WorldWideScience

Sample records for virus strain 17d

  1. Molecular analysis of yellow fever virus 17DD vaccine strain

    Directory of Open Access Journals (Sweden)

    Paulo R. Post

    1991-06-01

    Full Text Available The Oswaldo Cruz Foundation produces most of the yellow fever (YF vaccine prepared world wide. As part of a broader approach to determine the genetic variability in YF l7D seeds and vaccines and its relevance to viral attenuation the 17DD virus was purifed directly from chick embryo homogenates which is the source of virus used for vaccination of millions of people in Brazil and other countries for half a century. Neutralization and hemagglutination tests showed that the purified virus is similar to the original stock. Furthermore, radioimmune precipitation of 35S-methionine-labeled viral proteins using mouse hyperimmune ascitic fluid revealed identical patterns for the purified 17DD virus and the YF l7D-204 strain except for the 17DD E protein which migrated slower on SDS-PAGE. This difference is likely to be due to N-linked glycosylation. Finally, comparison by northern blot nybridization of virion RNAs of purified 17DD with two other strains of YF virus only fenome-sized molecules for all three viruses. These observations suggest that vaccine phenotype is primarily associated with the accumulation of mutations.

  2. The early use of yellow fever virus strain 17D for vaccine production in Brazil - a review

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Post

    2001-08-01

    Full Text Available The use of yellow fever (YF virus 17D strain for vaccine production adapted in Brazil since its introduction in 1937 was reviewed. This was possible due to the availability of official records of vaccine production. The retrieved data highlight the simultaneous use of several serially passaged 17D substrain viruses for both inocula and vaccine preparation that allowed uninterrupted production. Substitution of these substrain viruses became possible with the experience gained during quality control and human vaccination. Post-vaccinal complications in humans and the failure of some viruses in quality control tests (neurovirulence for monkeys indicated that variables needed to be reduced during vaccine production, leading to the development of the seed lot system. The 17DD substrain, still used today, was the most frequently used substrain and the most reliable in terms of safety and efficacy. For this reason, it is possible to derive an infectious cDNA clone of this substrain combined with production in cell culture that could be used to direct the expression of heterologous antigens and lead to the development of new live vaccines.

  3. Serological reactions in Rhesus monkeys inoculated with the 17D strain of yellow fever virus.

    Science.gov (United States)

    GROOT, H

    1962-01-01

    Haemagglutination-inhibition tests, which depend on the appearance of haemagglutination-inhibiting antibodies in the serum in virus infections, are in common use in the study of arthropod-borne diseases. This paper contains the results of an investigation into the appearance and pattern of haemagglutination-inhibiting antibodies in the serum of rhesus monkeys inoculated intracerebrally with the 17D strain of yellow fever virus during the testing of seed lots of yellow fever vaccine. These antibodies appeared on the tenth day after inoculation, and were still demonstrable four years later. In all of the eight monkeys tested complement-fixing and neutralizing antibodies against yellow fever antigens also developed, and in six out of the eight heterologous antigens developed.

  4. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.

    Science.gov (United States)

    Beck, Andrew; Tesh, Robert B; Wood, Thomas G; Widen, Steven G; Ryman, Kate D; Barrett, Alan D T

    2014-02-01

    The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.

  5. The phylogeny of yellow fever virus 17D vaccines.

    Science.gov (United States)

    Stock, Nina K; Boschetti, Nicola; Herzog, Christian; Appelhans, Marc S; Niedrig, Matthias

    2012-02-01

    In recent years the safety of the yellow fever live vaccine 17D came under scrutiny. The focus was on serious adverse events after vaccinations that resemble a wild type infection with yellow fever and whose reasons are still not known. Also the exact mechanism of attenuation of the vaccine remains unknown to this day. In this context, the standards of safety and surveillance in vaccine production and administration have been discussed. Therein embodied was the demand for improved documentation of the derivation of the seed virus used for yellow fever vaccine production. So far, there was just a historical genealogy available that is based on source area and passage level. However, there is a need for a documentation based on molecular information to get better insights into the mechanisms of pathology. In this work we sequenced the whole genome of different passages of the YFV-17D strain used by Crucell Switzerland AG for vaccine production. Using all other publically available 17D full genome sequences we compared the sequence variance of all vaccine strains and oppose a phylogenetic tree based on full genome sequences to the historical genealogy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  7. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone

    OpenAIRE

    Nougairede, Antoine; Klitting, Raphaelle; Aubry, Fabien; Gilles, Magali; Touret, Franck; De Lamballerie, Xavier

    2018-01-01

    Zika virus (ZIKV) recently dispersed throughout the tropics and sub-tropics causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. Here we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared diff...

  8. Limited replication of yellow fever 17DD and 17D-Dengue recombinant viruses in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Gisela F. Trindade

    2008-06-01

    Full Text Available For the development of safe live attenuated flavivirus vaccines one of the main properties to be established is viral replication. We have used real-time reverse transcriptase-polymerase chain reaction and virus titration by plaque assay to determine the replication of yellow fever 17DD virus (YFV 17DD and recombinant yellow fever 17D viruses expressing envelope proteins of dengue virus serotypes 2 and 4 (17D-DENV-2 and 17D-DENV-4. Serum samples from rhesus monkeys inoculated with YFV 17DD and 17D-DENV chimeras by intracerebral or subcutaneous route were used to determine and compare the viremia induced by these viruses. Viral load quantification in samples from monkeys inoculated by either route with YFV 17DD virus suggested a restricted capability of the virus to replicate reaching not more than 2.0 log10 PFU mL-1 or 3.29 log10 copies mL-1. Recombinant 17D-dengue viruses were shown by plaquing and real-time PCR to be as attenuated as YF 17DD virus with the highest mean peak titer of 1.97 log10 PFU mL-1 or 3.53 log10 copies mL-1. These data serve as a comparative basis for the characterization of other 17D-based live attenuated candidate vaccines against other diseases.Uma das principais propriedades a serem estabelecidas para o desenvolvimento de vacinas seguras e atenuadas de flavivirus,é a taxa de replicação viral. Neste trabalho, aplicamos a metodologia de amplificação pela reação em cadeia da polimerase em tempo real e titulação viral por plaqueamento para determinação da replicação do vírus 17DD (FA 17DD e recombinantes, expressando proteínas do envelope de dengue sorotipos 2 e 4 (17D-DENV-2 e 17D-DENV-4. As amostras de soros de macacos inoculados por via intracerebral ou subcutânea com FA 17DD ou 17D-DENV foram usadas para determinar e comparar a viremia induzida por estes vírus. A quantificação da carga viral em amostras de macacos inoculados por ambas as vias com FA 17DD sugere restrita capacidade de replicação com

  9. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    Science.gov (United States)

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  10. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  12. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    Science.gov (United States)

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  13. Evaluation of yellow fever virus 17D strain as a new vector for HIV-1 vaccine development.

    Science.gov (United States)

    Franco, David; Li, Wenjing; Qing, Fang; Stoyanov, Cristina T; Moran, Thomas; Rice, Charles M; Ho, David D

    2010-08-09

    The failure to develop an effective vaccine against HIV-1 infection has led the research community to seek new ways of raising qualitatively different antibody and cellular immune responses. Towards this goal, we investigated the yellow fever 17D vaccine strain (YF17D), one of the most effective vaccines ever made, as a platform for HIV-1 vaccine development. A test antigen, HIV-1 p24 (clade B consensus), was inserted near the 5' end of YF17D, in frame and upstream of the polyprotein (YF-5'/p24), or between the envelope and the first non-structural protein (YF-E/p24/NS1). In vitro characterization of these recombinants indicated that the gene insert was more stable in the context of YF-E/p24/NS1. This was confirmed in immunogenicity studies in mice. CD8(+) IFN-gamma T-cell responses against p24 were elicited by the YF17D recombinants, as were specific CD4(+) T cells expressing IFN-gamma and IL-2. A balanced CD4(+) and CD8(+) T-cell response was notable, as was the polyfunctionality of the responding cells. Finally, the protective efficacy of the YF17D recombinants, particularly YF-E/p24/NS1, in mice challenged with a vaccinia expressing HIV-1 Gag was demonstrated. These results suggest that YF17D warrants serious consideration as a live-attenuated vector for HIV-1 vaccine development. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Patrícia C C Neves

    Full Text Available Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+ cell profile, which results in robust T CD8(+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.

  15. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  16. Transmission of Hemagglutinin D222G Mutant Strain of Pandemic (H1N1) 2009 Virus

    Science.gov (United States)

    Facchini, Marzia; Spagnolo, Domenico; De Marco, Maria A.; Calzoletti, Laura; Zanetti, Alessandro; Fumagalli, Roberto; Tanzi, Maria L.; Cassone, Antonio; Rezza, Giovanni; Donatelli, Isabella

    2010-01-01

    A pandemic (H1N1) 2009 virus strain carrying the D222G mutation was identified in a severely ill man and was transmitted to a household contact. Only mild illness developed in the contact, despite his obesity and diabetes. The isolated virus reacted fully with an antiserum against the pandemic vaccine strain. PMID:20409386

  17. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.

  18. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  19. A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 in vitro but does not protect a mouse model from disease.

    Science.gov (United States)

    Calvert, Amanda E; Dixon, Kandice L; Piper, Joseph; Bennett, Susan L; Thibodeaux, Brett A; Barrett, Alan D T; Roehrig, John T; Blair, Carol D

    2016-07-01

    The yellow fever virus (YFV) vaccine 17D-204 is considered safe and effective, yet rare severe adverse events (SAEs), some resulting in death, have been documented following vaccination. Individuals exhibiting post-vaccinal SAEs are ideal candidates for antiviral monoclonal antibody (MAb) therapy; the time until appearance of clinical signs post-exposure is usually short and patients are quickly hospitalized. We previously developed a murine-human chimeric monoclonal antibody (cMAb), 2C9-cIgG, reactive with both virulent YFV and 17D-204, and demonstrated its ability to prevent and treat YF disease in both AG129 mouse and hamster models of infection. To counteract possible selection of 17D-204 variants that escape neutralization by treatment with a single MAb (2C9-cIgG), we developed a second cMAb, 864-cIgG, for use in combination with 2C9-cIgG in post-vaccinal therapy. MAb 864-cIgG recognizes/neutralizes only YFV 17D-204 vaccine substrain and binds to domain III (DIII) of the viral envelope protein, which is different from the YFV type-specific binding site of 2C9-cIgG in DII. Although it neutralized 17D-204 in vitro, administration of 864-cIgG had no protective capacity in the interferon receptor-deficient AG129 mouse model of 17D-204 infection. The data presented here show that although DIII-specific 864-cIgG neutralizes virus infectivity in vitro, it does not have the ability to abrogate disease in vivo. Therefore, combination of 864-cIgG with 2C9-cIgG for treatment of YF vaccination SAEs does not appear to provide an improvement on 2C9-cIgG therapy alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain.

    Science.gov (United States)

    Thibodeaux, Brett A; Garbino, Nina C; Liss, Nathan M; Piper, Joseph; Blair, Carol D; Roehrig, John T

    2012-05-02

    Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne pathogen that requires wild-type (wt), virulent strains to be handled at biosafety level (BSL) 3, with HEPA-filtration of room air exhaust (BSL3+). YFV is found in tropical regions of Africa and South America and causes severe hepatic disease and death in humans. Despite the availability of effective vaccines (17D-204 or 17DD), YFV is still responsible for an estimated 200,000 cases of illness and 30,000 deaths annually. Besides vaccination, there are no other prophylactic or therapeutic strategies approved for use in human YF. Current small animal models of YF require either intra-cranial inoculation of YF vaccine to establish infection, or use of wt strains (e.g., Asibi) in order to achieve pathology. We have developed and characterized a BSL2, adult mouse peripheral challenge model for YFV infection in mice lacking receptors for interferons α, β, and γ (strain AG129). Intraperitoneal challenge of AG129 mice with 17D-204 is a uniformly lethal in a dose-dependent manner, and 17D-204-infected AG129 mice exhibit high viral titers in both brain and liver suggesting this infection is both neurotropic and viscerotropic. Furthermore the use of a mouse model permitted the construction of a 59-biomarker multi-analyte profile (MAP) using samples of brain, liver, and serum taken at multiple time points over the course of infection. This MAP serves as a baseline for evaluating novel therapeutics and their effect on disease progression. Changes (4-fold or greater) in serum and tissue levels of pro- and anti-inflammatory mediators as well as other factors associated with tissue damage were noted in AG129 mice infected with 17D-204 as compared to mock-infected control animals. Published by Elsevier Ltd.

  1. Yellow fever vaccine: comparison of the neurovirulence of new 17D-204 Stamaril™ seed lots and RK 168-73 strain.

    Science.gov (United States)

    Moulin, Jean-Claude; Silvano, Jérémy; Barban, Véronique; Riou, Patrice; Allain, Caroline

    2013-07-01

    The neurovirulence of two new candidate 17D-204 Stamaril™ working seed lots and that of two reference preparations were compared. The Stamaril™ working seed lots have been used for more than twenty years for the manufacturing of vaccines of acceptable safety and efficacy. The preparation designated RK 168-73 and provided by the Robert Koch Institute was used as a reference. It was confirmed that RK 168-73 strain was not a good virus control in our study because it has a very low neurovirulence regarding both the clinical and histopathological scores in comparison with Stamaril™ strain and is not representative of a vaccine known to be satisfactory in use. The results were reinforced by the phenotypic characterization by plaque assay demonstrating that RK 168-73 was very different from the Stamaril™ vaccine, and by sequencing results showing 4 mutations between Stamaril™ and RK 168-73 viruses leading to amino acid differences in the NS4B and envelop proteins. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication

    Science.gov (United States)

    Kenney, Scott P.

    2015-01-01

    ABSTRACT Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Due largely to the lack of an efficient cell culture system for HEV, the molecular mechanisms of HEV replication and pathogenesis are poorly understood. Recently, a unique genotype 3 strain of HEV recovered from a chronically infected patient was adapted for growth in HepG2C3A human hepatoma cells. The adaptation of the Kernow C-1 P6 HEV to propagate in HepG2C3A cells selected for a rare virus recombinant that contains an insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human ribosomal protein S17 (RPS17) within the hypervariable region (HVR) of the HEV ORF1 protein. When the RPS17 insertion was placed into a strain of genotype 1 HEV which infects only humans, it expanded the host range of the virus, allowing it to infect cell lines from multiple animal species, including cow, dog, cat, chicken, and hamster. In this study, we utilized forward and reverse genetics to attempt to define which aspects of the RPS17 insertion allow for the ability of the Kernow C-1 P6 HEV to adapt in cell culture and allow for expanded host tropism. We demonstrate that the RPS17 sequence insertion in HEV bestows novel nuclear/nucleolar trafficking capabilities to the ORF1 protein of Kernow P6 HEV and that lysine residues within the RPS17 insertion, but not nuclear localization of the ORF1 protein, correlate with the enhanced replication of the HEV Kernow C-1 P6 strain. The results from this study have important implications for understanding the mechanism of cross-species infection and replication of HEV. IMPORTANCE HEV is an important pathogen worldwide. The virus causes high mortality (up to 30%) in pregnant women and has been recognized to cause chronic hepatitis in immunocompromised populations. The life cycle of HEV has been understudied due to a lack of sufficient cell culture systems in which to propagate the virus. Recently, insertions and rearrangements of the

  3. Genome sequence of herpes simplex virus 1 strain KOS.

    Science.gov (United States)

    Macdonald, Stuart J; Mostafa, Heba H; Morrison, Lynda A; Davido, David J

    2012-06-01

    Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain.

  4. Yellow fever virus isolated from a fatal post vaccination event: an experimental comparative study with the 17DD vaccine strain in the Syrian hamster (Mesocricetus auratus

    Directory of Open Access Journals (Sweden)

    Sueli Guerreiro Rodrigues

    2004-01-01

    Full Text Available In order to investigate the pathogenicity of the virus strain GOI 4191 that was isolated from a fatal adverse event after yellow fever virus (YFV vaccination, an experimental assay using hamsters (Mesocricetus auratus as animal model and YFV 17DD vaccine strain as virus reference was accomplished. The two virus strains were inoculated by intracerebral, intrahepatic and subcutaneous routes. The levels of viremia, antibody response, and aminotransferases were determined in sera; while virus, antigen and histopathological changes were determined in the viscera. No viremia was detected for either strain following infection; the immune response was demonstrated to be more effective to strain GOI 4191; and no significant aminotransferase levels alterations were detected. Strain GOI 4191 was recovered only from the brain of animals inoculated by the IC route. Viral antigens were detected in liver and brain by immunohistochemical assay. Histothological changes in the viscera were characterized by inflammatory infiltrate, hepatocellular necrosis, and viral encephalitis. Histological alterations and detection of viral antigen were observed in the liver of animals inoculated by the intrahepatic route. These findings were similar for both strains used in the experiment; however, significant differences were observed from those results previously reported for wild type YFV strains.

  5. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  6. Characterization of glycoprotein C of HSZP strain of herpes simplex virus 1

    NARCIS (Netherlands)

    Oravcova, [No Value; Kudelova, M; Mlcuchova, J; Matis, J; Bystricka, M; Westra, DF; Welling-Wester, S; Rajcani, J

    Sequences of UL44 genes of strains HSZP, KOS and 17 of herpes simplex virus 1 (HSV-1) were determined and the amino acid sequences of corresponding glycoproteins (gC) were deduced. In comparison with the 17 strain, the HSZP strain showed specific changes in 3 nucleotides and in 2 amino acids (aa 139

  7. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated during an Outbreak, Venezuela, 2010.

    Science.gov (United States)

    Auguste, Albert J; Liria, Jonathan; Forrester, Naomi L; Giambalvo, Dileyvic; Moncada, Maria; Long, Kanya C; Morón, Dulce; de Manzione, Nuris; Tesh, Robert B; Halsey, Eric S; Kochel, Tadeusz J; Hernandez, Rosa; Navarro, Juan-Carlos; Weaver, Scott C

    2015-10-01

    In 2010, an outbreak of febrile illness with arthralgic manifestations was detected at La Estación village, Portuguesa State, Venezuela. The etiologic agent was determined to be Mayaro virus (MAYV), a reemerging South American alphavirus. A total of 77 cases was reported and 19 were confirmed as seropositive. MAYV was isolated from acute-phase serum samples from 6 symptomatic patients. We sequenced 27 complete genomes representing the full spectrum of MAYV genetic diversity, which facilitated detection of a new genotype, designated N. Phylogenetic analysis of genomic sequences indicated that etiologic strains from Venezuela belong to genotype D. Results indicate that MAYV is highly conserved genetically, showing ≈17% nucleotide divergence across all 3 genotypes and 4% among genotype D strains in the most variable genes. Coalescent analyses suggested genotypes D and L diverged ≈150 years ago and genotype diverged N ≈250 years ago. This virus commonly infects persons residing near enzootic transmission foci because of anthropogenic incursions.

  8. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  9. The 17D-204 and 17DD yellow fever vaccines: an overview of major similarities and subtle differences.

    Science.gov (United States)

    Ferreira, Clarissa de Castro; Campi-Azevedo, Ana Carolina; Peruhype-Magalhāes, Vanessa; Costa-Pereira, Christiane; Albuquerque, Cleandro Pires de; Muniz, Luciana Feitosa; Yokoy de Souza, Talita; Oliveira, Ana Cristina Vanderley; Martins-Filho, Olindo Assis; da Mota, Licia Maria Henrique

    2018-01-01

    The yellow fever vaccine is a live attenuated virus vaccine that is considered one of the most efficient vaccines produced to date. The original 17D strain generated the substrains 17D-204 and 17DD, which are used for the current production of vaccines against yellow fever. The 17D-204 and 17DD substrains present subtle differences in their nucleotide compositions, which can potentially lead to variations in immunogenicity and reactogenicity. We will address the main changes in the immune responses induced by the 17D-204 and 17DD yellow fever vaccines and report similarities and differences between these vaccines in cellular and humoral immunity . This is a relevant issue in view of the re-emergence of yellow fever in Uganda in 2016 and in Brazil in the beginning of 2017. Areas covered: This article will be divided into 8 sections that will analyze the innate immune response, adaptive immune response, humoral response, production of cytokines, immunity in children, immunity in the elderly, gene expression and adverse reactions. Expert commentary: The 17D-204 and 17DD yellow fever vaccines present similar immunogenicity, with strong activation of the cellular and humoral immune responses. Additionally, both vaccines have similar adverse effects, which are mostly mild and thus are considered safe.

  10. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  11. Case report: probable transmission of vaccine strain of yellow fever virus to an infant via breast milk

    OpenAIRE

    Kuhn, Susan; Twele-Montecinos, Loreto; MacDonald, Judy; Webster, Patricia; Law, Barbara

    2011-01-01

    The 17D yellow fever vaccine is a live-virus vaccine that has been in use since the 1940s. The incidence of encephalitis after yellow fever vaccination among young infants is much higher than among children older than nine months of age. Until recently, avoidance of vaccination by breastfeeding women who have received yellow fever vaccine had been based on theoretical grounds only. We report the probable transmission of vaccine strain of yellow fever virus from a mother to her infant through ...

  12. Molecular characterization of wild-type measles viruses in Tamil Nadu, India, during 2005-2006: relationship of genotype D8 strains from Tamil Nadu to global strains.

    Science.gov (United States)

    Duraisamy, Raja; Rota, Paul A; Palani, Gunasekaran; Elango, Varalakshmi; Sambasivam, Mohana; Lowe, Luis; Lopareva, Elena; Ramamurty, Nalini

    2012-02-01

    Molecular characterization of measles viruses is a valuable tool for measuring the effectiveness of measles control and elimination programmes. WHO recommends that virological surveillance be conducted during all phases of measles control to document circulation of indigenous strains and trace future importation. This report describes the genetic characterization of wild type measles viruses from Tamil Nadu, India isolated between January 2005 and January 2006. In the study, 304 suspected measles cases (292 from 56 outbreaks and 12 sporadic cases) were investigated. Blood samples were collected from suspected measles outbreaks and 11 suspected sporadic cases and tested for the presence of measles and rubella specific IgM. Based on serological results, 53 outbreaks were confirmed as measles, 2 as a combination of measles and rubella, and 1 negative for both. Eight sporadic cases were confirmed as measles and one as rubella. Throat swab and urine samples were collected for virus isolation and 28 isolates were obtained. Sequencing and analysis showed that 3 isolates belonged to genotype D4 and 25 to genotype D8. Comparison of the genotype D8 sequences from Tamil Nadu with previously reported genotype D8 sequences from India and abroad showed six distinct clusters with Tamil Nadu strains forming two clusters. This study has established baseline molecular data and is the first report that describes genetic diversity of circulating measles strains in Tamil Nadu, a state in India. D8 has multiple lineages and this has been linked with importation of measles into the USA and UK. Copyright © 2011 Wiley Periodicals, Inc.

  13. Genetic analysis of Asian measles virus strains--new endemic genotype in Nepal.

    Science.gov (United States)

    Truong, A T; Mulders, M N; Gautam, D C; Ammerlaan, W; de Swart, R L; King, C C; Osterhaus, A D; Muller, C P

    2001-07-01

    In many parts of Asia measles virus (MV) continues to be endemic. However, little is known about the genetic characteristics of viruses circulating on this continent. This study reports the molecular epidemiological analysis based on the entire nucleocapsid (N) and hemagglutinin (H) genes of the first isolates from Nepal and Taiwan, as well as of recent MV strains from India, Indonesia, and China. Four isolates collected in various regions in Nepal during 1999 belonged to a new genotype, tentatively called D8. Another Nepalese isolate and one from India belonged to genotype D4. The diversity of the Nepalese strains indicated that measles continues to be endemic in this country. The isolate from Taiwan grouped with D3 viruses and one Chinese strain isolated in The Netherlands was assigned to the previously described clade H, known to be endemic in Mainland China. Molecular characterization emerges as an important tool for monitoring virus endemicity and vaccination efforts.

  14. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore.

    Science.gov (United States)

    Simek, Karel; Kasalický, Vojtech; Hornák, Karel; Hahn, Martin W; Weinbauer, Markus G

    2010-03-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.

  15. A flow cytometry-based assay for quantifying non-plaque forming strains of yellow fever virus.

    Directory of Open Access Journals (Sweden)

    Erika Hammarlund

    Full Text Available Primary clinical isolates of yellow fever virus can be difficult to quantitate by standard in vitro methods because they may not form discernable plaques or induce a measurable cytopathic effect (CPE on cell monolayers. In our hands, the Dakar strain of yellow fever virus (YFV-Dakar could not be measured by plaque assay (PA, focus-forming assay (FFA, or by measurement of CPE. For these reasons, we developed a YFV-specific monoclonal antibody (3A8.B6 and used it to optimize a highly sensitive flow cytometry-based tissue culture limiting dilution assay (TC-LDA to measure levels of infectious virus. The TC-LDA was performed by incubating serial dilutions of virus in replicate wells of C6/36 cells and stained intracellularly for virus with MAb 3A8.B6. Using this approach, we could reproducibly quantitate YFV-Dakar in tissue culture supernatants as well as from the serum of viremic rhesus macaques experimentally infected with YFV-Dakar. Moreover, the TC-LDA approach was >10-fold more sensitive than standard plaque assay for quantitating typical plaque-forming strains of YFV including YFV-17D and YFV-FNV (French neurotropic vaccine. Together, these results indicate that the TC-LDA technique is effective for quantitating both plaque-forming and non-plaque-forming strains of yellow fever virus, and this methodology may be readily adapted for the study and quantitation of other non-plaque-forming viruses.

  16. Occurrence and characterization of plum pox virus strain D isolates from European Russia and Crimea.

    Science.gov (United States)

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Kudryavtseva, Anna; Prikhodko, Yuri; Mitrofanova, Irina

    2016-02-01

    Numerous plum pox virus (PPV) strain D isolates have been found in geographically distant regions of European Russia and the Crimean peninsula on different stone fruit hosts. Phylogenetic analysis of their partial and complete genomes suggests multiple introductions of PPV-D into Russia. Distinct natural isolates from Prunus tomentosa were found to bear unique amino acid substitutions in the N-terminus of the coat protein (CP) that may contribute to the adaptation of PPV-D to this host. Serological analysis using the PPV-D-specific monoclonal antibody 4DG5 provided further evidence that mutations at positions 58 and 59 of the CP are crucial for antibody binding.

  17. Randomized, double-blind, multicenter study of the immunogenicity and reactogenicity of 17DD and WHO 17D-213/77 yellow fever vaccines in children: implications for the Brazilian National Immunization Program.

    Science.gov (United States)

    2007-04-20

    Vaccines against yellow fever currently recommended by the World Health Organization contain either virus sub-strains 17D or 17DD. In adults, the 17DD vaccine demonstrated high seroconversion and similar performance to vaccines manufactured with the WHO 17D-213/77 seed-lot. In another study, 17DD vaccine showed lower seroconversion rates in children younger than 2 years. Data also suggested lower seroconversion with simultaneous application of measles vaccine. This finding in very young children is not consistent with data from studies with 17D vaccines. A multicenter, randomized, double-blind clinical trial was designed (1) to compare the immunogenicity and reactogenicity of two yellow fever vaccines: 17DD (licensed product) and 17D-213/77 (investigational product) in children aged 9-23 months; (2) to assess the effect of simultaneous administration of yellow fever and the measles-mumps-rubella vaccines; and (3) to investigate the interference of maternal antibodies in the response to yellow fever vaccination. The anticipated implications of the results are changes in vaccine sub-strains used in manufacturing YF vaccine used in several countries and changes in the yellow fever vaccination schedule recommendations in national immunization programs.

  18. Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus

    Directory of Open Access Journals (Sweden)

    Gustavo H. Dayan

    2013-12-01

    Full Text Available Substantial success has been achieved in the development and implementation of West Nile (WN vaccines for horses; however, no human WN vaccines are approved. This review focuses on the construction, pre-clinical and clinical characterization of ChimeriVax-WN02 for humans, a live chimeric vaccine composed of a yellow fever (YF 17D virus in which the prM-E envelope protein genes are replaced with the corresponding genes of the WN NY99 virus. Pre-clinical studies demonstrated that ChimeriVax-WN02 was significantly less neurovirulent than YF 17D in mice and rhesus and cynomolgus monkeys. The vaccine elicited neutralizing antibody titers after inoculation in hamsters and monkeys and protected immunized animals from lethal challenge including intracerebral inoculation of high dose of WN NY99 virus. Safety, viremia and immunogenicity of ChimeriVax-WN02 were assessed in one phase I study and in two phase II clinical trials. No safety signals were detected in the three clinical trials with no remarkable differences in incidence of adverse events (AEs between vaccine and placebo recipients. Viremia was transient and the mean viremia levels were low. The vaccine elicited strong and durable neutralizing antibody and cytotoxic T cell responses. WN epidemiology impedes a classical licensure pathway; therefore, innovative licensure strategies should be explored.

  19. ANALISIS GEN HAEMAGGLUTININ PADA VIRUS CAMPAK LIAR

    Directory of Open Access Journals (Sweden)

    Subangkit Subangkit

    2015-05-01

    Full Text Available AbstrakPenyakit Campak disebabkan oleh virus campak yang termasuk genus Morbilivirus dan Family Paramyxoviridae. Penyakit campak masih menjadi masalah kesehatan karena masih ditemukan Kejadian Luar Biasa (KLB di Indonesia. Salah satu penyebab terjadinya KLB tersebut diduga sebagaiakibat perbedaan antigenesitas antara strain vaksin yang digunakan dengan strain virus campak liar yang beredar di Indonesia. Penelitian ini bertujuan mendapatkan gambaran tentang karakteristik genetik gen Haemagglutinin virus campak liar yang ada di Indonesia. Spesimen yang digunakan sebanyak 27 isolat virus penyebab KLB dari 17 propinsi selama periode tahun 2003-2010. Isolat virus dilakukan pemeriksaan secara RT-PCR dan sekuensing dengan metode Sanger. Hasil sekuensing dianalisis dengan menggunakan perangkat lunak Bioedit 7.0 dan MEGA 4.0. Hasil penelitian didapatkan perbedaan 10 asam amino antara virus campak strain vaksin CAM-70 dan virus campak liar pada posisi D416N; K424T; V451M; N455T; V466I; I473T; F476L; Y481S atau Y481N; H495N; G505D. Kesimpulan penelitian ini adalah terdapat perbedaan karakteristik genetik antara virus campak liar di Indonesia berbeda dengan strain virus vaksin CAM-70.Kata kunci : Campak, Analisis Molekuler, Hemagglutinin, CD46AbstractMeasles is caused by virus belonging to the genus Morbilivirus and Family Paramyxoviridae. Measles is still a public health problem because outbreak of measles still found in Indonesia. Outbreak is suspected as a result of differences in antigenicity between vaccine strains used with wild-type measles virus strains circulating in Indonesia. This study aims to get genetic characteristics of wild-type measles virus haemagglutinin gene in Indonesia. The specimens were used 27 viral isolates from 17 provinces period 2003-2010. Viral isolates examined by RT-PCR and sequencing with Sanger method. Sequencing analysis were conducted using Bioedit 7.0 and MEGA 4.0 software. The results showed 10 amino acid differences

  20. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  1. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    Science.gov (United States)

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age 60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (Pvaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. The Attenuated Live Yellow Fever Virus 17D Infects the Thymus and Induces Thymic Transcriptional Modifications of Immunomodulatory Genes in C57BL/6 and BALB/C Mice

    Directory of Open Access Journals (Sweden)

    Breno Luiz Melo-Lima

    2015-01-01

    Full Text Available Thymus is involved in induction of self-tolerance in T lymphocytes, particularly due to Aire activity. In peripheral tissues, Treg cells and immunomodulatory molecules, like the major histocompatibility complex (MHC class Ib molecules, are essential for maintenance of autotolerance during immune responses. Viral infections can trigger autoimmunity and modify thymic function, and YFV17D immunization has been associated with the onset of autoimmunity, being contraindicated in patients with thymic disorders. Aiming to study the influence of YFV17D immunization on the transcriptional profiles of immunomodulatory genes in thymus, we evaluated the gene expression of AIRE, FOXP3, H2-Q7 (Qa-2/HLA-G, H2-T23 (Qa-1/HLA-E, H2-Q10, and H2-K1 following immunization with 10,000 LD50 of YFV17D in C57BL/6 and BALB/c mice. The YFV17D virus replicated in thymus and induced the expression of H2-Q7 (Qa-2/HLA-G and H2-T23 (Qa-1/HLA-E transcripts and repressed the expression of AIRE and FOXP3. Transcriptional expression varied according to tissue and mouse strain analyzed. Expression of H2-T23 (Qa-1/HLA-E and FOXP3 was induced in thymus and liver of C57BL/6 mice, which exhibited defective control of viral load, suggesting a higher susceptibility to YFV17D infection. Since the immunization with YFV17D modulated thymus gene expression in genetically predisposed individuals, the vaccine may be related to the onset of autoimmunity disorders.

  3. Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys

    International Nuclear Information System (INIS)

    Marchevsky, Renato S.; Freire, Marcos S.; Coutinho, Evandro S.F.; Galler, Ricardo

    2003-01-01

    The yellow fever 17D virus is attenuated and used for human vaccination. Two of its substrains, 17D-204 and 17DD, are used for vaccine production. One of the remarkable properties of this vaccine is limited viral replication in the host but with significant dissemination of the viral mass, yielding a robust and long-lived neutralizing antibody response. The vaccine has excellent records of efficacy and safety and is cheap, used as a single dose, and there are well-established production methodology and quality control procedures which include the monkey neurovirulence test (MNTV). The present study aims at a better understanding of YF 17DD virus attenuation and immunogenicity in the MNVT with special emphasis on viremia, seroconversion, clinical and histological lesions scores, and their intrinsic variability across the tests. Several MNVTs were performed using the secondary seed lot virus 17DD 102/84 totaling 49 rhesus monkeys. Viremia was never higher than the accepted limits established in international requirements, and high levels of neutralizing antibodies were observed in all animals. None of the animals showed visceral lesions. We found that the clinical scores for the same virus varied widely across the tests. There was a direct correlation between the clinical scores in animals with clinical signs of encephalitis and a higher degree of central nervous system (CNS) histological lesions, with an increase of lesions in areas of the CNS such as the substantia nigra, nucleus caudatus, intumescentia cervicalis, and intumescentia ventralis. The histological scores were shown to be less prone to individual variations and had a more homogeneous value distribution among the tests. Since 17DD 102/84 seed virus has been used for human vaccine production and immunization for 16 years with the vaccine being safe and efficacious, it demonstrates that the observed variations across the MNVTs do not influence its effect on humans

  4. Identification of different lineages of measles virus strains circulating in Uttar Pradesh, North India

    Directory of Open Access Journals (Sweden)

    Shakya Akhalesh

    2012-10-01

    Full Text Available Abstract Background Genetic analysis of measles viruses associated with recent cases and outbreaks has proven to bridge information gaps in routine outbreak investigations and has made a substantial contribution to measles control efforts by helping to identify the transmission pathways of the virus. Materials and methods The present study describes the genetic characterization of wild type measles viruses from Uttar Pradesh, India isolated between January 2008 and January 2011. In the study, 526 suspected measles cases from 15 outbreaks were investigated. Blood samples were collected from suspected measles outbreaks and tested for the presence of measles specific IgM; throat swab and urine samples were collected for virus isolation and RT-PCR. Genotyping of circulating measles viruses in Uttar Pradesh was performed by sequencing a 450-bp region encompassing the nucleoprotein hypervariable region and phylogenetic analysis. Results and conclusion Based on serological results, all the outbreaks were confirmed as measles. Thirty eight strains were obtained. Genetic analysis of circulating measles strains (n = 38 in Uttar Pradesh from 235 cases of laboratory-confirmed cases from 526 suspected measles cases between 2008 and 2011 showed that all viruses responsible for outbreaks were within clade D and all were genotype D8. Analysis of this region showed that it is highly divergent (up to 3.4% divergence in the nucleotide sequence and 4.1% divergence in the amino acid sequence between most distant strains. Considerable genetic heterogeneity was observed in the MV genotype D8 viruses in North India and underscores the need for continued surveillance and in particular increases in vaccination levels to decrease morbidity and mortality attributable to measles.

  5. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    Science.gov (United States)

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  6. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  7. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. Conclusions We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression

  8. Spread of Measles Virus D4-Hamburg, Europe, 2008–2011

    Science.gov (United States)

    Mihneva, Zefira; Gold, Hermann; Baumgarte, Sigrid; Baillot, Armin; Helble, Rudolph; Roggendorf, Hedwig; Bosevska, Golubinka; Nedeljkovic, Jasminka; Makowka, Agata; Hutse, Veronik; Holzmann, Heidemarie; Aberle, Stefan W.; Cordey, Samuel; Necula, Gheorghe; Mentis, Andreas; Korukluoğlu, Gulay; Carr, Michael; Brown, Kevin E.; Hübschen, Judith M.; Muller, Claude P.; Mulders, Mick N.; Santibanez, Sabine

    2011-01-01

    A new strain of measles virus, D4-Hamburg, was imported from London to Hamburg in December 2008 and subsequently spread to Bulgaria, where an outbreak of >24,300 cases was observed. We analyzed spread of the virus to demonstrate the importance of addressing hard-to-reach communities within the World Health Organization European Region regarding access to medical care and vaccination campaigns. The D4-Hamburg strain appeared during 2009–2011 in Poland, Ireland, Northern Ireland, Austria, Greece, Romania, Turkey, Macedonia, Serbia, Switzerland, and Belgium and was repeatedly reimported to Germany. The strain was present in Europe for >27 months and led to >25,000 cases in 12 countries. Spread of the virus was prevalently but not exclusively associated with travel by persons in the Roma ethnic group; because this travel extends beyond the borders of any European country, measures to prevent the spread of measles should be implemented by the region as a whole. PMID:21801615

  9. Complete Genome Sequences of Zika Virus Strains Isolated from the Blood of Patients in Thailand (2014) and Philippines (2012)

    Science.gov (United States)

    2016-03-09

    Complete genome sequences of Zika Virus strains isolated from the blood of patients in 1 Thailand (2014) and Philippines (2012). 2 Ellison,D.W.1...Institute, Seoul, Republic of Korea. 20 21 Running Head: Zika Virus Genomes 22 23 ABSTRACT 24 ZIKV is an arbovirus and member of the family...genome sequences of two Zika Virus (ZIKV) strains, Zika virus /H.sapiens-27 tc/THA/2014/SV0127-14 and Zika virus /H.sapiens-tc/PHL/2012/CPC-0740, isolated

  10. Biomass, virus concentration, and symptomatology of cucurbits infected by mild and severe strains of Papaya ringspot virus

    Directory of Open Access Journals (Sweden)

    Pacheco Davi Andrade

    2003-01-01

    Full Text Available Pre-immunization with mild strains of Papaya ringspot virus - type W (PRWV-W has allowed the mosaic disease to be controlled in different cucurbit species, with increases in marketable fruit yield. The objective of this study was to compare virus concentration, biomass and symptomatology of 'Caserta' zucchini squash, 'Menina Brasileira' long-neck squash and 'Crimson Sweet' watermelon plants infected by three mild strains and one severe strain of PRSV-W. Plants were inoculated at the cotyledonary stage, under greenhouse conditions, sampled at 7, 14, 21, 28 and 35 days after inoculation (DAI, and analyzed by PTA-ELISA. The severity of the symptoms was scored according to a scale from 1 to 5, and the fresh and dry biomass of the aerial part of the plants were evaluated at 40 DAI. Concentrations of the mild strains, based on absorbance values of the PTA-ELISA, were lower than the concentration of the severe strain for all species. The mild strains did not cause mosaic in infected plants of all species. Plants of zucchini squash and watermelon infected by the severe strain exhibited severe mosaic symptoms, but the same was not noticed for infected long-neck squash plants. Biomass values from zucchini squash and watermelon plants infected by the mild strains were 1.7 % to 12.4 % lower as compared to healthy plants. Biomass values of zucchini squash and watermelon plants infected by the severe strain presented greater reduction, varying from 29 % to 74 %. However, biomass values of long-neck squash plants infected by the mild and severe strains were similar for all treatments.

  11. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Science.gov (United States)

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  12. First report of a resistance-breaking strain of Raspberry bushy dwarf virus in red raspberry (Rubus idaeus) in North America

    Science.gov (United States)

    Raspberry bushy dwarf virus (RBDV) is pollen-transmitted and the most important virus of Rubus worldwide. Infection of RBDV is associated with drupelet abortion, resulting in crumbly fruit. Multiple RBDV strains have been reported, with the Scottish-type (D200) strains being the most prevalent, and...

  13. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    Science.gov (United States)

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C E P; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.

  14. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos

    Science.gov (United States)

    Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C. E. P.; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo

    2015-01-01

    The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system. PMID:26371874

  15. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  16. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    Science.gov (United States)

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  17. Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles

    Directory of Open Access Journals (Sweden)

    Mariana Gandini

    2011-08-01

    Full Text Available Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs are targets for dengue virus (DENV and yellow fever virus (YF replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681, a YF vaccine (YF17DD and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.

  18. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  19. [Production of monoclonal antibodies against a wild strain of rabies virus].

    Science.gov (United States)

    Akacem, O; Benmansour, A; Coulon, P; Brahimi, M; Benhassine, M

    1992-01-01

    Production of monoclonal antibodies against a wild strain of rabies virus. Cell fusion of SP 2/O, a murine myeloma against a wild strain of rabies virus has originated five monoclonal antibodies (M.A.) specific for virus nucleocapsid , one M.A. specific for virus glycoprotein and one M.A. specific for a viral membrane protein.

  20. African, Amerindian and European hepatitis B virus strains circulate on the Caribbean Island of Martinique.

    Science.gov (United States)

    Brichler, Ségolène; Lagathu, Gisèle; Chekaraou, Mariama Abdou; Le Gal, Frédéric; Edouard, André; Dény, Paul; Césaire, Raymond; Gordien, Emmanuel

    2013-10-01

    Ten Hepatitis B virus (HBV) genotypes, as well as numerous subgenotypes, have been described in well-characterized ethnogeographical populations. Martinique has been at a crossroads between Africa, Europe, India and the Americas because of the slave trade (17th-19th centuries), followed by an important immigration of Indian and West African workers. In this work, we aimed to study the molecular epidemiology of HBV infection in Martinique according to this unique settlement pattern. To that end, blood samples from 86 consecutive HBV-infected patients from the main hospitals of the island, were retrospectively analysed. Direct sequencing of the pre-S1 or pre-C-C region or complete genome sequencing, followed by phylogenetic analyses were performed. HBV genotypes were: HBV/A1 (68.6 %), HBV/A2 (10.5 %), HBV/D, mainly HBV/D3 and HBV/D4 (8.1 %), HBV/F (3.5 %), and also HBV/E (2.3 %), two strains isolated from two West-African patients. Moreover, 74 % of the HBeAg-negative strains harboured classical pre-C-C mutations, and most HBV/A1 strains also containing specific mutations. Finally, various patterns of deletion mutants in pre-S and pre-C-C regions were found. In conclusion, our findings point to historical and migration-related issues in HBV-genotype distribution suggesting that HBV/A1, but not HBV/E, was imported from Africa during the slave trade, and further supporting the hypothesis that HBV/E has emerged recently in West Africa (<150 years). Potential origins of 'European' HBV/A2 and HBV/D3, 'Amerindian' HBV/F, and HBV/D4 strains are also discussed. Such HBV genetic diversity, beyond its epidemiological interest, may have a clinical impact on the natural history of HBV infection in Martinique.

  1. Antigenic variants of influenza A virus, PR8 strain. I. Their development during serial passage in the lungs of partially immune mice.

    Science.gov (United States)

    GERBER, P; LOOSLI, C G; HAMBRE, D

    1955-06-01

    Antigenically different strains of mouse-adapted PR8 influenza A virus have been produced by 17 serial passages of the virus in the lungs of mice immunized with the homologous agent. Comparative serological tests show that the variant strains share antigenic components with the parent strain but the dominant antigen is different. By means of antibody absorption it was shown that the "new" antigenic component of the variant was already present in minor amounts up to the eighth passage and thereafter gained prominence with continued passage in vaccinated mice. Groups of mice vaccinated with either the PR8-S or T(21) virus and having comparable antibody titers showed no growth of virus in the lungs following aid-borne challenge with homologous strains. On the other hand, following heterologous air-borne challenge no deaths occurred, but virus grew in the lungs of both groups of vaccinated mice. Almost unrestricted virus multiplication took place in the lungs of mice vaccinated with the parent strain and challenged with the PR8-T(21) virus which resulted in extensive consolidation. Less virus grew in the lungs of the mice vaccinated with the variant strains and challenged with the PR8-S virus. In these animals only microscopic evidence of changes due to virus growth in the lungs was observed. The successful serial passage of PR8 influenza A virus in immunized animals was dependent on the initial selection of mice with uniformly low H.I. antibody titers as determined on tail blood, and the intranasal instillation of sufficient virus to favor the survival of those virus particles least related to the antibodies present. The epidemiological implications of these observations are discussed briefly.

  2. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.

    Directory of Open Access Journals (Sweden)

    Pedro Paulo de Abreu Manso

    Full Text Available The yellow fever (YF 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.

  3. Comparisons of Venezuelan encephalitis virus strains by hemagglutination-inhibition tests with chicken antibodies.

    Science.gov (United States)

    Scherer, W F; Pancake, B A

    1977-01-01

    Twenty strains of Venezuelan encephalitis (VE) virus inoculated intravenously in large doses into roosters produced hemagglutination-inhibition (HI) antibodies detectable in plasmas within 7 to 10 days. No signs of illness occurred, and there was no evidence of viral growth in tissues since blood concentrations of infectious virus steadily decreased after inoculation. HI antibodies in early plasmas were specific for VE virus and did not cross-react significantly with two other North American alphaviruses, eastern and western encephalitis viruses. VE virus strains could be distinquished by virus-dilution, short-incubation HI, but not by plasma-dilution neutralization tests, by using early rooster antibodies. The distinctions by HI test were similar with some strains to, but different with other strains from, those described by Young and Johnson with the spiny rat antisera used to establish their subtype classifications of VE virus (14, 28). Nevertheless, results of HI tests with rooster antibodies correlated with equine virulence, as did results with spiny rat antibodies, and distinguished the new strains of virus that appeared in Middle America during the VE outbreak of 1969 from preexisting strains. PMID:591629

  4. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus.

    Science.gov (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H

    1992-01-01

    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  5. Sequencing and characterization of Varicella-Zoster virus vaccine strain SuduVax

    Directory of Open Access Journals (Sweden)

    Kim Jong

    2011-12-01

    Full Text Available Abstract Background Varicella-zoster virus (VZV causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax. Results SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs. SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains. Conclusions The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.

  6. Genetic variation of Border disease virus species strains

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2011-12-01

    Full Text Available The 5´-untranslated region of Pestivirus strains isolated from domestic and wild animals were analysed to determine their taxonomic status according to nucleotide changes in the secondary genomic structure using the palindromic nucleotide substitutions (PNS method. A total of 131 isolates out of 536 Pestivirus strains evaluated, were clustered as Border disease virus (BDV species. The BDV strains were further divided into at least 8 genotypes or subspecies. Thirty-two isolates from small ruminants suffering from clinical symptoms of Border disease were clustered into bovine viral diarrhoea virus 1 (BVDV-1, BVDV-2 and classical swine fever (hog cholera virus species and also into the tentative BDV-2 species. Since the definition of an infectious disease is based primarily on a specific causative pathogen and taking into account the heterogeneity of the genus Pestivirus, clinical cases should be named according to the laboratory results. The PNS procedure could be useful for laboratory diagnosis of Border disease in domestic and wild ruminants.

  7. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    Science.gov (United States)

    1982-06-18

    encephalitis(TBH-28), West Nile(E-101), Yellow fever(French neurotropic and 17D strains), and Zika . Two Sandfly Fever viruses (213452 and Candiru) were...were provided as first passage isolates ( Aedes pseudoscutellaris cells, AP-61) or human serum from recent dengue virus patients. African isolates... viruses of the Phlebovirus genus (Table 1). Several monoclonal antibody preparations reacted solely with dengue virus serotypes. Two preparations (13E7 and

  8. Genetic Characterization of Bacillus anthracis 17 JB strain.

    Science.gov (United States)

    Seyed-Mohamadi, Sakineh; Moradi Bidhendi, Soheila; Tadayon, Keyvan; Ghaderi, Rainak

    2015-06-01

    Bacillus anthracis is one of the most homogenous bacteria ever described. Some level of diversity. Bacillus anthracis 17JB is a laboratory strain It is broadly used as a challenge strain in guinea pigs for potency test of anthrax vaccine. This work describes genetic characterization of B. anthracis 17 JB strain using the SNPs and MLVA genotyping. In SNPs typing, the originally French 17JB strain represented the A.Br. 008/009 subgroup. In Levy's genotyping method, 843, 451 and 864 bp long fragments were identified at AA03, AJ03 and AA07 loci, respectively. In the vaccine manufacturer perspective these findings are much valuable on their own account, but similar research is required to extend molecular knowledge of B. anthracis epidemiology in Persia.

  9. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan.

    Science.gov (United States)

    Nemoto, Manabu; Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-03-22

    We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. Copyright © 2018 Nemoto et al.

  10. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage

    Science.gov (United States)

    2012-02-28

    et al. 2008). {SM-6 V-1 is a strain of Spondweni virus , all other viruses listed within the table are Zika virus strains. {Sequenced in this study. doi...1956) A simple technique for infection of mosquitoes with viruses ; transmission of Zika virus . Trans R Soc Trop Med Hyg 50: 238–242. 5. Henderson BE...Tukei PM (1970) Summary of an apparent epizootic of Zika virus : Pattern of incidence from Aedes africanus collected from the Zika Forest, 1969–1970. In

  11. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    Science.gov (United States)

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  12. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence

    Science.gov (United States)

    Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.

    2017-01-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564

  13. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.

    Science.gov (United States)

    Ciota, Alexander T; Bialosuknia, Sean M; Zink, Steven D; Brecher, Matthew; Ehrbar, Dylan J; Morrissette, Madeline N; Kramer, Laura D

    2017-07-01

    In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.

  14. Complete genome sequences of six measles virus strains

    NARCIS (Netherlands)

    Phan, M.V.T. (My V.T.); C.M.E. Schapendonk (Claudia); B.B. Oude Munnink (Bas B.); M.P.G. Koopmans D.V.M. (Marion); R.L. de Swart (Rik); Cotten, M. (Matthew)

    2018-01-01

    textabstractGenetic characterization of wild-type measles virus (MV) strains is a critical component of measles surveillance and molecular epidemiology. We have obtained complete genome sequences of six MV strains belonging to different genotypes, using random-primed next generation sequencing.

  15. Vector Competence of American Mosquitoes for Three Strains of Zika Virus.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    2016-10-01

    Full Text Available In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.

  16. Lobophorin C and D, New Kijanimicin Derivatives from a Marine Sponge-Associated Actinomycetal Strain AZS17

    Directory of Open Access Journals (Sweden)

    Yong-Cheng Lin

    2011-03-01

    Full Text Available Marine sponge Hymeniacidon sp. was collected from coastal waters of the East China Sea to isolate symbiotic microorganisms. The resulting sponge-associated actinomycete, Streptomyces carnosus strain AZS17, was cultivated in a 20 L volume of medium for production of bioactive secondary metabolites. Bioassay-guided isolation and purification by varied chromatographic methods yielded two new compounds of kijanimicin derivatives, AS7-2 and AS9-12. Their structures were elucidated by spectroscopy and comparison with literatures. Results showed these two compounds were structurally similar to the previously reported compounds lobophorin A and B, yet differed in specific bond forms, stereochemistry and optical activities. The two novel compounds were named lobophorin C and D. In vitro cytotoxicity investigation by MTT assay indicated their selective activities. Lobophorin C displayed potent cytotoxic activity against the human liver cancer cell line 7402, while lobophorin D showed significant inhibitory effect on human breast cancer cells MDA-MB 435.

  17. Differentiation of strains of yellow fever virus in γ-irradiated mice

    International Nuclear Information System (INIS)

    Fitzgeorge, R.; Bradish, C.J.

    1980-01-01

    The mouse sensitized by optimal, sub-lethal γ-irradiation has been used for the differentiation of strains of yellow fever virus and for the resolution of their immunogenicity and pathogenicity as distinct characteristics. For different strains of yellow fever virus, the patterns of antibody-synthesis, regulatory immunity (pre-challenge) and protective immunity (post-challenge) are differentially sensitive to γ-irradiation. These critical differentiations of strains of yellow fever virus in γ-irradiated mice have been compared with those shown in normal athymic and immature mice in order to elucidate the range of quantifiable in vivo characteristics and the course of the virus-host interaction. This is discussed as a basis for the comparisons of the responses of model and principal hosts to vaccines and pathogens. (author)

  18. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.

  19. Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore ▿

    OpenAIRE

    Šimek, Karel; Kasalický, Vojtěch; Horňák, Karel; Hahn, Martin W.; Weinbauer, Markus G.

    2009-01-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality....

  20. Substitution of wild-type yellow fever Asibi sequences for 17D vaccine sequences in ChimeriVax-dengue 4 does not enhance infection of Aedes aegypti mosquitoes.

    Science.gov (United States)

    McGee, Charles E; Tsetsarkin, Konstantin; Vanlandingham, Dana L; McElroy, Kate L; Lang, Jean; Guy, Bruno; Decelle, Thierry; Higgs, Stephen

    2008-03-01

    To address concerns that a flavivirus vaccine/wild-type recombinant virus might have a high mosquito infectivity phenotype, the yellow fever virus (YFV) 17D backbone of the ChimeriVax-dengue 4 virus was replaced with the corresponding gene sequences of the virulent YFV Asibi strain. Field-collected and laboratory-colonized Aedes aegypti mosquitoes were fed on blood containing each of the viruses under investigation and held for 14 days after infection. Infection and dissemination rates were based on antigen detection in titrated body or head triturates. Our data indicate that, even in the highly unlikely event of recombination or substantial backbone reversion, virulent sequences do not enhance the transmissibility of ChimeriVax viruses. In light of the low-level viremias that have been observed after vaccination in human volunteers coupled with low mosquito infectivity, it is predicted that the risk of mosquito infection and transmission of ChimeriVax vaccine recombinant/revertant viruses in nature is minimal.

  1. [Virus strain specific serum neutralizing antibodies in children and adolescents immunized with a Russian mumps vaccine].

    Science.gov (United States)

    Otrashevskaia, E V; Krasil'nikov, I V; Ignat'ev, G M

    2010-01-01

    Postvaccination immunity was studied in the children and teenagers without a history of clinical mumps infection, who had been immunized with the Leningrad-3 mumps vaccine. The level of specific lgG in ELISA and that and spectrum of their neutralizing activity against a vaccine strain and three heterologous mumps virus (MV) strains (genotypes A, C, and H) were measured. The investigation included 151 sera from the vaccinees aged 3 to 17 years, possessing the detectable specific IgG titers in ELISA and the detectable neutralizing titers against the vaccine strain. 97.4% of the vaccinees had neutralizing activity against 1-3 heterologous MV strains. A preponderance of neutralizing titers against heterologous MV strains by 1-log2 in some sera (6.5-32.5 depending on age) was most likely to suggest that the vaccinees' had been in contact with these virus strains in the past. In our investigation, a combination of positive IgG titers and neutralizing titers against the vaccine strain 2-log2 or higher provided the protection of the vaccinated children and teenagers against the symptomatic infection. There was a pronounced buster effect of the second immunization and a drop in the neutralizing activity of the sera from the vaccinated children and adolescents over time after the first and second immunization.

  2. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice

    DEFF Research Database (Denmark)

    Bassi, Maria R; Larsen, Mads Andreas Bay; Kongsgaard, Michael

    2016-01-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should...... be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using......, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both...

  3. Discrimination of citrus tristeza virus (CTV) strains using Mexican ...

    African Journals Online (AJOL)

    Two strains of citrus tristeza virus (CTV) were studied for six years in Yaounde in the forest zone of Cameroon. These strains, SNCL2 and SNCL4, were characterized on Lisbon lemon in Nyombe in the littoral zone of Cameroon. They were inoculated onto combinations of Mexican lime/citrange Troyer. The virulent strain ...

  4. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    Directory of Open Access Journals (Sweden)

    Adriano de Oliveira Torres Carrasco

    2016-03-01

    Full Text Available Abstract This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia and chickens (Gallus gallus in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota, developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  5. Implementation of a National Measles Elimination Program in Iran: Phylogenetic Analysis of Measles Virus Strains Isolated during 2010–2012 Outbreaks

    Science.gov (United States)

    Salimi, Vahid; Abbasi, Simin; Zahraei, Seyed Mohsen; Fatemi-Nasab, Ghazal; Adjaminezhad-Fard, Fatemeh; Shadab, Azadeh; Ghavami, Nastaran; Zareh-Khoshchehre, Raziyeh; Soltanshahi, Rambod; Bont, Louis; Mokhtari-Azad, Talat

    2014-01-01

    Measles virus (MV) causes small and large outbreaks in Iran. Molecular assays allow identifying and the sources of measles imported from neighboring countries. We carried out a phylogenetic analysis of measles virus circulating in Iran over the period 2010–2012. Specimens from suspected cases of measles were collected from different regions of Iran. Virus isolation was performed on urine and throat swabs. Partial nucleoprotein gene segments of MV were amplified by RT-PCR. PCR products of 173 samples were sequenced and analyzed. The median age of confirmed cases was 2 years. Among all confirmed cases, 32% had unknown vaccination status, 20% had been vaccinated, and 48% had not been vaccinated. Genotypes B3 and D8 (for the first time), H1 and D4 were detected mainly in unvaccinated toddlers and young children. Genotype B3 became predominant in 2012 and was closely related to African strains. H1 strains were also found in small and large outbreaks during 2012 but were not identical to Iranian H1-2009 strains. A majority of the Iranian D4 strains during 2010–2012 outbreaks were linked to the D4 strain identified in the Pakistan in 2007. We identified a single case in 2010 belonging to D8 genotype with 99.7% identity to Indian isolates. Although the vaccination program is currently good enough to prevent nationwide epidemics and successfully decreased measles incidence in Iran, the fraction of protected individuals in the population was not high enough to prevent continuous introduction of cases from abroad. Due to increasing number of susceptible individuals in some areas, sustained transmission of the newly introduced viral genotype remains possible. PMID:24736720

  6. Early pathogenesis of classical swine fever virus (CSFV) strains in Danish pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Nielsen, Jens; Uttenthal, Åse

    2012-01-01

    between strains, however, lymphoid atrophy and growth retardation represented a consistent finding for all 4 strains. Virus distribution, viral load and in particular virus persistence differed, but supported present practice that recommends lymphoid tissue, most optimal tonsil and lymph nodes, as target...... material to be applied for early laboratory diagnosis. The present study demonstrated constraints associated with early detection of infections with CSFV strains of low virulence. Since neither clinical symptoms nor pathological lesions observed with these strains constituted characteristic signs of CSF...

  7. Differentiation of five strains of infectious bursal disease virus: Development of a strain-specific multiplex PCR

    DEFF Research Database (Denmark)

    Kusk, M.; Kabell, Susanne; Jørgensen, Poul Henrik

    2005-01-01

    and histopathology. Since these methods are laborious and have low specificity alternatives are needed. In the present study, we report the development of a strain-specific multiplex RT-PCR technique, which can detect and differentiate between field strains of IBDV and vaccine virus strains including a so-called hot...

  8. Genomic heterogeneity among human and nonhuman strains of hepatitis A virus

    International Nuclear Information System (INIS)

    Lemon, S.M.; Chao, S.F.; Jansen, R.W.; Binn, L.N.; LeDuc, J.W.

    1987-01-01

    Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the MH175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3', 1400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. These data provide molecular evidence for the existence of HAV strains unique to nonhuman species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV

  9. A polymerase chain reaction assay for detection of virulent and attenuated strains of duck plague virus.

    Science.gov (United States)

    Xie, Liji; Xie, Zhixun; Huang, Li; Wang, Sheng; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Luo, Sisi

    2017-11-01

    Sequence analysis of duck plague virus (DPV) revealed that there was a 528bp (B fragment) deletion within the UL2 gene of DPV attenuated vaccine strain in comparison with field virulent strains. The finding of gene deletion provides a potential differentiation test between DPV virulent strain and attenuated strain based on their UL2 gene sizes. Thus we developed a polymerase chain reaction (PCR) assay targeting to the DPV UL2 gene for simultaneous detection of DPV virulent strain and attenuated strain, 827bp for virulent strain and 299bp for attenuated strain. This newly developed PCR for DPV was highly sensitive and specific. It detected as low as 100fg of DNA on both DPV virulent and attenuated strains, no same size bands were amplified from other duck viruses including duck paramyxovirus, duck tembusu virus, duck circovirus, Muscovy duck parvovirus, duck hepatitis virus type I, avian influenza virus and gosling plague virus. Therefore, this PCR assay can be used for the rapid, sensitive and specific detection of DPV virulent and attenuated strains affecting ducks. Copyright © 2017. Published by Elsevier B.V.

  10. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain.

    Science.gov (United States)

    Martella, V; Blixenkrone-Møller, M; Elia, G; Lucente, M S; Cirone, F; Decaro, N; Nielsen, L; Bányai, K; Carmichael, L E; Buonavoglia, C

    2011-02-01

    Both egg- and cell-adapted canine distemper virus (CDV) vaccines are suspected to retain residual virulence, especially if administered to immuno-suppressed animals, very young pups or to highly susceptible animal species. In the early 1980s, post-vaccine encephalitis was reported in dogs from various parts of Britain after administration of a particular batch of combined CDV Rockborn strain/canine adenovirus type-1 vaccine, although incrimination of the Rockborn strain was subsequently retracted. Notwithstanding, this, and other reports, led to the view that the Rockborn strain is less attenuated and less safe than other CDV vaccines, and the Rockborn strain was officially withdrawn from the markets in the mid 1990s. By sequencing the H gene of the strain Rockborn from the 46th laboratory passage, and a commercial vaccine (Candur(®) SH+P, Hoechst Rousell Vet GmbH), the virus was found to differ from the commonly used vaccine strain, Onderstepoort (93.0% nt and 91.7% aa), and to resemble more closely (99.6% nt and 99.3% aa) a CDV strain detected in China from a Lesser Panda (Ailurus fulgens). An additional four CDV strains matching (>99% nt identity) the Rockborn virus were identified in the sequence databases. Also, Rockborn-like strains were identified in two vaccines currently in the market. These findings indicate that Rockborn-like viruses may be recovered from dogs or other carnivores with distemper, suggesting cases of residual virulence of vaccines, or circulation of vaccine-derived Rockborn-like viruses in the field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

    Science.gov (United States)

    Zhao, Wei; Spatz, Stephen; Zhang, Zhenyu; Wen, Guoyuan; Garcia, Maricarmen; Zsak, Laszlo; Yu, Qingzhong

    2014-08-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious

  12. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus.

    Science.gov (United States)

    Takehara, K; Min, M K; Battles, J K; Sugiyama, K; Emery, V C; Dalrymple, J M; Bishop, D H

    1989-04-01

    The M RNA species of a candidate vaccine strain of Rift Valley fever virus (RVFV ZH-548M12), derived by consecutive high level mutagenesis using 5-fluorouracil (H. Caplen, C. J. Peters, and D. H. L. Bishop, J. Gen. Virol., 66, 2271-2277, 1985), has been cloned and the cDNA sequenced. The data have been compared to those obtained for the parent virus strain RVFV ZH-548 as well as the previously published data for RVFV ZH-501 (M. S. Collett, A. F. Purchio, K. Keegan, S. Frazier, W. Hays, D. K. Anderson, M. D. Parker, C. Schmaljohn, J. Schmidt, and J. M. Dalrymple, Virology, 144, 228-245, 1985). Some eight nucleotide and three amino acid differences were identified between the M RNAs of ZH-501 and ZH-548. Between the M RNAs of ZH-548 and that of the M12 mutant there were 12 nucleotide and 7 amino acid changes. Unique to the mutant virus is a new AUG codon upstream of that which initiates the open reading frame of the RVFV M gene product (the viral glycoprotein precursor). The significance of this and other differences in the mutant RNA with regard to the derivation and potential attenuation of the candidate vaccine is discussed.

  13. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  14. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity.

    Directory of Open Access Journals (Sweden)

    Patricia López

    Full Text Available In this work we analyzed the immune activation properties of different Bifidobacterium strains in order to establish their ability as inductors of specific effector (Th or regulatory (Treg responses. First, we determined the cytokine pattern induced by 21 Bifidobacterium strains in peripheral blood mononuclear cells (PBMCs. Results showed that four Bifidobacterium bifidum strains showed the highest production of IL-17 as well as a poor secretion of IFNγ and TNFα, suggesting a Th17 profile whereas other Bifidobacterium strains exhibited a Th1-suggestive profile. Given the key role of Th17 subsets in mucosal defence, strains suggestive of Th17 responses and the putative Th1 Bifidobacterium breve BM12/11 were selected to stimulate dendritic cells (DC to further determine their capability to induce the differentiation of naïve CD4(+ lymphocytes toward different Th or Treg cells. All selected strains were able to induce phenotypic DC maturation, but showed differences in cytokine stimulation, DC treated with the putative Th17 strains displaying high IL-1β/IL-12 and low IL-12/IL-10 index, whereas BM12/11-DC exhibited the highest IL-12/IL-10 ratio. Differentiation of naïve lymphocytes confirmed Th1 polarization by BM12/11. Unexpectedly, any B. bifidum strain showed significant capability for Th17 generation, and they were able to generate functional Treg, thus suggesting differences between in vivo and vitro responses. In fact, activation of memory lymphocytes present in PBMCS with these bacteria, point out the presence in vivo of specific Th17 cells, supporting the plasticity of Treg/Th17 populations and the key role of commensal bacteria in mucosal tolerance and T cell reprogramming when needed.

  15. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  16. Interleukin-10 Modulation of Virus Clearance and Disease in Mice with Alphaviral Encephalomyelitis.

    Science.gov (United States)

    Martin, Nina M; Griffin, Diane E

    2018-03-15

    Alphaviruses are an important cause of mosquito-borne outbreaks of arthritis, rash, and encephalomyelitis. Previous studies in mice with a virulent strain (neuroadapted SINV [NSV]) of the alphavirus Sindbis virus (SINV) identified a role for Th17 cells and regulation by interleukin-10 (IL-10) in the pathogenesis of fatal encephalomyelitis (K. A. Kulcsar, V. K. Baxter, I. P. Greene, and D. E. Griffin, Proc Natl Acad Sci U S A 111:16053-16058, 2014, https://doi.org/10.1073/pnas.1418966111). To determine the role of virus virulence in generation of immune responses, we analyzed the modulatory effects of IL-10 on disease severity, virus clearance, and the CD4 + T cell response to infection with a recombinant strain of SINV of intermediate virulence (TE12). The absence of IL-10 during TE12 infection led to longer morbidity, more weight loss, higher mortality, and slower viral clearance than in wild-type mice. More severe disease and impaired virus clearance in IL-10 -/- mice were associated with more Th1 cells, fewer Th2 cells, innate lymphoid type 2 cells, regulatory cells, and B cells, and delayed production of antiviral antibody in the central nervous system (CNS) without an effect on Th17 cells. Therefore, IL-10 deficiency led to more severe disease in TE12-infected mice by increasing Th1 cells and by hampering development of the local B cell responses necessary for rapid production of antiviral antibody and virus clearance from the CNS. In addition, the shift from Th17 to Th1 responses with decreased virus virulence indicates that the effects of IL-10 deficiency on immunopathologic responses in the CNS during alphavirus infection are influenced by virus strain. IMPORTANCE Alphaviruses cause mosquito-borne outbreaks of encephalomyelitis, but determinants of outcome are incompletely understood. We analyzed the effects of the anti-inflammatory cytokine IL-10 on disease severity and virus clearance after infection with an alphavirus strain of intermediate virulence

  17. Genome Sequences of Three Vaccine Strains and Two Wild-Type Canine Distemper Virus Strains from a Recent Disease Outbreak in South Africa.

    Science.gov (United States)

    Loots, Angelika K; Du Plessis, Morné; Dalton, Desiré Lee; Mitchell, Emily; Venter, Estelle H

    2017-07-06

    Canine distemper virus causes global multihost infectious disease. This report details complete genome sequences of three vaccine and two new wild-type strains. The wild-type strains belong to the South African lineage, and all three vaccine strains to the America 1 lineage. This constitutes the first genomic sequences of this virus from South Africa. Copyright © 2017 Loots et al.

  18. Failure of attenuated canine distemper virus (Rockborn strain) to suppress lymphocyte blastogenesis in dogs.

    Science.gov (United States)

    Schultz, R D

    1976-01-01

    The attenuated Rockborn strain of canine distemper virus is commonly used in commercial vaccines. Since immunosuppression is a common feature of virulent (Snyder Hill) distemper virus infection of the dog, an evaluation of the cellular immune functions of dogs given inoculums of the less virulent Rockborn strain was done using lymphocyte blastogenesis responses to various mitogens. Unlike the viruslent Snyder Hill strain, the attenuated distemper virus did not alter lymphocyte blastogenesis responses to phytohemaglutinin (PHA) and pokeweed mitogen (PWM) which are considered in vitro correlates of T and B cell immunity.

  19. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran.

    Science.gov (United States)

    Maghamnia, Hamid Reza; Hajizadeh, Mohammad; Azizi, Abdolbaset

    2018-03-01

    The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites ( d N / d S ) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.

  20. Dissolving mechanism of strain P17 on insoluble phosphorus of yellow-brown soil

    Directory of Open Access Journals (Sweden)

    Zhong Chuan-qing

    2014-09-01

    Full Text Available Strain P17 was a bacterial strain identified as Bacillus megaterium isolated from ground accumulating phosphate rock powder. The fermentation broth of strain P17 and the yellow-brown soil from Nanjing Agricultural University garden were collected to conduct this study. The simulation of fixed insoluble phosphorous forms after applying calcium superphosphate into yellow-brown soil was performed in pots, while available P and total P of soil were extremely positive correlative with those of groundwater. Then the dissolving effect of strain P17 on insoluble P of yellow-brown soil was studied. Results showed that Bacillus megaterium strain P17 had notable solubilizing effect on insoluble phosphates formed when too much water-soluble phosphorous fertilizer used. During 100 days after inoculation, strain P17 was dominant. Until the 120th day, compared with water addition, available P of strain P17 inoculation treated soil increased by 3 times with calcium superphosphate addition. Besides available P, pH, activity of acid and alkaline phosphatase and population of P-solubilizing microbes were detected respectively. P-solubilizing mechanism of P-solubilizing bacteria strain P17 seems to be a synergetic effect of pH decrease, organic acids, phosphatase, etc.

  1. Diverse Effects of Cyclosporine on Hepatitis C Virus Strain Replication

    Science.gov (United States)

    Ishii, Naoto; Watashi, Koichi; Hishiki, Takayuki; Goto, Kaku; Inoue, Daisuke; Hijikata, Makoto; Wakita, Takaji; Kato, Nobuyuki; Shimotohno, Kunitada

    2006-01-01

    Recently, a production system for infectious particles of hepatitis C virus (HCV) utilizing the genotype 2a JFH1 strain has been developed. This strain has a high capacity for replication in the cells. Cyclosporine (CsA) has a suppressive effect on HCV replication. In this report, we characterize the anti-HCV effect of CsA. We observe that the presence of viral structural proteins does not influence the anti-HCV activity of CsA. Among HCV strains, the replication of genotype 1b replicons was strongly suppressed by treatment with CsA. In contrast, JFH1 replication was less sensitive to CsA and its analog, NIM811. Replication of JFH1 did not require the cellular replication cofactor, cyclophilin B (CyPB). CyPB stimulated the RNA binding activity of NS5B in the genotype 1b replicon but not the genotype 2a JFH1 strain. These findings provide an insight into the mechanisms of diversity governing virus-cell interactions and in the sensitivity of these strains to antiviral agents. PMID:16611911

  2. Detection of Measles Virus Genotypes B3, D4, D5, D8, and H1 in the Surveillance System in Hokkaido, Japan, 2006-2015, the Last Decade toward the Elimination.

    Science.gov (United States)

    Miyoshi, Masahiro; Komagome, Rika; Yamaguchi, Hiroki; Ohnishi, Asami; Kikuchi, Masayuki; Ishida, Setsuko; Nagano, Hideki; Okano, Motohiko

    2017-05-24

    Measles is an acute and highly contagious disease caused by measles virus (MeV). The government of Japan, following the last epidemic in 2007 and 2008, which was caused by genotype D5 strains, introduced a catch-up-vaccination program for teenagers during Japan fiscal years 2008-2012 and a mandatory case-based reporting system for the nationwide elimination. Furthermore, laboratory confirmation of measles cases by genotyping of isolates has been performed to clarify the source of infection and support the interruption of measles cases. Owing to these preventive measures, the number of measles cases has been steadily decreasing after the last epidemic. In March 2015, Japan was internationally verified as having achieved measles elimination by the World Health Organization Regional Office for the Western Pacific. The continuous elimination of measles and high levels of vaccination coverage for MeV have been maintained nationally. However, imported or import-associated cases of measles have sporadically occurred during this time. After the last nationwide epidemic, 17 imported or import-associated measles cases (MeV strains identified as genotypes H1, D4, D8, and B3) were reported in Hokkaido, the northern islands of Japan. In this study, we present the occurrence of measles and surveillance activities in Hokkaido during 2006-2015.

  3. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models.

    Science.gov (United States)

    Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf

    2013-01-01

    Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  4. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV and hepatitis C virus (HCV replication in preclinical models.

    Directory of Open Access Journals (Sweden)

    Daniela Paulsen

    Full Text Available Inactivated orf virus (iORFV, strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV and hepatitis B virus (HBV. Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  5. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs...... region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo....

  6. R5 strains of human immunodeficiency virus type 1 from rapid progressors lacking X4 strains do not possess X4-type pathogenicity in human thymus

    NARCIS (Netherlands)

    Berkowitz, R. D.; van't Wout, A. B.; Kootstra, N. A.; Moreno, M. E.; Linquist-Stepps, V. D.; Bare, C.; Stoddart, C. A.; Schuitemaker, H.; McCune, J. M.

    1999-01-01

    Some individuals infected with only R5 strains of human immunodeficiency virus type 1 progress to AIDS as quickly as individuals harboring X4 strains. We determined that three R5 viruses were much less pathogenic than an X4 virus in SCID-hu Thy/Liv mice, suggesting that R5 virus-mediated rapid

  7. How hepatitis D virus can hinder the control of hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    Maria Xiridou

    Full Text Available BACKGROUND: Hepatitis D (or hepatitis delta virus is a defective virus that relies on hepatitis B virus (HBV for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures.

  8. Genetic analysis of imported dengue virus strains by Iranian travelers

    Directory of Open Access Journals (Sweden)

    Nariman Shahhosseini

    2016-11-01

    Full Text Available Dengue virus sequences used in this study were obtained from two Iranian patients who were both with a history of traveling to Malaysia. The maximum likelihood phylogenetic tree demonstrated that two sequences were grouped into dengue virus 1. Specifically, strains IranDF1 and Iran-DF2 clustered in genotype I and III, respectively.

  9. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77.

    Science.gov (United States)

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte; Bukh, Jens

    2015-01-01

    The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. Hepatitis C virus (HCV) was discovered in 1989 with

  10. Biological characterization of clones derived from the edmonston strain of measles virus in comparison with schwarz and CAM-70 vaccine strains

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Junqueira Borges

    1996-08-01

    Full Text Available Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF. Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.

  11. How Hepatitis D Virus Can Hinder the Control of Hepatitis B Virus

    NARCIS (Netherlands)

    Xiridiou, M.; Borkent-Raven, B.; Hulshof, J.; Wallinga, J.

    2009-01-01

    Background: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control

  12. Mumps vaccine virus strains and aseptic meningitis.

    Science.gov (United States)

    Bonnet, Marie-Claude; Dutta, Anil; Weinberger, Clement; Plotkin, Stanley A

    2006-11-30

    Mumps immunization can easily be included in national schedules, particularly if combined with measles or measles and rubella vaccines, but debate continues concerning the relative safety of various licensed mumps vaccine strains. The opportunities for control of mumps are also being affected by differences in the cost of the vaccines prepared with different strains of mumps virus. The present report evaluates available data on the association of the Urabe and other strains of mumps vaccine with the occurrence of aseptic meningitis. We also review the comparative immunogenicity and efficacies of the most widely used mumps vaccines in controlled clinical trials and field evaluations, and briefly examine relative cost as it relates to the implementation of national immunization programs. We conclude that extensive experience with the most widely used mumps vaccine strains in many countries has shown that the risk-benefit ratio of live mumps vaccines is highly favourable for vaccination, despite the occasional occurence of aseptic meningitis.

  13. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    Science.gov (United States)

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  14. MO-C-17A-08: Evaluation of Lung Deformation Using Three Dimensional Strain Maps

    Energy Technology Data Exchange (ETDEWEB)

    Cui, T [Duke University, Durham, NC (United States); Huang, Q [Duke Unversity, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States); Zhong, X [Siemens Healthcare, Atlanta, GA (United States); Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To develop a systematic approach to generate three dimensional (3D) strain maps of lung using the displacement vector field (DVF) during the respiratory deformation, and to demonstrate its application in evaluating deformable image registration (DIR). Methods: A DVF based strain tensor at each voxel of interest (VOI) was calculated from the relative displacements between the VOI and each of the six nearest neighbors. The maximum and minimum stretches of a VOI can be determined by the principal strains (E{sub 1}, E{sub 2} and E{sub 3}), which are the eigenvalues and the corresponding strain tensors. Two healthy volunteers enrolled in this study under IRB-approved protocol, each was scanned using 3D Hyperpolarized He-3 tagging-MRI and 3D proton-MRI with TrueFISP sequence at the endof- inhalation (EOI) and the end-of-exhalation (EOE) phases. 3D DVFs of tagging- and proton-MRI were obtained by the direct measurements of the tagging grid trajectory and by the DIR method implemented in commercial software. Results: 3D strain maps were successfully generated for all DVFs. The principal strain E1s were calculated as 0.43±0.05 and 0.17±0.25 for tagging-MRI and proton-MRI, respectively. The large values of E{sub 1} indicate the predominant lung motion in the superior-inferior (SI) direction. Given that the DVFs from the tagging images are considered as the ground truth, the discrepancies in the DIR-based strain maps suggest the inaccuracy of the DIR algorithm. In the E{sub 1} maps of tagging-MRI for subject 1, the fissures were distinguishable by the larger values (0.49±0.02) from the adjacent tissues (0.41±0.03) due to the larger relative displacement between the lung lobes. Conclusion: We have successfully developed a methodology to generate DVF-based 3D strain maps of lung. It can potentially enable us to better understand the pulmonary biomechanics and to evaluate and improve the DIR algorithms for the lung deformation. We are currently studying more

  15. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Science.gov (United States)

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  16. The Ondersteport Canine distemper virus strain and measles ...

    African Journals Online (AJOL)

    Three groups of dogs aged three months each were used in an experiment to assess efficacy of imported Canine distemper vaccine (Ondersteport strain) and measles vaccine in protecting Nigerian dogs against local isolates of Canine distemper virus. Each group consisted of four randomly selected puppies. One group ...

  17. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    Science.gov (United States)

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  18. [The characteristics of epidemic influenza A and B virus strains circulating in Russia during the 2007-2008 season].

    Science.gov (United States)

    Ivanova, V T; Trushakova, S V; Oskerko, T A; Shevchenko, E S; Kolobukhina, L V; Vartanian, R V; Beliakova, N V; Iatsyshina, S B; Feodoritova, E L; Zueva, N D; Burtseva, E I

    2009-01-01

    In 2007-2008 in Russia, the epidemic upsurge of influenza morbidity was caused by the active circulation of influenza A(H1N1, A(H3N2), and B viruses. The center for Ecology and Epidemiology of Influenza studied 334 epidemic strains. The results of a comparative study of the svirus specificity of commercial test systems (AmpliSens Influenza virus A/B and AmpliSens Influenza virus A/H5N1) for the polymerase chain reaction diagnosis and virological assays, including virus isolation, revealed their high correlation, which confirms that they may be expensively used to monitor the circulation of influenza viruses in the Russian Federation. All the strains were isolated in the MDCK cell culture. Influenza A(H1N1) viruses (n = 127) were antigenic variants of the reference strains A/Solomon Islands/3/06 and A/Brisbane/59107. Influenza A(H3N2) viruses (n = 49) were antigenic variants of the reference strains A/Wisconsin/67/05 and A/Brisbane/10/08. One hundred and fifty seven Influenza B strains were drift variants of the reference strains B/Florida/4/06 and B/Shanghai/361/02 of lineage B/Yamagata/16/88 and one strain, a variant of Malaysia/2506/04 related to lineage B/victoria/2/87. The isolates interacted actively with human 0(I) blood group erythrocytes and much more weakly with chicken ones. All study influenza A(H1N1) viruses (n = 74) preserved their sensitivity to rimantadine while 24 (77%) of the 31 study influenza A(H3N2) virus strains were resistant. A study of the time course of changes in the generation of antibodies in the donor sera obtained in Moscow and the Moscow Region in different periods of the epidemic process revealed an increase in antibodies to the reference influenza A and B virus strains circulating in this period.

  19. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  20. Chronic hepatitis E infection with an emerging virus strain in a heart transplant recipient successfully treated with ribavirin: a case report.

    Science.gov (United States)

    Waldenström, Jesper; Castedal, Maria; Konar, Jan; Karason, Kristjan; Lagging, Martin; Norder, Helene

    2015-08-26

    During the last decade hepatitis E infections have been recognized as a health problem in high-income countries, where hepatitis E virus genotype 3 is endemic. The infection is often self-limiting, but may develop into chronic infection in immunocompromised patients, especially in solid organ recipients. If these patients or patients with underlying liver disease get hepatitis E infection, they may develop liver failure and cirrhosis. Hepatitis E virus is occasionally found in blood products and transfusion transmission has been reported. We present the first case of chronic hepatitis E infection in a heart transplant recipient in Sweden. A 63-year-old Swedish white man presented with highly elevated liver enzymes 6 months after heart transplantation. Polymerase chain reaction revealed chronic hepatitis E infection, caused by a virus strain found infecting symptomatic cases in Sweden and other European countries. During transplantation, he received blood products from 17 donors, and transfusion transmission is highly likely. The only detectable marker for hepatitis E infection was hepatitis E virus ribonucleic acid for more than 2 months before anti-hepatitis E virus developed. He was treated successfully with ribavirin and decreased immunosuppression. Our patient was probably infected through contaminated blood products and subsequently developed chronic infection, which was cured upon treatment. This highlights the need for evaluating the problem with chronic hepatitis E infection in immunocompromised patients, and for discussion concerning screening of blood products. Polymerase chain reaction-based methods are recommended for diagnosing hepatitis E infection in patients with compromised immunity. In addition, knowledge needs to be gained on the infecting virus strain, which may be more virulent than other strains.

  1. Influence of vaccine strains on the evolution of canine distemper virus.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Streck, André Felipe; Nunes Weber, Matheus; Maboni Siqueira, Franciele; Muniz Guedes, Rafael Lucas; Wageck Canal, Cláudio

    2016-07-01

    Canine distemper virus (CDV) is a major dog pathogen belonging to the genus Morbillivirus of the family Paramyxoviridae. CDV causes disease and high mortality in dogs and wild carnivores. Although homologous recombination has been demonstrated in many members of Paramyxoviridae, these events have rarely been reported for CDV. To detect potential recombination events, the complete CDV genomes available in GenBank up to June 2015 were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Eight putative recombinant viruses derived from different CDV genotypes and different hosts were detected. The breakpoints of the recombinant strains were primarily located on fusion and hemagglutinin glycoproteins. These results suggest that homologous recombination is a frequent phenomenon in morbillivirus populations under natural replication, and CDV vaccine strains might play an important role in shaping the evolution of this virus.

  2. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells

    Directory of Open Access Journals (Sweden)

    Yannick Simonin

    2016-10-01

    Full Text Available The recent Zika virus (ZIKV epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.

  3. Differential reactivity of immune sera from human vaccinees with field strains of eastern equine encephalitis virus.

    Science.gov (United States)

    Strizki, J M; Repik, P M

    1995-11-01

    Eastern equine encephalitis (EEE) virus is a mosquito-borne alphavirus that can produce a severe and often fatal acute encephalitis in humans, with significant neurologic sequelae in survivors. Due to the serious nature of the disease, an investigational inactivated EEE vaccine (PE-6) is available to individuals at risk for infection. Both serologic and recent molecular analyses of EEE viruses have demonstrated marked differences between the two antigenic varieties of EEE virus, designated North American (NA) and South American (SA). In view of these findings, we have examined the reactivity of sera from three individuals immunized with the EEE vaccine, derived from an NA isolate, with field strains of EEE virus. Anti-EEE serum antibodies from vaccinees reacted strongly in Western blot assays with both of the envelope (E1 and E2) glycoproteins of each NA strain examined, while reactivities with the glycoproteins of SA strains were substantially weaker and variable and dependent upon both the immune response of the vaccinee and the virus isolate assayed. Most striking was the modest to virtual lack of reactivity with the E2 protein of SA strains. Antigenic differences among the glycoproteins of EEE viruses were not as pronounced in immunoprecipitation analysis. Most significantly, although human immune sera displayed high neutralizing titers against each of the NA isolates examined, only negligible neutralizing titers were obtained against SA isolates. These data suggest that immunized individuals would mount an effective antibody response against infection with NA strains of EEE virus, but that further investigation is clearly warranted to fully assess the protective capability of the vaccine against infection with SA strains.

  4. A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice.

    Directory of Open Access Journals (Sweden)

    Grace K Tan

    Full Text Available The spread of dengue (DEN worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia. Here we describe a non-mouse-adapted DEN2 virus strain (D2Y98P that is highly infectious in AG129 mice (lacking interferon-alpha/beta and -gamma receptors upon intraperitoneal administration. Infection with a high dose of D2Y98P induced cytokine storm, massive organ damage, and severe vascular leakage, leading to haemorrhage and rapid death of the animals at the peak of viremia. In contrast, very interestingly and uniquely, infection with a low dose of D2Y98P led to asymptomatic viral dissemination and replication in relevant organs, followed by non-paralytic death of the animals few days after virus clearance, similar to the disease kinetic in humans. Spleen damage, liver dysfunction and increased vascular permeability, but no haemorrhage, were observed in moribund animals, suggesting intact vascular integrity, a cardinal feature in DEN shock syndrome. Infection with D2Y98P thus offers the opportunity to further decipher some of the aspects of dengue pathogenesis and provides a new platform for drug and vaccine testing.

  5. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17.

    Science.gov (United States)

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-12-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.

  6. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Directory of Open Access Journals (Sweden)

    Kathryn C Meier

    2009-10-01

    Full Text Available Mosquito-borne yellow fever virus (YFV causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129 or the STAT1 signaling molecule (STAT129 were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129

  7. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Science.gov (United States)

    Meier, Kathryn C; Gardner, Christina L; Khoretonenko, Mikhail V; Klimstra, William B; Ryman, Kate D

    2009-10-01

    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT

  8. [Genetic characterisation of Powassan virus (POWV) isolated from Haemophysalis longicornis ticks in Primorye and two strains of Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus): Alma-Arasan virus (AAV) isolated from Ixodes persulcatus ticks in Kazakhstan and Malyshevo virus isolated from Aedes vexans nipponii mosquitoes in Khabarovsk kray].

    Science.gov (United States)

    L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Deriabin, P G; Gitel'man, A K; Botikov, A G; Aristova, V A

    2014-01-01

    The complete genomes of the three tick-borne flaviviruses (genus Flavivirus, fam. Bunyaviridae) were sequenced: Povassan virus (POWV, strain LEIV-3070Prm, isolated from Haemophysalis logicornis in Primorsky Krai, Russia in 1977), Alma-Arasan virus (AAV, strain LEIV-1380Kaz, isolated from Ixodes persulcatus ticks in Kazakhstan in 1977) and Malyshevo virus (isolated from a pool of Aedes vexans nipponii mosquitoes, in the Khabarovsk Krai, Russia in 1978). It is shown that AAV and Malyshevo virus are the strains of Tick-borne encephalitis virus (TBEV) and belong to Sibirian and Far-Eastern genotypes, respectively (GenBank ID: AAV KJ744033; strain Malyshevo KJ744034). Phylogenetically AAV is closest related (94,6% nt and 98,3% aa identity) to TBEV strains, isolated in Sibiria (Vasilchenko, Aino, Chita-653, Irkutsk-12). Malyshevo virus is closest related (96,4% nt and 98,3% nt identity) to strains of TBEV, isolated in Far Eastern part of Russia (1230, Spassk-72, Primorye-89). POWV LEIV-3070Prm has 99.7% identity with the prototype strain POWV LB, isolated in Canada and 99.5% of isolates with Far-Eastern strains of POWV (Spassk-9 and Nadezdinsk-1991).

  9. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret.

    Science.gov (United States)

    Ludlow, M; Nguyen, D T; Silin, D; Lyubomska, O; de Vries, R D; von Messling, V; McQuaid, S; De Swart, R L; Duprex, W P

    2012-07-01

    The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.

  10. Detection of yellow fever virus genomes from four imported cases in China.

    Science.gov (United States)

    Cui, Shujuan; Pan, Yang; Lyu, Yanning; Liang, Zhichao; Li, Jie; Sun, Yulan; Dou, Xiangfeng; Tian, Lili; Huo, Da; Chen, Lijuan; Li, Xinyu; Wang, Quanyi

    2017-07-01

    Yellow fever virus (YFV), as the first proven human-pathogenic virus, is still a major public health problem with a dramatic upsurge in recent years. This is a report on four imported cases of yellow fever virus into China identified by whole genome sequencing. Phylogenetic analysis was performed and the results showed that these four viruses were highly homologous with Angola 71 strains (AY968064). In addition, effective mutations of amino acids were not observed in the E protein domain of four viruses, thus confirming the effectiveness of the YFV-17D vaccine (X03700). Although there is low risk of local transmission in most part of China, the increasing public health risk of YF caused by international exchange should not be ignored. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains

    International Nuclear Information System (INIS)

    Edgil, Dianna; Diamond, Michael S.; Holden, Katherine L.; Paranjape, Suman M.; Harris, Eva

    2003-01-01

    We have investigated the molecular basis for differences in the ability of natural variants of dengue virus type 2 (DEN2) to replicate in primary human cells. The rates of virus binding, virus entry, input strand translation, and RNA stability of low-passage Thai and Nicaraguan and prototype DEN2 strains were compared. All strains exhibited equivalent binding, entry, and uncoating, and displayed comparable stability of positive strand viral RNA over time in primary cells. However, the low-passage Nicaraguan isolates were much less efficient in their ability to translate viral proteins. Sequence analysis of the full-length low-passage Nicaraguan and Thai viral genomes identified specific differences in the 3' untranslated region (3'UTR). Substitution of the different sequences into chimeric RNA reporter constructs demonstrated that the changes in the 3'UTR directly affected the efficiency of viral translation. Thus, differences in infectivity among closely related DEN2 strains correlate with efficiency of translation of input viral RNA

  12. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    Science.gov (United States)

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-12-01

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.

  13. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance.

    Science.gov (United States)

    Anderson, G W; Rosebrock, J A; Johnson, A J; Jennings, G B; Peters, C J

    1991-05-01

    A congenic rat strain (WF.LEW) was derived from the susceptible Wistar-Furth (WF) (background strain) and the resistant LEW (donor strain) inbred strains and was used to evaluate the phenotypic expression of a dominant Mendelian gene that confers resistance to fatal hepatic disease caused by the ZH501 strain of Rift Valley fever virus (RVFV). Resistance to hepatic disease developed gradually with age, with full expression at approximately 10 weeks in the WF.LEW and LEW rat strains. The ZH501 strain caused fatal hepatitis in WF rats regardless of age. However, resistance to the SA75 RVFV strain (relatively non-pathogenic for adult rats), was age- and dose-dependent in both WF and LEW rats. The resistance gene transferred to the newly derived WF.LEW congenic rat strain appears to amplify age-dependent resistance of adult rats, resulting in protection against fatal hepatic disease caused by the virulent ZH501 strain. The congenic rat strain will be a valuable asset in elucidating the mechanism of resistance to Rift Valley fever virus governed by the dominant Mendelian gene.

  15. Comparative physicochemical and biological properties of two strains of Kilham rat virus, a non-defective parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.; Snyder, C.E.; Bates, R.C.; Banerjee, P.T.

    1982-01-01

    Two antigenically indistinguishable strains, 171 and 308, of Kilham rat virus (KRV) have distinct host ranges and contain capsid proteins of identical size, but with different isoelectric points. The single-stranded DNA genomes of the viruses are also the same size but appear to have different secondary and tertiary structures. The genomes of the two strains have nearly identical cleavage maps for 11 restriction endonucleases. However, there is a lack of extended heteroloy in the nucleotide sequence of the two virus genomes, as judged by electron microscopic analysis of the heteroduplex of the two virus DNAs. This suggests that very subtle differences in the sequences of the genome, and possibly of the capsid proteins, may play a role in the host specificity without affecting the antigenic similarity of KRV strains.

  16. Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison).

    Science.gov (United States)

    Englund, L; Hård af Segerstad, C

    1998-01-01

    We compared two strains of avian influenza A viruses of subtype H10 by exposing mink to aerosols of A/mink/Sweden/3,900/84 (H10N4) naturally pathogenic for mink, or A/chicken/Germany/N/49, (H10N7). Lesions in the respiratory tract during the first week after infection were studied and described. Both virus strains caused inflammatory reactions in the lungs and antibody production in exposed mink but only mink/84 virus was reisolated. The lesions caused by mink/84 virus were more severe with higher area density of pneumonia, lower daily weight gain, and more virus in the tissues detected by immunohistochemistry. The results indicate that mink/84 (H10N4), but not chicken/49 virus (H10N7), established multiple cycle replication in infected cells in the mink.

  17. Gliopathy of Demyelinating And Non-Demyelinating Strains Of Mouse Hepatitis Virus.

    Directory of Open Access Journals (Sweden)

    Lawrence Charles Kenyon

    2015-12-01

    Full Text Available Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59 and non-demyelinating (RSMHV2 viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.

  18. Molecular characterization of the 17D-204 yellow fever vaccine.

    Science.gov (United States)

    Salmona, Maud; Gazaignes, Sandrine; Mercier-Delarue, Severine; Garnier, Fabienne; Korimbocus, Jehanara; Colin de Verdière, Nathalie; LeGoff, Jerome; Roques, Pierre; Simon, François

    2015-10-05

    The worldwide use of yellow fever (YF) live attenuated vaccines came recently under close scrutiny as rare but serious adverse events have been reported. The population identified at major risk for these safety issues were extreme ages and immunocompromised subjects. Study NCT01426243 conducted by the French National Agency for AIDS research is an ongoing interventional study to evaluate the safety of the vaccine and the specific immune responses in HIV-infected patients following 17D-204 vaccination. As a preliminary study, we characterized the molecular diversity from E gene of the single 17D-204 vaccine batch used in this clinical study. Eight vials of lyophilized 17D-204 vaccine (Stamaril, Sanofi-Pasteur, Lyon, France) of the E5499 batch were reconstituted for viral quantification, cloning and sequencing of C/prM/E region. The average rate of virions per vial was 8.68 ± 0.07 log₁₀ genome equivalents with a low coefficient of variation (0.81%). 246 sequences of the C/prM/E region (29-33 per vials) were generated and analyzed for the eight vials, 25 (10%) being defective and excluded from analyses. 95% of sequences had at least one nucleotide mutation. The mutations were observed on 662 variant sites distributed through all over the 1995 nucleotides sequence and were mainly non-synonymous (66%). Genome variability between vaccine vials was highly homogeneous with a nucleotide distance ranging from 0.29% to 0.41%. Average p-distances observed for each vial were also homogeneous, ranging from 0.15% to 0.31%. This study showed a homogenous YF virus RNA quantity in vaccine vials within a single lot and a low clonal diversity inter and intra vaccine vials. These results are consistent with a recent study showing that the main mechanism of attenuation resulted in the loss of diversity in the YF virus quasi-species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus

    Science.gov (United States)

    The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...

  20. Strain-specific viral distribution and neuropathology of feline immunodeficiency virus.

    Science.gov (United States)

    Miller, Craig; Bielefeldt-Ohmann, Helle; MacMillan, Martha; Huitron-Resendiz, Salvador; Henriksen, Steven; Elder, John; VandeWoude, Susan

    2011-10-15

    Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, and is the causative agent of feline AIDS. Similar to human immunodeficiency virus (HIV), the pathogenesis of FIV involves infection of lymphocytes and macrophages, and results in chronic progressive immune system collapse and death. Neuropathologic correlates of FIV infection have not yet been elucidated, and may be relevant to understanding HIV-associated neurologic disease (neuroAIDS). As in HIV, FIV strains have been shown to express differential tendencies towards development of clinical neuroAIDS. To interrogate viral genetic determinants that might contribute to neuropathogenicity, cats were exposed to two well-characterized FIV strains with divergent clinical phenotypes and a chimeric strain as follows: FIV(PPR) (PPR, relatively apathogenic but associated with neurologic manifestations), FIV(C36) (C36, immunopathogenic but without associated neurologic disease), and Pcenv (a chimeric virus consisting of a PPR backbone with substituted C36 env region). A sham inoculum control group was also included. Peripheral nerve conduction velocity, CNS imaging studies, viral loads and hematologic analysis were performed over a 12 month period. At termination of the study (350 days post-inoculation), brain sections were obtained from four anatomic locations known to be involved in human and primate lentiviral neuroAIDS. Histological and immunohistochemical evaluation with seven markers of inflammation revealed that Pcenv infection resulted in mild inflammation of the CNS, microglial activation, neuronal degeneration and apoptosis, while C36 and PPR strains induced minimal neuropathologic changes. Conduction velocity aberrations were noted peripherally in all three groups at 63 weeks post-infection. Pcenv viral load in this study was intermediate to the parental strains (C36 demonstrating the highest viral load and PPR the lowest). These results collectively suggest that (i) 3' C36

  1. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial

    Directory of Open Access Journals (Sweden)

    Camacho Luiz Antonio Bastos

    2004-01-01

    Full Text Available OBJECTIVE: To compare the immunogenicity of three yellow fever vaccines from WHO-17D and Brazilian 17DD substrains (different seed-lots. METHODS: An equivalence trial was carried out involving 1,087 adults in Rio de Janeiro. Vaccines produced by Bio-Manguinhos, Fiocruz (Rio de Janeiro, Brazil were administered following standardized procedures adapted to allow blocked randomized allocation of participants to coded vaccine types (double-blind. Neutralizing yellow fever antibody titters were compared in pre- and post-immunization serum samples. Equivalence was defined as a difference of no more than five percentage points in seroconversion rates, and ratio between Geometric Mean Titters (GMT higher than 0.67. RESULTS: Seroconversion rates were 98% or higher among subjects previously seronegative, and 90% or more of the total cohort of vaccinees, including those previously seropositive. Differences in seroconversion ranged from -0.05% to -3.02%. The intensity of the immune response was also very similar across vaccines: 14.5 to 18.6 IU/mL. GMT ratios ranged from 0.78 to 0.93. Taking the placebo group into account, the vaccines explained 93% of seroconversion. Viremia was detected in 2.7% of vaccinated subjects from Day 3 to Day 7. CONCLUSIONS: The equivalent immunogenicity of yellow fever vaccines from the 17D and 17DD substrains was demonstrated for the first time in placebo-controlled double-blind randomized trial. The study completed the clinical validation process of a new vaccine seed-lot, provided evidence for use of alternative attenuated virus substrains in vaccine production for a major manufacturer, and for the utilization of the 17DD vaccine in other countries.

  2. Selection of vaccine strains for serotype O foot-and-mouth disease viruses (2007-2012) circulating in Southeast Asia, East Asia and Far East.

    Science.gov (United States)

    Mahapatra, Mana; Upadhyaya, Sasmita; Aviso, Sharie; Babu, Aravindh; Hutchings, Geoff; Parida, Satya

    2017-12-18

    Foot-and-mouth disease (FMD) is endemic in Southeast Asia (SEA) and East Asia with circulation of multiple serotypes and multiple genotypes within each serotype of the virus. Although countries like Japan and South Korea in the Far East were free of FMD, in 2010 FMD serotype O (O/Mya-98) outbreaks were recorded and since then South Korea has experienced several FMD outbreaks despite regular vaccination. In this study a total of 85 serotype O FMD viruses (FMDV) isolated from 2007 to 2012 from SEA, East Asia and Far East were characterized by virus neutralisation tests using antisera to four existing (O/HKN/6/83, O/IND/R2/75, O/SKR/2010 and O/PanAsia-2) and one putative (O/MYA/2009) vaccine strains, and by full capsid sequencing. Serological studies revealed broad cross-reactivity with the vaccine strains; O/PanAsia-2 exhibited a good match with 95.3%, O/HKN/6/83 with 91.8%, O/IND/R2/75 with 80%, and the putative strain O/MYA/2009 with 89.4% isolates employed in this study. Similarly O/PanAsia-2 and O/IND/R2/75 vaccines showed a good match with all eight viruses belonging to O-Ind-2001d sublineage whereas the vaccines of O/Mya-98 lineage, O/MYA/2009 and O/SKR/2010 exhibited the lowest match indicating their unsuitability to protect infections from O-Ind-2001d viruses. A Bayesian analysis of the capsid sequence data indicated these circulating viruses (n = 85) to be of either SEA or Middle East-South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Lao PDR, Vietnam, Myanmar and Thailand reflecting the trade links with the Indian subcontinent, and also within the SEA countries. Implications of these results in the context of FMD control in SEA and East Asian countries are discussed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  4. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1976-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  5. Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain.

    Science.gov (United States)

    Jóźwik, A; Manteufel, J; Selbitz, H-J; Truyen, U

    2009-10-01

    The demonstration of field isolates of porcine parvovirus (PPV) that differ genetically and antigenically from vaccine strains of PPV raises the question of whether the broadly used inactivated vaccines can still protect sows against the novel viruses. Ten specific-pathogen-free primiparous sows were assigned to three groups and were vaccinated with one of two vaccines based on the old vaccine strains, or served as non-vaccinated controls. After insemination, all sows were challenged with the prototype genotype 2 virus, PPV-27a, on gestation day 41; fetuses were delivered on gestation day 90 and examined for virus infection. The fetuses of the vaccinated sows were protected against disease, but both the vaccinated and the non-vaccinated sows showed a marked increase in antibody titres after challenge infection, indicating replication of the challenge virus. All sows (vaccinated and non-vaccinated) shed the challenge virus for at least 10 days after infection, with no difference in the pattern or duration of virus shedding.

  6. Preliminary survey of potato virus Y (PVy) strains in potato samples from Kurdistan (Iran).

    Science.gov (United States)

    Bahrami-Kamangar, S; De Jonghe, K; Kamangar, S; Maes, M; Smagghe, G

    2010-01-01

    Potato virus Y (PVY) is the type species in the potyvirus genus of the family potyviridae. This plant pathogenic virus is transmitted through plant sap inoculation by stem and core grafting and by at least 25 aphid species in a non-persistent manner. According to potato specialists in most parts of the world, PVY is currently considered as the most harmful virus in cultivated potatoes. This is also the case for potato production in Iran. In this project we investigated potato leaves that were collected in the Kurdistan province in Iran for the presence of PVY with use of different biochemical/molecular techniques as ELISA, RT-PCR and qPCR. The different PVY strains, including PVY-O, PVY-N, PVYN-TN, PVY-NWi, were determined by using a triplex RT-PCR. In conclusion, the results demonstrated the presence of PVY-NWi strains in the potato leaf samples from Kurdistan (Iran). The data are discussed in relation to prevalence of PVY strains in Iran.

  7. Reflectometry on D17

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    As part of the package of instrument upgrades planned over the next few years, D17 is based on a straightened cold neutron-guide and converted into a dedicated and versatile reflectometer. In the meantime, in order for ILL to become as fully involved as possible in this growing area of activity, the current D17 has been optimised for reflectometry. Results of this project are presented. (author).

  8. Genetic characterization of Italian field strains of Schmallenberg virus based on N and NSs genes.

    Science.gov (United States)

    Izzo, Francesca; Cosseddu, Gian Mario; Polci, Andrea; Iapaolo, Federica; Pinoni, Chiara; Capobianco Dondona, Andrea; Valleriani, Fabrizia; Monaco, Federica

    2016-08-01

    Following its first identification in Germany in 2011, the Schmallenberg virus (SBV) has rapidly spread to many other European countries. Despite the wide dissemination, the molecular characterization of the circulating strains is limited to German, Belgian, Dutch, and Swiss viruses. To fill this gap, partial genetic characterization of 15 Italian field strains was performed, based on S segment genes. Samples were collected in 2012 in two different regions where outbreaks occurred during distinct epidemic seasons. The comparative sequence analysis demonstrated a high molecular stability of the circulating viruses; nevertheless, we identified several variants of the N and NSs proteins not described in other SBV isolates circulating in Europe.

  9. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L

    2009-11-01

    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  10. Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17.

    Science.gov (United States)

    Vinogradov, E; Sadovskaya, I; Cornelissen, A; van Sinderen, D

    2015-09-02

    Lactobacilli are valuable strains for commercial (functional) food fermentations. Their cell surface-associated polysaccharides (sPSs) possess important functional properties, such as acting as receptors for bacteriophages (bacterial viruses), influencing autolytic characteristics and providing protection against antimicrobial peptides. The current report provides an elaborate molecular description of several surface carbohydrates of Lactobacillus delbrueckii subsp. bulgaricus strain 17. The cell surface of this strain was shown to contain short chain poly(glycerophosphate) teichoic acids and at least two different sPSs, designated here as sPS1 and sPS2, whose chemical structures were examined by 2D nuclear magnetic resonance spectroscopy and methylation analysis. Neutral branched sPS1, extracted with n-butanol, was shown to be composed of hexasaccharide repeating units (-[α-d-Glcp-(1-3)-]-4-β-l-Rhap2OAc-4-β-d-Glcp-[α-d-Galp-(1-3)]-4-α-Rhap-3-α-d-Galp-), while the major component of the TCA-extracted sPS2 was demonstrated to be a linear d-galactan with the repeating unit structure being (-[Gro-3P-(1-6)-]-3-β-Galf-3-α-Galp-2-β-Galf-6-β-Galf-3-β-Galp-). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    Science.gov (United States)

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  12. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  13. Sequence Variation in Toxoplasma gondii rop17 Gene among Strains from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Nian-Zhang Zhang

    2014-01-01

    Full Text Available Genetic diversity of T. gondii is a concern of many studies, due to the biological and epidemiological diversity of this parasite. The present study examined sequence variation in rhoptry protein 17 (ROP17 gene among T. gondii isolates from different hosts and geographical regions. The rop17 gene was amplified and sequenced from 10 T. gondii strains, and phylogenetic relationship among these T. gondii strains was reconstructed using maximum parsimony (MP, neighbor-joining (NJ, and maximum likelihood (ML analyses. The partial rop17 gene sequences were 1375 bp in length and A+T contents varied from 49.45% to 50.11% among all examined T. gondii strains. Sequence analysis identified 33 variable nucleotide positions (2.1%, 16 of which were identified as transitions. Phylogeny reconstruction based on rop17 gene data revealed two major clusters which could readily distinguish Type I and Type II strains. Analyses of sequence variations in nucleotides and amino acids among these strains revealed high ratio of nonsynonymous to synonymous polymorphisms (>1, indicating that rop17 shows signs of positive selection. This study demonstrated the existence of slightly high sequence variability in the rop17 gene sequences among T. gondii strains from different hosts and geographical regions, suggesting that rop17 gene may represent a new genetic marker for population genetic studies of T. gondii isolates.

  14. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  15. Inactive vaccine derived from velogenic strain of local Newcastle disease virus .

    Directory of Open Access Journals (Sweden)

    Darminto

    1996-03-01

    Full Text Available The objective of this research is to evaluate an application of an inactive Newcastle disease (ND vaccine derived from velogenic strain of local Newcastle disease virus (NDV. In this research . the Ira strain of velogenic ND virus was grown in specific pathogen free (SPF eggs and then was inactivated by formalin at a final concentration of 1 :1,000 at 4°C. The inactive antigen was then emulsified with an oil adjuvant or aluminium hydroxide gel before being administered for vaccination in layers and compared to a commercial inactive ND vaccine . Results indicated that application of these inactivated ND vaccines for booster vaccination following vaccination with an active lentogenic ND virus in pullets nearly producing eggs, resulted in high antibody titre which persisted for considerable long period of time and capable of protecting layers from sick of ND and from reducing egg production . Hence, it could be concluded that the inactivated vaccine emulsified in either oil-adjuvant (lanolin-paraffin or aluminium hydroxide gel were considered to be highly immunogenic and capable of protecting layers from sick of ND and from reducing egg production

  16. Experimental infection of duck origin virulent Newcastle disease virus strain in ducks.

    Science.gov (United States)

    Dai, Yabin; Cheng, Xu; Liu, Mei; Shen, Xinyue; Li, Jianmei; Yu, Shengqing; Zou, Jianmin; Ding, Chan

    2014-07-17

    Newcastle disease (ND) caused by virulent Newcastle disease virus (NDV) is an acute, highly contagious and fatal viral disease affecting most species of birds. Ducks are generally considered to be natural reservoirs or carriers of NDV while being resistant to NDV strains, even those most virulent for chickens; however, natural ND cases in ducks have been gradually increasing in recent years. In the present study, ducks of different breeds and ages were experimentally infected with duck origin virulent NDV strain duck/Jiangsu/JSD0812/2008 (JSD0812) by various routes to investigate the pathogenicity of NDV in ducks. Six breeds (mallard, Gaoyou, Shaoxing, Jinding, Shanma, and Pekin ducks) were infected intramuscularly (IM) with JSD0812 strain at the dose of 5 × 108 ELD50. Susceptibility to NDV infection among breeds varied, per morbidity and mortality. Mallard ducks were the most susceptible, and Pekin ducks the most resistant. Fifteen-, 30-, 45-, 60-, and 110-day-old Gaoyou ducks were infected with JSD0812 strain at the dose of 5 × 108 ELD50 either IM or intranasally (IN) and intraocularly (IO), and their disease development, viral shedding, and virus tissue distribution were determined. The susceptibility of ducks to NDV infection decreased with age. Most deaths occurred in 15- and 30-day-old ducklings infected IM. Ducks infected IN and IO sometimes exhibited clinical signs, but seldom died. Clinical signs were primarily neurologic. Infected ducks could excrete infectious virus from the pharynx and/or cloaca for a short period, which varied with bird age or inoculation route; the longest period was about 7 days. The rate of virus isolation in tissues from infected ducks was generally low, even in those from dead birds, and it appeared to be unrelated to bird age and infection route. The results confirmed that some of the naturally occurring NDV virulent strains can cause the disease in ducks, and that ducks play an important role in the epidemiology of ND. The

  17. Sequence analysis of measles virus strains collected during the pre- and early-vaccination era in Denmark reveals a considerable diversity of ancient strains

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Schöller, S.; Schierup, M. H.

    2002-01-01

    A total of 199 serum samples from patients with measles collected in Denmark, Greenland and the Faroe Islands from 1964 to 1983 were analysed by PCR. Measles virus (MV) RNA could be detected in 38 (19%) of the samples and a total of 18 strains were subjected to partial sequence analysis of the he......A total of 199 serum samples from patients with measles collected in Denmark, Greenland and the Faroe Islands from 1964 to 1983 were analysed by PCR. Measles virus (MV) RNA could be detected in 38 (19%) of the samples and a total of 18 strains were subjected to partial sequence analysis...... of the hemagglutinin gene. The strains exhibited a considerable genomic diversity, which is at odds with the assumption that one genome type prevailed among globally circulating MV strains prior to the advent of live-attenuated vaccines. Our data indicate that the similarity of the various vaccine strains...... is attributed to their having originated from the same primary isolate. Consequently, it is implied that a small number of clinical manifestations of MV worldwide from which strains similar to the vaccine strain were identified were vaccine related rather than being caused by members of a persistently...

  18. Screening for strains with 11α-hydroxylase activity for 17α-hydroxy progesterone biotransformation.

    Science.gov (United States)

    Gao, Qian; Qiao, Yuqian; Shen, Yanbing; Wang, Min; Wang, Xibo; Liu, Yang

    2017-08-01

    Various corticosteroids are prepared by using 11α,17α-diOH-progesterone (11α,17α-diOH-PROG) as an important intermediate and raw material. Hence, strains that can improve the yields of 11α,17α-diOH-PROG should be screened. Cunninghamella elegans CICC40250 was singled out from five common 11α hydroxylation strains. The reaction parameters of 11α,17α-diOH-PROG production were also investigated. C. elegans CICC40250 could efficiently catalyze the hydroxylation of 17α-hydroxy progesterone (17α-OH-PROG) at C-11α position. This strain could also effectively convert 11α,17α-diOH-PROG at high substrate concentrations (up to 30g/L). After the coenzyme precursor glucose was added, the rate of 11α,17α-diOH-PROG formation reached 84.2%, which was 11.4% higher than that of the control group. Our study established a simple and feasible mechanism to increase 11α,17α-diOH-PROG production levels. This mechanism involves C. elegans CICC40250 that can be efficiently applied to induce the biotransformation of 17α-OH-PROG with a hydroxylation biocatalytic ability. Copyright © 2017. Published by Elsevier Inc.

  19. Antigenic and genetic comparison of foot-and-mouth disease virus serotype O Indian vaccine strain, O/IND/R2/75 against currently circulating viruses.

    Science.gov (United States)

    Mahapatra, Mana; Yuvaraj, S; Madhanmohan, M; Subramaniam, S; Pattnaik, B; Paton, D J; Srinivasan, V A; Parida, Satya

    2015-01-29

    Foot-and-mouth disease (FMD) virus serotype O is the most common cause of FMD outbreaks in India and three of the six lineages that have been described are most frequently detected, namely Ind2001, PanAsia and PanAsia 2. We report the full capsid sequence of 21 serotype O viruses isolated from India between 2002 and 2012. All these viruses belong to the Middle East-South Asia (ME-SA) topotype. The serological cross-reactivity of a bovine post-vaccination serum pool raised against the current Indian vaccine strain, O/IND/R2/75,was tested by virus neutralisation test with the 23 Indian field isolates, revealing a good match between the vaccine and the field isolates. The cross reactivity of the O/IND/R2/75 vaccine with 19 field isolates from other countries (mainly from Asia and Africa) revealed a good match to 79% of the viruses indicating that the vaccine strain is broadly cross-reactive and could be used to control FMD in other countries. Comparison of the capsid sequences of the serologically non-matching isolates with the vaccine strain sequence identified substitutions in neutralising antigenic sites 1 and 2, which could explain the observed serological differences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  1. Effect of strain rate and temperature on strain hardening behavior of a dissimilar joint between Ti–6Al–4V and Ti17 alloys

    International Nuclear Information System (INIS)

    Wang, S.Q.; Liu, J.H.; Chen, D.L.

    2014-01-01

    Highlights: • Only stage III hardening occurs after yielding in Ti–6Al–4V/Ti17 dissimilar joints. • Voce stress and strength of the joints increase with increasing strain rate. • With increasing strain rate, hardening capacity and strain hardening exponent decrease. • With increasing temperature, hardening capacity and strain hardening exponent increase. • Strain rate sensitivity of the joints decreases as the true strain increases. - Abstract: The aim of this study was to evaluate the influence of strain rate and temperature on the tensile properties, strain hardening behavior, strain rate sensitivity, and fracture characteristics of electron beam welded (EBWed) dissimilar joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding led to significant microstructural changes across the joint, with hexagonal close-packed martensite (α′) and orthorhombic martensite (α″) in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) on the Ti–6Al–4V side, and coarse β in the HAZ on the Ti17 side. A distinctive asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was present. Despite a slight reduction in ductility, the yield strength (YS) and ultimate tensile strength (UTS) of the joints lay in-between the two base metals (BMs) of Ti–6Al–4V and Ti17, with the Ti17 alloy having a higher strength. While the YS, UTS, and Voce stress of the joints increased, both hardening capacity and strain hardening exponent decreased with increasing strain rate or decreasing temperature. Stage III hardening occurred in the joints after yielding. The hardening rate was strongly dependent on the strain rate and temperature. As the strain rate increased or temperature decreased, the strain hardening rate increased at a given true stress. The strain rate sensitivity evaluated via

  2. Detection of dengue virus from mosquito cell cultures inoculated with human serum in the presence of actinomycin D.

    Science.gov (United States)

    Ramos, C; Villaseca, J M; García, H; Hernández, D G; Ramos-Castañeda, J; Imbert, J L

    1995-01-01

    We report the use of cultures of mosquito cells (TRA-284) to detect dengue virus in serum from cases of dengue fever in the state of Puebla, México. Using the conventional procedure 56 of 171 samples (32.7%) were positive. The negative sera (67.3%) were passaged 'blind' in mosquito cell cultures but no virus was detected. However, when these sera were incubated in the presence of actinomycin D (an inhibitor of deoxyribonucleic acid transcription) 20 of the 115 samples (17.4%) became positive. This procedure increased the virus detection rate from 32.7% to 44.4%. Serotypes 1 and 4 were identified for the first time in the state of Puebla, where the transmission of dengue virus is increasing. The addition of actinomycin D to mosquito cell cultures may improve the detection of dengue virus and could be a useful tool for virological surveillance in endemic countries.

  3. Preparation for emergence of an Eastern European porcine reproductive and respiratory syndrome virus (PRRSV) strain in Western Europe: Immunization with modified live virus vaccines or a field strain confers partial protection.

    Science.gov (United States)

    Renson, P; Fablet, C; Le Dimna, M; Mahé, S; Touzain, F; Blanchard, Y; Paboeuf, F; Rose, N; Bourry, O

    2017-05-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses for the swine industry worldwide. In the past several years, highly pathogenic strains that lead to even greater losses have emerged. For the Western European swine industry, one threat is the possible introduction of Eastern European PRRSV strains (example Lena genotype 1.3) which were shown to be more virulent than common Western resident strains under experimental conditions. To prepare for the possible emergence of this strain in Western Europe, we immunized piglets with a Western European PRRSV field strain (Finistere: Fini, genotype 1.1), a new genotype 1 commercial modified live virus (MLV) vaccine (MLV1) or a genotype 2 commercial MLV vaccine (MLV2) to evaluate and compare the level of protection that these strains conferred upon challenge with the Lena strain 4 weeks later. Results show that immunization with Fini, MLV1 or MLV2 strains shortened the Lena-induced hyperthermia. In the Fini group, a positive effect was also demonstrated in growth performance. The level of Lena viremia was reduced for all immunized groups (significantly so for Fini and MLV2). This reduction in Lena viremia was correlated with the level of Lena-specific IFNγ-secreting cells. In conclusion, we showed that a commercial MLV vaccine of genotype 1 or 2, as well as a field strain of genotype 1.1 may provide partial clinical and virological protection upon challenge with the Lena strain. The cross-protection induced by these immunizing strains was not related with the level of genetic similarity to the Lena strain. The slightly higher level of protection established with the field strain is attributed to a better cell-mediated immune response. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Atypical RNA Elements Modulate Translational Readthrough in Tobacco Necrosis Virus D.

    Science.gov (United States)

    Newburn, Laura R; White, K Andrew

    2017-04-15

    Tobacco necrosis virus, strain D (TNV-D), is a positive-strand RNA virus in the genus Betanecrovirus and family Tombusviridae The production of its RNA-dependent RNA polymerase, p82, is achieved by translational readthrough. This process is stimulated by an RNA structure that is positioned immediately downstream of the recoding site, termed the readthrough stem-loop (RTSL), and a sequence in the 3' untranslated region of the TNV-D genome, called the distal readthrough element (DRTE). Notably, a base pairing interaction between the RTSL and the DRTE, spanning ∼3,000 nucleotides, is required for enhancement of readthrough. Here, some of the structural features of the RTSL, as well as RNA sequences and structures that flank either the RTSL or DRTE, were investigated for their involvement in translational readthrough and virus infectivity. The results revealed that (i) the RTSL-DRTE interaction cannot be functionally replaced by stabilizing the RTSL structure, (ii) a novel tertiary RNA structure positioned just 3' to the RTSL is required for optimal translational readthrough and virus infectivity, and (iii) these same activities also rely on an RNA stem-loop located immediately upstream of the DRTE. Functional counterparts for the RTSL-proximal structure may also be present in other tombusvirids. The identification of additional distinct RNA structures that modulate readthrough suggests that regulation of this process by genomic features may be more complex than previously appreciated. Possible roles for these novel RNA elements are discussed. IMPORTANCE The analysis of factors that affect recoding events in viruses is leading to an ever more complex picture of this important process. In this study, two new atypical RNA elements were shown to contribute to efficient translational readthrough of the TNV-D polymerase and to mediate robust viral genome accumulation in infections. One of the structures, located close to the recoding site, could have functional

  5. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains.

    Science.gov (United States)

    Colgrove, Robert C; Liu, Xueqiao; Griffiths, Anthony; Raja, Priya; Deluca, Neal A; Newman, Ruchi M; Coen, Donald M; Knipe, David M

    2016-01-01

    A collection of genomic DNA sequences of herpes simplex virus (HSV) strains has been defined and analyzed, and some information is available about genomic stability upon limited passage of viruses in culture. The nature of genomic change upon extensive laboratory passage remains to be determined. In this report we review the history of the HSV-1 KOS laboratory strain and the related KOS1.1 laboratory sub-strain, also called KOS (M), and determine the complete genomic sequence of an early passage stock of the KOS laboratory sub-strain and a laboratory stock of the KOS1.1 sub-strain. The genomes of the two sub-strains are highly similar with only five coding changes, 20 non-coding changes, and about twenty non-ORF sequence changes. The coding changes could potentially explain the KOS1.1 phenotypic properties of increased replication at high temperature and reduced neuroinvasiveness. The study also provides sequence markers to define the provenance of specific laboratory KOS virus stocks. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High genetic diversity of equine infectious anaemia virus strains from Slovenia revealed upon phylogenetic analysis of the p15 gag gene region.

    Science.gov (United States)

    Kuhar, U; Malovrh, T

    2016-03-01

    The equine infectious anaemia virus (EIAV), which belongs to the Retroviridae family, infects equids almost worldwide. Every year, sporadic EIAV cases are detected in Slovenia. To characterise the Slovenian EIAV strains in the p15 gag gene region phylogenetically in order to compare the Slovenian EIAV strains with EIAV strains from abroad, especially with the recently published European strains. Cross-sectional study using material derived from post mortem examination. In total, 29 EIAV serologically positive horses from 18 different farms were examined in this study. Primers were designed to amplify the p15 gag gene region. Amplicons of 28 PCRs were subjected to direct DNA sequencing and phylogenetic analysis. Altogether, 28 EIAV sequences were obtained from 17 different farms and were distributed between 4 separate monophyletic groups and 9 branches upon phylogenetic analysis. Among EIAV strains from abroad, the closest relatives to Slovenian EIAV strains were European EIAV strains from Italy. Phylogenetic analysis also showed that some animals from distantly located farms were most probably infected with the same EIAV strains, as well as animals from the same farm and animals from farms located in the same geographical region. This is the first report of such high genetic diversity of EIAV strains from one country. This led to speculation that there is a potential virus reservoir among the populations of riding horses, horses kept for pleasure and horses for meat production, with some farmers or horse-owners not following legislation, thus enabling the spread of infection with EIAV. The low sensitivity of the agar gel immunodiffusion test may also contribute to the spread of infection with EIAV, because some infected horses might have escaped detection. The results of the phylogenetic analysis also provide additional knowledge about the highly heterogeneous nature of the EIAV genome. © 2015 EVJ Ltd.

  7. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    Science.gov (United States)

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  8. Genetic Diversity of the Hepatitis B Virus Strains in Cuba: Absence of West-African Genotypes despite the Transatlantic Slave Trade

    Science.gov (United States)

    Rodríguez Lay, Licel A.; Corredor, Marité B.; Villalba, Maria C.; Frómeta, Susel S.; Wong, Meilin S.; Valdes, Lidunka; Samada, Marcia; Sausy, Aurélie; Hübschen, Judith M.; Muller, Claude P.

    2015-01-01

    Cuba is an HBsAg low-prevalence country with a high coverage of anti-hepatitis B vaccine. Its population is essentially the result of the population mix of Spanish descendants and former African slaves. Information about genetic characteristics of hepatitis B virus (HBV) strains circulating in the country is scarce. The HBV genotypes/subgenotypes, serotypes, mixed infections, and S gene mutations of 172 Cuban HBsAg and HBV-DNA positive patients were determined by direct sequencing and phylogenetic analysis. Phylogenetic analysis of HBV S gene sequences showed a predominance of genotype A (92.4%), subgenotype A2 (84.9%) and A1 (7.6%). Genotype D (7.0%) and subgenotype C1 (0.6%) were also detected but typical (sub)genotypes of contemporary West-Africa (E, A3) were conspicuously absent. All genotype A, D, and C strains exhibited sequence characteristics of the adw2, ayw2, and adrq serotypes, respectively. Thirty-three (19.1%) patients showed single, double, or multiple point mutations inside the Major Hydrophilic domain associated with vaccine escape; eighteen (10.5%) patients had mutations in the T-cell epitope (amino acids 28-51), and there were another 111 point mutations downstream of the S gene. One patient had an HBV A1/A2 mixed infection. This first genetic study of Cuban HBV viruses revealed only strains that were interspersed with strains from particularly Europe, America, and Asia. The absence of genotype E supports previous hypotheses about an only recent introduction of this genotype into the general population in Africa. The presence of well-known vaccine escape (3.5%) and viral resistance mutants (2.9%) warrants strain surveillance to guide vaccination and treatment strategies. PMID:25978398

  9. Emergence of canine distemper virus strains with modified molecular signature and enhanced neuronal tropism leading to high mortality in wild carnivores.

    Science.gov (United States)

    Origgi, F C; Plattet, P; Sattler, U; Robert, N; Casaubon, J; Mavrot, F; Pewsner, M; Wu, N; Giovannini, S; Oevermann, A; Stoffel, M H; Gaschen, V; Segner, H; Ryser-Degiorgis, M-P

    2012-11-01

    An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes (Vulpes vulpes), Eurasian badgers (Meles meles), stone (Martes foina) and pine (Martes martes) martens, from a Eurasian lynx (Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination--the classic presentation of CDV infection--was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.

  10. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  11. Genetic and antigenic analysis of the G attachment protein of bovine respiratory syncytial virus strains

    DEFF Research Database (Denmark)

    Elvander, M.; Vilcek, S.; Baule, C.

    1998-01-01

    Antigenic and genetic studies of bovine respiratory syncytial virus (BRSV) were made on isolates obtained from three continents over 27 years. Antigenic variation between eight isolates was initially determined using protein G-specific monoclonal antibodies. Four distinct reaction patterns were...... of a 731 nucleotide fragment in the G protein gene. Nine of the BRSV strains were analysed by direct sequencing of RT-PCR amplicons whereas sequences of 18 BRSV and three human respiratory syncytial virus (HRSV) strains were obtained from GenBank. The analysis revealed similarities of 88-100% among BRSV...

  12. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.

    Science.gov (United States)

    Smee, Donald F; Evans, W Joseph; Nicolaou, K C; Tarbet, E Bart; Day, Craig W

    2016-07-01

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Differentiation of strains of varicella-zoster virus by changes in neutral lipid metabolism in infected cells

    International Nuclear Information System (INIS)

    Jerkofsky, M.; De Siervo, A.J.

    1986-01-01

    Eleven isolates of varicella-zoster virus were tested for their effects on the incorporation of [ 14 C]acetate into lipids in infected human embryonic lung cells. By relative percent, all virus isolates demonstrated a shift from polar lipid synthesis to neutral lipid, especially triglyceride, synthesis. By data expressed as counts per minute per microgram of protein, the VZV strains could be separated into two groups: those strains which depressed lipid synthesis and those strains which did not depress, and may even have stimulated, lipid, especially triglyceride, synthesis. These results may be useful in understanding the development of lipid changes seen in children affected with Reye's syndrome following chickenpox

  14. Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer.

    Science.gov (United States)

    Tysome, James R; Wang, Pengju; Alusi, Ghassan; Briat, Arnaud; Gangeswaran, Rathi; Wang, Jiwei; Bhakta, Vipul; Fodor, Istvan; Lemoine, Nick R; Wang, Yaohe

    2011-09-01

    Oncolytic viral therapy represents a promising strategy for the treatment of head and neck squamous cell carcinoma (HNSCC), with dl1520 (ONYX-015) the most widely used oncolytic adenovirus in clinical trials. This study aimed to determine the effectiveness of the Lister vaccine strain of vaccinia virus as well as a vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapy for HNSCC and to compare them with dl1520. The potency and replication of the Lister strain and VVhEA and the expression and function of the fusion protein were determined in human HNSCC cells in vitro and in vivo. Finally, the efficacy of VVhEA was compared with dl1520 in vivo in a human HNSCC model. The Lister vaccine strain of vaccinia virus was more effective than the adenovirus against all HNSCC cell lines tested in vitro. Although the potency of VVhEA was attenuated in vitro, the expression and function of the endostatin-angiostatin fusion protein was confirmed in HNSCC models both in vitro and in vivo. This novel vaccinia virus (VVhEA) demonstrated superior antitumor potency in vivo compared with both dl1520 and the control vaccinia virus. This study suggests that the Lister strain vaccinia virus armed with an endostatin-angiostatin fusion gene may be a potential therapeutic agent for HNSCC.

  15. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    Science.gov (United States)

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  16. Analysis of nucleotide sequence variations in herpes simplex virus types 1 and 2, and varicella-zoster virus

    International Nuclear Information System (INIS)

    Chiba, A.; Suzutani, T.; Koyano, S.; Azuma, M.; Saijo, M.

    1998-01-01

    To analyze the difference in the degree of divergence between genes from identical herpes virus species, we examined the nucleotide sequence of genes from the herpes simplex virus type 1 (HSV-l ) strains VR-3 and 17 encoding thymidine kinase (TK), deoxyribonuclease (DNase), protein kinase (PK; UL13) and virion-associated host shut off (vhs) protein (UL41). The frequency of nucleotide substitutions per 1 kb in TK gene was 2.5 to 4.3 times higher than those in the other three genes. To prove that the polymorphism of HSV-1 TK gene is common characteristic of herpes virus TK genes, we compared the diversity of TK genes among eight HSV-l , six herpes simplex virus type 2 (HSV-2) and seven varicella-zoster virus (VZV) strains. The average frequency of nucleotide substitutions per 1 kb in the TK gene of HSV-l strains was 4-fold higher than that in the TK gene of HSV-2 strains. The VZV TK gene was highly conserved and only two nucleotide changes were evident in VZV strains. However, the rate of non-synonymous substitutions in total nucleotide substitutions was similar among the TK genes of the three viruses. This result indicated that the mutational rates differed, but there were no significant differences in selective pressure. We conclude that HSV-l TK gene is highly diverged and analysis of variations in the gene is a useful approach for understanding the molecular evolution of HSV-l in a short period. (authors)

  17. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses.

    Directory of Open Access Journals (Sweden)

    Shashank Tripathi

    2017-03-01

    Full Text Available Zika virus (ZIKV is a mosquito borne flavivirus, which was a neglected tropical pathogen until it emerged and spread across the Pacific Area and the Americas, causing large human outbreaks associated with fetal abnormalities and neurological disease in adults. The factors that contributed to the emergence, spread and change in pathogenesis of ZIKV are not understood. We previously reported that ZIKV evades cellular antiviral responses by targeting STAT2 for degradation in human cells. In this study, we demonstrate that Stat2-/- mice are highly susceptible to ZIKV infection, recapitulate virus spread to the central nervous system (CNS, gonads and other visceral organs, and display neurological symptoms. Further, we exploit this model to compare ZIKV pathogenesis caused by a panel of ZIKV strains of a range of spatiotemporal history of isolation and representing African and Asian lineages. We observed that African ZIKV strains induce short episodes of severe neurological symptoms followed by lethality. In comparison, Asian strains manifest prolonged signs of neuronal malfunctions, occasionally causing death of the Stat2-/- mice. African ZIKV strains induced higher levels of inflammatory cytokines and markers associated with cellular infiltration in the infected brain in mice, which may explain exacerbated pathogenesis in comparison to those of the Asian lineage. Interestingly, viral RNA levels in different organs did not correlate with the pathogenicity of the different strains. Taken together, we have established a new murine model that supports ZIKV infection and demonstrate its utility in highlighting intrinsic differences in the inflammatory response induced by different ZIKV strains leading to severity of disease. This study paves the way for the future interrogation of strain-specific changes in the ZIKV genome and their contribution to viral pathogenesis.

  18. Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain.

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Friederike; Hanley, Patrick W; Scott, Dana P; Günther, Stephan; Feldmann, Heinz

    2015-10-01

    In late 2013, the largest documented outbreak of Ebola hemorrhagic fever started in Guinea and has since spread to neighboring countries, resulting in almost 27,000 cases and >11,000 deaths in humans. In March 2014, Ebola virus (EBOV) was identified as the causative agent. This study compares the pathogenesis of a new EBOV strain, Makona, which was isolated in Guinea in 2014 with the prototype strain from the 1976 EBOV outbreak in the former Zaire. Both strains cause lethal disease in cynomolgus macaques with similar pathologic changes and hallmark features of Ebola hemorrhagic fever. However, disease progression was delayed in EBOV-Makona-infected animals, suggesting decreased rather than increased virulence of this most recent EBOV strain.

  19. Evolutionary relationship between Old World West Nile virus strains Evidence for viral gene flow between africa, the middle east, and europe

    International Nuclear Information System (INIS)

    Charrel, R.N.; Brault, A.C.; Gallian, P.; Lemasson, J.-J.; Murgue, B.; Murri, S.; Pastorino, B.; Zeller, H.; Chesse, R. de; Micco, P. de; Lamballerie, X. de

    2003-01-01

    Little is known about the genetic relationships between European and other Old-World strains of West Nile virus (WNV) and persistence of WNV North of Mediterranean. We characterized the complete genomes of three WNV strains from France (horse-2000), Tunisia (human-1997) and Kenya (mosquito-1998), and the envelope, NS3 and NS5 genes of the Koutango virus. Phylogenetic analyses including all available full-length sequences showed that: (1) Koutango virus is a distant variant of WNV; (2) the three characterized strains belong to lineage 1, clade 1a; (3) the Tunisian strain roots the lineage of viruses introduced in North America. We established that currently available partial envelope sequences do not generate reliable phylogenies. Accordingly, establishing a large WNV sequence database is pivotal for the understanding of spatial and temporal epidemiology of this virus. For rapid completion of that purpose, colinearized E-NS3-NS5 gene sequences were shown to constitute a valuable surrogate for complete sequences

  20. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae to Spondweni Virus.

    Directory of Open Access Journals (Sweden)

    Andrew D Haddow

    2016-10-01

    Full Text Available Zika virus (ZIKV has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV. Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown.In this study, two geographically distinct strains of SPONV were genetically characterized and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the susceptibility of both SPONV strains was determined in three mosquito species. The open reading frame (ORF of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954 prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%, respectively, when compared to nine geographically and genetically distinct strains of ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleotide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility and dissemination was low or non-existent following artificial infectious blood feeding of moderate doses of both SPONV strains.SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two

  1. Phylogenetic analysis of feline immunodeficiency virus strains from naturally infected cats in Belgium and The Netherlands.

    Science.gov (United States)

    Roukaerts, Inge D M; Theuns, Sebastiaan; Taffin, Elien R L; Daminet, Sylvie; Nauwynck, Hans J

    2015-01-22

    Feline immunodeficiency virus (FIV) is a major pathogen in feline populations worldwide, with seroprevalences up to 26%. Virus strains circulating in domestic cats are subdivided into different phylogenetic clades (A-E), based on the genetic diversity of the V3-V4 region of the env gene. In this report, a phylogenetic analysis of the V3-V4 env region, and a variable region in the gag gene was made for 36 FIV strains isolated in Belgium and The Netherlands. All newly generated gag sequences clustered together with previously known clade A FIV viruses, confirming the dominance of clade A viruses in Northern Europe. The same was true for the obtained env sequences, with only one sample of an unknown env subtype. Overall, the genetic diversity of FIV strains sequenced in this report was low. This indicates a relatively recent introduction of FIV in Belgium and The Netherlands. However, the sample with an unknown env subtype indicates that new introductions of FIV from unknown origin do occur and this will likely increase genetic variability in time. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV. While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector.

  3. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    Science.gov (United States)

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  4. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    Science.gov (United States)

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  5. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  6. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  7. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  8. Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China

    Directory of Open Access Journals (Sweden)

    Tan Bin

    2011-11-01

    Full Text Available Abstract A new isolate of canine distemper virus (CDV, named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N, phosphoprotein (P and receptor binding haemagglutinin (H gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.

  9. Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China.

    Science.gov (United States)

    Tan, Bin; Wen, Yong-Jun; Wang, Feng-Xue; Zhang, Shu-Qin; Wang, Xiu-Dong; Hu, Jia-Xin; Shi, Xin-Chuan; Yang, Bo-Chao; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua

    2011-11-16

    A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.

  10. Complete Genome Sequences of Getah Virus Strains Isolated from Horses in 2016 in Japan.

    Science.gov (United States)

    Nemoto, Manabu; Bannai, Hiroshi; Ochi, Akihiro; Niwa, Hidekazu; Murakami, Satoshi; Tsujimura, Koji; Yamanaka, Takashi; Kokado, Hiroshi; Kondo, Takashi

    2017-08-03

    Getah virus is mosquito-borne and causes disease in horses and pigs. We sequenced and analyzed the complete genomes of three strains isolated from horses in Ibaraki Prefecture, eastern Japan, in 2016. They were almost identical to the genomes of strains recently isolated from horses, pigs, and mosquitoes in Japan. Copyright © 2017 Nemoto et al.

  11. [The growth of attenuated strains of canine parvovirus, mink enteritis virus, feline panleukopenia virus, and rabies virus on various types of cell cultures].

    Science.gov (United States)

    Zuffa, T

    1987-10-01

    The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.

  12. Complete genome sequence of a divergent strain of lettuce chlorosis virus from Periwinkle in China

    Science.gov (United States)

    A novel strain of Lettuce chlorosis virus (LCV) was identified from periwinkle in China (PW) with foliar interveinal chlorosis and plant dwarfing. Complete nucleotide (nt) sequences of genomic RNA1 and RNA2 of the virus are 8,602 nt and 8,456 nt, respectively. The genomic organization of LCV-PW rese...

  13. A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus

    Science.gov (United States)

    Ramírez, Manuel; Velázquez, Rocío; Maqueda, Matilde; López-Piñeiro, Antonio; Ribas, Juan C.

    2015-01-01

    Wine Torulaspora delbrueckii strains producing a new killer toxin (Kbarr-1) were isolated and selected for wine making. They killed all the previously known Saccharomyces cerevisiae killer strains, in addition to other non-Saccharomyces yeasts. The Kbarr-1 phenotype is encoded by a medium-size 1.7 kb dsRNA, TdV-Mbarr-1, which seems to depend on a large-size 4.6 kb dsRNA virus (TdV-LAbarr) for stable maintenance and replication. The TdV-Mbarr-1 dsRNA was sequenced by new generation sequencing techniques. Its genome structure is similar to those of S. cerevisiae killer M dsRNAs, with a 5′-end coding region followed by an internal A-rich sequence and a 3′-end non-coding region. Mbarr-1 RNA positive strand carries cis acting signals at its 5′ and 3′ termini for transcription and replication respectively, similar to those RNAs of yeast killer viruses. The ORF at the 5′ region codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No relevant sequence identity was found either between the full sequence of Mbarr-1 dsRNA and other yeast M dsRNAs, or between their respective toxin-encoded proteins. However, a relevant identity of TdV-Mbarr-1 RNA regions to the putative replication and packaging signals of most of the M-virus RNAs suggests that they are all evolutionarily related. PMID:26441913

  14. A duck hepatitis B virus strain with a knockout mutation in the putative X ORF shows similar infectivity and in vivo growth characteristics to wild-type virus

    International Nuclear Information System (INIS)

    Meier, P.; Scougall, C.A.; Will, H.; Burrell, C.J.; Jilbert, A.R.

    2003-01-01

    Hepadnaviruses including human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) express X proteins, HBx and DHBx, respectively. Both HBx and DHBx are transcriptional activators and modulate cellular signaling in in vitro assays. To test whether the DHBx protein plays a role in virus infection, we compared the in vivo infectivity and growth characteristics of a DHBV3 strain with a stop codon in the X-like ORF (DHBV3-X-K.O.) to those of the wild-type DHBV3 strain. Here we report that the two strains showed no significant difference in (i) their ability to induce infection that resulted in stable viraemia measured by serum surface antigen (DHBsAg) and DHBV DNA, and detection of viral proteins and replicative DNA intermediates in the liver; (ii) the rate of spread of infection in liver and extrahepatic sites after low-dose virus inoculation; and (iii) the ability to produce transient or persistent infection under balanced age/dose conditions designed to detect small differences between the strains. Thus, none of the infection parameters assayed were detectably affected by the X-ORF knockout mutation, raising the question whether DHBx expression plays a physiological role during in vivo infection with wild-type DHBV

  15. Stability of Newcastle Disease Virus Strain V4-UPM Coated on ...

    African Journals Online (AJOL)

    Protection of village chickens against Newcastle disease (ND) is considered feasible through food-delivered vaccines. Vaccine virus strain V4-UPM coated on cassava granules with or without additive (2% gelatin) was tested for stability at room temperature (RT) for 8 weeks and 40oC for 12 hours at weekly and two hourly ...

  16. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    Science.gov (United States)

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Prevalence of hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus and hepatitis E virus as causes of acute viral hepatitis in North India: a hospital based study.

    Science.gov (United States)

    Jain, P; Prakash, S; Gupta, S; Singh, K P; Shrivastava, S; Singh, D D; Singh, J; Jain, A

    2013-01-01

    Acute viral hepatitis (AVH) is a major public health problem and is an important cause of morbidity and mortality. The aim of the present study is to determine the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and hepatitis E virus (HEV) as causes of AVH in a tertiary care hospital of North India. Blood samples and clinical information was collected from cases of AVH referred to the Grade I viral diagnostic laboratory over a 1-year period. Samples were tested for hepatitis B surface antigen, anti-HCV total antibodies, anti-HAV immunoglobulin M (IgM) and anti-HEV IgM by the enzyme-linked immunosorbent assay. PCR for nucleic acid detection of HBV and HCV was also carried out. Those positive for HBV infection were tested for anti-HDV antibodies. Fisher's exact test was used and a P hepatitis cases, 62 (23.22%) patients presented as acute hepatic failure. HAV (26.96%) was identified as the most common cause of acute hepatitis followed by HEV (17.97%), HBV (16.10%) and HCV (11.98%). Co-infections with more than one virus were present in 34 cases; HAV-HEV co-infection being the most common. HEV was the most important cause of acute hepatic failure followed by co-infection with HAV and HEV. An indication towards epidemiological shift of HAV infection from children to adults with a rise in HAV prevalence was seen. To the best of our knowledge, this is the first report indicating epidemiological shift of HAV in Uttar Pradesh.

  18. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus in four strains of Culex tarsalis (Diptera: Culicidae: an immunocytochemical study

    Directory of Open Access Journals (Sweden)

    Neira Oviedo MV

    2011-04-01

    Full Text Available Marco V Neira Oviedo1,2, William S Romoser1, Calvin BL James1, Farida Mahmood3, William K Reisen31Tropical Disease Institute, Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH, USA; 2Oxitec Inc, Oxford, England; 3Center for Vectorborne Diseases, School of Veterinary Medicine, University of California, Davis, CA, USABackground: Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several "barriers", including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV, we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion.Methods: Using immuno-stained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains – Coachella Valley, Riverside County (COAV and Kern National Wildlife Refuge (KNWR; and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP, and WEEV resistance (WR.Results and conclusions: Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth

  19. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines.

    Science.gov (United States)

    Swayne, D E; Beck, J R; Garcia, M; Stone, H D

    1999-06-01

    The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.

  20. Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment.

    Science.gov (United States)

    Chen, Aiping; Zhang, Yonghui; Meng, Gang; Jiang, Dengxu; Zhang, Hailin; Zheng, Meihong; Xia, Mao; Jiang, Aiqin; Wu, Junhua; Beltinger, Christian; Wei, Jiwu

    2017-07-12

    There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8 + NKG2D + cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8 + NKG2D + cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8 + NKG2D + cells. Second, MV-Edm-infected HCC cells stimulated CD8 + NKG2D + cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8 + NKG2D + cells. Moreover, we found that MV-Edm and adoptive CD8 + NKG2D + cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.

  1. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

    Directory of Open Access Journals (Sweden)

    Schirtzinger Erin E

    2008-02-01

    Full Text Available Abstract Background Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3, a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for Aedes aegypti mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain Results To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in Aedes aegypti mosquitoes was measured in vivo. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells. Conclusion The invasive DENV3 strain infects and disseminates in Ae. aegypti more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between

  2. Pathogenesis of new strains of Newcastle disease virus from Israel and Pakistan

    Science.gov (United States)

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains—1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenoty...

  3. Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets.

    Science.gov (United States)

    Chen, Qi; Gauger, Phillip C; Stafne, Molly R; Thomas, Joseph T; Madson, Darin M; Huang, Haiyan; Zheng, Ying; Li, Ganwu; Zhang, Jianqiang

    2016-05-01

    At least two genetically different porcine epidemic diarrhoea virus (PEDV) strains have been identified in the USA: US PEDV prototype and S-INDEL-variant strains. The objective of this study was to compare the pathogenicity differences of the US PEDV prototype and S-INDEL-variant strains in conventional neonatal piglets under experimental infections. Fifty PEDV-negative 5-day-old pigs were divided into five groups of ten pigs each and were inoculated orogastrically with three US PEDV prototype isolates (IN19338/2013, NC35140/2013 and NC49469/2013), an S-INDEL-variant isolate (IL20697/2014), and virus-negative culture medium, respectively, with virus titres of 104 TCID50 ml- 1, 10 ml per pig. All three PEDV prototype isolates tested in this study, regardless of their phylogenetic clades, had similar pathogenicity and caused severe enteric disease in 5-day-old pigs as evidenced by clinical signs, faecal virus shedding, and gross and histopathological lesions. Compared with pigs inoculated with the three US PEDV prototype isolates, pigs inoculated with the S-INDEL-variant isolate had significantly diminished clinical signs, virus shedding in faeces, gross lesions in small intestines, caeca and colons, histopathological lesions in small intestines, and immunohistochemistry staining in ileum. However, the US PEDV prototype and the S-INDEL-variant strains induced similar viraemia levels in inoculated pigs. Whole genome sequences of the PEDV prototype and S-INDEL-variant strains were determined, but the molecular basis of virulence differences between these PEDV strains remains to be elucidated using a reverse genetics approach.

  4. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full

  5. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    Directory of Open Access Journals (Sweden)

    Birgit Schäfer

    Full Text Available BACKGROUND: Currently existing yellow fever (YF vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D. Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5 TCID(50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  6. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Science.gov (United States)

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  7. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    Science.gov (United States)

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  8. The supposedly attenuated Hy-HK variant of highly virulent Hypr strain of Tick-borne encephalitis virus is obviously a strain of Langat virus

    Czech Academy of Sciences Publication Activity Database

    Růžek, Daniel; Štěrba, Ján; Kopecký, Jan; Grubhoffer, Libor

    2006-01-01

    Roč. 50, č. 4 (2006), s. 277-278 ISSN 0001-723X R&D Projects: GA ČR(CZ) GA524/06/1479 Grant - others:Grant Agency of the University of South Bohemia(CZ) 35/2005/P-BF Institutional research plan: CEZ:AV0Z60220518 Keywords : TBE virus * Langat virus * Hy-HK attenuated variant Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.788, year: 2006

  9. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy

    DEFF Research Database (Denmark)

    Martella, V.; Cirone, F.; Elia, G.

    2006-01-01

    Canine distemper virus (CDV) is a highly contagious viral pathogen causing lethal disease in dogs and other mammalians. A high degree of genetic variation is found between recent CDV strains and the old CDV isolates used in the vaccines and such genetic variation is regarded as a possible cause....... These results suggest that at least three different CDV lineages are present in Italy. Keywords: Canine distemper virus; Dogs; Lineages; H gene...

  10. Capture of cell culture-derived influenza virus by lectins: strain independent, but host cell dependent.

    Science.gov (United States)

    Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W

    2008-12-01

    Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.

  11. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus) in four strains of Culex tarsalis (Diptera: Culicidae): an immunocytochemical study.

    Science.gov (United States)

    Oviedo, Marco V Neira; Romoser, William S; James, Calvin Bl; Mahmood, Farida; Reisen, William K

    2011-04-18

    BACKGROUND: Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several "barriers", including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV), we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion. METHODS: Using immunostained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains - Coachella Valley, Riverside County (COAV) and Kern National Wildlife Refuge (KNWR); and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP), and WEEV resistance (WR). RESULTS AND CONCLUSIONS: Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth, whereas the WR and KNWR strains were less competent. Consistent with earlier studies, WEEV resistance appeared to be related to a dose-dependent midgut infection barrier, and a midgut escape barrier. The midgut escape barrier was not dependent upon the ingested viral dose. Consistent with midgut infection modulation, disseminated infections were less common in the WR and KNWR

  12. Expression of infectious bovine rhinotracheitis virus glycoprotein D ...

    African Journals Online (AJOL)

    Bovine Herpesvirus 1 (BHV-1) belongs to the genus of Varicellovirus and the family of Herpesviridae which contains three main gB, gC and gD genes. In order to cloning of the coding region of gD gene of IBR virus , PCR product of the open reading frame of the gene from IBR virus isolated in Iran was amplified by PCR.

  13. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses.

    Science.gov (United States)

    Gritsun, T S; Frolova, T V; Pogodina, V V; Lashkevich, V A; Venugopal, K; Gould, E A

    1993-02-01

    A strain of tick-borne encephalitis virus known as Vasilchenko (Vs) exhibits relatively low virulence characteristics in monkeys, Syrian hamsters and humans. The gene encoding the envelope glycoprotein of this virus was cloned and sequenced. Alignment of the sequence with those of other known tick-borne flaviviruses and identification of the recognised amino acid genetic marker EHLPTA confirmed its identity as a member of the TBE complex. However, Vs virus was distinguishable from eastern and western tick-borne serotypes by the presence of the sequence AQQ at amino acid positions 232-234 and also by the presence of other specific amino acid substitutions which may be genetic markers for these viruses and could determine their pathogenetic characteristics. When compared with other tick-borne flaviviruses, Vs virus had 12 unique amino acid substitutions including an additional potential glycosylation site at position (315-317). The Vs virus strain shared closest nucleotide and amino acid homology (84.5% and 95.5% respectively) with western and far eastern strains of tick-borne encephalitis virus. Comparison with the far eastern serotype of tick-borne encephalitis virus, by cross-immunoelectrophoresis of Vs virions and PAGE analysis of the extracted virion proteins, revealed differences in surface charge and virus stability that may account for the different virulence characteristics of Vs virus. These results support and enlarge upon previous data obtained from molecular and serological analysis.

  14. Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    NARCIS (Netherlands)

    Blystad, Dag Ragnar; Vlugt, van der René; Alfaro-Fernández, Ana; Carmen Córdoba, del María; Bese, Gábor; Hristova, Dimitrinka; Pospieszny, Henryk; Mehle, Nataša; Ravnikar, Maja; Tomassoli, Laura; Varveri, Christina; Nielsen, Steen Lykke

    2015-01-01

    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring

  15. Host range of symptomatology of Pepino mosaic virus strains occurring in Europe

    DEFF Research Database (Denmark)

    Blystad, Dag-Ragnar; van der Vlugt, René; Alfaro-Fernández, Ana

    2015-01-01

    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring...

  16. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  17. Differentiation and distribution of potato virus Y strains isolated from tobacco in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, L L

    1986-01-01

    Four strains of potato virus Y (PVY) orginally isolated from tobacco in South Africa belonging to three different strain groups (PVY/sup N/, PVY/sup c/ and PVY/sup o/) were differentiated according to their effect on various tobacco cultivars. The results obtained in this study confirm previous reports which indicated that inoculation with PVY had a detrimental effect on the yield and quality of tobacco. The severity of the effects was generally related to the length of time that the virus was present in the host, with late infections having less effect than early infections. An important aspect that evolved from the present study is the differences in reactions of the various strains (necrotic to mild strains) of PVY on the tobacco cultivars tested. A direct correlation was evident between the virulence of the different PVY strains and the effect of O/sub 2/-uptake of the host. cDNA probes prepared from PVY-RNA are specific to RNA extracted from purified PVY suspensions as well as crude sap from tobacco plants infected with the PVY strains used in this study. Radioactive probes and /sup 32/Phosporus labelling were used in the DNA and RNA studies of PVY. A procedure described by Bar-Joseph, et al (1983) were used successfully for the isolation of viral double-stranded RNA from various tissues. However, from the results obtained in this study it is clear that this method is of little or no value for the detection and diagnosis of PVY strains.

  18. [Characteristics of long-term persisting strains of tick-borne encephalitis virus in different forms of the chronic process in animals].

    Science.gov (United States)

    Frolova, T V; Pogodina, V V; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    The properties of the Vasilchenko strain of tick-borne encephalitis (TBE) virus and its 3 variants isolated at various stages of persistent infection (383, 453, and 535 days) in Macaca rhesus monkeys and Syrian hamsters with different forms of the chronic TBE were studied. The process characterized by chronic focal inflammatory-degenerative changes in the brains of hamsters without the disturbance of motor functions was associated with persistence of different kinds of virus-specific antigens without virulent virus production. Brain explants of this group of hamsters yielded a virus with cytopathogenic properties but not pathogenic for mice. In a chronic disease developing without the initial acute period, a virus was recovered from hamsters which proved to be virulent for mice and to possess the hemagglutinating and high invasive activity. The most virulent strain was isolated from monkeys with continuously progressive chronic encephalitis with steady paralysis of the extremities. This isolate differed from the parental Vasilchenko strain by a high pathogenicity for hamsters by intracerebral and subcutaneous routes, and thermostability at 50 degrees C.

  19. Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga.

    Science.gov (United States)

    Chiramel, Abhilash I; Banadyga, Logan; Dougherty, Jonathan D; Falzarano, Darryl; Martellaro, Cynthia; Brees, Dominique; Taylor, R Travis; Ebihara, Hideki; Best, Sonja M

    2016-10-15

    Antiviral therapeutics with existing clinical safety profiles would be highly desirable in an outbreak situation, such as the 2013-2016 emergence of Ebola virus (EBOV) in West Africa. Although, the World Health Organization declared the end of the outbreak early 2016, sporadic cases of EBOV infection have since been reported. Alisporivir is the most clinically advanced broad-spectrum antiviral that functions by targeting a host protein, cyclophilin A (CypA). A modest antiviral effect of alisporivir against contemporary (Makona) but not historical (Mayinga) EBOV strains was observed in tissue culture. However, this effect was not comparable to observations for an alisporivir-susceptible virus, the flavivirus tick-borne encephalitis virus. Thus, EBOV does not depend on (CypA) for replication, in contrast to many other viruses pathogenic to humans. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Detection of an untyped strain of bovine respiratory syncytial virus in a dairy herd

    Directory of Open Access Journals (Sweden)

    Ingrid Bortolin Affonso

    2014-10-01

    Full Text Available Bovine respiratory syncytial virus (BRSV causes important lower respiratory tract illness in calves. According to F and G proteins genetic sequences, three BRSV subgroups have been reported and characterized in several countries, showing differences in its distribution. In Brazil, the virus is widely disseminated throughout the herds and the few characterized isolates revealed the solely occurrence of the subgroup B. This study describes the detection and characterization of an untyped BRSV strain from a twenty-days-old calf from a herd without clinical respiratory disease. Nasal swabs were analyzed by RT-nested PCR for the F and G proteins genes. One sample has amplified the F protein gene. Sequencing and subsequent phylogenetic reconstruction were accomplished, revealing that the strain could not be grouped with any other BRSV subgroups reported. This result may suggest that the BRSV is in constantly evolution, even in Brazil, where the vaccination is not a common practice. More detailed studies about BRSV characterization are necessary to know the virus subgroups distribution among the Brazilian herds to recommend appropriated immunoprophylaxis.

  1. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies.

    NARCIS (Netherlands)

    N.M.C. Bleumink-Pluym; A.D.M.E. Osterhaus (Albert); M.C. Horzinek; B.A.M. van der Zeijst (Ben); H.G.M. Niesters (Bert)

    1987-01-01

    textabstractSixteen monoclonal antibodies (Mcabs) were prepared against infectious bronchitis virus strain M41, all of them reacting with the peplomer protein. One of them, Mcab 13, was able to neutralize the virus and to inhibit hemagglutination. Competition binding assays allowed the definition of

  2. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains.

    Science.gov (United States)

    Silvério, D; Lopes, A M; Melo-Ferreira, J; Magalhães, M J; Monterroso, P; Serronha, A; Maio, E; Alves, P C; Esteves, P J; Abrantes, J

    2018-02-11

    Rabbit haemorrhagic disease (RHD) is a viral disease that affects the European rabbit. RHD was detected in 1984 in China and rapidly disseminated worldwide causing a severe decline in wild rabbit populations. The aetiological agent, rabbit haemorrhagic disease virus (RHDV), is an RNA virus of the family Caliciviridae, genus Lagovirus. Pathogenic (G1-G6 or variants GI.1a-GI.1d) and non-pathogenic strains (GI.4) have been characterized. In 2010, a new variant of RHDV, RHDV2/RHDVb/GI.2, was detected in France. GI.2 arrived to the Iberian Peninsula in 2011, and several recombination events were reported. Here, we sequenced full genomes of 19 samples collected in Portugal between 2014 and 2016. New GI.2 recombinant strains were detected, including triple recombinants. These recombinants possess a non-structural protein p16 related to a non-pathogenic strain. Evolutionary analyses were conducted on GI.2 VP60 sequences. Estimated time to the most recent common ancestor (tMRCA) suggests an emergence of GI.2 in July 2008, not distant from its first detection in 2010. This is the first study on GI.2 evolution and highlights the need of continued monitoring and characterization of complete genome sequences when studying lagoviruses' evolution. © 2018 Blackwell Verlag GmbH.

  3. Characterisation of foot-and-mouth disease virus strains circulating in Turkey during 1996-2004

    DEFF Research Database (Denmark)

    Parlak, Ü.; Özyörük, F.; Knowles, N.J.

    2007-01-01

    Two genotypes of foot-and-mouth disease virus serotype A were identified as the cause of disease outbreaks in Turkey during 1996-2004, while serotype O strains, identified during the same period, seem to represent an evolutionary continuum, and Asia1 strains were only rarely identified. The data...... genotypes. It is suggested that further studies to reveal the nature of the difference in epidemiological dynamics of type A and type O strains might lead to an understanding of the measures required to control foot-and-mouth disease in islands of persistent circulation....

  4. Different pattern of haemagglutinin immunoreactivity of equine influenza virus strains isolated in Poland

    Directory of Open Access Journals (Sweden)

    Kwaśnik Małgorzata

    2015-12-01

    Full Text Available The immunoreactivity of haemagglutinin (HA polypeptides of equine influenza virus was compared among the strains isolated in Poland, using H3 monoclonal antibody. A stronger signal in immunoblot reaction was observed for A/equi/Pulawy/2008 HA polypeptides compared to A/equi/Pulawy/2006, despite the fact that both strains are phylogenetically closely related and belong to Florida clade 2 of American lineage. The strongest signal, observed in the case of A/equi/Pulawy/2008, seemed to be connected with the presence of G135, I213, E379, and/or V530 instead of R135, M213, G379, and I530 present in A/equi/Pulawy/2006 HA sequence. This implies that point mutations within amino acid sequences of HA polypeptides of equine influenza virus may change their immunoreactivity even when they are not located within five basic antigenic sites.

  5. Pathogenesis of New Strains of Newcastle Disease Virus From Israel and Pakistan.

    Science.gov (United States)

    Pandarangga, P; Brown, C C; Miller, P J; Haddas, R; Rehmani, S F; Afonso, C L; Susta, L

    2016-07-01

    In the past few years, Newcastle disease virus (NDV) strains with epizootic characteristics belonging to subgenotypes VIIi and XIIIb emerged in the Middle East and Asia. In this study, 2 NDV strains-1 representative of subgenotype VIIi isolated in Israel (Kvuzat/13) and 1 representative of subgenotype XIIIb isolated in Pakistan (Karachi/07)-were characterized by intracerebral pathogenicity index and detailed clinicopathologic assessment. The intracerebral pathogenicity index values for Kvuzat/13 and Karachi/07 were 1.89 and 1.85, respectively, classifying these strains as virulent by international standards. In 4-week-old White Leghorn chickens, both strains caused 100% mortality within 4 (Kvuzat/13) and 5 (Karachi/07) days postinfection. Histopathology and immunohistochemistry for NDV nucleoprotein showed that both strains had wide systemic distribution, especially targeting lymphoid organs and mucosa-associated lymphoid tissues in the respiratory and intestinal tracts. Results of the animal experiment confirm that both Kvuzat/13 and Karachi/07 are highly virulent and behaved as velogenic viscerotropic NDV strains. © The Author(s) 2016.

  6. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William P Halford

    2011-03-01

    Full Text Available Glycoprotein D (gD-2 is the entry receptor of herpes simplex virus 2 (HSV-2, and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0⁻ virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain. In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0⁻ virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.

  7. Whole Genome Analysis of Two Novel Type 2 Porcine Reproductive and Respiratory Syndrome Viruses with Complex Genome Recombination between Lineage 8, 3, and 1 Strains Identified in Southwestern China

    Directory of Open Access Journals (Sweden)

    Long Zhou

    2018-06-01

    Full Text Available Recombination among porcine reproductive and respiratory syndrome viruses (PRRSVs is thought to contribute to the emergence of new PRRSV variants. In this study, two newly emerged PRRSV strains, designated SCcd16 and SCya17, are isolated from lung tissues of piglets in Southwestern China. Genome comparative analysis reveals that SCcd16/SCya17 exhibit 93.1%/93.2%, 86.9%/87.0%, 85.3%/85.7%, and 83.6%/82.0% nucleotide similarity to PRRSVs JXA1, VR-2332, QYYZ and NADC30, respectively. They only exhibit 44.8%/45.1% sequence identity with LV (PRRSV-1, indicating that both emergent strains belong to the PRRSV-2 genotype. Genomic sequence alignment shows that SCcd16 and SCya17 have the same discontinuous 30-amino acid (aa deletion in Nsp2 of the highly pathogenic Chinese PRRSV strain JXA1, when compared to strain VR-2332. Notably, SCya17 shows a unique 5-nt deletion in its 3’-UTR. Phylogenetic analysis shows that both of the isolates are classified in the QYYZ-like lineage based on ORF5 genotyping, whereas they appear to constitute an inter-lineage between JXA1-like and QYYZ-like lineages based on their genomic sequences. Furthermore, recombination analyses reveal that the two newly emerged PRRSV isolates share the same novel recombination pattern. They have both likely originated from multiple recombination events between lineage 8 (JXA1-like, lineage 1 (NADC30-like, and lineage 3 (QYYZ-like strains that have circulated in China recently. The genomic data from SCcd16 and SCya17 indicate that there is on going evolution of PRRSV field strains through genetic recombination, leading to outbreaks in the pig populations in Southwestern China.

  8. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.; Trubey, Charles M.; Raja, Nicholas U.; Deitz, Stephen B.; Woraratanadharm, Jan; Luo Min; Yu Hong; Swain, Benjamin M.; Moore, Kevin M.; Dong, John Y.

    2006-01-01

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10 7 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  9. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers.

    Science.gov (United States)

    Tsai, Ming-Han; Lin, Xiaochen; Shumilov, Anatoliy; Bernhardt, Katharina; Feederle, Regina; Poirey, Remy; Kopp-Schneider, Annette; Pereira, Bruno; Almeida, Raquel; Delecluse, Henri-Jacques

    2017-02-07

    The Epstein-Barr virus (EBV) is etiologically associated with the development of multiple types of tumors, but it is unclear whether this diversity is due to infection with different EBV strains. We report a comparative characterization of SNU719, GP202, and YCCEL1, three EBV strains that were isolated from gastric carcinomas, M81, a virus isolated in a nasopharyngeal carcinoma and several well-characterized laboratory type A strains. We found that B95-8, Akata and GP202 induced cell growth more efficiently than YCCEL1, SNU719 and M81 and this correlated positively with the expression levels of the viral BHRF1 miRNAs. In infected B cells, all strains except Akata and B95-8 induced lytic replication, a risk factor for carcinoma development, although less efficiently than M81. The panel of viruses induced tumors in immunocompromised mice with variable speed and efficacy that did not strictly mirror their in vitro characteristics, suggesting that additional parameters play an important role. We found that YCCEL1 and M81 infected primary epithelial cells, gastric carcinoma cells and gastric spheroids more efficiently than Akata or B95-8. Reciprocally, Akata and B95-8 had a stronger tropism for B cells than YCCEL1 or M81. These data suggest that different EBV strains will induce the development of lymphoid tumors with variable efficacy in immunocompromised patients and that there is a parallel between the cell tropism of the viral strains and the lineage of the tumors they induce. Thus, EBV strains can be endowed with properties that will influence their transforming abilities and the type of tumor they induce.

  10. Carlow virus, a 2002 GII.4 variant Norovirus strain from Ireland.

    LENUS (Irish Health Repository)

    Kearney, Karen

    2007-01-01

    BACKGROUND: Noroviruses are the leading cause of infectious non-bacterial gastroenteritis in Ireland (population 4 million). Due to the number of outbreaks, its massive impact on the Irish health service and its seasonality, Norovirus has gained public notoriety as The Winter Vomiting Bug. The increase in cases in Ireland in the 2002-2003 season coincided with the emergence of two new Genogroup II genotype 4 variant clusters of Norovirus worldwide. RESULTS: Little research has been done on the epidemiology or molecular biology of Norovirus strains in Ireland. In an effort to combat this discrepancy, we cloned a full length human norovirus genome as a cDNA clone (J3) which can produce full length transcripts in vitro. A polymerase mutant cDNA clone (X1), in addition to a sub genomic cDNA clone (1A) were produced for use in future work. Carlow virus (Hu\\/NoV\\/GII\\/Carlow\\/2002\\/Ire) genome is 7559 nts in length, excluding the 3-end poly A tail and represents the first Norovirus strain from Ireland to be sequenced. CONCLUSION: Carlow virus is a member of the Farmington Hills variant cluster of Genogroup II genotype 4 noroviruses.

  11. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  12. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc.

    Science.gov (United States)

    Tian, Yan-Ping; Valkonen, Jari P T

    2015-09-01

    Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  13. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain

    DEFF Research Database (Denmark)

    Martella, V.; Blixenkrone-Møller, Merete; Elia, G.

    2011-01-01

    Both egg- and cell-adapted canine distemper virus (CDV) vaccines are suspected to retain residual virulence, especially if administered to immuno-suppressed animals, very young pups or to highly susceptible animal species. In the early 1980s, post-vaccine encephalitis was reported in dogs from...... in the sequence databases. Also, Rockborn-like strains were identified in two vaccines currently in the market. These findings indicate that Rockborn-like viruses may be recovered from dogs or other carnivores with distemper, suggesting cases of residual virulence of vaccines, or circulation of vaccine...

  14. Epstein-Barr virus strains and variations: Geographic or disease-specific variants?

    Science.gov (United States)

    Neves, Marco; Marinho-Dias, Joana; Ribeiro, Joana; Sousa, Hugo

    2017-03-01

    The Epstein-Barr Virus (EBV) is associated with the development of several diseases, including infectious mononucleosis (IM), Burkitt's Lymphoma (BL), Nasopharyngeal Carcinoma, and other neoplasias. The publication of EBV genome 1984 led to several studies regarding the identification of different viral strains. Currently, EBV is divided into EBV type 1 (B95-8 strain) and EBV type 2 (AG876 strain), also known as type A and type B, which have been distinguished based upon genetic differences in the Epstein-Barr nuclear antigens (EBNAs) sequence. Several other EBV strains have been described in the past 10 years considering variations on EBV genome, and many have attempted to clarify if these variations are ethnic or geographically correlated, or if they are disease related. Indeed, there is an increasing interest to describe possible specific disease associations, with emphasis on different malignancies. These studies aim to clarify if these variations are ethnic or geographically correlated, or if they are disease related, thus being important to characterize the epidemiologic genetic distribution of EBV strains on our population. Here, we review the current knowledge on the different EBV strains and variants and its association with different diseases. J. Med. Virol. 89:373-387, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Effect of the South African asinine-94 strain of equine arteritis virus (EAV) in pregnant donkey mares and duration of maternal immunity in foals.

    Science.gov (United States)

    Paweska, J T

    1997-06-01

    Clinical, virological and serological responses were investigated in five pregnant donkey mares after experimental exposure to the South African asinine-94 strain of equine arteritis virus (EAV), and the duration of maternal immunity to EAV was studied in their foals. In four intranasally inoculated mares, fever with maximum rectal temperatures of 39.1-40.7 degrees C was recorded 2-11 d after challenge. All the inoculated mares developed mild depression, and a serous ocular and nasal discharge; in three mares mild conjuctivitis was observed. The virus was recovered from the nasopharynx and from buffy-coat samples of all the mares 3-10 d, and 2-18 d post inoculation (p.i.), respectively. Seroconversion to EAV was detected on days 8-10 p.i. Peak serum-virus-neutralizing antibody titres of log10 1.8-2.4, and IgG ELISA OD values of 0.85-2.15 were recorded 2-3 weeks p.i. The in-contact (p.c.) control mare developed fever on days 15-19 post exposure, and showed mild clinical signs of equine viral arteritis similar to those observed in the inoculated mares. Seroconversion to EAV was detected in the p.c. mare on day 20 post exposure, and virus was isolated from nasal swabs and blood samples collected at the time of the febrile response and 1-3 d afterwards. None of the mares aborted. After they had given normal birth 45-128 d p.i. or after p.c. exposure, no virus could be isolated from their placentas. The concentration of EAV-neutralizing antibody in colostrum was two to eight times higher than in serum samples collected at the time of parturition. All the foals born to infected mares were clinically normal at the time of birth and throughout the subsequent 1-2 months of observation. No EAV was recovered from the buffy-coat fraction of blood samples collected at birth nor from those collected on days 1, 2 and 7 after birth. Also, no virus-serum-neutralizing or IgG ELISA antibody to EAV was detected in sera collected immediately after birth before the foals started nursing

  16. Distribution, persistence and interchange of Epstein-Barr virus strains among PBMC, plasma and saliva of primary infection subjects.

    Science.gov (United States)

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle.

  17. Whole-genome characterization of Uruguayan strains of avian infectious bronchitis virus reveals extensive recombination between the two major South American lineages.

    Science.gov (United States)

    Marandino, Ana; Tomás, Gonzalo; Panzera, Yanina; Greif, Gonzalo; Parodi-Talice, Adriana; Hernández, Martín; Techera, Claudia; Hernández, Diego; Pérez, Ruben

    2017-10-01

    Infectious bronchitis virus (Gammacoronavirus, Coronaviridae) is a genetically variable RNA virus that causes one of the most persistent respiratory diseases in poultry. The virus is classified in genotypes and lineages with different epidemiological relevance. Two lineages of the GI genotype (11 and 16) have been widely circulating for decades in South America. GI-11 is an exclusive South American lineage while the GI-16 lineage is distributed in Asia, Europe and South America. Here, we obtained the whole genome of two Uruguayan strains of the GI-11 and GI-16 lineages using Illumina high-throughput sequencing. The strains here sequenced are the first obtained in South America for the infectious bronchitis virus and provide new insights into the origin, spreading and evolution of viral variants. The complete genome of the GI-11 and GI-16 strains have 27,621 and 27,638 nucleotides, respectively, and possess the same genomic organization. Phylogenetic incongruence analysis reveals that both strains have a mosaic genome that arose by recombination between Euro Asiatic strains of the GI-16 lineage and ancestral South American GI-11 viruses. The recombination occurred in South America and produced two viral variants that have retained the full-length S1 sequences of the parental lineages but are extremely similar in the rest of their genomes. These recombinant virus have been extraordinary successful, persisting in the continent for several years with a notorious wide geographic distribution. Our findings reveal a singular viral dynamics and emphasize the importance of complete genomic characterization to understand the emergence and evolutionary history of viral variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterization of field isolates of Suid herpesvirus 1 (Aujeszky's disease virus) as derivatives of attenuated vaccine strains

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Medveczky, I.; Strandbygaard, Bertel

    1992-01-01

    Field isolates of suid herpesvirus 1 (Aujeszky's disease virus) from Poland and Hungary were identified by restriction fragment pattern analysis as derivatives of attenuated vaccine strains. The Polish isolates were found to be related to the BUK-TK-900 strain (Suivac A) which is widely used...

  19. Functional replacement of Wheat streak mosaic virus HC-Pro with the corresponding cistron from a diverse array of viruses in the family Potyviridae

    International Nuclear Information System (INIS)

    Stenger, Drake C.; French, Roy

    2004-01-01

    Helper component-proteinase (HC-Pro) of Wheat streak mosaic virus strain Sidney 81 (WSMV-Sidney 81) was systematically replaced with the corresponding cistron derived from four strains of WSMV (Type, TK1, CZ, and El Batan 3), the tritimovirus Oat necrotic mottle virus (ONMV), the rymoviruses Agropyron mosaic virus (AgMV) and Hordeum mosaic virus (HoMV), or the potyviruses Tobacco etch virus (TEV) and Turnip mosaic virus (TuMV). These HC-Pro proteins varied in amino acid sequence identity shared with HC-Pro of WSMV-Sidney 81 from high (strains of WSMV at ∼86-99%) to moderate (ONMV at 70%) to low (rymoviruses and potyviruses at ∼15-17%). Surprisingly, all chimeric viral genomes examined were capable of systemic infection of wheat upon inoculation with RNA transcripts produced in vitro. HC-Pro replacements derived from tritimoviruses did not alter host range relative to WSMV-Sidney 81, as each of these chimeric viruses was able to systemically infect wheat, oat, and corn line SDp2. These results indicate that differences in host range among tritimoviruses, including the inability of ONMV to infect wheat or the inability of WSMV strains Type and El Batan 3 to infect SDp2 corn, are not determined by HC-Pro. In contrast, all chimeric viruses bearing HC-Pro replacements derived from rymoviruses or potyviruses were unable to infect SDp2 corn and oat. Collectively, these results indicate that HC-Pro from distantly related virus species of the family Potyviridae are competent to provide WSMV-Sidney 81 with all functions necessary for infection of a permissive host (wheat) and that virus-host interactions required for systemic infection of oat and SDp2 corn are more stringent. Changes in symptom severity or mechanical transmission efficiency observed for some chimeric viruses further suggest that HC-Pro affects virulence in WSMV

  20. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8

    NARCIS (Netherlands)

    Coetzee, M.P.A.; Vuuren, van M.; Stokstad, M.; Myrmel, M.; Gennip, van H.G.P.; Rijn, van P.A.; Venter, E.H.

    2014-01-01

    Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the

  1. Characterization of sour cherry isolates of plum pox virus from the Volga Basin in Russia reveals a new cherry strain of the virus.

    Science.gov (United States)

    Glasa, Miroslav; Prikhodko, Yuri; Predajňa, Lukáš; Nagyová, Alžbeta; Shneyder, Yuri; Zhivaeva, Tatiana; Subr, Zdeno; Cambra, Mariano; Candresse, Thierry

    2013-09-01

    Plum pox virus (PPV) is the causal agent of sharka, the most detrimental virus disease of stone fruit trees worldwide. PPV isolates have been assigned into seven distinct strains, of which PPV-C regroups the genetically distinct isolates detected in several European countries on cherry hosts. Here, three complete and several partial genomic sequences of PPV isolates from sour cherry trees in the Volga River basin of Russia have been determined. The comparison of complete genome sequences has shown that the nucleotide identity values with other PPV isolates reached only 77.5 to 83.5%. Phylogenetic analyses clearly assigned the RU-17sc, RU-18sc, and RU-30sc isolates from cherry to a distinct cluster, most closely related to PPV-C and, to a lesser extent, PPV-W. Based on their natural infection of sour cherry trees and genomic characterization, the PPV isolates reported here represent a new strain of PPV, for which the name PPV-CR (Cherry Russia) is proposed. The unique amino acids conserved among PPV-CR and PPV-C cherry-infecting isolates (75 in total) are mostly distributed within the central part of P1, NIa, and the N terminus of the coat protein (CP), making them potential candidates for genetic determinants of the ability to infect cherry species or of adaptation to these hosts. The variability observed within 14 PPV-CR isolates analyzed in this study (0 to 2.6% nucleotide divergence in partial CP sequences) and the identification of these isolates in different localities and cultivation conditions suggest the efficient establishment and competitiveness of the PPV-CR in the environment. A specific primer pair has been developed, allowing the specific reverse-transcription polymerase chain reaction detection of PPV-CR isolates.

  2. CD8+ T Cells Complement Antibodies in Protecting against Yellow Fever Virus

    DEFF Research Database (Denmark)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A

    2015-01-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model...... of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune...... response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination...

  3. Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus.

    Directory of Open Access Journals (Sweden)

    Veljko M Nikolin

    Full Text Available Theoretically, homogeneous environments favor the evolution of specialists whereas heterogeneous environments favor generalists. Canine distemper is a multi-host carnivore disease caused by canine distemper virus (CDV. The described cell receptor of CDV is SLAM (CD150. Attachment of CDV hemagglutinin protein (CDV-H to this receptor facilitates fusion and virus entry in cooperation with the fusion protein (CDV-F. We investigated whether CDV strains co-evolved in the large, homogeneous domestic dog population exhibited specialist traits, and strains adapted to the heterogeneous environment of smaller populations of different carnivores exhibited generalist traits. Comparison of amino acid sequences of the SLAM binding region revealed higher similarity between sequences from Canidae species than to sequences from other carnivore families. Using an in vitro assay, we quantified syncytia formation mediated by CDV-H proteins from dog and non-dog CDV strains in cells expressing dog, lion or cat SLAM. CDV-H proteins from dog strains produced significantly higher values with cells expressing dog SLAM than with cells expressing lion or cat SLAM. CDV-H proteins from strains of non-dog species produced similar values in all three cell types, but lower values in cells expressing dog SLAM than the values obtained for CDV-H proteins from dog strains. By experimentally changing one amino acid (Y549H in the CDV-H protein of one dog strain we decreased expression of specialist traits and increased expression of generalist traits, thereby confirming its functional importance. A virus titer assay demonstrated that dog strains produced higher titers in cells expressing dog SLAM than cells expressing SLAM of non-dog hosts, which suggested possible fitness benefits of specialization post-cell entry. We provide in vitro evidence for the expression of specialist and generalist traits by CDV strains, and fitness trade-offs across carnivore host environments caused by

  4. Antagonistic Pleiotropy and Fitness Trade-Offs Reveal Specialist and Generalist Traits in Strains of Canine Distemper Virus

    Science.gov (United States)

    Nikolin, Veljko M.; Osterrieder, Klaus; von Messling, Veronika; Hofer, Heribert; Anderson, Danielle; Dubovi, Edward; Brunner, Edgar; East, Marion L.

    2012-01-01

    Theoretically, homogeneous environments favor the evolution of specialists whereas heterogeneous environments favor generalists. Canine distemper is a multi-host carnivore disease caused by canine distemper virus (CDV). The described cell receptor of CDV is SLAM (CD150). Attachment of CDV hemagglutinin protein (CDV-H) to this receptor facilitates fusion and virus entry in cooperation with the fusion protein (CDV-F). We investigated whether CDV strains co-evolved in the large, homogeneous domestic dog population exhibited specialist traits, and strains adapted to the heterogeneous environment of smaller populations of different carnivores exhibited generalist traits. Comparison of amino acid sequences of the SLAM binding region revealed higher similarity between sequences from Canidae species than to sequences from other carnivore families. Using an in vitro assay, we quantified syncytia formation mediated by CDV-H proteins from dog and non-dog CDV strains in cells expressing dog, lion or cat SLAM. CDV-H proteins from dog strains produced significantly higher values with cells expressing dog SLAM than with cells expressing lion or cat SLAM. CDV-H proteins from strains of non-dog species produced similar values in all three cell types, but lower values in cells expressing dog SLAM than the values obtained for CDV-H proteins from dog strains. By experimentally changing one amino acid (Y549H) in the CDV-H protein of one dog strain we decreased expression of specialist traits and increased expression of generalist traits, thereby confirming its functional importance. A virus titer assay demonstrated that dog strains produced higher titers in cells expressing dog SLAM than cells expressing SLAM of non-dog hosts, which suggested possible fitness benefits of specialization post-cell entry. We provide in vitro evidence for the expression of specialist and generalist traits by CDV strains, and fitness trade-offs across carnivore host environments caused by antagonistic

  5. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species.

    Science.gov (United States)

    Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A; Revilla, Eloy; O'Brien, Stephen J

    2005-07-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.

  6. Seroprevalence and Genomic Divergence of Circulating Strains of Feline Immunodeficiency Virus among Felidae and Hyaenidae Species†

    Science.gov (United States)

    Troyer, Jennifer L.; Pecon-Slattery, Jill; Roelke, Melody E.; Johnson, Warren; VandeWoude, Sue; Vazquez-Salat, Nuria; Brown, Meredith; Frank, Laurence; Woodroffe, Rosie; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Bush, Mitch; Alexander, Kathleen A.; Revilla, Eloy; O'Brien, Stephen J.

    2005-01-01

    Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today. PMID:15956574

  7. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  8. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    Full Text Available Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1 viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1 and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs. ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  9. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Science.gov (United States)

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  10. Atypical patterns of neural infection produced in mice by drug-resistant strains of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Anderson, J R; Wildy, P

    1982-03-01

    Mice inoculated intracerebrally (i.c.) with a mutant strain of HSV were found to develop cataracts 1 to 2 months after inoculation. Cataract formation was subsequently shown to follow an acute retinitis which commenced within 1 week of inoculation. The mutant had been selected for high resistance to the nucleoside analogue acyclovir and has been shown previously to be defective in the induction of thymidine kinase and also to express an altered DNA polymerase. The LD50 for mice inoculated i.c. was greater than 10(5) p.f.u. compared with approx 7 p.f.u. for the parental strain. Studies of virus replication following i.c. inoculation with a sublethal dose of the mutant revealed that only small amounts of infectious virus were produced in the brain, but during a period from 6 to 12 days after inoculation vigorous replication occurred in retinal tissue, producing very high titres of virus.

  11. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus

    International Nuclear Information System (INIS)

    Zhang Shuliu; Li Li; Woodson, Sara E.; Huang, Claire Y.-H.; Kinney, Richard M.; Barrett, Alan D.T.; Beasley, David W.C.

    2006-01-01

    Substitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence. The L107F mutation also abolished binding of a non-neutralizing MAb, 3D9, whose epitope had not been previously identified. MAb 3D9 was subsequently shown to be broadly cross-reactive with other flaviviruses, consistent with binding near the highly conserved fusion loop

  12. S1 gene sequence analysis of infectious bronchitis virus vaccinal strains (H120 & H52 and their embryo-passaged derivatives

    Directory of Open Access Journals (Sweden)

    Bakhshesh, M.

    2016-07-01

    Full Text Available Avian infectious bronchitis is an acute and highly contagious disease that mainly causes respiratory symptoms in poultry. A number of serotypes and variants of the viral agent with poor cross-protection are the major problem to achieve desired immunity from vaccination. The S1 subunit of S glycoprotein (spike is the major determinant of IBV so that a minor change in amino acid sequence of this protein, alters the virus strain. Therefore, characterization of the sequence of S1 gene is necessary to identify virus strains and their similarities with the vaccinal strains. In this research, the S1 sequence of H52 and H120 vaccinal strains of Razi Institute was fully characterized, and also the effect of serial passages in embryonated - eggs (5 passages beyond the master seed on the S1 gene was investigated. The results showed that H120 and H52 strains of Razi Institute are 100% identical to the reference vaccine strains available in the GenBank. In addition, the H52 strain showed one amino acid substitution from the 3rd passage in which Glycine (G was replaced by Valine (V at position 118 making these passages exactly identical to the H120 strain while no change occurred for the H120 strain during these passages. Analysis of the original vaccinal strains which are widely administered in Iran, is definitely useful for prevention and control strategies against the circulating viruses. To identify the genetic change(s responsible for attenuation of these strains during passages in embryonated-egg, characterization of other genes, especially those involved in replication is recommended.

  13. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    Science.gov (United States)

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-07-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses.

  14. Mutation profiling of the hepatitis B virus strains circulating in North Indian population.

    Directory of Open Access Journals (Sweden)

    Amit Tuteja

    Full Text Available AIMS: The aim of this study was to investigate the genomic mutations in the circulating Hepatitis B virus strains causing infection in the Indian population. Further, we wanted to analyze the biological significance of these mutations in HBV mediated disease. METHODS: 222 HBsAg positive patients were enrolled in the study. The genotype and mutation profile was determined for the infecting HBV isolate by sequencing overlapping fragments. These sequences were analyzed by using different tools and compared with previously available HBV sequence information. Mutation Frequency Index (MFI for the Genes and Diagnosis group was also calculated. RESULTS: HBV Genotype D was found in 55% (n = 121 of the patient group and genotype A was found in 30% (n = 66 of samples. The majority (52% of the HBV-infected individuals in the present study were HBeAg-negative in all the age groups studied. Spontaneous drug associated mutations implicated in resistance to antiviral therapy were also identified in about quarter of our patients, which is of therapeutic concern. The MFI approach used in the study indicated that Core peptide was the most conserved region in both genotypes and Surface peptide had highest mutation frequency. Few mutations in X gene (T36A and G50R showed high frequency of association with HCC. A rare recombinant strain of HBV genotype A and D was also identified in the patient group. CONCLUSIONS: HBV genotype D was found out to be most prevalent. More than half of the patients studied had HBeAg negative disease. Core region was found to be most conserved. Drug Associated mutations were detected in 22% of the patient group and T36A and G50R mutations in X gene were found to be associated with HCC.

  15. Recombinant canine distemper virus strain snyder hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret

    NARCIS (Netherlands)

    M. Ludlow (Martin); D.T. Nguyen (Tien); D. Silin; O. Lyubomska; R.D. de Vries (Rory); V. von Messling; S. McQuaid (Stephen); R.L. de Swart (Rik); W.P. Duprex (Paul)

    2012-01-01

    textabstractThe propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDVSH) and show that this virus rapidly

  16. 17th Century Variola Virus Reveals the Recent History of Smallpox.

    Science.gov (United States)

    Duggan, Ana T; Perdomo, Maria F; Piombino-Mascali, Dario; Marciniak, Stephanie; Poinar, Debi; Emery, Matthew V; Buchmann, Jan P; Duchêne, Sebastian; Jankauskas, Rimantas; Humphreys, Margaret; Golding, G Brian; Southon, John; Devault, Alison; Rouillard, Jean-Marie; Sahl, Jason W; Dutour, Olivier; Hedman, Klaus; Sajantila, Antti; Smith, Geoffrey L; Holmes, Edward C; Poinar, Hendrik N

    2016-12-19

    Smallpox holds a unique position in the history of medicine. It was the first disease for which a vaccine was developed and remains the only human disease eradicated by vaccination. Although there have been claims of smallpox in Egypt, India, and China dating back millennia [1-4], the timescale of emergence of the causative agent, variola virus (VARV), and how it evolved in the context of increasingly widespread immunization, have proven controversial [4-9]. In particular, some molecular-clock-based studies have suggested that key events in VARV evolution only occurred during the last two centuries [4-6] and hence in apparent conflict with anecdotal historical reports, although it is difficult to distinguish smallpox from other pustular rashes by description alone. To address these issues, we captured, sequenced, and reconstructed a draft genome of an ancient strain of VARV, sampled from a Lithuanian child mummy dating between 1643 and 1665 and close to the time of several documented European epidemics [1, 2, 10]. When compared to vaccinia virus, this archival strain contained the same pattern of gene degradation as 20 th century VARVs, indicating that such loss of gene function had occurred before ca. 1650. Strikingly, the mummy sequence fell basal to all currently sequenced strains of VARV on phylogenetic trees. Molecular-clock analyses revealed a strong clock-like structure and that the timescale of smallpox evolution is more recent than often supposed, with the diversification of major viral lineages only occurring within the 18 th and 19 th centuries, concomitant with the development of modern vaccination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    Thoulouze, Maria-Isabel; Lafage, Mireille; Yuste, Victor J.; Baloul, Leiela; Edelman, Lena; Kroemer, Guido; Israel, Nicole; Susin, Santos A.; Lafon, Monique

    2003-01-01

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  18. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus.

    Science.gov (United States)

    Lihoradova, Olga A; Indran, Sabarish V; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  19. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains.

    Science.gov (United States)

    Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru

    2016-05-01

    The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This

  20. Competitive virus assay method for titration of noncytopathogenic bovine viral diarrhea viruses (END⁺ and END⁻ viruses).

    Science.gov (United States)

    Muhsen, Mahmod; Ohi, Kota; Aoki, Hiroshi; Ikeda, Hidetoshi; Fukusho, Akio

    2013-03-01

    A new, reliable and secure virus assay method, named the competitive virus assay (CVA) method, has been established for the titration of bovine viral diarrhea viruses (BVDVs) that either show the exaltation of Newcastle disease virus (END) phenomenon or heterologous interference phenomenon (but not the END phenomenon). This method is based on the principle of (1) homologous interference between BVDVs, by using BVDV RK13/E(-) or BVDV RK13/E(+) strains as competitor virus, and (2) END phenomenon and heterologous interference, by using attenuated Newcastle disease virus (NDV) TCND strain as challenge virus. In titration of BVDV END(+) and BVDV END(-) viruses, no significant difference in estimated virus titer was observed between CVA and conventional methods. CVA method demonstrated comparable levels of sensitivity and accuracy as conventional END and interference methods, which require the use of a velogenic Miyadera strain of NDV and vesicular stomatitis virus (VSV), both of which are agents of high-risk diseases. As such, the CVA method is a safer alternative, with increased bio-safety and bio-containment, through avoidance of virulent strains that are commonly employed with conventional methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Molecular characterization of Plum pox virus Rec isolates from Russia suggests a new insight into evolution of the strain.

    Science.gov (United States)

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Kudryavtseva, Anna; Mitrofanova, Irina

    2018-04-01

    Field isolates of Plum pox virus (PPV), belonging to the strain Rec, have been found for the first time in Russia. Full-size genomes of the isolates K28 and Kisl-1pl from myrobalan and plum, respectively, were sequenced on the 454 platform. Analysis of all known PPV-Rec complete genomes using the Recombination Detection Program (RDP4) revealed yet another recombination event in the 5'-terminal region. This event was detected by seven algorithms, implemented in the RDP4, with statistically significant P values and supported by a phylogenetic analysis with the bootstrap value of 87%. A putative PPV-M-derived segment, encompassing the C-terminus of the P1 gene and approximately two-thirds of the HcPro gene, is bordered by breakpoints at positions 760-940 and 1838-1964, depending on the recombinant isolate. The predicted 5'-distal breakpoint for the isolate Valjevka is located at position 2804. The Dideron (strain D) and SK68 (strain M) isolates were inferred as major and minor parents, respectively. Finding of another recombination event suggests more complex evolutionary history of PPV-Rec than previously assumed. Perhaps the first recombination event led to the formation of a PPV-D variant harboring the PPV-M-derived fragment within the 5'-proximal part of the genome. Subsequent recombination of its descendant with PPV-M in the 3'-proximal genomic region resulted in the emergence of the evolutionary successful strain Rec.

  2. RECOVIR Software for Identifying Viruses

    Science.gov (United States)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  3. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  4. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  5. Purification of foot-and-mouth disease virus by heparin as ligand for certain strains.

    Science.gov (United States)

    Du, Ping; Sun, Shiqi; Dong, Jinjie; Zhi, Xiaoying; Chang, Yanyan; Teng, Zhidong; Guo, Huichen; Liu, Zaixin

    2017-04-01

    The goal of this project was to develop an easily operable and scalable process for the recovery and purification of foot-and-mouth disease virus (FMDV) from cell culture. Heparin resins HipTrap Heparin HP and AF-Heparin HC-650 were utilized to purify FMDV O/HN/CHA/93. Results showed that the purity of AF-Heparin HC-650 was ideal. Then, the O/HN/CHA/93, O/Tibet/CHA/99, Asia I/HN/06, and A/CHA/HB/2009 strains were purified by AF-Heparin HC-650. Their affinity/virus recoveries were approximately 51.2%/45.8%, 71.5%/70.9%, 96.4%/73.5, and 59.5%/42.1%, respectively. During a stepwise elution strategy, the viral particles were mainly eluted at 300mM ionic strength peaks. The heparin affinity chromatography process removed more than 94% of cellular and medium proteins. Anion exchange resin Capto Q captured four FMD virus particles; 40% of binding proteins and 80%-90% of viral particles were eluted at 450mM NaCl. Moreover, ionic strength varied from 30 to 450mM had no effect on the immunity to FMDV. The results revealed that heparin sulfate may be the main receptor for CHA/99 strain attachment-susceptible cells. Heparin affinity chromatography can reach perfect results, especially when used as a ligand of the virus. Anion exchange is useful only as previous step for further purification. Copyright © 2016. Published by Elsevier B.V.

  6. Genetic and antigenic relationship of foot-and-mouth disease virus serotype O isolates with the vaccine strain O1/BFS.

    Science.gov (United States)

    Xu, Wanhong; Zhang, Zhidong; Nfon, Charles; Yang, Ming

    2018-05-15

    Foot-and-mouth disease serotype O viruses (FMDV/O) are responsible for the most outbreaks in FMD endemic countries. O1/BFS is one of the recommended FMD/O vaccine strains by World Reference Laboratory for FMD. In the current study, FMDV/O1 BFS vaccine strain and serotype O field isolates (45) were analyzed phylogenetically and antigenically to gain more insight into the genetic and antigenic characteristics of the vaccine strain and field isolates. O1/BFS showed similarity with 89% of the field isolates using a virus neutralization test (VNT). The P1 region encoding the FMDV capsid was sequenced and analysed for 46 strains of FMDV/O. Phylogenetic analysis showed these viruses originated from five continents and covered eight of 11 reported topotypes. Five isolates that demonstrated low antigenic similarities with O1/BFS were analyzed for their antigenic variation at the known neutralizing antigenic sites. Three of the five isolates demonstrated unique amino acid substitutions at various antigenic sites. No unique amino acid substitutions were observed for the other two unmatched isolates. Positively selected residues were identified on the surface of the FMD virus capsid supporting that it is important to continuously monitor field isolates for their antigenic and phenotypic changes. In conclusion, the vaccine strain O1/BFS is likely to confer protection against 89% of the 45 FMDV/O isolates based on VNT. Thus O1/BFS vaccine strain is still suitable for use in global FMD serotype O outbreak control. Combining data from phylogenetic, molecular and antigenic analysis can provide improvements in the process of vaccine selection. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Stochastic precision analysis of 2D cardiac strain estimation in vivo

    International Nuclear Information System (INIS)

    Bunting, E A; Provost, J; Konofagou, E E

    2014-01-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ε)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs. (paper)

  8. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene.

    Science.gov (United States)

    Oka, Tomoichiro; Saif, Linda J; Marthaler, Douglas; Esseili, Malak A; Meulia, Tea; Lin, Chun-Ming; Vlasova, Anastasia N; Jung, Kwonil; Zhang, Yan; Wang, Qiuhong

    2014-10-10

    The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (n=7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5-6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Heterogeneity of the Epstein-Barr Virus (EBV) Major Internal Repeat Reveals Evolutionary Mechanisms of EBV and a Functional Defect in the Prototype EBV Strain B95-8.

    Science.gov (United States)

    Ba Abdullah, Mohammed M; Palermo, Richard D; Palser, Anne L; Grayson, Nicholas E; Kellam, Paul; Correia, Samantha; Szymula, Agnieszka; White, Robert E

    2017-12-01

    Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The

  10. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  11. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Phylogenetic analysis of Austrian canine distemper virus strains from clinical samples from dogs and wild carnivores.

    Science.gov (United States)

    Benetka, V; Leschnik, M; Affenzeller, N; Möstl, K

    2011-04-09

    Austrian field cases of canine distemper (14 dogs, one badger [Meles meles] and one stone marten [Martes foina]) from 2002 to 2007 were investigated and the case histories were summarised briefly. Phylogenetic analysis of fusion (F) and haemagglutinin (H) gene sequences revealed different canine distemper virus (CDV) lineages circulating in Austria. The majority of CDV strains detected from 2002 to 2004 were well embedded in the European lineage. One Austrian canine sample detected in 2003, with a high similarity to Hungarian sequences from 2005 to 2006, could be assigned to the Arctic group (phocine distemper virus type 2-like). The two canine sequences from 2007 formed a clearly distinct group flanked by sequences detected previously in China and the USA on an intermediate position between the European wildlife and the Asia-1 cluster. The Austrian wildlife strains (2006 and 2007) could be assigned to the European wildlife group and were most closely related to, yet clearly different from, the 2007 canine samples. To elucidate the epidemiological role of Austrian wildlife in the transmission of the disease to dogs and vice versa, H protein residues related to receptor and host specificity (residues 530 and 549) were analysed. All samples showed the amino acids expected for their host of origin, with the exception of a canine sequence from 2007, which had an intermediate position between wildlife and canine viral strains. In the period investigated, canine strains circulating in Austria could be assigned to four different lineages reflecting both a high diversity and probably different origins of virus introduction to Austria in different years.

  13. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    Science.gov (United States)

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  14. Co-infection of sweet orange with severe and mild strains of citrus tristeza virus is overwhelmingly dominated by the severe strain on both the transcriptional and biological levels

    Science.gov (United States)

    Citrus tristeza is one of the most destructive citrus diseases and is caused by the phloem-restricted Closterovirus, Citrus tristeza virus. Mild strain CTV-B2 does not cause obvious symptoms on indicators whereas severe strain CTV-B6 causes symptoms, including stem pitting, cupping, yellowing and s...

  15. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  16. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  17. Measles re-emergence in Northern Italy: Pathways of measles virus genotype D8, 2013-2014.

    Science.gov (United States)

    Amendola, Antonella; Bianchi, Silvia; Lai, Alessia; Canuti, Marta; Piralla, Antonio; Baggieri, Melissa; Ranghiero, Alberto; Piatti, Alessandra; Tanzi, Elisabetta; Zehender, Gianguglielmo; Magurano, Fabio; Baldanti, Fausto

    2017-03-01

    Molecular surveillance and advanced phylogenetic methods are important tools to track the pathways of Measles virus (MV) genotypes, provide evidence for the interruption of endemic transmission and verify the elimination of the disease. The aims of this study were to describe the genetic profile of MV genotype D8 (D8-MV) strains circulating in Northern Italy (Lombardy Region) during the 2013-2014 period and to analyze the transmission chains and estimate the introduction time points using a phylogenetic approach. Forty-four strains of D8-MV identified from 12 outbreaks and 28 cases reported as sporadic were analyzed. Molecular analysis was performed by sequencing the highly variable 450nt region of the N gene of MV genome (N-450), as recommended by the WHO. Phylogenetic analyses and tree time-scaled reconstruction were performed with BEAST software. We could trace back the transmission pathways that resulted in three chains of transmission, two introductions with limited spread (two familiar outbreaks), and two single introductions (true sporadic cases). The D8-Taunton transmission chain, which was involved in 7 outbreaks and 13 sporadic cases, was endemic during the studied period. Furthermore, two novel local variants emerged independently in March 2014 and caused two transmission chains linked to at least 3 outbreaks. Overall, viral diversity was high and strains belonging to 5 different variants were identified. The results of this study clearly demonstrate that multiple lineages of D8-MV co-circulated in Northern Italy. Measles can be considered a re-emerging disease in Italy and additional efforts are necessary to achieve measles elimination goal. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hepatitis B virus subgenotypes D1 and D3 are prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Chakravarty Runu

    2009-01-01

    Full Text Available Abstract Background As the hepatitis B genotyping is important for assessing its clinical implications and geographical distribution, the sub-genotypes have been found useful for determination of specific genomic markers related to hepatocarcinogenesis. In Pakistan, there is no reported data on molecular evolutionary analysis of HBV. A study was, therefore, much needed to evaluate the spectra of mutations present in the strains prevalent here. Findings to confirm specificity of PCR typing, phylogenetic analysis of the pre-S1 region and the divergence was studied through 13 sequences of 362 bp (accession number EF432765 – EF432777. A total of 315 serum samples, selected from HBsAg positive patients representing the major ethnic groups, residing in Karachi, Sindh were tested for genotyping. Genotype D (219/315 was found to be the most prevalent (70% amongst our patients. The rest of the genotypes A and a mixture of A and D (AD were distributed as 20%, and 10% respectively. Phylogenetic tree demonstrated clustering of 11 samples with subgenotype D1 sequences and the remaining two strains on a branch within D3 samples. All samples intermixed with strains from other countries and were found to be closely related to Indian, Iranian and Egyptian HBV strains with 98.7 – 99.0% homology. Conclusion This study confirms the predominance of genotype D in southeastern Asia and presence of subgenotypes DI and D3 in the Pakistani infected patients. More studies are required to investigate the reason for fewer inclusions of D3 compared to the D1 in Pakistani HBV strains.

  19. Genetic variation of hepatitis B surface antigen among acute and chronic hepatitis B virus infections in The Netherlands.

    Science.gov (United States)

    Cremer, Jeroen; Hofstraat, Sanne H I; van Heiningen, Francoise; Veldhuijzen, Irene K; van Benthem, Birgit H B; Benschop, Kimberley S M

    2018-05-24

    Genetic variation within hepatitis B surface antigen (HBsAg), in particular within the major hydrophobic region (MHR), is related to immune/vaccine and test failures and can have a significant impact on the vaccination and diagnosis of acute infection. This study shows, for the first time, variation among acute cases and compares the amino acid variation within the HBsAg between acute and chronic infections. We analyzed the virus isolated from 1231 acute and 585 chronic cases reported to an anonymized public health surveillance database between 2004 and 2014 in The Netherlands. HBsAg analysis revealed the circulation of 6 genotypes (Gt); GtA was the dominant genotype followed by GtD among both acute (68.2% and 17.4%, respectively) and chronic (34.9% and 34.2%, respectively) cases. Variation was the highest among chronic strains compared to that among acute strains. Both acute and chronic GtD showed the highest variation compared to that of other genotypes (P < .01). Substitutions within the MHR were found in 8.5% of the acute strains and 18.6% of the chronic strains. Specific MHR substitutions described to have an impact on vaccine/immune escape and/or HBsAg test failure were found among 4.1% of the acute strains and 7.0% of the chronic strains. In conclusion, we show a high variation of HBsAg among acute and chronic hepatitis B virus-infected cases in The Netherlands, in particular among those infected with GtD, and compare, for the first time, variation in frequencies between acute and chronic cases. Additional studies on the impact of these variations on vaccination and test failure need to be conducted, as well as whether HBsAg false-negative variants have been missed. © 2018 The Authors. Journal of Medical Virology Published by Wiley Periodicals, Inc.

  20. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.

    Science.gov (United States)

    Fuchs, M; Pinck, M; Serghini, M A; Ravelonandro, M; Walter, B; Pinck, L

    1989-04-01

    The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of Mr37275. The coding sequence was bordered by a leader of 14 nucleotides and a 3'-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U.G/UGAAAAU/AU/AU/A at the 5' end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

  1. Hepatitis C virus liver disease in women infected with contaminated anti-D immunoglobulin.

    LENUS (Irish Health Repository)

    Sheehan, M M

    2012-02-03

    Screening for hepatitis C virus (HCV) infection is carried out by detection of antibodies to the virus (enzyme-linked immunosorbent assay (ELISA) and recombinant immunoblot assay (RIBA)) with confirmation by identification of HCV RNA genome in serum (polymerase chain reaction (PCR)). We describe the histological features on liver biopsy in 88 women with chronic HCV infection (serum positive on ELISA, RIBA and PCR) acquired from virus contaminated anti-D immunoglobulin. For the majority of these patients the time interval from virus infection to presentation was between 17 and 18 years. We separately assessed necroinflammatory disease activity and architectural features on liver biopsy and applied a scoring system which permitted semi-quantitative documentation of abnormal features. Only three women showed liver biopsies within normal limits (+\\/-focal steatosis). The remaining 85 cases showed a predominantly mild or moderate degree of disease activity with interface hepatitis (56.8% of cases), spotty necrosis, apoptosis and focal inflammation (88.6% of cases) and portal inflammation (90.9% of cases). Confluent necrosis was an uncommon finding (2.3% of cases). Assessment of architectural features showed normal appearance in 35.2% of biopsies. The predominant architectural abnormality noted was portal tract fibrosis. Ten per cent of cases, however, showed significant fibrous band and\\/or nodule formation.

  2. Virulence and pathogenesis of the MSW and MSD strains of Californian myxoma virus in European rabbits with genetic resistance to myxomatosis compared to rabbits with no genetic resistance.

    Science.gov (United States)

    Silvers, L; Inglis, B; Labudovic, A; Janssens, P A; van Leeuwen, B H; Kerr, P J

    2006-04-25

    The pathogenesis of two Californian strains of myxoma virus (MSW and MSD) was examined in European rabbits (Oryctolagus cuniculus) that were either susceptible to myxomatosis (laboratory rabbits) or had undergone natural selection for genetic resistance to myxomatosis (Australian wild rabbits). MSW was highly lethal for both types of rabbits with average survival times of 7.3 and 9.4 days, respectively, and 100% mortality. Classical clinical signs of myxomatosis were not present except in one rabbit that survived for 13 days following infection. Previously described clinical signs of trembling and shaking were observed in laboratory but not wild rabbits. Despite the high resistance of wild rabbits to myxomatosis caused by South American strains of myxoma virus, the MSW strain was of such high virulence that it was able to overcome resistance. The acute nature of the infection, relatively low viral titers in the tissues and destruction of lymphoid tissues, suggested that death was probably due to an acute and overwhelming immunopathological response to the virus. No virus was found in the brain. The MSD strain was attenuated compared to previously published descriptions and therefore was only characterized in laboratory rabbits. It is concluded that Californian MSW strain of myxoma virus is at the extreme end of a continuum of myxoma virus virulence but that the basic pathophysiology of the disease induced is not broadly different to other strains of myxoma virus.

  3. Characterization of two recent Japanese field isolates of canine distemper virus and examination of the avirulent strain utility as an attenuated vaccine.

    Science.gov (United States)

    Takenaka, Akiko; Yoneda, Misako; Seki, Takahiro; Uema, Masashi; Kooriyama, Takanori; Nishi, Toshiya; Fujita, Kentaro; Miura, Ryuichi; Tsukiyama-Kohara, Kyoko; Sato, Hiroki; Kai, Chieko

    2014-12-05

    Recently, several new strains of canine distemper virus (CDV) have been isolated in Japan. To investigate their pathogenesis in dogs, the Yanaka and Bunkyo-K strains were investigated by infecting dogs and determining clinical signs, amount of virus, and antibody responses. The Yanaka strain is avirulent and induced an antibody response. The Bunkyo-K strain induced typical CDV clinical signs in infected dogs and virulence was enhanced by brain passage. Molecular and phylogenetic analyses of H genes demonstrated the Bunkyo-K strains were of a different lineage from Asia-1 group including the Yanaka strain and Asia-2 group that contain recent Japanese isolates, which were recently identified as major prevalent strains worldwide but distinct from old vaccine strains. Based on these data, we tested the ability of the Yanaka strain for vaccination. Inoculation with the Yanaka strain efficiently induced CDV neutralizing antibodies with no clinical signs, and the protection effects against challenge with either old virulent strain or Bunkyo-K strain were equal or greater when compared with vaccination by an original vaccine strain. Thus, the Yanaka strain is a potential vaccine candidate against recent prevalent CDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Novel Strain of Andes Virus Associated with Fatal Human Infection, Central Bolivia

    Science.gov (United States)

    Cruz, Cristhopher D.; Vallejo, Efrain; Agudo, Roberto; Vargas, Jorge; Blazes, David L.; Guevara, Carolina; Laguna-Torres, V. Alberto; Halsey, Eric S.; Kochel, Tadeusz J.

    2012-01-01

    To better describe the genetic diversity of hantaviruses associated with human illness in South America, we screened blood samples from febrile patients in Chapare Province in central Bolivia during 2008–2009 for recent hantavirus infection. Hantavirus RNA was detected in 3 patients, including 1 who died. Partial RNA sequences of small and medium segments from the 3 patients were most closely related to Andes virus lineages but distinct (1 hantaviruses; the highest prevalence was among agricultural workers. Because of the high level of human exposure to hantavirus strains and the severity of resulting disease, additional studies are warranted to determine the reservoirs, ecologic range, and public health effect of this novel strain of hantavirus. PMID:22515983

  5. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR.

    Science.gov (United States)

    Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-11-16

    Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.

  6. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg.

    Directory of Open Access Journals (Sweden)

    Cheong Huat Tan

    2017-05-01

    Full Text Available Zika (ZIKV and Chikungunya (CHIKV viruses are emerging Aedes-borne viruses that are spreading outside their known geographic range and causing wide-scale epidemics. It has been reported that these viruses can be transmitted efficiently by Ae. aegypti. Recent studies have shown that Ae. aegypti when transinfected with certain Wolbachia strains shows a reduced replication and dissemination of dengue (DENV, Chikungunya (CHIKV, and Yellow Fever (YFV viruses. The aim of this study was to determine whether the wMel strain of Wolbachia introgressed onto a Singapore Ae. aegypti genetic background was able to limit ZIKV and CHIKV infection in the mosquito.Five to seven-day old mosquitoes either infected or uninfected with wMel Wolbachia were orally infected with a Ugandan strain of ZIKV and several outbreak strains of CHIKV. The midgut and salivary glands of each mosquito were sampled at days 6, 9 and 13 days post infectious blood meal to determine midgut infection and salivary glands dissemination rates, respectively. In general, all wild type Ae. aegypti were found to have high ZIKV and CHIKV infections in their midguts and salivary glands, across all sampling days, compared to Wolbachia infected counterparts. Median viral titre for all viruses in Wolbachia infected mosquitoes were significantly lower across all time points when compared to wild type mosquitoes. Most significantly, all but two and one of the wMel infected mosquitoes had no detectable ZIKV and CHIKV, respectively, in their salivary glands at 14 days post-infectious blood meal.Our results showed that wMel limits both ZIKV and CHIKV infection when introgressed into a Singapore Ae. aegypti genetic background. These results also strongly suggest that female Aedes aegypti carrying Wolbachia will have a reduced capacity to transmit ZIKV and CHIKV.

  7. [Construction and rescue of infectious cDNA clone of pigeon-origin Newcastle disease virus strain JS/07/04/Pi].

    Science.gov (United States)

    Zhu, Yan-Mei; Hu, Zeng-Lei; Song, Qing-Qing; Duan, Zhi-Qiang; Gu, Min; Hu, Shun-Lin; Wang, Xiao-Quan; Liu, Xiu-Fan

    2012-01-01

    Based on the complete genome sequence of pigeon-origin Newcastle disease virus strain JS/07/04/ Pi(genotype VIb), nine overlapped fragments covering its full-length genome were amplified by RT-PCR. The fragments were connected sequentially and then inserted into the transcription vector TVT7/R resulting in the TVT/071204 which contained the full genome of strain JS/07/04/Pi. The TVT/071204 was co-transfected with three helper plasmids pCI-NP, pCI-P and pCI-L into the BSR cells, and the transfected cells and culture supernatant were inoculated into 9-day-old SPF embryonated eggs 60 h post-transfection. The HA and HI tests were conducted following the death of embryonated eggs. The results showed that the allantoic fluids obtained were HA positive and the HA could be inhibited by anti-NDV serum which indicated that the strain JS/07/04/Pi was rescued successfully. The rescued virus rNDV/071204 showed similar growth kinetics to its parental virus in CEF. The successful recovery of this strain would contribute to the understanding of the host-specificity of pigeon-origin NDV and to the development of the novel vaccines against the NDV infection in pigeons.

  8. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  9. Biotransformation of cholesterol and 16,17-alpha epoxypregnenolone by novel Cladosporium sp. strain IS547.

    Science.gov (United States)

    Pang, Cuiping; Cao, Yuting; Zhu, Xiangdong

    2017-01-01

    Nowadays, there are a few steroid drugs or intermediates that have been obtained via the transformation of microorganisms, and many strains of transformed steroids have not been found yet. Therefore, it is very significant to screen for the strains that have the abilities to transform steroids to produce valuable products. This study has focused on the screen and identification of strains, the structural identification of converted products, and the optimization of transformation conditions, as well as the establishment of transformation systems. A soil microbiota was screened for strain involved in the biotransformation of steroids. A new isolate IS547 is capable of converting a variety of steroids (such as cholesterol, ergosterol, hydrocortisone, progesterone, pregnenolone, and 16,17-alpha-epoxypregnenolone). Based on the 18S rDNA gene sequence comparison, the isolate IS547 has been demonstrated to be very closely related to Cladosporium sp. genus. Present paper is the first report regarding the microbial transformation by Cladosporium sp. to produce active intermediates, which include 7-hydroxy cholesterol, 20-droxyl-16α,17α-epoxypregna-4-dien-3-one, 7-ketocholesterol, and 7-droxyl-16α,17α-epoxypregna-4-dien-3,20-dione. Under the optimum conditions, the yields of product 3 and product 4 were 20.58 and 17.42%, respectively, higher than that prior to the optimization. The transformation rate increased significantly under the optimum fermentation conditions. This study describes an efficient, rapid, and inexpensive biotransformation system for the production of active pharmaceutical intermediates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17*

    Science.gov (United States)

    Lai, Juo-Hsin; Yang, Jhih-Tian; Chern, Jeffy; Chen, Te-Li; Wu, Wan-Ling; Liao, Jiahn-Haur; Tsai, Shih-Feng; Liang, Suh-Yuen; Chou, Chi-Chi

    2016-01-01

    Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S88VS90K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies. PMID:26499836

  11. 17 CFR 240.17d-1 - Examination for compliance with applicable financial responsibility rules.

    Science.gov (United States)

    2010-04-01

    ... cooperation and coordination among self-regulatory organizations, and the development of a national market... with applicable financial responsibility rules. 240.17d-1 Section 240.17d-1 Commodity and Securities... financial responsibility rules. (a) Where a member of SIPC is a member of more than one self-regulatory...

  12. Genomic Changes in an Attenuated ZB Strain of Foot-and-Mouth Disease Virus Serotype Asia1 and Comparison with Its Virulent Parental Strain

    Directory of Open Access Journals (Sweden)

    Aiguo Xin

    2014-01-01

    Full Text Available The molecular basis of attenuation of foot-and-mouth disease virus (FMDV serotype Asia1 ZB strain remains unknown. To understand the genetic changes of attenuation, we compared the entire genomes of three different rabbit-passaged attenuated ZB strains (ZB/CHA/58(att, ZBRF168, and ZBRF188 and their virulent parental strains (ZBCF22 and YNBS/58. The results showed that attenuation may be brought about by 28 common amino acid substitutions in the coding region, with one nucleotide point mutation in the 5′-untranslated region (5′-UTR and another one in the 3′-UTR. In addition, a total of 21 nucleotides silent mutations had been found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the ZB strain in cattle. This will contribute to elucidation of attenuating molecular basis of the FMDV ZB strain.

  13. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    Science.gov (United States)

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  14. Safety study of the Bio-10-SAD Bern strain of the rabies virus on the rhesus macaque monkey species

    Directory of Open Access Journals (Sweden)

    Vladimír Vrzal

    2013-01-01

    Full Text Available Based on a WHO recommendation, residual pathogenicity of the Bio-10-SAD Bern rabies virus strain (component of the Lysvulpen por. ad us. vet. vaccine was tested on rhesus macaque monkeys. Each of the ten monkeys, females, two years old, was administered orally 2 ml × 109 TCID50 of the Bio-10-SAD Bern rabies strain. The animals were monitored for 90 days. Subsequently, the animals were sacrificed and their brains were examined for presence of the vaccination rabies virus by the immunofluorescence and PCR methods. The occurrence of anti-rabies antibodies prior to and following administration of the vaccination rabies virus was also evaluated. No clinical signs of rabies were observed nor did any of the animals die of rabies following application of the virus. No rabies was detected in the study animals by post mortem examination. All of the 10 animals developed anti-rabies antibodies during the 90 days following administration of the rabies virus. It can be concluded, that Bio-10-SAD Bern virus administered at a dose equal to the tenfold maximum dose specified for field uses is safe to monkeys of the rhesus macaque species. This study is the first of its type performed in rhesus macaque monkey species.

  15. The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome.

    Science.gov (United States)

    Moyo, Lindani; Ramesh, Shunmugiah V; Kappagantu, Madhu; Mitter, Neena; Sathuvalli, Vidyasagar; Pappu, Hanu R

    2017-07-17

    Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic

  16. Characterization, genetic diversity, and evolutionary link of Cucumber mosaic virus strain New Delhi from India.

    Science.gov (United States)

    Koundal, Vikas; Haq, Qazi Mohd Rizwanul; Praveen, Shelly

    2011-02-01

    The genome of Cucumber mosaic virus New Delhi strain (CMV-ND) from India, obtained from tomato, was completely sequenced and compared with full genome sequences of 14 known CMV strains from subgroups I and II, for their genetic diversity. Sequence analysis suggests CMV-ND shares maximum sequence identity at the nucleotide level with a CMV strain from Taiwan. Among all 15 strains of CMV, the encoded protein 2b is least conserved, whereas the coat protein (CP) is most conserved. Sequence identity values and phylogram results indicate that CMV-ND belongs to subgroup I. Based on the recombination detection program result, it appears that CMV is prone to recombination, and different RNA components of CMV-ND have evolved differently. Recombinational analysis of all 15 CMV strains detected maximum recombination breakpoints in RNA2; CP showed the least recombination sites.

  17. Molecular diversity of neurotoxins from Clostridium botulinum type D strains.

    OpenAIRE

    Moriishi, K; Syuto, B; Kubo, S; Oguma, K

    1989-01-01

    The molecular properties of Clostridium botulinum type D South African (D-SA) were compared with those of neurotoxins from type D strain 1873 (D-1873) and type C strains Stockholm and 6813. D-SA toxin, purified 610-fold from the culture supernatant in an overall yield of 30%, consisted of an intact peptide chain with a molecular weight of 140,000. Limited proteolysis of the toxin by trypsin formed a dichain structure consisting of a light chain (Mr, 50,000) and a heavy chain (Mr, 90,000) link...

  18. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  19. A strain-specific multiplex RT-PCR for Australian rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares.

    Science.gov (United States)

    Hall, R N; Mahar, J E; Read, A J; Mourant, R; Piper, M; Huang, N; Strive, T

    2018-04-01

    Rabbit haemorrhagic disease virus (RHDV, or GI.1) is a calicivirus in the genus Lagovirus that has been widely utilized in Australia as a biological control agent for the management of overabundant wild European rabbit (Oryctolagus cuniculus) populations since 1996. Recently, two exotic incursions of pathogenic lagoviruses have been reported in Australia; GI.1a-Aus, previously called RHDVa-Aus, is a GI.1a virus detected in January 2014, and the novel lagovirus GI.2 (previously known as RHDV2). Furthermore, an additional GI.1a strain, GI.1a-K5 (also known as 08Q712), was released nationwide in March 2017 as a supplementary tool for wild rabbit management. To discriminate between these lagoviruses, a highly sensitive strain-specific multiplex RT-PCR assay was developed, which allows fast, cost-effective and sensitive detection of the four pathogenic lagoviruses currently known to be circulating in Australia. In addition, we developed a universal RT-qPCR assay to be used in conjunction with the multiplex assay that broadly detects all four viruses and facilitates quantification of viral RNA load in samples. These assays enable rapid detection, identification and quantification of pathogenic lagoviruses in the Australian context. Using these assays, a novel recombinant lagovirus was detected in rabbit tissue samples, which contained the non-structural genes of GI.1a-Aus and the structural genes of GI.2. This variant was also recovered from the liver of a European brown hare (Lepus europaeus). The impact of this novel recombinant on Australian wild lagomorph populations and its competitiveness in relation to circulating field strains, particularly GI.2, requires further studies. © 2017 Blackwell Verlag GmbH.

  20. Anti-retroviral therapy fails to restore the severe Th-17: Tc-17 imbalance observed in peripheral blood during simian immunodeficiency virus infection.

    Science.gov (United States)

    Kader, M; Bixler, S; Piatak, M; Lifson, J; Mattapallil, J J

    2009-10-01

    Human immuno deficiency virus and simian immunodeficiency virus infections are characterized by a severe loss of Th-17 cells (IL-17(+)CD4(+) T cells) that has been associated with disease progression and systemic dissemination of bacterial infections. Anti-retroviral therapy (ART) has led to repopulation of CD4(+) T cells in peripheral tissues with little sustainable repopulation in mucosal tissues. Given the central importance of Th-17 cells in mucosal homeostasis, it is not known if the failure of ART to permanently repopulate mucosal tissues is associated with a failure to restore Th-17 cells that are lost during infection. Dynamics of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood of SIV infected rhesus macaques were evaluated and compared to animals that were treated with ART. The frequency of Th-17 and Tc-17 cells was determined following infection and after therapy. Relative expression of IL-21, IL-23, and TGFbeta was determined using Taqman PCR. Treatment of SIV infected rhesus macaques with anti-retroviral therapy was associated with a substantial repopulation of mucosal homing alpha4(+)beta7(hi)CD4(+) T cells in peripheral blood. This repopulation, however, was not accompanied by a restoration of Th-17 responses. Interestingly, SIV infection was associated with an increase in Tc-17 responses (IL-17(+)CD8(+) T cells) suggesting to a skewing in the ratio of Th-17: Tc-17 cells from a predominantly Th-17 phenotype to a predominantly Tc-17 phenotype. Surprisingly, Tc-17 responses remained high during the course of therapy suggesting that ART failed to correct the imbalance in Th-17 : Tc-17 responses induced following SIV infection. ART was associated with substantial repopulation of alpha4(+)beta7(hi) CD4(+) T cells in peripheral blood with little or no rebound of Th-17 cells. On the other hand, repopulation of alpha4(+)beta7(hi) CD4(+) T cells was accompanied by persistence of high levels of Tc-17 cells in peripheral blood. The dysregulation of Th-17

  1. Studies on the susceptibility of ostriches (Struthio camelus to the Indonesian velogenic strain of Newcastle disease virus

    Directory of Open Access Journals (Sweden)

    Darminto

    1998-12-01

    Full Text Available Susceptibility of ostriches (Struthio camelus to the Indonesian velogenic strain of Newcastle disease virus (NDV was evaluated by artificial infection . Twelve - 5 to 6 week old ostriches were divided into 3 groups each containing 4 birds . The first group was inoculated through respiratory system by dropping directly the virus solution into the nostrils, while the second group was inoculated through digestive system by dropping directly the virus solution into the oesophagus, with the dose of infection 106ELDSo (50%-embryo lethal dose per bird . Meanwhile, the third group was treated as uninfected control . All infected birds developed antibody responses, but only two inoculated birds from the first group and two inoculated birds from the second group developed clinical signs of Newcastle disease (ND, with no specific pathological alterations . Infected birds, either sicks or healthy, excreted the challenge viruses through the respiratory system and still be detected up to the end of this experiment, ie . 15 days post-inoculation . The challenge viruses can be re-isolated from the brain, trachea, lungs, heart, liver, spleen, kidneys, small intestine, cecal-tonsil, and proventriculus of the infected birds . This study concludes that: (1 the ostriches are susceptible to the infection of the Indonesian velogenic strain ofNDV; (2 all infected birds developed immune responses, but only half of them develops el jtigi aj i disease ; (3 the infected birds excreted the challenge viruses for a considerable long time which may play role as the Mginiseti.ce ofinfectron the other healthy ostriches ; and (4 the challenge viruses can be re-isolated from various organs of the birds . .

  2. 17 CFR 240.15c3-1d - Satisfactory Subordination Agreements (Appendix D to 17 CFR 240.15c3-1).

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Satisfactory Subordination...-Counter Markets § 240.15c3-1d Satisfactory Subordination Agreements (Appendix D to 17 CFR 240.15c3-1). (a) Introduction. (1) This Appendix sets forth minimum and non-exclusive requirements for satisfactory...

  3. Isolation of an attenuated myxoma virus field strain that can confer protection against myxomatosis on contacts of vaccinates.

    Science.gov (United States)

    Bárcena, J; Pagès-Manté, A; March, R; Morales, M; Ramírez, M A; Sánchez-Vizcaíno, J M; Torres, J M

    2000-01-01

    Twenty MV strains obtained from a survey of field strains currently circulating throughout Spain were analyzed for their virulence and horizontal spreading among rabbits by contact transmission. A virus strain with suitable characteristics to be used as a potential vaccine against myxomatosis in wild rabbit populations was selected. Following inoculation, the selected MV strain elicited high levels of MV specific antibodies and induced protection of rabbits against a virulent MV challenge. Furthermore, the attenuated MV was transmitted to 9 out of 16 uninoculated rabbits by contact, inducing protection against myxomatosis.

  4. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  5. Disposal of Hospital Wastes Containing Pathogenic Organisms

    Science.gov (United States)

    1979-09-01

    virus African swine fever virus Besnoitia besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus...Sindbis virus Tensaw virus Turlock virus Vaccinia virus Varicella virus Vole rickettsia Yellow fever virus, 17D vaccinL strain 163 Class 3 AlastruLn...Rickettsia - all species except Vole rickettsia when used for transmission or animal inoculation experiments Vesicular stomatitis virus Yellow fever virus

  6. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    Science.gov (United States)

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  7. Complete Genome Sequence of the Goatpox Virus Strain Gorgan Obtained Directly from a Commercial Live Attenuated Vaccine

    Science.gov (United States)

    Mathijs, Elisabeth; Vandenbussche, Frank; Haegeman, Andy; Al-Majali, Ahmad; De Clercq, Kris

    2016-01-01

    This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre). PMID:27738031

  8. Comparison of complete genome sequences of dog rabies viruses isolated from China and Mexico reveals key amino acid changes that may be associated with virus replication and virulence.

    Science.gov (United States)

    Yu, Fulai; Zhang, Guoqing; Zhong, Xiangfu; Han, Na; Song, Yunfeng; Zhao, Ling; Cui, Min; Rayner, Simon; Fu, Zhen F

    2014-07-01

    Rabies is a global problem, but its impact and prevalence vary across different regions. In some areas, such as parts of Africa and Asia, the virus is prevalent in the domestic dog population, leading to epidemic waves and large numbers of human fatalities. In other regions, such as the Americas, the virus predominates in wildlife and bat populations, with sporadic spillover into domestic animals. In this work, we attempted to investigate whether these distinct environments led to selective pressures that result in measurable changes within the genome at the amino acid level. To this end, we collected and sequenced the full genome of two isolates from divergent environments. The first isolate (DRV-AH08) was from China, where the virus is present in the dog population and the country is experiencing a serious epidemic. The second isolate (DRV-Mexico) was taken from Mexico, where the virus is present in both wildlife and domestic dog populations, but at low levels as a consequence of an effective vaccination program. We then combined and compared these with other full genome sequences to identify distinct amino acid changes that might be associated with environment. Phylogenetic analysis identified strain DRV-AH08 as belonging to the China-I lineage, which has emerged to become the dominant lineage in the current epidemic. The Mexico strain was placed in the D11 Mexico lineage, associated with the West USA-Mexico border clade. Amino acid sequence analysis identified only 17 amino acid differences in the N, G and L proteins. These differences may be associated with virus replication and virulence-for example, the short incubation period observed in the current epidemic in China.

  9. Human leukocyte antigen (HLA class I restricted epitope discovery in yellow fewer and dengue viruses: importance of HLA binding strength.

    Directory of Open Access Journals (Sweden)

    Ole Lund

    Full Text Available Epitopes from all available full-length sequences of yellow fever virus (YFV and dengue fever virus (DENV restricted by Human Leukocyte Antigen class I (HLA-I alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, K(D, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had K(D below 100 nM and the peptides with K(D below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had K(D below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.

  10. Immunity status of adults and children against poliomyelitis virus type 1 strains CHAT and Sabin (LSc-2ab in Germany

    Directory of Open Access Journals (Sweden)

    Diedrich Sabine

    2010-12-01

    Full Text Available Abstract Background In October 2007, the working group CEN/TC 216 of the European Committee for standardisation suggested that the Sabin oral poliovirus vaccine type 1 strain (LSc-2ab presently used for virucidal tests should be replaced by another attenuated vaccine poliovirus type 1 strain, CHAT. Both strains were historically used as oral vaccines, but the Sabin type 1 strain was acknowledged to be more attenuated. In Germany, vaccination against poliomyelitis was introduced in 1962 using the oral polio vaccine (OPV containing Sabin strain LSc-2ab. The vaccination schedule was changed from OPV to an inactivated polio vaccine (IPV containing wild polio virus type 1 strain Mahoney in 1998. In the present study, we assessed potential differences in neutralising antibody titres to Sabin and CHAT in persons with a history of either OPV, IPV, or OPV with IPV booster. Methods Neutralisation poliovirus antibodies against CHAT and Sabin 1 were measured in sera of 41 adults vaccinated with OPV. Additionally, sera from 28 children less than 10 years of age and immunised with IPV only were analysed. The neutralisation assay against poliovirus was performed according to WHO guidelines. Results The neutralisation activity against CHAT in adults with OPV vaccination history was significantly lower than against Sabin poliovirus type 1 strains (Wilcoxon signed-rank test P Conclusion The lack of neutralising antibodies against the CHAT strain in persons vaccinated with OPV might be associated with an increased risk of reinfection with the CHAT polio virus type 1, and this implies a putative risk of transmission of the virus to polio-free communities. We strongly suggest that laboratory workers who were immunised with OPV receive a booster vaccination with IPV before handling CHAT in the laboratory.

  11. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  12. Non-hemagglutinating flaviviruses: molecular mechanisms for the emergence of new strains via adaptation to European ticks.

    Directory of Open Access Journals (Sweden)

    Maxim A Khasnatinov

    2009-10-01

    Full Text Available Tick-borne encephalitis virus (TBEV causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards

  13. Comparative Phosphoproteomics Reveals the Role of AmpC β-lactamase Phosphorylation in the Clinical Imipenem-resistant Strain Acinetobacter baumannii SK17.

    Science.gov (United States)

    Lai, Juo-Hsin; Yang, Jhih-Tian; Chern, Jeffy; Chen, Te-Li; Wu, Wan-Ling; Liao, Jiahn-Haur; Tsai, Shih-Feng; Liang, Suh-Yuen; Chou, Chi-Chi; Wu, Shih-Hsiung

    2016-01-01

    Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC β-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher β-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both β-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Genome sequences of Mannheimia haemolytica serotype A1 strains D153 and D193 from bovine pneumonia

    Science.gov (United States)

    Here we report two genomes, one complete and one draft, from virulent bovine strains of Mannheimia haemolytica(strains D171 and D35)serotype A2 recovered prior to the field usage of modern antimicrobial drugs....

  15. Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009

    Directory of Open Access Journals (Sweden)

    Almajhdi Fahad N

    2012-12-01

    Full Text Available Abstract Background Although human parainfluenza type 2 (HPIV-2 virus is an important respiratory pathogen, a little is known about strains circulating in Saudi Arabia. Findings Among 180 nasopharyngeal aspirates collected from suspected cases in Riyadh, only one sample (0.56% was confirmed HPIV-2 positive by nested RT-PCR. The sample that was designated Riyadh 105/2009 was used for sequencing and phylogenetic analysis of the most variable virus gene; the haemagglutinin-neuramindase (HN. Comparison of HN gene of Riyadh 105/2009 strain and the relevant sequences available in GenBank revealed a strong relationship with Oklahoma-94-2009 strain. Phylogenetic analysis indicated four different clusters of HPIV-2 strains (G1-4. Twenty-three amino acid substitutions were recorded for Riyadh 105/2009, from which four are unique. The majority of substitutions (n=18 had changed their amino acids characteristics. By analyzing the effect of the recorded substitutions on the protein function using SIFT program, only two located at positions 360 and 571 were predicted to be deleterious. Conclusions The presented changes of Riyadh 105/2009 strain may possess potential effect on the protein structure and/or function level. This is the first report that describes partial characterization of Saudi HPIV-2 strain.

  16. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus.

    Science.gov (United States)

    Zandi, Fatemeh; Eslami, Naser; Soheili, Masoomeh; Fayaz, Ahmad; Gholami, Alireza; Vaziri, Behrouz

    2009-05-01

    Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2-DE proteome mapping of infected versus control cells followed by LC-MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti-oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral-host interaction.

  17. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte

    2015-01-01

    UNLABELLED: The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed...... efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. IMPORTANCE: Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV...... prototype strain, were shown to be infectious in chimpanzees, but not in vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we...

  18. Vγ4+γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17A

    Directory of Open Access Journals (Sweden)

    Chunxue Xue

    2017-08-01

    Full Text Available The influenza A (H1N1 pdm09 virus remains a critical global health concern and causes high levels of morbidity and mortality. Severe acute lung injury (ALI and acute respiratory distress syndrome (ARDS are the major outcomes among severely infected patients. Our previous study found that interleukin (IL-17A production by humans or mice infected with influenza A (H1N1 pdm09 substantially contributes to ALI and subsequent morbidity and mortality. However, the cell types responsible for IL-17A production during the early stage of severe influenza A (H1N1 pdm09 infection remained unknown. In this study, a mouse model of severe influenza A (H1N1 pdm09 infection was established. Our results show that, in the lungs of infected mice, the percentage of γδT cells, but not the percentages of CD4+Th and CD8+Tc cells, gradually increased and peaked at 3 days post-infection (dpi. Further analysis revealed that the Vγ4+γδT subset, but not the Vγ1+γδT subset, was significantly increased among the γδT cells. At 3 dpi, the virus induced significant increases in IL-17A in the bronchoalveolar lavage fluid (BALF and serum. IL-17A was predominantly secreted by γδT cells (especially the Vγ4+γδT subset, but not CD4+Th and CD8+Tc cells at the early stage of infection, and IL-1β and/or IL-23 were sufficient to induce IL-17A production by γδT cells. In addition to secreting IL-17A, γδT cells secreted interferon (IFN-γ and expressed both an activation-associated molecule, natural killer group 2, member D (NKG2D, and an apoptosis-associated molecule, FasL. Depletion of γδT cells or the Vγ4+γδT subset significantly rescued the virus-induced weight loss and improved the survival rate by decreasing IL-17A secretion and reducing immunopathological injury. This study demonstrated that, by secreting IL-17A, lung Vγ4+γδT cells, at least, in part mediated influenza A (H1N1 pdm09-induced immunopathological injury. This mechanism might serve as a

  19. The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds.

    Science.gov (United States)

    Wyant, Patrícia Soares; Gotthardt, Diether; Schäfer, Benjamin; Krenz, Björn; Jeske, Holger

    2011-02-01

    Begomovirus is the largest genus within the family Geminiviridae and includes economically important plant DNA viruses infecting a broad range of plant species and causing devastating crop diseases, mainly in subtropical and tropical countries. Besides cultivated plants, many weeds act as virus reservoirs. Eight begomovirus isolates from Bolivian weeds were examined using rolling-circle amplification (RCA) and restriction fragment length polymorphism (RFLP). An efficient, novel cloning strategy using limited Sau3A digestion to obtain tandem-repeat inserts allowed the sequencing of the complete genomes. The viruses were classified by phylogenetic analysis as typical bipartite New World begomoviruses. Four of them represented distinct new virus species, for which the names Solanum mosaic Bolivia virus, Sida mosaic Bolivia virus 1, Sida mosaic Bolivia virus 2, and Abutilon mosaic Bolivia virus are proposed. Three were variants of a new strain of Sida micrantha mosaic virus (SimMV), SimMV-rho[BoVi07], SimMV-rho[Bo:CF1:07] and SimMV-rho[Bo:CF2:07], and one was a new variant of a previously described SimMV, SimMV-MGS2:07-Bo.

  20. Genetic diversity and distribution of a distinct strain of Chili leaf curl virus and associated betasatellite infecting tomato and pepper in Oman.

    Science.gov (United States)

    Khan, Akhtar J; Akhtar, Sohail; Al-Zaidi, Amal M; Singh, Achuit K; Briddon, Rob W

    2013-10-01

    Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010-2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0-91.1%) to isolates of the "Pakistan" strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients.

    Science.gov (United States)

    Formanová, Petra; Černý, Jiří; Bolfíková, Barbora Černá; Valdés, James J; Kozlova, Irina; Dzhioev, Yuri; Růžek, Daniel

    2015-02-01

    Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Surface gene variants of hepatitis B Virus in Saudi Patients.

    Science.gov (United States)

    Al-Qudari, Ahmed Y; Amer, Haitham M; Abdo, Ayman A; Hussain, Zahid; Al-Hamoudi, Waleed; Alswat, Khalid; Almajhdi, Fahad N

    2016-01-01

    Hepatitis B virus (HBV) continues to be one of the most important viral pathogens in humans. Surface (S) protein is the major HBV antigen that mediates virus attachment and entry and determines the virus subtype. Mutations in S gene, particularly in the "a" determinant, can influence virus detection by ELISA and may generate escape mutants. Since no records have documented the S gene mutations in HBV strains circulating in Saudi Arabia, the current study was designed to study sequence variation of S gene in strains circulating in Saudi Arabia and its correlation with clinical and risk factors. A total of 123 HBV-infected patients were recruited for this study. Clinical and biochemical parameters, serological markers, and viral load were determined in all patients. The entire S gene sequence of samples with viral load exceeding 2000 IU/mL was retrieved and exploited in sequence and phylogenetic analysis. A total of 48 mutations (21 unique) were recorded in viral strains in Saudi Arabia, among which 24 (11 unique) changed their respective amino acids. Two amino acid changes were recorded in "a" determinant, including F130L and S135F with no evidence of the vaccine escape mutant G145R in any of the samples. No specific relationship was recognized between the mutation/amino acid change record of HBsAg in strains in Saudi Arabia and clinical or laboratory data. Phylogenetic analysis categorized HBV viral strains in Saudi Arabia as members of subgenotypes D1 and D3. The present report is the first that describes mutation analysis of HBsAg in strains in Saudi Arabia on both nucleotide and amino acid levels. Different substitutions, particularly in major hydrophilic region, may have a potential influence on disease diagnosis, vaccination strategy, and antiviral chemotherapy.

  3. A Study of Waste Management within the COL Florence A. Blanchfield Army Community Hospital, Fort Campbell, Kentucky.

    Science.gov (United States)

    1981-08-01

    besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and

  4. Antibody response to 17D yellow fever vaccine in Ghanaian infants.

    Science.gov (United States)

    Osei-Kwasi, M; Dunyo, S K; Koram, K A; Afari, E A; Odoom, J K; Nkrumah, F K

    2001-01-01

    To assess the seroresponses to yellow fever vaccination at 6 and 9 months of age; assess any possible adverse effects of immunization with the 17D yellow fever vaccine in infants, particularly at 6 months of age. Four hundred and twenty infants who had completed BCG, OPV and DPT immunizations were randomized to receive yellow fever immunization at either 6 or 9 months. A single dose of 0.5 ml of the reconstituted vaccine was administered to each infant by subcutaneous injection. To determine the yellow fever antibody levels of the infants, each donated 1 ml whole blood prior to immunization and 3 months post-immunization. Each serum sample was titred on Vero cells against the vaccine virus. The most common adverse reactions reported were fever, cough, diarrhoea and mild reactions at the inoculation site. The incidences of adverse reactions were not statistically different in both groups. None of the pre-immunization sera in both age groups had detectable yellow fever antibodies. Infants immunized at 6 months recorded seroconversion of 98.6% and those immunized at 9 months recorded 98% seroconversion. The GMT of their antibodies were 158.5 and 129.8, respectively. The results indicate that seroresponses to yellow fever immunization at 6 and 9 months as determined by seroconversion and GMTs of antibodies are similar. The findings of good seroresponses at 6 months without significant adverse effects would suggest that the 17D yellow fever vaccine could be recommended for use in children at 6 months in outbreak situations or in high risk endemic areas.

  5. Immunity status of adults and children against poliomyelitis virus type 1 strains CHAT and Sabin (LSc-2ab) in Germany.

    Science.gov (United States)

    Eggers, Maren; Terletskaia-Ladwig, Elena; Rabenau, Holger F; Doerr, Hans W; Diedrich, Sabine; Enders, Gisela; Enders, Martin

    2010-12-09

    In October 2007, the working group CEN/TC 216 of the European Committee for standardisation suggested that the Sabin oral poliovirus vaccine type 1 strain (LSc-2ab) presently used for virucidal tests should be replaced by another attenuated vaccine poliovirus type 1 strain, CHAT. Both strains were historically used as oral vaccines, but the Sabin type 1 strain was acknowledged to be more attenuated. In Germany, vaccination against poliomyelitis was introduced in 1962 using the oral polio vaccine (OPV) containing Sabin strain LSc-2ab. The vaccination schedule was changed from OPV to an inactivated polio vaccine (IPV) containing wild polio virus type 1 strain Mahoney in 1998. In the present study, we assessed potential differences in neutralising antibody titres to Sabin and CHAT in persons with a history of either OPV, IPV, or OPV with IPV booster. Neutralisation poliovirus antibodies against CHAT and Sabin 1 were measured in sera of 41 adults vaccinated with OPV. Additionally, sera from 28 children less than 10 years of age and immunised with IPV only were analysed. The neutralisation assay against poliovirus was performed according to WHO guidelines. The neutralisation activity against CHAT in adults with OPV vaccination history was significantly lower than against Sabin poliovirus type 1 strains (Wilcoxon signed-rank test P Sabin 1 varied between 8 and 64. Following IPV booster, anti-CHAT antibodies increased rapidly in sera of CHAT-negative adults with OPV history. Sera from children with IPV history neutralised CHAT and Sabin 1 strains equally. The lack of neutralising antibodies against the CHAT strain in persons vaccinated with OPV might be associated with an increased risk of reinfection with the CHAT polio virus type 1, and this implies a putative risk of transmission of the virus to polio-free communities. We strongly suggest that laboratory workers who were immunised with OPV receive a booster vaccination with IPV before handling CHAT in the laboratory.

  6. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    Science.gov (United States)

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  7. Reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoate by an aerobic strain of Delftia sp. EOB-17.

    Science.gov (United States)

    Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong

    2015-12-01

    To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.

  8. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  9. Cross-species infection of specific-pathogen-free pigs by a genotype 4 strain of human hepatitis E virus

    Science.gov (United States)

    Feagins, A. R.; Opriessnig, T.; Huang, Y. W.; Halbur, P. G.; Meng, X. J.

    2010-01-01

    SUMMARY Hepatitis E virus (HEV) is an important pathogen. The animal strain of HEV, swine HEV, is related to human HEV. The genotype 3 swine HEV infected humans and genotype 3 human HEV infected pigs. The genotype 4 swine and human HEV strains are genetically related, but it is unknown whether genotype 4 human HEV can infect pigs. A swine bioassay was utilized in this study to determine whether genotype 4 human HEV can infect pigs. Fifteen, 4-week-old, specific-pathogen-free pigs were divided into 3 groups of 5 each. Group 1 pigs were each inoculated intravenously with PBS buffer as negative controls, group 2 pigs similarly with genotype 3 human HEV (strain US-2), and group 3 pigs similarly with genotype 4 human HEV (strain TW6196E). Serum and fecal samples were collected at 0, 7, 14, 21, 28, 35, 42, 49, and 56 days postinoculation (dpi) and tested for evidence of HEV infection. All pigs were necropsied at 56 dpi. As expected, the negative control pigs remained negative. The positive control pigs inoculated with genotype 3 human HEV all became infected as evidenced by detection of HEV antibodies, viremia and fecal virus shedding. All five pigs in group 3 inoculated with genotype 4 human HEV also became infected: fecal virus shedding and viremia were detected variably from 7 to 56 dpi, and seroconversion occurred by 28 dpi. The data indicated that genotype 4 human HEV has an expanded host range, and the results have important implications for understanding the natural history and zoonosis of HEV. PMID:18551597

  10. Differentiation of canine distemper virus isolates in fur animals from various vaccine strains by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations in china

    Directory of Open Access Journals (Sweden)

    Zhao Jianjun

    2011-02-01

    Full Text Available Abstract In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV, a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR and restriction fragment length polymorphism (RFLP. We selected an 829 bp fragment of the nucleoprotein (N gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively.

  11. Cyclic deformation of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys: Effect of strain ratio

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Q. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, J.H., E-mail: jinhliu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Lu, Z.X. [Department of Materials Science and Engineering, Xi' an University of Technology, 5 Jinhuanan Road, Xi' an 710048 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-03-01

    Cyclic deformation characteristics of electron beam welded (EBWed) joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys were evaluated via strain-controlled low-cycle fatigue tests at varying strain ratios at a constant strain amplitude. The welding led to a significant microstructural change across the dissimilar joint, with hexagonal close-packed (HCP) martensite α' and orthorhombic martensite α″ in the fusion zone (FZ), α' in the heat-affected zone (HAZ) of Ti–6Al–4V side, and coarse β in the HAZ of Ti17 side. A distinctive asymmetrical hardness profile across the joint was observed with the highest hardness in the FZ and a lower hardness in the HAZ of Ti17 side than in the Ti17 base metal (BM), indicating the presence of soft zone. The strength and ductility of the dissimilar joint lay in-between those of two base metals (BMs). Unlike wrought magnesium alloys, the Ti–6Al–4V BM, Ti17 BM, and joint basically exhibited symmetrical hysteresis loops in tension and compression in the fully reversed strain-controlled tests at a strain ratio of R{sub ε}=−1. At a strain ratio of R{sub ε}=0 and 0.5, a large amount of plastic deformation occurred in the ascending phase of the first cycle of hysteresis loops of Ti–6Al–4V BM, Ti17 BM, and joint due to the high positive mean strain values. Fatigue life of the joint was observed to be the longest at R{sub ε}=−1, and it decreased as the strain ratio deviated from R{sub ε}=−1. A certain degree of mean stress relaxation was observed in the non-fully reversed strain controlled tests (i.e., R{sub ε}≠−1). Fatigue failure of the dissimilar joints occurred in the Ti–6Al–4V BM, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by fatigue striations.

  12. Analysis of antigenic relationships among influenza virus strains using a taxonomic cluster procedure. Comparison of three kinds of antibody preparations.

    NARCIS (Netherlands)

    T.F. Weijers; A.D.M.E. Osterhaus (Albert); W.E.Ph. Beyer (Walter); J.A.A.M. van Asten (Jack); F.M. de Ronde-Verloop; K. Bijlsma (Klaas); J.C. de Jong (Jan)

    1985-01-01

    textabstractHemagglutination inhibiting (HI) monoclonal antibody preparations (MA) were raised against six influenza A (H3N2) strains from the period 1977-1982. Twenty-three hybridomas were selected and titrated in HI assays against these strains and against 18 influenza A (H3N2) viruses isolated in

  13. Cocirculation of Two env Molecular Variants, of Possible Recombinant Origin, in Gorilla and Chimpanzee Simian Foamy Virus Strains from Central Africa.

    Science.gov (United States)

    Richard, Léa; Rua, Réjane; Betsem, Edouard; Mouinga-Ondémé, Augustin; Kazanji, Mirdad; Leroy, Eric; Njouom, Richard; Buseyne, Florence; Afonso, Philippe V; Gessain, Antoine

    2015-12-01

    Simian foamy virus (SFV) is a ubiquitous retrovirus in nonhuman primates (NHPs) that can be transmitted to humans, mostly through severe bites. In the past few years, our laboratory has identified more than 50 hunters from central Africa infected with zoonotic SFVs. Analysis of the complete sequences of five SFVs obtained from these individuals revealed that env was the most variable gene. Furthermore, recombinant SFV strains, some of which involve sequences in the env gene, were recently identified. Here, we investigated the variability of the env genes of zoonotic SFV strains and searched for possible recombinants. We sequenced the complete env gene or its surface glycoprotein region (SU) from DNA amplified from the blood of (i) a series of 40 individuals from Cameroon or Gabon infected with a gorilla or chimpanzee foamy virus (FV) strain and (ii) 1 gorilla and 3 infected chimpanzees living in the same areas as these hunters. Phylogenetic analyses revealed the existence of two env variants among both the gorilla and chimpanzee FV strains that were present in zoonotic and NHP strains. These variants differ greatly (>30% variability) in a 753-bp-long region located in the receptor-binding domain of SU, whereas the rest of the gene is very conserved. Although the organizations of the Env protein sequences are similar, the potential glycosylation patterns differ between variants. Analysis of recombination suggests that the variants emerged through recombination between different strains, although all parental strains could not be identified. SFV infection in humans is a great example of a zoonotic retroviral infection that has not spread among human populations, in contrast to human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). Recombination was a major mechanism leading to the emergence of HIV. Here, we show that two SFV molecular envelope gene variants circulate among ape populations in Central Africa and that both can be transmitted to

  14. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection

    International Nuclear Information System (INIS)

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, BenoIt; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo

    2005-01-01

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F WT ) and attachment (H WT ) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H WT determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F WT reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection

  15. Association of a cucumber mosaic virus strain with mosaic disease of banana, Musa paradisiaca--an evidence using immuno/nucleic acid probe.

    Science.gov (United States)

    Srivastava, A; Raj, S K; Haq, Q M; Srivastava, K M; Singh, B P; Sane, P V

    1995-12-01

    Virus causing severe chlorosis/mosaic disease of banana was identified as a strain of cucumber mosaic virus (CMV). Association of CMV with the disease was established by Western immunoblot using polyclonal antibodies to CMV-T and slot blot hybridization with nucleic acid probe of CMV-P genome.

  16. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  17. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.

    Science.gov (United States)

    Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S

    2006-11-01

    Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.

  18. 3D Strain Modelling of Tear Fault Analogues

    Science.gov (United States)

    Hindle, D.; Vietor, T.

    2005-12-01

    Tear faults can be described as vertical discontinuities, with near fault parallel displacements terminating on some sort of shallow detachment. As such, they are difficult to study in "cross section" i.e. 2 dimensions as is often the case for fold-thrust systems. Hence, little attempt has been made to model the evolution of strain around tear faults and the processes of strain localisation in such structures due to the necessity of describing these systems in 3 dimensions and the problems this poses for both numerical and analogue modelling. Field studies suggest that strain in such regions can be distributed across broad zones on minor tear systems, which are often not easily mappable. Such strain is probably assumed to be due to distributed strain and to displacement gradients which are themselves necessary for the initiation of the tear itself. We present a numerical study of the effects of a sharp, basal discontinutiy parallel to the transport direction in a shortening wedge of material. The discontinuity is represented by two adjacent basal surfaces with strongly contrasting (0.5 and 0.05) friction coefficient. The material is modelled using PFC3D distinct element software for simulating granular material, whose properties are chosen to simulate upper crustal, sedimentary rock. The model geometry is a rectangular bounding box, 2km x 1km, and 0.35-0.5km deep, with a single, driving wall of constant velocity. We show the evolution of strain in the model in horizontal and vertical sections, and interpret strain localization as showing the spontaneous development of tear fault like features. The strain field in the model is asymmetrical, rotated towards the strong side of the model. Strain increments seem to oscillate in time, suggesting achievement of a steady state. We also note that our model cannot be treated as a critical wedge, since the 3rd dimension and the lateral variations of strength rule out this type of 2D approximation.

  19. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Yosuke Kikuchi

    Full Text Available The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer's patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer's patch dendritic cells, with this production promoting IgA(+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.

  20. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  1. Identification of a Novel Recombinant Type 2 Porcine Reproductive and Respiratory Syndrome Virus in China

    Directory of Open Access Journals (Sweden)

    Long Zhou

    2018-03-01

    Full Text Available Since the emergence of NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV in China in 2013, PRRSVs have undergone rapid evolution. In this study, a novel variant of PRRSV strain (designated SCcd17 was successfully isolated from piglets with clinical signs in Sichuan Province in China in 2017, and the complete genomic sequence was determined. The genome of this new isolate was 15,015 nucleotides (nt long, and comparative analysis revealed that SCcd17 exhibited 90.2%, 85.2%, 84.9%, and 84.0% nucleotide similarity to PRRSVs NADC30, JXA1, CH-1a, and VR-2332, respectively. Phylogenetic analysis indicated that the SCcd17 strain was classified into the NADC30-like sub-genotype, in which all the strains contained the unique discontinuous 131-amino acid deletion in nonstructural protein 2 (nsp2 when compared to VR-2332-like viruses. Notably, extensive amino acid substitutions were observed in nsp2 and a unique single amino acid deletion at position 33 of the GP5 is being described for the first time. Strikingly, recombination analysis revealed that SCcd17 was the result of recombination between the NADC30-like, JXA1-like, and VR-2332-like strains at five recombination breakpoints: nsp1α (nt 641, nsp3 (nt 5141, nsp10 (nt 9521, open reading frame 3 (ORF3 (nt 12,581, and ORF4 (nt 13,021. The genomic data of SCcd17 will be helpful for understanding the role of genomic recombination in the evolution of PRRSV.

  2. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Florian Douam

    2017-08-01

    Full Text Available Yellow fever virus (YFV is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β signaling and type II interferon (IFN-γ signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ integrates into this antiviral system. Here, we report that while wild-type (WT and IFN-λ receptor knockout (λR−/− mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR−/− mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB. α/βR−/− λR−/− mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.

  4. Targeting IL-17 AND IL-17D receptors of rheumatoid arthritis using phytocompounds: A Molecular Docking study

    Science.gov (United States)

    Thabitha, A.; Thoufic Ali, A. M. Mohamed; Shweta Kumari, Singh; Rakhi; Swami, Varsha; Mohana Priya, A.; Sajitha Lulu, S.

    2017-11-01

    Rheumatoid arthritis (RA) is a chronic autoimmune condition of the connective tissue in synovial joints, characterized by inflammation which can lead to bone and cartilage destruction. IL-17 and IL-17D cytokines produced by a number of cell types, primarily promote pro-inflammatory immune responses and negative regulator in fibroblast growth factor signalling. Thus, the promising therapeutic strategies focus on targeting these cytokines, which has led to the identification of effective inhibitors. However, several studies focused on identifying the anti-arthritic potential of natural compounds. Therefore, in the present study we undertook in silico investigations to decipher the anti-inflammatory prospective of phytocompounds by targeting IL-17 and IL-17D cytokines using Patch Dock algorithm. Additionally, IL-17 and IL-17D proteins structure were modelled and validated for molecular docking study. Further, phytocompounds based on anti-inflammatory property were subjected to Lipinski filter and ADMET properties indicated that all of these compounds showed desirable drug-like criteria. The outcome of this investigation sheds light on the anti-inflammatory mechanism of phytocompounds by targeting IL-17 and IL-D for effective treatment of RA.

  5. CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication

    Directory of Open Access Journals (Sweden)

    Renée L. Finnen

    2018-05-01

    Full Text Available Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.

  6. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  7. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication

    International Nuclear Information System (INIS)

    Evans, E.V.A.

    1989-01-01

    The poxvirus, vaccinia, is large DNA virus which replicates in the cytoplasma of the host cell. The virus is believed to encode most or all of the functions required for the temporally regulated transcription and replication of its 186 kilobase genome. Physical and genetic autonomy from the host make vaccinia a useful eukaryotic organism in which to study replication genes and proteins, using a combination of biochemical and genetic techniques. Essential viral functions for replication are identified by conditional lethal mutants that fail to synthesize DNA at the non-permissive temperatures. One such group contains the non-complementing alleles ts17, ts24, ts69 (WR strain). Studies were undertaken to define the phenotype of ts mutants, and to identify and characterize the affected gene and protein. Mutant infection was essentially normal at 32 degree C, but at 39 degree C the mutants did not incorporate 3 H-thymidine into nascent viral DNA or synthesize late viral proteins. If mutant cultures were shifted to non-permissive conditions at the height of replication, DNA synthesis was halted rapidly, implying that the mutants are defective in DNA elongation. The gene affected in the WR mutants and in ts6389, a DNA-minus mutant of the IHD strain, was mapped by marker rescue and corresponds to open reading frame 5 (orfD5) of the viral HindIII D fragment

  8. Benzoate Catabolite Repression of the Phthalate Degradation Pathway in Rhodococcus sp. Strain DK17

    OpenAIRE

    Choi, Ki Young; Zylstra, Gerben J.; Kim, Eungbin

    2006-01-01

    Rhodococcus sp. strain DK17 exhibits a catabolite repression-like response when provided simultaneously with benzoate and phthalate as carbon and energy sources. Benzoate in the medium is depleted to detection limits before the utilization of phthalate begins. The transcription of the genes encoding benzoate and phthalate dioxygenase paralleled the substrate utilization profile. Two mutant strains with defective benzoate dioxygenases were unable to utilize phthalate in the presence of benzoat...

  9. A bovine respiratory syncytial virus strain with mutations in subgroup-specific antigenic domains of the G protein induces partial heterologous protection in cattle

    NARCIS (Netherlands)

    Schrijver, R.S.; Langedijk, J.P.M.; Middel, W.G.J.; Kramps, J.A.; Rijsewijk, F.A.M.; Oirschot, van J.T.

    1998-01-01

    Bovine respiratory syncytial virus (BRSV) strains are tentatively divided in subgroups A, AB and B, based on antigenic differences of the G protein. A Dutch BRSV strain (Waiboerhoeve: WBH), could not be assigned to one of the subgroups, because the strain did not react with any monoclonal antibody

  10. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    Energy Technology Data Exchange (ETDEWEB)

    Kermany, Mohammad [St. Jude Children' s Research Hospital; Parker, Lisan [St. Jude Children' s Research Hospital; Guo, Yun-Kai [St. Jude Children' s Research Hospital; Miller, Darla R [ORNL; Swanson, Douglas J [ORNL; Yoo, Tai-June [Neuroscience Institute, Memphis, TN; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis; Zuo, Jian [St. Jude Children' s Research Hospital

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  11. Morphologic and Molecular Characterization of a Strain of Zika Virus Imported into Guangdong, China.

    Directory of Open Access Journals (Sweden)

    Shufen Li

    Full Text Available The recent outbreaks of Zika virus (ZIKV disease have caused worldwide concerns. Guangdong province is one of the commercial centers in China and communicates frequently with the epidemic areas. To date, 65.2% of the ZIKV infection cases in China were imported via port of entry in Guangdong. The continuous surveillance of imported cases is crucial for the prevention and control of potential ZIKV infection outbreak in China. In this study, a strain of ZIKV was isolated from the serum of a 6-year-old child returning from Venezuela. The morphology of the ZIKV was analyzed in vivo and in vitro by electron microscopy, and clusters of virus particles were found in the loose cytoplasmic membrane structures. The genomic sequence of the isolated ZIKV was determined, and the alignment and phylogenetic analysis identified one unique amino acid substitution occurring in the non-structural protein 4B (NS4B, and the isolated virus belonged to the Asian lineage.

  12. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    Science.gov (United States)

    Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A

    2018-03-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

  13. Clonal relatedness of enterotoxigenic Escherichia coli (ETEC) strains expressing LT and CS17 isolated from children with diarrhoea in La Paz, Bolivia.

    Science.gov (United States)

    Rodas, Claudia; Klena, John D; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Asa

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.

  14. Clonal Relatedness of Enterotoxigenic Escherichia coli (ETEC) Strains Expressing LT and CS17 Isolated from Children with Diarrhoea in La Paz, Bolivia

    Science.gov (United States)

    Rodas, Claudia; Klena, John D.; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Åsa

    2011-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. Methodology/Principal Findings In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. Conclusion/Significance The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors. PMID:22140423

  15. Detection and phylogenetic analyses of spike genes in porcine epidemic diarrhea virus strains circulating in China in 2016-2017.

    Science.gov (United States)

    Zhang, Qiaoling; Liu, Xinsheng; Fang, Yuzhen; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2017-10-10

    Large-scale outbreaks of porcine epidemic diarrhea (PED) have re-emerged in China in recent years. However, little is known about the genetic diversity and molecular epidemiology of field strains of PED virus (PEDV) in China in 2016-2017. To address this issue, in this study, 116 diarrhea samples were collected from pig farms in 6 Chinese provinces in 2016-2017 and were detected using PCR for main porcine enteric pathogens, including PEDV, porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis virus (TGEV) and porcine kobuvirus (PKV). In addition, the complete S genes from 11 representative PEDV strains were sequenced and analyzed. PCR detection showed that 52.6% (61/116) of these samples were positive for PEDV. Furthermore, sequencing results for the spike (S) genes from 11 of the epidemic PEDV strains showed 93-94% nucleotide identity and 92-93% amino acid identity with the classical CV777 strain. Compared with the CV777 vaccine strain, these strains had an insertion (A 133 ), a deletion (G 155 ), and a continuous 4-amino-acid insertion ( 56 NNTN 59 ) in the S1 region. Phylogenetic analysis based on the S gene indicated that the 11 assessed PEDV strains were genetically diverse and clustered into the G2 group. These results demonstrate that the epidemic strains of PEDV in China in 2016-2017 are mainly virulent strains that belong to the G2 group and genetically differ from the vaccine strain. Importantly, this is the first report that the samples collected in Hainan Province were positive for PEDV (59.2%, 25/42). To our knowledge, this article presents the first report of a virulent PEDV strain isolated from Hainan Island, China. The results of this study will contribute to the understanding of the epidemiology and genetic characteristics of PEDV in China.

  16. SERO-EPIDEMIOLOGY OF DENGUE VIRUS INFECTION IN CITIES OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2013-10-01

    Full Text Available Background: Dengue Virus Infektion is major public health problem in Indonesia. Aedesaegypti is widespread in both urban and rural areas, where multiple virus Serotype are circulating. On 2013 outbreak ofdengue virus infection occur in East Java. Therefore study seroepidemiology in Bangkalan and Lombok had been done. Aim:to find a mutated strain ofDengue Virus in 4 cities ofIndonesia. Method: On 2011 and 2012 seroepidemiology study had been done in Dr. Soetomo Surabaya and Soerya Sidoarjo Hospital; and on 2013 study had been done in Surabaya, Bangkalan and Lombok Hospital . Diagnosis ofDengue Virus Infection was based on Criteri WHO - 2009. Virus isolation in Surabaya, Sidoarjo, Bangkalan and Lombok had been done. Result:a total of349 isolate were obtained from dengue patients sera collected in Surabaya and Sidoarjo, 2011–2012 showed that Den V1 (182, Den V2 (20 Den V4 (1 were found in Surabaya on 2011 and Den V 1 (79 , Den V 2 (7 were found in Surabaya on 2012; Den V1 (40, Den V 2 (3 were found in Sidoarjo on 2011 and Den V 1 (17 were found in Sidoarjo on 2012; Virus isolation in Surabaya on 2013, January: 237 serum sample were collected, found Den V 1 (8, Den V 3 (2 and Den V 4 (5. And PCR stereotyping of isolated viruses in Madura found Den V 1 (1 and Den V 4 (23. In Lombok found Den V 4 (4.It is possible to shift predominant strain in Surabaya , Genotype or Serotype shift might increase the number ofdengue patients. Conclusion: there were shift predominant strain in Surabaya especially Den V 1. Therefore to continuous surveillance ofcirculating viruses is required to predict the risk ofDHF and DF

  17. 17DD and 17D-213/77 yellow fever substrains trigger a balanced cytokine profile in primary vaccinated children.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Campi-Azevedo

    Full Text Available BACKGROUND: This study aimed to compare the cytokine-mediated immune response in children submitted to primary vaccination with the YF-17D-213/77 or YF-17DD yellow fever (YF substrains. METHODS: A non-probabilistic sample of eighty healthy primary vaccinated (PV children was selected on the basis of their previously known humoral immune response to the YF vaccines. The selected children were categorized according to their YF-neutralizing antibody titers (PRNT and referred to as seroconverters (PV-PRNT(+ or nonseroconverters (PV-PRNT(-. Following revaccination with the YF-17DD, the PV-PRNT(- children (YF-17D-213/77 and YF-17DD groups seroconverted and were referred as RV-PRNT(+. The cytokine-mediated immune response was investigated after short-term in vitro cultures of whole blood samples. The results are expressed as frequency of high cytokine producers, taking the global median of the cytokine index (YF-Ag/control as the cut-off. RESULTS: The YF-17D-213/77 and the YF-17DD substrains triggered a balanced overall inflammatory/regulatory cytokine pattern in PV-PRNT(+, with a slight predominance of IL-12 in YF-17DD vaccinees and a modest prevalence of IL-10 in YF-17D-213/77. Prominent frequency of neutrophil-derived TNF-α and neutrophils and monocyte-producing IL-12 were the major features of PV-PRNT(+ in the YF-17DD, whereas relevant inflammatory response, mediated by IL-12(+CD8(+ T cells, was the hallmark of the YF-17D-213/77 vaccinees. Both substrains were able to elicit particular but relevant inflammatory events, regardless of the anti-YF PRNT antibody levels. PV-PRNT(- children belonging to the YF-17DD arm presented gaps in the inflammatory cytokine signature, especially in terms of the innate immunity, whereas in the YF-17D-213/77 arm the most relevant gap was the deficiency of IL-12-producing CD8(+T cells. Revaccination with YF-17DD prompted a balanced cytokine profile in YF-17DD nonresponders and a robust inflammatory profile in YF-17D

  18. Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79.

    Science.gov (United States)

    Bowen, Christopher D; Renner, Daniel W; Shreve, Jacob T; Tafuri, Yolanda; Payne, Kimberly M; Dix, Richard D; Kinchington, Paul R; Gatherer, Derek; Szpara, Moriah L

    2016-05-01

    Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    Science.gov (United States)

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  20. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus.

    Science.gov (United States)

    de Ronde, A; van Dooren, M; van Der Hoek, L; Bouwhuis, D; de Rooij, E; van Gemen, B; de Boer, R; Goudsmit, J

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT). Follow-up of the fate of these resistant HIV-1 strains in four newly infected individuals revealed that they were readily replaced by sensitive strains. The RT of the resistant viruses changed at amino acid 215 from tyrosine (Y) to aspartic acid (D) or serine (S), with asparagine (N) as a transient intermediate, indicating the establishment of new wild types. When we introduced these mutations and the original threonine (T)-containing wild type into infectious molecular clones and assessed their competitive advantage in vitro, the order of fitness was in accord with the in vivo observations: 215Y types with D, S, or N residues at position 215 may be warranted in order to estimate the threat to long-term efficacy of regimens including nucleoside analogues.

  1. Molecular epidemiology of Plum pox virus in Japan.

    Science.gov (United States)

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  2. Nucleotide sequence analyses of genomic RNAs of peanut stunt virus Mi, the type strain representative of a novel PSV subgroup from China

    NARCIS (Netherlands)

    Yan, L.; Xu, Z.; Goldbach, R.W.; Chen, Y.K.; Prins, M.W.

    2005-01-01

    The complete nucleotide sequence of Peanut stunt virus strain Mi (PSV-Mi) from China was determined and compared to other viruses of the genus Cucumovirus. The tripartite genome of PSV-Mi encoded five open reading frames (ORFs) typical of cucumoviruses. Distance analyses of four ORFs indicated that

  3. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Directory of Open Access Journals (Sweden)

    Cui Shang-jin

    2010-05-01

    Full Text Available Abstract A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV. A pair of primers (P1 and P4 specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV, canine parvovirus (CPV, canine coronavirus (CCV, rabies virus (RV, or canine adenovirus (CAV. The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance.

  4. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Science.gov (United States)

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  5. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    Science.gov (United States)

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  6. RobOKoD: microbial strain design for (over)production of target compounds.

    Science.gov (United States)

    Stanford, Natalie J; Millard, Pierre; Swainston, Neil

    2015-01-01

    Sustainable production of target compounds such as biofuels and high-value chemicals for pharmaceutical, agrochemical, and chemical industries is becoming an increasing priority given their current dependency upon diminishing petrochemical resources. Designing these strains is difficult, with current methods focusing primarily on knocking-out genes, dismissing other vital steps of strain design including the overexpression and dampening of genes. The design predictions from current methods also do not translate well-into successful strains in the laboratory. Here, we introduce RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting strain designs for overproduction of targets. The method uses flux variability analysis to profile each reaction within the system under differing production percentages of target-compound and biomass. Using these profiles, reactions are identified as potential knockout, overexpression, or dampening targets. The identified reactions are ranked according to their suitability, providing flexibility in strain design for users. The software was tested by designing a butanol-producing Escherichia coli strain, and was compared against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable design predictions, when predictions from these methods are compared to a successful butanol-producing experimentally-validated strain. Overall RobOKoD provides users with rankings of predicted beneficial genetic interventions with which to support optimized strain design.

  7. Molecular Characterization of Viruses from Clinical Respiratory Samples Producing Unidentified Cytopathic Effects in Cell Culture

    Directory of Open Access Journals (Sweden)

    Guy Boivin

    2009-07-01

    Full Text Available The sequence-independent single primer amplification (SISPA method was performed to identify a virus in 17 clinical respiratory samples producing uncharacterized cytopathic effects in LLC-MK2 cells. Sequence analysis of 600-1600 bp amplicons allowed the identification of six viruses (one influenza C, two parechovirus-3 and three cardioviruses. Genomic sequences of the cardioviruses showed similarities with those of the recently-described Saffold virus strain although significant variation was present in the viral surface EF and CD loops. These results demonstrate the usefulness of SISPA for identifying emerging viruses and also known viruses not easily identified by standard virological methods.

  8. T-cell responsiveness to LCMV segregates as a single locus in crosses between BALB/cA and C.B-17 mice. Evidence for regulation by a gene outside the Igh region

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, Ole; Thomsen, Allan Randrup

    1993-01-01

    The course of systemic infection with lymphocytic choriomeningitis virus (LCMV) was studied in BALB/cA and C.B-17 mouse strains differing in the immunoglobulin heavy chain region (Igh). Susceptibility to intracerebral infection and the ability to clear the virus differed significantly between...

  9. BIOLOGY OF HUMAN RESPIRATORY SYNCYTIAL VIRUS: A ...

    African Journals Online (AJOL)

    DR. AMINU

    membrane of the eyes, mouth, or nose and possibly through the ... transmembrane anchor near the C terminus. It is cleaved into two ... immunity induced by previous strains (Hall, 2001). Fluctuations in the .... isolation, and other serological techniques. Antigen .... Respiratory syncytial virus in B.N. fields, D.M. Knipe and.

  10. Complete Genome Sequences of Porcine Epidemic Diarrhea Virus Strains JSLS-1/2015 and JS-2/2015 Isolated from China.

    Science.gov (United States)

    Tao, Jie; Li, Benqiang; Zhang, Chunling; Liu, Huili

    2016-11-10

    Two porcine epidemic diarrhea virus (PEDV) strains, JSLS-1/2015 and JS-2/2015, were isolated from piglets with watery diarrhea in South China. Two genomic sequences were highly homologous to the attenuated DR13 strain. Furthermore, JSLS-1/2015 contains a 24-amino-acid deletion in open reading frame 1b, which was first reported in PEDV isolates. Copyright © 2016 Tao et al.

  11. CD8+ T cells complement antibodies in protecting against yellow fever virus.

    Science.gov (United States)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A; Fenger, Christina; Rasmussen, Michael; Skjødt, Karsten; Finsen, Bente; Stryhn, Anette; Buus, Søren; Christensen, Jan P; Thomsen, Allan R

    2015-02-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. Innate immune responses of calves during transient infection with a noncytopathic strain of bovine viral diarrhea virus

    DEFF Research Database (Denmark)

    Muller-Doblies, D.; Arquint, A.; Schaller, P.

    2004-01-01

    In this study, six immunocompetent calves were experimentally infected with a noncytopathic strain of bovine viral diarrhea virus (BVDV), and the effects of the viral infection on parameters of the innate immune response of the host were analyzed. Clinical and virological data were compared...

  13. Tropism and infectivity of duck-derived egg drop syndrome virus in chickens.

    Directory of Open Access Journals (Sweden)

    Min Kang

    Full Text Available Egg drop syndrome virus (EDSV can markedly decrease egg production in laying hens. Duck is the natural host of EDSV. EDSV derived from ducks abrogate egg drop in laying hens. We have previously confirmed that duck-derived EDSVs have a variety of replication activities in chick embryo liver (CEL cells. However, it is currently unclear whether duck-derived EDSV could display tropism and adaptation in laying hens. This study assessed whether duck-derived EDSV can adapt to laying hens, and estimated the inducing factors. Complete genome sequences of duck-derived EDSVs (D11-JW-012, D11-JW-017, and D11-JW-032 isolates with various replication efficiency in CEL cells and C10-GY-001 isolate causing disease in laying hens were analyzed to find their differences. Phylogenetic analysis of complete genome sequence revealed that C10-GY-001, D11-JW-032, and strain 127 virus as vaccine were clustered into the same group, with D11-JW-012 and D11-JW-017 clustered in another group. Comparison between D11-JW-012 isolate that poorly replicated and D11-JW-017 isolate that replicated well in CEL cells in same cluster revealed six amino acid differences on IVa2, DNA polymerase, endopeptidase, and DNA-binding protein. These amino acids might be key candidates enhancing cellular tropism in chicken. When the pathogenicities of these isolates in laying hens were compared, D11-JW-032 showed severe signs similar to 127 virus, D11-JW-017 showed intermediate signs, while D11-JW-012 showed almost no sign. Eleven amino acids differed between D11-JW-032 and D11-JW-017, and 17 amino acids were different between D11-JW-032 and D11-JW-012. These results suggest that EDSVs derived from ducks have various pathogenicities in laying hens. Key amino acid candidates might have altered their affinity to tropism of laying hens, causing difference pathogenicities.

  14. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  15. Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus.

    Science.gov (United States)

    Blixenkrone-Møller, M

    1989-09-01

    Using an indirect immunofluorescence technique, the distribution of viral antigen in various tissues and blood mononuclear leukocytes was studied in wild mink, either vaccinated with an attenuated vaccine strain of canine distemper virus (CDV) or experimentally inoculated with the virulent Snyder-Hill strain of CDV. Viral antigen was detected in cells of the lymphoid system 6 to 12 days after vaccination. From 2 to 3 days after inoculation with the virulent strain, CDV antigen was demonstrated in cells of the lymphoid system and, during the incubation period, the antigen had spread to the epithelia and brain at days 6 and 12, respectively. In clinical cases of acute fatal canine distemper, the viral antigen was detected in a wide variety of tissues, including the cells of the lymphoid system, epithelial cells of skin, mucous membranes, lung, kidney, and cells of the CNS. The diagnostic importance of CDV antigen detection is discussed on the basis of these findings.

  16. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Science.gov (United States)

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  17. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Directory of Open Access Journals (Sweden)

    Hongjia Zhang

    2018-03-01

    Full Text Available High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short. As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation.

  18. Complete Genome Sequence of a Virulent Newcastle Disease Virus Strain Isolated from a Clinically Healthy Duck (Anas platyrhynchos domesticus) in Pakistan

    Science.gov (United States)

    Wajid, Abdul; Rehmani, Shafqat F.; Wasim, Muhammad; Basharat, Asma; Bibi, Tasra; Arif, Saima; Dimitrov, Kiril M.

    2016-01-01

    Here, we report the complete genome sequence of a virulent Newcastle disease virus (vNDV) strain, duck/Pakistan/Lahore/AW-123/2015, isolated from apparently healthy laying ducks (Anas platyrhynchos domesticus) from the province of Punjab, Pakistan. The virus has a genome length of 15,192 nucleotides and is classified as member of subgenotype VIIi, class II. PMID:27469959

  19. Complete Genome Sequence of a Virulent Newcastle Disease Virus Strain Isolated from a Clinically Healthy Duck (Anas platyrhynchos domesticus) in Pakistan

    OpenAIRE

    Wajid, Abdul; Rehmani, Shafqat F.; Wasim, Muhammad; Basharat, Asma; Bibi, Tasra; Arif, Saima; Dimitrov, Kiril M.; Afonso, Claudio L.

    2016-01-01

    Here, we report the complete genome sequence of a virulent Newcastle disease virus (vNDV) strain, duck/Pakistan/Lahore/AW-123/2015, isolated from apparently healthy laying ducks (Anas platyrhynchos domesticus) from the province of Punjab, Pakistan. The virus has a genome length of 15,192 nucleotides and is classified as member of subgenotype VIIi, class II.

  20. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  1. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  2. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    Science.gov (United States)

    Chen, S; Blanck, G; Pollack, R E

    1983-09-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.

  3. What Does the Future Hold for Yellow Fever Virus? (I

    Directory of Open Access Journals (Sweden)

    Raphaëlle Klitting

    2018-06-01

    Full Text Available The recent resurgence of yellow fever virus (YFV activity in the tropical regions of Africa and South America has sparked renewed interest in this infamous arboviral disease. Yellow fever virus had been a human plague for centuries prior to the identification of its urban transmission vector, the Aedes (Stegomyia aegypti (Linnaeus mosquito species, and the development of an efficient live-attenuated vaccine, the YF-17D strain. The combination of vector-control measures and vaccination campaigns drastically reduced YFV incidence in humans on many occasions, but the virus never ceased to circulate in the forest, through its sylvatic invertebrate vector(s and vertebrate host(s. Outbreaks recently reported in Central Africa (2015–2016 and Brazil (since late 2016, reached considerable proportions in terms of spatial distribution and total numbers of cases, with multiple exports, including to China. In turn, questions about the likeliness of occurrence of large urban YFV outbreaks in the Americas or of a successful import of YFV to Asia are currently resurfacing. This two-part review describes the current state of knowledge and gaps regarding the molecular biology and transmission dynamics of YFV, along with an overview of the tools that can be used to manage the disease at individual, local and global levels.

  4. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from giant panda and raccoon dogs in China

    Science.gov (United States)

    2013-01-01

    Background Canine distemper virus (CDV) infects a variety of carnivores, including wild and domestic Canidae. In this study, we sequenced and phylogenetic analyses of the hemagglutinin (H) genes from eight canine distemper virus (CDV) isolates obtained from seven raccoon dogs (Nyctereutes procyonoides) and a giant panda (Ailuropoda melanoleuca) in China. Results Phylogenetic analysis of the partial hemagglutinin gene sequences showed close clustering for geographic lineages, clearly distinct from vaccine strains and other wild-type foreign CDV strains, all the CDV strains were characterized as Asia-1 genotype and were highly similar to each other (91.5-99.8% nt and 94.4-99.8% aa). The giant panda and raccoon dogs all were 549Y on the HA protein in this study, irrespective of the host species. Conclusions These findings enhance our knowledge of the genetic characteristics of Chinese CDV isolates, and may facilitate the development of effective strategies for monitoring and controlling CDV for wild canids and non-cainds in China. PMID:23566727

  5. Genetic diversity and geographic distribution of genetically distinct rabies viruses in the Philippines.

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    Full Text Available BACKGROUND: Rabies continues to be a major public health problem in the Philippines, where 200-300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy. METHODS: We performed a molecular analysis of rabies viruses in the Philippines using rabied animal brain samples. The samples were collected from 11 of 17 regions, which covered three island groups (Luzon, Visayas, and Mindanao. Partial nucleoprotein (N gene sequencing was performed on 57 samples and complete glycoprotein (G gene sequencing was performed on 235 samples collected between 2004 and 2010. RESULTS: The Philippine strains of rabies viruses were included in a distinct phylogenetic cluster, previously named Asian 2b, which appeared to have diverged from the Chinese strain named Asian 2a. The Philippine strains were further divided into three major clades, which were found exclusively in different island groups: clades L, V, and M in Luzon, Visayas, and Mindanao, respectively. Clade L was subdivided into nine subclades (L1-L9 and clade V was subdivided into two subclades (V1 and V2. With a few exceptions, most strains in each subclade were distributed in specific geographic areas. There were also four strains that were divided into two genogroups but were not classified into any of the three major clades, and all four strains were found in the island group of Luzon. CONCLUSION: We detected three major clades and two distinct genogroups of rabies viruses in the Philippines. Our data suggest that viruses of each clade and subclade evolved independently in each area without frequent introduction into other areas. An important implication of these data is that geographically targeted dog vaccination using the island group approach may effectively control rabies in the Philippines.

  6. Epstein-Barr virus latent gene sequences as geographical markers of viral origin: unique EBNA3 gene signatures identify Japanese viruses as distinct members of the Asian virus family.

    Science.gov (United States)

    Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J

    2011-05-01

    Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.

  7. Development of a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction assay for the differential diagnosis of Feline leukemia virus vaccine and wild strains.

    Science.gov (United States)

    Ho, Chia-Fang; Chan, Kun-Wei; Yang, Wei-Cheng; Chiang, Yu-Chung; Chung, Yang-Tsung; Kuo, James; Wang, Chi-Young

    2014-07-01

    A multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) was developed for the differential diagnosis of Feline leukemia virus (FeLV) vaccine and wild-type strains based on a point mutation between the vaccine strain (S) and the wild-type strain (T) located in the p27 gene. This system was further upgraded to obtain a real-time ARMS RT-PCR (ARMS qRT-PCR) with a high-resolution melt analysis (HRMA) platform. The genotyping of various strains of FeLV was determined by comparing the HRMA curves with the defined wild-type FeLV (strain TW1), and the results were expressed as a percentage confidence. The detection limits of ARMS RT-PCR and ARMS qRT-PCR combined with HRMA were 100 and 1 copies of transcribed FeLV RNA per 0.5 ml of sample, respectively. No false-positive results were obtained with 6 unrelated pathogens and 1 feline cell line. Twelve FeLV Taiwan strains were correctly identified using ARMS qRT-PCR combined with HRMA. The genotypes of the strains matched the defined FeLV wild-type strain genotype with at least 91.17% confidence. A higher degree of sequence polymorphism was found throughout the p27 gene compared with the long terminal repeat region. In conclusion, the current study describes the phylogenetic relationship of the FeLV Taiwan strains and demonstrates that the developed ARMS RT-PCR assay is able to be used to detect the replication of a vaccine strain that has not been properly inactivated, thus acting as a safety check for the quality of FeLV vaccines.

  8. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin.

    Science.gov (United States)

    Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco

    2015-08-01

    Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  10. Dynamic scattering theory for dark-field electron holography of 3D strain fields

    International Nuclear Information System (INIS)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques

  11. Detection of infectious bursal disease virus in various lymphoid tissues of experimentally infected specific pathogen free chickens by different reverse transcription polymerase chain reaction assays

    DEFF Research Database (Denmark)

    Kabell, Susanne; Handberg, Kurt; Kusk, Mette

    2005-01-01

    Infectious bursal disease (IBD) is a worldwide distributed immunosuppressive viral disease in young chickens, controlled by vaccination. Emergence of several strains of IBD virus (IBDV) has created a demand for strain-specific diagnostic tools. In the present experiment, five different reverse...... included vaccine strain D78, classical strain Faragher 52/70, and the very virulent Danish strain DK01 The presence of the virus infection was confirmed by histopathologic evaluation of bursa lesions. The largest number of positive samples was obtained with a strain-specific two-step multiplex (MPX) RT...

  12. Novel method for measuring a dense 3D strain map of robotic flapping wings

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  13. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    Science.gov (United States)

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Induction of feline immunodeficiency virus specific antibodies in cats with an attenuated Salmonella strain expressing the Gag protein.

    NARCIS (Netherlands)

    E.J. Tijhaar (Edwin); C.H.J. Siebelink (Kees); J.A. Karlas (Jos); M.C. Burger; F.R. Mooi (Frits); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractSalmonella typhimurium aroA strains (SL3261), expressing high levels of the Gag protein of feline immunodeficiency virus (FIV) fused with maltose binding protein (SL3261-MFG), were constructed using an invertible promoter system that allows the stable expression of heterologous antigens

  15. Phylogenetic features of hemagglutin gene in canine distemper virus strains from different genetic lineages.

    Science.gov (United States)

    Liao, Peng; Guo, Li; Wen, Yongjun; Yang, Yangling; Cheng, Shipeng

    2015-01-01

    In the present study, the genotype of two Canine distemper virus (CDV) strains, namely, ZJJ-SD and ZJJ-LN, were investigated, based on the whole hemagglutinin (HA) gene. The CDV strains were obtained from two foxes in Shandong Province and Liaoning Province in 2011. Phylogenetic analyses were carried out for 260 CDV strains worldwide, and a statistical analysis was performed in the amino acid substitutions at positions 530 and 549 of the HA protein. Phylogenetic analyses revealed that the two strains, ZJJ-SD and ZJJ-LN, belonged to the CDV Asia I lineage. Site 530 of HA protein was found to be relatively conserved within CDV lineages in different host species by combining the genetic sequence data with the published data from 260 CDV strains worldwide. The data analysis showed a bias toward the predicted substitution Y549H for the non-dog strains in Asia I and Europe lineages. The ratio of site 549 genetic drift in the HA gene were significantly different between dogs and non-dogs in the two lineages. The strain ZJJ-SD, from wild canid, has an Y549H substitution. It is one of three Y549H substitution for wild canids in Asia I lineages. Site 530 of HA protein was not immediately relative to CDV genetic drift from dogs to non-dogs. Statistical analysis indicated that non-dog strains have a high probability to contain Y549H than dog strains in Asia I and Europe lineages. Thus, site 549 is considered important in genetic drift from dogs to non-dogs, at least in Asia I and Europe lineages.

  16. What difference does it make if viruses are strain-, rather than species-specific?

    Directory of Open Access Journals (Sweden)

    Tron Frede Thingstad

    2015-04-01

    Full Text Available Theoretical work has suggested an important role of lytic viruses in controlling the diversity of their prokaryotic hosts. Yet, providing strong experimental or observational support (or refutation for this has proven evasive. Such models have usually assumed host groups to correspond to the species level, typically represented by 16S rDNA data. Recent model developments take into account the resolution of species into strains with differences in their susceptibility to viral attack. With strains as the host groups, the models will have explicit viral control of abundance at strain level, combined with explicit predator or resource control at community level, but the direct viral control at species level then disappears. Abundance of a species therefore emerges as the combination of how many strains, and at what abundance, this species can establish in competition with other species from a seeding community. We here discuss how species diversification and strain diversification may introduce competitors and defenders, respectively, and that the balance between the two may be a factor in the control of species diversity in mature natural communities. These models suggest that the balance between the two may be a factor in the control of species diversity in mature natural communities. These models can also give a dominance of individuals from strains with high cost of resistance; suggesting that the high proportion of dormant cells among pelagic heterotrophic prokaryotes may reflect their need for expensive defense rather than the lack of suitable growth substrates in their environment.

  17. Prevalence of hepatitis D virus infection in sub-Saharan Africa: a systematic review and meta-analysis.

    Science.gov (United States)

    Stockdale, Alexander J; Chaponda, Mas; Beloukas, Apostolos; Phillips, Richard Odame; Matthews, Philippa C; Papadimitropoulos, Athanasios; King, Simon; Bonnett, Laura; Geretti, Anna Maria

    2017-10-01

    Hepatitis D virus (also known as hepatitis delta virus) can establish a persistent infection in people with chronic hepatitis B, leading to accelerated progression of liver disease. In sub-Saharan Africa, where HBsAg prevalence is higher than 8%, hepatitis D virus might represent an important additive cause of chronic liver disease. We aimed to establish the prevalence of hepatitis D virus among HBsAg-positive populations in sub-Saharan Africa. We systematically reviewed studies of hepatitis D virus prevalence among HBsAg-positive populations in sub-Saharan Africa. We searched PubMed, Embase, and Scopus for papers published between Jan 1, 1995, and Aug 30, 2016, in which patient selection criteria and geographical setting were described. Search strings included sub-Saharan Africa, the countries therein, and permutations of hepatitis D virus. Cohort data were also added from HIV-positive populations in Malawi and Ghana. Populations undergoing assessment in liver disease clinics and those sampled from other populations (defined as general populations) were analysed. We did a meta-analysis with a DerSimonian-Laird random-effects model to calculate a pooled estimate of hepatitis D virus seroprevalence. Of 374 studies identified by our search, 30 were included in our study, only eight of which included detection of hepatitis D virus RNA among anti-hepatitis D virus seropositive participants. In west Africa, the pooled seroprevalence of hepatitis D virus was 7·33% (95% CI 3·55-12·20) in general populations and 9·57% (2·31-20·43) in liver-disease populations. In central Africa, seroprevalence was 25·64% (12·09-42·00) in general populations and 37·77% (12·13-67·54) in liver-disease populations. In east and southern Africa, seroprevalence was 0·05% (0·00-1·78) in general populations. The odds ratio for anti-hepatitis D virus detection among HBsAg-positive patients with liver fibrosis or hepatocellular carcinoma was 5·24 (95% CI 2·74-10·01; psub

  18. Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    DEFF Research Database (Denmark)

    Bukh, Jens; Meuleman, Philip; Tellier, Raymond

    2010-01-01

    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional a...

  19. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum.

    Science.gov (United States)

    Xiong, Liang-Bin; Liu, Hao-Hao; Xu, Li-Qin; Wei, Dong-Zhi; Wang, Feng-Qing

    2017-01-25

    9α-Hydroxy-4-androstene-3,17-dione (9-OHAD) is a valuable steroid pharmaceutical intermediate which can be produced by the conversion of soybean phytosterols in mycobacteria. However, the unsatisfactory productivity and conversion efficiency of engineered mycobacterial strains hinder their industrial applications. Here, a sigma factor D (sigD) was investigated due to its dramatic downregulation during the conversion of phytosterols to 9-OHAD. It was determined as a negative regulator in the metabolism of phytosterols, and the deletion of sigD in a 9-OHAD-producing strain significantly enhanced the titer of 9-OHAD by 18.9%. Furthermore, a high yielding strain was constructed by the combined modifications of sigD and choM2, a key gene in the phytosterol metabolism pathway. After the modifications, the productivity of 9-OHAD reached 0.071 g/L/h (10.27 g/L from 20 g/L phytosterol), which was 22.5% higher than the original productivity of 0.058 g/L/h (8.37 g/L from 20 g/L phytosterol) in the industrial resting cell biotransformation system.

  20. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    Science.gov (United States)

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  1. Myocardial strains from 3D displacement encoded magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kindberg, Katarina; Haraldsson, Henrik; Sigfridsson, Andreas; Engvall, Jan; Ingels, Neil B Jr; Ebbers, Tino; Karlsson, Matts

    2012-01-01

    The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts

  2. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad; Sugrue, Richard J.; Tan, Boon Huan; Maurer-Stroh, Sebastian; Lee, Raphael Tze Chuen; Wong, Puisan

    2016-01-01

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  4. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad Raihan

    2016-08-04

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  5. Full-length genome sequence analysis of four subgroup J avian leukosis virus strains isolated from chickens with clinical hemangioma.

    Science.gov (United States)

    Lin, Lulu; Wang, Peikun; Yang, Yongli; Li, Haijuan; Huang, Teng; Wei, Ping

    2017-12-01

    Since 2014, cases of hemangioma associated with avian leukosis virus subgroup J (ALV-J) have been emerging in commercial chickens in Guangxi. In this study, four strains of the subgroup J avian leukosis virus (ALV-J), named GX14HG01, GX14HG04, GX14LT07, and GX14ZS14, were isolated from chickens with clinical hemangioma in 2014 by DF-1 cell culture and then identified with ELISA detection of ALV group specific antigen p27, the detection of subtype specific PCR and indirect immunofluorescence assay (IFA) with ALV-J specific monoclonal antibody. The complete genomes of the isolates were sequenced and it was found that the gag and pol were relatively conservative, while env was variable especially the gp85 gene. Homology analysis of the env gene sequences showed that the env gene of all the four isolates had higher similarities with the hemangioma (HE)-type reference strains than that of the myeloid leukosis (ML)-type strains, and moreover, the HE-type strains' specific deletion of 205-bp sequence covering the rTM and DR1 in 3'UTR fragment was also found in the four isolates. Further analysis on the sequences of subunits of env gene revealed an interesting finding: the gp85 of isolates GX14ZS14 and GX14HG04 had a higher similarity with HPRS-103 and much lower similarity with the HE-type reference strains resulting in GX14ZS14, GX14HG04, and HPRS-103 being clustered in the same branch, while gp37 had higher similarities with the HE-type reference strains when compared to that of HPRS-103, resulted in GX14ZS14, GX14HG04, and HE-type reference strains being clustered in the same branch. The results suggested that isolates GX14ZS14 and GX14HG04 may be the recombinant strains of the foreign strain HPRS-103 with the local epidemic HE-type strains of ALV-J.

  6. Human immunodeficiency virus contains an epitope immunoreactive with thymosin α1 and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30

    International Nuclear Information System (INIS)

    Naylor, P.H.; Naylor, C.W.; Badamchian, M.; Wada, S.; Goldstein, A.L.; Wang, S.S.; Sun, D.K.; Thornton, A.H.; Sarin, P.S.

    1987-01-01

    The authors have reported that an antiserum prepared against thymosin α 1 [which shares a region of homology with the p17 protein of the acquired immunodeficiency syndrome (AIDS)-associated human immunodeficiency virus] effectively neutralized the AIDs virus and prevented its replication in H9 cells. Using HPLC and immunoblot analysis, they have identified from a clone B, type III human T-lymphotropic virus (HTLV-IIIB) extracts a protein with a molecular weight of 17,000 that is immunoreactive with thymosin α 1 . In contrast, no immunoreactivity was found in retroviral extracts from a number of nonhuman species including feline, bovine, simian, gibbon, and murine retroviruses. Heterologous antiserum prepared against a 30-amino acid synthetic peptide analogue (HGP-30) does not cross-react with thymosin α 1 but does react specifically with the p17 protein of the AIDS virus in a manner identical to that seen with an HTLV-IIIB p17-specific monoclonal antibody. The demonstration that this synthetic analogue is immunogenic and that antibodies to HGP-30 cross-react not only with synthetic peptide but also with the HTLV-IIIB p17 viral protein provides an additional, and potentially more specific, candidate for development of a synthetic peptide vaccine for AIDS. In addition, the p17 synthetic peptide (HGP-3) may prove to be useful in a diagnostic assay for the detection of AIDS virus infection in seronegative individuals

  7. Measles virus genotypes circulating in India, 2011-2015.

    Science.gov (United States)

    Vaidya, Sunil R; Chowdhury, Deepika T

    2017-05-01

    The Government of India is accepted to participate in the measles elimination and rubella control goal 2020, hence genetic characterization of measles viruses (MeV) becomes essential. At National Reference Laboratory (National Institute of Virology, Pune), the throat swabs/urine specimens (n = 380) or PCR products (n = 219) obtained from the suspected measles cases were referred for the molecular testing and subsequently, MeV nucleoprotein (N) gene sequencing/genotyping. In addition, 2,449 suspected measles cases, mainly from the Maharashtra state were referred for the laboratory diagnosis. A detailed study was performed on N gene sequences obtained during last two decades. Indian MeV sequences obtained during 2011-2015 were compared with 1996-2010 sequences and genetic divergence was studied. Circulation of measles genotypes B3 (n = 3), D4 (n = 49), and D8 (n = 351) strains were observed in 19 States and three Union Territories of India. In addition, 64 measles viruses were isolated from 253 throat swab or urine specimens obtained from the suspected measles cases. During 2011-2015, 67.9% (1,663/2,449) suspected measles cases were laboratory confirmed. Molecular studies showed circulation of measles genotype B3 in India along with prominently circulating genotypes D4 and D8 except D7 strains. The genetic diversion within Indian B3, D4, and D8 genotypes was 0.3%, 1.1%, and 2.1%, respectively. The genetic divergence of Indian B3, D4, and D8 measles strains with the WHO reference sequences was 2.5%, 2.6%, and 1.8%, respectively. It is crucial data for national immunization program. More measles/rubella genotyping studies are necessary to track transmission and to support measles elimination and rubella control. J. Med. Virol. 89:753-758, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells

    Science.gov (United States)

    Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques

    2015-01-01

    The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854

  9. Replacement of glycoprotein B gene in the Herpes simplex virus type 1 strain ANGpath DNA that originating from non-pathogenic strain KOS reduces the pathogenicity of recombinant virus

    International Nuclear Information System (INIS)

    Kostal, M.; Bacik, I.; Rajcani, J.; Kaerner, H.C.

    1994-01-01

    Herpes simplex virus type-1 (HSV-1) strain ANGpath and its recombinants, in which the 8.1 kbp BamHI G restriction fragment (0.345-0.399) containing the glycoprotein B (gB path ) gene (UL27) or its sub-fragments-coding either for cytoplasmic or surface domain of gB-had been replaced with the corresponding fragments from non-pathogenic KOS virus DNA (gB KOS ), were tested for their pathogenicity for DBA/2 mice and rabbits. The recombinant ANGpath/B6 KOS prepared by transferring the 2.7 kbp SstI-SstI sub-fragment (0.351-0.368) of the BamHI G KOS fragment still had the original sequence of ANGpath DNA coding for the syn 3 marker in the cytoplasmic domain of gB and was pathogenic for mice as well as for rabbits. Virological and immuno-histological studies in DBA/2 mice infected with the latter pathogenic recombinant and with ANGpath showed the presence of infectious virus and viral antigen at inoculation site (epidermis, subcutaneous connective tissue and striated muscle in the area of right lip), in homo-lateral trigeminal nerve and ganglion, brain stem, midbrain, thalamic and hypothalamic nuclei. In contrast, non-pathogenic recombinants ANGpath/syn + B6 KOS (prepared by transferring the whole BamHI G KOS fragment) and ANGpath/syn +KOS (prepared by transferring the 0.8 kbp BamHI-SstI sub-fragment of the BamHI G KOS fragment) showed limited hematogenous and neural spread, but no evidence of replication in CNS; thus, their behaviour resembled that of the wild type strain KOS. The recombinant ANGpath/syn +KOS , which was not pathogenic for mice, still remained pathogenic for rabbits, a phenomenon indicating the presence of an additional locus in the gB molecule participating on virulence. Sequencing the 1478 bp SstI-SstI sub-fragment of the BamHI G path fragment (nt 53,348 - 54,826 of UL segment) showed the presence of at least 3 mutations as compared to the KOS sequence, from which the change of cytosine at nt 54,2251 altered the codon for arginine to that histidine

  10. Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran

    Directory of Open Access Journals (Sweden)

    Sadegh Chinikar

    2016-01-01

    Full Text Available Background: Crimean Congo hemorrhagic fever virus (CCHFV is a member of the Bunyaviridae family and Nairovirus genus. It has a negative-sense, single stranded RNA genome approximately 19.2 kb, containing the Small, Medium, and Large segments. CCHFVs are relatively divergent in their genome sequence and grouped in seven distinct clades based on S-segment sequence analysis and six clades based on M-segment sequences. Our aim was to obtain new insights into the molecular epidemiology of CCHFV in Iran.Methods: We analyzed partial and complete nucleotide sequences of the S and M segments derived from 50 Iranian patients. The extracted RNA was amplified using one-step RT-PCR and then sequenced. The sequences were ana­lyzed using Mega5 software.Results: Phylogenetic analysis of partial S segment sequences demonstrated that clade IV-(Asia 1, clade IV-(Asia 2 and clade V-(Europe accounted for 80 %, 4 % and 14 % of the circulating genomic variants of CCHFV in Iran respectively. However, one of the Iranian strains (Iran-Kerman/22 was associated with none of other sequences and formed a new clade (VII. The phylogenetic analysis of complete S-segment nucleotide sequences from selected Ira­nian CCHFV strains complemented with representative strains from GenBank revealed similar topology as partial sequences with eight major clusters. A partial M segment phylogeny positioned the Iranian strains in either associa­tion with clade III (Asia-Africa or clade V (Europe.Conclusion: The phylogenetic analysis revealed subtle links between distant geographic locations, which we pro­pose might originate either from international livestock trade or from long-distance carriage of CCHFV by infected ticks via bird migration.

  11. Pathological lesions in the central nervous system and peripheral tissues of ddY mice with street rabies virus (1088 strain).

    Science.gov (United States)

    Kimitsuki, Kazunori; Yamada, Kentaro; Shiwa, Nozomi; Inoue, Satoshi; Nishizono, Akira; Park, Chun-Ho

    2017-06-10

    Most studies on rabies virus pathogenesis in animal models have employed fixed rabies viruses, and the results of those employing street rabies viruses have been inconsistent. Therefore, to clarify the pathogenesis of street rabies virus (1088 strain) in mice, 10 6 focus forming units were inoculated into the right hindlimb of ddY mice (6 weeks, female). At 3 days postinoculation (DPI), mild inflammation was observed in the hindlimb muscle. At 5 DPI, ganglion cells in the right lumbosacral spinal dorsal root ganglia showed chromatolysis. Axonal degeneration and inflammatory cells increased with infection progress in the spinal dorsal horn and dorsal root ganglia. Right hindlimb paralysis was observed from 7 DPI, which progressed to quadriparalysis. However, no pathological changes were observed in the ventral horn and root fibers of the spinal cord. Viral antigen was first detected in the right hindlimb muscle at 3 DPI, followed by the right lumbosacral dorsal root ganglia, dorsal horn of spinal cord, left red nuclei, medulla oblongata and cerebral cortex (M1 area) at 5 DPI. These results suggested that the 1088 virus ascended the lumbosacral spinal cord via mainly afferent fibers at early stage of infection and moved to cerebral cortex (M1 area) using descending spinal tract. Additionally, we concluded that significant pathological changes in mice infected with 1088 strain occur in the sensory tract of the spinal cord; this selective susceptibility results in clinical features of the disease.

  12. Molecular analysis of HIV strains from a cluster of worker infections in the adult film industry, Los Angeles 2004.

    Science.gov (United States)

    Brooks, John T; Robbins, Kenneth E; Youngpairoj, Ae S; Rotblatt, Harlan; Kerndt, Peter R; Taylor, Melanie M; Daar, Eric S; Kalish, Marcia L

    2006-04-04

    In April 2004, 13 susceptible women were exposed to a single acutely HIV-1-infected man while employed to perform various sex acts for the production of adult films; three women were subsequently found to have acquired HIV infection (23% attack rate). As part of the investigation of this infection cluster, we evaluated whether viral strains collected from infected individuals were significantly related. We determined nucleotide sequences from the C2V3C3 and gp41 region of env and the p17 region of gag in viruses from the three infected individuals from whom specimens were available. We then compared these sequences phylogenetically to comparable sequences from available reference strains. Genotypic and phenotypic antiretroviral drug resistance was determined for plasma virus from the male index case and one female contact at a separate commercial laboratory. The env and gag sequences of the HIV strains from the male index case and two of the infected women were 100% similar. Genotyping of the male index case's virus identified 12 mutations, which represented known naturally occurring polymorphisms in the subtype B consensus sequence that are not associated with antiretroviral drug resistance. Genotyping of the virus from the female contact identified 10 mutations, all of which were shared by the virus from the male index case. Phenotyping demonstrated that both viruses were susceptible to all antiretroviral drugs tested. Molecular and virological data strongly support the epidemiological conclusion that these women were infected with an identical strain of HIV through occupational exposure to an individual with an acute HIV infection.

  13. Intracerebral infection of Cebus apella with the XJ-Clone 3 strain of Junín virus.

    Science.gov (United States)

    Carballal, G; Oubiña, J R; Molinas, F C; Nagle, C; de la Vega, M T; Videla, C; Elsner, B

    1987-03-01

    To assess the usefulness of the South American primate Cebus apella as a model for neurovirulence of Junín virus, eight monkeys were inoculated with 10(5) LD50 of the attenuated XJ-Clone 3 Junín virus strain by the intrathalamic route. After the second week, weight loss and polyadenopathies were observed in most animals, one-half of which had a transient leukothrombocytopenia. Moderate clinical central nervous system (CNS) involvement was present in four of eight monkeys, while the rest had only mild neurologic signs. All recovered except one, which developed a deep coma and was killed in a pre-mortem stage at 18 days post-infection (pi). Junín virus was isolated from the throat from five, from the blood from three, and from the brain from two monkeys. In the most severely ill animal, virus titers higher than viremia were detected in both inoculated and contralateral brain hemispheres, as well as in lung, lymph node, and small intestine. Junín antigens and "in vivo" bound immunoglobulins were detected by immunofluorescence (IF) in the brain of four animals at 18, 21, 40, and 155 days pi. Moderate lymphocytic parenchymal and meningeal infiltration were observed in the brain of four animals, and gliosis was also present in the most affected monkey. Although the clinical response to infection was not uniform, all infected monkeys developed high IF antibodies. Cebus apella cannot be used as a highly sensitive model for Argentine hemorrhagic fever (AHF). However, the results obtained show that the XJ-Clone 3 strain can replicate in the primate CNS and to induce lesions and immunoglobulin deposition. In addition, viral persistence is suggested by the late detection of viral antigens in brain at 40 and 155 days pi.

  14. In vitro infection of salmonid epidermal tissues by infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus

    Science.gov (United States)

    Yamamoto, T.; Batts, W.N.; Winton, J.R.

    1992-01-01

    The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.

  15. Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells

    Science.gov (United States)

    Khalid Nessr Alhag, Sadeq; Xin, Peng Jian

    Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.

  16. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    Science.gov (United States)

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  17. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine.

    Science.gov (United States)

    Zhao, Ye; Cheng, Jin-long; Liu, Xiao-yu; Zhao, Jing; Hu, Yan-xin; Zhang, Guo-zhong

    2015-10-22

    Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Large Scale Genome Analysis Shows that the Epitopes for Broadly Cross-Reactive Antibodies Are Predominant in the Pandemic 2009 Influenza Virus A H1N1 Strain

    Directory of Open Access Journals (Sweden)

    Edgar E. Lara-Ramírez

    2013-11-01

    Full Text Available The past pandemic strain H1N1 (A (H1N1pdm09 has now become a common component of current seasonal influenza viruses. It has changed the pre-existing immunity of the human population to succeeding infections. In the present study, a total of 14,210 distinct sequences downloaded from National Center for Biotechnology Information (NCBI database were used for the analysis. The epitope compositions in A (H1N1pdm09, classic seasonal strains, swine strains as well as highly virulent avian strain H5N1, identified with the aid of the Immune Epitope DataBase (IEDB, were compared at genomic level. The result showed that A (H1N1 pdm09 contains the 90% of B-cell epitopes for broadly cross-reactive antibodies (EBCA, which is in consonance with the recent reports on the experimental identification of new epitopes or antibodies for this virus and the binding tests with influenza virus protein HA of different subtypes. Our analysis supports that high proportional EBCA depends on the epitope pattern of A (H1N1pdm09 virus. This study may be helpful for better understanding of A (H1N1pdm09 and the production of new influenza vaccines.

  19. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain.

    Science.gov (United States)

    Lloyd-Jones, Katie; Mahapatra, Mana; Upadhyaya, Sasmita; Paton, David J; Babu, Aravindh; Hutchings, Geoff; Parida, Satya

    2017-12-14

    Foot-and-mouth disease (FMD) is endemic in Eastern Africa with circulation of multiple serotypes of the virus in the region. Most of the outbreaks are caused by serotype O followed by serotype A. The lack of concerted FMD control programmes in Africa has provided little incentive for vaccine producers to select vaccines that are tailored to circulating regional isolates creating further negative feedback to deter the introduction of vaccine-based control schemes. In this study a total of 80 serotype O FMD viruses (FMDV) isolated from 1993 to 2012 from East and North Africa were characterized by virus neutralisation tests using bovine antisera to three existing (O/KEN/77/78, O/Manisa and O/PanAsia-2) and three putative (O/EA/2002, O/EA/2009 and O/EA/2010) vaccine strains and by capsid sequencing. Genetically, these viruses were grouped as either of East African origin with subdivision into four topotypes (EA-1, 2, 3 and 4) or of Middle-East South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Egypt and Libya reflecting the trade links with the Middle East countries. There was good serological cross-reactivity between the vaccine strains and most of the field isolates analysed, indicating that vaccine selection should not be a major constraint for control of serotype O FMD by vaccination, and that both local and internationally available commercial vaccines could be used. The O/KEN/77/78 vaccine, commonly used in the region, exhibited comparatively lower percent in vitro match against the predominant topotypes (EA-2 and EA-3) circulating in the region whereas O/PanAsia-2 and O/Manisa vaccines revealed broader protection against East African serotype O viruses, even though they genetically belong to the ME-SA topotype. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation.

    Science.gov (United States)

    Vialat, P; Muller, R; Vu, T H; Prehaud, C; Bouloy, M

    1997-11-01

    The MP12 attenuated strain of Rift Valley fever virus was obtained by 12 serial passages of a virulent isolate ZH548 in the presence of 5-fluorouracil (Caplen et al., 1985. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol., 66, 2271-2277). The comparison of the M segment of the two strains has already been reported by Takehara et al. (Takehara et al., 1989. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus. Virology 169, 452-457). We have completed the comparison and found that altogether a total of nine, 12 and four nucleotides were changed in the L, M and S segments of the two strains, respectively. Three mutations induced amino acid changes in the L protein but none of them was located in the recognized motifs conserved among RNA dependent polymerases. In the S segment, a single change modified an amino acid in the NSs protein and in the M segment, seven of the mutations resulted in amino acid changes in each of the four encoded G1, G2, 14 kDa and 78 kDa proteins. Characterization of the MP12 virus indicated that determinants for attenuation were present in each segment and that they were introduced progressively during the 12 passages in the presence of the mutagen (Saluzzo and Smith, 1990. Use of reassortant viruses to map attenuating and temperature-sensitive mutations of the Rift Valley fever virus MP-12 vaccine. Vaccine 8, 369-375). Passages 4 and 7-9 were found to be essential for introduction of temperature-sensitive lesions and attenuation. In an attempt to correlate some of the mutations with the attenuated or temperature-sensitive phenotypes, we determined by sequencing the passage level at which the different mutations appeared. This work should help to address the question of the role of the viral gene products in Rift Valley fever pathogenesis.

  1. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  2. Myocardial strains from 3D displacement encoded magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kindberg Katarina

    2012-04-01

    Full Text Available Abstract Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE, make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts.

  3. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    Science.gov (United States)

    Szpara, Moriah L; Tafuri, Yolanda R; Parsons, Lance; Shamim, S Rafi; Verstrepen, Kevin J; Legendre, Matthieu; Enquist, L W

    2011-10-01

    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence

  4. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    Science.gov (United States)

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was measles in China. PMID:24073194

  5. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    2016-09-01

    Full Text Available Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.

  6. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  7. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Vivo Characterisation of Five Strains of Bovine Viral Diarrhoea Virus 1 (Subgenotype 1c

    Directory of Open Access Journals (Sweden)

    Rebecca K. Ambrose

    2018-01-01

    Full Text Available Bovine viral diarrhoea virus 1 (BVDV-1 is strongly associated with several important diseases of cattle, such as bovine respiratory disease, diarrhoea and haemoragic lesions. To date many subgenotypes have been reported for BVDV-1, currently ranging from subgenotype 1a to subgenotype 1u. While BVDV-1 has a world-wide distribution, the subgenotypes have a more restricted geographical distribution. As an example, BVDV-1 subgenotypes 1a and 1b are frequently detected in North America and Europe, while the subgenotype 1c is rarely detected. In contrast, BVDV-1 subgenotype 1c is by far the most commonly reported in Australia. Despite this, uneven distribution of the biological importance of the subgenotypes remains unclear. The aim of this study was to characterise the in vivo properties of five strains of BVDV-1 subgenotype 1c in cattle infection studies. No overt respiratory signs were reported in any of the infected cattle regardless of strain. Consistent with other subgenotypes, transient pyrexia and leukopenia were commonly identified, while thrombocytopenia was not. The quantity of virus detected in the nasal secretions of transiently infected animals suggested the likelihood of horizontal transmission was very low. Further studies are required to fully understand the variability and importance of the BVDV-1 subgenotype 1c.

  9. Antiviral activity of the exopolysaccharide produced by Serratia sp. strain Gsm01 against Cucumber mosaic virus.

    Science.gov (United States)

    Ipper, Nagesh S; Cho, Saeyoull; Lee, Seon Hwa; Cho, Jun Mo; Hur, Jang Hyun; Lim, Chun Keun

    2008-01-01

    The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72 before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMVY, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-1b was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

  10. Molecular characterization of influenza viruses collected from young children in Uberlandia, Brazil - from 2001 to 2010.

    Science.gov (United States)

    de Mattos Silva Oliveira, Thelma Fátima; Yokosawa, Jonny; Motta, Fernando Couto; Siqueira, Marilda Mendonça; da Silveira, Hélio Lopes; Queiróz, Divina Aparecida Oliveira

    2015-02-18

    Influenza remains a major health problem due to the seasonal epidemics that occur every year caused by the emergence of new influenza virus strains. Hemagglutinin (HA) and neuraminidase (NA) glycoproteins are under selective pressure and subjected to frequent changes by antigenic drift. Therefore, our main objective was to investigate the influenza cases in Uberlândia city, Midwestern Brazil, in order to monitor the appearance of new viral strains, despite the availability of a prophylactic vaccine. Nasopharyngeal samples were collected from 605 children less than five years of age presenting with acute respiratory disease and tested by immunofluorescence assay (IFA) for detection of adenovirus, respiratory syncytial virus, parainfluenza virus types 1, 2, and 3 and influenza virus types A and B. A reverse transcription-PCR (RT-PCR) for influenza viruses A and B was carried out to amplify partial segments of the HA and NA genes. The nucleotide sequences were analyzed and compared with sequences of the virus strains of the vaccine available in the same year of sample collection. Forty samples (6.6%) were tested positive for influenza virus by IFA and RT-PCR, with 39 samples containing virus of type A and one of type B. By RT-PCR, the type A viruses were further characterized in subtypes H3N2, H1N2 and H1N1 (41.0%, 17.9%, and 2.6%, respectively). Deduced amino acid sequence analysis of the partial hemagglutinin sequence compared to sequences from vaccine strains, revealed that all strains found in Uberlândia had variations in the antigenic sites. The sequences of the receptor binding sites were preserved, although substitutions with similar amino acids were observed in few cases. The neuraminidase sequences did not show significant changes. All the H3 isolates detected in the 2001-2003 period had drifted from vaccine strain, unlike the isolates of the 2004-2007 period. These results suggest that the seasonal influenza vaccine effectiveness could be reduced because

  11. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains.

    Science.gov (United States)

    Tong, Wu; Li, Guoxin; Liang, Chao; Liu, Fei; Tian, Qing; Cao, Yanyun; Li, Lin; Zheng, Xuchen; Zheng, Hao; Tong, Guangzhi

    2016-06-01

    Emerging pseudorabies virus (PRV) variant have led to pseudorabies outbreaks in Chinese pig farms. The commercially available PRV vaccine provides poor protection against the PRV variant. In this study, a gE/gI deleted PRV strain JS-2012-△gE/gI was generated from a PRV variant strain using homologous DNA recombination. Compared to the parental strain JS-2012, JS-2012-△gE/gI grew slowly and showed small plaque morphology on Vero cells. The safety and immunological efficacy of JS-2012-△gE/gI was evaluated as a vaccine candidate. JS-2012-△gE/gI was avirulent to suckling piglets, but was able to provide full protection for young piglets against challenge with both the classical virulent PRV and the emerging PRV variant. After sows were vaccinated with the gE/gI-deleted strain, their suckling offspring were resistant to an otherwise lethal challenge with the classical and the variant PRVs. Piglets inoculated with JS-2012-△gE/gI did not develop PRV-specific gE-ELISA antibodies. Thus, JS-2012-△gE/gI appears to be a promising marker vaccine candidate to control PRV variant circulating in pig farms in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Construction and characterization of an epitope-mutated Asia 1 type foot-and-mouth disease virus].

    Science.gov (United States)

    Zhang, Yan; Hu, Yonghao; Yang, Fan; Yang, Bo; Wang, Songhao; Zhu, Zixiang; Zheng, Haixue

    2015-01-01

    To generate an epitope-mutated foot-and-mouth disease virus (FMDV) as a marker vaccine, the infectious clone pAsia 1-FMDV containing the complete genomic cDNA of Asia 1 type FMDV was used as backbone, the residues at positions 27 and 31 in the 3D gene were mutated (H27Y and N31R). The resulting plasmid pAsia 1-FMDV-3DM encoding a mutated epitope was transfected into BHK-21 cells and the recombinant virus rAsia 1-3DM was rescued. The recombinant virus showed similar biological characteristics comparable with the parental virus. In serological neutralization test the antisera against recombine virus have a good reactivity with parental virus. The antisera against the mutant virus were shown to be reactive with the mutated epitope but not the wild-type one. The results indicated that the two virus strains could be distinguished by western blotting using synthetic peptides. This epitope-mutated FMDV strain will be evaluated as a potential marker vaccine against FMDV infections.

  13. Incorporating 2D Materials with Micro-electromechanical Systems to Explore Strain Physics and Devices

    Science.gov (United States)

    Christopher, Jason; Vutukuru, Mounika; Kohler, Travis; Bishop, David; Swan, Anna; Goldberg, Bennett

    2D materials can withstand an order of magnitude more strain than their bulk counterparts which can be used to dramatically change electrical, thermal and optical properties or even cause unconventional behavior such as generating pseudo-magnetic fields. Here we present micro-electromechanical systems (MEMS) as a platform for straining 2D materials to make such novel phenomena accessible. Unlike other strain techniques, MEMS are capable of precisely controlling the magnitude and orientation of the strain field and are readily integrated with current technology facilitating a path from lab bench to application. In this study, we use graphene as our prototypical 2D material, and determine strain via micro-Raman spectroscopy making extensive use of graphene's well-characterized phonon strain response. We report on the strength of various techniques for affixing graphene to MEMS, and investigate the role of surface morphology and chemistry in creating a high friction interface capable of inducing large strain. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  14. Screening test for neutralizing antibodies against yellow fever virus, based on a flavivirus pseudotype.

    Directory of Open Access Journals (Sweden)

    Séverine Mercier-Delarue

    Full Text Available Given the possibility of yellow fever virus reintroduction in epidemiologically receptive geographic areas, the risk of vaccine supply disruption is a serious issue. New strategies to reduce the doses of injected vaccines should be evaluated very carefully in terms of immunogenicity. The plaque reduction test for the determination of neutralizing antibodies (PRNT is particularly time-consuming and requires the use of a confinement laboratory. We have developed a new test based on the use of a non-infectious pseudovirus (WN/YF17D. The presence of a reporter gene allows sensitive determination of neutralizing antibodies by flow cytometry. This WN/YF17D test was as sensitive as PRNT for the follow-up of yellow fever vaccinees. Both tests lacked specificity with sera from patients hospitalized for acute Dengue virus infection. Conversely, both assays were strictly negative in adults never exposed to flavivirus infection or vaccination, and in patients sampled some time after acute Dengue infection. This WN/YF17D test will be particularly useful for large epidemiological studies and for screening for neutralizing antibodies against yellow fever virus.

  15. Virulence of viral hemorrhagic septicemia virus (VHSV) genotypes Ia, IVa, IVb, and IVc in five fish species.

    Science.gov (United States)

    Emmenegger, Eveline J.; Moon, Chang Hoon; Hershberger, Paul K.; Kurath, Gael

    2013-01-01

    The susceptibility of yellow perch Perca flavescens, rainbow trout Oncorhynchus mykiss, Chinook salmon O. tshawytscha, koi Cyprinus carpio koi, and Pacific herring Clupea pallasii to 4 strains of viral hemorrhagic septicemia virus (VHSV) was assessed. Fish were challenged via intraperitoneal injection with high (1 × 106 plaque-forming units, PFU) and low (1 × 103 PFU) doses of a European strain (genotype Ia), and North American strains from the West coast (genotype IVa), Great Lakes (genotype IVb), and the East coast (genotype IVc). Pacific herring were exposed to the same VHSV strains, but at a single dose of 5 × 103 PFU ml-1 by immersion in static seawater. Overall, yellow perch were the most susceptible, with cumulative percent mortality (CPM) ranging from 84 to 100%, and 30 to 93% in fish injected with high or low doses of virus, respectively. Rainbow trout and Chinook salmon experienced higher mortalities (47 to 98% CPM) after exposure to strain Ia than to the other virus genotypes. Pacific herring were most susceptible to strain IVa with an average CPM of 80% and moderately susceptible (42 to 52% CPM) to the other genotypes. Koi had very low susceptibility (≤5.0% CPM) to all 4 VHSV strains. Fish tested at 7 d post challenge were positive for all virus strains, with yellow perch having the highest prevalence and concentrations of virus, and koi the lowest. While genotype Ia had higher virulence in salmonid species, there was little difference in virulence or host-specificity between isolates from subtypes IVa, IVb, and IVc.  

  16. Detection by hemi-nested reverse transcription polymerase chain reaction and genetic characterization of wild type strains of Canine distemper virus in suspected infected dogs.

    Science.gov (United States)

    Di Francesco, Cristina E; Di Francesco, Daniela; Di Martino, Barbara; Speranza, Roberto; Santori, Domenico; Boari, Andrea; Marsilio, Fulvio

    2012-01-01

    A new highly sensitive and specific hemi-nested reverse transcription polymerase chain reaction (RT-PCR) assay was applied to detect nucleoprotein (NP) gene of Canine distemper virus (CDV) in samples collected from dogs showing respiratory, gastrointestinal, and neurological signs. Thirty-eight out of 86 samples were positive suggesting that despite the vaccination, canine distemper may still represent a high risk to the canine population. The 968 base pair (bp) fragments from the hemagglutinin (H) gene of 10 viral strains detected in positive samples were amplified and analyzed by restriction fragment length polymorphism (RFLP) using AluI and PsiI enzymes in order to differentiate among vaccine and wild-type CDV strains and to characterize the field viral strains. The products of the both enzymatic digestions allowed identification all viruses as wild strains of CDV. In addition, the RFLP analysis with AluI provided additional information about the identity level among the strains analyzed on the basis of the positions of the cleavage site in the nucleotide sequences of the H gene. The method could be a more useful and simpler method for molecular studies of CDV strains.

  17. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  18. Molecular typing of canine distemper virus strains reveals the presence of a new genetic variant in South America.

    Science.gov (United States)

    Sarute, Nicolás; Pérez, Ruben; Aldaz, Jaime; Alfieri, Amauri A; Alfieri, Alice F; Name, Daniela; Llanes, Jessika; Hernández, Martín; Francia, Lourdes; Panzera, Yanina

    2014-06-01

    Canine distemper virus (CDV, Paramyxoviridae, Morbillivirus) is the causative agent of a severe infectious disease affecting terrestrial and marine carnivores worldwide. Phylogenetic relationships and the genetic variability of the hemagglutinin (H) protein and the fusion protein signal-peptide (Fsp) allow for the classification of field strains into genetic lineages. Currently, there are nine CDV lineages worldwide, two of them co-circulating in South America. Using the Fsp-coding region, we analyzed the genetic variability of strains from Uruguay, Brazil, and Ecuador, and compared them with those described previously in South America and other geographical areas. The results revealed that the Brazilian and Uruguayan strains belong to the already described South America lineage (EU1/SA1), whereas the Ecuadorian strains cluster in a new clade, here named South America 3, which may represent the third CDV lineage described in South America.

  19. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation.

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    Full Text Available An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404. In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells followed by GV3101 (128 ± 5.29 cfu per 106 cells and EHA105 (61 ± 5.03 cfu per 106 cells. However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer.

  20. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation.

    Science.gov (United States)

    Srinivasan, Ramachandran; Gothandam, Kodiveri Muthukalianan

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer.

  1. Inactivation and Augmentation of the Primary 3-Ketosteroid-Δ1- Dehydrogenase in Mycobacterium neoaurum NwIB-01: Biotransformation of Soybean Phytosterols to 4-Androstene- 3,17-Dione or 1,4-Androstadiene-3,17-Dione▿ †

    Science.gov (United States)

    Wei, Wei; Wang, Feng-qing; Fan, Shu-yue; Wei, Dong-zhi

    2010-01-01

    3-Ketosteroid-Δ1-dehydrogenase, KsdDM, was identified by targeted gene disruption and augmentation from Mycobacterium neoaurum NwIB-01, a newly isolated strain. The difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene-3,17-dione (ADD) is a key bottleneck to the microbial transformation of phytosterols in industry. This problem was tackled via genetic manipulation of the KsdD-encoding gene. Mutants in which KsdDM was inactivated or augmented proved to be good AD(D)-producing strains. PMID:20453136

  2. New highly divergent Plum pox virus isolates infecting sour cherry in Russia.

    Science.gov (United States)

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Zakubanskiy, Alexander; Osipov, Gennady

    2017-02-01

    Unusual Plum pox virus (PPV) isolates (named Tat isolates) were discovered on sour cherry (Prunus cerasus) in Russia. They failed to be recognized by RT-PCR using commonly employed primers specific to the strains C or CR (the only ones that proved able to infect sour cherry) as well as to the strains M and W. Some of them can be detected by RT-PCR using the PPV-D-specific primers P1/PD or by TAS-ELISA with the PPV-C-specific monoclonal antibody AC. Phylogenetic analysis of the 3'-terminal genomic region assigned the Tat isolates into the cluster of cherry-adapted strains. However, they grouped separately from the C and CR strains and from each other as well. The sequence divergence of the Tat isolates is comparable to the differences between the known PPV strains. They may represent new group(s) of cherry-adapted isolates which do not seem to belong to any known strain of the virus. Copyright © 2016. Published by Elsevier Inc.

  3. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India.

    Science.gov (United States)

    Maan, S; Maan, N S; Batra, K; Kumar, A; Gupta, A; Rao, Panduranga P; Hemadri, Divakar; Reddy, Yella Narasimha; Guimera, M; Belaganahalli, M N; Mertens, P P C

    2016-08-01

    Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Complete Genome Sequence of a Recombinant NADC30-Like Strain, SCnj16, of Porcine Reproductive and Respiratory Syndrome Virus in Southwestern China

    Science.gov (United States)

    Kang, Runmin; Xie, Bo; Tian, Yiming; Yang, Xin; Yu, Jifeng

    2018-01-01

    ABSTRACT The NADC30-like strains of porcine reproductive and respiratory syndrome virus (PRRSV) are characterized by a 131-amino-acid deletion in nonstructural protein 2 (NSP2). Here, we report the complete genome sequence of a recombinant NADC30-like PRRSV strain, SCnj16, that exhibits the molecular marker of the Chinese highly pathogenic PRRSV (HP-PRRSV) in NSP2. PMID:29439029

  5. Improved Detection of Lassa Virus by Reverse Transcription-PCR Targeting the 5′ Region of S RNA▿

    OpenAIRE

    Ölschläger, Stephan; Lelke, Michaela; Emmerich, Petra; Panning, Marcus; Drosten, Christian; Hass, Meike; Asogun, Danny; Ehichioya, Deborah; Omilabu, Sunday; Günther, Stephan

    2010-01-01

    The method of choice for the detection of Lassa virus is reverse transcription (RT)-PCR. However, the high degree of genetic variability of the virus poses a problem with the design of RT-PCR assays that will reliably detect all strains. Recently, we encountered difficulties in detecting some strains from Liberia and Nigeria in a commonly used glycoprotein precursor (GPC) gene-specific RT-PCR assay (A. H. Demby, J. Chamberlain, D. W. Brown, and C. S. Clegg, J. Clin. Microbiol. 32:2898-2903, 1...

  6. Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype.

    Science.gov (United States)

    Dolz, Roser; Pujols, Joan; Ordóñez, German; Porta, Ramon; Majó, Natàlia

    2006-04-01

    As part of an epidemiological surveillance of infectious bronchitis virus (IBV) in Spain, four Spanish field isolates showed high S1 spike sequence similarities with an IBV sequence from the GenBank database named Italy 02. Given that little was known about this new emergent IBV strain we have characterized the four isolates by sequencing the entire S1 part of the spike protein gene and have compared them with many reference IBV serotypes. In addition, cross-virus neutralization assays were conducted with the main IBV serotypes present in Europe. The four Spanish field strains and the Italy 02 S1 sequence from the NCBI database were established as a new genotype that showed maximum amino acid identities with the 4/91 serotype (81.7% to 83.7%), the D274 group that included D207, D274 and D3896 strains (79.8% to 81.7%), and the B1648 serotype (79.3% to 80%). Furthermore, on the basis of these results, it was demonstrated that the Italy 02 genotype had been circulating in Spain since as early as 1997. Based on the average ratio of synonymous:non-synonymous (dS/dN) amino acid substitutions within Italy 02 sequences, no positive selection pressures were related with changes observed in the S1 gene. Moreover, phylogenetic analysis of the S1 gene suggested that the Italy 02 genotype has undergone a recombination event. Virus neutralization assays demonstrated that little antigenic relatedness (less than 35%) exists between Italy 02 and some of the reference IBV serotypes, and indicated that Italy 02 is likely to be a new serotype.

  7. SIVdrl detection in captive mandrills: are mandrills infected with a third strain of simian immunodeficiency virus?

    Directory of Open Access Journals (Sweden)

    Osterhaus Albert DME

    2004-11-01

    Full Text Available Abstract A pol-fragment of simian immunodeficiency virus (SIV that is highly related to SIVdrl-pol from drill monkeys (Mandrillus leucophaeus was detected in two mandrills (Mandrillus sphinx from Amsterdam Zoo. These captivity-born mandrills had never been in contact with drill monkeys, and were unlikely to be hybrids. Their mitochondrial haplotype suggested that they descended from founder animals in Cameroon or northern Gabon, close to the habitat of the drill. SIVdrl has once before been found in a wild-caught mandrill from the same region, indicating that mandrills are naturally infected with a SIVdrl-like virus. This suggests that mandrills are the first primate species to be infected with three strains of SIV: SIVmnd1, SIVmnd2, and SIVdrl.

  8. Identification and genetic characterization of rabies virus from Egyptian water buffaloes (Bubalus bubalis) bitten by a fox.

    Science.gov (United States)

    El-Tholoth, Mohamed; El-Beskawy, Mohamed; Hamed, Mohamed F

    2015-09-01

    Rabies is caused by negative strand RNA-virus classified in the genus Lyssavirus, family Rhabdoviridae of the order Mononegavirales. The aim of the present study was to identify and analyze nucleotides sequence of nucleoprotein (N) gene of rabies virus (RABV) from two cases of water buffaloes (Bubalus bubalis) bitten by a fox in Egypt, 2013. The diseased buffaloes showed nervous manifestations with fever. Specimens from brains of the buffaloes with suspected rabies were collected. RABV in collected samples was identified using direct fluorescent antibody (dFA) technique, histopathological examination and reverse transcription-polymerase chain reaction (RT-PCR). Also, nucleotides sequence of partially amplified nucleoprotein (N) gene was compared with the other street strains of RABV available on GenBank. The results revealed that RABV antigen was identified in the brains of diseased buffaloes by dFA technique and the characteristic intracytoplasmic inclusions (Negri bodies) and RABV nucleic acid were detected by histopathology and RT-PCR, respectively. The identified virus showed close genetic relationship with street strains identified previously from dogs in different Governorates in Egypt and with strains identified in Israel and Jordan indicating transmission of the virus between Egyptian Governorates with a potential transmission from and/or to our neighboring countries.

  9. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    Directory of Open Access Journals (Sweden)

    Lundstrom K

    2018-02-01

    Full Text Available Kenneth Lundstrom PanTherapeutics, Lutry, Switzerland Abstract: Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. Keywords: immunotherapy, viral vectors, clinical trials, drug approval

  10. Proceedings of the 1982 Army Science Conference Held at the United States Military Academy, West Point, New York on 15-18 June 1982. Volume II. Principal Authors H through N.

    Science.gov (United States)

    1982-06-18

    and 17D strains), and Zika . Two Sandfly Fever viruses (213452 and Candiru) were included as non-f lavivirus controls. Virus inocula for cell culture...J.P. Digoutte (Institute Pasteur, Dakar, Senegal). Virus isolates from the Carribean were provided as first passage isolates ( Aedes pseudoscutellaris...of dengue viruses in mosquito cell culture under field conditions. Lancet, 1:48-49. 22. Igarashi, A., 1978. Isolation of a Singh’s Aedes albopictus

  11. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M Figueiredo

    1997-05-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  12. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    Science.gov (United States)

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection.

    Science.gov (United States)

    Balasuriya, U B R; Nadler, S A; Wilson, W C; Pritchard, L I; Smythe, A B; Savini, G; Monaco, F; De Santis, P; Zhang, N; Tabachnick, W J; Maclachlan, N J

    2008-01-01

    Comparison of the deduced amino acid sequences of the genes (S10) encoding the NS3 protein of 137 strains of bluetongue virus (BTV) from Africa, the Americas, Asia, Australia and the Mediterranean Basin showed limited variation. Common to all NS3 sequences were potential glycosylation sites at amino acid residues 63 and 150 and a cysteine at residue 137, whereas a cysteine at residue 181 was not conserved. The PPXY and PS/TAP late-domain motifs were conserved in all but three of the viruses. Phylogenetic analyses of these same sequences yielded two principal clades that grouped the viruses irrespective of their serotype or year of isolation (1900-2003). All viruses from Asia and Australia were grouped in one clade, whereas those from the other regions were present in both clades. Each clade segregated into distinct subclades that included viruses from single or multiple regions, and the S10 genes of some field viruses were identical to those of live-attenuated BTV vaccines. There was no evidence of positive selection on the S10 gene as assessed by reconstruction of ancestral codon states on the phylogeny, rather the functional constraints of the NS3 protein are expressed through substantial negative (purifying) selection.

  14. Interferon-alpha treatment of children with chronic hepatitis D virus infection: the Greek experience.

    Science.gov (United States)

    Dalekos, G N; Galanakis, E; Zervou, E; Tzoufi, M; Lapatsanis, P D; Tsianos, E V

    2000-01-01

    The therapeutic experience of interferon-alpha therapy against hepatitis D virus infection in affected children is rather limited. For this reason, we conducted a retrospective study (duration: 1991-1995) in order to evaluate the efficacy and the safety of interferon-alpha in children suffering from chronic hepatitis D in Northwestern Greece. Seven children who were found to be infected with HDV in a total of 324 children seropositive for hepatitis B virus infection during the 5-year period of the study were treated with interferon-alpha, 3 x 10(6) U/m2 body surface area, intramuscularly or subcutaneously, 3 times weekly for 1 year (after an informed consent obtained from their parents). Patients were assessed monthly by hematological serological and biochemical tests. Clinical progress, levels of serum alanine aminotransferase, hepatitis D ribonucleic acid (HDV-RNA) and hepatitis B deoxyribonucleic acid (HBV-DNA), seroconversion of hepatitis B surface antigen (HBsAg) and Hepatitis Be Antigen (HBeAg) and liver histology were used as response criteria. Posttreatment alanine transferase levels were significantly reduced (P < 0.05) but Immunoglobulin M and total anti-hepatitis D virus (anti-HDV) antibodies remained positive in all, while hepatitis D ribonucleic acid persisted positive in 4 cases. In addition, no seroconversion of HBsAg or HBeAg was noted and the liver histology progress was disappointing. Side effects including mild fever, arthralgias and malaise and reversible neutropenia and thrombocytopenia were common, but not particularly disturbing. Nevertheless, the children remained fully active on treatment, felt well and attended school. Initially 4 children had been below the 10th percentile for weight and height. All thrived during treatment and two crossed above the 10th percentile indicating height velocity and body mass index increase. The administration of regular interferon-alpha doses for treating children with chronic hepatitis D was safe as

  15. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    Science.gov (United States)

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008.

    Science.gov (United States)

    Sakai, Kouji; Nagata, Noriyo; Ami, Yasushi; Seki, Fumio; Suzaki, Yuriko; Iwata-Yoshikawa, Naoko; Suzuki, Tadaki; Fukushi, Shuetsu; Mizutani, Tetsuya; Yoshikawa, Tomoki; Otsuki, Noriyuki; Kurane, Ichiro; Komase, Katsuhiro; Yamaguchi, Ryoji; Hasegawa, Hideki; Saijo, Masayuki; Takeda, Makoto; Morikawa, Shigeru

    2013-01-01

    Canine distemper virus (CDV) has recently expanded its host range to nonhuman primates. A large CDV outbreak occurred in rhesus monkeys at a breeding farm in Guangxi Province, China, in 2006, followed by another outbreak in rhesus monkeys at an animal center in Beijing in 2008. In 2008 in Japan, a CDV outbreak also occurred in cynomolgus monkeys imported from China. In that outbreak, 46 monkeys died from severe pneumonia during a quarantine period. A CDV strain (CYN07-dV) was isolated in Vero cells expressing dog signaling lymphocyte activation molecule (SLAM). Phylogenic analysis showed that CYN07-dV was closely related to the recent CDV outbreaks in China, suggesting continuing chains of CDV infection in monkeys. In vitro, CYN07-dV uses macaca SLAM and macaca nectin4 as receptors as efficiently as dog SLAM and dog nectin4, respectively. CYN07-dV showed high virulence in experimentally infected cynomolgus monkeys and excreted progeny viruses in oral fluid and feces. These data revealed that some of the CDV strains, like CYN07-dV, have the potential to cause acute systemic infection in monkeys.

  17. Effects of Newcastle Disease Virus Strains AF2240 and V4-UPM on Cytolysis and Apoptosis of Leukemia Cell Lines

    Science.gov (United States)

    Alabsi, Aied M.; Bakar, Siti Aishah Abu; Ali, Rola; Omar, Abdul Rahman; Bejo, Mohd Hair; Ideris, Aini; Ali, Abdul Manaf

    2011-01-01

    Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical tumor therapy. It has prompted much interest as an anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. This study was carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD50 values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition in cell proliferation after different periods. Increase in the cellular level of caspase-3 and detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of cellular DNA content showed that the virus caused an increase in the sub-G1 region (apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic effects against WEHI-3B leukemic cell line. PMID:22272097

  18. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    Science.gov (United States)

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  19. Influenza D Virus Infection in Feral Swine Populations, United States.

    Science.gov (United States)

    Ferguson, Lucas; Luo, Kaijian; Olivier, Alicia K; Cunningham, Fred L; Blackmon, Sherry; Hanson-Dorr, Katie; Sun, Hailiang; Baroch, John; Lutman, Mark W; Quade, Bianca; Epperson, William; Webby, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2018-06-01

    Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.1%) were IDV seropositive. Among 96 archived influenza A virus-seropositive feral swine samples collected from 16 US states during 2010-2013, 41 (42.7%) were IDV seropositive. Infection studies demonstrated that IDV-inoculated feral swine shed virus 3-5 days postinoculation and seroconverted at 21 days postinoculation; 50% of in-contact naive feral swine shed virus, seroconverted, or both. Immunohistochemical staining showed viral antigen within epithelial cells of the respiratory tract, including trachea, soft palate, and lungs. Our findings suggest that feral swine might serve an important role in the ecology of IDV.

  20. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses.

    Directory of Open Access Journals (Sweden)

    Moriah L Szpara

    2011-10-01

    Full Text Available Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1 and 2, and varicella zoster virus (VZV. These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV, causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs, a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit

  1. Molecular epidemiology of influenza A/H3N2 viruses circulating in Uganda.

    Directory of Open Access Journals (Sweden)

    Denis K Byarugaba

    Full Text Available The increasing availability of complete influenza virus genomes is deepening our understanding of influenza evolutionary dynamics and facilitating the selection of vaccine strains. However, only one complete African influenza virus sequence is available in the public domain. Here we present a complete genome analysis of 59 influenza A/H3N2 viruses isolated from humans in Uganda during the 2008 and 2009 season. Isolates were recovered from hospital-based sentinel surveillance for influenza-like illnesses and their whole genome sequenced. The viruses circulating during these two seasons clearly differed from each other phylogenetically. They showed a slow evolution away from the 2009/10 recommended vaccine strain (A/Brisbane/10/07, instead clustering with the 2010/11 recommended vaccine strain (A/Perth/16/09 in the A/Victoria/208/09 clade, as observed in other global regions. All of the isolates carried the adamantane resistance marker S31N in the M2 gene and carried several markers of enhanced transmission; as expected, none carried any marker of neuraminidase inhibitor resistance. The hemagglutinin gene of the 2009 isolates differed from that of the 2008 isolates in antigenic sites A, B, D, and to a lesser extent, C and E indicating evidence of an early phylogenetic shift from the 2008 to 2009 viruses. The internal genes of the 2009 isolates were similar to those of one 2008 isolate, A/Uganda/MUWRP-050/2008. Another 2008 isolate had a truncated PB1-F2 protein. Whole genome sequencing can enhance surveillance of future seasonal changes in the viral genome which is crucial to ensure that selected vaccine strains are protective against the strains circulating in Eastern Africa. This data provides an important baseline for this surveillance. Overall the influenza virus activity in Uganda appears to mirror that observed in other regions of the southern hemisphere.

  2. Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus

    International Nuclear Information System (INIS)

    Krummenacher, Claude; Baribaud, Frederic; Ponce de Leon, Manuel; Baribaud, Isabelle; Whitbeck, J. Charles; Xu Ruliang; Cohen, Gary H.; Eisenberg, Roselyn J.

    2004-01-01

    The herpesvirus entry mediator A (HVEM/HveA) and nectin-1 (HveC/CD111) are two major receptors for herpes simplex virus (HSV). Although structurally unrelated, both receptors can independently mediate entry of wild-type (wt) HSV-1 and HSV-2 by interacting with the viral envelope glycoprotein D (gD). Laboratory strains with defined mutations in gD (e.g. rid1) do not use HVEM but use nectin-2 (HveB/CD112) for entry. The relative usage of HVEM and nectin-1 during HSV infection in vivo is not known. In the absence of a defined in vivo model, we used in vitro approaches to address this question. First, we screened HSV clinical isolates from various origins for receptor tropism and found that all used both HVEM and nectin-1. Second, we determined the numbers of surface receptors on various susceptible and resistant cell lines as well as on primary fibroblasts derived from an individual with cleft lip/palate ectodermal dysplasia (CLPED1). Although CLPED1 cells can only express a defective form of nectin-1, they allowed entry of wild type and mutant HSV strains by usage of either HVEM or nectin-2. Finally, we compared the ability of HVEM and nectin-1 to mediate entry when expressed at varying cell surface densities. Both receptors showed a direct relationship between the number of receptors and HSV susceptibility. Direct comparison of receptors suggests that nectin-1 is more efficient at promoting entry than HVEM. Overall, our data suggest that both receptors play a role during HSV infection in vivo and that both are highly efficient even at low levels of expression

  3. Genetic Variability of Myxoma Virus Genomes

    Science.gov (United States)

    Braun, Christoph; Thürmer, Andrea; Daniel, Rolf; Schultz, Anne-Kathrin; Bulla, Ingo; Schirrmeier, Horst; Mayer, Dietmar; Neubert, Andreas

    2016-01-01

    ABSTRACT Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA. IMPORTANCE Myxoma virus (MYXV) is pathogenic for European rabbits and two North American species. Due to sophisticated strategies in immune evasion and oncolysis, MYXV is an important model virus for immunological and

  4. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4.

    Science.gov (United States)

    Fernández de las Heras, Laura; van der Geize, Robert; Drzyzga, Oliver; Perera, Julián; María Navarro Llorens, Juana

    2012-11-01

    Rhodococcus ruber strain Chol-4 isolated from a sewage sludge sample is able to grow on minimal medium supplemented with steroids, showing a broad catabolic capacity. This paper reports the characterization of three different 3-ketosteroid-Δ(1)-dehydrogenases (KstDs) in the genome of R. ruber strain Chol-4. The genome of this strain does not contain any homologues of a 3-keto-5α-steroid-Δ(4)-dehydrogenase (Kst4d or TesI) that appears in the genomes of Rhodococcus erythropolis SQ1 or Comamonas testosteroni. Growth experiments with kstD2 mutants, either a kstD2 single mutant, kstD2 double mutants in combination with kstD1 or kstD3, or the triple kstD1,2,3 mutant, proved that KstD2 is involved in the transformation of 4-androstene-3,17-dione (AD) to 1,4-androstadiene-3,17-dione (ADD) and in the conversion of 9α-hydroxy-4-androstene-3,17-dione (9OHAD) to 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD). kstD2,3 and kstD1,2,3 R. ruber mutants (both lacking KstD2 and KstD3) did not grow in minimal medium with cholesterol as the only carbon source, thus demonstrating the involvement of KstD2 and KstD3 in cholesterol degradation. In contrast, mutation of kstD1 does not alter the bacterial growth on the steroids tested in this study and therefore, the role of this protein still remains unclear. The absence of a functional KstD2 in R. ruber mutants provoked in all cases an accumulation of 9OHAD, as a branch product probably formed by the action of a 3-ketosteroid-9α-hydroxylase (KshAB) on the AD molecule. Therefore, KstD2 is a key enzyme in the AD catabolism pathway of R. ruber strain Chol-4 while KstD3 is involved in cholesterol catabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Two avirulent, lentogenic strains of Newcastle disease virus are cytotoxic for some human pancreatic tumor lines in vitro.

    Science.gov (United States)

    Walter, Robert J; Attar, Bashar M; Rafiq, Asad; Delimata, Megan; Tejaswi, Sooraj

    2012-09-10

    Pancreatic cancer is the fourth leading cause of cancer death in the U.S. Highly infectious Newcastle disease virus (NDV) strains are known to be very cytotoxic for an array of human tumor cell types in vitro and in vivo but the effects of these and avirulent NDV strains on pancreatic neoplasms are little known. Here, the direct cytolytic effects of the avirulent Hitchner-B1 (B1) and Ulster (U) NDV strains on 7 human pancreatic tumor cell lines and 4 normal human cell lines were studied. Cytotoxicity assays used serially diluted NDV to determine minimum cytotoxic plaque forming unit (PFU) doses. For NDV-B1, normal human cells were killed only by relatively high doses (range: 471-3,724 PFU) whereas NDV-U killed these cells at low PFU (range: 0.32-1.60 PFU). Most pancreatic cancer cell types were killed by much lower NDV-B1 doses (range: 0.40-2.60 PFU) while NDV-U killed Capan-1 and SU.86.86 cultures at very low doses (0.00041 PFU and 0.0034 PFU, respectively). On average, 1,555 times more NDV-B1 was needed to kill normal cells than most pancreatic tumor cells and 558 times more NDV-U to kill the two most sensitive pancreatic cancer lines. These innately-targeted lentogenic viruses may have meaningful potential in treating pancreatic cancer.

  6. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  7. Accélérer la mise au point d'un vaccin contre le virus de la peste ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 janv. 2018 ... Contrairement à d'autres virus, le virus de la peste porcine déclenche des réponses immunitaires très complexes qui nécessitent une manipulation compliquée du virus avant la conception et la mise au point d'un vaccin. On estime qu'il y a 34 millions de porcs en Afrique subsaharienne et qu'un vaccin ...

  8. Epidemiological features and genetic characterization of virus strains in rotavirus associated gastroenteritis in children of Odisha in Eastern India.

    Science.gov (United States)

    Mohanty, Eileena; Dwibedi, Bhagirathi; Kar, S K; Acharya, A S

    2017-09-01

    We have studied the clinical characteristics, severity and seasonality of rotavirus infection and prevalent genotypes in 652 non-rota vaccinated children in Odisha in eastern India. P genotypes were analysed for their association with host blood group antigens. P type of the virus is determined by the VP8* gene, and specific recognition of A - type of Histo - blood group antigen by P[14]VP8* has been reported. VP4, VP7 and VP6 genes of commonly identified G1P[8] strain were compared with genes of the same strain isolated from other parts of India, elsewhere and strains used for Rotarix and Rotateq vaccines. In 54.75% of children with gastroenteritis, rota virus was found. 9.65% of children had moderate, 78.07% severe, and 12.28% very severe disease as assessed using the Vesikari scoring system. The incidence of infection was highest during winter months. There was no association between any blood group and specific P genotypes. G1P[8] was the commonest cause of gastroenteritis, followed by G1P[11], G3P[8], G9P[8], G2P[4], G2P[6], G9P[4], G9P[11] and G1P[6]. Predominant G genotypes identified were G1 (72.9%), G9 (10.81%), G2 (8.10%) and G3 (8.10%). Sequence analysis of the VP7 gene, placed the G1P[8] strain in lineage 1 and of VP6 gene placed nine G1P[8] strains in subgroup II and one in subgroup I. The VP7 gene segment of two Odisha G1P[8] strains were found to cluster relatively close to the VP7 sequences of Rotarix vaccine. Antigenic differences were found with vaccine strains. Ten G1P[8] strains sequenced for the VP4 gene had 91-93% nucleotide and 92-96% amino acid identity with Rotateq vaccine P[8]). Rotarix vaccine VP4 had 89-91% nucleotide and 90-92% amino acid identity. Our findings indicate genetic variability of rotavirus strains circulating in the region and are significant, given the introduction of rota vaccination in the State. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Emergence of a virulent porcine reproductive and respiratory syndrome virus (PRRSV 1 strain in Lower Austria

    Directory of Open Access Journals (Sweden)

    Leonie J Sinn

    2016-11-01

    Full Text Available Abstract Background In spring 2015, an outbreak of porcine reproductive and respiratory syndrome (PRRS struck Lower Austria caused by a PRRS virus (PRRSV strain spreading rapidly among both previously PRRSV negative and vaccinated pig herds. This case report describes the first well-documented emergence of the PRRSV strain responsible for this outbreak. Case presentation A PRRSV seronegative piglet-producing farm in Lower Austria encountered losses in foetuses and suckling piglets of up to 90 %; clinical signs in sows and nursery piglets included fever and reduced feed intake. Additionally, high percentages of repeat breeders and losses of up to 40 % in nursery piglets occurred. An infection with PRRSV was suggested by the detection of antibodies by enzyme linked immunosorbent assay and confirmed by quantitative real time PCR. The underlying PRRSV strain, termed AUT15-33, was isolated by passage on porcine alveolar macrophages, partially sequenced (ORF2-7 and grouped as PRRSV-1, subtype 1. In phylogenetic analysis of the genome region coding for the structural proteins, ORF2-7, AUT15-33 clustered with Belgian strains but identities were as low as 88 %. In contrast, analysis of ORF7 sequences revealed a close relationship to Croatian strains from 2012 with an identity of 94 – 95 %. Conclusions In the year following the outbreak, the same PRRSV strain was identified repeatedly in different regions of Austria. It can be speculated that the new strain has novel advantageous properties.

  10. Fowl plague virus replication in mammalian cell-avian erythrocyte heterokaryons: studies concerning the actinomycin D and ultra-violet lig sensitive phase in influenza virus replication

    International Nuclear Information System (INIS)

    Kelly, D.C.; Dimmock, N.J.

    1974-01-01

    The replication of fowl plague virus in BHK and L cells specifically blocked prior to infection with inhibitors of influenza virus replication (actinomycin D and ultraviolet light irradiation) has been studied by the introduction of a metabolically dormant avian erythrocyte nucleus. This permits the synthesis of just the influenza virus nucleoprotein in actinomycin D (but not ultraviolet light) blocked cells. The NP antigen is first detected in the avian erythrocyte nucleus and subsequently in the heterokaryon cytoplasm

  11. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  12. Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of citrus tristeza virus

    Science.gov (United States)

    Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the a-proteobacteria, ‘Candidatus Liberibacter asiaticus’ (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are p...

  13. Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies

    DEFF Research Database (Denmark)

    Gottwein, Judith; Scheel, Troels; Callendret, Benoit

    2010-01-01

    Previously, RNA transcripts of cDNA clones of hepatitis C virus (HCV) genotypes 1a (strains H77, HCV-1, and HC-TN), 1b (HC-J4, Con1, and HCV-N), and 2a (HC-J6 and JFH1) were found to be infectious in chimpanzees. However, only JFH1 was infectious in human hepatoma Huh7 cells. We performed genetic...... analysis of HCV genotype 3a (strain S52) and 4a (strain ED43) prototype strains and generated full-length consensus cDNA clones (pS52 and pED43). Transfection of Huh7.5 cells with RNA transcripts of these clones did not yield cells expressing HCV Core. However, intrahepatic transfection of chimpanzees...... resulted in robust infection with peak HCV RNA titers of approximately 5.5 log(10) international units (IU)/ml. Genomic consensus sequences recovered from serum at the times of peak viral titers were identical to the sequences of the parental plasmids. Both chimpanzees developed acute hepatitis...

  14. Tissue tropisms, infection kinetics, histologic lesions, and antibody response of the MR766 strain of Zika virus in a murine model.

    Science.gov (United States)

    Kawiecki, Anna B; Mayton, E Handly; Dutuze, M Fausta; Goupil, Brad A; Langohr, Ingeborg M; Del Piero, Fabio; Christofferson, Rebecca C

    2017-04-18

    The appearance of severe Zika virus (ZIKV) disease in the most recent outbreak has prompted researchers to respond through the development of tools to quickly characterize transmission and pathology. We describe here another such tool, a mouse model of ZIKV infection and pathogenesis using the MR766 strain of virus that adds to the growing body of knowledge regarding ZIKV kinetics in small animal models. We infected mice with the MR766 strain of ZIKV to determine infection kinetics via serum viremia. We further evaluated infection-induced lesions via histopathology and visualized viral antigen via immunohistochemical labeling. We also investigated the antibody response of recovered animals to both the MR766 and a strain from the current outbreak (PRVABC59). We demonstrate that the IRF3/7 DKO mouse is a susceptible, mostly non-lethal model well suited for the study of infection kinetics, pathological progression, and antibody response. Infected mice presented lesions in tissues that have been associated with ZIKV infection in the human population, such as the eyes, male gonads, and central nervous system. In addition, we demonstrate that infection with the MR766 strain produces cross-neutralizing antibodies to the PRVABC59 strain of the Asian lineage. This model provides an additional tool for future studies into the transmission routes of ZIKV, as well as for the development of antivirals and other therapeutics, and should be included in the growing list of available tools for investigations of ZIKV infection and pathogenesis.

  15. A preliminary X-ray study of d,d-heptose-1,7-bisphosphate phosphatase from Burkholderia thailandensis E264

    International Nuclear Information System (INIS)

    Kim, Mi-Sun; Shin, Dong Hae

    2010-01-01

    In this study, d,d-heptose-1,7-bisphosphate phosphatase has been cloned, expressed, purified and crystallized. d,d-Heptose-1,7-bisphosphate phosphatase (GmhB), which is involved in the third step of the NDP-heptose biosynthesis pathway, converts d,d-heptose-1,7-bisphosphate to d,d-heptose-1-phosphate. This biosynthesis pathway is a target for new antibiotics or antibiotic adjuvants for Gram-negative pathogens. Burkholderia thailandensis is a useful surrogate organism for studying the pathogenicity of melioidosis owing to its extensive genomic similarity to B. pseudomallei. Melioidosis caused by B. pseudomallei is a serious invasive disease of animals and humans in tropical and subtropical areas. In this study, GmhB has been cloned, expressed, purified and crystallized. X-ray data have also been collected to 2.50 Å resolution using synchrotron radiation. The crystal belonged to space group P6, with unit-cell parameters a = 243.2, b = 243.2, c = 41.1 Å

  16. Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea.

    Science.gov (United States)

    Choi, Hwan-Won; Nam, Eeuri; Lee, Yoo Jin; Noh, Yun-Hee; Lee, Seung-Chul; Yoon, In-Joong; Kim, Hyun-Soo; Kang, Shien-Young; Choi, Young-Ki; Lee, Changhee

    2014-06-04

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged

  17. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.

    Science.gov (United States)

    Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth

    2017-08-01

    Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase

  18. A mouse model of paralytic myelitis caused by enterovirus D68.

    Directory of Open Access Journals (Sweden)

    Alison M Hixon

    2017-02-01

    Full Text Available In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68 respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch's postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies.

  19. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  20. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  1. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  2. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  3. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain.

    Science.gov (United States)

    Obokata, Masaru; Nagata, Yasufumi; Wu, Victor Chien-Chia; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki

    2016-05-01

    Cardiac magnetic resonance (CMR) feature tracking (FT) with steady-state free precession (SSFP) has advantages over traditional myocardial tagging to analyse left ventricular (LV) strain. However, direct comparisons of CMRFT and 2D/3D echocardiography speckle tracking (2/3DEST) for measurement of LV strain are limited. The aim of this study was to investigate the feasibility and reliability of CMRFT and 2D/3DEST for measurement of global LV strain. We enrolled 106 patients who agreed to undergo both CMR and 2D/3DE on the same day. SSFP images at multiple short-axis and three apical views were acquired. 2DE images from three levels of short-axis, three apical views, and 3D full-volume datasets were also acquired. Strain data were expressed as absolute values. Feasibility was highest in CMRFT, followed by 2DEST and 3DEST. Analysis time was shortest in 3DEST, followed by CMRFT and 2DEST. There was good global longitudinal strain (GLS) correlation between CMRFT and 2D/3DEST (r = 0.83 and 0.87, respectively) with the limit of agreement (LOA) ranged from ±3.6 to ±4.9%. Excellent global circumferential strain (GCS) correlation between CMRFT and 2D/3DEST was observed (r = 0.90 and 0.88) with LOA of ±6.8-8.5%. Global radial strain showed fair correlations (r = 0.69 and 0.82, respectively) with LOA ranged from ±12.4 to ±16.3%. CMRFT GCS showed least observer variability with highest intra-class correlation. Although not interchangeable, the high GLS and GCS correlation between CMRFT and 2D/3DEST makes CMRFT a useful modality for quantification of global LV strain in patients, especially those with suboptimal echo image quality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain

    Directory of Open Access Journals (Sweden)

    Ellen R. T. Watkiss

    2013-01-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.

  5. Development and evaluation of recombinant MVA viruses expressing bohv-1 glycoprotein D

    OpenAIRE

    Ferrer, María Florencia

    2010-01-01

    El virus vaccinia Ankara modificado (MVA) es un virus altamente atenuado que se utiliza eficientemente como vector viral no replicativo para el desarrollo de nuevas vacunas. En este trabajo de Tesis se desarrolló un nuevo inmunógeno basado en MVA que expresa como antígeno de interés la glicoproteína D (versión secretada, gDs) del virus herpes bovino tipo I (BoHV-1), un agente infeccioso ampliamente distribuido en Argentina. Primeramente, se diseñó y construyó el vector de transferencia para o...

  6. Left ventricular strain and strain rate by 2D speckle tracking in chronic thromboembolic pulmonary hypertension before and after pulmonary thromboendarterectomy

    Directory of Open Access Journals (Sweden)

    Waltman Thomas J

    2010-09-01

    Full Text Available Abstract Background Echocardiographic evaluation of left ventricular (LV strain and strain rate (SR by 2D speckle tracking may be useful tools to assess chronic thromboembolic pulmonary hypertension (CTEPH severity as well as response to successful pulmonary thromboendarterectomy (PTE. Methods We evaluated 30 patients with CTEPH before and after PTE using 2D speckle tracking measurements of LV radial and circumferential strain and SR in the short axis, and correlated the data with right heart catheterization (RHC. Results PTE resulted in a decrease in mean PA pressure (44 ± 15 to 29 ± 9 mmHg, decrease in PVR (950 ± 550 to 31 ± 160 [dyne-sec]/cm5, and an increase in cardiac output (3.9 ± 1.0 to 5.0 ± 1.0 L/min, p change in circumferential strain and change in posterior wall radial strain correlated moderately well with changes in PVR, mean PA pressure and cardiac output (r = 0.69, 0.76, and 0.51 for circumferential strain [p Conclusions LV circumferential and posterior wall radial strain change after relief of pulmonary arterial obstruction in patients with CTEPH, and these improvements occur rapidly. These changes in LV strain may reflect effects from improved LV diastolic filling, and may be useful non-invasive markers of successful PTE.

  7. 17 CFR 240.13d-5 - Acquisition of securities.

    Science.gov (United States)

    2010-04-01

    ... of each member's business and not with the purpose nor with the effect of changing or influencing... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Acquisition of securities. 240.13d-5 Section 240.13d-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION...

  8. Chimaeric Virus-Like Particles Derived from Consensus Genome Sequences of Human Rotavirus Strains Co-Circulating in Africa

    Science.gov (United States)

    Jere, Khuzwayo C.; O'Neill, Hester G.; Potgieter, A. Christiaan; van Dijk, Alberdina A.

    2014-01-01

    Rotavirus virus-like particles (RV-VLPs) are potential alternative non-live vaccine candidates due to their high immunogenicity. They mimic the natural conformation of native viral proteins but cannot replicate because they do not contain genomic material which makes them safe. To date, most RV-VLPs have been derived from cell culture adapted strains or common G1 and G3 rotaviruses that have been circulating in communities for some time. In this study, chimaeric RV-VLPs were generated from the consensus sequences of African rotaviruses (G2, G8, G9 or G12 strains associated with either P[4], P[6] or P[8] genotypes) characterised directly from human stool samples without prior adaptation of the wild type strains to cell culture. Codon-optimised sequences for insect cell expression of genome segments 2 (VP2), 4 (VP4), 6 (VP6) and 9 (VP7) were cloned into a modified pFASTBAC vector, which allowed simultaneous expression of up to four genes using the Bac-to-Bac Baculovirus Expression System (BEVS; Invitrogen). Several combinations of the genome segments originating from different field strains were cloned to produce double-layered RV-VLPs (dRV-VLP; VP2/6), triple-layered RV-VLPs (tRV-VLP; VP2/6/7 or VP2/6/7/4) and chimaeric tRV-VLPs. The RV-VLPs were produced by infecting Spodoptera frugiperda 9 and Trichoplusia ni cells with recombinant baculoviruses using multi-cistronic, dual co-infection and stepwise-infection expression strategies. The size and morphology of the RV-VLPs, as determined by transmission electron microscopy, revealed successful production of RV-VLPs. The novel approach of producing tRV-VLPs, by using the consensus insect cell codon-optimised nucleotide sequence derived from dsRNA extracted directly from clinical specimens, should speed-up vaccine research and development by by-passing the need to adapt rotaviruses to cell culture. Other problems associated with cell culture adaptation, such as possible changes in epitopes, can also be circumvented

  9. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor.

    Science.gov (United States)

    Bai, Xingwen; Bao, Huifang; Li, Pinghua; Wei, Wei; Zhang, Meng; Sun, Pu; Cao, Yimei; Lu, Zengjun; Fu, Yuanfang; Xie, Baoxia; Chen, Yingli; Li, Dong; Luo, Jianxun; Liu, Zaixin

    2014-07-24

    Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant

  10. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    Science.gov (United States)

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  11. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone

    International Nuclear Information System (INIS)

    Balasuriya, Udeni B.R.; Dobbe, Jessika C.; Heidner, Hans W.; Smalley, Victoria L.; Navarrette, Andrea; Snijder, Eric J.; MacLachlan, N. James

    2004-01-01

    We have used an infectious cDNA clone of equine arteritis virus (EAV) and reverse genetics technology to further characterize the neutralization determinants in the GP5 envelope glycoprotein of the virus. We generated a panel of 20 recombinant viruses, including 10 chimeric viruses that each contained the ORF5 (which encodes GP5) of different laboratory, field, and vaccine strains of EAV, a chimeric virus containing the N-terminal ectodomain of GP5 of a European strain of porcine reproductive and respiratory syndrome virus, and 9 mutant viruses with site-specific substitutions in their GP5 proteins. The neutralization phenotype of each recombinant chimeric/mutant strain of EAV was determined with EAV-specific monoclonal antibodies and EAV strain-specific polyclonal equine antisera and compared to that of their parental viruses from which the substituted ORF5 was derived. The data unequivocally confirm that the GP5 ectodomain contains critical determinants of EAV neutralization. Furthermore, individual neutralization sites are conformationally interactive, and the interaction of GP5 with the unglycosylated membrane protein M is likely critical to expression of individual epitopes in neutralizing conformation. Substitution of individual amino acids within the GP5 ectodomain usually resulted in differences in neutralization phenotype of the recombinant viruses, analogous to differences in the neutralization phenotype of field strains of EAV and variants generated during persistent infection of EAV carrier stallions

  12. Minimizing residues and strain in 2D materials transferred from PDMS

    Science.gov (United States)

    Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas

    2018-06-01

    Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

  13. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    Science.gov (United States)

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  14. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    Directory of Open Access Journals (Sweden)

    Julien Perino

    2013-03-01

    Full Text Available Vaccinia virus (VACV was used as a surrogate of variola virus (VARV (genus Orthopoxvirus, the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D, constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/- resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  15. Genetic Characterization of Northwestern Colombian Chikungunya Virus Strains from the 2014-2015 Epidemic.

    Science.gov (United States)

    Rodas, Juan D; Kautz, Tiffany; Camacho, Erwin; Paternina, Luis; Guzmán, Hilda; Díaz, Francisco J; Blanco, Pedro; Tesh, Robert; Weaver, Scott C

    2016-09-07

    Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne alphavirus, chikungunya virus (CHIKV), spread into the Americas in late 2013. Since then it has caused epidemics in nearly all New World countries, the second largest being Colombia with over 450,000 suspected cases beginning in September, 2014, and focused in Bolivar Department in the north. We examined 32 human sera from suspected cases, including diverse age groups and both genders, and sequenced the CHIKV envelope glycoprotein genes, known determinants of vector host range. As expected for Asian lineage CHIKV strains, these isolates lacked known Aedes albopictus-adaptive mutations. All the Colombian strains were closely related to those from the Virgin Islands, Saint Lucia, Mexico, Puerto Rico, and Brazil, consistent with a single, point-source introduction from the southeast Asia/Pacific region. Two substitutions in the E2 and E1 envelope glycoprotein genes were found in the Colombian strains, especially E1-K211E involving a residue shown previously to affect epistatically the penetrance of the E1-A226V A. albopictus-adaptive substitution. We also identified two amino acid substitutions unique to all American CHIKV sequences: E2-V368A and 6K-L20M. Only one codon, 6K-47, had a high nonsynonymous substitution rate suggesting positive selection. © The American Society of Tropical Medicine and Hygiene.

  16. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  17. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  18. Molecular characterization of the virulent infectious hematopoietic necrosis virus (IHNV strain 220-90

    Directory of Open Access Journals (Sweden)

    LaPatra Scott E

    2010-01-01

    Full Text Available Abstract Background Infectious hematopoietic necrosis virus (IHNV is the type species of the genus Novirhabdovirus, within the family Rhabdoviridae, infecting several species of wild and hatchery reared salmonids. Similar to other rhabdoviruses, IHNV has a linear single-stranded, negative-sense RNA genome of approximately 11,000 nucleotides. The IHNV genome encodes six genes; the nucleocapsid, phosphoprotein, matrix protein, glycoprotein, non-virion protein and polymerase protein genes, respectively. This study describes molecular characterization of the virulent IHNV strain 220-90, belonging to the M genogroup, and its phylogenetic relationships with available sequences of IHNV isolates worldwide. Results The complete genomic sequence of IHNV strain 220-90 was determined from the DNA of six overlapping clones obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of 220-90 comprises 11,133 nucleotides (GenBank GQ413939 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. An additional uracil nucleotide was found at the end of the 5'-trailer region, which was not reported before in other IHNV strains. The first 15 of the 16 nucleotides at the 3'- and 5'-termini of the genome are complementary, and the first 4 nucleotides at 3'-ends of the IHNV are identical to other novirhadoviruses. Sequence homology and phylogenetic analysis of the glycoprotein genes show that 220-90 strain is 97% identical to most of the IHNV strains. Comparison of the virulent 220-90 genomic sequences with less virulent WRAC isolate shows more than 300 nucleotides changes in the genome, which doesn't allow one to speculate putative residues involved in the virulence of IHNV. Conclusion We have molecularly characterized one of the well studied IHNV isolates, 220-90 of genogroup M, which is virulent for rainbow trout, and compared phylogenetic relationship with North American

  19. Isolation and whole-genome sequencing of a Crimean-Congo hemorrhagic fever virus strain, Greece.

    Science.gov (United States)

    Papa, Anna; Papadopoulou, Elpida; Tsioka, Katerina; Kontana, Anastasia; Pappa, Styliani; Melidou, Ageliki; Giadinis, Nektarios D

    2018-03-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) was isolated from a pool of two adult Rhipicephalus bursa ticks removed from a goat in 2015 in Greece. The strain clusters into lineage Europe 2 representing the second available whole-genome sequenced isolate of this lineage. CCHFV IgG antibodies were detected in 8 of 19 goats of the farm. Currently CCHFV is not associated with disease in mammals other than humans. Studies in animal models are needed to investigate the pathogenicity level of lineage Europe 2 and compare it with that of other lineages. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.