs underlying neuronal specification are conserved in these remarkable organisms. Thus, planarians are outstanding models to investigate questions about how stem cells can replace neurons in vivo. WIREs Dev Biol 2017, 6:e266. doi: 10.1002/wdev.266 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Advances in Pathobiology of Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Yang, Xue-Liang; Liu, Yuan-Bo

    2017-08-20

    Primary central nervous system lymphoma (PCNSL) is a specific type of non-Hodgkin lymphoma with poor prognosis. The rare incidence of this disease and difficulty to obtain sufficient tissue material impede deep research into PCNSL. However, application of modern molecular techniques makes it possible to find biological characteristics exclusive to PCNSL. Therefore, we systematically reviewed the latest research progress on biological characteristics and pathogenesis of PCNSL. The data analyzed in this review were from the articles listed in PubMed database. Articles focusing on the biology of PCNSL at the cytogenetic or molecular level were reviewed, including clinical, basic research, and review articles. With respect to histopathology, perivascular growth pattern and reactive perivascular T-cell infiltration are regarded as typical histopathological manifestations of tumor cells in PCNSL. Moreover, tumor cells of PCNSL predominantly express an activated B-cell-like phenotype, including CD10- BCL-6+ MUM1+, CD10- BCL-6- MUM1+, and CD10- BCL-6- MUM1-. On the molecular level, some molecular and genetic alterations may contribute to malignant transformation, including mutations of proto-oncogenes and tumor suppressor genes, gains and losses of genetic material, as well as aberrant activation of some important signaling pathways, such as nuclear factor-κB and JAK/STAT pathway. The integrated molecular mechanisms involved in pathogenesis of PCNSL are not well understood. The important biomarkers indicating prognosis are not identified. Multicenter studies should be carried out to elucidate pathogenesis of PCNSL to find novel and effective therapeutic strategies.

  7. B-GROUP VITAMINS IN THE TREATMENT OF NERVOUS SYSTEM DISEASES

    OpenAIRE

    Yuliya Aleksandrovna Starchina; Yulia Alexandrovna Starchina

    2009-01-01

    The paper considers the role of B-group vitamins in nervous system performance and the possibilities of their use in the treatment of nervous system diseases as solo drugs in mono- and polyneuropathies of varying genesis and in pain syndromes. The prospects for using the vitamin complex Neurobin are discussed.

  8. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  9. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  10. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  11. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  12. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  13. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  14. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  15. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  16. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  17. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  18. Of Scaredy Cats and Cold Fish: The autonomic nervous system and behaviour in young children

    NARCIS (Netherlands)

    B. Dierckx (Bram)

    2014-01-01

    markdownabstract__Abstract__ The autonomic nervous system regulates the body’s internal functions. The goal of this regulation is to maintain bodily homeostasis in a changing external environment. The autonomic nervous system acts largely independent of volition and controls heart rate,

  19. Autonomic nervous system mediated effects of food intake. Interaction between gastrointestinal and cardiovascular systems.

    NARCIS (Netherlands)

    van Orshoven, N.P.

    2008-01-01

    The studies presented in this thesis focused on the autonomic nervous system mediated interactions between the gastrointestinal and cardiovascular systems in response to food intake and on potential consequences of failure of these interactions. The effects of food intake on cardiovascular

  20. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Directory of Open Access Journals (Sweden)

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  1. Paracoccidioidomycosis case series with and without central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Vinicius Sousa Pietra Pedroso

    2012-10-01

    Full Text Available INTRODUCTION: Paracoccidioidomycosis (PCM is the most important systemic mycosis in South America. Central nervous system involvement is potentially fatal and can occur in 12.5% of cases. This paper aims to contribute to the literature describing eight cases of neuroparacoccidioidomycosis (NPMC and compare their characteristics with patients without neurological involvement, to identify unique characteristics of NPCM. METHODS: A cohort of 213 PCM cases was evaluated at the Infectious Diseases Clinic of the University Hospital, Federal University of Minas Gerais, Brazil, from October 1976 to August 2008. Epidemiological, clinical, laboratory, therapeutic and follow-up data were registered. RESULTS: Eight patients presented NPCM. The observed NPCM prevalence was 3.8%. One patient presented the subacute form of PCM and the other seven presented the chronic form of the disease. The parenchymatous form of NPCM occurred in all patients. 60% of the patients who proceeded from the north/ northeast region of Minas Gerais State developed NPCM. The neurological involvement of a mother and her son was observed. NPCM patients exhibited demographical and clinical profiles similar to what is described in the literature. When NPCM cases were compared to PCM patients, there were differences in relation to origin and positive PCM family history. CONCLUSIONS: The results corroborate the clinical view that the neurological findings are extremely important in the evaluation of PCM patients. Despite the limitations of this study, the differences in relation to patient's origins and family history point to the need of further studies to determine the susceptibility factors involved in the neurological compromise.

  2. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  3. Mechanisms of magnetic stimulation of central nervous system neurons.

    Directory of Open Access Journals (Sweden)

    Tamar Pashut

    2011-03-01

    Full Text Available Transcranial magnetic stimulation (TMS is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  4. Neuroendoscopic diagnosis of central nervous system histoplasmosis with basilar arachnoiditis.

    Science.gov (United States)

    Rangel-Castilla, Leonardo; Hwang, Steven W; White, A Clinton; Zhang, Yi Jonathan

    2012-02-01

    Histoplasmosis of the central nervous system (CNS) is seen in 10% to 20% of patients with disseminated histoplasmosis and/or in association with immunocompromised patients. Meningitis, arachnoiditis, and hydrocephalus are the most common clinical manifestations of CNS histoplasmosis. Patients with CNS histoplasmosis present similarly to other infectious etiologies, and confirmatory diagnosis is important in the management of these patients. However, diagnosis of CNS histoplasmosis can be difficult, and sometimes performing a parenchymal biopsy is necessary to confirm the diagnosis. We describe the case of a 41-year-old man with HIV/AIDS who presented with the signs, symptoms, and radiologic evidence of basal meningitis and hydrocephalus. Cerebrospinal fluid (CSF) analysis from multiple lumbar punctures was negative. The patient underwent a neuroendoscopic procedure with diagnostic and therapeutic goals. Internal CSF diversion (endoscopic third ventriculostomy) and biopsy of the floor of the third ventricle and subarachnoid space were performed; surgical biopsies identified noncaseating granulomas, and ventricular CSF was positive for Histoplasmosis antibodies. The patient was treated with liposomal amphotericin B and itraconazole. The patient had resolution of his symptoms immediately after surgery, and 1-month follow-up computed tomography of the head demonstrated resolution of the hydrocephalus. At the last follow-up 12 months postoperatively, the patient has not required insertion of a ventriculoperitoneal shunt. Clinicians should maintain a high index of suspicion for fungal basal meningitis in patients with AIDS and hydrocephalus. With nondiagnostic lumbar CSF sampling, neuroendoscopy can be considered as an alternative for diagnosis and treatment of basal meningitis and hydrocephalus. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Central nervous system activity of Illicium verum fruit extracts.

    Science.gov (United States)

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  6. Anxiety, depression and autonomic nervous system dysfunction in hypertension.

    Science.gov (United States)

    Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László

    2012-06-15

    This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Transcriptome analysis of the Octopus vulgaris central nervous system.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available BACKGROUND: Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. RESULTS: With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5. The comparison between the Octopus vulgaris central nervous system (CNS library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5 using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. CONCLUSION: This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  8. Regional research priorities in brain and nervous system disorders.

    Science.gov (United States)

    Ravindranath, Vijayalakshmi; Dang, Hoang-Minh; Goya, Rodolfo G; Mansour, Hader; Nimgaonkar, Vishwajit L; Russell, Vivienne Ann; Xin, Yu

    2015-11-19

    The characteristics of neurological, psychiatric, developmental and substance-use disorders in low- and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low- and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities.

  9. Staphylococcus aureus Central Nervous System Infections in Children.

    Science.gov (United States)

    Vallejo, Jesus G; Cain, Alexandra N; Mason, Edward O; Kaplan, Sheldon L; Hultén, Kristina G

    2017-10-01

    Central nervous system (CNS) infections caused by Staphylococcus aureus are uncommon in pediatric patients. We review the epidemiology, clinical features and treatment in 68 patients with a S. aureus CNS infection evaluated at Texas Children's Hospital. Cases of CNS infection in children with positive cerebrospinal fluid cultures or spinal epidural abscess (SEA) for S. aureus at Texas Children's Hospital from 2001 to 2013 were reviewed. Seventy cases of S. aureus CNS infection occurred in 68 patients. Forty-nine cases (70%) were secondary to a CNS device, 5 (7.1%) were postoperative meningitis, 9 (12.8%) were hematogenous meningitis and 7 (10%) were SEAs. Forty-seven (67.2%) were caused by methicillin-sensitive S. aureus (MSSA) and 23 (32.8%) by methicillin-resistant S. aureus (MRSA). Community-acquired infections were more often caused by MRSA that was clone USA300/pvl. Most patients were treated with nafcillin (MSSA) or vancomycin (MRSA) with or without rifampin. Among patients with MRSA infection, 50% had a serum vancomycin trough obtained with the median level being 10.6 μg/mL (range: 5.4-15.7 μg/mL). Only 1 death was associated with S. aureus infection. The epidemiology of invasive of S. aureus infections continues to evolve with MSSA accounting for most of the infections in this series. The majority of cases were associated with neurosurgical procedures; however, hematogenous S. aureus meningitis and SEA occurred as community-acquired infections in patients without predisposing factors. Patients with MRSA CNS infections had a favorable response to vancomycin, but the beneficial effect of combination therapy or targeting vancomycin trough concentrations of 15-20 μg/mL remains unclear.

  10. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  11. Space radiation risks to the central nervous system

    Science.gov (United States)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  12. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  13. Citation classics in central nervous system inflammatory demyelinating disease.

    Science.gov (United States)

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles (n = 24) was published in Brain, followed by The New England Journal of Medicine (n = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis (n = 87), and only a few articles reported on other topics such as NMO (n = 9), acute disseminated encephalomyelitis (n = 2) and optic neuritis (n = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  14. Origins of Pupillary Hippus in the Autonomic Nervous System.

    Science.gov (United States)

    Turnbull, Philip R K; Irani, Nouzar; Lim, Nicky; Phillips, John R

    2017-01-01

    The purpose of this study was to determine the relative roles of the sympathetic (SNS) and parasympathetic nervous system (PNS) in pupillary hippus. We used a paired-eye control study design with three cohorts receiving either 1.0% tropicamide (PNS antagonist) in light (TL), 1.0% tropicamide in dark (TD), or 10% phenylephrine (SNS) in light (PL), n = 12 in each. Each subject received one drop to the randomly determined treatment eye, while the other eye served as control. Bilateral measures of pupil size and dynamics were made over 2.6 seconds using an infrared eye-tracker sampling at 500 Hz. Measures were taken at baseline, then every 5 minutes for 40 minutes. Hippus, analyzed in both time and frequency domains, was compared between eyes and cohorts. Pupillary hippus with a distinct dominant frequency was present in all measures at baseline (mean: 0.62 Hz, SD: 0.213 Hz), and that frequency did not change in any group (P = 0.971). Hippus magnitude (treatment eye relative to control eye) decreased in the TL (-72.8 ± 4.7%, P < 0.0001) and TD (-71.3 ± 2.6%, P < 0.0001) groups, but did not change in the PL (+5.4 ± 13.7%, P = 0.173) group, despite PL pupils dilating to a proportion similar to TD. Pupillary hippus can be extinguished by antagonizing the PNS, whereas agonizing the SNS dilates the pupil without affecting hippus. This suggests that hippus originates from central PNS activity, and not from SNS activity, or oscillations in the balance between PNS and SNS at the pupil.

  15. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  16. The effects of phenylpropanolamine on human sympathetic nervous system function.

    Science.gov (United States)

    Lake, C R; Chernow, B; Zaloga, G; Labow, J; Quirk, R; Hedges, S M

    1988-05-01

    Phenylpropanolamine (PPA) is a sympathomimetic agent, very similar in structure to amphetamine. In the United States, it is present in over 130 medications, primarily anorectic agents and cough and cold remedies, many available without a prescription. The effects of PPA on blood pressure (BP) remain controversial and its mechanisms of action unknown. We studied acute (1 and 2 hours) and 2-week effects of a daily dose of 75 mg of sustained release PPA administered to 14 normal volunteers. Measurements of heart rate, BP, and plasma catecholamines (CA) were made with the subject in the supine and standing positions, and upon gripping a hand dynamometer for 5 minutes. Although systolic BP across all postures and sampling times was significantly higher when subjects were taking PPA in comparison to placebo (F = 5.95, p = 0.03), in no subject did the increase in BP reach hypertensive or clinically significant levels and no substantial changes in CA levels were found. Our study population was relatively young and normotensive; even such a small BP increase may pose greater problems for hypertensive, obese subjects likely to be users of diet aids. Strenuous isometric exercise did not cause any greater increase in BP or CA after subjects took PPA versus placebo. PPA blood levels 24 hours after the last of 14 daily doses were similar to levels 1 and 2 hours after an initial dose. We conclude from these data that recommended doses of PPA have only minimal sympathetic nervous system (SNS) and cardiovascular effects in young, healthy, normotensive populations at the times and dose studied.

  17. Materials directed to implants for repairing Central Nervous System

    Directory of Open Access Journals (Sweden)

    Canillas, M.

    2014-12-01

    Full Text Available Central Nervous System (CNS can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as “secondary injury”. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon.Existen diferentes tipos de lesiones o desordenes del Sistema Nervioso Central (SNC que pueden provocar graves secuelas e incluso en algunos casos una discapacidad permanente. Además, el proceso de reparación del SNC tiene algunas complicaciones. El mecanismo natural de reacción a una lesión, el cual consiste en la formación de una cicatriz glial, es desencadenado por un proceso inflamatorio. Las moléculas liberadas durante estos procesos, la inflamación y formación de la cicatriz glial, así como la deficiencia en oxígeno y glucosa debidos a la lesión, crean un ambiente que inhibe la regeneración axonal creando la llamada “lesión secundaria”. Los biomateriales están adquiriendo un papel cada vez más importante en la reparación de SNC. Las

  18. FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J

    1983-01-01

    Abundant FMRFamide immunoreactivity has been found in the nervous systems of all hydrozoan, anthozoan, scyphozoan and ctenophoran species that were looked upon. This general and abundant occurrence shows that FMRFamide-like material must play a crucial role in the functioning of primitive nervous...

  19. Effect of Sleep on the Central Nervous System.

    Science.gov (United States)

    1981-03-30

    Kleitman, N. (1967) Sleep and Wakefulness. P. 215. The University of Chicago Press , Chicago. 2. Tarozzi, G. Sull’influenze dell’insonnio sperimentale...developpee au cours d’une veille prolongee. C. R. Soc. Biol. 72:274-75, 1912. 203, 215, 352. 11. Peters, A. The fixation of central nervous tissue and the

  20. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different...

  1. A planetary nervous system for social mining and collective awareness

    Science.gov (United States)

    Giannotti, F.; Pedreschi, D.; Pentland, A.; Lukowicz, P.; Kossmann, D.; Crowley, J.; Helbing, D.

    2012-11-01

    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how

  2. Primary anaplastic large T cell lymphoma of central nervous system

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2013-01-01

    Full Text Available Background Primary anaplastic large T cell lymphoma (ALCL of central nervous system (CNS can occur in people of all ages, and is usually unrelated with immunodeficiency. It is often misdiagnosed as meningitis, especially tuberculous meningitis, on clinical practice and imaging examination. In pathological diagnosis, the morphological changes of primary ALCL of CNS are similar to the systemic ALCL and the anaplastic lymphoma kinase-1 (ALK-1 can be positive or negative. Being misdiagnosed as meningitis, hormone therapy with glucocorticoid before biopsy is always used, and massive necrosis and a lot of histocyte proliferation and phagocytosis can be found under histological findings. Therefore, when the material is not enough, primary ALCL of CNS is often misdiagnosed as cerebral infarction or malignant histocytosis and so on. This paper reports a case of primary ALCL of CNS and makes a review of relevant literature, so as to summarize the clinical manifestations and elevate the recognition of clinicians and pathologists on this disease. Methods and Results A 12-year-old boy was admitted because of fever, worsening headache, numbness and weakness of right limbs. MRI showed local gyri swelling and abnormal enhancement of pia mater in the right parietal lobe, expanding to the right temporal lobe, and pia mater enhancement in the left parietal lobe. The right temporo-parietal lobe lesion biopsy revealed irregularly shaped tumor cells of large size, rich and eosinophilic cytoplasm and horseshoe-shaped or kidney-shaped nuclei. Immunohistochemical examination showed tumor cells positive for CD3, CD45RO, CD30, ALK-1 and epithelial membrane antigen (EMA, and negative for CD20 and CD79a. Conclusion Primary ALCL of CNS is an extremely rare tumor which is usually misdiagnosed as meningitis according to clinical and imaging examinations. Therefore, for those patients who are considered as meningitis but with poor treatment effect and replase of illness, brain

  3. Childhood primary angiitis of the central nervous system.

    Science.gov (United States)

    Malik, Muhammad Akbar; Zia-ur-Rehman, Muhammad; Nadeem, Malik Muhammad; Chaudhry, Farooq Rasool; Qureshi, Abid Ali; Nawaz, Muhammad; Malik, Hamza

    2012-09-01

    To analyze the clinical course and magnetic resonance angiographic (MRA) abnormalities in children with primary angiitis of the central nervous system (cPACNS). Cohort study. Neurosciences and Neuroradiology Department of the Children's Hospital, Lahore, from January 2009 to December 2010. The cohort comprised consecutive patients diagnosed as having cPACNS based on clinical findings and identification of arterial stenosis on magnetic resonance angiography (MRA) in the absence of an underlying condition that could cause these findings. The treatment protocol for ischaemic infarcts consisted of induction therapy with intravenous steroids pulses and intravenous immunoglobulin followed by maintenance therapy with azathioprine and low dose aspirin. When indicated, they were treated with anticoagulants at least for 4 weeks along with induction therapy. Patients were followed at a single centre and systemically assessed for clinical presentation, classification of disease as progressive or non-progressive, adverse effects of anticoagulants, aspirin, azathioprine and their hospital course. Sixty-eight children with medium-large vessel cPACNS (62% boys, 38% girls) with mean age of 8.5 ± 3.5 years were enrolled in this study. Motor deficit (70%); headache (64%) and fever (20%) were the commonest symptoms; whereas hemiparesis (60%); seizures 55% (focal 35%, generalized 20%) and decreased conscious level (30%), were the commonest neurological findings. Neuroradiological findings were ischaemic strokes in 50 (73.5%), haemorrhagic strokes in 10 (14.7%) and ischaemic haemorrhagic lesions in 8 cases (11.8%). Angiographically 51 (51/68, 75%) of the cohort had non-progressive (obliterative) and 17 (17/68, 25%) had evidence of progressive arteriopathy at the time of admission. No secondary haemorrhagic lesions were documented among infarcts strokes, which were treated with heparin and oral anticoagulants. Outcome was survival in 56 cases (81.5%) and death in 12 cases (18.5%). All

  4. Aromatherapy Improves Work Performance Through Balancing the Autonomic Nervous System.

    Science.gov (United States)

    Huang, Lin; Capdevila, Lluis

    2017-03-01

    This study analyzed the efficacy of aromatherapy in improving work performance and reducing workplace stress. The initial sample comprised 42 administrative university workers (M age  = 42.21 years, standard deviation = 7.12; 10 male). All sessions were performed in a university computer classroom. The participants were randomly assigned into an aromatherapy group (AG) and a control group (CG), and they were invited to participate in a specific session only once. They were seated in front of a computer. During the intervention period, some oil diffusers were switched on and were in operation throughout the session with petitgrain essential oil for AG sessions and a neutral oil (almond) for CG sessions. At the same time, participants completed a computer task on a specific Web site typing on their keyboard until they had finished it. The single times were different for all participants and were recorded on the Web site as "performance time." Before and after the intervention, participants completed anxiety and mood state questionnaires (the Stait-Trait Anxiety Inventory [STAI] and the Profile of Mood States [POMS]). Heart-rate variability (HRV) was measured before (PRE), during (20-25 min), and after (POS) the intervention to analyze autonomic nervous system regulation. The AG performed the Web site task 2.28 min faster than the CG (p = 0.05). The two groups showed differences in the following HRV parameters: low frequency (p = 0.05), high frequency (p = 0.02), standard deviation of all RR intervals (p = 0.05), and root mean square of differences (p = 0.02). All participants in all groups showed a decrease from PRE to POST for STAI (p < 0.001), Tension-POMS (p < 0.001), and Vigour-POMS (p = 0.01) scales. Aromatherapy (inhaling petitgrain essential oil) can improve performance in the workplace. These results could be explained by an autonomic balance on the sympathetic/parasympathetic system through a combined action of the

  5. Peptide-gated ion channels and the simple nervous system of Hydra.

    Science.gov (United States)

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  6. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Student Text. Revised Version, 1976.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This unit consists of four sequences. The first considers the brain, the nervous system, and disorders of the brain. The second sequence deals with applications of the computer in diagnosis of brain disorders along with mathematical and statistical principles used in health applications. The third sequence is concerned with drugs and their effects…

  7. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Instructor's Manual. Revised Version, 1976.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This volume contains the lesson plans and appropriate teacher background material for a 37-lesson sequence on the nervous system in health and medicine. Additional material is provided for supplementary lessons on concepts of electricity. Associated material, contained in separate volumes, include a student text and a student laboratory manual.…

  8. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Laboratory Manual. Revised Version, 1976.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Designed to accompany the student text on the nervous system, this manual presents laboratory activities dealing with concepts presented in the text. Thirty-seven activities are described. Four supplementary activities dealing with concepts in electricity are also included. Laboratory activities are divided into several parts, each part covering a…

  9. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    Science.gov (United States)

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  10. 11C-meta-hydroxyephedrine: a promising PET radiopharmaceutical for imaging the sympathetic nervous system.

    Science.gov (United States)

    Boschi, Stefano; Lodi, Filippo; Boschi, Laura; Nanni, Cristina; Chondrogiannis, Sotirios; Colletti, Patrick M; Rubello, Domenico; Fanti, Stefano

    2015-02-01

    Dysfunction of the sympathetic nervous system underlies many cardiac diseases and can be assessed by molecular imaging using SPECT tracers as I-metaiodobenzylguanidine (I-MIBG). The norepinephrine analog C-meta-hydroxyephedrine (HED) has been used with PET to map the regional distribution of cardiac sympathetic neurons. Hydroxyephedrine is rapidly transported into sympathetic neurons by the norepinephrine transporter and stored in vesicles. This review describes the mechanism of action, radiosynthesis, and application of HED in the assessment of the cardiac sympathetic nervous system in heart failure, myocardial infarction, and arrhythmias. Noncardiac applications of HED in the clinical setting of sympathetic nervous system tumors and other emerging research applications are described.

  11. Cholinergic components of nervous system of Schistosoma mansoni and S. haematobium (Digenea: Schistosomatidae).

    Science.gov (United States)

    Reda, Enayat S; El-Shabasy, Eman A; Said, Ashraf E; Mansour, Mohamed F A; Saleh, Mai A

    2016-08-01

    A comparison has been made for the first time between the cholinergic components of the nervous system of important human digeneans namely Schistosoma mansoni and Schistosoma haematobium from infected hamster (Cricentus auratus) in Egypt. In each parasite, the central nervous system consists of two cerebral ganglia and three pairs of nerve cords (ventral, lateral, and dorsal) linked together by some transverse connectives and numerous ring commissures. Peripheral cholinergic innervation was detected in oral and ventral suckers and in some parts of female reproductive system in both species, but there were some differences. The possible functions of some of these nervous components are discussed.

  12. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood.

    Science.gov (United States)

    Lee, Seung-Hwan; Zabolotny, Janice M; Huang, Hu; Lee, Hyon; Kim, Young-Bum

    2016-08-01

    Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.

  13. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Energy Technology Data Exchange (ETDEWEB)

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  14. Diagnosis abnormalities of limb movement in disorders of the nervous system

    Science.gov (United States)

    Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul

    2017-08-01

    The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.

  15. Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children

    Directory of Open Access Journals (Sweden)

    Ludovico Iannetti

    2012-01-01

    Full Text Available Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment.

  16. A history of the autonomic nervous system: part I: from Galen to Bichat.

    Science.gov (United States)

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.

  17. Multiple myeloma invasion of the central nervous system

    Directory of Open Access Journals (Sweden)

    Marjanović Slobodan

    2012-01-01

    Full Text Available Introduction. Multiple myeloma (MM is characterized by the presence of neoplastic proliferating plasma cells. The tumor is generally restricted to the bone marrow. The most common complications include renal insufficiency, hypercalcemia, anemia and reccurent infections. The spectrum of MM neurological complications is diverse, however, involvement of MM in the cerebrospinal fluid (CSF and leptomeningeal infiltration are rare considered. In about 1% of the cases, the disease affects the central nervous system (CNS and presents itself in the form of localized intraparenchymal lesions, solitary cerebral plasmocytoma or CNS myelomatosis (LMM. Case report. We presented the clinical course of a 55-year-old man with MM and LMM proven by malignant plasma cells in the CSF, hospitalized with the pain in the thoracic spine. His medical history was uneventful. There had been no evidence of mental or neurological impairment prior to the seizures. Physical examination showed no abnormalities. After a complete staging, the diagnosis of MM type biclonal gammopathia IgG lambda and free lambda light chains in the stage III was confirmed. The treatment started with systemic chemotherapy (with vincristine, doxorubicin plus high-dose dexamethasone - VAD protocol, radiotherapy and bisphosphonate. The patient developed weakness, nausea, febrility, dispnea, bilateral bronchopneumonia, acute renal insufficiency, confusions, headaches and soon thereafter sensomotor aphasias and right hemiparesis. The patient was treated with the adequate therapy including one hemodyalisis. His neurological status was deteriorated, so Multislice Computed Tomography (MSCT of the head was performed and the findings were normal. Analysis of CSF showed pleocytosis, 26 elements/ mL and increased concentrations of proteins. Cytological analysis revealed an increased number of plasma cells (29%. Electrophoretic analysis of proteins disclosed the existance of monoclonal components in the serum

  18. The Ancient Greek discovery of the nervous system: Alcmaeon, Praxagoras and Herophilus.

    Science.gov (United States)

    Panegyres, Konstantine P; Panegyres, Peter K

    2016-07-01

    The aim of this historical overview is to show that the theories of Alcmaeon of Croton formed an important part of a developing conception of the brain and the nervous system. The vital contributions of Praxagoras of Kos, who suggested the existence of what we now call "neurons", and Herophilus of Chalcedon, who distinguished between sensory and motor nerves and demonstrated the existence of the nervous system by dissection, also established the foundation principles of neuroscience, but their importance is sometimes forgotten. We trace the discovery of the nervous system through an investigation of these three thinkers. Combining astounding philosophical concepts with sharp observation, they conceived and demonstrated the existence of a nervous system by the third century BCE. This discovery is central not only to neuroscience, but also to all of medicine and to our concept of the human organism: it articulated the connection between the mind, the brain, and the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Echoes from the anatomical theater of Padua: Fabrici on the nervous system.

    Science.gov (United States)

    Zanchin, Giorgio; Panetto, Monica; Dalla Francesca, Elisabetta Hellman

    2015-06-01

    Girolamo Fabrici d'Acquapendente, never published a systematic description nor an iconographic record of the nervous system except for the series of 21 pictures, entitled De Anatomia Capitis Cerebri Nervorum, stored in the Biblioteca Marciana of Venice.

  20. [Considerations about the nervous system phylogenetic evolution, behavior, and the emergence of consciousness].

    Science.gov (United States)

    Ribas, Guilherme Carvalhal

    2006-12-01

    This text reviews the generic aspects of the central nervous system evolutionary development, emphasizing the developmental features of the brain structures related with behavior and with the cognitive functions that finally characterized the human being. Over the limbic structures that with the advent of mammals were developed on the top of the primitive nervous system of their ancestrals, the ultimate cortical development with neurons arranged in layers constituted the structural base for an enhanced sensory discrimination, for more complex motor activities, and for the development of cognitive and intellectual functions that finally characterized the human being. The knowledge of the central nervous system phylogeny allow us particularly to infer possible correlations between the brain structures that were developed along phylogeny and the behavior of their related beings. In this direction, without discussing its conceptual aspects, this review ends with a discussion about the central nervous system evolutionary development and the emergence of consciousness, in the light of its most recent contributions.

  1. Congenital muscular dystrophy and severe central nervous system atrophy in two siblings

    NARCIS (Netherlands)

    Leyten, Q. H.; Barth, P. G.; Gabreëls, F. J.; Renkawek, K.; Renier, W. O.; Gabreëls-Festen, A. A.; ter Laak, H. J.; Smits, M. G.

    1995-01-01

    Severe degenerative features of the nervous system of a hitherto unknown kind, associated with a neuromuscular disorder with histopathological features of congenital muscular dystrophy, are reported in two female siblings. The clinical profile was characterized by generalized hypotonia followed by

  2. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2011-06-01

    Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome.

  3. Bioactivity of marine organisms: Part 7- Effect of seaweed extract on central nervous system

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Jain, S.; Goel, A.K.; Srimal, R.C.

    Alcohol extracts of marine algae (Rhodophyceae, Phaeophyceae and Chlorophyceae) was screened for their effect on central nervous system. Of 69 species investigated 8 appeared biologically active, 6 being CNS stimulant, sites and dates of collection...

  4. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors....

  5. Insulin in central nervous system: more than just a peripheral hormone

    National Research Council Canada - National Science Library

    Duarte, Ana I; Moreira, Paula I; Oliveira, Catarina R

    2012-01-01

    Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases...

  6. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Lee

    2016-08-01

    Major conclusions: Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.

  7. Diagnostic value of NMO-IgG in demyelinating diseases of central nervous system

    Directory of Open Access Journals (Sweden)

    Xiao-min XU

    2016-09-01

    Full Text Available The aquaporin 4 (AQP4 plays an important role in the maintenance of transmembrane water transfer, blood-brain barrier (BBB integrity and homeostasis of central nervous system, and its highly specific autoantibody NMO-IgG has been used as a specific biomarker of neuromyelitis optica. However, in recent years, several studies have found that the positive rate in patients with neuromyelitis optica is not 100%, and it even can be detected in some other demyelinating diseases of central nervous system. This paper aims to make a review of the diagnostic value of NMO-IgG in demyelinating diseases of central nervous system, in order to deepen the understanding of this antibody and guide the clinical diagnosis and differential diagnosis on demyelinating diseases of central nervous system. DOI: 10.3969/j.issn.1672-6731.2016.09.006

  8. Evidence of Nervous System Sensitization in Commonly Presenting and Persistent Painful Tendinopathies : A Systematic Review

    NARCIS (Netherlands)

    Plinsinga, Melanie L.; Brink, Michel S.; Vicenzino, Bill; Van Wilgen, C. Paul

    2015-01-01

    STUDY DESIGN: Systematic review. OBJECTIVES: To elucidate if there is sensitization of the nervous system in those with persistent rotator cuff (shoulder), lateral elbow, patellar, and Achilles tendinopathies. BACKGROUND: Tendinopathy can be difficult to treat, and persistent intractable pain and

  9. Autonomic Nervous System Responses to Viewing Green and Built Settings: Differentiating Between Sympathetic and Parasympathetic Activity

    NARCIS (Netherlands)

    van den Berg, M.M.H.E.; Maas, J.; Muller, R.; Braun, A.; Kaandorp, W.; van Lien, R.; van Poppel, M.N.M.; van Mechelen, W.; van den Berg, A.E.

    2015-01-01

    This laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded

  10. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    National Research Council Canada - National Science Library

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-01-01

    ...), including CB1 and CB2 receptors. The CB1 receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain...

  11. Autonomic Nervous System Responses to Concussion: Arterial Pulse Contour Analysis

    Directory of Open Access Journals (Sweden)

    Michael F La Fountaine

    2016-02-01

    Full Text Available The arterial pulse wave (APW has a distinct morphology whose contours reflect dynamics in cardiac function and peripheral vascular tone as a result of sympathetic nervous system (SNS control. With a transition from rest to increased metabolic demand, the expected augmentation of SNS outflow will not only affect arterial blood pressure and heart rate, it will also induce changes to the contours of the APW. Following a sports concussion, a transient state cardiovascular autonomic dysfunction is present. How this state affects the APW, has yet to be described. A prospective, parallel-group study on cardiovascular autonomic control (i.e., digital electrocardiogram and continuous beat-to-beat blood pressure was performed in the seated upright position in ten athletes with concussion and 7 non-injured control athletes. Changes in APW were compared at rest and during the first 60 seconds (F60 of an isometric handgrip test (IHGT in concussed athletes and non-injured controls within 48 hours (48hr and 1 week (1wk of injury. The concussion group was further separated by the length of time until they were permitted to return to play (RTP>1wk; RTP≤1wk. SysSlope, an indirect measurement of stroke volume, was significantly lower in the concussion group at rest and during F60 at 48hr and 1wk; a paradoxical decline in SysSlope occurred at each visit during the transition from rest to IHGT F60. The RTP>1wk group had lower SysSlope (405±200; 420±88; 454±236 mmHg/s, respectively at rest 48hr compared to the RTP≤1wk and controls. Similarly at 48hr rest, several measurements of arterial stiffness were abnormal in RTP>1wk compared to RTP≤1wk and controls: Peak-to-Notch Latency (0.12±0.04; 0.16±0.02; 0.17±0.05, respectively, Notch Relative Amplitude (0.70±0.03; 0.71±0.04; 0.66±0.14, respectively and Stiffness Index (6.4±0.2; 5.7±0.4; 5.8±0.5, respectively. Use of APW revealed that concussed athletes have a transient increase in peripheral artery

  12. Autonomic nervous system arousal and cognitive functioning in bipolar disorder.

    Science.gov (United States)

    Levy, Boaz

    2013-02-01

    Previous theories about the etiology of cognitive dysfunction in bipolar disorder (BD) emphasized trait factors such as neurological impairment. State factors, other than mood symptoms, that may exacerbate functional deficits have not yet been considered. The purpose of this study was to examine autonomic nervous system (ANS) arousal following cognitive challenge. The study compared patients with BD and healthy controls (HC) in physiological measures and neuropsychological test scores. Thirty euthymic patients with BD and 22 HC completed the study. Participants completed mood [Beck Depression Inventory-II (BDI-II) and Young Mania Rating Scale (YMRS)], anxiety (State-Trait Anxiety Inventory), and substance abuse (Drug Abuse Screening Test-20 item and Alcohol Use Disorders Identification Test) measures. They were connected to an electrogram, a sensitive thermometer for measuring finger temperature, and electrodes that measure galvanic skin response. After a five-min baseline measurement in a restful state, participants completed a computerized neuropsychological battery (CNS Vital Signs). The group with BD reported significantly more mood symptoms (BDI-II, t = 3.71, p < 0.001; YMRS, t = 6.73, p < 0.001) and scored higher on a measure of trait-anxiety (State-Trait Anxiety Inventory, t = 2.91, p < 0.001) than HC. A multivariate analysis of variance revealed higher arousal on all physiological measures in the BD group relative to HC at baseline [F(3,48) = 13.1, p < 0.001] and during cognitive testing [F(3,48) = 11.3, p < 0.001]. The increase in physiological arousal from a restful state to the time of testing was higher for the BD group [F(3,37) = 8.06, p < 0.001]. With respect to cognitive data, HC scored higher than patients with BD across the measures of memory (F = 8.5, p < 0.001), sustained (F = 9.5, p < 0.001) and complex (F = 2.7, p < 0.04) attention, processing speed (F = 10.0, p < 0

  13. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  14. Central nervous system involvement in acute lymphoblastic leukemia: diagnosis by immunophenotyping

    Directory of Open Access Journals (Sweden)

    Camila Silva Peres Cancela

    2013-08-01

    Full Text Available The central nervous system is the most commonly affected extramedullary site in acute lymphoblastic leukemia. Although morphologic evaluation of the cerebrospinal fluid has been traditionally used for diagnosing central nervous system involvement, it is a method of low sensitivity. The present study aimed at evaluating the use of immunophenotyping in the detection of blasts in the cerebrospinal fluid from children and adolescents with acute lymphoblastic leukemia.

  15. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    OpenAIRE

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on fou...

  16. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood

    OpenAIRE

    Lee, Seung-Hwan; Zabolotny, Janice M.; Huang, Hu; Lee, Hyon; Kim, Young-Bum

    2016-01-01

    Background: Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. Scope of review: Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intra...

  17. Autoimmune disease and the nervous system. Biochemical, molecular, and clinical update.

    OpenAIRE

    Merrill, J E; Graves, M C; Mulder, D. G.

    1992-01-01

    Autoimmunity in the central and peripheral nervous system can manifest as the result of cellular or humoral immune responses to autoantigens. There is evidence that multiple sclerosis is a cell-mediated autoimmune disease of the central nervous system in which both myelin and the cell that produces the myelin are destroyed. Diseases such as acute inflammatory demyelinating polyneuropathy (also called Guillain-Barré syndrome) and myasthenia gravis are considered antibody-mediated diseases of t...

  18. A practical guide for the diagnosis of primary enteric nervous system disorders

    DEFF Research Database (Denmark)

    Schäppi, M G; Staiano, A; Milla, P J

    2013-01-01

    OBJECTIVE: Primary gastrointestinal neuropathies are a heterogeneous group of enteric nervous system (ENS) disorders that continue to cause difficulties in diagnosis and histological interpretation. Recently, an international working group published guidelines for histological techniques and repo......OBJECTIVE: Primary gastrointestinal neuropathies are a heterogeneous group of enteric nervous system (ENS) disorders that continue to cause difficulties in diagnosis and histological interpretation. Recently, an international working group published guidelines for histological techniques...

  19. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    Science.gov (United States)

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  20. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    Science.gov (United States)

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  1. Visceral Leishmaniasis

    Science.gov (United States)

    2011-06-01

    Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG -controlled trial in Sudan. Lancet...nitric oxide killing. These properties of sandfly saliva are the focus of current research on an antileishmania vaccine .11 At the site of inoculation...these campaigns, incidence has returned to high levels. No VL vaccine is currently licensed or commercially available. A variety of vaccine

  2. A clinical severity scoring system for visceral leishmaniasis in immunocompetent patients in South Sudan.

    Directory of Open Access Journals (Sweden)

    Suzette S Kämink

    2017-10-01

    Full Text Available South Sudan is one of the most endemic countries for visceral leishmaniasis (VL, and is frequently affected by large epidemics. In resource-limited settings, clinicians require a simple clinical tool to identify VL patients who are at increased risk of dying, and who need specialised treatment with liposomal amphotericin B and other supportive care. The aim of this study was to develop and validate a clinical severity scoring system based on risk factors for death in VL patients in South Sudan.A retrospective analysis was conducted of data from a cohort of 6,633 VL patients who were treated in the Médecins Sans Frontières (MSF hospital in Lankien between July 2013 and June 2015. Risk factors for death during treatment were identified using multivariable logistic regression models, and the regression coefficients were used to develop a severity scoring system. Sensitivity and specificity of score cut-offs were assessed by receiver operating characteristic (ROC analysis.In multivariable models, risk factors for death in adult VL patients were: anaemia (odds ratio (OR 4.46 (95% CI 1.58-12.6 for Hb <6g/dL compared with ≥9g/dL, nutritional status (OR 4.84 (2.09-11.2 for BMI <13 kg/m2 compared with ≥16 kg/m2, weakness (OR 4.20 (1.82-9.73 for collapsed compared with normal weakness, jaundice (OR 3.41 (1.17-9.95, and oedema/ascites (OR 4.86 (1.67-14.1. For children and adolescents the risk factors were: age (OR 10.7 (6.3-18.3 for age <2 years compared with 6-18 years, anaemia (OR 7.76 (4.15-14.5 for Hb <6g/dL compared with ≥9g/dL, weakness (OR 3.13 (22.8-105.2 for collapsed compared with normal weakness, and jaundice (OR 12.8 (4.06-40.2. Severity scoring predictive ability was 74.4% in adults and 83.4% in children and adolescents.Our evidenced-based severity scoring system demonstrated sufficient predictive ability to be operationalised as a clinical tool for rational allocation of treatment to VL patients at MSF centres in South Sudan.

  3. Neural reconstruction of bone-eating Osedax spp. (Annelida) and evolution of the siboglinid nervous system.

    Science.gov (United States)

    Worsaae, Katrine; Rimskaya-Korsakova, Nadezhda N; Rouse, Greg W

    2016-04-14

    Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female's trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids. The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments. Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated

  4. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  5. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training.

    Science.gov (United States)

    Martins-Pinge, M C

    2011-09-01

    The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  6. Granulocytic invasion of the central nervous system after hematopoietic stem cell transplantation for systemic lupus erythematosus.

    Science.gov (United States)

    Muraro, Paolo A; Nikolov, Nikolay P; Butman, John A; Abati, Andrea; Gea-Banacloche, Juan; Gress, Ronald; Lipsky, Peter; Illei, Gabor; Pavletic, Steven

    2006-06-01

    We report on the likely mechanism of an exacerbation of neurological symptoms developed during immune reconstitution after autologous non-myeloablative hematopoietic stem cell transplantation in a 33-year-old man with systemic lupus erythematosus- associated recurrent transverse myelitis. Cerebrospinal fluid examination revealed prominent neutrophilic pleocytosis and no evidence of infection or of reactivation of lupus. Following a course of corticosteroid treatment the exacerbation resolved completely and the patient's neurological function continued to improve, resulting in net gain above pre-treatment for over 1 year follow-up without maintenance immunosuppression. Granulocytic invasion of the central nervous system represents a novel and possibly preventable cause of neurological complications during haematologic reconstitution.

  7. Blood pressure rhythmicity and visceral fat in children with hypertension.

    Science.gov (United States)

    Niemirska, Anna; Litwin, Mieczysław; Feber, Janusz; Jurkiewicz, Elżbieta

    2013-10-01

    Primary hypertension is associated with disturbed activity of the sympathetic nervous system and altered blood pressure rhythmicity. We analyzed changes in cardiovascular rhythmicity and its relation with target organ damage during 12 months of antihypertensive treatment in 50 boys with hypertension (median, 15.0 years). The following parameters were obtained before and after 12 months of antihypertensive treatment: 24-hour ambulatory blood pressure, left ventricular mass, carotid intima-media thickness, and MRI for visceral and subcutaneous adipose tissue. Amplitudes and acrophases of mean arterial pressure and heart rate rhythms were obtained for 24-, 12-, and 8-hour periods. After 1 year of treatment, 68% of patients were normotensive, and left ventricular mass and carotid intima-media thickness decreased in 60% and 62% of patients, respectively. Blood pressure and heart rate rhythmicity patterns did not change. Changes in blood pressure amplitude correlated with the decrease of waist circumference (P=0.035). Moreover, the decrease of visceral fat correlated with the decrease of 24-hour mean arterial pressure and heart rate acrophases (both Pblood pressure and heart rate rhythms between patients who achieved or did not achieve normotension and regression of left ventricular mass and carotid intima-media thickness. It was concluded that abnormal cardiovascular rhythmicity persists in children with primary hypertension despite effective antihypertensive treatment, which suggests that it may be the primary abnormality. The correlation between changes in cardiovascular rhythmicity and visceral obesity may indicate that the visceral fat plays an important role in the sympathetic activity of adolescents with hypertension.

  8. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  9. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    Science.gov (United States)

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  10. [Hemangioblastomas of the central nervous system in Camagüey (Cuba)].

    Science.gov (United States)

    Vega-Basulto, S; Silva-Adán, S; Peñones-Montero, R; Mosqueda-Betancourt, G

    Hemangioblastomas of the central nervous system are the most frequent vascular tumours. They are 1 2% of primary nervous system tumours and 8 12% of the posterior fossa neoplasms. The objective is to analize clinical behaviour and long term results of sporadic and Von Hippel Lindau linked hemangioblastomas. It was searched the vacular Neurosurgical Data Bank at Manuel Ascunce Dom nech Hospital between January 1981 and January 2001 to select patients harvoring central nervous system hemangioblastomas histological confirmed. Melmo and Rosen criteria were utilized in Von Hippel Lindau syndrome. We performed a twenty years follow up of this patients. There were 12 patients with central nervous system hemangioblastomas. Average age of presentation was 41 years old. The first case had twenty years since the operation and the last, eight months. 83% were cystic and 17% were solids. There was not surgical mortality. One patient died of renal carcinoma 15 years after the operation on craneal fossa. Central nervous system hemangioblastomas are a cluster of challenge tumours. They are intraxial benign tumours with potential good outcome. We observed sporadic and Von Hippel Lindau linked hemangioblastomas. Patients with this syndrome need clinico imagenological screening to identify new associated lesions.

  11. Morphological changes in the enteric nervous system caused by carcinoma of the human large intestine.

    Directory of Open Access Journals (Sweden)

    Janusz Godlewski

    2010-06-01

    Full Text Available The innervations of the large intestine is responsible for it peristalsis and contractibility. Investigations of the enteric nervous system in many colon diseases have revealed changes in this structure. No study has been carried out on morphological changes of the enteric nervous system in the human large intestine with carcinoma. The aim of this study was to investigate potential changes in the structure of the enteric neurons in patients with sigmoid and rectal cancer. Material for the study was obtained from patients undergoing operations due to carcinoma of the sigmoid colon and rectum. Microscopic observation of the cancerous tumor of the human large intestine revealed changes in the enteric nervous system innervating this part of the gastrointestinal tract. In the region of the enteric plexuses located close to the tumour, disruption of their correct placement and structure was observed. The changes also consisted of the disappearance of neurons and nerve fibers forming these plexuses. In the solid cancerous tumour, elements of the enteric nervous system were not present. Destruction of the enteric nervous system in the course of carcinoma of the large intestine may cause disruption of proper intestinal function and may be responsible for part of symptoms which the patients suffer.

  12. Restoring nervous system structure and function using tissue engineered living scaffolds

    Directory of Open Access Journals (Sweden)

    Laura A Struzyna

    2015-01-01

    Full Text Available Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  13. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: validity and clinical applicability.

    Science.gov (United States)

    Marc, David T; Ailts, Joseph W; Campeau, Danielle C Ailts; Bull, Michael J; Olson, Kelly L

    2011-01-01

    Strategies for managing the nervous system are numerous while methods of evaluating the nervous system are limited. Given the physiological importance of neurotransmitters as signaling molecules in the nervous system, the measurement of neurotransmitters has significant potential as a clinical tool. Of all the biological fluids that can be utilized, urinary neurotransmitter testing, due to its stability, sensitivity, and non-invasiveness, is the desired method to analyze nervous system function. Increasing use of this technology in a clinical setting demands a review of its feasibility, utility, and clinical value. We review the current body of literature pertaining to the mechanism of neurotransmitter transport across the blood-brain barrier as well as neurotransmitter filtration and excretion by the kidneys. In addition, this review summarizes the historical use of urinary neurotransmitter assessment to diagnose pheochromocytoma. Early research also correlated urinary assessment of neurotransmitters to various clinical symptoms and treatments of which we present research only for depression, ADHD, and inflammation because of the abundant amount of research in these areas. Finally, we review the limitations and challenges of urinary neurotransmitter testing. Taken together, evidence suggests that neurotransmitters excreted in the urine may have a place in clinical practice as a biomarker of nervous system function to effectively assess disturbances and monitor treatment efficacy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Conceptual Network Model From Sensory Neurons to Astrocytes of the Human Nervous System.

    Science.gov (United States)

    Yang, Yiqun; Yeo, Chai Kiat

    2015-07-01

    From a single-cell animal like paramecium to vertebrates like ape, the nervous system plays an important role in responding to the variations of the environment. Compared to animals, the nervous system in the human body possesses more intricate organization and utility. The nervous system anatomy has been understood progressively, yet the explanation at the cell level regarding complete information transmission is still lacking. Along the signal pathway toward the brain, an external stimulus first activates action potentials in the sensing neuron and these electric pulses transmit along the spinal nerve or cranial nerve to the neurons in the brain. Second, calcium elevation is triggered in the branch of astrocyte at the tripartite synapse. Third, the local calcium wave expands to the entire territory of the astrocyte. Finally, the calcium wave propagates to the neighboring astrocyte via gap junction channel. In our study, we integrate the existing mathematical model and biological experiments in each step of the signal transduction to establish a conceptual network model for the human nervous system. The network is composed of four layers and the communication protocols of each layer could be adapted to entities with different characterizations. We verify our simulation results against the available biological experiments and mathematical models and provide a test case of the integrated network. As the production of conscious episode in the human nervous system is still under intense research, our model serves as a useful tool to facilitate, complement and verify current and future study in human cognition.

  15. Importance of the enteric nervous system in the control of the migrating motility complex.

    Science.gov (United States)

    Romański, K W

    2017-06-01

    The migrating motility complex (MMC), a cyclical phenomenon, represents rudimentary motility pattern in the gastrointestinal tract. The MMC is observed mostly in the stomach and gut of man and numerous animal species. It contains three or four phases, while its phase III is the most characteristic. The mechanisms controlling the pattern are unclear in part, although the neural control of the MMC seems crucial. The main goal of this article was to discuss the importance of intrinsic innervation of the gastrointestinal tract in MMC initiation, migration, and cessation to emphasize that various MMC-controlling mechanisms act through the enteric nervous system. Two main neural regions, central and peripheral, are able to initiate the MMC. However, central regulation of the MMC may require cooperation with the enteric nervous system. When central mechanisms are not active, the MMC can be initiated peripherally in any region of the small bowel. The enteric nervous system affects the MMC in response to the luminal stimuli which can contribute to the initiation and cessation of the cycle, and it may evoke irregular phasic contractions within the pattern. The hormonal regulators released from the endocrine cells may exert a modulatory effect upon the MMC mostly through the enteric nervous system. Their central action could also be considered. It can be concluded that the enteric nervous system is involved in the great majority of the MMC-controlling mechanisms.

  16. Interfacing with the nervous system: a review of current bioelectric technologies.

    Science.gov (United States)

    Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W

    2017-10-23

    The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.

  17. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...... recipients but not into non-transgenic recipients. These data provide evidence that B7/CD28 interactions within the nervous tissue are critical determinants of disease development. Our findings have important implications for understanding the etiology of nervous system autoimmune diseases such as multiple...

  18. Hypofunction of the Sympathetic Nervous System as a Possible Etiologic Cause of Recurrent Aphthous Stomatitis.

    Science.gov (United States)

    Present, Steven I; Check, Jerome H

    2016-06-01

    Recurrent aphthous stomatitis is a common disorder of the oral mucosa. The symptoms can range from a minor nuisance to severe forms that can be extremely debilitating. Two cases of chronic aphthous stomatitis are described. The patients sought help to ameliorate vasomotor symptoms. A diagnosis of sympathetic nervous system hypofunction was established. Treatment was aimed at restoring normal sympathetic function by the administration of dextroamphetamine sulfate. Since the patients have been on the amphetamine salts, neither their vasomotor symptoms nor their aphthous lesions have returned. Hypofunction of the sympathetic nervous system should be considered as a possible etiologic factor in patients with recurrent oral ulcers when not associated with known systemic diseases.

  19. Networked neural spheroid by neuro-bundle mimicking nervous system created by topology effect.

    Science.gov (United States)

    Jeong, Gi Seok; Chang, Joon Young; Park, Ji Soo; Lee, Seung-A; Park, DoYeun; Woo, Junsung; An, Heeyoung; Lee, C Justin; Lee, Sang-Hoon

    2015-03-22

    In most animals, the nervous system consists of the central nervous system (CNS) and the peripheral nervous system (PNS), the latter of which connects the CNS to all parts of the body. Damage and/or malfunction of the nervous system causes serious pathologies, including neurodegenerative disorders, spinal cord injury, and Alzheimer's disease. Thus, not surprising, considerable research effort, both in vivo and in vitro, has been devoted to studying the nervous system and signal transmission through it. However, conventional in vitro cell culture systems do not enable control over diverse aspects of the neural microenvironment. Moreover, formation of certain nervous system growth patterns in vitro remains a challenge. In this study, we developed a deep hemispherical, microchannel-networked, concave array system and applied it to generate three-dimensional nerve-like neural bundles. The deep hemicylindrical channel network was easily fabricated by exploiting the meniscus induced by the surface tension of a liquid poly(dimethylsiloxane) (PDMS) prepolymer. Neurospheroids spontaneously aggregated in each deep concave microwell and were networked to neighboring spheroids through the deep hemicylindrical channel. Notably, two types of satellite spheroids also formed in deep hemispherical microchannels through self-aggregation and acted as an anchoring point to enhance formation of nerve-like networks with neighboring spheroids. During neural-network formation, neural progenitor cells successfully differentiated into glial and neuronal cells. These cells secreted laminin, forming an extracellular matrix around the host and satellite spheroids. Electrical stimuli were transmitted between networked neurospheroids in the resulting nerve-like neural bundle, as detected by imaging Ca(2+) signals in responding cells.

  20. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    Science.gov (United States)

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  1. Experimental alkylmercurial poisoning in swine. Lesions in the peripheral and central nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, K.M.

    1974-01-01

    The effects of alkylmercurial poisoning were studied in 16 pigs poisoned with daily oral doses of a fungicide containing methylmercury 2, 3-dihydroxy propyl mercaptide and methylmercury acetate. Clinical signs included weakness, wobbling gait, blindness, recumbency and death. Microscopic studies of the peripheral nervous system revealed Wallerian degeneration in sensory fibers and neuronal degeneration in dorsal root ganglia. In the central nervous system, there were neuronal degeneration of ischemic type, glial degeneration, gliosis and necrosis of the media of meningeal arterioles. The last mentioned lesion was not extensive. The sequential development of lesions and the absence of segmental demyelination suggest that the primary lesion in the peripheral nervous system was neuronal-axonal degeneration rather than degeneration of the Schwann cell and myelin sheath. 25 references.

  2. Brain-based devices for the study of nervous systems and the development of intelligent machines.

    Science.gov (United States)

    Krichmar, Jeffrey L; Edelman, Gerald M

    2005-01-01

    The simultaneous study of brain function at all levels of organization is difficult to undertake with current experimental tools. Present day electrophysiology only allows the recording of at most hundreds of neurons while an animal is performing a behavioral task. Because of this limitation and the sheer complexity of the nervous system, computational modeling has become essential in developing theories of brain function. Accordingly, our group has constructed a series of brain-based devices (BBDs), that is, physical devices with simulated nervous systems that guide behavior, to serve as a heuristic for testing theories of brain function. Unlike animal models, BBDs permit analysis of activity at all levels of the nervous system as the device behaves in its environment. Although the principal focus of developing BBDs has been to test theories of brain function, this type of modeling may also provide a basis for robotic design and practical applications.

  3. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  4. The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin

    Science.gov (United States)

    Mason, B.L.; Wang, Q.; Zigman, J.M.

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  5. Molecular pathology and targeted therapy of common tumors in central nervous system

    Directory of Open Access Journals (Sweden)

    Fei YANG

    2014-12-01

    Full Text Available It is difficult to cure central nervous system tumors using traditional method, due to chemotherapy drugs lack of specificity. They kill the tumor cells, and damage normal tissues and organs at the same time. The latest hotspot is targeted therapy on the specific molecules in the molecular pathway of central nervous system tumor cells. This review introduces the relationship between molecularly biological characteristics of medulloblastoma, oligodendrocytoma, glioblastoma and the prognosis in the view of critical intracellular pathway and genetic mutation. Furthermore, it reviews the current situation and progress of targeted therapy of tumors. As a consequence, it offers some new information for the individualized therapy of central nervous system tumors. doi: 10.3969/j.issn.1672-6731.2014.12.017

  6. Vascular, glial, and lymphatic immune gateways of the central nervous system

    NARCIS (Netherlands)

    Engelhardt, Britta; Carare, Roxana O.; Bechmann, Ingo; Fluegel, Alexander; Laman, Jon D.; Weller, Roy O.

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system.

  7. Evolution of invertebrate nervous systems: the Chaetognatha as a case study

    DEFF Research Database (Denmark)

    Harzsch, S.; Wanninger, Andreas Wilhelm Georg

    2010-01-01

    Harzsch, S. and Wanninger, A. 2010. Evolution of invertebrate nervous systems: the Chaetognatha as a case study. —Acta Zoologica (Stockholm) 91: 35–43 Although recent molecular studies indicate that Chaetognatha may be one of the earliest Bilaterian offshoots, the phylogenetic position of this ta......Harzsch, S. and Wanninger, A. 2010. Evolution of invertebrate nervous systems: the Chaetognatha as a case study. —Acta Zoologica (Stockholm) 91: 35–43 Although recent molecular studies indicate that Chaetognatha may be one of the earliest Bilaterian offshoots, the phylogenetic position...

  8. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Science.gov (United States)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  9. Central nervous system medications and falls risk in men aged 60-75 years

    DEFF Research Database (Denmark)

    Masud, Tahir; Frost, Morten; Ryg, Jesper

    2013-01-01

    Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years.......Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years....

  10. Central Nervous System Toxoplasmosis in Relapsed Hodgkin's Lymphoma: A Case Report.

    Science.gov (United States)

    Abolghasemi, Hassan; Shahverdi, Ehsan; Jafari, Ramezan; Dolatimehr, Fardin; Khandani, Azam

    2016-08-01

    Patients with immunosuppression have an increased incidence of toxoplasmosis characterized by involvement of the central nervous system. Only a few cases of toxoplasmosis associated with immunosuppressive agents have been reported. Such cases have been reported in immune suppressed patients outside the Iran, but a search of the literature has not revealed any previous reports from this country. We described a 17- year -old male, a known case of Hodgkin's lymphoma with the diagnosis of central nervous system (CNS) toxoplasmosis. As a conclusion, CNS toxoplasmosis should be considered in the differential diagnosis of immunosuppressed patients who present with neurological manifestations.

  11. Effect of insulin-induced hypoglycaemia on the peripheral nervous system

    DEFF Research Database (Denmark)

    Jensen, Vivi Flou Hjorth; Mølck, A.-M.; Bøgh, I. B.

    2014-01-01

    Insulin-induced hypoglycaemia (IIH) is a common acute side effect in type 1 and type 2 diabetic patients, especially during intensive insulin therapy. The peripheral nervous system (PNS) depends on glucose as its primary energy source during normoglycaemia and, consequently, it may be particularly...... prone to IIH than the central nervous system when hypoglycaemia is not severe (blood glucose level ≤ 2 mm), possibly reflecting a preferential protection of the brain during periods of inadequate glucose availability. With a primary focus on evidence from experimental animal studies investigating...

  12. Immunocytochemistry of the nervous system and the musculature of the chordoid larva of Symbion pandora (Cycliophora)

    DEFF Research Database (Denmark)

    Wanninger, Andreas

    2005-01-01

    and a sexually produced chordoid larva. Despite detailed TEM investigations and its inclusion in recent molecular phylogenetic analyses, cycliophoran relationships still remain enigmatic. In order to increase the morphological database, I investigated the anatomy of the nervous system and the musculature...... of the chordoid larva by applying fluorescence-coupled antibodies against the neurotransmitters serotonin and FMRFamide, as well as FITC-coupled phalloidin to label filamentous F-actin, in combination with confocal laser scanning microscopy. The FMRFamidergic nervous system shows a bilobed anterior ganglion...

  13. The evolution of nervous system patterning: insights from sea urchin development

    Science.gov (United States)

    Angerer, Lynne M.; Yaguchi, Shunsuke; Angerer, Robert C.; Burke, Robert D.

    2011-01-01

    Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields – the anterior neuroectoderm and the more posterior ciliary band neuroectoderm – during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution. PMID:21828090

  14. The application values of cerebrospinal fluid cytological examination by slide centrifugation for diagnosis of central nervous system infectious diseases

    Directory of Open Access Journals (Sweden)

    LIU Ting-ting

    2013-02-01

    Full Text Available According to the analysis of cerebrospnial fluid (CSF cytological examination (by slide centrifugation results of 15 940 central nervous system infectious cases, this cytologic examination method shows definite diagnostic values as follows: 1 better etiological diagnostic value for central nervous system infectious diseases, such as purulent, viral, tuberculous, fungus and parasitic encephalitis meningitis and meningoencephalitis; 2 better differential diagnostic value for acute infectious toxic encephalopathy, meningeal carcinomatosis and central nervous system non-infectious diseases such as tumorous, leukemic and hemorrhagic meningoencephalitis and encephalopathy; 3 better clinical value for severity monitoring and prognostic judgement of central nervous system infectious diseases.

  15. Nutrition and the Nervous System: The Historical Background

    Science.gov (United States)

    Widdowson, E. M.

    1972-01-01

    Discusses the reciprocal relationship between food and behavior, dealing with the subject as a two-way system; two parts of the brain are particularly involved, the hypothalamus and the cerebral cortex. (Author/JM)

  16. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  17. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  18. [Primary central nervous system tumours reported in Cartagena, 2001-2006].

    Science.gov (United States)

    Ramos-Clason, Enrique C; Tuñón-Pitalua, Martha C; Rivas-Muñoz, Fabio A; Veloza-Cabrera, Luis A

    2010-04-01

    Determining the frequency of primary central nervous system tumours diagnosed in Cartagena; Colombia, from 2001-2006 and determining the demographic, epidemiological and clinical characteristics of patients having central nervous system tumours reported by a single institution in Cartagena between 2001 and 2006. A passive epidemiological surveillance descriptive study was carried out. The pathology reports of new diagnosed central nervous system primary tumours from all laboratories in Cartagena were taken and the available clinical records regarding these cases were analysed. The overall incidence rate and incidence rates by year, gender, age and histological type were estimated, with 95 % confidence intervals. Standardised morbidity rates were also calculated. There were 390 such cases during 2001-2006. The overall incidence rate was 6.91/100,000 people-year. Meningiomas were the most frequently occurring histological types (3.46/100,000 people-year). The provenance could only be determined in 43.1 % of cases. Standardised morbidity rates were higher in Cartagena regarding those reported in the United States and by the Colombian National Cancer Institute and the Population-based Cali Cancer Registry. There was a higher incidence of primary central nervous system tumours in Cartagena than in the rest of the country. Registry and surveillance systems should be improved and research into risk factors encouraged.

  19. Role of Exosomes/Microvesicles in the Nervous System and Use in Emerging Therapies

    Directory of Open Access Journals (Sweden)

    Charles Pin-Kuang Lai

    2012-06-01

    Full Text Available Extracellular membrane vesicles (EMVs are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.

  20. 50-57 Effects of the Autonomic Nervous System, Centra

    African Journals Online (AJOL)

    admin

    and the higher centres in the brain. Many GIT diseases are characterized by altered function of the neurohormonal system associated with it, leading to various functional disorders. Characterization of various physiological factors involved in motility may lead to the development of specific drugs which may either enhance or ...

  1. Expression of complement components in the peripheral nervous system

    NARCIS (Netherlands)

    de Jonge, Rosalein R.; van Schaik, Ivo N.; Vreijling, Jeroen P.; Troost, Dirk; Baas, Frank

    2004-01-01

    We have generated a SAGE (serial analysis of gene expression) library of normal sciatic nerve and found tags encoding for mRNAs of the complement system highly represented. RNA (RT-PCR and northern blot hybridization) and protein (western blot analysis and immunohistochemistry) studies confirmed

  2. Investigation of a Micro-test for Circulatory Autonomic Nervous System Responses.

    Science.gov (United States)

    Moser, Maximilian; Frühwirth, Matthias; Messerschmidt, Dietmar; Goswami, Nandu; Dorfer, Leopold; Bahr, Frank; Opitz, Gerhard

    2017-01-01

    Aims and Objectives: The autonomic nervous system plays an important role in homeostasis and organismic recreation, control of immune function, inflammation, and bone growth. It also regulates blood pressure and orthostasis via vagal and sympathetic pathways. Besides recording of heart rate variability (HRV), which characterizes medium (1-5 min) and long term (circadian) autonomic tone or modulation, no gentle tests of short-term autonomic reactivity and control are available. In 1976 Nogier described a short time cardiovascular response ("Réflexe Auriculo Cardiaque", RAC) which could be used to investigate short term autonomic reactions without changing system characteristics and thus being repeatable in short intervals. In this paper, we investigated the possible application of the Nogier reaction as a micro-test for the identification of a disturbed sensitivity or reactivity of the autonomic nervous system. Methods: We statistically analyzed cardiovascular signals derived during the application of small repeated stimuli utilizing methods of signal averaging to characterize the physiological background. Specifically, the Nogier reaction was investigated using simultaneous recordings of ECG, pulse waves, and respiration. Results: Significant fast (delay 1-5 s) and slower (delay 6-12 s) cardio-autonomic responses to different stimuli which characterize short term were observed. From time characteristics and type of signals where they occur we deduce that fast changes observed in heart rate are vagal reactions to the small stimuli whereas slower changes observed in pulse waves stem from sympathetic nervous system responses. Conclusions: The investigated autonomic micro-test opens the possibility to differentially investigate both limbs of the autonomic nervous system with minimal stimuli. It can be performed within seconds and does not change the set point of the system in opposition to less subtle tests such as Valsalva maneuver. Therefore, it is well-suited for

  3. Investigation of a Micro-test for Circulatory Autonomic Nervous System Responses

    Directory of Open Access Journals (Sweden)

    Maximilian Moser

    2017-07-01

    Full Text Available Aims and Objectives: The autonomic nervous system plays an important role in homeostasis and organismic recreation, control of immune function, inflammation, and bone growth. It also regulates blood pressure and orthostasis via vagal and sympathetic pathways. Besides recording of heart rate variability (HRV, which characterizes medium (1–5 min and long term (circadian autonomic tone or modulation, no gentle tests of short-term autonomic reactivity and control are available. In 1976 Nogier described a short time cardiovascular response (“Réflexe Auriculo Cardiaque”, RAC which could be used to investigate short term autonomic reactions without changing system characteristics and thus being repeatable in short intervals. In this paper, we investigated the possible application of the Nogier reaction as a micro-test for the identification of a disturbed sensitivity or reactivity of the autonomic nervous system.Methods: We statistically analyzed cardiovascular signals derived during the application of small repeated stimuli utilizing methods of signal averaging to characterize the physiological background. Specifically, the Nogier reaction was investigated using simultaneous recordings of ECG, pulse waves, and respiration.Results: Significant fast (delay 1–5 s and slower (delay 6–12 s cardio-autonomic responses to different stimuli which characterize short term were observed. From time characteristics and type of signals where they occur we deduce that fast changes observed in heart rate are vagal reactions to the small stimuli whereas slower changes observed in pulse waves stem from sympathetic nervous system responses.Conclusions: The investigated autonomic micro-test opens the possibility to differentially investigate both limbs of the autonomic nervous system with minimal stimuli. It can be performed within seconds and does not change the set point of the system in opposition to less subtle tests such as Valsalva maneuver. Therefore, it

  4. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus).

    Science.gov (United States)

    Gatta, Claudia; Russo, Finizia; Russolillo, Maria Grazia; Varricchio, Ettore; Paolucci, Marina; Castaldo, Luciana; Lucini, Carla; de Girolamo, Paolo; Cozzi, Bruno; Maruccio, Lucianna

    2014-01-01

    This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.

  5. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus.

    Directory of Open Access Journals (Sweden)

    Claudia Gatta

    Full Text Available This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.

  6. Nervous systems and scenarios for the invertebrate-to-vertebrate transition

    Science.gov (United States)

    Holland, Nicholas D.

    2016-01-01

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728

  7. Screening of the central nervous system in children with invasive pulmonary aspergillosis

    NARCIS (Netherlands)

    Broenen, E.; Mavinkurve, A.M.C.; Kamphuis-van Ulzen, K.; Brüggemann, R.J.M.; Verweij, P.E.; Warris, A.

    2014-01-01

    The existing guidelines regarding the management of invasive pulmonary aspergillosis do not recommend screening of the extra-pulmonary sites. Due to the fact that the presence of central nervous system (CNS) aspergillosis will influence treatment decisions regarding which antifungal to use and the

  8. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS by ti...

  9. Sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus syndrome.

    Science.gov (United States)

    Hsieh, Chih-Wei; Wu, Yu-Hung; Lin, Shuan-Pei; Peng, Chun-Chih; Ho, Che-Sheng

    2012-01-01

    SCALP syndrome is an acronym describing the coincidence of sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus (giant congenital melanocytic nevus). We present a fourth case of this syndrome. © 2012 Wiley Periodicals, Inc.

  10. The role of the nervous system in hematopoietic stem cell mobilization.

    Science.gov (United States)

    Saba, Fakhredin; Soleimani, Masoud; Atashi, Amir; Mortaz, Esmaeil; Shahjahani, Mohammad; Roshandel, Elham; Jaseb, Kaveh; Saki, Najmaldin

    2013-09-01

    Hematopoietic stem cells (HSCs) and blood cell progenitors, such as maturing leucocytes, steadily enter from bone marrow (BM) into the circulation under steady-state conditions, and their mobilization is dramatically amplified during stress conditions and by mediators such as granulocyte colony-stimulating factor (G-CSF). This mobilization is dependent upon bone remodeling, the proteolytic enzymes of bone marrow-derived stromal cells, and adhesion molecules such as integrin, but the main mechanisms controlling this traffic are still unclear. The nervous system, as the most important regulator of the body, can affect the mobilization network by secreting catecholamines, so that denervation of catecholaminergic fibers in the BM of mice could lead to declining mobilization in steady state and stress situations, even in the presence of other intact environmental factors in the BM. Thus, due to the importance of the nervous system, we have attempted to give a general overview of how the nervous system is involved in the mobilization of HSCs in this review. Then, we will try to describe the mobilization process induced by the nervous system, which consists of 3 mechanisms: stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4), proteolytic enzymes, and bone remodeling.

  11. The role of the autonomic nervous system in diabetes and cardiovascular disease : an epidemiological approach

    NARCIS (Netherlands)

    Hillebrand, Stefanie

    2015-01-01

    The main objective of this thesis was to study the role of autonomic nervous system (ANS) function in the development of diabetes and cardiovascular disease using an epidemiological approach. Based on earlier studies it has remained unclear whether impaired ANS function is a risk factor for the

  12. Assessing segmental versus non-segmental features in the ventral nervous system of onychophorans (velvet worms).

    Science.gov (United States)

    Martin, Christine; Gross, Vladimir; Pflüger, Hans-Joachim; Stevenson, Paul A; Mayer, Georg

    2017-01-03

    Due to their phylogenetic position as one of the closest arthropod relatives, studies of the organisation of the nervous system in onychophorans play a key role for understanding the evolution of body segmentation in arthropods. Previous studies revealed that, in contrast to the arthropods, segmentally repeated ganglia are not present within the onychophoran ventral nerve cords, suggesting that segmentation is either reduced or might be incomplete in the onychophoran ventral nervous system. To assess segmental versus non-segmental features in the ventral nervous system of onychophorans, we screened the nerve cords for various markers, including synapsin, serotonin, gamma-aminobutyric acid, RFamide, dopamine, tyramine and octopamine. In addition, we performed retrograde fills of serially repeated commissures and leg nerves to localise the position of neuronal somata supplying those. Our data revealed a mixture of segmental and non-segmental elements within the onychophoran nervous system. We suggest that the segmental ganglia of arthropods evolved by a gradual condensation of subsets of neurons either in the arthropod or the arthropod-tardigrade lineage. These findings are in line with the hypothesis of gradual evolution of segmentation in panarthropods and thus contradict a loss of ancestral segmentation within the onychophoran lineage.

  13. Central nervous system Tuberculosis in a man from Cambodia with worsening headaches.

    Science.gov (United States)

    Krauth, Daniel S; Stone-Garza, Kristi K; Amaro, Deirdre E; Reed, Sharon L; Katsivas, Theodoros F

    2017-10-01

    Central nervous system (CNS) tuberculosis should be considered in patients from endemic nations with worsening neurological symptoms. If imaging reveals possible CNS tuberculomas, potentially life-threatening lesions should be excised and analyzed. When disease is less severe, other tissues possibly infected should be biopsied first for diagnosis to avoid neurosurgery.

  14. White matter lesions and encephalopathy in patients treated for primary central nervous system lymphoma

    NARCIS (Netherlands)

    Wassenberg, MWM; Bromberg, JEC; Witkamp, TD; Terhaard, CHJ; Taphoorn, MJB

    A retrospective analysis of the clinical presentations and neuroimaging characteristics of 33 patients with a primary central nervous system lymphoma (PCNL) who received cranial radiotherapy was performed to assess incidence of and risk factors for radiation-induced encephalopathy. CT and MRI scans

  15. Paraneoplastic neurological syndrome: focus on the involvement of the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Sitkali I.V.

    2017-03-01

    Full Text Available The information about epidemiology, pathogenesis and clinical heterogeneity of paraneoplastic neurological syndrome is summarized and based on Russian and foreign literature. The main attention is devoted to the affection of peripheral nervous systems in patients with oncological diseases. We report the information about anti-neuronal antibodies associated with paraneoplastic syndrome. The diagnostic criteria of paraneoplastic neurological syndromes are presented.

  16. A case of central nervous system infection due to Cladophialophora bantiana

    NARCIS (Netherlands)

    Kantarcioglu, A Serda; Guarro, Josep; de Hoog, G Sybren; Apaydin, Hulya; Kiraz, Nuri; Balkan, Ilker Inanç; Ozaras, Resat

    2016-01-01

    BACKGROUND: Cladophialophora bantiana is a melanised mold with a pronounced tropism for the central nervous system, almost exclusively causing human brain abscesses. CASE REPORT: We describe a case of cerebral infection by this fungus in an otherwise healthy 28-year-old coal-miner. Environmental

  17. Seasonality of birth in children with central nervous system tumours in Denmark, 1970-2003

    DEFF Research Database (Denmark)

    Schmidt, L S; Grell, Kathrine; Frederiksen, K

    2008-01-01

    We investigated possible seasonal variation of births among children <20 years with a central nervous system tumour in Denmark (N=1640), comparing them with 2,582,714 children born between 1970 and 2003. No such variation was seen overall, but ependymoma showed seasonal variation.......We investigated possible seasonal variation of births among children

  18. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    Science.gov (United States)

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  19. Antho-RFamide-containing neurons in the primitive nervous system of the anthozoan Renilla koellikeri

    DEFF Research Database (Denmark)

    Pernet, Vincent; Anctil, Michel; Grimmelikhuijzen, Cornelis J P

    2004-01-01

    The neuropeptide Antho-RFamide is extremely abundant in Renilla koellikeri (sea pansy), a representative of the cnidarians (octocorallians) considered to be closest to the stem ancestors of metazoans with nervous systems. Therefore, a knowledge of the distribution of Antho-RFamide-containing neur......The neuropeptide Antho-RFamide is extremely abundant in Renilla koellikeri (sea pansy), a representative of the cnidarians (octocorallians) considered to be closest to the stem ancestors of metazoans with nervous systems. Therefore, a knowledge of the distribution of Antho......-RFamide-containing neurons in this species would contribute to our understanding of the early evolution of nervous systems. Using antisera raised against RFamide and FMRFamide, we detected immunostaining in numerous neurons throughout the nervous system of the sea pansy. The antisera revealed ectodermal nerve...... neurons were observed in the different compartments of the endoderm: muscular walls of the feeding and water circulation polyps, mesenteric filaments and their derived follicles containing either ovocytes or spermatophores, in the endodermal channels connecting the different compartments of the colony...

  20. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  1. Parental Management of Peers and Autonomic Nervous System Reactivity in Predicting Adolescent Peer Relationships

    Science.gov (United States)

    Tu, Kelly M.; Erath, Stephen A.; El-Sheikh, Mona

    2017-01-01

    The present study examined sympathetic and parasympathetic indices of autonomic nervous system reactivity as moderators of the prospective association between parental management of peers via directing of youths' friendships and peer adjustment in a sample of typically developing adolescents. Participants included 246 adolescents at Time 1 (T1)…

  2. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis.

    NARCIS (Netherlands)

    Raijmakers, R.; Vogelzangs, J.H.P.; Croxford, J.L.; Wesseling, P.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2005-01-01

    Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin

  3. FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides

    DEFF Research Database (Denmark)

    Wollesen, Tim; Loesel, R.; Wanninger, Andreas Wilhelm Georg

    2008-01-01

    For more than a century, cephalopod molluscs have been the subject of extensive studies with respect to their complex neuroanatomy and behavior. In comparison to gastropod molluscs surprisingly little work has been carried out on the characterization of neurons in the central nervous system (CNS...

  4. Cerebrospinal fluid pleocytosis in infectious and noninfectious central nervous system disease

    DEFF Research Database (Denmark)

    Baunbæk Egelund, Gertrud; Ertner, Gideon; Langholz Kristensen, Kristina

    2017-01-01

    Cerebrospinal fluid (CSF) analysis is the most important tool for assessing central nervous system (CNS) disease. An elevated CSF leukocyte count rarely provides the final diagnosis, but is almost always an indicator of inflammation within the CNS.The present study investigated the variety...

  5. The enteric nervous system in the ruminant stomach of the sheep (Ovis aries).

    NARCIS (Netherlands)

    A.A.L.M. Weyns

    1988-01-01

    textabstractNotwithstanding the enormous importance of the pathology of the ruminant stomach in veterinary medicine (and hence in economy) and the fact that adequate functioning of this gastrointestinal segment largely depends upon the integrity of the enteric nervous system, it is rather

  6. Toxic plants affecting the nervous system of ruminants and horses in Brazil

    Science.gov (United States)

    This review updates information about neurotoxic plants affecting ruminants and equidae in Brazil. Currently in the country, there are at least 131 toxic plants belonging to 79 genera. Thirty one of these poisonous plants affect the nervous system. Swainsonine-containing plants (Ipomoea spp., Turbin...

  7. Adverse drug reactions reported by consumers for nervous system medications in Europe 2007 to 2011

    DEFF Research Database (Denmark)

    Aagaard, Lise; Hansen, Ebba Holme

    2013-01-01

    Reporting of adverse drug reactions (ADRs) has traditionally been the sole province of healthcare professionals. In the European Union, more countries have allowed consumers to report ADRs directly to the regulatory agencies. The aim of this study was to characterize ADRs reported by European con...... consumer for nervous system medications....

  8. Glial Cells: The Other Cells of the Nervous System-Astrocytes–Star ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Glial Cells: The Other Cells of the Nervous System - Astrocytes – Star Performers in the Neural Tissue. Medha S Rajadhyaksha Daya Manghani. Series Article Volume 7 Issue 4 April 2002 pp 20-26 ...

  9. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  10. Glial Cells: The Other Cells of the Nervous System-Microglia–The ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Glial Cells: The Other Cells of the Nervous System - Microglia – The Guardians of the CNS. Medha S Rajadhyaksha Daya Manghani. Series Article Volume 7 Issue 10 October 2002 pp 23-29 ...

  11. Glial Cells: The Other Cells of the Nervous System-Schwann Cells ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 8. Glial Cells: The Other Cells of the Nervous System - Schwann Cells – Regulators of the Periphery. Yasmin Khan Medha S Rajadhyaksha. Series Article Volume 7 Issue 8 August 2002 pp 8-15 ...

  12. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  13. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Science.gov (United States)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  14. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  15. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  16. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    Science.gov (United States)

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  17. Some Central Nervous System Effects of the aqueous Extract of the ...

    African Journals Online (AJOL)

    The leaves of Phyllanthus amarus is used in Southern Nigeria to treat variety of diseases including epilepsy. The aqueous extract of the leaves of Phyllanthus amarus was investigated for some central nervous system effects. Two animals models (maximal electroshock and pentylenetetrazol-induced convulsion), were used ...

  18. Emotion Regulation via the Autonomic Nervous System in Children with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Musser, Erica D.; Backs, Richard W.; Schmitt, Colleen F.; Ablow, Jennifer C.; Measelle, Jeffery R.; Nigg, Joel T.

    2011-01-01

    Despite growing interest in conceptualizing ADHD as involving disrupted emotion regulation, few studies have examined the physiological mechanisms related to emotion regulation in children with this disorder. This study examined parasympathetic and sympathetic nervous system reactivity via measures of respiratory sinus arrhythmia (RSA) and cardiac…

  19. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  20. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    Science.gov (United States)

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  1. Neuro-HIV: Nervous System Manifestations of HIV Infection- A Review

    African Journals Online (AJOL)

    The nervous system manifestations of HIV infection are protean. Initially assumed to be a late feature of HIV infection, neurologic involvement can occur quite early. Recognition and management of this condition can be very challenging. A review of the literature is presented. An extensive search of all materials related to the ...

  2. DELAYED EFFECTS OF RADIATION ON THE HUMAN CENTRAL NERVOUS SYSTEM. EARLY AND LATE DELAYED REACTIONS,

    Science.gov (United States)

    Two cases of delayed effects of radiation on the central nervous system of man are reported. One demonstrates the rare early delayed reaction which...involvement. This patient is an extreme example of the well-documented late delayed effects of radiation and is presented for contrast with the patient in

  3. ANTIEPILEPTIC MEDICATION IN PREGNANCY - LATE EFFECTS ON THE CHILDRENS CENTRAL-NERVOUS-SYSTEM DEVELOPMENT

    NARCIS (Netherlands)

    VANDERPOL, MC; HADDERSALGRA, M; HUISJES, HJ; TOUWEN, BCL

    In a follow-up study long-term effects of antenatal exposure to two anticonvulsant drugs, phenobarbital and carbamazepine on central nervous system development were evaluated. Children aged 6 to 13 years of epileptic mothers who used phenobarbital (n = 13), carbamazepine (n = 12), phenobarbital plus

  4. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Babcock, Alicia A; Millward, Jason M

    2007-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) are thought to mediate cellular infiltration in central nervous system (CNS) inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (M...

  5. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  6. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    Science.gov (United States)

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  7. New onset refractory status epilepticus due to primary angiitis of the central nervous system

    Directory of Open Access Journals (Sweden)

    Rawan K. Matar

    2017-01-01

    Full Text Available Primary Angiitis of the central nervous system is a rare and poorly understood variant of vasculitis. We narrate a case of a 46-year-old male who presented with new onset refractory status epilepticus mimicking autoimmune encephalitis. In this case we are reporting clues that could be useful for diagnosis and extensive literature review on the topic.

  8. Biomarkers in early phase development of central nervous system drugs : a conceptual framework

    NARCIS (Netherlands)

    Post, Jeroen-Paul van der

    2006-01-01

    The main objective of this thesis is to provide a conceptual framework for the use of Central Nervous System (CNS) biomarkers in early phase clinical drug development. In the Introduction the current use of biomarkers in early CNS drug development is discussed. A conceptual framework for the

  9. Autonomic nervous system function in chronic exogenous subclinical thyrotoxicosis and the effect of restoring euthyroidism

    NARCIS (Netherlands)

    Eustatia-Rutten, Carmen F. A.; Corssmit, Eleonora P. M.; Heemstra, Karen A.; Smit, Johannes W. A.; Schoemaker, Rik C.; Romijn, Johannes A.; Burggraaf, Jacobus

    2008-01-01

    Knowledge on the relationship between the autonomic nervous system and subclinical hyperthyroidism is mainly based upon cross-sectional studies in heterogeneous patient populations, and the effect of restoration to euthyroidism in subclinical hyperthyroidism has not been studied. We investigated the

  10. Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome

    NARCIS (Netherlands)

    Licht, C.M.M.; de Geus, E.J.C.; Penninx, B.W.J.H.

    2013-01-01

    Context: Stress is suggested to lead to metabolic dysregulations as clustered in the metabolic syndrome. Although dysregulation of the autonomic nervous system is found to associate with the metabolic syndrome and its dysregulations, no longitudinal study has been performed to date to examine the

  11. Autonomic nervous system function in patients with functional abdominal pain. An experimental study

    DEFF Research Database (Denmark)

    Jørgensen, L S; Christiansen, P; Raundahl, U

    1993-01-01

    Functional abdominal pain--that is, pain without demonstrable organic abnormalities--has often been associated with psychologic stress. The aim of the present study was to investigate whether sympathetic nervous system response to laboratory stress and basal parasympathetic neural activity were...

  12. Structural homeostasis in the nervous system: A balancing act for wiring plasticity and stability

    Directory of Open Access Journals (Sweden)

    Jun eYin

    2015-01-01

    Full Text Available Experience-dependent modifications of neural circuits provide the cellular basis for functional adaptation and learning, while presenting significant challenges to the stability of neural networks. The nervous system copes with these perturbations through a variety of compensatory mechanisms with distinct spatial and temporal profiles. Mounting evidence suggests that structural plasticity, through modifications of the number and structure of synapses, or changes in local and long-range connectivity, might contribute to the stabilization of network activity and serve as an important component of the homeostatic regulation of the nervous system. Conceptually similar to the homeostatic regulation of synaptic strength and efficacy, homeostatic structural plasticity has a profound and lasting impact on the intrinsic excitability of the neuron and circuit properties, yet remains largely unexplored. In this review, we examine recent reports describing structural modifications associated with functional compensation in both developing and adult nervous systems, and discuss the potential role for structural homeostasis in maintaining network stability and its implications in physiological and pathological conditions of the nervous systems.

  13. Inflammatory cells in the peripheral nervous system in motor neuron disease

    NARCIS (Netherlands)

    Kerkhoff, H.; Troost, D.; Louwerse, E. S.; van Dijk, M.; Veldman, H.; Jennekens, F. G.

    1993-01-01

    We examined post-mortem material of the peripheral nervous system of 26 cases of motor neuron disease (MND) for the presence of lymphocyte subsets and macrophages. Findings were quantified and compared with those in control nerves. Lymphocytes in chronic and acute axonal degeneration were studied in

  14. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Atkinson, C.L.; Ono, K.; Sprung, V.S.; Spence, A.L.; Pugh, C.J.; Green, D.J.

    2014-01-01

    The aim of this study was to examine the contribution of arterial shear to changes in flow-mediated dilation (FMD) during sympathetic nervous system (SNS) activation in healthy humans. Ten healthy men reported to our laboratory four times. Bilateral FMD, shear rate (SR), and catecholamines were

  15. A Role for the Autonomic Nervous System in Modulating the Immune Response during Mild Emotional Stimuli

    NARCIS (Netherlands)

    Croiset, Gerda; Heijnen, Cobi J.; Wal, Wim E. van der; Boer, Sietse F. de; Wied, David de

    1990-01-01

    The role of the autonomic nervous system in the modulation of the immune response to emotional stimuli, was established in rats subjected to the passive avoidance test. An increase in splenic primary antibody response directed against SRBC was found after exposure of rats to the passive avoidance

  16. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  17. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA...... epilepsy diagnosis against 11 (4.3%) in the comparison group (P ...

  18. Analysis of Autonomic Nervous System Functional Age and Heart Rate Variability in Mine Workers

    Directory of Open Access Journals (Sweden)

    Vasicko T

    2016-04-01

    Full Text Available Introduction: Heavy working conditions and many unpropitious factors influencing workers health participate in development of various health disorders, among other autonomic cardiovascular regulation malfunction. The aim of this study is to draw a comparison of autonomic nervous system functional age and heart rate variability changes between workers with and without mining occupational exposure.

  19. Analyzing Defects in the "Caenorhabditis Elegans" Nervous System Using Organismal and Cell Biological Approaches

    Science.gov (United States)

    Guziewicz, Megan; Vitullo, Toni; Simmons, Bethany; Kohn, Rebecca Eustance

    2002-01-01

    The goal of this laboratory exercise is to increase student understanding of the impact of nervous system function at both the organismal and cellular levels. This inquiry-based exercise is designed for an undergraduate course examining principles of cell biology. After observing the movement of "Caenorhabditis elegans" with defects in their…

  20. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    David J Wilkinson

    Full Text Available Enteric nervous system progenitor cells isolated from postnatal human gut and cultured as neurospheres can then be transplanted into aganglionic gut to restore normal patterns of contractility. These progenitor cells may be of future use to treat patients with Hirschprung's disease, a congenital condition characterized by hindgut dysmotility due to the lack of enteric nervous system ganglia. Here we demonstrate that progenitor cells can also be isolated from aganglionic gut removed during corrective surgery for Hirschsprung's disease. Although the enteric nervous system marker calretinin is not expressed in the aganglionic gut region, de novo expression is initiated in cultured neurosphere cells isolated from aganglionic Hirschsprung bowel. Furthermore, expression of the neural markers NOS, VIP and GFAP also increased during culture of aganglionic gut neurospheres which we show can be transplantation into cultured embryonic mouse gut explants to restore a normal frequency of contractility. To determine the origin of the progenitor cells in aganglionic region, we used fluorescence-activated cell sorting to demonstrate that only p75-positive neural crest-derived cells present in the thickened nerve trunks characteristic of the aganglionic region of Hirschsprung gut gave rise to neurons in culture. The derivation of enteric nervous system progenitors in the aganglionic gut region of Hirschprung's patients not only means that this tissue is a potential source of cells for future autologous transplantation, but it also raises the possibility of inducing the differentiation of these endogenous cells in situ to compensate for the aganglionosis.

  1. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV...

  2. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors

    NARCIS (Netherlands)

    Vermeulen, Jeroen F; van Hecke, Wim; Spliet, Wim G M; Villacorta Hidalgo, José; Fisch, Paul; Broekhuizen, Roel; Bovenschen, Niels

    2016-01-01

    BACKGROUND: Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall

  3. Autonomic nervous system responses to viewing green and built settings: differentiating between sympathetic and parasympathetic activity

    NARCIS (Netherlands)

    van den Berg, Magdalena; Maas, Jolanda; Mulder, Rianne; Braun, Anoek; Kaandorp, Wendy; van Lien, René; van Poppel, Mireille; van Mechelen, Willem; van den Berg, Agnes

    2015-01-01

    his laboratory study explored buffering and recovery effects of viewing urban green and built spaces on autonomic nervous system activity. Forty-six students viewed photos of green and built spaces immediately following, and preceding acute stress induction. Simultaneously recorded electrocardiogram

  4. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  5. Students' Illustrations of the Human Nervous System as a Formative Assessment Tool

    Science.gov (United States)

    Ranaweera, Sisika Priyani Nelum; Montplaisir, Lisa Marie

    2010-01-01

    The purpose of this study was to explore students' knowledge and learning of the human nervous system (HNS) in an introductory undergraduate Human Anatomy and Physiology course. Classroom observations, demographic data, a preinstructional unit test with drawings, and a postinstructional unit test with drawings were used to identify students'…

  6. Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System.

    Science.gov (United States)

    Weng, Yi-Lan; Wang, Xu; An, Ran; Cassin, Jessica; Vissers, Caroline; Liu, Yuanyuan; Liu, Yajing; Xu, Tianlei; Wang, Xinyuan; Wong, Samuel Zheng Hao; Joseph, Jessica; Dore, Louis C; Dong, Qiang; Zheng, Wei; Jin, Peng; Wu, Hao; Shen, Bin; Zhuang, Xiaoxi; He, Chuan; Liu, Kai; Song, Hongjun; Ming, Guo-Li

    2018-01-17

    N6-methyladenosine (m6A) affects multiple aspects of mRNA metabolism and regulates developmental transitions by promoting mRNA decay. Little is known about the role of m6A in the adult mammalian nervous system. Here we report that sciatic nerve lesion elevates levels of m6A-tagged transcripts encoding many regeneration-associated genes and protein translation machinery components in the adult mouse dorsal root ganglion (DRG). Single-base resolution m6A-CLIP mapping further reveals a dynamic m6A landscape in the adult DRG upon injury. Loss of either m6A methyltransferase complex component Mettl14 or m6A-binding protein Ythdf1 globally attenuates injury-induced protein translation in adult DRGs and reduces functional axon regeneration in the peripheral nervous system in vivo. Furthermore, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult central nervous system is attenuated upon Mettl14 knockdown. Our study reveals a critical epitranscriptomic mechanism in promoting injury-induced protein synthesis and axon regeneration in the adult mammalian nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Intrathecal rituximab treatment for pediatric post-transplant lymphoproliferative disorder of the central nervous system.

    NARCIS (Netherlands)

    Glind, G van de; Graaf, S. de; Klein, C.; Cornelissen, M.; Maecker, B.; Loeffen, J.

    2008-01-01

    Post-transplant lymphoproliferative disorder (PTLD) in the central nervous system (CNS) has a poor prognosis. New therapeutic approaches should be explored. We report our experience with intrathecal administration of rituximab in a 10-year-old kidney allograft recipient with PTLD in the CNS. After

  8. Central Nervous System Involvement in Gaucher’s Disease: Radiological Demonstration Case Report

    Directory of Open Access Journals (Sweden)

    Hatice Öztürkmen Akay

    2004-01-01

    Full Text Available Gaucher’s disease is most common sphyngolipid storage disease.Central nervous system involvement is very rare and imaging findings ofthis involvement is not specific.In this case report, we described computed tomographic and magneticresonance findings of cerebral involvement verified with cerebrospinal fluidexamination in a patient with Gaucher’s disease.

  9. Structural and functional features of central nervous system lymphatics

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J.; Eccles, Jacob D.; Rouhani, Sherin J.; Peske, J. David; Derecki, Noel C.; Castle, David; Mandell, James W.; Kevin, S. Lee; Harris, Tajie H.; Kipnis, Jonathan

    2015-01-01

    One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment1–3, the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood4–6. In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction. PMID:26030524

  10. Development of the nervous system in Solenogastres (Mollusca) reveals putative ancestral spiralian features.

    Science.gov (United States)

    Redl, Emanuel; Scherholz, Maik; Todt, Christiane; Wollesen, Tim; Wanninger, Andreas

    2014-01-01

    The Solenogastres (or Neomeniomorpha) are a taxon of aplacophoran molluscs with contentious phylogenetic placement. Since available developmental data on non-conchiferan (that is, aculiferan) molluscs mainly stem from polyplacophorans, data on aplacophorans are needed to clarify evolutionary questions concerning the morphological features of the last common ancestor (LCA) of the Aculifera and the entire Mollusca. We therefore investigated the development of the nervous system in two solenogasters, Wirenia argentea and Gymnomenia pellucida, using immunocytochemistry and electron microscopy. Nervous system formation starts simultaneously from the apical and abapical pole of the larva with the development of a few cells of the apical organ and a posterior neurogenic domain. A pair of neurite bundles grows out from both the neuropil of the apical organ and the posterior neurogenic domain. After their fusion in the region of the prototroch, which is innervated by an underlying serotonin-like immunoreactive (-LIR) plexus, the larva exhibits two longitudinal neurite bundles - the future lateral nerve cords. The apical organ in its fully developed state exhibits approximately 8 to 10 flask-shaped cells but no peripheral cells. The entire ventral nervous system, which includes a pair of longitudinal neurite bundles (the future ventral nerve cords) and a serotonin-LIR ventromedian nerve plexus, appears simultaneously and is established after the lateral nervous system. During metamorphosis the apical organ and the prototrochal nerve plexus are lost. The development of the nervous system in early solenogaster larvae shows striking similarities to other spiralians, especially polychaetes, in exhibiting an apical organ with flask-shaped cells, a single pair of longitudinal neurite bundles, a serotonin-LIR innervation of the prototroch, and formation of these structures from an anterior and a posterior neurogenic domain. This provides evidence for an ancestral spiralian pattern

  11. Our Selections and Decisions: Inherent Features of the Nervous System?

    Science.gov (United States)

    Rösler, Frank

    The chapter summarizes findings on the neuronal bases of decisionmaking. Taking the phenomenon of selection it will be explained that systems built only from excitatory and inhibitory neuron (populations) have the emergent property of selecting between different alternatives. These considerations suggest that there exists a hierarchical architecture with central selection switches. However, in such a system, functions of selection and decision-making are not localized, but rather emerge from an interaction of several participating networks. These are, on the one hand, networks that process specific input and output representations and, on the other hand, networks that regulate the relative activation/inhibition of the specific input and output networks. These ideas are supported by recent empirical evidence. Moreover, other studies show that rather complex psychological variables, like subjective probability estimates, expected gains and losses, prediction errors, etc., do have biological correlates, i.e., they can be localized in time and space as activation states of neural networks and single cells. These findings suggest that selections and decisions are consequences of an architecture which, seen from a biological perspective, is fully deterministic. However, a transposition of such nomothetic functional principles into the idiographic domain, i.e., using them as elements for comprehensive 'mechanistic' explanations of individual decisions, seems not to be possible because of principle limitations. Therefore, individual decisions will remain predictable by means of probabilistic models alone.

  12. Developmental regulation of Ubc9 in the rat nervous system.

    Science.gov (United States)

    Watanabe, Mutsufusa; Takahashi, Kaoru; Tomizawa, Kayoko; Mizusawa, Hidehiro; Takahashi, Hiroshi

    2008-01-01

    The SUMO-conjugating enzyme Ubc9 is an essential enzyme in the SUMO (small ubiquitin-related modifier) protein modification system. Although sumoylation, covalent modification of cellular proteins by SUMO, is considered to regulate various cellular processes, and many substrates for sumoylation have been identified recently, the regulation of Ubc9 expression has not been examined in detail. We analyzed the expression of Ubc9 during rat brain development at the mRNA and protein levels. Northern and Western blot analyses revealed that expression of Ubc9 and SUMO-1 was developmentally regulated, while that of the ubiquitin-conjugating enzyme UbcH7 did not change so dramatically. In situ hybridization analysis revealed that the expression of Ubc9 was high in neuronal stem cells and moderate in differentiated neurons at embryonic stages. In the adult brain, moderate expression was observed in subsets of neurons, such as the dentate granular neurons and pyramidal neurons in the hippocampal formation and the large pyramidal neurons in the cerebral cortex. These results suggest that the Ubc9-SUMO system might participate in the proliferation and differentiation of neuronal cells in the developing brain and in neuronal plasticity in the adult brain.

  13. Vascular, glial, and lymphatic immune gateways of the central nervous system

    OpenAIRE

    Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Fluegel, Alexander; Jon D Laman; Weller, Roy O.

    2016-01-01

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into accou...

  14. Reflections on osteopathic fascia treatment in the peripheral nervous system.

    Science.gov (United States)

    Bordoni, Bruno; Bordoni, Giovanni

    2015-01-01

    The peripheral nerve is composed of several layers of fascia tissue, which can become a source of pain if the way they slide is impeded. It is only recently that fascial osteopathy research has been aimed at understanding what happens to the fascia following treatment, and as a result of previous studies, we are able to highlight some of the benefits, including a reduction in local pain and inflammation. The osteopathic approach to the fascial system of the peripheral nerve does not have a grounding in scientific research, being based instead on the clinical experience of individual operators, despite peripheral nerve palpation being used as a method to evaluate and test its function. The authors wish to encourage the initiation of new research in the fields of academic and clinical osteopathy that is aimed at quantifying the possible benefits a patient may derive from osteopathic treatment of the peripheral nerve.

  15. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    Science.gov (United States)

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  16. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Directory of Open Access Journals (Sweden)

    Strichartz Gary R

    2007-07-01

    Full Text Available Abstract Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene of β-hexosaminidase A (αβ and B (ββ. The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-, we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system. Results We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-. Conclusion Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.

  17. Secondary infiltration of the central nervous system in patients with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Talita Maira Bueno da Silveira da Rocha

    2013-01-01

    Full Text Available OBJECTIVE: To investigate the incidence and risk factors of infiltration of the central nervous system after the initial treatment of diffuse large B-cell lymphoma in patients treated at Santa Casa de Misericórdia de São Paulo. METHODS: A total of 133 patients treated for diffuse large B-cell lymphoma from January 2001 to April 2008 were retrospectively analyzed in respect to the incidence and risk factors of secondary central nervous system involvement of lymphoma. Intrathecal prophylaxis was not a standard procedure for patients considered to be at risk. This analysis includes patients whether they received rituximab as first-line treatment or not. RESULTS: Nine of 133 (6.7% patients developed central nervous system disease after a mean observation time of 29 months. The median time to relapse or progression was 7.9 months after diagnosis and all but one patient died despite the treatment administered. Twenty-six (19.5% patients of this cohort received rituximab as first-line treatment and nine (7.1% received intrathecal chemoprophylaxis. Of the nine patients that relapsed, seven (77.7% had parenchymal central nervous system involvement; seven (77.7% had stage III or IV disease; one (11.1% had bone marrow involvement; two (22.2% had received intrathecal chemoprophylaxis; and 3 (33.3% had taken rituximab. In a multivariate analysis, the risk factors for this infiltration were being male, previous use of intrathecal chemotherapy and patients that were refractory to initial treatment. CONCLUSION: Central nervous system infiltration in this cohort is similar to that of previous reports in the literature. As this was a small cohort with a rare event, only three risk factors were important for this infiltration

  18. Antiinflammatory activity of melatonin in central nervous system.

    Science.gov (United States)

    Esposito, Emanuela; Cuzzocrea, Salvatore

    2010-09-01

    Melatonin is mainly produced in the mammalian pineal gland during the dark phase. Its secretion from the pineal gland has been classically associated with circadian and circanual rhythm regulation. However, melatonin production is not confined exclusively to the pineal gland, but other tissues including retina, Harderian glands, gut, ovary, testes, bone marrow and lens also produce it. Several studies have shown that melatonin reduces chronic and acute inflammation. The immunomodulatory properties of melatonin are well known; it acts on the immune system by regulating cytokine production of immunocompetent cells. Experimental and clinical data showing that melatonin reduces adhesion molecules and pro-inflammatory cytokines and modifies serum inflammatory parameters. As a consequence, melatonin improves the clinical course of illnesses which have an inflammatory etiology. Moreover, experimental evidence supports its actions as a direct and indirect antioxidant, scavenging free radicals, stimulating antioxidant enzymes, enhancing the activities of other antioxidants or protecting other antioxidant enzymes from oxidative damage. Several encouraging clinical studies suggest that melatonin is a neuroprotective molecule in neurodegenerative disorders where brain oxidative damage has been implicated as a common link. In this review, the authors examine the effect of melatonin on several neurological diseases with inflammatory components, including dementia, Alzheimer disease, Parkinson disease, multiple sclerosis, stroke, and brain ischemia/reperfusion but also in traumatic CNS injuries (traumatic brain and spinal cord injury).

  19. Reflections on osteopathic fascia treatment in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Bordoni B

    2015-10-01

    Full Text Available Bruno Bordoni,1–3 Giovanni Bordoni4 1Department of Cardiology, Santa Maria Nascente Institute IRCCS – Hospitalization and Care with Scientific Address, Don Carlo Gnocchi Foundation, 2School TCIO Milano – Osteopathy Institute, 3Edi-Ermes, Milan, 4CRESO School, Osteopathic Centre for Research and Studies, Falconara Marittima, Ancona, Italy Abstract: The peripheral nerve is composed of several layers of fascia tissue, which can become a source of pain if the way they slide is impeded. It is only recently that fascial osteopathy research has been aimed at understanding what happens to the fascia following treatment, and as a result of previous studies, we are able to highlight some of the benefits, including a reduction in local pain and inflammation. The osteopathic approach to the fascial system of the peripheral nerve does not have a grounding in scientific research, being based instead on the clinical experience of individual operators, despite peripheral nerve palpation being used as a method to evaluate and test its function. The authors wish to encourage the initiation of new research in the fields of academic and clinical osteopathy that is aimed at quantifying the possible benefits a patient may derive from osteopathic treatment of the peripheral nerve.Keywords: pain, fascial treatment, nerve palpation

  20. The nervous system orchestrates and integrates craniofacial development: a review

    Directory of Open Access Journals (Sweden)

    Kaj eFried

    2016-02-01

    Full Text Available Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration.

  1. Paedomorphosis and simplification in the nervous system of salamanders.

    Science.gov (United States)

    Roth, G; Nishikawa, K C; Naujoks-Manteuffel, C; Schmidt, A; Wake, D B

    1993-01-01

    Comparative neuroanatomists since Herrick [1914] have been aware of the paradox that the brain of amphibians, especially salamanders, is less complex than one would expect based on their phylogenetic position among the Tetrapoda. Many features of the brain are less differentiated in salamanders than in tetrapod outgroups, including chondrichthyans and bony fishes, and for some brain characters, the salamander brain is even more simple than that of the agnathans. Here, we perform a cladistic analysis on 23 characters of four sensory systems (visual, auditory, lateral line and olfactory) and the brain. Our taxa include myxinoids, lampreys, chondrichthyans, actinopterygians, Latimeria, Neoceratodus and the lepidosirenid lungfishes, amniotes, frogs, caecilians, salamanders and bolitoglossine salamanders. Of the 23 characters we examined, 19 are most parsimoniously interpreted as secondarily simplified in salamanders from a more complex ancestral state, two characters are equally parsimonious under both hypotheses, one character (well developed ipsilateral retinotectal projections) is more complex in bolitoglossine salamanders than in vertebrates generally, and only one character (migration of neurons in the medial pallium) is most parsimoniously interpreted as retention of the plesiomorphically simple condition. Secondary simplification of the salamander brain appears to result from paedomorphosis, or retention of juvenile or embryonic morphology into adulthood. Paedomorphosis is correlated with an increase in genome size, which in turn is positively correlated with cell size, but negatively correlated with cell proliferation and differentiation rates. Available data suggest that, although increasing genome size and paedomorphosis tend to compromise the function of the salamander brain, compensating mechanisms have evolved that may restore or even enhance brain function.

  2. Melatonin and mitochondrial dysfunction in the central nervous system.

    Science.gov (United States)

    Cardinali, Daniel P; Pagano, Eleonora S; Scacchi Bernasconi, Pablo A; Reynoso, Roxana; Scacchi, Pablo

    2013-02-01

    Cell death and survival are critical events for neurodegeneration, mitochondria being increasingly seen as important determinants of both. Mitochondrial dysfunction is considered a major causative factor in Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity and NO production, and disrupted electron transport system and mitochondrial permeability transition, have all been involved in impaired mitochondrial function. Melatonin, the major secretory product of the pineal gland, is an antioxidant and an effective protector of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective to prevent oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of AD, PD and HD. These effects are seen at doses 2-3 orders of magnitude higher than those required to affect sleep and circadian rhythms, both conspicuous targets of melatonin action. Melatonin is selectively taken up by mitochondria, a function not shared by other antioxidants. A limited number of clinical studies indicate that melatonin can improve sleep and circadian rhythm disruption in PD and AD patients. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100mg/day are needed to assess its therapeutic validity in neurodegenerative disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  4. Combining etoposide and dexrazoxane synergizes with radiotherapy and improves survival in mice with central nervous system tumors

    DEFF Research Database (Denmark)

    Hofland, Kenneth Francis; Thougaard, Annemette Vinding; Dejligbjerg, Marielle

    2005-01-01

    PURPOSE: The treatment of patients with brain metastases is presently ineffective, but cerebral chemoradiotherapy using radiosensitizing agents seems promising. Etoposide targets topoisomerase II, resulting in lethal DNA breaks; such lesions may increase the effect of irradiation, which also depe...... nervous system tumors. This regimen may thus improve radiation therapy of central nervous system tumors....

  5. Moving and sensing without input and output : Early nervous systems and the origins of the animal sensorimotor organization

    NARCIS (Netherlands)

    Keijzer, Fred

    2015-01-01

    It remains a standing problem how and why the first nervous systems evolved. Molecular and genomic information is now rapidly accumulating but the macroscopic organization and functioning of early nervous systems remains unclear. To explore potential evolutionary options, a coordination centered

  6. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Science.gov (United States)

    2010-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Joint Meeting of the Peripheral and Central Nervous System... the public. Name of Committees: Peripheral and Central Nervous System Drugs Advisory Committee and the...

  7. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    Science.gov (United States)

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  8. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Veronica Dusi

    2016-01-01

    Full Text Available Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.

  9. Possible Link Between Chronic Periodontal Disease and Central Nervous System Pathologies

    OpenAIRE

    Ramírez Chan DDS, MSc, PhD, Karol

    2015-01-01

    Systemic infection and/or inflammation has been related with an increased risk of brain abscesses, cerebrovascular disease, cognitive impairment and other pathological states of the brain. Therefore, it is plausible, that a chronic infection and inflammation disease, such as periodontitis, may affect the central nervous system (CNS). Chronic periodontal disease is a condition that causes breakdown of the supporting tissues of the teeth, alveolar bone and soft tissues. Chronic periodontitis is...

  10. INFLUENCE OF ETHANOL AND ITS FIRST METHABOLITE ACETALDEHYDE ON THE CENTRAL NERVOUS SYSTEM

    OpenAIRE

    Lucija Šarc; Metoda Lipnik Štangelj

    2009-01-01

    Background Ethanol, a legal drug, is a big social problem in our country. First of all because of addiction development and also due to consequences of the chronic alcoholism. Ethanol effects to almost all organ systems. Consequences of its both, acute and chronic effects, are visible especially in the central nervous system (CNS). Mechanisms of ethanol toxic effects have been already well researched. Lately, many studies attributed at least a part of ethanol effects to its fir...

  11. Tachykinin-1 in the Central Nervous System Regulates Adiposity in Rodents

    OpenAIRE

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Giles S. H. Yeo; Perez-Tilve, Diego

    2015-01-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection o...

  12. Nervous system

    Science.gov (United States)

    Histopathology and immunohistochemistry are two analytic methods used in veterinary medicine for diagnosis and control of animal diseases. This book chapter provides specialized information for the veterinary pathologist and poultry veterinarians on the histopathological changes associated with dise...

  13. Is severe visceral leishmaniasis a systemic inflammatory response syndrome? A case control study A leishmaniose visceral grave é uma síndrome da resposta inflamatória sistêmica? Um estudo caso-controle

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Nery Costa

    2010-08-01

    Full Text Available INTRODUCTION: The objective of the study is to identify the main risk factors for death by New World visceral leishmaniasis and establish a coherent pathogenic substrate of severe disease based on clinical findings. METHODS: Seventy-six deceased inpatients and 320 successfully treated inpatients with VL were studied in a case control study. RESULTS: Bacterial infection and bleeding were mutually exclusive events leading to death. Five risk factors were unique for death by bacterial infection (malnutrition, pulmonary rales, severe anemia, severe absolute neutropenia and higher neutrophil count, while another six were unique for death by bleeding (jaundice, severe relative neutropenia, severe thrombocytopenia, liver injury, kidney failure, higher bone marrow parasite load. Bacterial infection, bleeding, severe anemia, diarrhea, dyspnea, edema, jaundice and bone marrow parasite load were the main syndromes of visceral leishmaniasis among successfully treated patients. CONCLUSIONS: The data support the idea that bacterial infections are due to immune paralysis. Broad organ and system involvement is plausibly due to the high production of proinflammatory cytokines, whose actions fit well with visceral leishmaniasis. The syndromes and causative mediators are typical of a slowly developing systemic inflammatory response syndrome.INTRODUÇÃO: O objetivo do estudo foi i dentificar os principais fatores de risco para morte na leishmaniose visceral do Novo Mundo e estabelecer um substrato patogênico baseado nos achados clínicos coerente para doença grave. MÉTODOS: Em um estudo caso-controle, foram estudados 76 pacientes internados que faleceram e 320 pacientes internados tratados com sucesso. RESULTADOS: Infecção bacteriana e sangramento foram eventos que levaram à morte, mutuamente exclusivos. Cinco fatores de risco foram únicos para morte por infecção bacteriana (desnutrição, estertores pulmonares, anemia grave, neutropenia absoluta grave e

  14. Proteolytic events are relevant cellular responses during nervous system regeneration of the starfish Marthasterias glacialis.

    Science.gov (United States)

    Ferraz Franco, Catarina; Santos, Romana; Varela Coelho, Ana

    2014-03-17

    The molecular pathways that trigger the amazing intrinsic regenerative ability of echinoderm nervous system are still unknown. In order to approach this subject, a 2D-DIGE proteomic strategy was used, to screen proteome changes during neuronal regeneration in vivo, using starfish (Asteroidea, Echinodermata) as a model. A total of 528 proteins showed significant variations during radial nerve cord regeneration in both soluble and membrane protein-enriched fractions. Several functional classes of proteins known to be involved in axon regeneration events in other model organisms, such as chordates, were identified for the first time in the regenerating echinoderm nervous system. Unexpectedly, most of the identified proteins presented a molecular mass either higher or lower than expected. Such results suggest a functional modulation through protein post-translational modifications, such as proteolysis. Among these are proteins involved in cytoskeleton and microtubule regulators, axon guidance molecules and growth cone modulators, protein de novo synthesis machinery, RNA binding and transport, transcription factors, kinases, lipid signaling effectors and proteins with neuroprotective functions. In summary, the impact of proteolysis during regeneration events is here shown, although requiring further studies to detail on the mechanisms involving this post-transcriptional event on nervous system regeneration. The nervous systems of some organisms present a complete inability of neurons to regrow across a lesion site, which is the case of the adult mammalian central nervous system (CNS). Expanding our knowledge on how other animals regenerate their nervous system offers great potential for groundbreaking biomedical applications towards the enhancement of mammalian CNS regeneration. In order to approach this subject, a 2D-DIGE proteomic strategy was used for the first time, to screen the proteome changes during neuronal regeneration in vivo, using starfish (Asteroidea

  15. Visceral larva migrans

    Science.gov (United States)

    Parasite infection - visceral larva migrans; VLM; Toxocariasis; Ocular larva migrans; Larva migrans visceralis ... Saunders; 2016:chap 39. Nash TE. Visceral larvae migrans and other uncommon helminth infections. In: Bennett JE, ...

  16. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    Science.gov (United States)

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  17. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  18. When do the symptoms of autonomic nervous system malfunction appear in patients with Parkinson's disease?

    Science.gov (United States)

    De Luka, Silvio R; Svetel, Marina; Pekmezović, Tatjana; Milovanović, Branislav; Kostić, Vladimir S

    2014-04-01

    Dysautonomia appears in almost all patients with Parkinson's disease (PD) in a certain stage of their condition. The aim of our study was to detect the development and type of autonomic disorders, find out the factors affecting their manifestation by analyzing the potential association with demographic variables related to clinical presentation, as well as the symptoms of the disease in a PD patient cohort. The patients with PD treated at the Clinic of Neurology in Belgrade during a 2-year period, divided into 3 groups were studied: 25 de novo patients, 25 patients already treated and had no long-term levodopa therapy-related complications and 22 patients treated with levodopa who manifested levodopa-induced motor complications. Simultaneously, 35 healthy control subjects, matched by age and sex, were also analyzed. Autonomic nervous system malfunction was defined by Ewing diagnostic criteria. The tests, indicators of sympathetic and parasympathetic nervous systems, were significantly different in the PD patients as compared with the controls, suggesting the failure of both systems. However, it was shown, in the selected groups of patients, that the malfunction of both systems was present in two treated groups of PD patients, while de novo group manifested only sympathetic dysfunction. For this reason, the complete autonomic neuropathy was diagnosed only in the treated PD patients, while de novo patients were defined as those with the isolated sympathetic dysfunction. The patients with the complete autonomic neuropathy differed from the subjects without such neuropathy in higher cumulative and motor unified Parkinson's disease rating score (UPDRS) (p nervous system disturbances among PD patients from the near onset of disease, with a predominant sympathetic nervous system involvement. The patients who developed complete autonomic neuropathy (both sympathetic and parasympathetic) were individuals with considerable level of functional failure, more severe clinical

  19. Nonselective Blocking of the Sympathetic Nervous System Decreases Detrusor Overactivity in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Chang-Shin Park

    2012-04-01

    Full Text Available The involuntary dual control systems of the autonomic nervous system (ANS in the bladder of awake spontaneously hypertensive rats (SHRs were investigated through simultaneous registrations of intravesical and intraabdominal pressures to observe detrusor overactivity (DO objectively as a core symptom of an overactive bladder. SHRs (n = 6 showed the features of overactive bladder syndrome during urodynamic study, especially DO during the filling phase. After injection of the nonselective sympathetic blocking agent labetalol, DO disappeared in 3 of 6 SHRs (50%. DO frequency decreased from 0.98 ± 0.22 min−1 to 0.28 ± 0.19 min−1 (p < 0.01, and DO pressure decreased from 3.82 ± 0.57 cm H2O to 1.90 ± 0.86 cm H2O (p < 0.05. This suggests that the DO originating from the overactive parasympathetic nervous system is attenuated by the nonselective blocking of the sympathetic nervous system. The detailed mechanism behind this result is still not known, but parasympathetic overactivity seems to require overactive sympathetic nervous system activity in a kind of balance between these two systems. These findings are consistent with recent clinical findings suggesting that patients with idiopathic overactive bladder may have ANS dysfunction, particularly a sympathetic dysfunction. The search for newer and better drugs than the current anticholinergic drugs as the mainstay for overactive bladder will be fueled by our research on these sympathetic mechanisms. Further studies of this principle are required.

  20. Expression of the Wnt signaling system in central nervous system axon guidance and regeneration

    Directory of Open Access Journals (Sweden)

    Edmund eHollis

    2012-02-01

    Full Text Available Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In vertebrates, Wnts are expressed in gradients that span the entire anterior-posterior axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the anterior-posterior axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. Reinduced Wnts form gradients around the lesion site, with the lesion site being the peak. The reinduced Wnts may be responsible for the well-known retraction of descending motor axons through the atypical kinase receptor Ryk. Wnt signaling is an appealing therapeutic target for CNS repair. The mechanisms regulating the reinduction will be informative for therapeutic design.