WorldWideScience

Sample records for virus ns3 serine

  1. The GB virus C (GBV-C NS3 serine protease inhibits HIV-1 replication in a CD4+ T lymphocyte cell line without decreasing HIV receptor expression.

    Directory of Open Access Journals (Sweden)

    Sarah L George

    Full Text Available INTRODUCTION: Persistent infection with GBV-C (GB Virus C, a non-pathogenic virus related to hepatitis C virus (HCV, prolongs survival in HIV infection. Two GBV-C proteins, NS5A and E2, have been shown previously to inhibit HIV replication in vitro. We investigated whether the GBV-C NS3 serine protease affects HIV replication. RESULTS: GBV-C NS3 protease expressed in a human CD4+ T lymphocyte cell line significantly inhibited HIV replication. Addition of NS4A or NS4A/4B coding sequence to GBV-C NS3 increased the effect on HIV replication. Inhibition of HIV replication was dose-dependent and was not mediated by increased cell toxicity. Mutation of the NS3 catalytic serine to alanine resulted in loss of both HIV inhibition and protease activity. GBV-C NS3 expression did not measurably decrease CD4 or CXCR4 expression. CONCLUSION: GBV-C NS3 serine protease significantly inhibited HIV replication without decreasing HIV receptor expression. The requirement for an intact catalytic serine at the active site indicates that inhibition was mediated by proteolytic cleavage of an unidentified target(s.

  2. The GB virus C (GBV-C) NS3 serine protease inhibits HIV-1 replication in a CD4+ T lymphocyte cell line without decreasing HIV receptor expression.

    Science.gov (United States)

    George, Sarah L; Varmaz, Dino; Tavis, John E; Chowdhury, Adnan

    2012-01-01

    Persistent infection with GBV-C (GB Virus C), a non-pathogenic virus related to hepatitis C virus (HCV), prolongs survival in HIV infection. Two GBV-C proteins, NS5A and E2, have been shown previously to inhibit HIV replication in vitro. We investigated whether the GBV-C NS3 serine protease affects HIV replication. GBV-C NS3 protease expressed in a human CD4+ T lymphocyte cell line significantly inhibited HIV replication. Addition of NS4A or NS4A/4B coding sequence to GBV-C NS3 increased the effect on HIV replication. Inhibition of HIV replication was dose-dependent and was not mediated by increased cell toxicity. Mutation of the NS3 catalytic serine to alanine resulted in loss of both HIV inhibition and protease activity. GBV-C NS3 expression did not measurably decrease CD4 or CXCR4 expression. GBV-C NS3 serine protease significantly inhibited HIV replication without decreasing HIV receptor expression. The requirement for an intact catalytic serine at the active site indicates that inhibition was mediated by proteolytic cleavage of an unidentified target(s).

  3. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  4. In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease.

    Science.gov (United States)

    Liu, Rong; Abid, Karim; Pichardo, John; Pazienza, Valerio; Ingravallo, Paul; Kong, Rong; Agrawal, Sony; Bogen, Stephane; Saksena, Anil; Cheng, Kuo-Chi; Prongay, Andrew; Njoroge, F George; Baroudy, Bahige M; Negro, Francesco

    2007-01-01

    Current hepatitis C virus (HCV) therapies may cure approximately 60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, alpha-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed. Compared with earlier reported inhibitors of similar chemical class, it has a P1'-P2' extension which provides extended interaction with the protease active site. The aim of this study was to evaluate the in vitro antiviral activity of SCH446211. Binding constant of SCH446211 to HCV NS3 protease was measured with the chromogenic substrate in vitro cleavage assay. Cell-based activity of SCH446211 was evaluated in replicon cells, which are Huh-7 hepatoma cells stably transfected with a subgenomic HCV RNA as reported previously. After 72 h of incubation with SCH446211, viral transcription and protein expression were measured by real-time RT-PCR (TaqMan), quantitative in situ hybridization, immunoblot and indirect immunofluorescence. The binding constant of SCH446211 to HCV NS3 protease was 3.8 +/- 0.4 nM. HCV replication and protein expression were inhibited by SCH446211 in replicon cells as consistently shown by four techniques. In particular, based on quantitative real-time RT-PCR measurements, the IC50 and IC90 of SCH446211 were estimated to be 40 +/- 20 and 100 +/- 20 nM (n = 17), respectively. Long-term culture of replicon cells with SCH446211 reduced replicon RNA to <0.1 copy per cell. SCH446211 did not show cellular toxicity at concentrations up to 50 microM. SCH446211 is a potent inhibitor of HCV protease in vitro. Its extended interaction with the HCV NS3 protease active site is associated with potent in vitro antiviral activity. This observation is potentially a useful guide for development of future potent inhibitors against HCV NS3 protease.

  5. Canine hepacivirus NS3 serine protease can cleave the human adaptor proteins MAVS and TRIF.

    Directory of Open Access Journals (Sweden)

    Mariona Parera

    Full Text Available Canine hepacivirus (CHV was recently identified in domestic dogs and horses. The finding that CHV is genetically the virus most closely related to hepatitis C virus (HCV has raised the question of whether HCV might have evolved as the result of close contact between dogs and/or horses and humans. The aim of this study was to investigate whether the NS3/4A serine protease of CHV specifically cleaves human mitochondrial antiviral signaling protein (MAVS and Toll-IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF. The proteolytic activity of CHV NS3/4A was evaluated using a bacteriophage lambda genetic screen. Human MAVS- and TRIF-specific cleavage sites were engineered into the lambda cI repressor. Upon infection of Escherichia coli cells coexpressing these repressors and a CHV NS3/4A construct, lambda phage replicated up to 2000-fold more efficiently than in cells expressing a CHV protease variant carrying the inactivating substitution S139A. Comparable results were obtained when several HCV NS3/4A constructs of genotype 1b were assayed. This indicates that CHV can disrupt the human innate antiviral defense signaling pathway and suggests a possible evolutionary relationship between CHV and HCV.

  6. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

    NARCIS (Netherlands)

    Feenstra, Femke; Drolet, B.S.; Boonstra, Jan; Rijn, Van P.A.

    2015-01-01

    Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication.

  7. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

    Science.gov (United States)

    Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However...

  8. Bluetongue virus without NS3/NS3a expression is not virulent and protects against virulent bluetongue virus challenge.

    Science.gov (United States)

    Feenstra, Femke; van Gennip, René G P; Maris-Veldhuis, Mieke; Verheij, Eline; van Rijn, Piet A

    2014-09-01

    Bluetongue is a disease in ruminants caused by the bluetongue virus (BTV), and is spread by Culicoides biting midges. Bluetongue outbreaks cause huge economic losses and death in sheep in several parts of the world. The most effective measure to control BTV is vaccination. However, both commercially available vaccines and recently developed vaccine candidates have several shortcomings. Therefore, we generated and tested next-generation vaccines for bluetongue based on the backbone of a laboratory-adapted strain of BTV-1, avirulent BTV-6 or virulent BTV-8. All vaccine candidates were serotyped with VP2 of BTV-8 and did not express NS3/NS3a non-structural proteins, due to induced deletions in the NS3/NS3a ORF. Sheep were vaccinated once with one of these vaccine candidates and were challenged with virulent BTV-8 3 weeks after vaccination. The NS3/NS3a knockout mutation caused complete avirulence for all three BTV backbones, including for virulent BTV-8, indicating that safety is associated with the NS3/NS3a knockout phenotype. Viraemia of vaccine virus was not detected using sensitive PCR diagnostics. Apparently, the vaccine viruses replicated only locally, which will minimize spread by the insect vector. In particular, the vaccine based on the BTV-6 backbone protected against disease and prevented viraemia of challenge virus, showing the efficacy of this vaccine candidate. The lack of NS3/NS3a expression potentially enables the differentiation of infected from vaccinated animals, which is important for monitoring virus spread in vaccinated livestock. The disabled infectious single-animal vaccine for bluetongue presented here is very promising and will be the subject of future studies. © 2014 The Authors.

  9. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication

    NARCIS (Netherlands)

    Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is

  10. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    Science.gov (United States)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  11. Molecular Dynamics of the ZIKA Virus NS3 Helicase

    Science.gov (United States)

    Raubenolt, Bryan; Rick, Steven; The Rick Group Team

    The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.

  12. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  13. VP2-serotyped live-attenuated bluetongue virus without NS3/NS3a expression provides serotype-specific protection and enables DIVA.

    Science.gov (United States)

    Feenstra, Femke; Maris-Veldhuis, Mieke; Daus, Franz J; Tacken, Mirriam G J; Moormann, Rob J M; van Gennip, René G P; van Rijn, Piet A

    2014-12-12

    Bluetongue virus (BTV) causes Bluetongue in ruminants and is transmitted by Culicoides biting midges. Vaccination is the most effective measure to control vector borne diseases; however, there are 26 known BTV serotypes showing little cross protection. The BTV serotype is mainly determined by genome segment 2 encoding the VP2 protein. Currently, inactivated and live-attenuated Bluetongue vaccines are available for a limited number of serotypes, but each of these have their specific disadvantages, including the inability to differentiate infected from vaccinated animals (DIVA). BTV non-structural proteins NS3 and NS3a are not essential for virus replication in vitro, but are important for cytopathogenic effect in mammalian cells and for virus release from insect cells in vitro. Recently, we have shown that virulent BTV8 without NS3/NS3a is non-virulent and viremia in sheep is strongly reduced, whereas local in vivo replication leads to seroconversion. Live-attenuated BTV6 without NS3/NS3a expression protected sheep against BTV challenge. Altogether, NS3/NS3a knockout BTV6 is a promising vaccine candidate and has been named Disabled Infectious Single Animal (DISA) vaccine. Here, we show serotype-specific protection in sheep by DISA vaccine in which only genome segment 2 of serotype 8 was exchanged. Similarly, DISA vaccines against other serotypes could be developed, by exchange of only segment 2, and could therefore safely be combined in multi-serotype cocktail vaccines with respect to reassortment between vaccine viruses. Additionally, NS3 antibody responses are raised after natural BTV infection and NS3-based ELISAs are therefore appropriate tools for DIVA testing accompanying the DISA vaccine. To enable DIVA, we developed an experimental NS3 ELISA. Indeed, vaccinated sheep remained negative for NS3 antibodies, whereas seroconversion for NS3 antibodies was associated with viremia after heterologous BTV challenge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    Directory of Open Access Journals (Sweden)

    Laurent Chatel-Chaix

    2010-08-01

    Full Text Available Hepatitis C virus (HCV infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection.

  15. Variability and resistance mutations in the hepatitis C virus NS3 protease in patients not treated with protease inhibitors

    Directory of Open Access Journals (Sweden)

    Luciana Bonome Zeminian

    2013-02-01

    Full Text Available The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3 have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

  16. Bluetongue virus without NS3/NS3a expression is not virulent and protects against virulent bluetongue virus challenge.

    NARCIS (Netherlands)

    Feenstra, F.; Gennip, van H.G.P.; Maris-Veldhuis, M.A.; Verheij, E.; Rijn, van P.A.

    2014-01-01

    Bluetongue is a disease in ruminants caused by the bluetongue virus (BTV), and is spread by Culicoides biting midges. Bluetongue outbreaks cause huge economic losses and death in sheep in several parts of the world. The most effective measure to control BTV is vaccination. However, both commercially

  17. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2015-08-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3 helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure–activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.

  18. Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression

    Directory of Open Access Journals (Sweden)

    Hiscott John

    2006-09-01

    Full Text Available Abstract Background Hepatitis C virus (HCV encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-β gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I and Toll-like receptor 3 (TLR3-mediated signaling pathways. Results In the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-α, IFN-β and IFN-λ1/IL-29 and chemokine (CCL5, CXCL8 and CXCL10 gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA. Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-α strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-β gene expression. Conclusion HCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.

  19. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  20. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  1. The NS3 protein of rice hoja blanca virus suppresses RNA silencing in mammalian cells

    NARCIS (Netherlands)

    Schnettler, E.; Hemmes, J.C.; Goldbach, R.W.; Prins, M.W.

    2008-01-01

    The NS3 protein of the tenuivirus rice hoja blanca virus (RHBV) has previously been shown to represent the viral RNA interference (RNAi) suppressor and is active in both plant and insect cells by binding short interfering RNAs (siRNAs) in vitro. Using a firefly luciferase-based silencing assay it is

  2. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Sobia A. Halim

    2017-10-01

    Full Text Available Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3 Helicase encoded by the dengue virus (DENV is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, 25 compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  3. Three Conformational Snapshots of the Hepatitis Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M.; Rice, C

    2010-01-01

    A virally encoded superfamily-2 (SF2) helicase (NS3h) is essential for the replication of hepatitis C virus, a leading cause of liver disease worldwide. Efforts to elucidate the function of NS3h and to develop inhibitors against it, however, have been hampered by limited understanding of its molecular mechanism. Here we show x-ray crystal structures for a set of NS3h complexes, including ground-state and transition-state ternary complexes captured with ATP mimics (ADP {center_dot} BeF{sub 3} and ADP {center_dot} AlF{sub 4}{sup -}). These structures provide, for the first time, three conformational snapshots demonstrating the molecular basis of action for a SF2 helicase. Upon nucleotide binding, overall domain rotation along with structural transitions in motif V and the bound DNA leads to the release of one base from the substrate base-stacking row and the loss of several interactions between NS3h and the 3{prime} DNA segment. As nucleotide hydrolysis proceeds into the transition state, stretching of a 'spring' helix and another overall conformational change couples rearrangement of the (d)NTPase active site to additional hydrogen-bonding between NS3h and DNA. Together with biochemistry, these results demonstrate a 'ratchet' mechanism involved in the unidirectional translocation and define the step size of NS3h as one base per nucleotide hydrolysis cycle. These findings suggest feasible strategies for developing specific inhibitors to block the action of this attractive, yet largely unexplored drug target.

  4. Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation.

    Science.gov (United States)

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-01-10

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection, and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible), which shows antiviral activity against a broad spectrum of viruses including several flaviviruses. Here we describe a novel antiviral mechanism exerted by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and co-localize with the structural proteins pre-membrane (prM) and envelope (E) of TBEV, as well as the non-structural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus, affording the possibility of new drug targets that can be used for therapeutic intervention.ImportanceFlaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection

  5. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    Energy Technology Data Exchange (ETDEWEB)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Lim, Siew Pheng [Novartis Institutes of Tropical Diseases (Singapore); Lefeuvre, Peggy [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Erbel, Paul [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Novartis Institutes of Tropical Diseases (Singapore)

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  6. Novel bluetongue vaccine platform : NS3/NS3a knockout virus as Disabled Infectious Single Animal (DISA) vaccine

    NARCIS (Netherlands)

    Feenstra, F.

    2016-01-01

    Bluetongue (BT) is a disease of ruminants caused by the bluetongue virus (BTV) transmitted by bites of Culicoides midges. Bluetongue has a worldwide prevalence and mortality in sheep varies from 0 to 30%. There are at least 27 BTV serotypes showing no or little cross protection. In 2006, BTV has

  7. Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease

    Science.gov (United States)

    Frecer, Vladimir; Miertus, Stanislav

    2010-03-01

    Serine protease activity of the NS3 protein of Dengue virus is an important target of antiviral agents that interfere with the viral polyprotein precursor processing catalyzed by the NS3 protease (NS3pro), which is important for the viral replication and maturation. Recent studies showed that substrate-based peptidomimetics carrying an electrophilic warhead inhibit the NS2B-NS3pro cofactor-protease complex with inhibition constants in the low micromolar concentration range when basic amino acid residues occupy P1 and P2 positions of the inhibitor, and an aldehyde warhead is attached to the P1. We have used computer-assisted combinatorial techniques to design, focus using the NS2B-NS3pro receptor 3D structure, and in silico screen a virtual library of more than 9,200 peptidomimetic analogs targeted around the template inhibitor Bz-Nle-Lys-Arg-Arg- H (Bz—benzoyl) that are composed mainly of unusual amino acid residues in all positions P1-P4. The most promising virtual hits were analyzed in terms of computed enzyme-inhibitor interactions and Adsorption, Distribution, Metabolism and Excretion (ADME) related physico-chemical properties. Our study can direct the interest of medicinal chemists working on a next generation of antiviral chemotherapeutics against the Dengue Fever towards the explored subset of the chemical space that is predicted to contain peptide aldehydes with NS3pro inhibition potencies in nanomolar range which display ADME-related properties comparable to the training set inhibitors.

  8. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  9. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  10. Generation and Characterization of a Hepatitis C Virus NS3 Protease-Dependent Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Lai, Vicky C. H.; Zhong, Weidong; Skelton, Angela; Ingravallo, Paul; Vassilev, Venteislav; Donis, Ruben O.; Hong, Zhi; Lau, Johnson Y. N.

    2000-01-01

    Unique to pestiviruses, the N-terminal protein encoded by the bovine viral diarrhea virus (BVDV) genome is a cysteine protease (Npro) responsible for a self-cleavage that releases the N terminus of the core protein (C). This unique protease is dispensable for viral replication, and its coding region can be replaced by a ubiquitin gene directly fused in frame to the core. To develop an antiviral assay that allows the assessment of anti-hepatitis C virus (HCV) NS3 protease inhibitors, a chimeric BVDV in which the coding region of Npro was replaced by that of an NS4A cofactor-tethered HCV NS3 protease domain was generated. This cofactor-tethered HCV protease domain was linked in frame to the core protein of BVDV through an HCV NS5A-NS5B junction site and mimicked the proteolytic function of Npro in the release of BVDV core for capsid assembly. A similar chimeric construct was built with an inactive HCV NS3 protease to serve as a control. Genomic RNA transcripts derived from both chimeric clones, PH/B (wild-type HCV NS3 protease) and PH/B(S139A) (mutant HCV NS3 protease) were then transfected into bovine cells (MDBK). Only the RNA transcripts from the PH/B clone yielded viable viruses, whereas the mutant clone, PH/B(S139A), failed to produce any signs of infection, suggesting that the unprocessed fusion protein rendered the BVDV core protein defective in capsid assembly. Like the wild-type BVDV (NADL), the chimeric virus was cytopathic and formed plaques on the cell monolayer. Sequence and biochemical analyses confirmed the identity of the chimeric virus and further revealed variant viruses due to growth adaptation. Growth analysis revealed comparable replication kinetics between the wild-type and the chimeric BVDVs. Finally, to assess the genetic stability of the chimeric virus, an Npro-null BVDV (BVDV−Npro in which the entire Npro coding region was deleted) was produced. Although cytopathic, BVDV−Npro was highly defective in viral replication and growth, a

  11. Single-molecule imaging reveals the translocation and DNA looping dynamics of hepatitis C virus NS3 helicase.

    Science.gov (United States)

    Lin, Chang-Ting; Tritschler, Felix; Lee, Kyung Suk; Gu, Meigang; Rice, Charles M; Ha, Taekjip

    2017-07-01

    Non-structural protein 3 (NS3) is an essential enzyme and a therapeutic target of hepatitis C virus (HCV). Compared to NS3-catalyzed nucleic acids unwinding, its translation on single stranded nucleic acids have received relatively little attention. To investigate the NS3h translocation with single-stranded nucleic acids substrates directly, we have applied a hybrid platform of single-molecule fluorescence detection combined with optical trapping. With the aid of mechanical manipulation and fluorescence localization, we probed the translocase activity of NS3h on laterally stretched, kilobase-size single-stranded DNA and RNA. We observed that the translocation rate of NS3h on ssDNA at a rate of 24.4 nucleotides per second, and NS3h translocates about three time faster on ssRNA, 74 nucleotides per second. The translocation speed was minimally affected by the applied force. A subpopulation of NS3h underwent a novel translocation mode on ssDNA where the stretched DNA shortened gradually and then recovers its original length abruptly before repeating the cycle repetitively. The speed of this mode of translocation was reduced with increasing force. With corroborating data from single-molecule fluorescence resonance energy transfer (smFRET) experiments, we proposed that NS3h can cause repetitive looping of DNA. The smFRET dwell time analysis showed similar translocation time between sole translocation mode versus repetitive looping mode, suggesting that the motor domain exhibits indistinguishable enzymatic activities between the two translocation modes. We propose a potential secondary nucleic acids binding site at NS3h which might function as an anchor point for translocation-coupled looping. © 2017 The Protein Society.

  12. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding.

    Science.gov (United States)

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc; Zhong, Jin

    2017-03-15

    The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α0), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α0, which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α0 and aid understanding of the role of NS3 in HCV virion morphogenesis.IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α0 domain of NS3 that significantly enhanced virus

  13. Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus.

    Science.gov (United States)

    Wang, Xiujin; Hou, Lei; Du, Jige; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2015-08-05

    Japanese encephalitis virus (JEV) is an important zoonotic pathogen causing viral encephalitis in human and reproductive failure in pigs. In the present study, we first examined the autophagy induced by JEV infection in host cells, and then analyzed the JEV proteins involving in autophagy induction, and further investigated the relationship between viral protein and immunity-related GTPases M (IRGM). Our results showed that JEV infection could induce autophagy in host cells and autophagy promoted the replication of JEV in vitro; the cells transfected with individual plasmid that was expressing C, M and NS3 had a significantly higher conversion of LC3-I/II, and enhanced LC3 signals with the fluorescence punctuates accumulation which was completely co-localized with LC3 and increased number of autophagosomes-like vesicles, suggesting that C, M and NS3 are the major viral proteins involving in autophagy induction upon JEV infection; the virus titer in the cells treated by the siRNA specific for IRGM had a significant decrease, and the NS3 signals in the cells transfected with the plasmid that was expressing NS3 were completely co-localized with the IRGM signals, suggesting that the NS3 of JEV could target IRGM which may play a role in the replication of JEV. Our findings help to understand the role of autophagy in JEV and other flaviviruses infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Discovery of SCH446211 (SCH6): A New Ketoamide Inhibitor of the HCV NS3 Serine Protease and HCV Subgenomic RNA Replication

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond G.; Venkatraman, Srikanth; Pan, Weidong; Parekh, Tajel; Pike, Russel E.; Ruan, Sumei; Liu, Rong; Baroudy, Bahige; Agrawal, Sony; Chase, Robert; Ingravallo, Paul; Pichardo, John; Prongay, Andrew; Brisson, Jean-Marc; Hsieh, Tony Y.; Cheng, Kuo-Chi; Kemp, Scott J.; Levy, Odile E.; Lim-Wilby, Marguerita; Tamura, Susan Y.; Saksena, Anil K.; Girijavallabhan, Viyyoor; Njoroge, F. George (SPRI)

    2008-06-30

    Introduction of various modified prolines at P{sub 2} and optimization of the P{sub 1} side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K*{sub i} = 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC{sub 50} and IC{sub 90} of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.

  15. Discovery of SCH446211 (SCH6): a new ketoamide inhibitor of the HCV NS3 serine protease and HCV subgenomic RNA replication.

    Science.gov (United States)

    Bogen, Stéphane L; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond G; Venkatraman, Srikanth; Pan, Weidong; Parekh, Tajel; Pike, Russel E; Ruan, Sumei; Liu, Rong; Baroudy, Bahige; Agrawal, Sony; Chase, Robert; Ingravallo, Paul; Pichardo, John; Prongay, Andrew; Brisson, Jean-Marc; Hsieh, Tony Y; Cheng, Kuo-Chi; Kemp, Scott J; Levy, Odile E; Lim-Wilby, Marguerita; Tamura, Susan Y; Saksena, Anil K; Girijavallabhan, Viyyoor; Njoroge, F George

    2006-05-04

    Introduction of various modified prolines at P(2) and optimization of the P(1) side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K(i)*= 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC(50) and IC(90) of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.

  16. Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications.

    Science.gov (United States)

    Luo, Dahai; Wei, Na; Doan, Danny N; Paradkar, Prasad N; Chong, Yuwen; Davidson, Andrew D; Kotaka, Masayo; Lescar, Julien; Vasudevan, Subhash G

    2010-06-11

    The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1-168) joined to an RNA helicase (residues 180-618) by an 11-amino acid linker (169-179). The structure at 3.15 A of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B(18)NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173-183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by approximately 161 degrees with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn(2+) refined to a resolution of 2.2 A. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu(173) and Pro(174) or replacing Pro(174) with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro(176) to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.

  17. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue

    Directory of Open Access Journals (Sweden)

    Liliana Morales

    2017-01-01

    Resultados. Los anticuerpos producidos fueron útiles en ensayos de Western blot e inmunofluorescencia y se reportó por primera vez un anticuerpo policlonal anti-NS3 que permitió la inmunoprecipitación de la proteína viral y la detecta con Western blot sin necesidad de inducir sobreexpresión de NS3 o de usar extractos de células marcados metabólicamente con radioisótopos. Conclusión. Las proteínas recombinantes expresadas y los anticuerpos producidos constituyen herramientas valiosas para estudiar procesos infecciosos del DENV que involucren a la proteína NS3 y evaluar pruebas dirigidas a interferir las funciones de esta proteína.

  18. Binding by the hepatitis C virus NS3 helicase partially melts duplex DNA.

    Science.gov (United States)

    Raney, Veronica M; Reynolds, Kimberly A; Harrison, Melody K; Harrison, David K; Cameron, Craig E; Raney, Kevin D

    2012-09-25

    Binding of NS3 helicase to DNA was investigated by footprinting with KMnO(4), which reacts preferentially with thymidine residues in single-stranded DNA (ssDNA) compared to those in double-stranded DNA (dsDNA). A distinct pattern of reactivity was observed on ssDNA, which repeated every 8 nucleotides (nt) and is consistent with the known binding site size of NS3. Binding to a DNA substrate containing a partial duplex was also investigated. The DNA contained a 15 nt overhang made entirely of thymidine residues adjacent to a 22 bp duplex that contained thymidine at every other position. Surprisingly, the KMnO(4) reactivity pattern extended from the ssDNA into the dsDNA region of the substrate. Lengthening the partial duplex to 30 bp revealed a similar pattern extending from the ssDNA into the dsDNA, indicating that NS3 binds within the duplex region. Increasing the length of the ssDNA portion of the partial duplex by 4 nt resulted in a shift in the footprinting pattern for the ssDNA by 4 nt, which is consistent with binding to the 3'-end of the ssDNA. However, the footprinting pattern in the dsDNA region was shifted by only 1-2 bp, indicating that binding to the ssDNA-dsDNA region was preferred. Footprinting performed as a function of time indicated that NS3 binds to the ssDNA rapidly, followed by slower binding to the duplex. Hence, multiple molecules of NS3 can bind along a ssDNA-dsDNA partial duplex by interacting with the ssDNA as well as the duplex DNA.

  19. Biliverdin Inhibits Hepatitis C Virus NS3/4A Protease Activity: Mechanism for the Antiviral Effects of Heme Oxygenase?

    Science.gov (United States)

    Zhu, Zhaowen; Wilson, Anne T.; Luxon, Bruce A.; Brown, Kyle E.; Mathahs, M. Meleah; Bandyopadhyay, Sarmistha; McCaffrey, Anton P.; Schmidt, Warren N.

    2010-01-01

    Induction of heme oxygenase -1 (HO-1) inhibits hepatitis C virus (HCV) replication. Of the products of the reaction catalyzed by HO-1 iron has been shown to inhibit HCV RNA polymerase, but little is known about the antiviral activity of biliverdin (BV). Herein, we report that BV inhibits viral replication and viral protein expression in a dose-dependent manner in replicons and cells harboring the infectious J6/JFH construct. Using the SensoLyte 620 HCV Protease Assay with a wide wavelength excitation/emission (591nm/622nm) fluorescence energy transfer peptide, we found that both recombinant and endogenous NS3/4A protease from replicon microsomes are potently inhibited by BV. Of the tetrapyrroles tested, BV was the strongest inhibitor of NS3/4A activity with an IC50 of 9 uM, similar to that of the commercial inhibitor, AnaSpec #25346 (IC50 5 uM). Lineweaver-Burk plots indicated mixed competitive and non-competitive inhibition of the protease by BV. In contrast, the effects of bilirubin (BR) on HCV replication and NS3/4A were much less potent. Because BV is rapidly converted to BR by biliverdin reductase (BVR) intracellularly, the effect of BVR knockdown on BV antiviral activity was assessed. After >80% silencing of BVR, inhibition of viral replication by BV was enhanced. BV also increased the antiviral activity of α-interferon in replicons. Conclusion BV is a potent inhibitor of HCV NS3/4A protease, which likely contributes to the antiviral activity of HO-1. These findings suggest that BV or its derivatives may be useful future drug therapies targeting the NS3/4A protease. PMID:21105106

  20. Sustained specific and cross-reactive T cell responses to Zika and Dengue viruses NS3 in West Africa.

    Science.gov (United States)

    Herrera, Bobby Brooke; Tsai, Wen-Yang; Chang, Charlotte A; Hamel, Donald J; Wang, Wei-Kung; Lu, Yichen; Mboup, Souleymane; Kanki, Phyllis J

    2018-01-10

    Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous Dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus ELISPOT. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well for potential flavivirus diagnostics based on T cell responses.IMPORTANCEThe recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome has raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may potentially shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the potential usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development. Copyright © 2018 American Society for Microbiology.

  1. VP2 exchange and NS3/NS3a deletion in African horsesickness virus (AHSV) towards AHS Disabled Infectious Single Animal (DISA) vaccine candidates

    NARCIS (Netherlands)

    Water, van de S.G.P.; Gennip, van H.G.P.; Potgieter, C.A.; Wright, I.M.; Rijn, van P.A.

    2015-01-01

    African horsesickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African Horsesickness (AHS) in equids with a

  2. The prevalence of the pre-existing hepatitis C viral variants and the evolution of drug resistance in patients treated with the NS3-4a serine protease inhibitor telaprevir

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2008-01-01

    Telaprevir (VX-950), a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV genotype 1. Some patients experience viral breakthrough, which has been shown to be associated with emergence of telaprevir-resistant HCV variants during treatment. The exact mechanisms underlying the rapid selection of drug resistant viral variants during dosing are not fully understood. In this paper, we develop a two-strain model to study the pre-treatment prevalence of the mutant virus and derive an analytical solution of the mutant frequency after administration of the protease inhibitor. Our analysis suggests that the rapid increase of the mutant frequency during therapy is not due to mutant growth but rather due to the rapid and profound loss of wild-type virus, which uncovers the pre-existing mutant variants. We examine the effects of backward mutation and hepatocyte proliferation on the pre-existence of the mutant virus and the competition between wild-type and drug resistant virus during therapy. We then extend the simple model to a general model with multiple viral strains. Mutations during therapy do not play a significant role in the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Hepatocyte proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. The study provides a theoretical framework for exploring the prevalence of pre-existing mutant variants and the evolution of drug resistance during treatment with other protease inhibitors or HCV polymerase inhibitors.

  3. Primuline Derivatives That Mimic RNA to Stimulate Hepatitis C Virus NS3 Helicase-catalyzed ATP Hydrolysis*

    Science.gov (United States)

    Sweeney, Noreena L.; Shadrick, William R.; Mukherjee, Sourav; Li, Kelin; Frankowski, Kevin J.; Schoenen, Frank J.; Frick, David N.

    2013-01-01

    ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 helicase, which is an important antiviral drug target. Two compounds were found that stimulate HCV helicase-catalyzed ATP hydrolysis, both of which are amide derivatives synthesized from the main component of the yellow dye primuline. Both compounds possess a terminal pyridine moiety, which was critical for stimulation. Analogs lacking a terminal pyridine inhibited HCV helicase catalyzed ATP hydrolysis. Unlike other HCV helicase inhibitors, the stimulatory compounds differentiate between helicases isolated from various HCV genotypes and related viruses. The compounds only stimulated ATP hydrolysis catalyzed by NS3 purified from HCV genotype 1b. They inhibited helicases from other HCV genotypes (e.g. 1a and 2a) or related flaviviruses (e.g. Dengue virus). The stimulatory compounds interacted with HCV helicase in the absence of ATP with dissociation constants of about 2 μm. Molecular modeling and site-directed mutagenesis studies suggest that the stimulatory compounds bind in the HCV helicase RNA-binding cleft near key residues Arg-393, Glu-493, and Ser-231. PMID:23703611

  4. VP2-serotyped live-attenuated bluetongue virus without NS3/NS3a expression provided serotype-specific protection and enables DIVA.

    NARCIS (Netherlands)

    Feenstra, F.; Maris-Veldhuis, M.A.; Daus, F.J.; Tacken, M.G.J.; Moormann, R.J.M.; Gennip, van H.G.P.; Rijn, van P.A.

    2014-01-01

    Bluetongue virus (BTV) causes Bluetongue in ruminants and is transmitted by Culicoides biting midges. Vaccination is the most effective measure to control vector borne diseases; however, there are 26 known BTV serotypes showing little cross protection. The BTV serotype is mainly determined by genome

  5. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  6. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  7. Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles.

    Science.gov (United States)

    Carpp, Lindsay N; Galler, Ricardo; Bonaldo, Myrna C

    2011-01-01

    The ESCRT (endosomal sorting complex required for transport) machinery normally executes cargo sorting and internalization during multivesicular body biogenesis, but is also utilized by several enveloped viruses to facilitate their budding from cellular membranes. Although the mechanisms of flavivirus infectious particle assembly and release are poorly understood, the nonstructural protein NS3 has been reported to have an essential role via an undescribed mechanism. Here, we shed light on the role of NS3 by connecting it to the host factor Alix, a protein intimately connected with the ESCRT machinery. We demonstrate that NS3 and Alix interact and show that dominant negative versions of Alix inhibit YFV release. Furthermore, we show that NS3 supplied in trans rescues this effect. We propose that the interaction between NS3 and Alix contributes to YFV release. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  8. Establishment of a novel triple-transgenic mouse: conditionally and liver-specifically expressing hepatitis C virus NS3/4A protease.

    Science.gov (United States)

    Lan, H Y; Zhao, Y; Yang, J; Sun, M N; Lei, Y F; Yao, M; Huang, X J; Zhang, J M; Xu, Z K; Lü, X; Yin, W

    2014-11-01

    It is well known that NS3/4A protein plays crucial roles in the hepatitis C virus (HCV) replication. NS3/4A protein also results to virus-mediated immune evasion and persistence of infection through the interaction with host proteins. However, the lack of a suitable animal model hampers studies of HCV NS3/4A protein interaction with host proteins, which impacts immunopathology due to infection. Here, transgenic vector containing transcriptional regulation and Fluc reporter gene was constructed to conditionally express NS3/4A protein under the dual control of Tet-On regulatory system and Cre/LoxP gene-knockout system. NS3/4A transgenic founder mice were continuously crossed with Lap transgenic mice expressing reverse tetracycline-controlled transcriptional activator (rtTA), the NS3/4A/Lap double transgenic mouse lines with liver-specifically and conditionally expressing reporter (luciferase Fluc) under control of Tet-On system were established. The NS3/4A/Lap double transgenic mouse are mated with Lap/LC-1 double transgenic mouse with liver-specifically and conditionally expressing Cre recombinase under control of Tet-On system, NS3/4A/Lap/LC-1 triple transgenic mouse were generated. In vivo bioluminescent imaging, western blotting and immunohistochemical staining (IHS) was used to confirm that NS3/4A protein was strictly expressed in the liver of Doxycycline-induced triple transgenic mice. The results show that we established a triple-transgenic mouse model conditionally expressing the HCV NS3/4A protein under strict control of the Tet-On regulatory system and Cre/loxP system. This novel transgenic mouse model expressing NS3/4A in a temporally and spatially-specific manner will be useful for studying interactions between HCV NS3/4A protein and the host, also for evaluating NS3/4A protease inhibitors.

  9. In silico evaluation of inhibitory potential of triterpenoids from Azadirachta indica against therapeutic target of dengue virus, NS2B-NS3 protease.

    Science.gov (United States)

    Dwivedi, Vivek Dhar; Tripathi, Indra Prasad; Mishra, Sarad Kumar

    2016-01-01

    NS2B-NS3 protease (NS2B-NS3 pro ) of dengue virus (DENV) is the prime therapeutic target for the development of anti-dengue drug to combat the DENV infection, which is currently an increasing health problem in many countries. In the area of antiviral drug discovery, numerous reports on the antiviral activity of various medicinal plants against dengue viruses have been published. Neem plant (Azadirachta indica) is one among those medicinal plants which is reported to show potential antiviral activity against DENV. But active principle of neem plant extract which has inhibitory potential against DENV NS2B-NS3 pro is not yet reported. The aim of the present study was to explore the inhibitory potential of five triterpenoids from neem plant, viz. nimbin, desacetylnimbin, desacetylsalannin, azadirachtin and salannin, against DENV NS2B-NS3 pro. The molecular 3D structural data of DENV NS2B-NS3 pro and selected triterpenoids of neem plant were collected from protein databank (PDB ID: 2VBC) and PubChem database respectively. The molecular docking approach was employed to find out the in silico inhibitory potential of the five triterpenoids against DENV NS2B- NS3 pro. The molecular docking results showed that nimbin, desacetylnimbin and desacetylsalannin have good binding affinity with DENV NS2B-NS3 pro , while azadirachtin and salannin did not show any interaction with the target protein. It was observed that the DENV NS2B-NS3 pro binding energy for nimbin, desacetylnimbin and desacetylsalannin were -5.56, -5.24 and -3.43 kcal/mol, respectively. The findings attained through this study on the molecular interaction mode of three neem triterpenoids and DENV NS2B-NS3 pro can be considered for further in vitro and in vivo validation for designing new potential drugs for DENV infection.

  10. In Vitro Evaluation of Novel Inhibitors against the NS2B-NS3 Protease of Dengue Fever Virus Type 4

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2013-12-01

    Full Text Available The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inhibitors against the NS2B-NS3pro. Thirty-six compounds were selected for in vitro assay against NS2B-NS3pro expressed in Pichia pastoris. Seven novel compounds were identified as inhibitors with IC50 values of 3.9 ± 0.6–86.7 ± 3.6 μM. Three strong NS2B-NS3pro inhibitors were further confirmed as competitive inhibitors with Ki values of 4.0 ± 0.4, 4.9 ± 0.3, and 3.4 ± 0.1 μM, respectively. Hydrophobic and hydrogen bond interactions between amino acid residues in the NS3pro active site with inhibition compounds were also identified.

  11. Characterisation of interaction between NS3 and NS5B protein of classical swine fever virus by deletion of terminal sequences of NS5B.

    Science.gov (United States)

    Wang, Yujing; Zhu, Zailing; Wang, Ping; Yu, Jialin; Wan, Lingzhu; Chen, Jun; Xiao, Ming

    2011-03-01

    The NS3-NS5B interaction of classical swine fever virus (CSFV) is important for viral replication. For characterisation of the interaction between the NS3 and NS5B, a series of NS5B mutants with deletion of N-, C-terminal amino acids and quadruple alanine substitution mutations were produced. GST pull-down assays and immunoprecipitation analyses showed that NS5B and some NS5B mutants have NS3 binding activity. Further experimental data indicated that CSFV NS5B might contain two NS3 binding sites, one covering amino acids 63-99 located at the N-terminal end, another covering amino acids 611-642 at the C-terminal end. Assays for RNA-dependent RNA polymerase (RdRp) activity revealed that CSFV NS3 is able to enhance the RdRp activity of NS5B and some NS5B mutants in vitro. The enhancement might be obtained by NS3 binding to the two terminal sequences of NS5B, which could be attractive targets for drug development against CSFV. Copyright © 2011. Published by Elsevier B.V.

  12. Steady-state NTPase activity of Dengue virus NS3: number of catalytic sites, nucleotide specificity and activation by ssRNA.

    Directory of Open Access Journals (Sweden)

    J Jeremías Incicco

    Full Text Available Dengue virus nonstructural protein 3 (NS3 unwinds double stranded RNA driven by the free energy derived from the hydrolysis of nucleoside triphosphates. This paper presents the first systematic and quantitative characterization of the steady-state NTPase activity of DENV NS3 and their interaction with ssRNA. Substrate curves for ATP, GTP, CTP and UTP were obtained, and the specificity order for these nucleotides - evaluated as the ratio (kcat /KM - was GTP[Formula: see text]ATP[Formula: see text]CTP [Formula: see text] UTP, which showed that NS3 have poor ability to discriminate between different NTPs. Competition experiments between the four substrates indicated that all of them are hydrolyzed in one and the same catalytic site of the enzyme. The effect of ssRNA on the ATPase activity of NS3 was studied using poly(A and poly(C. Both RNA molecules produced a 10 fold increase in the turnover rate constant (kcat and a 100 fold decrease in the apparent affinity (KM for ATP. When the ratio [RNA bases]/[NS3] was between 0 and [Formula: see text]20 the ATPase activity was inhibited by increasing both poly(A and poly(C. Using the theory of binding of large ligands (NS3 to a one-dimensional homogeneous lattice of infinite length (RNA we tested the hypothesis that inhibition is the result of crowding of NS3 molecules along the RNA lattices. Finally, we discuss why this hypothesis is consistent with the idea that the ATPase catalytic cycle is tightly coupled to the movement of NS3 helicase along the RNA.

  13. Membranoproliferative glomerulonephritis and mixed cryoglobulinemia after hepatitis C virus infection secondary to glomerular NS3 viral antigen deposits.

    Science.gov (United States)

    Bataille, Stanislas; Kaplanski, Gilles; Boucraut, José; Halfon, Philippe; Camus, Claire; Daniel, Laurent; Burtey, Stéphane; Berland, Yvon; Dussol, Bertrand

    2012-01-01

    We report on 3 cases of membranoproliferative glomerulonephritis associated with mixed cryoglobulin in patients with hepatitis C virus (HCV) antibodies but a negative blood viral load. These cases explore the pathogenesis of the renal disease. We searched for occult HCV infection in peripheral blood mononuclear cells, cryoprecipitate, bone marrow cells, and glomeruli using ultrasensitive PCR assays and immunohistochemistry. We also looked for infraclinical B cell lymphoma by computed tomodensitometry, bone marrow aspiration and biopsy, and lymphocyte typing. By PCR assays, we did not evidence occult hepatitis C infection in peripheral blood mononuclear cells, bone marrow cells, or cryoprecipitates. In the only patient with available kidney specimen, we evidenced HCV-NS3 antigen in glomeruli. HCV-associated lymphoma was excluded, but mild polyclonal B lymphocytosis was present in the 3 patients. Remission occurred spontaneously in 1 patient, and in another patient it occurred after rituximab treatment. The third patient was lost to follow-up. In patients with hepatitis C-negative viral load, membranoproliferative glomerulonephritis could be induced by the persistence of HCV antigen in the kidney but not in hematopoietic cells. Nonlymphomatous B cell proliferation may also be induced by chronic viral stimulation. Copyright © 2012 S. Karger AG, Basel.

  14. Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Scheel, Troels K H; Jensen, Tanja B

    2011-01-01

    The hepatitis C virus (HCV) genotype influences efficacy of interferon (IFN)-based therapy. HCV protease inhibitors are being licensed for treatment of genotype 1 infection. Because there are limited or no data on efficacy against HCV genotypes 2-7, we aimed at developing recombinant infectious c...... cell culture systems expressing genotype-specific nonstructural (NS) protein 3 protease (NS3P)....

  15. The NS3 and NS4A genes as the targets of RNA interference inhibit replication of Japanese encephalitis virus in vitro and in vivo.

    Science.gov (United States)

    Yuan, Lei; Wu, Rui; Liu, Hanyang; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Ma, Xiaoping; Yan, Qigui; Huang, Yong; Zhao, Qin; Cao, Sanjie

    2016-12-15

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that can cause acute encephalitis with a high fatality rate. RNA interference (RNAi) is a powerful tool to silence gene expression and a potential therapy for virus infection. In this study, the antiviral ability of eight shRNA expression plasmids targeting different sites of the NS3 and NS4A genes of JEV was determined in BHK21 cells and mice. The pGP-NS3-3 and pGP-NS4A-4 suppressed 93.9% and 82.0% of JEV mRNA in cells, respectively. The virus titer in cells was reduced approximately 950-fold by pretreating with pGP-NS3-4, and 640-fold by pretreating with pGP-NS4A-4. The results of western blot and immunofluorescence analysis showed JEV E protein and viral load in cells were remarkably inhibited by shRNA expression plasmids. The viral load in brains of mice pretreated with pGP-NS3-4 or pGP-NS4A-4 were reduced approximately 2400-fold and 800-fold, respectively, and the survival rate of mice challenged with JEV were 70% and 50%, respectively. However, the antiviral ability of shRNA expression plasmids was decreased over time. This study indicates that RNAi targeting of the NS3 and NS4A genes of JEV can sufficiently inhibit the replication of JEV in vitro and in vivo, and NS3 and NS4A genes might be potential targets of molecular therapy for JEV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Potent inhibitors of HCV-NS3 protease derived from boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, Srikanth; Wu, Wanli; Prongay, Andrew; Girijavallabhan, Viyyoor; Njoroge, F. George; (SPRI)

    2009-07-23

    Chronic hepatitis C infection is the leading causes for cirrhosis of the liver and hepatocellular carcinoma, leading to liver failure and liver transplantation. The etiological agent, HCV virus produces a single positive strand of RNA that is processed with the help of serine protease NS3 to produce mature virus. Inhibition of NS3 protease can be potentially used to develop effective drugs for HCV infections. Numerous efforts are now underway to develop potent inhibitors of HCV protease that contain ketoamides as serine traps. Herein we report the synthesis of a series of potent inhibitors that contain a boronic acid as a serine trap. The activity of these compounds were optimized to 200 pM. X-ray structure of compound 17 bound to NS3 protease is also discussed.

  17. Unraveling the structural basis of grazoprevir potency against clinically relevant substitutions in hepatitis C virus NS3/4A protease from genotype 1a.

    Science.gov (United States)

    Guo, Zhuyan; Black, Stuart; Hu, Yuan; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Curry, Stephanie; Asante-Appiah, Ernest

    2017-04-14

    Grazoprevir is a potent pan-genotype and macrocyclic inhibitor of hepatitis C virus (HCV) NS3/4A protease and was developed for treating chronic HCV infection. In HCV genotype (GT) 1a, grazoprevir maintains potent activity against a majority of NS3 resistance-associated amino acid substitutions, including the highly prevalent and naturally occurring Q80K polymorphism that impacts simeprevir, another NS3/4A protease inhibitor. The basis for an unexpected difference in the clinical impact of some NS3 substitutions was investigated. Phenotypic analysis of resistance-associated substitutions identified in NS3 from GT1a-infected patients who failed therapy with grazoprevir (in combination with elbasvir, an inhibitor of HCV NS5A protein) showed that positions 56, 156, and 168 in NS3 were most impactful because they diminished protein-inhibitor interactions. Although an amino acid substitution from aspartic acid to alanine at position 168 (D168A) reduced the potency of grazoprevir, its combination with R155K unexpectedly nullified this effect. Molecular dynamics and free-energy surface studies indicated that Asp-168 is important in anchoring Arg-155 for ligand binding but is not critical for Lys-155 because of the inherent flexibility of its side chain. Moreover, modeling studies supported a strong direct cation-heterocycle interaction between the Lys-155 side chain of the double substitution, R155K/D168A, and the lone pair on the quinoxaline in grazoprevir. This unique interaction provides a structural basis for grazoprevir's higher potency than simeprevir, an inhibitor to which the double substitution confers a significant reduction in potency. Our findings are consistent with the detection of R155K/D168A in NS3 from virologic failures treated with simeprevir but not grazoprevir. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein.

    Science.gov (United States)

    Lara, James; Wohlhueter, Robert M; Dimitrova, Zoya; Khudyakov, Yury E

    2008-09-01

    Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure-activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html

  19. In vitro inhibitory analysis of consensus siRNAs against NS3 gene of hepatitis C virus 1a genotype.

    Science.gov (United States)

    Shahid, Imran; AlMalki, Waleed Hassan; AlRabia, Mohammed Wanees; Mukhtar, Mohammed Hasan; Almalki, Shaia Saleh R; Alkahtani, Saad Ahmed; Ashgar, Sami S; Faidah, Hani S; Hafeez, Muhammad Hassan

    2017-07-01

    To explore inhibitory effects of genome-specific, chemically synthesized siRNAs (small interference RNA) against NS3 gene of hepatitis C virus (HCV) 1a genotype in stable Huh-7 (human hepatoma) cells as well as against viral replication in serum-inoculated Huh-7 cells. Stable Huh-7 cells persistently expressing NS3 gene were produced under antibiotic gentamycin (G418) selection. The cell clones resistant to 1000 μg antibiotic concentration (G418) were picked as stable cell clones. The NS3 gene expression in stable cell clone was confirmed by RT-PCR and Western blotting. siRNA cell cytotoxicity was determined by MTT cell proliferation assay. Stable cell lines were transfected with sequence specific siRNAs and their inhibitory effects were determined by RT-PCR, real-time PCR and Western blotting. The viral replication inhibition by siRNAs in serum inoculated Huh-7 cells was determined by real-time PCR. RT-PCR and Western blot analysis confirmed NS3 gene and protein expression in stable cell lines on day 10, 20 and 30 post transfection. MTT cell proliferation assay revealed that at most concentrated dose tested (50 nmol/L), siRNA had no cytotoxic effects on Huh-7 cells and cell proliferation remained unaffected. As demonstrated by the siRNA time-dependent inhibitory analysis, siRNA NS3-is44 showed maximum inhibition of NS3 gene in stable Huh-7 cell clones at 24 (80%, P = 0.013) and 48 h (75%, P = 0.002) post transfection. The impact of siRNAs on virus replication in serum inoculated Huh-7 cells also demonstrated significant decrease in viral copy number, where siRNA NS3-is44 exhibited 70% (P siRNA synergism (NS3-is33 + NS3-is44) decreased viral load by 84% (P siRNA (i.e., 64%-70% (P siRNAs mixture (NS5B-is88 + NS3-is33) targeting different region of HCV genome (NS5B and NS3) also decreased HCV viral load by 85% (P siRNA inhibitory effects alone (70% and 64% respectively, P siRNAs directed against NS3 gene significantly decreased mRNA and protein

  20. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    Science.gov (United States)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  1. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication.

    Science.gov (United States)

    Chambers, T J; Nestorowicz, A; Amberg, S M; Rice, C M

    1993-11-01

    To study the role of specific regions of the yellow fever virus NS2B protein in proteolytic processing and association with the NS3 proteinase domain, a series of mutations were created in the hydrophobic regions and in a central conserved hydrophilic region proposed as a domain important for NS2B function. The effects of these mutations on cis cleavage at the 2B/3 cleavage site and on processing at other consensus cleavage sites for the NS3 proteinase in the nonstructural region were then characterized by cell-free translation and transient expression in BHK cells. Association between NS2B and the NS3 proteinase domain and the effects of mutations on complex formation were investigated by nondenaturing immunoprecipitation of these proteins expressed in infected cells, by cell-free translation, or by recombinant vaccinia viruses. Mutations within the hydrophobic regions had subtle effects on proteolytic processing, whereas mutations within the conserved domain dramatically reduced cleavage efficiency or abolished all cleavages. The conserved domain of NS2B is also implicated in formation of an NS2B-NS3 complex on the basis of the ability of mutations in this region to eliminate both association of these two proteins and trans-cleavage activity. In addition, mutations which either eliminated proteolytic processing or had no apparent effect on processing were found to abolish recovery of infectious virus following RNA transfection. These results suggest that the conserved region of NS2B is a domain essential for the function of the NS3 proteinase. Hydrophobic regions of NS2B whose structural integrity may not be essential for proteolytic processing may have additional functions during viral replication.

  2. Identification and Analysis of Novel Inhibitors against NS3 Helicase and NS5B RNA-Dependent RNA Polymerase from Hepatitis C Virus 1b (Con1

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-11-01

    Full Text Available Hepatitis C virus (HCV leads to severe liver diseases, including liver fibrosis, cirrhosis and hepatocellular carcinoma. Non-structural protein 3 helicase (NS3h and non-structural protein 5B RNA-dependent RNA polymerase (NS5B are involved in the replication of HCV RNA genome, and have been proved to be excellent targets for discovery of direct-acting antivirals. In this study, two high-throughput screening systems, fluorescence polarization (FP-based ssDNA binding assay and fluorescence intensity (FI-based dsRNA formation assay, were constructed to identify candidate NS3h and NS5B inhibitors, respectively. A library of approximately 800 small molecules and crude extracts, derived from marine microorganisms or purchased from the National Compound Resource Center, China, were screened, with three hits selected for further study. Natural compound No.3A5, isolated from marine fungi, inhibited NS3h activity with an IC50 value of 2.8 μM. We further demonstrated that compound No.3A5 inhibited the abilities of NS3h to bind ssDNA in electrophoretic mobility shift assay and to hydrolyze ATP. The NS3h-inhibitory activity of compound No.3A5 was reversible in our dilution assay, which indicated there was no stable NS3h-No.3A5 complex formed. Additionally, compound No.3A5 exhibited no binding selectivity on NS3h or single strand binding protein of Escherichia coli. In NS5B assays, commercial compounds No.39 and No.94 previously reported as kinase inhibitors were found to disrupt dsRNA formation, and their IC50 values were 62.9 and 18.8 μM, respectively. These results highlight how identifying new uses for existing drugs is an effective method for discovering novel HCV inhibitors. To our knowledge, all inhibitors reported in this study were originally discovered with HCV anti-non-structural protein activities in vitro.

  3. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    Science.gov (United States)

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC50) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir. The

  4. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    Science.gov (United States)

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In Vitro Activity of Simeprevir against Hepatitis C Virus Genotype 1 Clinical Isolates and Its Correlation with NS3 Sequence and Site-Directed Mutants

    Science.gov (United States)

    Fevery, Bart; Vijgen, Leen; Jacobs, Tom; De Meyer, Sandra; Lenz, Oliver

    2015-01-01

    Simeprevir (TMC435) is a once-daily, single-pill, oral hepatitis C virus (HCV) NS3 protease inhibitor approved for the treatment of chronic HCV infection. Phenotypic characterization of baseline isolates and isolates from HCV genotype 1-infected patients failing with a simeprevir-based regimen was performed using chimeric replicons carrying patient-derived NS3 protease sequences. Cutoff values differentiating between full susceptibility to simeprevir (≤2.0-fold reduction in simeprevir activity) and low-level versus high-level resistance (≥50-fold reduction in simeprevir activity) were determined. The median simeprevir fold change in the 50% effective concentration (FC) of pretreatment genotype 1a isolates, with and without Q80K, and genotype 1b isolates was 11, 0.9, and 0.4, respectively. Naturally occurring NS3 polymorphisms that reduced simeprevir activity, other than Q80K, were uncommon in the simeprevir studies and generally conferred low-level resistance in vitro. Although the proportion of patients with failure differed by HCV geno/subtype and/or presence of baseline Q80K, the level of simeprevir resistance observed at failure was similarly high irrespective of type of failure, HCV genotype 1 subtype, and presence or absence of baseline Q80K. At the end of the study, simeprevir activity against isolates that lost the emerging amino acid substitution returned to pretreatment values. Activity of simeprevir against clinical isolates and site-directed mutant replicons harboring the corresponding single or double amino acid substitutions correlated well, showing that simeprevir resistance can be attributed to these substitutions. In conclusion, pretreatment NS3 isolates were generally fully susceptible (FC, ≤2.0) or conferred low-level resistance to simeprevir in vitro (FC, >2.0 and <50). Treatment failure with a simeprevir-based regimen was associated with emergence of high-level-resistance variants (FC, ≥50). PMID:26392483

  6. SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells.

    Science.gov (United States)

    Malcolm, B A; Liu, R; Lahser, F; Agrawal, S; Belanger, B; Butkiewicz, N; Chase, R; Gheyas, F; Hart, A; Hesk, D; Ingravallo, P; Jiang, C; Kong, R; Lu, J; Pichardo, J; Prongay, A; Skelton, A; Tong, X; Venkatraman, S; Xia, E; Girijavallabhan, V; Njoroge, F G

    2006-03-01

    Cleavage of the hepatitis C virus (HCV) polyprotein by the viral NS3 protease releases functional viral proteins essential for viral replication. Recent studies by Foy and coworkers strongly suggest that NS3-mediated cleavage of host factors may abrogate cellular response to alpha interferon (IFN-alpha) (E. Foy, K. Li, R. Sumpter, Jr., Y.-M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, and M. Gale, Jr., Proc. Natl. Acad. Sci. USA 102:2986-2991, 2005, and E. Foy, K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon, and M. Gale, Jr., Science 300:1145-1148, 2003). Blockage of NS3 protease activity therefore is expected to inhibit HCV replication by both direct suppression of viral protein production as well as by restoring host responsiveness to IFN. Using structure-assisted design, a ketoamide inhibitor, SCH 503034, was generated which demonstrated potent (overall inhibition constant, 14 nM) time-dependent inhibition of the NS3 protease in cell-free enzyme assays as well as robust in vitro activity in the HCV replicon system, as monitored by immunofluorescence and real-time PCR analysis. Continuous exposure of replicon-bearing cell lines to six times the 90% effective concentration of SCH 503034 for 15 days resulted in a greater than 4-log reduction in replicon RNA. The combination of SCH 503034 with IFN was more effective in suppressing replicon synthesis than either compound alone, supporting the suggestion of Foy and coworkers that combinations of IFN with protease inhibitors would lead to enhanced therapeutic efficacy.

  7. Broadening CD4(+) and CD8(+) T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes

    DEFF Research Database (Denmark)

    Filskov, Jonathan; Mikkelsen, Marianne; Hansen, Paul R.

    2017-01-01

    Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance...... and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice...

  8. Substitutions at NS3 Residue 155, 156, or 168 of Hepatitis C Virus Genotypes 2 to 6 Induce Complex Patterns of Protease Inhibitor Resistance

    DEFF Research Database (Denmark)

    Jensen, Sanne B.; Serre, Stephanie B. N.; Humes, Daryl G.

    2015-01-01

    Various protease inhibitors (PIs) are currently becoming available for treatment of hepatitis C virus (HCV). For genotype 1, substitutions at NS3 protease positions 155, 156, and 168 are main determinants of PI resistance. For other genotypes, similar substitutions were selected during PI treatment...... to nine PIs (telaprevir, boceprevir, simeprevir, asunaprevir, vaniprevir, faldaprevir, paritaprevir, deldeprevir, and grazoprevir) in Huh7.5 cells. We found that most variants showed decreased fitness compared to original viruses. Overall, R155K-, A156G/S-, and D/Q168A/E/H/N/V-variants showed highest...... resistant. For the remaining PIs, most genotype 2-, 4-, 5-, and 6-, but not genotype 3-variants, showed varying resistance levels. Overall, grazoprevir (MK-5172) had the highest efficacy against original viruses and variants.This is the first comprehensive study revealing the impact of described key PI...

  9. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists.

    Science.gov (United States)

    Shiryaev, Sergey A; Farhy, Chen; Pinto, Antonella; Huang, Chun-Teng; Simonetti, Nicole; Ngono, Annie Elong; Dewing, Antimone; Shresta, Sujan; Pinkerton, Anthony B; Cieplak, Piotr; Strongin, Alex Y; Terskikh, Alexey V

    2017-07-01

    The recent re-emergence of Zika virus (ZIKV)1, a member of the Flaviviridae family, has become a global emergency. Currently, there are no effective methods of preventing or treating ZIKV infection, which causes severe neuroimmunopathology and is particularly harmful to the developing fetuses of infected pregnant women. However, the pathology induced by ZIKV is unique among flaviviruses, and knowledge of the biology of other family members cannot easily be extrapolated to ZIKV. Thus, structure-function studies of ZIKV proteins are urgently needed to facilitate the development of effective preventative and therapeutic agents. Like other flaviviruses, ZIKV expresses an NS2B-NS3 protease, which consists of the NS2B cofactor and the NS3 protease domain and is essential for cleavage of the ZIKV polyprotein precursor and generation of fully functional viral proteins. Here, we report the enzymatic characterization of ZIKV protease, and we identify structural scaffolds for allosteric small-molecule inhibitors of this protease. Molecular modeling of the protease-inhibitor complexes suggests that these compounds bind to the druggable cavity in the NS2B-NS3 protease interface and affect productive interactions of the protease domain with its cofactor. The most potent compound demonstrated efficient inhibition of ZIKV propagation in vitro in human fetal neural progenitor cells and in vivo in SJL mice. The inhibitory scaffolds could be further developed into valuable research reagents and, ultimately, provide a roadmap for the selection of efficient inhibitors of ZIKV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Serotype-specific interactions among functional domains of dengue virus 2 nonstructural proteins (NS) 5 and NS3 are crucial for viral RNA replication.

    Science.gov (United States)

    Teramoto, Tadahisa; Balasubramanian, Anuradha; Choi, Kyung H; Padmanabhan, Radhakrishnan

    2017-06-09

    Four serotypes of mosquito-borne dengue virus (DENV), evolved from a common ancestor, are human pathogens of global significance for which there is no vaccine or antiviral drug available. The N-terminal domain of DENV NS5 has guanylyltransferase and methyltransferase (MTase), and the C-terminal region has the polymerase (POL), all of which are important for 5'-capping and RNA replication. The crystal structure of NS5 shows it as a dimer, but the functional evidence for NS5 dimer is lacking. Our studies showed that the substitution of DENV2 NS5 MTase or POL for DENV4 NS5 within DENV2 RNA resulted in a severe attenuation of replication in the transfected BHK-21 cells. A replication-competent species was evolved with the acquired mutations in the DENV2 and DENV4 NS5 MTase or POL domain or in the DENV2 NS3 helicase domain in the DENV2 chimera RNAs by repeated passaging of infected BHK-21 or mosquito cells. The linker region of seven residues in NS5, rich in serotype-specific residues, is important for the recovery of replication fitness in the chimera RNA. Our results, taken together, provide genetic evidence for a serotype-specific interaction between NS3 and NS5 as well as specific interdomain interaction within NS5 required for RNA replication. Genome-wide RNAseq analysis revealed the distribution of adaptive mutations in RNA quasispecies. Those within NS3 and NS5 are located at the surface and/or within the NS5 dimer interface, providing a functional significance to the crystal structure NS5 dimer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Xun-Cheng Su

    Full Text Available BACKGROUND: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation in the absence of inhibitor and lining the substrate binding site (closed conformation in the presence of an inhibitor. METHODS: In this work, nuclear magnetic resonance (NMR spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.

  12. Expression of the rice hoja blanca virus (RHBV) non-structural protein 3 (NS3) in Escherichia coli and its in situ localization in RHBV-infected rice tissues.

    Science.gov (United States)

    Muñoz, Miguel; Bolaños, Isela; Arrieta-Espinoza, Griselda; Espinoza, Ana M

    2004-09-01

    The non-structural NS3 protein gene from the rice hoja blanca virus (RHBV) was fused to the glutathione-S-transferase carboxilic end and expressed in Escherichia coli strain JM83. Large quantities of fusion protein were produced in insoluble form. The fusion protein was fractionated in SDS-PAGE and purified by electroelution, polyclonal antibodies were raised in rabbit and the antiserum was absorbed with bacterial crude extract. A band of similar size as that of NS3 protein was observed in Western blots using extracts from RHBV-infected rice plants. Immunoelectron microscopy with colloidal gold-labeled antibodies against NS3 protein and the viral nucleocapsid protein revealed in situ accumulation of NS3 protein in the cytoplasm but not in the viral inclusion bodies, vacuoles or chloroplasts of RHBV-infected plants, following the same pattern of distribution as the RHBV nucleocapsid protein.

  13. Expression of the rice hoja blanca virus (RHBV non-structural protein 3 (NS3 in Escherichia coli and its in situ localization in RHBV-infected rice tissues

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2004-09-01

    Full Text Available The non-structural NS3 protein gene from the rice hoja blanca virus (RHBV was fused to the glutathione- S-transferase carboxilic end and expressed in Escherichia coli strain JM83. Large quantities of fusion protein were produced in insoluble form. The fusion protein was fractionated in SDS-PAGE and purified by electroelution, polyclonal antibodies were raised in rabbit and the antiserum was absorbed with bacterial crude extract. A band of similar size as that of NS3 protein was observed in Western blots using extracts from RHBV-infected rice plants. Immunoelectron microscopy with colloidal gold-labeled antibodies against NS3 protein and the viral nucleocapsid protein revealed in situ accumulation of NS3 protein in the cytoplasm but not in the viral inclusion bodies, vacuoles or chloroplasts of RHBV-infected plants, following the same pattern of distribution as the RHBV nucleocapsid protein. Rev. Biol. Trop. 52(3: 765-775. Epub 2004 Dic 15.El gen que codifica por la proteína no estructural NS3 del virus de la hoja blanca de arroz (RHBV se fusionó al extremo carboxilo del gen de la glutationa-S-transferasa y se expresó en la cepa JM83 de Escherichia coli. Se obtuvieron altas concentraciones de la proteína de fusion (GST-NS3 en forma insoluble. La proteína de fusión se fraccionó en geles de SDS-PAGE, se purificó por electroelución, y se utilizó para producir anticuerpos policlonales en conejo . El antisuero producido se absorbió con extractos crudos de E. coli. Extractos crudos de plantas de arroz sanas e infectadas con el RHBV se evaluaron por Western blots detectándose una banda de peso molecular similar al estimado para la proteína NS3 (23KDa en las plantas infectadas con el virus. Los tejidos provenientes de plantas infectadas con el RHBV se analizaron por medio de microscopia inmunoelectrónica con oro colloidal marcado con anticuerpos contra la proteína NS3 y la nucleoproteína viral N. Se observó una acumulación in situ de la

  14. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR).

    Science.gov (United States)

    Hawas, Usama W; Al-Farawati, Radwan; Abou El-Kassem, Lamia T; Turki, Adnan J

    2016-10-20

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica, collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek's (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC50 27.6 μg/mL) compared to the biomalt culture extract (IC50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC50 48.5 and 51.3 μM, respectively.

  15. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    Science.gov (United States)

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Cloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients

    Directory of Open Access Journals (Sweden)

    Mahrou Sadri

    2015-02-01

    Full Text Available Objective(s: Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3 of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim of this study was cloning and expression of HCV NS3 helicase fragment in Escherichia coli BL21 (DE3 using pET102/D-TOPO expression vector and studying immunoreactivity of the expressed antigen in Iranian infected with hepatitis C. Materials and Methods: The viral RNA was extracted from the serum of HCV infected patient. The NS3 helicase region was amplified by RT-PCR. The PCR product was directionally cloned into the expression vector pET102/D-TOPO and transformed into the BL21 strain of E. coli (DE3. The transformed bacteria were then induced by adding 1mM isopropyl-β-D-thiogalactopyranoside (IPTG into the culture medium to enhance the protein expression. SDS-PAGE and western blotting were carried out to identify the protein under investigation, and finally purified recombinant fusion protein was used as the antigen for ELISA method. Results: Theinsertion of theDNA fragment of the NS3 regioninto the expression vectorwas further confirmed by PCR and sequencing. SDS-PAGE analysis showed the successful expression of the recombinant protein of interest. Furthermore, immunoreactivity of fusion NS3 helicase was confirmed by ELISA and western blotting. Conclusion: It seems that this recombinant protein could be a useful source of antigen for future studies on HCV diagnosis and therapy.

  17. Hepatitis C Virus NS3 Mediated Microglial Inflammation via TLR2/TLR6 MyD88/NF-κB Pathway and Toll Like Receptor Ligand Treatment Furnished Immune Tolerance.

    Directory of Open Access Journals (Sweden)

    Ayilam Ramachandran Rajalakshmy

    Full Text Available Recent evidence suggests the neurotrophic potential of hepatitis C virus (HCV. HCV NS3 protein is one of the potent antigens of this virus mediating inflammatory response in different cell types. Microglia being the immune surveillance cells in the central nervous system (CNS, the inflammatory potential of NS3 on microglia was studied. Role of toll like receptor (TLR ligands Pam2CSK3 and Pam3CSK4 in controlling the NS3 mediated microglial inflammation was studied using microglial cell line CHME3.IL (Interleukin-8, IL-6, TNF-α (Tumor nicrosis factor alpha and IL-1β gene expressions were measured by semi quantitative RT-PCR (reverse transcription-PCR. ELISA was performed to detect IL-8, IL-6, TNF-α, IL-1β and IL-10 secretion. FACS (Flourescent activated cell sorting was performed to quantify TLR1, TLR2, TLR6, MyD88 (Myeloid differntiation factor 88, IkB-α (I kappaB alpha and pNF-κB (phosphorylated nuclear factor kappaB expression. Immunofluorescence staining was performed for MyD88, TLR6 and NF-κB (Nuclear factor kappaB. Student's t-test or One way analysis of variance with Bonferoni post hoc test was performed and p < 0.05 was considered significant.Microglia responded to NS3 by secreting IL-8, IL-6, TNF-α and IL-1β via TLR2 or TLR6 mediated MyD88/NF-κB pathway. Transcription factor NF-κB was involved in activating the cytokine gene expression and the resultant inflammatory response was controlled by NF-κB inhibitor, Ro106-9920, which is known to down regulate pro-inflammatory cytokine secretion. Activation of the microglia by TLR agonists Pam3CSK4 and Pam2CSK4 induced immune tolerance against NS3. TLR ligand treatment significantly down regulated pro-inflammatory cytokine secretion in the microglia. IL-10 secretion was suggested as the possible mechanism by which TLR agonists induced immune tolerance. NS3 as such was not capable of self-inducing immune tolerance in microglia.In conclusion, NS3 protein was capable of activating

  18. Mutations Conferring Resistance to SCH6, a Novel Hepatitis C Virus NS3/4A Protease Inhibitor: Reduced DNA Replication Fitness and Partial Rescue by Second-Site Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Yi, MinKyung; Tong, Xiao; Skelton, Angela; Chase, Robert; Chen, Tong; Prongay, Andrew; Bogen, Stephane L.; Saksena, Anil K.; Njoroge, F. George; Veselenak, Ronald L.; Pyles, Richard B.; Bourne, Nigel; Malcolm, Bruce A.; Lemon, Stanley M. (SPRI)

    2008-06-30

    Drug resistance is a major issue in the development and use of specific antiviral therapies. Here we report the isolation and characterization of hepatitis C virus RNA replicons resistant to a novel ketoamide inhibitor of the NS3/4A protease, SCH6 (originally SCH446211). Resistant replicon RNAs were generated by G418 selection in the presence of SCH6 in a dose-dependent fashion, with the emergence of resistance reduced at higher SCH6 concentrations. Sequencing demonstrated remarkable consistency in the mutations conferring SCH6 resistance in genotype 1b replicons derived from two different strains of hepatitis C virus, A156T/A156V and R109K. R109K, a novel mutation not reported previously to cause resistance to NS3/4A inhibitors, conferred moderate resistance only to SCH6. Structural analysis indicated that this reflects unique interactions of SCH6 with P{prime}-side residues in the protease active site. In contrast, A156T conferred high level resistance to SCH6 and a related ketoamide, SCH503034, as well as BILN 2061 and VX-950. Unlike R109K, which had minimal impact on NS3/4A enzymatic function, A156T significantly reduced NS3/4A catalytic efficiency, polyprotein processing, and replicon fitness. However, three separate second-site mutations, P89L, Q86R, and G162R, were capable of partially reversing A156T-associated defects in polyprotein processing and/or replicon fitness, without significantly reducing resistance to the protease inhibitor.

  19. Comparative molecular dynamics simulation of Hepatitis C Virus NS3/4A protease (Genotypes 1b, 3a and 4b predicts conformational instability of the catalytic triad in drug resistant strains.

    Directory of Open Access Journals (Sweden)

    Mitchell Kramer

    Full Text Available The protease domain of the Hepatitis C Virus (HCV nonstructural protein 3 (NS3 has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan, and compared the results of the three genotypes (1b, 3a and 4a. The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139 indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a.

  20. Comparative Molecular Dynamics Simulation of Hepatitis C Virus NS3/4A Protease (Genotypes 1b, 3a and 4a) Predicts Conformational Instability of the Catalytic Triad in Drug Resistant Strains

    Science.gov (United States)

    Kramer, Mitchell; Halleran, Daniel; Rahman, Moazur; Iqbal, Mazhar; Anwar, Muhammad Ikram; Sabet, Salwa; Ackad, Edward; Yousef, Mohammad

    2014-01-01

    The protease domain of the Hepatitis C Virus (HCV) nonstructural protein 3 (NS3) has been targeted for inhibition by several direct-acting antiviral drugs. This approach has had marked success to treat infections caused by HCV genotype 1 predominant in the USA, Europe, and Japan. However, genotypes 3 and 4, dominant in developing countries, are resistant to a number of these drugs and little progress has been made towards understanding the structural basis of their drug resistivity. We have previously developed a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active sites of the NS3 proteases of HCV-1b and 4a in relation to their catalytic activity and drug susceptibility. Here, we improved the methodology, extended the analysis to include genotype 3a (predominant in South Asia including Pakistan), and compared the results of the three genotypes (1b, 3a and 4a). The 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-3a and 4a compared to that of HCV-1b NS3 protease. The divergence is gradual and genotype-dependent, with HCV-1b being the most stable, HCV-4a being the most unstable and HCV-3a representing an intermediate state. These results suggest that the structural dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug susceptibility seen in NS3 proteases of HCV-3a and 4a. PMID:25111232

  1. Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Paul M.; Wang, Alan Xiangdong; Good, Andrew C.; Sun, Li-Qiang; Combrink, Keith D.; Campbell, Jeffrey A.; Chen, Jie; Tu, Yong; Sin, Ny; Venables, Brian L.; Sit, Sing-Yuen; Chen, Yan; Cocuzza, Anthony; Bilder, Donna M.; D’Andrea, Stanley; Zheng, Barbara; Hewawasam, Piyasena; Ding, Min; Thuring, Jan; Li, Jianqing; Hernandez, Dennis; Yu, Fei; Falk, Paul; Zhai, Guangzhi; Sheaffer, Amy K.; Chen, Chaoqun; Lee, Min S.; Barry, Diana; Knipe, Jay O.; Li, Wenying; Han, Yong-Hae; Jenkins, Susan; Gesenberg, Christoph; Gao, Qi; Sinz, Michael W.; Santone, Kenneth S.; Zvyaga, Tatyana; Rajamani, Ramkumar; Klei, Herbert E.; Colonno, Richard J.; Grasela, Dennis M.; Hughes, Eric; Chien, Caly; Adams, Stephen; Levesque, Paul C.; Li, Danshi; Zhu, Jialong; Meanwell, Nicholas A.; McPhee, Fiona

    2014-03-13

    The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.

  2. Conditional Inducible Triple-Transgenic Mouse Model for Rapid Real-Time Detection of HCV NS3/4A Protease Activity

    Science.gov (United States)

    Yang, Jing; Zhao, Haiwei; Qiao, Qinghua; Han, Peijun; Xu, Zhikai; Yin, Wen

    2016-01-01

    Hepatitis C virus (HCV) frequently establishes persistent infections that can develop into severe liver disease. The HCV NS3/4A serine protease is not only essential for viral replication but also cleaves multiple cellular targets that block downstream interferon activation. Therefore, NS3/4A is an ideal target for the development of anti-HCV drugs and inhibitors. In the current study, we generated a novel NS3/4A/Lap/LC-1 triple-transgenic mouse model that can be used to evaluate and screen NS3/4A protease inhibitors. The NS3/4A protease could be conditionally inducibly expressed in the livers of the triple-transgenic mice using a dual Tet-On and Cre/loxP system. In this system, doxycycline (Dox) induction resulted in the secretion of Gaussia luciferase (Gluc) into the blood, and this secretion was dependent on NS3/4A protease-mediated cleavage at the 4B5A junction. Accordingly, NS3/4A protease activity could be quickly assessed in real time simply by monitoring Gluc activity in plasma. The results from such monitoring showed a 70-fold increase in Gluc activity levels in plasma samples collected from the triple-transgenic mice after Dox induction. Additionally, this enhanced plasma Gluc activity was well correlated with the induction of NS3/4A protease expression in the liver. Following oral administration of the commercial NS3/4A-specific inhibitors telaprevir and boceprevir, plasma Gluc activity was reduced by 50% and 65%, respectively. Overall, our novel transgenic mouse model offers a rapid real-time method to evaluate and screen potential NS3/4A protease inhibitors. PMID:26943641

  3. The Combination of Grazoprevir, a Hepatitis C Virus (HCV) NS3/4A Protease Inhibitor, and Elbasvir, an HCV NS5A Inhibitor, Demonstrates a High Genetic Barrier to Resistance in HCV Genotype 1a Replicons.

    Science.gov (United States)

    Lahser, Frederick C; Bystol, Karin; Curry, Stephanie; McMonagle, Patricia; Xia, Ellen; Ingravallo, Paul; Chase, Robert; Liu, Rong; Black, Todd; Hazuda, Daria; Howe, Anita Y M; Asante-Appiah, Ernest

    2016-05-01

    The selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90 values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for

  4. Hepacivirus NS3/4A Proteases Interfere with MAVS Signaling in both Their Cognate Animal Hosts and Humans: Implications for Zoonotic Transmission.

    Science.gov (United States)

    Anggakusuma; Brown, Richard J P; Banda, Dominic H; Todt, Daniel; Vieyres, Gabrielle; Steinmann, Eike; Pietschmann, Thomas

    2016-12-01

    Multiple novel members of the genus Hepacivirus have recently been discovered in diverse mammalian species. However, to date, their replication mechanisms and zoonotic potential have not been explored in detail. The NS3/4A serine protease of hepatitis C virus (HCV) is critical for cleavage of the viral polyprotein. It also cleaves the cellular innate immune adaptor MAVS, thus decreasing interferon (IFN) production and contributing to HCV persistence in the human host. To investigate the conservation of fundamental aspects of the hepaciviral life cycle, we explored if MAVS cleavage and suppression of innate immune signaling represent a common mechanism employed across different clades of the genus Hepacivirus to enhance viral replication. To estimate the zoonotic potential of these nonhuman hepaciviruses, we assessed if their NS3/4A proteases were capable of cleaving human MAVS. NS3/4A proteases of viruses infecting colobus monkeys, rodents, horses, and cows cleaved the MAVS proteins of their cognate hosts and interfered with the ability of MAVS to induce the IFN-β promoter. All NS3/4A proteases from nonhuman viruses readily cleaved human MAVS. Thus, NS3/4A-dependent cleavage of MAVS is a conserved replication strategy across multiple clades within the genus Hepacivirus Human MAVS is susceptible to cleavage by these nonhuman viral proteases, indicating that it does not pose a barrier for zoonotic transmission of these viruses to humans. Virus infection is recognized by cellular sensor proteins triggering innate immune signaling and antiviral defenses. While viruses have evolved strategies to thwart these antiviral programs in their cognate host species, these evasion mechanisms are often ineffective in a novel host, thus limiting viral transmission across species. HCV, the best-characterized member of the genus Hepacivirus within the family Flaviviridae, uses its NS3/4A protease to disrupt innate immune signaling by cleaving the cellular adaptor protein MAVS

  5. Hepatitis B and Hepatitis C Virus Replication Upregulates Serine Protease Inhibitor Kazal, Resulting in Cellular Resistance to Serine Protease-Dependent Apoptosis▿ †

    OpenAIRE

    Lamontagne, Jason; Pinkerton, Mark; Timothy M Block; Lu, Xuanyong

    2009-01-01

    Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kaz...

  6. A comparative analysis of the substrate permissiveness of HCV and GBV-B NS3/4A proteases reveals genetic evidence for an interaction with NS4B protein during genome replication.

    Science.gov (United States)

    Benureau, Yann; Warter, Lucile; Malcolm, Bruce A; Martin, Annette

    2010-10-25

    The hepatitis C virus (HCV) serine protease (NS3/4A) processes the NS3-NS5B segment of the viral polyprotein and also cleaves host proteins involved in interferon signaling, making it an important target for antiviral drug discovery and suggesting a wide breadth of substrate specificity. We compared substrate specificities of the HCV protease with that of the GB virus B (GBV-B), a distantly related nonhuman primate hepacivirus, by exchanging amino acid sequences at the NS4B/5A and/or NS5A/5B cleavage junctions between these viruses within the backbone of subgenomic replicons. This mutagenesis study demonstrated that the GBV-B protease had a broader substrate tolerance, a feature corroborated by structural homology modeling. However, despite efficient polyprotein processing, GBV-B RNAs containing HCV sequences at the C-terminus of NS4B had a pseudo-lethal replication phenotype. Replication-competent revertants contained second-site substitutions within the NS3 protease or NS4B N-terminus, providing genetic evidence for an essential interaction between NS3 and NS4B during genome replication. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Antiviral phytochemicals identification from Azadirachta indica leaves against HCV NS3 protease: an in silico approach.

    Science.gov (United States)

    Ashfaq, Usman Ali; Jalil, Asma; Ul Qamar, Muhammad Tahir

    2016-08-01

    Hepatitis C virus (HCV) is a major health problem across the world affecting the people of all age groups. It is the main cause of hepatitis and at chronic stage causes liver cirrhosis and hepatocellular carcinoma. Various therapeutics are made against HCV but still there is a need to find out potential therapeutics to combat the virus. The goal of this study is to identify the phytochemicals of Azadirachta indica leaves having antiviral activity against HCV NS3 protease through molecular docking and simulation approach. Results show that the compound 3-Deacetyl-3-cinnamoyl-azadirachtin possesses good binding properties with HCV NS3/4A protease. It can be concluded from this study that Deacetyl-3-cinnamoyl-azadirachtin may serve as a potential inhibitor against NS3/4A protease.

  8. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    Science.gov (United States)

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Host competence and helicase activity differences exhibited by West Nile viral variants expressing NS3-249 amino acid polymorphisms.

    Directory of Open Access Journals (Sweden)

    Stanley A Langevin

    Full Text Available A single helicase amino acid substitution, NS3-T249P, has been shown to increase viremia magnitude/mortality in American crows (AMCRs following West Nile virus (WNV infection. Lineage/intra-lineage geographic variants exhibit consistent amino acid polymorphisms at this locus; however, the majority of WNV isolates associated with recent outbreaks reported worldwide have a proline at the NS3-249 residue. In order to evaluate the impact of NS3-249 variants on avian and mammalian virulence, multiple amino acid substitutions were engineered into a WNV infectious cDNA (NY99; NS3-249P and the resulting viruses inoculated into AMCRs, house sparrows (HOSPs and mice. Differential viremia profiles were observed between mutant viruses in the two bird species; however, the NS3-249P virus produced the highest mean peak viral loads in both avian models. In contrast, this avian modulating virulence determinant had no effect on LD50 or the neurovirulence phenotype in the murine model. Recombinant helicase proteins demonstrated variable helicase and ATPase activities; however, differences did not correlate with avian or murine viremia phenotypes. These in vitro and in vivo data indicate that avian-specific phenotypes are modulated by critical viral-host protein interactions involving the NS3-249 residue that directly influence transmission efficiency and therefore the magnitude of WNV epizootics in nature.

  10. The Norovirus NS3 Protein Is a Dynamic Lipid- and Microtubule-Associated Protein Involved in Viral RNA Replication.

    Science.gov (United States)

    Cotton, Ben T; Hyde, Jennifer L; Sarvestani, Soroush T; Sosnovtsev, Stanislav V; Green, Kim Y; White, Peter A; Mackenzie, Jason M

    2017-02-01

    Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and ds

  11. Discovery of (1R,5S)-N-[3-Amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a Selective, Potent, Orally Bioavailable Hepatitis C Virus NS3 Protease Inhibitor: A Potential Therapeutic Agent for the Treatment of Hepatitis C Infection

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, Srikanth; Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond; Hendrata, Siska; Huang, Yuhua; Pan, Weidong; Parekh, Tejal; Pinto, Patrick; Popov, Veljko; Pike, Russel; Ruan, Sumei; Santhanam, Bama; Vibulbhan, Bancha; Wu, Wanli; Yang, Weiying; Kong, Jianshe; Liang, Xiang; Wong, Jesse; Liu, Rong; Butkiewicz, Nancy; Chase, Robert; Hart, Andrea; Agrawal, Sony; Ingravallo, Paul; Pichardo, John; Kong, Rong; Baroudy, Bahige; Malcolm, Bruce; Guo, Zhuyan; Prongay, Andrew; Madison, Vincent; Broske, Lisa; Cui, Xiaoming; Cheng, Kuo-Chi; Hsieh, Yunsheng; Brisson, Jean-Marc; Prelusky, Danial; Korfmacher, Walter; White, Ronald; Bogdanowich-Knipp, Susan; Pavlovsky, Anastasia; Bradley, Prudence; Saksena, Anil K.; Ganguly, Ashit; Piwinski, John; Girijavallabhan, Viyyoor; Njoroge, F. George (SPRI)

    2008-06-30

    Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-{alpha} or polyethylene glycol (PEG)-interferon-{alpha} alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.

  12. Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection.

    Science.gov (United States)

    Venkatraman, Srikanth; Bogen, Stéphane L; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond; Hendrata, Siska; Huang, Yuhua; Pan, Weidong; Parekh, Tejal; Pinto, Patrick; Popov, Veljko; Pike, Russel; Ruan, Sumei; Santhanam, Bama; Vibulbhan, Bancha; Wu, Wanli; Yang, Weiying; Kong, Jianshe; Liang, Xiang; Wong, Jesse; Liu, Rong; Butkiewicz, Nancy; Chase, Robert; Hart, Andrea; Agrawal, Sony; Ingravallo, Paul; Pichardo, John; Kong, Rong; Baroudy, Bahige; Malcolm, Bruce; Guo, Zhuyan; Prongay, Andrew; Madison, Vincent; Broske, Lisa; Cui, Xiaoming; Cheng, Kuo-Chi; Hsieh, Yunsheng; Brisson, Jean-Marc; Prelusky, Danial; Korfmacher, Walter; White, Ronald; Bogdanowich-Knipp, Susan; Pavlovsky, Anastasia; Bradley, Prudence; Saksena, Anil K; Ganguly, Ashit; Piwinski, John; Girijavallabhan, Viyyoor; Njoroge, F George

    2006-10-05

    Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.

  13. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.

    Science.gov (United States)

    Kim, Seong K; Shakya, Akhalesh K; Kim, Seongman; O'Callaghan, Dennis J

    2015-11-04

    The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV

  14. Engineered toxins "zymoxins" are activated by the HCV NS3 protease by removal of an inhibitory protein domain.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins". In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA and Ricin A chain (RTA, respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.

  15. Roles of serine and threonine residues of mumps virus P protein in viral transcription and replication.

    Science.gov (United States)

    Pickar, Adrian; Xu, Pei; Elson, Andrew; Li, Zhuo; Zengel, James; He, Biao

    2014-04-01

    Mumps virus (MuV), a paramyxovirus containing a negative-sense nonsegmented RNA genome, is a human pathogen that causes an acute infection with symptoms ranging from parotitis to mild meningitis and severe encephalitis. Vaccination against mumps virus has been effective in reducing mumps cases. However, recently large outbreaks have occurred in vaccinated populations. There is no anti-MuV drug. Understanding replication of MuV may lead to novel antiviral strategies. MuV RNA-dependent RNA polymerase minimally consists of the phosphoprotein (P) and the large protein (L). The P protein is heavily phosphorylated. To investigate the roles of serine (S) and threonine (T) residues of P in viral RNA transcription and replication, P was subjected to mass spectrometry and mutational analysis. P, a 392-amino acid residue protein, has 64 S and T residues. We have found that mutating nine S/T residues significantly reduced and mutating residue T at 101 to A (T101A) significantly enhanced activity in a minigenome system. A recombinant virus containing the P-T101A mutation (rMuV-P-T101A) was recovered and analyzed. rMuV-P-T101A grew to higher titers and had increased protein expression at early time points. Together, these results suggest that phosphorylation of MuV-P-T101 plays a negative role in viral RNA synthesis. This is the first time that the P protein of a paramyxovirus has been systematically analyzed for S/T residues that are critical for viral RNA synthesis. Mumps virus (MuV) is a reemerging paramyxovirus that caused large outbreaks in the United States, where vaccination coverage is very high. There is no anti-MuV drug. In this work, we have systematically analyzed roles of Ser/Thr residues of MuV P in viral RNA synthesis. We have identified S/T residues of P critical for MuV RNA synthesis and phosphorylation sites that are important for viral RNA synthesis. This work leads to a better understanding of viral RNA synthesis as well as to potential novel strategies to

  16. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for Bluetongue.

    Science.gov (United States)

    Tacken, Mirriam G J; Daus, Franz J; Feenstra, Femke; van Gennip, René G P; van Rijn, Piet A

    2015-10-13

    Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or reversion to virulence by mutations, reassortment with field virus, horizontal spread by vectors and vertical transmission. The immune response induced by BT DISA vaccines is rapidly induced, highly protective and serotype specific which is dependent on the immunodominant and serotype determining VP2 protein. The BT DISA vaccine platform provides the replacement of exclusively VP2 from different serotypes in order to safely formulate multivalent cocktail vaccines. The lack of NS3/NS3a directed antibodies by BT DISA vaccination enables differentiation of infected from vaccinated animals (DIVA principle). A highly conserved immunogenic site corresponding to the late domain was mapped in the N-terminal region of NS3. We here established an NS3-specific competitive ELISA (NS3 cELISA) as serological DIVA test accompanying BT DISA vaccines. To this end, NS3 protein missing putative transmembrane regions was produced in large amounts in bacteria and used as antigen in the NS3 cELISA which was investigated with a variety of sera. The NS3 cELISA displayed a high sensitivity and specificity similar to the commercially available VP7-specific cELISA. Results of previously performed vaccination-challenge trials with BT DISA vaccines clearly demonstrate the DIVA system based on the NS3 cELISA and BT vaccine free of NS3 protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants.

    Science.gov (United States)

    Roy, Amrita; Lim, Liangzhong; Srivastava, Shagun; Lu, Yimei; Song, Jianxing

    2017-01-01

    The recent Zika viral (ZIKV) epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100) of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI), only the extreme C-terminal residues (L86-K100) remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.

  18. Data center network performance evaluation in ns3

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José

    2015-01-01

    In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3 and subjec......In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3...... we scale the network from 16 to 512 switches. The performance measurements are supported by abstract metrics that that also give a cost and complexity indication in choosing the right topology for the required application....

  19. Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection.

    Science.gov (United States)

    Pathak, Nikhil; Lai, Mei-Ling; Chen, Wen-Yu; Hsieh, Betty-Wu; Yu, Guann-Yi; Yang, Jinn-Moon

    2017-12-28

    Viruses of the flaviviridae family are responsible for some of the major infectious viral diseases around the world and there is an urgent need for drug development for these diseases. Most of the virtual screening methods in flaviviral drug discovery suffer from a low hit rate, strain-specific efficacy differences, and susceptibility to resistance. It is because they often fail to capture the key pharmacological features of the target active site critical for protein function inhibition. So in our current work, for the flaviviral NS3 protease, we summarized the pharmacophore features at the protease active site as anchors (subsite-moiety interactions). For each of the four flaviviral NS3 proteases (i.e., HCV, DENV, WNV, and JEV), the anchors were obtained and summarized into 'Pharmacophore anchor (PA) models'. To capture the conserved pharmacophore anchors across these proteases, were merged the four PA models. We identified five consensus core anchors (CEH1, CH3, CH7, CV1, CV3) in all PA models, represented as the "Core pharmacophore anchor (CPA) model" and also identified specific anchors unique to the PA models. Our PA/CPA models complied with 89 known NS3 protease inhibitors. Furthermore, we proposed an integrated anchor-based screening method using the anchors from our models for discovering inhibitors. This method was applied on the DENV NS3 protease to screen FDA drugs discovering boceprevir, telaprevir and asunaprevir as promising anti-DENV candidates. Experimental testing against DV2-NGC virus by in-vitro plaque assays showed that asunaprevir and telaprevir inhibited viral replication with EC50 values of 10.4 μM & 24.5 μM respectively. The structure-anchor-activity relationships (SAAR) showed that our PA/CPA model anchors explained the observed in-vitro activities of the candidates. Also, we observed that the CEH1 anchor engagement was critical for the activities of telaprevir and asunaprevir while the extent of inhibitor anchor occupation guided

  20. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    Science.gov (United States)

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  1. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses.

    Science.gov (United States)

    Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M

    2012-10-01

    We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.

  2. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants.

    Directory of Open Access Journals (Sweden)

    Amrita Roy

    Full Text Available The recent Zika viral (ZIKV epidemic has been associated with severe neurological pathologies such as neonatal microcephaly and Guillain-Barre syndrome but unfortunately no vaccine or medication is effectively available yet. Zika NS2B-NS3pro is essential for the proteolysis of the viral polyprotein and thereby viral replication. Thus NS2B-NS3pro represents an attractive target for anti-Zika drug discovery/design. Here, we have characterized the solution conformations and catalytic parameters of both linked and unlinked Zika NS2B-NS3pro complexes and found that the unlinked complex manifested well-dispersed NMR spectra. Subsequently with selective isotope-labeling using NMR spectroscopy, we demonstrated that C-terminal residues (R73-K100 of NS2B is highly disordered without any stable tertiary and secondary structures in the Zika NS2B-NS3pro complex in the free state. Upon binding to the well-characterized serine protease inhibitor, bovine pancreatic trypsin inhibitor (BPTI, only the extreme C-terminal residues (L86-K100 remain disordered. Additionally, we have identified five flavonoids and one natural phenol rich in edible plants including fruits and vegetables, which inhibit Zika NS2B-NS3pro in a non-competitive mode, with Ki ranging from 770 nM for Myricetin to 34.02 μM for Apigenin. Molecular docking showed that they all bind to a pocket on the back of the active site and their structure-activity relationship was elucidated. Our study provides valuable insights into the solution conformation of Zika NS2B-NS3pro and further deciphers its susceptibility towards allosteric inhibition by natural products. As these natural product inhibitors fundamentally differ from the currently-known active site inhibitors in terms of both inhibitory mode and chemical scaffold, our finding might open a new avenue for development of better allosteric inhibitors to fight ZIKV infection.

  3. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging

    NARCIS (Netherlands)

    Pijlman, G.P.; Kondratieva, N.; Khromykh, A.A.

    2006-01-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A.

  4. Structure-based drug design of novel peptidomimetic cellulose derivatives as HCV-NS3 protease inhibitors.

    Science.gov (United States)

    Saleh, Noha A; Elshemey, Wael M

    2017-10-15

    Hepatitis C Virus (HCV) represents a global health threat not only due to the large number of reported worldwide HCV infections, but also due to the absence of a reliable vaccine for its prevention. HCV NS3 protease is one of the most important targets for drug design aiming at the deactivation of HCV. In the present work, molecular docking simulations are carried out for suggested novel NS3 protease inhibitors applied to the Egyptian genotype 4. These inhibitors are modifications of dimer cellulose by adding a hexa-peptide to the cellulose at one of the positions 2, 3, 6, 2', 3' or 6'. Results show that the inhibitor compound with the hexa-peptide at position 6 shows significantly higher simulation docking score with HCV NS3 protease active site. This is supported by low total energy value of docking system, formation of two H-bonds with HCV NS3 protease active site residues, high binding affinity and increased stability in the interaction system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient.

    Directory of Open Access Journals (Sweden)

    Paola J S Provazzi

    Full Text Available The hepatitis C virus (HCV is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.

  6. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  7. In Situ Hepatitis C NS3 Protein Detection Is Associated with High Grade Features in Hepatitis C-Associated B-Cell Non-Hodgkin Lymphomas.

    Directory of Open Access Journals (Sweden)

    Danielle Canioni

    Full Text Available Hepatitis C Virus (HCV infection is associated with the B-cell non-Hodgkin lymphomas (NHL, preferentially marginal zone lymphomas (MZL and diffuse large B-cell lymphomas (DLBCL. While chronic antigenic stimulation is a main determinant of lymphomagenesis in marginal zone lymphomas (MZL, a putative role of HCV infection of B-cells is supported by in vitro studies. We performed a pathological study within the "ANRS HC-13 LymphoC" observational study focusing on in situ expression of the oncogenic HCV non structural 3 (NS3 protein. Lympho-C study enrolled 116 HCV-positive patients with B-NHL of which 86 histological samples were collected for centralized review. Main histological subtypes were DLBCL (36% and MZL (34%. Almost half of DLBCL (12/26 were transformed from underlying small B-cell lymphomas. NS3 immunostaining was found positive in 17 of 37 tested samples (46%. There was a striking association between NS3 detection and presence of high grade lymphoma features: 12 out of 14 DLBCL were NS3+ compared to only 4 out of 14 MZL (p = 0.006. Moreover, 2 among the 4 NS3+ MZL were enriched in large cells. Remarkably, this study supports a new mechanism of transformation with a direct oncogenic role of HCV proteins in the occurrence of high-grade B lymphomas.

  8. Exploring resistance pathways for first-generation NS3/4A protease inhibitors boceprevir and telaprevir using Bayesian network learning.

    Science.gov (United States)

    Cuypers, Lize; Libin, Pieter; Schrooten, Yoeri; Theys, Kristof; Di Maio, Velia Chiara; Cento, Valeria; Lunar, Maja M; Nevens, Frederik; Poljak, Mario; Ceccherini-Silberstein, Francesca; Nowé, Ann; Van Laethem, Kristel; Vandamme, Anne-Mieke

    2017-09-01

    Resistance-associated variants (RAVs) have been shown to influence treatment response to direct-acting antivirals (DAAs) and first generation NS3/4A protease inhibitors (PIs) in particular. Interpretation of hepatitis C virus (HCV) genotypic drug resistance remains a challenge, especially in patients who previously failed DAA therapy and need to be retreated with a second DAA based regimen. Bayesian network (BN) learning on HCV sequence data from patients treated with DAAs could provide insight in resistance pathways against PIs for HCV subtypes 1a and 1b, in a similar way as applied before for HIV. The publicly available 'Rega-BN' tool chain was developed to study associative analyses for various pathogens. Our first analysis, comparing sequences from PI-naïve and PI-experienced patients, determined that NS3 substitutions R155K and V36M arise with PI-exposure in HCV1a infected patients, and were defined as major and minor resistance-associated variants respectively. NS3 variant 174H was newly identified as potentially related to PI resistance. In a second analysis, NS3 sequences from PI-naïve patients who cleared the virus during PI therapy and from PI-naïve patients who failed PI therapy were compared, showing that NS3 baseline variant 67S predisposes to treatment-failure and variant 72I to treatment success. This approach has the potential to better characterize the role of more RAVs, if sufficient therapy annotated sequence data becomes available in curated public databases. In addition, polymorphisms present in baseline sequences that predispose patients to therapy failure can be identified using this approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Computer aided screening of Accacia nilotica phytochemicals against HCV NS3/4a.

    Science.gov (United States)

    Khan, Mahim; Qasim, Muhammad; Ashfaq, Usman Ali; Idrees, Sobia; Shah, Masoud

    2013-01-01

    HCV has become a leading cause of liver cirrhosis and hepatocellular carcinoma and is a major health concern worldwide. To date, there is no vaccine available in the market to tackle this disease, therefore there is a strong need to develop antiviral compounds that can target all genotypes of HCV with the same efficiency. Medicinal plants have low cost and are less toxic therefore, extracts of medicinal plants can serve as important antiviral agents against HCV. This study was designed to screen phytochemicals of Accacia nilotica to find a potent drug candidate that can inhibit HCV infection effectively. Docking of NS3/4A protease and Flavonoids of Accacia nilotica revealed that most of the flavonoids bound deeply with the active site of NS3/4A protease. Compound 01 showed a high ranking on docking score. All other compounds also showed reliable docking scores and had interactions with the binding cavity of NS3/4A protease, suggesting them as a potent drug candidate to block HCV replication. To recognize binding interactions of Accacia nilotica phytochemicals with NS3/4A protease, molecular docking was performed to find potential inhibitor against NS3/4A protease of HCV. After post docking analysis, important interactions were found between active compounds and active site of NS3/4A protease. It can be concluded from the study that phytochemicals of Accacia nilotica may serve as a potential drug candidate with relatively simple structural changes against HCV NS3/4A protease.

  10. NS3 Resistance-Associated Variants (RAVs in Patients Infected with HCV Genotype 1a in Spain.

    Directory of Open Access Journals (Sweden)

    María Ángeles Jimenez-Sousa

    Full Text Available Resistance-associated variants have been related to treatment failure of hepatitis C virus (HCV therapy with direct-acting antiviral drugs. The aim of our study was to analyze the prevalence of clinically relevant resistance-associated variants within NS3 in patients infected with HCV genotype 1a (GT1a in Spain.We performed a cross-sectional study on 2568 patients from 115 hospitals throughout Spain (2014-2015. The viral NS3 protease gene was amplified by nested polymerase chain reaction and sequenced by Sanger sequencing using an ABI PRISM 377 DNA sequencer. Additionally, clade information for genotype 1a was obtained by using the software geno2pheno (http://hcv.geno2pheno.org/.In total, 875 out of 2568 samples were from human immunodeficiency virus (HIV/HCV-coinfected patients. Q80K was the main RAV found in our patients (11.1% and the rest of the resistance-associated variants had a lower frequency, including S122G (6.23%, T54S (3.47%, V55A (2.61%, and V55I (2.15%, which were among the most frequent after Q80K. Overall, 286 samples had the Q80K polymorphism (11.1% and 614 (23.9% were GT1a clade I. HIV/HCV-coinfected patients had a higher frequency of Q80K and GT1a clade I than HCV-monoinfected patients (12.9% vs. 9.6% [p = 0.012] and 28.5% vs. 21.4% [p<0.001], respectively. Both the prevalence of Q80K and GT1a clade I were not uniform throughout the country (p<0.001, which ranged from 7.3%-22.2% and 15.7%-42.5%, respectively. The frequency of the Q80K polymorphism was far higher in patients infected with GT1a clade I than in patients infected with GT1a clade II (41.5% vs. 1.6%; p<0.001.The prevalence of most resistance-associated variants in NS3 was low in patients infected with HCV GT1a in Spain, except for Q80K (11.1%, which was also notably higher in HIV/HCV-coinfected patients. The vast majority of Q80K polymorphisms were detected in GT1a clade I.

  11. Molecular dynamic simulation of complex NS2B-NS3 DENV2 ...

    African Journals Online (AJOL)

    In many researches, several models of peptides inhibitor were generated in complexes with the NS2B-NS3 DENV2 protease by performing molecular docking. The goal of this research was to study the interaction of ligands as inhibitors for protein (enzyme) in solvent explicit condition by performing molecular dynamics ...

  12. Molecular dynamic simulation of complex NS2B-NS3 DENV2 ...

    African Journals Online (AJOL)

    Nissia

    2013-07-10

    Jul 10, 2013 ... many researches, several models of peptides inhibitor were generated in complexes with the NS2B-NS3. DENV2 protease by performing molecular docking. The goal of this research was to study the interaction of ligands as inhibitors for protein (enzyme) in solvent explicit condition by performing molecular ...

  13. Post-transcriptional inhibition of hepatitis C virus replication through small interference RNA

    Directory of Open Access Journals (Sweden)

    Rehman Sidra

    2011-03-01

    Full Text Available Abstract Background Hepatitis C Virus (HCV infection is a major health problem throughout world that causes acute and chronic infection which resulted in liver fibrosis, hepatocellular carcinoma and death. The only therapy currently available for HCV infection is the combination of pegylated interferon alpha (PEG-IFN α and ribavirin. This therapy can effectively clear the virus infection in only 50% of infected individuals. Hence, there is a dire need to develop antiviral agents against HCV. Results This study was design to examine the ability of exogenous small interfering RNAs (siRNAs to block the replication of HCV in human liver cells. In the present study six 21-bp siRNAs were designed against different regions of HCV non-structural genes (NS2, NS3 serine protease/helicase, NS4Band NS5B RNA dependent RNA polymerase. siRNAs were labeled as NS2si241, NS3si-229, NS3si-858, NS4Bsi-166, NS5Bsi-241 and NS5Bsi-1064. We found that siRNAs against HCV NS2- NS5B efficiently inhibit HCV replication in Huh-7 cells. Our results demonstrated that siRNAs directed against HCV NS3 (NS3si-229 and NS3si-858 showed 58% and 88% reduction in viral titer respectively. Moreover, NS4Bsi-166 and NS5Bsi-1064 exhibited a dramatic reduction in HCV viral RNA and resulted in greater than 90% inhibition at a 20 μM concentration, while NS2si-241 showed 27% reduction in viral titer. No significant inhibition was detected in cells transfected with the negative control siRNA. Conclusion Our results suggest that siRNAs targeting against HCV non-structural genes (NS2-NS5B efficiently inhibit HCV replication and combination of these siRNAs of different targets and interferon will be better option to treat HCV infection throughout the world.

  14. [Construction of point mutation plasmids expressing HCV NS3/4A with different secondary structures at amino-terminal and their expressions in Huh 7 cells].

    Science.gov (United States)

    Wang, Xue-ping; Li, Fu-jun; Motoko, Nagano-fujii; Kikumi, Kitayama; Hotta, Hak

    2009-04-01

    To construct point mutation plasmids expressing HCV NS3/4A with different secondary structures at amino-terminal, and express the constructs in Huh 7 cells. Using pSG5/M-H05-5/4A as the template (A1-1) and primers designed according to the typing criteria, 4 single point mutation plasmids, namely pSG5/M-H05-5(A1-2)/4A(A1-2) (Y56F), pSG5/M-H05-5(B1-1)/4A(B1-1) (L80Q), pSG5/M-H05-5(B2-1)/4A(B2-1) (V51A), and pSG5/M-H05-5(B2-2)/4A(B2-2) (S61A), were constructed. With A1-2, B2-1, and B2-2 as the templates, the leucine to glutamine mutation at position 80 (L80Q) was induced to construct another 3 double point mutation plasmids pSG5/M-H05-5(B1-2)/4A(B1-2), pSG5/M-H05-5(A2-1)/4A(A2-1), and pSG5/M-H05-5(A2-2)/4A(A2-2), respectively. DNA sequencing was performed for confirmation of the mutations. Huh 7 cells were transfected with the constructs using FuGene 6 transfection reagents. Indirect immunofluorescence staining and Western blotting were used to detect the expression of the constructs. Indirect immunofluorescence assay revealed 4 subcellular localization patterns of NS3 protein, including dot-like staining, diffuse staining, doughnut-like staining, and rod-shape staining. Western blotting also demonstrated successful expression of the constructs and weak in cis and in trans NS3 serine protease activities of subtypes A2-1 and B2-1 in comparison with other subtypes. The point mutation plasmids expressing HCV NS3/4A with different secondary structures at amino-terminal are constructed successfully, which provides the basis for further study of different subtypes of HCV.

  15. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Hampton-Smith, Rachel J.; Aloia, Amanda L. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Eddes, James S. [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Simpson, Kaylene J. [Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hoffmann, Peter [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide (Australia); Beard, Michael R. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia)

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  16. Simulación de redes móviles ad hoc mediante ns-3

    OpenAIRE

    Yuste Delgado, Antonio

    2014-01-01

    Introducción a la herramienta de simulación de redes network simulator 3 (ns-3). Este simulador es una de los programas más utilizados en la actualidad para la simulación de redes de diversos tipos, desde las redes ad hoc a redes móviles. El profesor Antonio Yuste especialista en protocolos de enrutamiento en redes móviles ad hoc utiliza este software en sus simulaciones. El objetivo de la charla es una dar una visión general del simulador y explicarnos cómo simular redes ad hoc móviles. U...

  17. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach.

    Science.gov (United States)

    Qamar, Muhammad Tahirul; Ashfaq, Usman Ali; Tusleem, Kishver; Mumtaz, Arooj; Tariq, Quratulain; Goheer, Alina; Ahmed, Bilal

    2017-11-01

    Dengue infection is prevailing among the people not only from the developing countries but also from the developed countries due to its high morbidity rate around the globe. Hence, due to the unavailability of any suitable vaccine for rigorous dengue virus (DENV), the only mode of its treatment is prevention. The circumstances require an urgent development of efficient and practical treatment to deal with these serotypes. The severe effects and cost of synthetic vaccines simulated researchers to find anti-viral agents from medicinal plants. Flavonoids present in medicinal plants, holds anti-viral activity and can be used as vaccine against viruses. Therefore, present study was planned to find anti-viral potential of 2500 flavonoids inhibitors against the DENVNS2B/NS3 protease through computational screening which can hinder the viral replication within the host cell. By using molecular docking, it was revealed that flavonoids showed strong and stable bonding in the binding pocket of DENV NS2B/NS3 protease and had strong interactions with catalytic triad. Drug capability and anti-dengue potential of the flavonoids was also evaluated by using different bioinformatics tools. Some flavonoids effectively blocked the catalytic triad of DENV NS2B/NS3 protease and also passed through drug ability evaluation. It can be concluded from this study that these flavonoids could act as potential inhibitors to stop the replication of DENV and there is a need to study the action of these molecules in-vitro to confirm their action and other properties.

  18. Occupancy of RNA Polymerase II Phosphorylated on Serine 5 (RNAP S5P) and RNAP S2P on Varicella-Zoster Virus Genes 9, 51, and 66 Is Independent of Transcript Abundance and Polymerase Location within the Gene.

    Science.gov (United States)

    Henderson, Heather H; Timberlake, Kensey B; Austin, Zoe A; Badani, Hussain; Sanford, Bridget; Tremblay, Keriann; Baird, Nicholas L; Jones, Kenneth; Rovnak, Joel; Frietze, Seth; Gilden, Don; Cohrs, Randall J

    2015-11-11

    Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In

  19. Four Aromatic Sulfates with an Inhibitory Effect against HCV NS3 Helicase from the Crinoid Alloeocomatella polycladia

    Science.gov (United States)

    Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi

    2017-01-01

    Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1–4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1–4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 μM, respectively. PMID:28398249

  20. Serine-deficiency syndromes

    NARCIS (Netherlands)

    de Koning, Tom J; Klomp, Leo W J

    PURPOSE OF REVIEW: Serine-deficiency disorders comprise a new group of neurometabolic diseases and are caused by defects in the biosynthesis of the amino acid L-serine. In contrast to most neurometabolic disorders, serine-deficiency disorders are potentially treatable. Furthermore, the severe

  1. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-03-18

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of NPC.

  2. Development and evaluation of a MAb based competitive-ELISA using helicase domain of NS3 protein for sero-diagnosis of bovine viral diarrhea in cattle and buffaloes.

    Science.gov (United States)

    Bhatia, S; Sood, Richa; Mishra, N; Pattnaik, B; Pradhan, H K

    2008-08-01

    The aim of this study was to develop a competitive inhibition ELISA (CI-ELISA) for detection of antibodies to bovine viral diarrhea virus (BVDV) using the helicase domain of NS3 (non-structural) protein and monoclonal antibody (MAb) against it and to estimate its sensitivity and specificity using two commercial ELISA kits as independent references. The 45-kDa helicase domain of NS3 protein of BVDV was expressed in Escherichia coli and 18MAbs were developed against it. MAb-11G8 was selected for use in CI-ELISA on the basis of maximum inhibition (90%) obtained with BVDV type 1 infected calf serum. Based on the distribution of percent inhibition of known negative sera (n=166), a cut-off value was set at 40% inhibition. In testing 914 field serum samples of cattle (810) and buffaloes (104), the CI-ELISA showed a relative specificity of 95.75% and 97.38% and sensitivity of 96% and 94.43% with Ingenesa kit and Institut Pourquier kit, respectively. This study proved that the use of helicase domain of NS3 (45-kDa) is equally good as the whole NS3 protein (80-kDa) used in commercial kits for detection of BVDV antibodies in cattle and buffaloes.

  3. Research of G3-PLC net self-organization processes in the NS-3 modeling framework

    Science.gov (United States)

    Pospelova, Irina; Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Zykov, Dmitriy

    2017-11-01

    When modern infocommunication networks are designed, the combination of several data transfer channels is widely used. It is necessary for the purposes of improvement in quality and robustness of communication. Communication systems based on more than one data transfer channel are named heterogeneous communication systems. For the design of a heterogeneous network, the most optimal solution is the use of mesh technology. Mesh technology ensures message delivery to the destination under conditions of unpredictable interference environment situation in each of two channels. Therewith, one of the high-priority problems is the choice of a routing protocol when the mesh networks are designed. An important design stage for any computer network is modeling. Modeling allows us to design a few different variants of design solutions and also to compute all necessary functional specifications for each of these solutions. As a result, it allows us to reduce costs for the physical realization of a network. In this article the research of dynamic routing in the NS3 simulation modeling framework is presented. The article contains an evaluation of simulation modeling applicability in solving the problem of heterogeneous networks design. Results of modeling may be afterwards used for physical realization of this kind of networks.

  4. Implementation of quantum key distribution network simulation module in the network simulator NS-3

    Science.gov (United States)

    Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav

    2017-10-01

    As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

  5. Prevalence of Resistance-Associated Substitutions in HCV NS5A, NS5B, or NS3 and Outcomes of Treatment With Ledipasvir and Sofosbuvir.

    Science.gov (United States)

    Sarrazin, Christoph; Dvory-Sobol, Hadas; Svarovskaia, Evguenia S; Doehle, Brian P; Pang, Phillip S; Chuang, Shu-Min; Ma, Julie; Ding, Xiao; Afdhal, Nezam H; Kowdley, Kris V; Gane, Edward J; Lawitz, Eric; Brainard, Diana M; McHutchison, John G; Miller, Michael D; Mo, Hongmei

    2016-09-01

    We evaluated the effects of baseline hepatitis C virus (HCV) NS5A, NS5B, and NS3 resistance-associated substitutions (RASs) on response to the combination of ledipasvir and sofosbuvir, with or without ribavirin, in patients with HCV genotype 1 infection. We analyzed data from 2144 participants in phase 2 and 3 studies of patients with HCV genotype 1a or b infection who received the combination of ledipasvir (90 mg) and sofosbuvir (400 mg) (ledipasvir/sofosbuvir) once daily, with or without ribavirin twice daily. Population and/or deep sequence analyses of the HCV NS3, NS5A, and NS5B genes were performed on blood samples collected at baseline. Overall, 16.0% of patients had detectable baseline RASs in NS5A. Among patients with HCV genotype 1b infection, there was no significant effect of baseline RASs in NS5A on sustained viral response 12 weeks after the end of treatment (SVR12) with ledipasvir/sofosbuvir and only a small effect in patients with HCV genotype 1a infection. RASs in NS5A that increased the half-maximal effective concentration to ledipasvir by more than 100-fold reduced the rate of SVR12 in treatment-naive patients given ledipasvir/sofosbuvir for 8 weeks (P = .011), but not for 12 weeks. These same baseline NS5A RASs reduced the percentage of treatment-experienced patients who achieved an SVR12 to 12 weeks (but not 24 weeks) ledipasvir/sofosbuvir (P ledipasvir/sofosbuvir in combination with ribavirin for 12 weeks. Overall, 2.5% of patients had baseline NS5B nucleotide inhibitor RASs (L159F, N142T, S282G, or L320S) and all achieved an SVR12. Of patients previously treated with protease inhibitors, 53.7% had RASs in NS3 and 96.5% achieved an SVR12. Baseline RASs in NS5A have minimal effects on patient responses to ledipasvir/sofosbuvir therapy. When these RASs do have effects, they could be largely overcome by extending treatment duration or through treatment intensification. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights

  6. Immunogenicity of Multi-Epitope DNA and Peptide Vaccine Candidates Based on Core, E2, NS3 and NS5B HCV Epitopes in BALB/c Mice.

    Science.gov (United States)

    Pishraft Sabet, Leila; Taheri, Tahereh; Memarnejadian, Arash; Mokhtari Azad, Talat; Asgari, Fatemeh; Rahimnia, Ramin; Alavian, Seyed Moayed; Rafati, Sima; Samimi Rad, Katayoun

    2014-10-01

    Hypervariability of HCV proteins is an important obstacle to design an efficient vaccine for HCV infection. Multi-epitope vaccines containing conserved epitopes of the virus could be a promising approach for protection against HCV. Cellular and humoral immune responses against multi-epitope DNA and peptide vaccines were evaluated in BALB/c mice. In this experimental study, multi-epitope DNA- and peptide-based vaccines for HCV infection harboring immunodominant CD8+ T cell epitopes (HLA-A2 and H2-Dd) from Core (132-142), NS3 (1073-1081) and NS5B (2727-2735), a Th CD4+ epitope from NS3 (1248-1262) and a B-cell epitope from E2 (412-426) were designed. Multi-epitope DNA and peptide vaccines were tested in two regimens as heterologous DNA/peptide (group 1) and homologous peptide/peptide (group 2) prime/boost vaccine in BALB/c mice model. Electroporation was used for delivery of the DNA vaccine. Peptide vaccine was formulated with Montanide ISA 720 (M720) as adjuvant. Cytokine assay and antibody detection were performed to analyze the immune responses. Mice immunized with multi-epitope peptide formulated with M720 developed higher HCV-specific levels of total IgG, IgG1 and IgG2a than those immunized with multi-epitope DNA vaccine. IFN-γ levels in group 2 were significantly higher than group 1 (i.e. 3 weeks after the last immunization; 37.61 ± 2.39 vs. 14.43 ± 0.43, P epitope DNA and peptide-vaccines confirmed their specific immunogenicity in BALB/c mice. However, lower Th1 immune responses in mice immunized with DNA vaccine suggests further investigations to improve the immunogenicity of the multi-epitope DNA vaccine through immune enhancers.

  7. Single- and multiple-ascending-dose studies of the NS3 protease inhibitor asunaprevir in subjects with or without chronic hepatitis C.

    Science.gov (United States)

    Pasquinelli, Claudio; McPhee, Fiona; Eley, Timothy; Villegas, Criselda; Sandy, Katrina; Sheridan, Pamela; Persson, Anna; Huang, Shu-Pang; Hernandez, Dennis; Sheaffer, Amy K; Scola, Paul; Marbury, Thomas; Lawitz, Eric; Goldwater, Ronald; Rodriguez-Torres, Maribel; Demicco, Michael; Wright, David; Charlton, Michael; Kraft, Walter K; Lopez-Talavera, Juan-Carlos; Grasela, Dennis M

    2012-04-01

    Hepatitis C virus (HCV) protease inhibitors combined with pegylated alfa interferon-ribavirin have demonstrated improved efficacy compared with pegylated alfa interferon-ribavirin alone for the treatment of chronic hepatitis C. Asunaprevir (BMS-650032), a novel HCV NS3 protease inhibitor in clinical development, was evaluated for safety, antiviral activity, and resistance in four double-blind, placebo-controlled, sequential-panel, single- and multiple-ascending-dose (SAD and MAD) studies in healthy subjects or subjects with chronic HCV genotype 1 infection. In SAD studies, subjects (healthy or with chronic HCV infection) were randomized to receive asunaprevir in dose groups of 10 to 1,200 mg or a placebo. In MAD studies, healthy subjects were randomized to receive asunaprevir in dose groups of 10 to 600 mg twice daily or a placebo for 14 days; subjects with HCV infection received asunaprevir in dose groups of 200 to 600 mg twice daily, or a placebo, for 3 days. Across all four studies, headache and diarrhea were the most frequent adverse events in asunaprevir recipients. Asunaprevir at doses of 200 to 600 mg resulted in rapid HCV RNA decreases from the baseline; maximal mean changes in HCV RNA over time were 2.7 and 3.5 log(10) IU/ml in the SAD and MAD studies, respectively. No enrichment of signature asunaprevir-resistant viral variants was detected. In conclusion, the novel NS3 protease inhibitor asunaprevir, when administered at single or multiple doses of 200 to 600 mg twice daily, is generally well tolerated, achieving rapid and substantial decreases in HCV RNA levels in subjects chronically infected with genotype 1 HCV.

  8. Molecular screening of phytochemicals from Amelanchier Alnifolia against HCV NS3 protease/helicase using computational docking techniques.

    Science.gov (United States)

    Khan, Mahim; Masoud, Muhammad Shareef; Qasim, Muhammad; Khan, Muhammad Asaf; Zubair, Muhammad; Idrees, Sobia; Ashraf, Asma; Ashfaq, Usman Ali

    2013-01-01

    Hepatitis C is serious health concern worldwide caused by HCV. It causes liver cirrhosis and hepato-cellular carcinoma. Development of prevention solutions is under progress. Meanwhile, the treatment of the viral disease using compounds isolated from natural medicinal plants is promising. The traditional use of photo-chemicals from medicinal plants like Amelanchier alnifolia for viral treatment is hopeful. Therefore, it is of interest to screen for flavonoids from Amelanchier alnifolia against protein targets of HCV. Hence, we assessed the binding of flavonoids to HCV NS3/4A protease and helicase proteins. Results show that Quercitin 3- galactoside and 3-glucosideshowed good binding score with protease and helicase respectively. Their interaction/binding sites are documented in this report. This data provide insights for the consideration of flavonoids as potential inhibitors of HCV/NS3/4A protease and helicase.

  9. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for bluetongue

    NARCIS (Netherlands)

    Tacken, M.G.J.; Daus, F.J.; Feenstra, F.; Gennip, van H.G.P.; Rijn, van P.A.

    2015-01-01

    Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or

  10. The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat

    NARCIS (Netherlands)

    Schnettler, Esther; de Vries, Walter; Hemmes, Hans; Haasnoot, Joost; Kormelink, Richard; Goldbach, Rob; Berkhout, Ben

    2009-01-01

    The question of whether RNA interference (RNAi) acts as an antiviral mechanism in mammalian cells remains controversial. The antiviral interferon (IFN) response cannot easily be distinguished from a possible antiviral RNAi pathway owing to the involvement of double-stranded RNA ( dsRNA) as a common

  11. The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat

    NARCIS (Netherlands)

    Schnettler, E.; Vries, de W.; Hemmes, J.C.; Haasnoot, J.; Kormelink, R.J.M.; Goldbach, R.W.; Berkhout, B.

    2009-01-01

    The question of whether RNA interference (RNAi) acts as an antiviral mechanism in mammalian cells remains controversial. The antiviral interferon (IFN) response cannot easily be distinguished from a possible antiviral RNAi pathway owing to the involvement of double-stranded RNA (dsRNA) as a common

  12. Genetic diversity of NS3 protease from Brazilian HCV isolates and possible implications for therapy with direct-acting antiviral drugs

    Directory of Open Access Journals (Sweden)

    Allan Peres-da-Silva

    2012-03-01

    Full Text Available The hepatitis C virus (HCV NS3 protease has been one of the molecular targets of new therapeutic approaches. Its genomic sequence variability in Brazilian HCV isolates is poorly documented. To obtain more information on the magnitude of its genetic diversity, 114 Brazilian HCV samples were sequenced and analysed together with global reference sequences. Genetic distance (d analyses revealed that subtype 1b had a higher degree of heterogeneity (d = 0.098 than subtypes 1a (d = 0.060 and 3a (d = 0.062. Brazilian isolates of subtype 1b were distributed in the phylogenetic tree among sequences from other countries, whereas most subtype 1a and 3a sequences clustered into a single branch. Additional characterisation of subtype 1a in clades 1 and 2 revealed that all but two Brazilian subtype 1a sequences formed a distinct and strongly supported (approximate likelihood-ratio test = 93 group of sequences inside clade 1. Moreover, this subcluster inside clade 1 presented an unusual phenotypic characteristic in relation to the presence of resistance mutations for macrocyclic inhibitors. In particular, the mutation Q80K was found in the majority of clade 1 sequences, but not in the Brazilian isolates. These data demonstrate that Brazilian HCV subtypes display a distinct pattern of genetic diversity and reinforce the importance of sequence information in future therapeutic approaches.

  13. Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3.

    Science.gov (United States)

    Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D

    2017-10-01

    Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.

  14. Previous failure of interferon-based therapy does not alter the frequency of HCV NS3 protease or NS5B polymerase inhibitor resistance-associated variants: longitudinal analysis in HCV/HIV co-infected patients.

    Science.gov (United States)

    Sede, Mariano M; Laufer, Natalia L; Quarleri, Jorge

    2015-08-01

    Since 2011, treatment of chronic hepatitis C virus (HCV) includes direct-acting antivirals (DAAs) in addition to pegylated interferon-α (peg-IFN) and ribavirin (RBV). IFN-based treatment induces strong cytotoxic T-lymphocyte activity directed to the protease- and polymerase-derived epitopes. This enhanced immunological pressure could favour the emergence of viral epitope variants able to evade immune surveillance and, when resistance-associated variants (RAVs) are implicated, could also be co-selected as a hitchhiking effect. This study analysed the dynamics of the frequency of protease and polymerase inhibitor RAVs that could affect future HCV treatment in human immunodeficiency virus (HIV) co-infected patients on stable antiretroviral therapy with previous IFN-based treatment failure. HCV genotype 1a RNA was extracted from plasma samples of 18 patients prior to and during (24h and 4, 12, 24 and 48 weeks) therapy with peg-IFN+RBV. Next-generation sequencing was performed on HCV-RNA populations using NS3 and NS5B PCR-amplified coding regions. Two measures of genetic diversity were used to compare virus populations: average pairwise nucleotide diversity (π) and Tajima's D statistic. Several protease and polymerase RAVs were detected in all subjects at very low frequencies (<5%), and in most cases their presence was not constant during follow-up. Only samples from two patients for each region exhibited Q80R/K/L and A421V as highly predominant variants. No significant differences were observed among sampling times for either π or D values. In conclusion, previous therapy and failure of peg-IFN+RBV were not associated with an increase in DAA-targeting NS3 or NS5B RAVs that naturally exist in HIV co-infected subjects. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis...

  16. Disabled infectious single animal (DISA) vaccine against Bluetongue by deletion of viroporin-like NS3/NS3a expression is effective, safe, and enables differentiation of infected from vaccinated animals (DIVA)

    Science.gov (United States)

    The prototype virus species of the genus Orbivirus (family Reoviridae) is bluetongue virus (BTV) consisting of at least 27 serotypes. Bluetongue is a noncontagious haemorrhagic disease of ruminants spread by competent species of Culicoides biting midges in large parts of the world leading to huge ec...

  17. In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors

    Directory of Open Access Journals (Sweden)

    R. Balajee

    2016-01-01

    Full Text Available To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results.

  18. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers

    National Research Council Canada - National Science Library

    Laurent Brault; Christelle Gasser; Franz Bracher; Kilian Huber; Stefan Knapp; Jürg Schwaller

    2010-01-01

    The identification as cooperating targets of Proviral Integrations of Moloney virus in murine lymphomas suggested early on that PIM serine/threonine kinases play an important role in cancer biology...

  19. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  20. Aeginetia indica Decoction Inhibits Hepatitis C Virus Life Cycle.

    Science.gov (United States)

    Lin, Cheng-Wei; Lo, Chieh-Wen; Tsai, Chia-Ni; Pan, Ting-Chun; Chen, Pin-Yin; Yu, Ming-Jiun

    2018-01-09

    Chronic hepatitis C virus (HCV) infection is still a global epidemic despite the introduction of several highly effective direct-acting antivirals that are tagged with sky-high prices. The present study aimed to identify an herbal decoction that ameliorates HCV infection. Among six herbal decoctions tested, the Aeginetia indica decoction had the most profound effect on the HCV reporter activity in infected Huh7.5.1 liver cells in a dose- and time-dependent manner. The Aeginetia indica decoction exerted multiple inhibitory effects on the HCV life cycle. Pretreatment of the cells with the Aeginetia indica decoction prior to HCV infection reduced the HCV RNA and non-structural protein 3 (NS3) protein levels in the infected cells. The Aeginetia indica decoction reduced HCV internal ribosome entry site-mediated protein translation activity. It also reduced the HCV RNA level in the infected cells in association with reduced NS5A phosphorylation at serine 235, a predominant phosphorylation event indispensable to HCV replication. Thus, the Aeginetia indica decoction inhibits HCV infection, translation, and replication. Mechanistically, the Aeginetia indica decoction probably reduced HCV replication via reducing NS5A phosphorylation at serine 235.

  1. Rapid emergence of hepatitis C virus protease inhibitor resistance is expected

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Approximately 170 million people worldwide are infected with hepatitis C virus (HCV). Current therapy, consisting of pegylated interferon (PEG-IFN) and ribavirin (RBV), leads to sustained viral elimination in only about 45% of patients treated. Telaprevir (VX-950), a novel HCV NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients with chronic hepatitis C genotype 1 infection. However, some patients experience viral breakthrough during dosing, with drug resistant variants being 5%-20% of the virus population as early as day 2 after treatment initiation. Why viral variants appear such a short time after the start of dosing is unclear, especially since this has not been seen with monotherapy for either human immunodeficiency virus or hepatitis B virus. Here, using a viral dynamic model, we explain why such rapid emergence of drug resistant variants is expected when potent HCV protease inhibitors are used as monotherapy. Surprisingly, our model also shows that such rapid emergence need not be the case with some potent HCV NS5B polymerase inhibitors. Examining the case of telaprevir therapy in detail, we show the model fits observed dynamics of both wild-type and drug-resistant variants during treatment, and supports combination therapy of direct antiviral drugs with PEG-IFN and/or RBV for hepatitis C.

  2. An update on serine deficiency disorders

    NARCIS (Netherlands)

    van der Crabben, S. N.; Verhoeven-Duif, N. M.; Brilstra, E. H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T. J.

    Serine deficiency disorders are caused by a defect in one of the three synthesising enzymes of the L-serine biosynthesis pathway. Serine deficiency disorders give rise to a neurological phenotype with psychomotor retardation, microcephaly and seizures in newborns and children or progressive

  3. Multiple glycoproteins synthesized by the smallest RNA segment (S10) of bluetongue virus.

    Science.gov (United States)

    Wu, X; Chen, S Y; Iwata, H; Compans, R W; Roy, P

    1992-12-01

    The genome of bluetongue virus, an orbivirus, consists of 10 double-stranded RNAs, each encoding at least one polypeptide. The smallest RNA segment (S10) encodes two minor nonstructural proteins, NS3 and NS3A, the structures and functions of which are not understood. We have expressed these two proteins in mammalian cells by using the T7 cytoplasmic transient expression system. Using a deletion mutant (lacking the first AUG initiation codon), we have demonstrated that the second initiation codon is used to initiate the synthesis of NS3A protein and that the two initiation codons are responsible for the synthesis not only of NS3 and NS3A but also of high-molecular-weight forms of both proteins. These higher-molecular-weight forms (GNS3 and GNS3A) are glycosylated. We have also demonstrated that the carbohydrate chains of GNS3 and GNS3A could be further modified by heterogeneous extension to polylactosaminoglycan forms. The glycosylated and nonglycosylated forms are found in similar intracellular locations in the Golgi complex. In the presence of cycloheximide, NS3 and NS3A immunofluorescence staining was pronounced in the Golgi complex, confirming that NS3 and NS3A are competent for transport to the Golgi apparatus after synthesis. We conclude that S10 gene products are integral membrane glycoproteins.

  4. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs

    NARCIS (Netherlands)

    Hemmes, J.C.; Lakatos, L.; Goldbach, R.W.; Burgyan, J.; Prins, M.W.

    2007-01-01

    RNA silencing plays a key role in antiviral defense as well as in developmental processes in plants and insects. Negative strand RNA viruses such as the plant virus Rice hoja blanca tenuivirus (RHBV) replicate in plants and in their insect transmission vector. Like most plant-infecting viruses, RHBV

  5. L-serine in disease and development

    NARCIS (Netherlands)

    de Koning, Tom J.; Snell, Keith; Duran, Marinus; Berger, Ruud; Poll-The, Bwee-Tien; Surtees, Robert

    2003-01-01

    The amino acid L-serine, one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell

  6. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  7. Continuing education in neurometabolic disorders--serine deficiency disorders

    NARCIS (Netherlands)

    de Koning, T. J.; Poll-The, B. T.; Jaeken, J.

    1999-01-01

    Serine deficiency disorders comprise a new group of inborn errors of serine metabolism. Patients affected with these disorders present with major neurological symptoms including congenital microcephaly, seizures, psychomotor retardation or polyneuropathy. The diagnosis of serine deficiency is based

  8. Interaction of lipidated GBV-C/HGV NS3 (513-522) and (505-514) peptides with phospholipids monolayer. An AFM study.

    Science.gov (United States)

    Weroński, Konrad J; Diez-Pérez, Ismael; Busquets, M Antonia; López-Iglesias, Carmen; Girona, Victoria; Prat, Josefina

    2010-01-01

    Lipidation of a short hydrophilic peptide has the aim to make the molecule amphiphilic, which improves its insertion into lipid monolayer and at the same time, the tendency to self-assembly. These both properties of two positively charged, hepatitis G (GBV-C/HGV) related lipidated peptides--palmitic acid derivatives of the fragments: 505-514 and the 513-522 of the NS3 protein (respectively Palmitoyl-SAELSMQRRG and Palmitoyl-RGRTGRGRSG) were studied. First, using transmission electron microscope (TEM) and atomic force microscope (AFM) the tendency to self-assembly in water solution was examined. Both techniques confirmed the formation of fibrous aggregates of Palmitoyl-SAELSMQRRG in water solution. At the same conditions, any fibrous aggregates of Palmitoyl-RGRTGRGRSG were detected neither by TEM nor by AFM. Insertion of the lipidated peptides into phospholipids monolayer formed by zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or negatively charged 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) was investigated. Monolayers prepared by Langmuir-Blodgett method were visualized by AFM. The presence of lipidated peptides in phospholipid monolayers produced changes in the monolayers and different morphologies of the monolayers were obtained for each of the lipidated peptides.

  9. The core protein of classical Swine Fever virus is dispensable for virus propagation in vitro.

    Directory of Open Access Journals (Sweden)

    Christiane Riedel

    Full Text Available Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C. Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF and bovine viral diarrhea (BVD. Recent findings describe the ability of NS3 of classical swine fever virus (CSFV to compensate for disabling size increase of core protein (Riedel et al., 2010. NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008. These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447(Δc, virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447 and Vp447(Δc. Upon infection of the natural host, Vp447(Δc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general.

  10. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.

    Science.gov (United States)

    Elabbadi, N; Ancelin, M L; Vial, H J

    1997-01-01

    Erythrocytes infected with Plasmodium falciparum or Plasmodium knowlesi efficiently incorporated radioactive serine into phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho). Serine was also metabolized into ethanolamine (Etn) and phosphorylethanolamine (P-Etn) via direct serine decarboxylation; this is a major phenomenon since together these metabolites represent 60% of total radioactive water-soluble metabolites. They were identified by reverse-phase HPLC and two TLC-type analyses and confirmed by alkaline phosphatase treatment, which depleted the radioactive P-Etn peak completely with a concomitant increase in that of Etn. In the presence of 5 microM labelled serine, radioactivity appeared in Etn and P-Etn after a 25 min lag period, and isotopic equilibrium was reached at 40 and 95 min respectively. There was a similar lag period for PtdEtn formation, which accumulated steadily for at least 180 min. Incorporation of serine into phospholipids and water-soluble metabolites increased in the presence of up to 500 microM external serine. An apparent plateau was then reached for all metabolites except intracellular serine and Etn. Exogenous Etn (at 20 microM) induced a concomitant dramatic decrease in serine incorporation into P-Etn and all phospholipids, but not into Etn. Increasing exogenous serine to 100 microM decreased the incorporation of radioactive Etn into PtdEtn by only 30%, and the PtdCho level was not affected. 2-Hydroxyethylhydrazine significantly decreased serine incorporation into P-Etn and PtdEtn, whereas Etn was accumulated. No concomitant inhibition of PtdSer or PtdCho labelling from serine occurred, even when PtdEtn formation was decreased by 95%. This indicates that the PtdEtn pool derived from direct serine decarboxylation differed from that derived from PtdSer decarboxylation, and the latter appeared to be preferentially used for PtdCho biosynthesis. Hydroxylamine also inhibited phosphorylation of serine

  11. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  12. Genetically modified microorganisms having improved tolerance towards l-serine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine or L-serine derivatives using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes...... tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  13. Multiple glycoproteins synthesized by the smallest RNA segment (S10) of bluetongue virus.

    OpenAIRE

    Wu, X.; Chen, S.Y.; Iwata, H; Compans, R W; Roy, P

    1992-01-01

    The genome of bluetongue virus, an orbivirus, consists of 10 double-stranded RNAs, each encoding at least one polypeptide. The smallest RNA segment (S10) encodes two minor nonstructural proteins, NS3 and NS3A, the structures and functions of which are not understood. We have expressed these two proteins in mammalian cells by using the T7 cytoplasmic transient expression system. Using a deletion mutant (lacking the first AUG initiation codon), we have demonstrated that the second initiation co...

  14. Serine proteinase from Cucurbita ficifolia seeds.

    Science.gov (United States)

    Dryjański, M; Otlewski, J; Wilusz, T

    1990-01-01

    A new serine proteinase was isolated from Cucurbita ficifolia seeds by the purification procedure, which includes: extraction, salting out with ammonium sulphate, chromatography on CM-cellulose. Sephacryl S-300 gel filtration and h.p.l.c. on DEAE-2SW TSK column. The enzyme was homogeneous both in native and SDS PAGE. Three independent methods showed its molecular mass to be approximately 77 kDa. The enzyme was inhibited by specific serine proteinase organic inhibitors, and was active in the presence of inhibitors specific for other proteinase classes. Surprisingly, squash proteinase exhibited a very high and broad pH optimum with a maximum at 10.7. It hydrolysed many different peptide bonds in B-chain of insulin and was able to cleave four bonds in endogenous serine proteinase inhibitor (CMTI).

  15. VIRUSES

    Indian Academy of Sciences (India)

    and-mouth disease in livestock was an infectious particle smaller than any bacteria. This was the first clue to the nature of viruses, genetic entities that lie somewhere in the gray area between living and non-living states.

  16. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission.

    Science.gov (United States)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L; Medin, Carey L

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Inhibition of lung serine proteases in mice: a potentially new approach to control influenza infection

    Directory of Open Access Journals (Sweden)

    Błazejewska Paulina

    2011-01-01

    Full Text Available Abstract Background Host serine proteases are essential for the influenza virus life cycle because the viral haemagglutinin is synthesized as a precursor which requires proteolytic maturation. Therefore, we studied the activity and expression of serine proteases in lungs from mice infected with influenza and evaluated the effect of serine protease inhibitors on virus replication both in cell culture and in infected mice. Results Two different inbred mouse strains were investigated: DBA/2J as a highly susceptible and C57Bl/6J as a more resistant strain to influenza virus infection. The serine proteases from lung homogenates of mice exhibited pH optima of 10.00. Using the substrate Bz-Val-Gly-Arg-p-nitroanilide or in zymograms, the intensities of proteolysis increased in homogenates from both mouse strains with time post infection (p.i. with the mouse-adapted influenza virus A/Puerto Rico/8/34 (H1N1; PR8. In zymograms at day 7 p.i., proteolytic bands were stronger and numerous in lung homogenates from DBA/2J than C57Bl/6J mice. Real-time PCR results confirmed differential expression of several lung proteases before and after infecting mice with the H1N1 virus. The most strongly up-regulated proteases were Gzma, Tmprss4, Elane, Ctrl, Gzmc and Gzmb. Pretreatment of mouse and human lung cell lines with the serine protease inhibitors AEBSF or pAB or a cocktail of both prior to infection with the H1N1 or the A/Seal/Massachusetts/1/80 (H7N7; SC35M virus resulted in a decrease in virus replication. Pretreatment of C57Bl/6J mice with either AEBSF or a cocktail of AEBSF and pAB prior to infection with the H1N1 virus significantly reduced weight loss and led to a faster recovery of treated versus untreated mice while pAB alone exerted a very poor effect. After infection with the H7N7 virus, the most significant reduction of weight loss was obtained upon pretreatment with either the protease inhibitor cocktail or pAB. Furthermore, pretreatment of C57BL/6J

  18. 21 CFR 582.5701 - Serine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Serine. 582.5701 Section 582.5701 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  19. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  20. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  1. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  2. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane

    DEFF Research Database (Denmark)

    Balan, Livia; Foltyn, Veronika N; Zehl, Martin

    2009-01-01

    D-serine is a physiological coagonist of N-methyl D-aspartate receptors (NMDARs) that plays a major role in several NMDAR-dependent events. In this study we investigate mechanisms regulating D-serine production by the enzyme serine racemase (SR). We now report that NMDAR activation promotes trans...

  3. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution...... was implemented using a state of the art robotics platform. The strain was grown under inhibiting concentrations of serine in minimal media and was periodically transferred to new media during mid log phase. After achieving a desired increase in growth rate, the concentration was serine was gradually increased...

  4. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  5. A novel anti-plant viral protein from coelomic fluid of the earthworm Eisenia foetida: purification, characterization and its identification as a serine protease.

    Science.gov (United States)

    Ueda, Mitsuhiro; Noda, Kanako; Nakazawa, Masami; Miyatake, Kazutaka; Ohki, Satoshi; Sakaguchi, Minoru; Inouye, Kuniyo

    2008-12-01

    A novel protein showing strong antiviral activities against cucumber mosaic virus (CMV) and tomato mosaic virus (TMV) was purified from the coelomic fluid of the earthworm Eisenia foetida. The protein was characterized as a cold-adapted serine protease. Its molecular weight was estimated to be 27,000 by SDS-PAGE. The enzyme was most active at pH 9.5 and 40-50 degrees C. The protease activity at 4 degrees C was 60% of that obtained at the optimal temperature. The activity was suppressed by various serine protease inhibitors. Partial N-terminal amino acid sequence of the enzyme showed homology with serine proteases of earthworms, E. foetida and Lumbricus rubellus previously studied. Our results suggest that the enzyme can be applicable as a potential antiviral factor against CMV, TMV, and other plant viruses.

  6. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies.

    Science.gov (United States)

    Amberg, S M; Nestorowicz, A; McCourt, D W; Rice, C M

    1994-06-01

    Several of the cleavages required to generate the mature nonstructural proteins from the flaviviral polyprotein are known to be mediated by a complex consisting of NS2B and a serine proteinase domain located in the N-terminal one-third of NS3. These cleavages typically occur after two basic residues followed by a short side chain residue. Cleavage at a similar dibasic site in the structural region is believed to produce the C terminus of the virion capsid protein. To study this cleavage, we developed a cell-free trans cleavage assay for yellow fever virus (YF)-specific proteolytic activity by using a substrate spanning the C protein dibasic site. Cleavage at the predicted site was observed when the substrate was incubated with detergent-solubilized lysates from YF-infected BHK cells. NS2B and the NS3 proteinase domain were the only YF-specific proteins required for this cleavage. Cell fractionation studies demonstrated that the YF-specific proteolytic activity was membrane associated and that activity could be detected only after detergent solubilization. Previous cell-free studies led to a hypothesis that processing in the C-prM region involves (i) translation of C followed by translocation and core glycosylation of prM by using an internal signal sequence, (ii) signalase cleavage to produce a membrane-anchored form of the C protein (anchC) and the N terminus of prM, and (iii) NS2B-3-mediated cleavage at the anchC dibasic site to produce the C terminus of the virion C protein. However, the results of in vivo transient-expression studies do not support this temporal cleavage order. Rather, expression of a YF polyprotein extending from C through the N-terminal one-third of NS3 revealed that C-prM processing, but not translocation, was dependent on an active NS2B-3 proteinase. This suggests that signalase-mediated cleavage in the lumen of the endoplasmic reticulum may be dependent on prior cleavage at the anchC dibasic site. Possible pathways for processing in the C

  7. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation.

    Science.gov (United States)

    Kesavan, Kamala P; Isaacson, Christina C; Ashendel, Curtis L; Geahlen, Robert L; Harrison, Marietta L

    2002-04-26

    The lymphocyte-specific protein-tyrosine kinase Lck plays a critical role in T cell activation. In response to T cell antigen receptor binding Lck undergoes phosphorylation on serine residues that include serines 59 and 194. Serine 59 is phosphorylated by ERK mitogen-activated protein kinase. Recently, we showed that in mitotic T cells Lck becomes hyper-phosphorylated on serine residues. In this report, using one-dimensional phosphopeptide mapping analysis, we identify serine 59 as a site of in vivo mitotic phosphorylation in Lck. The mitotic phosphorylation of serine 59 did not require either the catalytic activity or functional SH2 or SH3 domains of Lck. In addition, the presence of ZAP-70 also was dispensable for the phosphorylation of serine 59. Although previous studies demonstrated that serine 59 is a substrate for the ERK MAPK pathway, inhibitors of this pathway did not block the mitotic phosphorylation of serine 59. These results identify serine 59 as a site of mitotic phosphorylation in Lck and suggest that a pathway distinct from that induced by antigen receptor signaling is responsible for its phosphorylation. Thus, the phosphorylation of serine 59 is the result of two distinct signaling pathways, differentially activated in response to the physiological state of the T cell.

  8. Real-World Experiences with the Combination Treatment of Ledipasvir plus Sofosbuvir for 12 Weeks in HCV Genotype 1-Infected Japanese Patients: Achievement of a Sustained Virological Response in Previous Users of Peginterferon plus Ribavirin with HCV NS3/4A Inhibitors.

    Science.gov (United States)

    Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Suzuki, Eiichiro; Arai, Makoto; Ooka, Yoshihiko; Ogasawara, Sadahisa; Chiba, Tetsuhiro; Saito, Tomoko; Haga, Yuki; Takahashi, Koji; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Tawada, Akinobu; Maruyama, Hitoshi; Imazeki, Fumio; Kato, Naoya; Yokosuka, Osamu

    2017-04-25

    The aim of this study was to characterize the treatment response and serious adverse events of ledipasvir plus sofosbuvir therapies in Japanese patients infected with hepatitis C virus (HCV) genotype 1 (GT1). This retrospective study analyzed 240 Japanese HCV GT1 patients treated for 12 weeks with 90 mg of ledipasvir plus 400 mg of sofosbuvir daily. Sustained virological response at 12 weeks post-treatment (SVR12) was achieved in 236 of 240 (98.3%) patients. Among treatment-naïve patients, SVR12 was achieved in 136 of 138 (98.6%) patients, and among treatment-experienced patients, SVR12 was achieved in 100 of 102 (98.0%) patients. In patients previously treated with peginterferon plus ribavirin with various HCV NS3/4A inhibitors, 100% SVR rates (25/25) were achieved. Two relapsers had HCV NS5A resistance-associated variants (RAVs), but no HCV NS5B-S282 was observed after they relapsed. We experienced two patients with cardiac events during treatment. In conclusion, combination of ledipasvir plus sofosbuvir for 12 weeks is a potential therapy for HCV GT1 patients. Caution is needed for HCV NS5A RAVs, which were selected by HCV NS5A inhibitors and cardiac adverse events.

  9. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    Science.gov (United States)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  10. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2.

    Science.gov (United States)

    Shirato, Kazuya; Kawase, Miyuki; Matsuyama, Shutoku

    2013-12-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host proteases for virus entry into lung cells. In the current study, Vero cells constitutively expressing type II transmembrane serine protease (Vero-TMPRSS2 cells) showed larger syncytia at 18 h after infection with MERS-CoV than after infection with other coronaviruses. Furthermore, the susceptibility of Vero-TMPRSS2 cells to MERS-CoV was 100-fold higher than that of non-TMPRSS2-expressing parental Vero cells. The serine protease inhibitor camostat, which inhibits TMPRSS2 activity, completely blocked syncytium formation but only partially blocked virus entry into Vero-TMPRSS2 cells. Importantly, the coronavirus is thought to enter cells via two distinct pathways, one mediated by TMPRSS2 at the cell surface and the other mediated by cathepsin L in the endosome. Simultaneous treatment with inhibitors of cathepsin L and TMPRSS2 completely blocked virus entry into Vero-TMPRSS2 cells, indicating that MERS-CoV employs both the cell surface and the endosomal pathway to infect Vero-TMPRSS2 cells. In contrast, a single camostat treatment suppressed MERS-CoV entry into human bronchial submucosal gland-derived Calu-3 cells by 10-fold and virus growth by 270-fold, although treatment with both camostat and (23,25)-trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester, a cathepsin inhibitor, or treatment with leupeptin, an inhibitor of cysteine, serine, and threonine peptidases, was no more efficacious than treatment with camostat alone. Further, these inhibitors were not efficacious against MERS-CoV infection of MRC-5 and WI-38 cells, which were derived from lung, but these characters differed from those of mature pneumocytes. These results suggest that a single treatment with camostat is sufficient to block MERS-CoV entry into a well-differentiated lung-derived cell line.

  11. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity......Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type...

  12. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India

    Directory of Open Access Journals (Sweden)

    Raghavendra Sumanth Pudupakam

    2017-03-01

    Full Text Available Aim: Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3 gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV. This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2 to elucidate its genetic relationship to global BTV isolates. Materials and Methods: The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. Results: The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Conclusion: Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.

  13. Structural and functional diversities in lepidopteran serine proteases

    National Research Council Canada - National Science Library

    Srinivasan, Ajay; Giri, Ashok P; Gupta, Vidya S

    2006-01-01

    .... Though the evolutionary significance of mutations that lead to structural diversity in serine proteases has been well characterized, detailing the resultant functional diversity has continually posed...

  14. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available BACKGROUND: D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life. METHODOLOGY/PRINCIPAL FINDINGS: Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure. CONCLUSIONS/SIGNIFICANCE: This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  15. Highly potent fibrinolytic serine protease from Streptomyces.

    Science.gov (United States)

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-05

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain

    DEFF Research Database (Denmark)

    Oh, E S; Couchman, J R; Woods, A

    1997-01-01

    Protein kinase C (PKC) is involved in cell-matrix and cell-cell adhesion, and the cytoplasmic domain of syndecan-2 contains two serines (residues 197 and 198) which lie in a consensus sequence for phosphorylation by PKC. Other serine and threonine residues are present but not in a consensus seque...

  17. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    Purpose: To improve the production of L-serine from sucrose directly by wild type Corynebacterium glutamicum SYPS-062. Methods: The culture medium for the production of L-serine was optimized using a statistical experimental design. Sucrose, ammonium sulfate ((NH4)2SO4) and biotin were the key factors, based on ...

  18. D-serine : The right or wrong isoform?

    NARCIS (Netherlands)

    Fuchs, Sabine A; Berger, Ruud; de Koning, Tom J

    2011-01-01

    Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to

  19. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery.

    Science.gov (United States)

    Shin, Woo-Jin; Seong, Baik Lin

    2017-11-01

    The outbreak of an influenza pandemic as well as the continued circulation of seasonal influenza highlights the need for effective antiviral therapies. The emergence of drug-resistant strains further necessitates the development of novel antivirals that target the host factors crucial for viral replication. Area covered: This review summarizes the current understanding of the structural and functional properties of type II transmembrane serine proteases (TTSPs) as a proteolytic activator of influenza virus infection and discusses their potential as antiviral targets. It also explores the experimental evidence accumulated for inhibitors of TTSPs as novel, broad-spectrum antivirals against various influenza virus subtypes. The review also provides an overview of the properties of small molecules, proteins, and peptides that efficiently inhibit the proteolytic activation of the influenza virus. Expert opinion: TTSPs activate a wide range of influenza virus subtypes including avian influenza viruses, both in vitro and in vivo, via proteolytic cleavage of influenza hemagglutinin (HA) into infection-competent fusogenic conformation. Other viruses such as SARS-, MERS-coronaviruses and human metapneumoviruses may use the same host cell proteases for activation, implying that TTSP inhibition might be a novel strategy for developing broad-spectrum antiviral agents for respiratory viral infections.

  20. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  1. STRUKTUR PROTEOMIK VIRUS DENGUE DAN MANFAATNYA SEBAGAI TARGET ANTIVIRUS

    Directory of Open Access Journals (Sweden)

    Novia Rachmayanti

    2014-09-01

    Full Text Available AbstrakVirus dengue (DENV telah menyebabkan sekitar 50 juta kasus infeksi demam berdarah setiap tahunnya, akan tetapi hingga saat ini belum terdapat vaksin maupun antivirus yang mampu mencegah atau mengobati penyakit tersebut. Selama pengembangan vaksin dan antivirus, diperoleh berbagai informasi tentang struktur protein DENV yang dapat dimanfaatkan sebagai target obat. Makalah membahas tentang struktur proteomik pada DENV, yaitu glikoprotein pada envelope, NS3 protease, NS3 helikase, NS5 metiltransferase, dan NS5 RNA-dependent RNA polimerase.AbstractDengue virus (DENV has caused over 50 millions infection every year. However, to date neither vaccine nor medicine could be used to prevent or cure the illness. During researches in finding the vaccine or antiviral for DENV, information on DENV protein structure has been obtained which is potentially used as drug target. This paper disscuss DENV proteomic structure that consist of envelope glicoprotein, NS3 protease, NS3 helicase, NS5 methyl-transferase, and NS5 RNA-dependent RNA polymerase.

  2. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  3. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants

    DEFF Research Database (Denmark)

    Serre, Stéphanie B N; Jensen, Sanne B; Ghanem, Lubna

    2016-01-01

    Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge on determinants of PI resistance for the highly prevalent genotypes 2-6 remains limited. Using Huh7.5 cell...

  4. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping

    2013-01-01

    mutations allowed generation of 1a(H77) semi-FL virus. Concentration-response profiles revealed the higher efficacy of the NS3 protease inhibitor asunaprevir (BMS-650032) and the NS5A inhibitor daclatasvir (BMS-790052) against 1a(TN and H77) than 3a(S52) viruses. Asunaprevir had intermediate efficacy...... to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations......With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi...

  5. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    Science.gov (United States)

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k-mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k-mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  6. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    Science.gov (United States)

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  7. Recombinant capripoxviruses expressing proteins of bluetongue virus: evaluation of immune responses and protection in small ruminants.

    Science.gov (United States)

    Perrin, Aurélie; Albina, Emmanuel; Bréard, Emmanuel; Sailleau, Corinne; Promé, Sylvie; Grillet, Colette; Kwiatek, Olivier; Russo, Pierre; Thiéry, Richard; Zientara, Stephan; Cêtre-Sossah, Catherine

    2007-09-17

    The development of recombinant capripoxviruses for protective immunization of ruminants against bluetongue virus (BTV) infection is described. Sheep (n=11) and goats (n=4) were immunized with BTV recombinant capripoxviruses (BTV-Cpox) individually expressing four different genes encoding two capsid proteins (VP2 and VP7) and two non-structural proteins (NS1, NS3) of BTV serotype 2 (BTV-2). Seroconversion was observed against NS3, VP7 and VP2 in both species and a lymphoproliferation specific to BTV antigens was also demonstrated in goats. Finally, partial protection of sheep challenged 3 weeks after BTV-Cpox administration with a virulent strain of BTV-2, was observed.

  8. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    , which sulfonated the essential serine residue in the active site and resulted in the complete loss of its activity. However, the enzyme was resistant to EDTA. The high activity of TC4 in the presence of EDTA was advantageous.

  9. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor-protease...... discovered that the mupain-1 scaffold is highly versatile, based on which mupain-1 is potentially able to be retargeted to other serine proteases in the trypsin-like clan. With the scaffold of mupain-1, we rationally designed three inhibitors with high affinity and specificity for another serine protease...

  10. Effect of disease state on ionization during bioanalysis of MK-7009, a selective HCV NS3/NS4 protease inhibitor, in human plasma and human Tween-treated urine by high-performance liquid chromatography with tandem mass spectrometric detection.

    Science.gov (United States)

    Anderson, M D G; Breidinger, S A; Woolf, E J

    2009-04-15

    HPLC-MS/MS methods for the determination of a Hepatitis C NS3/NS4 protease inhibitor (MK-7009) in human plasma and Tween-treated urine were developed and validated over the concentration range 1-1000 ng/mL and 0.2-100 microg/mL respectively. A stable isotope labeled internal standard (ISTD), D(4)-MK-7009, was employed. Analytes were chromatographed by reversed phase HPLC and quantified by an MS/MS system. Electrospray ionization in the positive mode was employed. Multiple reaction monitoring of the precursor to product ion pairs m/z 758.6-->637.4 MK-7009 and m/z 762.5-->637.4 ISTD was used for quantitation. Analyte and internal standard were extracted from 250 microL of plasma using an automated 96-well liquid-liquid extraction. Plasma pH adjustment prior to extraction minimized ionization suppression in plasma samples from patients with Hepatitis C. The urine method involved direct dilution in the 96-well format of 0.020 mL Tween-treated urine. These methods have supported several clinical studies. Incurred plasma sample reanalysis demonstrated adequate assay reproducibility and ruggedness.

  11. Oral Combination Vaccine, Comprising Bifidobacterium Displaying Hepatitis C Virus Nonstructural Protein 3 and Interferon-α, Induces Strong Cellular Immunity Specific to Nonstructural Protein 3 in Mice.

    Science.gov (United States)

    Kitagawa, Koichi; Omoto, Chika; Oda, Tsugumi; Araki, Ayame; Saito, Hiroki; Shigemura, Katsumi; Katayama, Takane; Hotta, Hak; Shirakawa, Toshiro

    2017-04-01

    We previously generated an oral hepatitis C virus (HCV) vaccine using Bifidobacterium displaying the HCV nonstructural protein 3 (NS3) polypeptide. NS3-specific cellular immunity is important for viral clearance and recovery from HCV infection. In this study, we enhanced the cellular immune responses induced by our oral HCV vaccine, Bifidobacterium longum 2165 (B. longum 2165), by combining interferon-α (IFN-α) as an adjuvant with the vaccine in a mouse experimental model. IFN-α is a widely used cytokine meeting the standard of care (SOC) for HCV infection and plays various immunoregulatory roles. We treated C57BL/6N mice with B. longum 2165 every other day and/or IFN-α twice a week for a month and then analyzed the immune responses using spleen cells. We determined the induction of NS3-specific cellular immunity by cytokine quantification, intracellular cytokine staining, and a cytotoxic T lymphocyte (CTL) assay targeting EL4 tumor cells expressing NS3/4A protein (EL4-NS3/4A). We also treated mice bearing EL4-NS3/4A tumor with the combination therapy in vivo. The results confirmed that the combination therapy of B. longum 2165 and IFN-α induced significantly higher IFN-γ secretion, higher population of CD4(+)T and CD8(+)T cells secreting IFN-γ, and higher CTL activity against EL4-NS3/4A cells compared with the control groups of phosphate-buffered saline, B. longum 2165 alone, and IFN-α alone (p < 0.05). We also confirmed that the combination therapy strongly enhanced tumor growth inhibitory effects in vivo with no serious adverse effects (p < 0.05). These results suggest that the combination of B. longum 2165 and IFN-α could induce a strong cellular immunity specific to NS3 protein as a combination therapy augmenting the current SOC immunotherapy against chronic HCV infection.

  12. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  13. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  14. Hepatitis C virus genotypes in Tirana, Albania.

    Science.gov (United States)

    Haldeda, Migena; Baume, Julien; Tamalet, Catherine; Bizhga, Melpomeni; Colson, Philippe

    2014-01-01

    Hepatitis C virus (HCV) infection is a worldwide concern. Knowledge of the HCV genotype is clinically important because it predicts the rate of response to therapy and guides the treatment duration. Moreover, it allows molecular epidemiology to be performed. To our knowledge, the prevalence of HCV genotypes has been assessed only once in Albania, using a line probe genotyping assay. We determined HCV genotypes by population sequencing of HCV-infected patients in Tirana, Albania. HCV genotype and sequence analyses were performed for serum samples collected from January 2011 through May 2012 from 61 HCV-seropositive patients using population sequencing of the NS3 protease gene and alternatively the NS5b gene and the 5' untranslated region (UTR). HCV RNA was retrieved from the blood samples of 50 patients. The HCV NS3 protease gene was sequenced for 28 patients and NS5b and/or 5'UTR fragments were sequenced for an additional 22 patients. The predominant genotype was 1b in 25 patients (50%), followed by genotypes 2c, 4a, 3a, and 1a in 18%, 14%, 8%, and 6% of cases, respectively. Best matches for these HCV RNAs in GenBank were obtained in different countries worldwide. One NS3 protease naturally harbored an amino acid conferring minor drug resistance to newly available HCV protease inhibitors. In conclusion, HCV-1b was predominant in the present Albanian population, as in southeastern Europe. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis.

    Science.gov (United States)

    Wolosker, Herman; Balu, Darrick T; Coyle, Joseph T

    2016-11-01

    d-Serine modulates N-methyl d-aspartate receptors (NMDARs) and regulates synaptic plasticity, neurodevelopment, and learning and memory. However, the primary site of d-serine synthesis and release remains controversial, with some arguing that it is a gliotransmitter and others defining it as a neuronal cotransmitter. Results from several laboratories using different strategies now show that the biosynthetic enzyme of d-serine, serine racemase (SR), is expressed almost entirely by neurons, with few astrocytes appearing to contain d-serine. Cell-selective suppression of SR expression demonstrates that neuronal, rather than astrocytic d-serine, modulates synaptic plasticity. Here, we propose an alternative conceptualization whereby astrocytes affect d-serine levels by synthesizing l-serine that shuttles to neurons to fuel the neuronal synthesis of d-serine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... kinetics and thermodynamics by surface plasmon resonance and isothermal titration calorimetry. We found that upain-1 changes both main-chain conformation and side-chain orientations as it binds to the protease, in particular its Trp3 residue and the surrounding backbone. The properties of upain-1...

  17. Heterogeneity of the serine synthetic pathway in Entamoeba species.

    Science.gov (United States)

    Chiba, Yoko; Makiuchi, Takashi; Jeelani, Ghulam; Nozaki, Tomoyoshi

    2016-06-01

    Phosphoserine phosphatase (PSP) catalyzes the third step of the phosphorylated serine biosynthetic pathway, and occurred multiple times in evolution, while enzymes catalyzing the first and second steps in the pathway have single respective origins. In the present study, we examined the existence of PSP among genus Entamoeba including a human enteric parasite, Entamoeba histolytica. E. histolytica as well as majority of Entamoeba species have the first and second enzymes, but lacks PSP. In contrast, a reptilian enteric parasite, Entamoeba invadens possesses canonical PSP. Thus, there are variations in the existence of the serine biosynthetic ability among Entamoeba species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  19. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  20. Stable human lymphoblastoid cell lines constitutively expressing hepatitis C virus proteins.

    Science.gov (United States)

    Wölk, Benno; Gremion, Christel; Ivashkina, Natalia; Engler, Olivier B; Grabscheid, Benno; Bieck, Elke; Blum, Hubert E; Cerny, Andreas; Moradpour, Darius

    2005-06-01

    The cellular immune response plays a central role in virus clearance and pathogenesis of liver disease in hepatitis C. The study of hepatitis C virus (HCV)-specific immune responses is limited by currently available cell-culture systems. Here, the establishment and characterization of stable human HLA-A2-positive B-lymphoblastoid x T hybrid cell lines constitutively expressing either the NS3-4A complex or the entire HCV polyprotein are reported. These cell lines, termed T1/NS3-4A and T1/HCVcon, respectively, were maintained in continuous culture for more than 1 year with stable characteristics. HCV structural and non-structural proteins were processed accurately, indicating that the cellular and viral proteolytic machineries are functional in these cell lines. Viral proteins were found in the cytoplasm in dot-like structures when expressed in the context of the HCV polyprotein or in a perinuclear fringe when the NS3-4A complex was expressed alone. T1/NS3-4A and T1/HCVcon cells were lysed efficiently by HCV-specific cytotoxic T lymphocytes from patients with hepatitis C and from human HLA-A2.1 transgenic mice immunized with a liposomal HCV vaccine, indicating that viral proteins are processed endogenously and presented efficiently via the major histocompatibility complex class I pathway. In conclusion, these cell lines represent a unique tool to study the cellular immune response, as well as to evaluate novel vaccine and immunotherapeutic strategies against HCV.

  1. Influence of cellular trafficking pathway on bluetongue virus infection in ovine cells.

    Science.gov (United States)

    Bhattacharya, Bishnupriya; Celma, Cristina C; Roy, Polly

    2015-05-13

    Bluetongue virus (BTV), a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB) resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.

  2. Distribution pattern of histone H3 phosphorylation at serine 10 ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... in chromosome distribution of H3S10ph when mitosis and meiosis were compared. ... [Paula C. M. P., Techio V. H., Sobrinho F. S. and Freitas A. S. 2013 Distribution pattern of histone H3 phosphorylation at serine 10 during mitosis and meiosis in ... RDWebster], since current knowledge about specific roles ...

  3. Structural diversity in serine derived homochiral metal organic ...

    Indian Academy of Sciences (India)

    2014-09-01

    Sep 1, 2014 ... Abstract. Two new Zn(II) and Cd(II) based homochiral metal–organic frameworks (MOFs) [SerCdOAc and. Zn(Ser)2] have been synthesized using pyridyl functionalized amino acid, viz., serine, as an organic linker. The. SerCdOAc structure is three dimensional, while that of the Zn(Ser)2 is two dimensional.

  4. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    central intermediate for a number of cellular reactions, which makes its ... This strain was further improved by reducing folate supply. [12], which might be the first report on direct fermentative production of L-serine from sugar. Recently, recombinant ... initial pH 6.8, aeration rate 0.8 vvm, and agitation speed 180 rpm.

  5. Fatal cerebral edema associated with serine deficiency in CSF

    NARCIS (Netherlands)

    Keularts, Irene M. L. W.; Leroy, Piet L. J. M.; Rubio-Gozalbo, Estela M.; Spaapen, Leo J. M.; Weber, Biene; Dorland, Bert; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2010-01-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and

  6. Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii

    NARCIS (Netherlands)

    Prins, R.A.; Akkermans-Kruyswijk, J.; Franklin-Klein, W.; Lankhorst, A.; Golde, L.M.G. van

    1974-01-01

    1. 1. Megasphaera elsdenii appears to be a very suitable organism for studies on the metabolism of plasmalogens in anaerobic bacteria due to its extremely high content of both serine and ethanolamine plasmalogen. 2. 2. Growth of this organism in the presence of either 32Pi or [2-3H]glycerol

  7. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...... was significantly delayed. However, in subsequent passages efficient spread of infection and high HCV RNA titers were obtained. Infectivity titers were approximately 10-fold lower than for the 2a control virus. Sequence analysis of recovered 4a/2a recombinants from 3 serial passages and subsequent reverse genetic...

  8. Antinociceptive Effect of Rat D-Serine Racemase Inhibitors, L-Serine-O-Sulfate, and L-Erythro-3-Hydroxyaspartate in an Arthritic Pain Model

    Directory of Open Access Journals (Sweden)

    Claudio Laurido

    2012-01-01

    Full Text Available N-methyl-D-aspartic acid receptor (NMDAr activation requires the presence of D-serine, synthesized from L-serine by a pyridoxal 5′-phosphate-dependent serine racemase (SR. D-serine levels can be lowered by inhibiting the racemization of L-serine. L-serine-O-sulfate (LSOS and L-erythro-3-hydroxyaspartate (LEHA, among others, have proven to be effective in reducing the D-serine levels in culture cells. It is tempting then to try these compounds in their effectiveness to decrease nociceptive levels in rat arthritic pain. We measured the C-reflex paradigm and wind-up potentiation in the presence of intrathecally injected LSOS (100 μg/10 μL and LEHA (100 μg/10 μL in normal and monoarthritic rats. Both compounds decreased the wind-up activity in normal and monoarthritic rats. Accordingly, all the antinociceptive effects were abolished when 300 μg/10 μL of D-serine were injected intrathecally. Since no in vivo results have been presented so far, this constitutes the first evidence that SR inhibitions lower the D-serine levels, thus decreasing the NMDAr activity and the consequent development and maintenance of chronic pain.

  9. Ischemic acute kidney injury perturbs homeostasis of serine enantiomers in the body fluid in mice: early detection of renal dysfunction using the ratio of serine enantiomers.

    Directory of Open Access Journals (Sweden)

    Jumpei Sasabe

    Full Text Available The imbalance of blood and urine amino acids in renal failure has been studied mostly without chiral separation. Although a few reports have shown the presence of D-serine, an enantiomer of L-serine, in the serum of patients with severe renal failure, it has remained uncertain how serine enantiomers are deranged in the development of renal failure. In the present study, we have monitored serine enantiomers using a two-dimensional HPLC system in the serum and urine of mice after renal ischemia-reperfusion injury (IRI, known as a mouse model of acute kidney injury. In the serum, the level of D-serine gradually increased after renal IRI in parallel with that of creatinine, whereas the L-serine level decreased sharply in the early phase after IRI. The increase of D-serine was suppressed in part by genetic inactivation of a D-serine-degrading enzyme, D-amino acid oxidase (DAO, but not by disruption of its synthetic enzyme, serine racemase, in mice. Renal DAO activity was detected exclusively in proximal tubules, and IRI reduced the number of DAO-positive tubules. On the other hand, in the urine, D-serine was excreted at a rate nearly triple that of L-serine in mice with sham operations, indicating that little D-serine was reabsorbed while most L-serine was reabsorbed in physiological conditions. IRI significantly reduced the ratio of urinary D-/L-serine from 2.82 ± 0.18 to 1.10 ± 0.26 in the early phase and kept the ratio lower than 0.5 thereafter. The urinary D-/L-serine ratio can detect renal ischemia earlier than kidney injury molecule-1 (KIM-1 or neutrophil gelatinase-associated lipocalin (NGAL in the urine, and more sensitively than creatinine, cystatin C, or the ratio of D-/L-serine in the serum. Our findings provide a novel understanding of the imbalance of amino acids in renal failure and offer a potential new biomarker for an early detection of acute kidney injury.

  10. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms.

    Science.gov (United States)

    Dietrich, Elizabeth A; Langevin, Stanley A; Huang, Claire Y-H; Maharaj, Payal D; Delorey, Mark J; Bowen, Richard A; Kinney, Richard M; Brault, Aaron C

    2016-08-01

    West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells.

  11. Purification and crystallization of Kokobera virus helicase

    Energy Technology Data Exchange (ETDEWEB)

    De Colibus, Luigi; Speroni, Silvia [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Coutard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Forrester, Naomi L.; Gould, Ernest [Centre for Ecology and Hydrology (formerly Institute of Virology), Mansfield Road, Oxford OX1 3SR (United Kingdom); Canard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Mattevi, Andrea, E-mail: mattevi@ipvgen.unipv.it [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2007-03-01

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which is the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.

  12. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    OpenAIRE

    Sanatan, Prashant T; Purushottam R. Lomate; Giri, Ashok P; Hivrale, Vandana K.

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects? gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in v...

  13. The Importance of Serine Phosphorylation of Ameloblastin on Enamel Formation

    Science.gov (United States)

    Ma, P.; Yan, W.; Tian, Y.; He, J.; Brookes, S.J.; Wang, X.

    2016-01-01

    FAM20C is a newly identified kinase on the secretory pathway responsible for the phosphorylation of serine residues in the Ser-x-Glu/pSer motifs in several enamel matrix proteins. Fam20C-knockout mice showed severe enamel defects very similar to those in the ameloblastin (Ambn)–knockout mice, implying that phosphoserines may have a critical role in AMBN function. To test this hypothesis, we generated amelogenin (Amel) promoter-driven Ambn-transgenic mice, in which Ser48, Ser226, and Ser227 were replaced by aspartic acid (designated as D-Tg) or alanines (designated as A-Tg). The negative charge of aspartic acid is believed to be able to mimic the phosphorylation state of serine, while alanine is a commonly used residue to substitute serine due to their similar structure. Using Western immunoblotting and quantitative polymerase chain reaction, the authors identified transgenic lines expressing transgenes somewhat higher (Tg+) or much higher (Tg++) than endogenous Ambn. The lower incisors collected from 7-d-old and 7-wk-old mice were analyzed by histology, scanning electron microscopy, immunohistochemistry, and Western immunoblotting to examine the morphology and microstructure changes in enamel, as well as the expression pattern of enamel matrix proteins. The A-Tg+ and A-Tg++ mice displayed severe enamel defects in spite of the expression level of transgenes, while the D-Tg+ and D-Tg++ mice showed minor to mild enamel defects, indicating that the D-Tg transgenes disturbed enamel formation less than the A-Tg transgenes did. Our results suggest that the phosphorylation state of serines is likely an essential component for the integrity of AMBN function. PMID:27470066

  14. Preferred stereoselective brain uptake of d-serine--a modulator of glutamatergic neurotransmission.

    Science.gov (United States)

    Bauer, Dagmar; Hamacher, Kurt; Bröer, Stefan; Pauleit, Dirk; Palm, Christoph; Zilles, Karl; Coenen, Heinz H; Langen, Karl-Josef

    2005-11-01

    Although it has long been presumed that d-amino acids are uncommon in mammalians, substantial amounts of free d-serine have been detected in the mammalian brain. d-Serine has been demonstrated to be an important modulator of glutamatergic neurotransmission and acts as an agonist at the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors. The blood-to-brain transfer of d-serine is thought to be extremely low, and it is assumed that d-serine is generated by isomerization of l-serine in the brain. Stimulated by the observation of a preferred transport of the d-isomer of proline at the blood-brain barrier, we investigated the differential uptake of [3H]-d-serine and [3H]-l-serine in the rat brain 1 h after intravenous injection using quantitative autoradiography. Surprisingly, brain uptake of [3H]-d-serine was significantly higher than that of [3H]-l-serine, indicating a preferred transport of the d-enantiomer of serine at the blood-brain barrier. This finding indicates that exogenous d-serine may have a direct influence on glutamatergic neurotransmission and associated diseases.

  15. Serine racemase: a key player in apoptosis and necrosis

    Directory of Open Access Journals (Sweden)

    Nadia eCanu

    2014-04-01

    Full Text Available A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer’s disease (AD. N-Methyl-D-aspartate receptors (NMDARs support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis and necrosis representing the two extremes of a continuum of cell death processes both in vitro and in vivo. Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from in vitro neuronal cultures -- with special emphasis on cerebellar granule neurons (CGNs -- and in vivo models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.

  16. Structural Basis for Catalytic Activation of a Serine Recombinase

    Energy Technology Data Exchange (ETDEWEB)

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A. (Glasgow); (UC)

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  17. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  18. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  19. Anti-Hepatitis C Virus Activity of a Crude Extract from Longan (Dimocarpus longan Lour.) Leaves.

    Science.gov (United States)

    Apriyanto, Dadan Ramadhan; Aoki, Chie; Hartati, Sri; Hanafi, Muhammad; Kardono, Leonardus Broto Sugeng; Arsianti, Ade; Louisa, Melva; Sudiro, Tjahjani Mirawati; Dewi, Beti Ernawati; Sudarmono, Pratiwi; Soebandrio, Amin; Hotta, Hak

    2016-05-20

    Infection with hepatitis C virus (HCV) results in hepatitis C, a disease characterized by chronic infection, cirrhosis, and hepatocellular carcinoma. Currently, the standard therapy is a combination of pegylated interferon-α plus ribavirin with NS3 protease inhibitors. Addition of NS3 protease inhibitors to the standard therapy improves response rates; however, use of NS3 protease inhibitors is also associated with significant adverse effects and an increase in the overall cost of treatment. Therefore, there is a need to develop safe and inexpensive drugs for the treatment of HCV infections. In this study, we examined the antiviral activity of a crude extract from Dimocarpus longan leaves against HCV (genotype 2a strain JFH1). The D. longan crude extract (DL-CE) exhibited anti-HCV activity with a 50% effective concentration (EC50) of 19.4 μg/ml without cytotoxicity. A time-of-addition study demonstrated that DL-CE has anti-HCV activity at both the entry and post-entry steps and markedly blocks the viral entry step through direct virucidal activity with marginal inhibition of virion assembly. Co-treatment of DL-CE with cyclosporine A, an immunosuppressant or telaprevir, an NS3 protease inhibitor, resulted in additive and synergistic antiviral effects, respectively. Our findings suggest that DL-CE may be useful as an add-on therapy candidate for treating HCV infections.

  20. Androgen Receptor Phosphorylation at Serine 308 and Serine 791 Predicts Enhanced Survival in Castrate Resistant Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Mark A. Underwood

    2013-08-01

    Full Text Available We previously reported that AR phosphorylation at serine 213 was associated with poor outcome and may contribute to prostate cancer development and progression. This study investigates if specific AR phosphorylation sites have differing roles in the progression of hormone naïve prostate cancer (HNPC to castrate resistant disease (CRPC. A panel of phosphospecific antibodies were employed to study AR phosphorylation in 84 matched HNPC and CRPC tumours. Immunohistochemistry measured Androgen receptor expression phosphorylated at serine residues 94 (pAR94, 308 (pAR308, 650(pAR650 and 791 (pAR791. No correlations with clinical parameters were observed for pAR94 or pAR650 in HNPC or CRPC tumours. In contrast to our previous observation with serine 213, high pAR308 is significantly associated with a longer time to disease specific death (p = 0.011 and high pAR791 expression significantly associated with a longer time to disease recurrence (p = 0.018 in HNPC tumours and longer time to death from disease recurrence (p = 0.040 in CRPC tumours. This observation in CRPC tumours was attenuated in high apoptotic tumours (p = 0.022 and low proliferating tumours (p = 0.004. These results demonstrate that understanding the differing roles of AR phosphorylation is necessary before this can be exploited as a target for castrate resistant prostate cancer.

  1. UTILIZATION OF AN ACTIVE SERINE 101 -] CYSTEINE MUTANT TO DEMONSTRATE THE PROXIMITY OF THE CATALYTIC SERINE 101 AND HISTIDINE 237 RESIDUES IN THIOESTERASE-II

    NARCIS (Netherlands)

    WITKOWSKI, A; NAGGERT, J; WITKOWSKA, HE; RANDHAWA, ZI; SMITH, S

    1992-01-01

    Thioesterase II is a 29-kDa monomer which, in certain specialized tissues, acts as a chain terminator in fatty acid synthesis by hydrolyzing medium-chain fatty acids from the fatty acid synthase. As with serine proteases, hydrolysis appears to involve acylation of the active site serine residue

  2. The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Lee, Na-Young; Kim, Yunha; Ryu, Hoon; Kang, Young-Sook

    2017-01-29

    The alteration of d-serine levels is associated with the pathogenesis of sporadic ALS and mutant SOD1 (G93A) animal model of ALS. However, the exact mechanism of d-serine transport is not known in ALS. To better understand the distribution of d-serine in ALS, we determined the activity and the expression of serine transporter in a motor neuronal cell line model of ALS (NSC-34/hSOD1G93A cells). The uptake of [3H]d-serine was significantly lower in NSC-34/hSOD1G93A cells than in control NSC-34 and NSC-34/hSOD1wt cells. In contrast, the uptake of [3H]l-serine, precursor of d-serine, was markedly increased in NSC-34/hSOD1G93A cells compared to control NSC-34 and NSC-34/hSOD1wt cells. Both [3H]d-serine and [3H]l-serine uptake were saturable in these cells. The estimated Michaelis-Menten constant, Km, for d-serine uptakes was higher in NSC-34/hSOD1G93A cells than in NSC-34/hSOD1wt cells while the Km for l-serine uptake was 2 fold lower in NSC-34/hSOD1G93A cells than in control cells. [3H]d-serine and [3H]l-serine uptakes took place in a Na+-dependent manner, and both uptakes were significantly inhibited by system ASC (alanine-serine-cysteine) substrates. As a result of small interfering RNA experiments, we found that ASCT2 (SLC1A5) and ASCT1 (SLC1A4) are involved in [3H]d-serine and [3H]l-serine uptake in NSC-34/hSOD1G93A cells, respectively. The level of SLC1A4 mRNA was significantly increased in NSC-34/hSOD1G93A compared to NSC-34 and NSC-34/hSOD1wt cells. In contrast, the level of SLC7A10 mRNA was relatively lower in NSC-34/hSOD1G93A cells than the control cells. Together, these data suggest that the pathological alteration of d- and l-serine uptakes in ALS is driven by the affinity change of d-and l-serine uptake system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes

    Directory of Open Access Journals (Sweden)

    Tripathi Lokesh P

    2008-11-01

    Full Text Available Abstract Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc. were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes

  4. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors.

    Science.gov (United States)

    Ribeiro, Cristina; Togawa, Roberto C; Neshich, Izabella A P; Mazoni, Ivan; Mancini, Adauto L; Minardi, Raquel C de Melo; da Silveira, Carlos H; Jardine, José G; Santoro, Marcelo M; Neshich, Goran

    2010-10-20

    Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes. The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the "miscellaneous-virus" subfamily

  5. Analysis of binding properties and specificity through identification of the interface forming residues (IFR for serine proteases in silico docked to different inhibitors

    Directory of Open Access Journals (Sweden)

    da Silveira Carlos H

    2010-10-01

    interfaces between the "miscellaneous-virus" subfamily and the three inhibitors. This prompts speculation about how important this difference in IFR characteristics is for maintaining virulence of those organisms. Our work here provides a unique tool for both structure/function relationship analysis as well as a compilation of indicators detailing how the specificity of various serine proteases may have been achieved and/or could be altered. It also indicates that the interface forming residues which also determine specificity of serine protease subfamily can not be presented in a canonical way but rather as a matrix of alternative populations of amino acids occupying variety of IFR positions.

  6. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    Science.gov (United States)

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. Conclusion Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource. PMID:24229392

  7. An analysis of five serine transfer ribonucleic acids from Drosophila.

    Science.gov (United States)

    White, B N; Dunn, R; Gillam, I; Tener, G M; Armstrong, D J; Skoog, F; Frihart, C R; Leonard, N J

    1975-01-25

    Crude tRNA from adult Drosophila melanogaster was fractionated on bensoylated-diethylaminoethyl cellulose columns. The eluate was assayed for both amino acid acceptance and cytokinin activity. Most of the cytokinin activity was associated with a peak of serine acceptance. The five major serine tRNAs were purified by chromatography on benzoylated-dietyhlaminoethyl cellulose and reversed phase chromatography-5 columns. The major species, tRNA7-Ser was isolated from this tRNA and was shown to be N-6-(delta-2-isopentenyl)adenosine (i-6A) on the basis of ultraviolet and mass spectral data. The nucleoside somposition of all five serine tRNAs was determined directly and by the 3-H derivative method. They all contain pseudouridine, ribothymidine, 1-methyladenosine, 5-methylcytosine, N-2-dimethylguanosine, 5, 6-hydrouridine, and 3-methylcytosine, while two contain an unidentified nucleoside, and one containes 1-methylguanosine. These techniques also confirmed the presence of i-6A in tRNA7-Ser as well as showing its presence in tRNA6-Ser and tRNA4-Ser. These three tRNA-Ser species exhibit marked changes in elution from reversed phase chromatography-5 columns as a function of temperature and this may be related to their minor base composition. The tRNAs-Ser were bound to ribosomes in response to the following triplets: tRNA2-Ser, AGU, AGC; tRNA4-Ser, UCG; tRNA5-Ser, AGU, AGC; tRNA7-Ser, UCG.

  8. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production.

    Science.gov (United States)

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy; Kümmerer, Beate Mareike

    2015-05-01

    The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of

  9. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  10. Phosphorylation Drives a Dynamic Switch in Serine/Arginine-Rich Proteins

    OpenAIRE

    Xiang, ShengQi; Gapsys, Vytautas; Kim, Hai-Young; Bessonov, Sergey; Hsiao, He-Hsuan; Möhlmann, Sina; Klaukien, Volker; Ficner, Ralf; Becker, Stefan; Urlaub, Henning; Lührmann, Reinhard; de Groot, Bert; Zweckstetter, Markus

    2013-01-01

    Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically d...

  11. Drosophila melanogaster as a Model Organism for Bluetongue Virus Replication and Tropism

    Science.gov (United States)

    Shaw, Andrew E.; Veronesi, Eva; Maurin, Guillemette; Ftaich, Najate; Guiguen, Francois; Rixon, Frazer; Ratinier, Maxime; Mertens, Peter; Carpenter, Simon; Palmarini, Massimo; Terzian, Christophe

    2012-01-01

    Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species. PMID:22674991

  12. Transport of d-Serine via the Amino Acid Transporter ATB0,+ Expressed in the Colon

    Science.gov (United States)

    Hatanaka, Takahiro; Huang, Wei; Nakanishi, Takeo; Bridges, Christy C.; Smith, Sylvia B.; Prasad, Puttur D.; Ganapathy, Malliga E.; Ganapathy, Vadivel

    2015-01-01

    d-Serine, synthesized endogenously in the brain, is an important modulator of glutamatergic neurotransmission. Since colonic bacteria produce d-serine, we asked the question whether there are transport mechanisms in the colon that might make this exogenously produced d-serine available to the host. Here we identify for the first time an amino acid transporter in the intestine for high-affinity active transport of d-serine. This transporter, called ATB0,+, is a Na+- and Cl−-coupled transporter for L-enantiomers of neutral and cationic amino acids. Here we demonstrate that ATB0,+ is also capable of mediating the Na+- and Cl−-coupled transport of d-serine. The affinity of ATB0,+ for l-serine and d-serine is similar, the Kt value for the two enantiomers being ~150 μM. In addition to d-serine, ATB0,+ transports d-alanine, d-methionine, d-leucine, and d-tryptophan. However, several other neutral and cationic amino acids that are transportable substrates for ATB0,+ as L-enantiomers are not transported when presented as D-enantiomers. ATB0,+ is expressed in the intestinal tract, interestingly not in the proximal intestine but in the distal intestine. Expression is most predominant in the colon where the transporter is localized to the luminal membrane of colonocytes, making this transporter uniquely suitable for absorption of bacteria-derived d-serine. PMID:11846403

  13. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E. coli MG1655 was prevented.......3 g/L. The production strain was therefore evolved by random mutagenesis to achieve increased tolerance towards serine. Additionally, overexpression of eamA, a cysteine/homoserine transporter was demonstrated to increase serine tolerance from 1.6 g/L to 25 g/L. During fed batch fermentation...

  14. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  15. Expression of the MAST family of serine/threonine kinases.

    Science.gov (United States)

    Garland, Patrick; Quraishe, Shmma; French, Pim; O'Connor, Vincent

    2008-02-21

    The Microtubule-Associated Serine/Threonine Kinase family (MAST1-4, and MAST-like) is characterised by the presence of a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain (PDZ). This latter domain gives the MAST family the capacity to scaffold its own kinase activity. In the present study we have profiled the mRNA for each member of the MAST family transcripts across various tissues, with particular focus on rodent brain. Reverse-transcriptase polymerase chain reaction (RT-PCR) has shown equivalent patterns of expression for MAST1 and 2 in multiple tissues. Both MAST3 and 4 show more distinct expression in several tissues, and MAST-like appears to be predominantly expressed in heart and testis. In situ hybridisation reveals overlapping expression of MAST1 and 2 in specific brain regions. In contrast, MAST3 shows selective expression in the striatum and cerebral cortex. MAST4 also exhibits distinct expression in oligodendrocytes of white matter containing brain regions. In keeping with previous results, this family member also shows increased expression in the hippocampus following seizure-like activity. Our analysis of MAST family expression provides support for the role of these kinases in a broad range of neural functions.

  16. Resistance analysis of hepatitis C virus genotype 1 prior treatment null responders receiving daclatasvir and asunaprevir.

    Science.gov (United States)

    McPhee, Fiona; Hernandez, Dennis; Yu, Fei; Ueland, Joseph; Monikowski, Aaron; Carifa, Arlene; Falk, Paul; Wang, Chunfu; Fridell, Robert; Eley, Timothy; Zhou, Nannan; Gardiner, David

    2013-09-01

    In a sentinel cohort, hepatitis C virus (HCV) patients (primarily genotype [GT] 1a) were treated with daclatasvir (NS5A inhibitor) and asunaprevir (NS3 protease inhibitor). Preexistence, emergence, and persistence of resistance variants in patients who failed this treatment are described. HCV-infected null responders received daclatasvir (60 mg once daily) and asunaprevir (600 mg twice daily) alone (Group A, 11 patients) or with peginterferon alfa-2a and ribavirin (Group B, 10 patients) for 24 weeks. Resistance testing was performed on baseline samples and samples with HCV RNA ≥1,000 IU/mL at Week 1 through posttreatment Week 48. Resistance substitution susceptibility to inhibition by asunaprevir and daclatasvir was assessed using HCV replicon assays. In Group A, six GT1a patients experiencing viral breakthrough and one GT1a patient who relapsed had detectable NS5A (Q30E/R, L31V/M, Y93C/N) and NS3 (R155K, D168A/E/V/Y) resistance-associated variants at failure. Two of six viral breakthrough patients achieved SVR48 after treatment intensification with peginterferon alfa-2a and ribavirin. For 2/4 viral breakthrough patients not responding to treatment intensification, NS3 resistance variants changed (D168Y to D168T; R155K to V36M-R155K). At posttreatment Week 48, daclatasvir-resistant variants persisted while asunaprevir-resistant variants were generally replaced by wild-type sequences. The NS3 sequence remained unchanged in the one patient with NS3-R155K at baseline, relapse, and posttreatment Week 48. In Group B, no viral breakthrough was observed. The treatment failure of daclatasvir and asunaprevir in HCV GT1a patients was associated with both NS5A and NS3 resistance variants in prior null responders. NS5A resistance variants persisted while NS3 resistance variants generally decayed, suggesting a higher relative fitness of NS5A variants. Copyright © 2013 by the American Association for the Study of Liver Diseases.

  17. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    Science.gov (United States)

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

  18. Intrinsic flexibility of West Nile virus protease in solution characterized using small-angle X-ray scattering.

    Science.gov (United States)

    Garces, Andrea P; Watowich, Stanley J

    2013-10-01

    West Nile virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection can cause severe neurological disease and fatality in humans. Efforts are ongoing to develop antiviral drugs that inhibit the WNV protease, a viral enzyme required for polyprotein processing. Unfortunately, little is known about the solution structure of recombinant WNV protease (NS2B-NS3pro) used for antiviral drug discovery and development, although X-ray crystal structures and nuclear magnetic resonance (NMR) studies have provided valuable insights into the interactions between NS2B-NS3pro and peptide-based inhibitors. We completed small-angle X-ray scattering and Fourier transform infrared spectroscopy experiments to determine the solution structure and dynamics of WNV NS2B-NS3pro in the absence of a bound substrate or inhibitor. Importantly, these solution studies suggested that all or most of the NS2B cofactor was highly flexible and formed an ensemble of structures, in contrast to the NS2B tertiary structures observed in crystallographic and NMR studies. The secondary structure of NS2B-NS3pro in solution had high β-content, similar to the secondary structure observed in crystallographic studies. This work provided evidence of the intrinsic flexibility and conformational heterogeneity of the NS2B chain of the WNV protease in the absence of substratelike ligands, which should be considered during antiviral drug discovery and development efforts.

  19. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  20. Phosphorylation of connexin43 on serine 306 regulates electrical coupling

    DEFF Research Database (Denmark)

    Procida, Kristina; Jørgensen, Lone; Schmitt, Nicole

    2009-01-01

    BACKGROUND: Phosphorylation is a key regulatory event in controlling the function of the cardiac gap junction protein connexin43 (Cx43). Three new phosphorylation sites (S296, S297, S306) have been identified on Cx43; two of these sites (S297 and S306) are dephosphorylated during ischemia....... The functional significance of these new sites is currently unknown. OBJECTIVE: The purpose of this study was to examine the role of S296, S297, and S306 in the regulation of electrical intercellular communication. METHODS: To mimic constitutive dephosphorylation, serine was mutated to alanine at the three sites...... and expressed in HeLa cells. Electrical coupling and single channel measurements were performed by double patch clamp. Protein expression levels were assayed by western blotting, localization of Cx43, and phosphorylation of S306 by immunolabeling. Free hemichannels were assessed by biotinylation. RESULTS...

  1. Vibrational analysis of amino acids: cysteine, serine, β-chloroalanine

    Science.gov (United States)

    Susi, Heino; Byler, D. Michael; Gerasimowicz, Walter V.

    1983-10-01

    Normal coordinate calculations were carried out involving a total of seven isotopically substituted analogs of the amino acids cysteine, serine, and β-chloroalanine. Raman spectra were obtained for polycrystalline β-chloroalanine and the ND 3 analog. Overlay calculations were employed to obtain 55 force constants which reproduce 206 observed frequencies of seven molecules with an average error of ca. 9 cm -1. The valence force field used was based on local symmetry coordinates. Band assignments were based on the potential energy distribution. About 60% of the normal modes of the seven isotopomers can be called group vibrations by the PED criterion. Most skeletal stretching and bending vibrations are highly mixed and cannot be assigned to individual bond stretching or angle deformation modes.

  2. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Schneider, Konstantin

    2017-01-01

    L-serine concentration from 3 to 100 g/L using adaptive laboratory evolution (ALE). Genome sequencing of isolated clones revealed multiplication of genetic regions, as well as mutations in thrA, thereby showing a potential mechanism of serine inhibition. Other mutations were evaluated by MAGE...... thereby highlighting the potential of ALE for industrial biotechnology....

  3. Crystallographic Refinement by Incorporation of Molecular Dynamics : Thermostable Serine Protease Thermitase Complexed with Eglin c

    NARCIS (Netherlands)

    Gros, Piet; Fujinaga, Masao; Dijkstra, Bauke W.; Kalk, Kor H.; Hol, W G J

    1989-01-01

    In order to investigate the principles of protein thermostability, the crystal structure of thermitase from Thermoactinomyces vulgaris, a thermostable member of the subtilisin family of serine proteases, has been determined in a complex with eglin c. Eglin c is a serine protease inhibitor from the

  4. L-Serine: a Naturally-Occurring Amino Acid with Therapeutic Potential.

    Science.gov (United States)

    Metcalf, J S; Dunlop, R A; Powell, J T; Banack, S A; Cox, P A

    2018-01-01

    In human neuroblastoma cell cultures, non-human primates and human beings, L-serine is neuroprotective, acting through a variety of biochemical and molecular mechanisms. Although L-serine is generally classified as a non-essential amino acid, it is probably more appropriate to term it as a "conditional non-essential amino acid" since, under certain circumstances, vertebrates cannot synthesize it in sufficient quantities to meet necessary cellular demands. L-serine is biosynthesized in the mammalian central nervous system from 3-phosphoglycerate and serves as a precursor for the synthesis of the amino acids glycine and cysteine. Physiologically, it has a variety of roles, perhaps most importantly as a phosphorylation site in proteins. Mutations in the metabolic enzymes that synthesize L-serine have been implicated in various human diseases. Dosing of animals with L-serine and human clinical trials investigating the therapeutic effects of L-serine support the FDA's determination that L-serine is generally regarded as safe (GRAS); it also appears to be neuroprotective. We here consider the role of L-serine in neurological disorders and its potential as a therapeutic agent.

  5. D-serine influences synaptogenesis in a p19 cell model

    NARCIS (Netherlands)

    Fuchs, Sabine A; Roeleveld, Martin W; Klomp, Leo W J; Berger, Ruud; de Koning, Tom J

    2012-01-01

    Recently, D-serine has been identified as an important NMDA-receptor co-agonist, which might play a role in central nervous system development. We investigated this by studying rat P19 cells, an established model for neuronal and glial differentiation. Our results show that (1) the D-serine

  6. Serine proteases of the human immune system in health and disease

    NARCIS (Netherlands)

    Heutinck, Kirstin M.; ten Berge, Ineke J. M.; Hack, C. Erik; Hamann, Jörg; Rowshani, Ajda T.

    2010-01-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and

  7. Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Hoffman, Hillary Elizabeth; Jirásková, Jana; Zvelebil, M.; Konvalinka, Jan

    2010-01-01

    Roč. 75, č. 1 (2010), s. 59-79 ISSN 0010-0765 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : D-serine * serine racemase * random mutagenesis Subject RIV: CE - Biochemistry Impact factor: 0.853, year: 2010

  8. RAF protein-serine/threonine kinases: Structure and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Roskoski, Robert, E-mail: rrj@brimr.org [Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742 (United States)

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  9. Phosphoserine Phosphatase Is Required for Serine and One-Carbon Unit Synthesis in Hydrogenobacter thermophilus.

    Science.gov (United States)

    Kim, Keugtae; Chiba, Yoko; Kobayashi, Azusa; Arai, Hiroyuki; Ishii, Masaharu

    2017-11-01

    Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthesis pathway; however, the physiological role of these novel-type metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a mutant strain with a deletion of pspA, the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthesis pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine and may therefore generate glycine and 5,10-CH2-tetrahydrofolate (5,10-CH2-THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH2-THF, in H. thermophilus Determining the mechanism of 5,10-CH2-THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH2-THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA deletion mutant have confirmed the physiological role of iPSPs as serine producers and show that serine is a major donor of one-carbon units in H. thermophilusIMPORTANCE Serine biosynthesis and catabolism pathways are intimately related to the metabolism of 5,10-CH2-THF, a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for

  10. Efficient cell culture system for hepatitis C virus genotype 5A

    DEFF Research Database (Denmark)

    2013-01-01

    of in vitro transcripts in Huh7.5 cells, production of infectious viruses was delayed. However, in subsequent viral passages efficient spread of infection and HCV RNA titers as high as for J6/JFH were obtained. Infectivity titers were at all time points analyzed comparable to J6/JFH control virus. Sequence...... analysis of recovered 5a/2a recombinants from 2 serial passages and subsequent reverse genetic studies revealed adaptive mutations in p7, NS2 and/or NS3. Infectivity of the 5a/2a viruses was CD81 and SR-BI dependant, and the recombinant viruses could be neutralized by chronic phase sera from patients...... infected with genotype 5a. Conclusion: The developed 5a/2a viruses provide a robust in vitro tool for research in HCV genotype 5, including vaccine studies and functional analyses of an increasingly important genotype in South Africa and Europe...

  11. Japanese encephalitis virus vaccine candidates generated by chimerization with dengue virus type 4.

    Science.gov (United States)

    Gromowski, Gregory D; Firestone, Cai-Yen; Hanson, Christopher T; Whitehead, Stephen S

    2014-05-23

    Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis worldwide and vaccination is one of the most effective ways to prevent disease. A suitable live-attenuated JEV vaccine could be formulated with a live-attenuated tetravalent dengue vaccine for the control of these viruses in endemic areas. Toward this goal, we generated chimeric virus vaccine candidates by replacing the precursor membrane (prM) and envelope (E) protein structural genes of recombinant dengue virus type 4 (rDEN4) or attenuated vaccine candidate rDEN4Δ30 with those of wild-type JEV strain India/78. Mutations were engineered in E, NS3 and NS4B protein genes to improve replication in Vero cells. The chimeric viruses were attenuated in mice and some elicited modest but protective levels of immunity after a single dose. One particular chimeric virus, bearing E protein mutation Q264H, replicated to higher titer in tissue culture and was significantly more immunogenic in mice. The results are compared with live-attenuated JEV vaccine strain SA14-14-2. Published by Elsevier Ltd.

  12. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  13. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    Science.gov (United States)

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  14. Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: mechanism for the antiviral effects of heme oxygenase?

    Science.gov (United States)

    Zhu, Zhaowen; Wilson, Anne T; Luxon, Bruce A; Brown, Kyle E; Mathahs, M Meleah; Bandyopadhyay, Sarmistha; McCaffrey, Anton P; Schmidt, Warren N

    2010-12-01

    Induction of heme oxygenase-1 (HO-1) inhibits hepatitis C virus (HCV) replication. Of the products of the reaction catalyzed by HO-1, iron has been shown to inhibit HCV ribonucleic acid (RNA) polymerase, but little is known about the antiviral activity of biliverdin (BV). Herein, we report that BV inhibits viral replication and viral protein expression in a dose-dependent manner in replicons and cells harboring the infectious J6/JFH construct. Using the SensoLyte 620 HCV Protease Assay with a wide wavelength excitation/emission (591 nm/622 nm) fluorescence energy transfer peptide, we found that both recombinant and endogenous nonstructural 3/4A (NS3/4A) protease from replicon microsomes are potently inhibited by BV. Of the tetrapyrroles tested, BV was the strongest inhibitor of NS3/4A activity, with a median inhibitory concentration (IC(50)) of 9 μM, similar to that of the commercial inhibitor, AnaSpec (Fremont, CA) #25346 (IC(50) 5 μM). Lineweaver-Burk plots indicated mixed competitive and noncompetitive inhibition of the protease by BV. In contrast, the effects of bilirubin (BR) on HCV replication and NS3/4A were much less potent. Because BV is rapidly converted to BR by biliverdin reductase (BVR) intracellularly, the effect of BVR knockdown on BV antiviral activity was assessed. After greater than 80% silencing of BVR, inhibition of viral replication by BV was enhanced. BV also increased the antiviral activity of α-interferon in replicons. BV is a potent inhibitor of HCV NS3/4A protease, which likely contributes to the antiviral activity of HO-1. These findings suggest that BV or its derivatives may be useful in future drug therapies targeting the NS3/4A protease. Copyright © 2010 American Association for the Study of Liver Diseases.

  15. A central role for CK1 in catalysing phosphorylation of the P53 transactivation domain at serine 20 after HHV-6B viral infection

    DEFF Research Database (Denmark)

    Maclaine, NJ; Øster, Bodil; Bundgaard, Bettina

    2008-01-01

    of the transcriptional co-activator p300 and whose mutation in murine transgenics induces B-cell lymphoma. Although the checkpoint kinase CHK2 is implicated in promoting Ser20-site phosphorylation after irradiation, the enzyme that triggers this phosphorylation after DNA viral infection is undefined. Using human...... was not blocked by D4476. These data highlight a central role for CK1 as the Ser20-site kinase for p53 in DNA virus-infected cells, but also suggest that distinct stresses may selectively trigger different protein kinases to modify the transactivation domain of p53 at Ser20.......The tumour suppressor protein p53 is activated by distinct cellular stresses including radiation, hypoxia, type-I interferon, and DNA/RNA virus infection. The transactivation domain of p53 contains a phosphorylation site at serine 20 (Ser20) whose modification stabilises the binding...

  16. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  17. Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by β-Galactosidase from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sooyoun Seo

    2015-06-01

    Full Text Available The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-D-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl L-serine benzyl ester (23.2% was achieved in heptane:buffer medium (70:30, whereas with the lactose, the highest bioconversion yield (3.94% was obtained in the buffer reaction system. The structures of most abundant galactosylated serine products were characterized by MS/MS. The molecular docking simulation revealed that the binding of serine/threonine derivatives to the enzyme’s active site was stronger (−4.6~−7.9 kcal/mol than that of the natural acceptor, glucose, and mainly occurred through interactions with aromatic residues. For N-tert-butoxycarbonyl serine methyl ester (6.8% and N-carboxybenzyl serine benzyl ester (3.4%, their binding affinities and the distances between their hydroxyl side chain and the 1′-OH group of galactose moiety were in good accordance with the quantified bioconversion yields. Despite its lower predicted bioconversion yield, the high experimental bioconversion yield obtained with N-carboxybenzyl serine methyl ester (23.2% demonstrated the importance of the thermodynamically-driven nature of the transgalactosylation reaction.

  18. Mechanisms of L-Serine Neuroprotection in vitro Include ER Proteostasis Regulation.

    Science.gov (United States)

    Dunlop, R A; Powell, J; Guillemin, G J; Cox, P A

    2018-01-01

    β-N-methylamino-L-alanine (L-BMAA) is a neurotoxic non-protein amino acid produced by cyanobacteria. Recently, chronic dietary exposure to L-BMAA was shown to trigger neuropathology in nonhuman primates consistent with Guamanian ALS/PDC, a paralytic disease that afflicts Chamorro villagers who consume traditional food items contaminated with L-BMAA. However, the addition of the naturally occurring amino acid L-serine to the diet of the nonhuman primates resulted in a significant reduction in ALS/PDC neuropathology. L-serine is a dietary amino acid that plays a crucial role in central nervous system development, neuronal signaling, and synaptic plasticity and has been shown to impart neuroprotection from L-BMAA-induced neurotoxicity both in vitro and in vivo. We have previously shown that L-serine prevents the formation of autofluorescent aggregates and death by apoptosis in human cell lines and primary cells. These effects are likely imparted by L-serine blocking incorporation of L-BMAA into proteins hence preventing proteotoxic stress. However, there are likely other mechanisms for L-serine-mediated neuroprotection. Here, we explore the molecular mechanisms of L-serine neuroprotection using a human unfolded protein response real-time PCR array with genes from the ER stress and UPR pathways, and western blotting. We report that L-serine caused the differential expression of many of the same genes as L-BMAA, even though concentrations of L-serine in the culture medium were ten times lower than that of L-BMAA. We propose that L-serine may be functioning as a small proteostasis regulator, in effect altering the cells to quickly respond to a possible oxidative insult, thus favoring a return to homeostasis.

  19. Molecular characterization of serine protease inhibitor isoform 3, SmSPI, from Schistosoma mansoni.

    Science.gov (United States)

    Pakchotanon, Pattarakul; Molee, Patamaporn; Nuamtanong, Supaporn; Limpanont, Yanin; Chusongsang, Phiraphol; Limsomboon, Jareemate; Chusongsang, Yupa; Maneewatchararangsri, Santi; Chaisri, Urai; Adisakwattana, Poom

    2016-08-01

    Serine protease inhibitors, known as serpins, are pleiotropic regulators of endogenous and exogenous proteases, and molecule transporters. They have been documented in animals, plants, fungi, bacteria, and viruses; here, we characterize a serpin from the trematode platyhelminth Schistosoma mansoni. At least eight serpins have been found in the genome of S. mansoni, but only two have characterized molecular properties and functions. Here, the function of S. mansoni serpin isoform 3 (SmSPI) was analyzed, using both computational and molecular biological approaches. Phylogenetic analysis showed that SmSPI was closely related to Schistosoma haematobium serpin and Schistosoma japonicum serpin B10. Structure determined in silico confirmed that SmSPI belonged to the serpin superfamily, containing nine α-helices, three β-sheets, and a reactive central loop. SmSPI was highly expressed in schistosomules, predominantly in the head gland, and in adult male and female with intensive accumulation on the spines, which suggests that it may have a role in facilitating intradermal and intravenous survival. Recombinant SmSPI was overexpressed in Escherichia coli; the recombinant protein was of the same size (46 kDa) as the native protein. Immunological analysis suggested that mice infected with S. mansoni responded to rSmSPI at 8 weeks postinfection (wpi) but not earlier. The inhibitory activity of rSmSPI was specific to chymotrypsin but not trypsin, neutrophil elastase, and porcine pancreatic elastase. Elucidating the biological and physiological functions of SmSPI as well as other serpins will lead to further understanding of host-parasite interaction machinery that may provide novel strategies to prevent and control schistosomiasis in the future.

  20. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death.

    Directory of Open Access Journals (Sweden)

    Pieter J A de Koning

    Full Text Available Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4 M(-1 s(-1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.

  1. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  2. Stromal serine protein kinase activity in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-05-01

    At least twelve /sup 32/P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with /sup 32/Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with (gamma-/sup 32/P)ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma.

  3. Mycobacterial excretory secretory-31 protein with serine protease and lipase activities: An immunogen and drug target against tuberculosis infection.

    Science.gov (United States)

    Harinath, Bhaskar C

    2016-12-01

    Tuberculosis (TB) has been declared as a global emergency by the World Health Organization in 1993 and still remains one of the world's biggest threats. Worldwide, 9.6 million people have been estimated to have fallen ill with TB in 2014: 5.4 million men, 3.2 million women, and 1.0 million children. To reduce this burden, detection and treatment gaps must be addressed and new tools developed (Global TB report 2015). Seroreactivity of the purified excretory secretory (ES) antigens ES-31, ES-43, ES-41, and ES-6 have been assessed in pulmonary TB (fresh, relapse, chronic, and latent), extrapulmonary TB, and in human immunodeficiency virus-TB coinfection. Analysis of immune response to these purified antigens by indirect and sandwich enzyme-linked immunosorbent assay (ELISA) using sensitive penicillinase enzyme-immuno assay, showed ES-31 antigen as having good diagnostic potential in pulmonary TB and in certain groups of extrapulmonary TB, in particular tuberculous lymphadenopathy, tuberculous meningitis, whereas ES-41 was found to be more seroreactive in abdominal and bone and joint TB. ES-43 antigen was primarily recognized by serum antibodies in relapse cases, while ES-6 was useful in contacts. Antigen assay was found to be more sensitive than antibody-based assay for detecting TB with human immunodeficiency virus coinfection. Immunomonitoring for the presence of antigens in TB patients under antitubercular treatment showed that ES-31 antigen assay was useful in determining the effectiveness of therapy and the patient's compliance. User-friendly peroxidase ELISA has been standardized for the detection of circulating mycobacterial ES-31 serine protease (free antigen and immune-complexed antigen) with 70-75% sensitivity and 90% specificity and with a limit of detection of antigen at 1ng/2μL (0.5μg/mL serum). In-house developed SEVA TB ELISA assay using a cocktail of antigens (ES-31+EST-6) and a cocktail of specific antibodies is being routinely done for screening of

  4. Scaling NS-3 DCE Experiments on Multi-Core Servers

    Science.gov (United States)

    2016-06-15

    and 2, share a level 1 ( L1 ) and level 2 ( L2 ) cache. All of the cores on a node share the level 3, or Last Level, cache (LLC). If a core wants to...on finding a way to improve the speed of the simulations so we could complete our intended goal, we did not definitively determine the root cause of

  5. Insights into the serine protease mechanism based on structural observations of the conversion of a peptidyl serine protease inhibitor to a substrate

    DEFF Research Database (Denmark)

    Jiang, Longguang; Andersen, Lisbeth Moreau; Andreasen, Peter A

    2016-01-01

    BACKGROUND: Serine proteases are one of the most studied group of enzymes. Despite the extensive mechanistic studies, some crucial details remain controversial, for example, how the cleaved product is released in the catalysis reaction. A cyclic peptidyl inhibitor (CSWRGLENHRMC, upain-1) of a ser......BACKGROUND: Serine proteases are one of the most studied group of enzymes. Despite the extensive mechanistic studies, some crucial details remain controversial, for example, how the cleaved product is released in the catalysis reaction. A cyclic peptidyl inhibitor (CSWRGLENHRMC, upain-1......) of a serine protease, urokinase-type plasminogen activator (uPA), was found to become a slow substrate and cleaved slowly upon the replacement of single residue (W3A). METHODS: By taking advantage of the unique property of this peptide, we report the high-resolution structures of uPA in complex with upain-1-W...

  6. The role of Serine Proteases and Serine Protease Inhibitors in the migration of Gonadotropin-Releasing Hormone neurons

    Directory of Open Access Journals (Sweden)

    Silverman Ann-Judith

    2002-02-01

    Full Text Available Abstract Background Mechanisms regulating neuronal migration during development remain largely undefined. Extracellular matrix cues, target site released factors, and components of the migratory neurons themselves are likely all coordinated in time and space directing neurons to their appropriate locations. We have studied the effects of proteases and their inhibitors on the extracellular matrix and the consequences to the migration of gonadotropin releasing hormone (GnRH neurons in the embryonic chick. Chick GnRH neurons differentiate in the olfactory epithelium, migrate along the olfactory nerve and enter the forebrain. The accessibility of this coherent cell group make it amenable for studying protease/inhibitor roles in migratory processes. Results Affigel blue beads were used to deliver a serine protease inhibitor, protease nexin-1 (PN-1, and a target protease, trypsin, to the olfactory epithelium coincident with initiation of GnRH neuronal migration. PN-1 inhibited neuronal migration while trypsin accelerated their transit into the CNS. Prior to initiation of migration, neither PN-1 nor trypsin altered the timing of neuronal exit. Trypsin did, however, accelerate the timing of neuronal crossing into the nerve-forebrain junction. Conclusions These data support the hypothesis that protease activity modulates neuronal movements across barriers. Moreover, the data suggest, for the first time, that aspects of GnRH neuronal migration may be cell autonomous but modulated by ECM alterations.

  7. Synthesis of Functionalised Nucleosides for Incorporation into Nucleic Acid-Based Serine Protease Mimics

    Directory of Open Access Journals (Sweden)

    Annemieke Madder

    2007-01-01

    Full Text Available The synthesis of nucleosides modified with an extra imidazole, carboxyl and hydroxyl group is described. These nucleosides can be incorporated into an oligonucleotide duplex, thus generating a novel type of serine protease mimic.

  8. D-serine: a new word in the glutamatergic neuro-glial language.

    Science.gov (United States)

    Scolari, M J; Acosta, G B

    2007-11-01

    Gliotransmission is a process in which astrocytes are dynamic elements that influence synaptic transmission and synaptogenesis. The best-known gliotransmitters are glutamate and ATP. However, in the past decade, it has been demonstrated that D-serine, a D-amino acid, acts as a gliotransmitter in glutamatergic synapses. The physiological relevance of D-serine is sustained by the way in which it modulates the action of glutamatergic neurotransmission, neuronal migration and long-term potentiation (LTP). In addition, the synthesis and degradation mechanisms of D-serine have been proposed as potential therapeutic targets for the treatment of Alzheimer's disease, schizophrenia and related disorders. In the present review, detailed information is provided about the physiological and physiopathological relevance of D-serine, including metabolic and regulation aspects.

  9. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; De Bei, O.; Paredi, G.; Hayes, C. S.; Franko, N.; Mozzarelli, A.; Bettati, S.; Campanini, B.

    2017-01-01

    Roč. 591, č. 9 (2017), s. 1212-1224 ISSN 0014-5793 Institutional support: RVO:61388963 Keywords : cysteine synthase * protein-protein interaction * serine acetyltransferase Subject RIV: CE - Biochemistry Impact factor: 3.623, year: 2016

  10. Membrane-anchored serine proteases in vertebrate cell and developmental biology.

    Science.gov (United States)

    Szabo, Roman; Bugge, Thomas H

    2011-01-01

    Analysis of vertebrate genome sequences at the turn of the millennium revealed that a vastly larger repertoire of enzymes execute proteolytic cleavage reactions within the pericellular and extracellular environments than was anticipated from biochemical and molecular analysis. Most unexpected was the unveiling of an entire new family of structurally unique multidomain serine proteases that are anchored directly to the plasma membrane. Unlike secreted serine proteases, which function primarily in tissue repair, immunity, and nutrient uptake, these membrane-anchored serine proteases regulate fundamental cellular and developmental processes, including tissue morphogenesis, epithelial barrier function, ion and water transport, cellular iron export, and fertilization. Here the cellular and developmental biology of this fascinating new group of proteases is reviewed. Particularly highlighted is how the study of membrane-anchored serine proteases has expanded our knowledge of the range of physiological processes that require regulated proteolysis at the cell surface.

  11. Optical properties of D-serine doped TGS crystals for pyroelectric sensors*

    Directory of Open Access Journals (Sweden)

    Kurlyak V.Yu.

    2015-12-01

    Full Text Available Refractive and birefringence indices in the range of transparency of 300 to 700 nm for triglycine sulphate crystals doped with D-serine molecules have been measured in the temperature range of 290 K to 340 K. The obtained optical properties are discussed together with characteristic electrical features of these materials used as pyroelectric sensors for measurement of temperature. The experimental results obtained in this study will be necessary as the reference data for comparison with the calculated refractive indices of TGS + D-serine on the basis of density functional theory. Determination of the proper position of D-serine, will reveal the features of TGS + D-serine crystal structure necessary to achieve stable unipolarity.

  12. Small Subunits of Serine Palmitoyltransferase (ssSPTs) and Their Physiological Roles

    Science.gov (United States)

    2014-02-12

    Interestingly, in the absence of serine in the medium , heat shock no longer induces increased sphingolipid synthesis (16), showing that an increase in serine...knockout mutants transformed with the empty vectors (grown on medium containing PHS) were used as a control. The results show that the subunits of the two...mutant. Cells were serially transferred to YPD or SD+PHS and incubated at the indicated temperatures for 4 days.   51 Figure 3.11

  13. Serine-rich protein is a novel positive regulator for silicon accumulation in mangrove.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; Siti Nor Akmar, A; Rafii, Mohd Y; Azizi, Parisa; Idris, A S

    2015-02-10

    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.; (Monash); (Queensland Inst. of Med. Rsrch.)

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  15. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  16. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  17. Serine protease inhibitors to treat inflammation: a patent review (2011-2016).

    Science.gov (United States)

    Soualmia, Feryel; El Amri, Chahrazade

    2018-02-01

    Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.

  18. Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules

    DEFF Research Database (Denmark)

    Thiel, Steffen; Degn, Søren Egedal; Nielsen, H J

    2012-01-01

    The pattern-recognition molecules mannan-binding lectin (MBL) and the three ficolins circulate in blood in complexes with MBL-associated serine proteases (MASPs). When MBL or ficolin recognizes a microorganism, activation of the MASPs occurs leading to activation of the complement system, an impo...

  19. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  20. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter (Scripps)

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  1. Bluetongue virus serotype 24 (BTV-24) in Israel: phylogenetic characterization and clinical manifestation of the disease.

    Science.gov (United States)

    Golender, Natalia; Panshin, Alexander; Brenner, Jacob; Rotenberg, Ditza; Oura, Chris; Khinich, Evgeny; Bumbarov, Velizar

    2016-09-30

    Bluetongue (BT), an arthropod-borne viral disease of ruminants, a ects sheep most severely than other domestic animals. Bluetongue virus serotype 24 (BTV-24) is one of 26 known Bluetongue virus (BTV) serotypes. In this article, we present data of phylogenetic analysis of 9 viral genes (Seg1, Seg2, Seg3, Seg4, Seg5, Seg6, Seg8, Seg9, and Seg10) from 8 Israeli BTV-24 isolates and relate the genotype of the BTV-24 isolates to their phenotype with regard to clinical manifestations. The high level of genetic identity (> 99.6%) between Seg2, Seg4 and Seg5 in all 8 BTV-24 isolates indicated that these segments shared the same viral ancestor. Phylogenetic analysis of Seg1, Seg3, Seg5, Seg8, Seg9, and Seg10 revealed that the Israeli BTV-24 strains comprised 4 variants. Five of the viruses revealed high identity among all 9 segments, and represented variant 1. A second variant (BTV24/3027/6/10), isolated in 2010, showed signi cant variation from variant 1 in 3 gene segments (VP-1, VP-3, and NS-3 genes). A third variant (BTV24/3027/1/10) showed signi cant variation from variant 1 in 6 segments (VP-1, VP-3, VP-6 and NS-1, NS-2 and NS-3 genes), while a fourth variant (BTV24/2214/1/10) showed signi cant variation from variant 1 in 4 segments (VP-1, NS-1, NS-2 and NS-3 genes). These marked di erences in sequence identity indicate that a high level of genetic reassortment is occurring between co-circulating BTV strains in Israel.

  2. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor.

    Science.gov (United States)

    Kim, Bo Yeon; Lee, Kwang Sik; Zou, Feng Ming; Wan, Hu; Choi, Yong Soo; Yoon, Hyung Joo; Kwon, Hyung Wook; Je, Yeon Ho; Jin, Byung Rae

    2013-12-15

    Insect-derived Kazal-type serine protease inhibitors exhibit thrombin, elastase, plasmin, proteinase K, or subtilisin A inhibition activity, but so far, no functional roles for bee-derived Kazal-type serine protease inhibitors have been identified. In this study, a bee (Apis cerana) venom Kazal-type serine protease inhibitor (AcKTSPI) that acts as a microbial serine protease inhibitor was identified. AcKTSPI contained a single Kazal domain that displayed six conserved cysteine residues and a P1 threonine residue. AcKTSPI was expressed in the venom gland and was present as a 10-kDa peptide in bee venom. Recombinant AcKTSPI Kazal domain (AcKTSPI-Kd) expressed in baculovirus-infected insect cells demonstrated inhibitory activity against subtilisin A (Ki 67.03 nM) and proteinase K (Ki 91.53 nM), but not against α-chymotrypsin or trypsin, which implies a role for AcKTSPI as a microbial serine protease inhibitor. However, AcKTSPI-Kd exhibited no detectable inhibitory effects on factor Xa, thrombin, tissue plasminogen activator, or elastase. Additionally, AcKTSPI-Kd bound directly to Bacillus subtilis, Bacillus thuringiensis, Beauveria bassiana, and Fusarium graminearum but not to Escherichia coli. Consistent with these findings, AcKTSPI-Kd showed antibacterial activity against Gram-positive bacteria and antifungal activity against both plant-pathogenic and entomopathogenic fungi. These findings constitute molecular evidence that AcKTSPI acts as an inhibitor of microbial serine proteases. This paper provides a novel view of the antimicrobial functions of a bee venom Kazal-type serine protease inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identification of the NS5B S282T resistant variant and two novel amino acid substitutions that affect replication capacity in hepatitis C virus-infected patients treated with mericitabine and danoprevir.

    Science.gov (United States)

    Tong, Xiao; Li, Lewyn; Haines, Kristin; Najera, Isabel

    2014-06-01

    Baseline and posttreatment samples from hepatitis C virus (HCV) genotype (GT) 1-infected patients who received a combination of danoprevir and mericitabine from a phase II clinical study (INFORM-SVR) were analyzed. In addition to resistance monitoring, sequencing and phenotypic assays were combined with statistical analysis to identify potential novel amino acid substitutions associated with treatment outcome. The NS5B S282T substitution associated with mericitabine resistance was identified in 2/30 viral breakthrough patients and was replaced by wild-type viruses after cessation of drug treatment (during follow-up). The NS3 R155K substitution associated with danoprevir resistance was also observed in these 2 patients. All 69 GT 1a-infected patients who experienced viral breakthrough on treatment or relapsed during follow-up (relapsers) developed NS3 R155K. Among GT 1b-infected patients, substitutions at the danoprevir resistance locus NS3 D168 were observed in 15/20 subjects, whereas substitutions at the danoprevir resistance locus NS3 R155 were observed in 5/20 subjects. Interestingly, the baseline polymorphism NS5B Q47H was more prevalent in GT 1a-infected patients who achieved a sustained virologic response at follow-up week 24 (SVR24) than in non-SVR24 patients (2/13 versus 0/72), and a postbaseline NS3 S122G substitution was more prevalent in GT 1a-infected patients with viral breakthrough than in relapsers (4/22 versus 0/47). Neither substitution conferred resistance to danoprevir or mericitabine, but the substitutions reduced (NS5B Q47H) or improved (NS3 S122G) replication capacity by 2- to 4-fold. The NS5B S282T mericitabine-resistant variant was rare and did not persist once drug was discontinued. NS5B Q47H and NS3 S122G are two newly identified substitutions that affected replication capacity and were enriched in distinct treatment response groups. (This study has been registered at ClinicalTrials.gov under registration no. NCT01278134.). Copyright

  4. Multiple genome segments determine virulence of bluetongue virus serotype 8.

    Science.gov (United States)

    Janowicz, Anna; Caporale, Marco; Shaw, Andrew; Gulletta, Salvatore; Di Gialleonardo, Luigina; Ratinier, Maxime; Palmarini, Massimo

    2015-05-01

    Bluetongue virus (BTV) causes bluetongue, a major hemorrhagic disease of ruminants. In order to investigate the molecular determinants of BTV virulence, we used a BTV8 strain minimally passaged in tissue culture (termed BTV8L in this study) and a derivative strain passaged extensively in tissue culture (BTV8H) in in vitro and in vivo studies. BTV8L was pathogenic in both IFNAR(-/-) mice and in sheep, while BTV8H was attenuated in both species. To identify genetic changes which led to BTV8H attenuation, we generated 34 reassortants between BTV8L and BTV8H. We found that partial attenuation of BTV8L in IFNAR(-/-) mice was achieved by simply replacing genomic segment 2 (Seg2, encoding VP2) or Seg10 (encoding NS3) with the BTV8H homologous segments. Fully attenuated viruses required at least two genome segments from BTV8H, including Seg2 with either Seg1 (encoding VP1), Seg6 (encoding VP6 and NS4), or Seg10 (encoding NS3). Conversely, full reversion of virulence of BTV8H required at least five genomic segments of BTV8L. We also demonstrated that BTV8H acquired an increased affinity for glycosaminoglycan receptors during passaging in cell culture due to mutations in its VP2 protein. Replication of BTV8H was relatively poor in interferon (IFN)-competent primary ovine endothelial cells compared to replication of BTV8L, and this phenotype was determined by several viral genomic segments, including Seg4 and Seg9. This study demonstrated that multiple viral proteins contribute to BTV8 virulence. VP2 and NS3 are primary determinants of BTV pathogenesis, but VP1, VP5, VP4, VP6, and VP7 also contribute to virulence. Bluetongue is one of the major infectious diseases of ruminants, and it is listed as a notifiable disease by the World Organization for Animal Health (OIE). The clinical outcome of BTV infection varies considerably and depends on environmental and host- and virus-specific factors. Over the years, BTV serotypes/strains with various degrees of virulence (including

  5. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  6. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins.

    Directory of Open Access Journals (Sweden)

    Teymur Kazakov

    2015-04-01

    Full Text Available Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV, an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.

  7. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants

    DEFF Research Database (Denmark)

    Serre, Stéphanie B N; Jensen, Sanne B; Ghanem, Lubna

    2016-01-01

    Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge on determinants of PI resistance for the highly prevalent genotypes 2-6 remains limited. Using Huh7.5 cell...... fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was primarily due to decreased replication. Most identified combinations of substitutions increased resistance or fitness. Combinations of resistance substitutions...

  8. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase.

    Science.gov (United States)

    Bogicevic, Biljana; Berthoud, Hélène; Portmann, Reto; Bavan, Tharmatha; Meile, Leo; Irmler, Stefan

    2016-02-01

    In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase (metA). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro. Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE. © FEMS 2016.

  9. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  10. Uteroplacental insufficiency decreases p53 serine-15 phosphorylation in term IUGR rat lungs.

    Science.gov (United States)

    O'Brien, E A; Barnes, V; Zhao, L; McKnight, R A; Yu, X; Callaway, C W; Wang, L; Sun, J C; Dahl, M J; Wint, A; Wang, Z; McIntyre, T M; Albertine, K H; Lane, R H

    2007-07-01

    Intrauterine growth restriction (IUGR) increases the incidence of chronic lung disease (CLD). The molecular mechanisms responsible for IUGR-induced acute lung injury that predispose the IUGR infant to CLD are unknown. p53, a transcription factor, plays a pivotal role in determining cellular response to stress by affecting apoptosis, cell cycle regulation, and angiogenesis, processes required for thinning of lung mesenchyme. Because thickened lung mesenchyme is characteristic of CLD, we hypothesized that IUGR-induced changes in lung growth are associated with alterations in p53 expression and/or modification. We induced IUGR through bilateral uterine artery ligation of pregnant rats. Uteroplacental insufficiency significantly decreased serine-15-phosphorylated (serine-15P) p53, an active form of p53, in IUGR rat lung. Moreover, we found that decreased phosphorylation of lung p53 serine-15 localized to thickened distal air space mesenchyme. We also found that IUGR significantly decreased mRNA for targets downstream of p53, specifically, proapoptotic Bax and Apaf, as well as Gadd45, involved in growth arrest, and Tsp-1, involved in angiogenesis. Furthermore, we found that IUGR significantly increased mRNA for Bcl-2, an antiapoptotic gene downregulated by p53. We conclude that in IUGR rats, uteroplacental insufficiency induces decreased lung mesenchymal p53 serine-15P in association with distal lung mesenchymal thickening. We speculate that decreased p53 serine-15P in IUGR rat lungs alters lung phenotype, making the IUGR lung more susceptible to subsequent injury.

  11. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  12. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations.

    Directory of Open Access Journals (Sweden)

    Thomas Pietschmann

    2009-06-01

    Full Text Available With the advent of subgenomic hepatitis C virus (HCV replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs, previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A, but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I as well as NS5A (S2204R, whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.

  13. C-terminal hemocyanin from hemocytes of Penaeus vannamei interacts with ERK1/2 and undergoes serine phosphorylation.

    Science.gov (United States)

    Havanapan, Phattara-orn; Kanlaya, Rattiyaporn; Bourchookarn, Apichai; Krittanai, Chartchai; Thongboonkerd, Visith

    2009-05-01

    To understand molecular immune response of Penaeus vannamei during Taura syndrome virus (TSV) infection, expression and functional proteomics studies were performed on hemocyanin, which is a major abundant protein in shrimp hemocytes. Two-dimensional electrophoresis (2-DE) revealed up-regulation of several C-terminal fragments of hemocyanin, whereas the N-terminal fragments were down-regulated during TSV infection. 2-D Western blot analysis showed that the C-terminal hemocyanin fragments had more acidic isoelectric points (pI), whereas the N-terminal fragments had less acidic pI. Further analysis by NetPhos showed a greater number of serine phosphorylation sites in the C-terminal hemocyanin. Additionally, motif scan using Scansite revealed ERK D-domain, which is required for activation of ERK1/2 effector kinase, as a kinase-binding site at the 527th valine in the C-terminal hemocyanin, whereas neither motif nor functional domain was found in the N-terminus. Co-immunoprecipitation confirmed the interaction between the C-terminal hemocyanin and ERK1/2. 1-D Western blot analysis showed that ERK1/2 was also up-regulated during TSV infection. Our findings demonstrate for the first time that ERK1/2 signaling pathway may play an important role in molecular immune response of P. vannamei upon TSV infection through its interaction with the C-terminal hemocyanin.

  14. BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domain

    Science.gov (United States)

    Devaiah, Ballachanda N.; Lewis, Brian A.; Cherman, Natasha; Hewitt, Michael C.; Albrecht, Brian K.; Robey, Pamela G.; Ozato, Keiko; Sims, Robert J.; Singer, Dinah S.

    2012-01-01

    The bromodomain protein, BRD4, has been identified recently as a therapeutic target in acute myeloid leukemia, multiple myeloma, Burkitt’s lymphoma, NUT midline carcinoma, colon cancer, and inflammatory disease; its loss is a prognostic signature for metastatic breast cancer. BRD4 also contributes to regulation of both cell cycle and transcription of oncogenes, HIV, and human papilloma virus (HPV). Despite its role in a broad range of biological processes, the precise molecular mechanism of BRD4 function remains unknown. We report that BRD4 is an atypical kinase that binds to the carboxyl-terminal domain (CTD) of RNA polymerase II and directly phosphorylates its serine 2 (Ser2) sites both in vitro and in vivo under conditions where other CTD kinases are inactive. Phosphorylation of the CTD Ser2 is inhibited in vivo by a BRD4 inhibitor that blocks its binding to chromatin. Our finding that BRD4 is an RNA polymerase II CTD Ser2 kinase implicates it as a regulator of eukaryotic transcription. PMID:22509028

  15. Robust full-length hepatitis C virus genotype 2a and 2b infectious cultures using mutations identified by a systematic approach applicable to patient strains

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Gottwein, Judith M

    2012-01-01

    Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases worldwide, but treatment options are limited. Basic HCV research required for vaccine and drug development has been hampered by inability to culture patient isolates, and to date only the JFH1 (genotype 2a) recombinant...... in vitro. Through a systematic approach of culturing J6 with minimal JFH1 sequences, we identified three mutations in NS3, NS4A, and NS5B that permitted full-length J6 propagation and adaptation with infectivity titers comparable to JFH1-based systems. The most efficient recombinant, J6cc, had six adaptive...... mutations and did not accumulate additional changes following viral passage. We demonstrated that HCV NS3/NS4A protease-, NS5A- and NS5B polymerase-directed drugs respectively inhibited full-length J6 infection dose dependently. Importantly, the three J6-derived mutations enabled culture adaptation...

  16. Expression of serine and glycine-related enzymes in phyllodes tumor.

    Science.gov (United States)

    Kwon, J E; Kim, D H; Jung, W-H; Koo, J S

    2014-01-01

    Expression patterns of proteins involved in serine and glycine metabolism, and correlations of these patterns with clinicopathologic factors in phyllodes tumor were investigated. Tissue microarrays were prepared from 203 phyllodes tumors (PT) and stained with antibodies specific for glycine decarboxylase (GLDC), phosphoserine aminotransferase 1 (PSAT1), phosphoserine phosphatase (PSPH), phosphoglycerate dehydrogenase (PHGDH), and serine hydroxymethyltransferase 1 (SHMT1). These immunohistochemical results and clinicopathologic parameters were analyzed for correlation. Numbers of benign, borderline, and malignant tumors were 155, 32, and 16, respectively. Stromal expression of PHGDH, PSAT1, PSPH, SHMT1, and GLDC increased with increasing tumor grade, and epithelial expression of SHMT1 also increased with increasing tumor grade (pphyllodes tumor. glycine, tumor grade, metabolism, phyllodes tumor, serine.

  17. Conservation of sequence and function in fertilization of the cortical granule serine protease in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Xu, Dongdong; Wessel, Gary M

    2014-08-01

    Conservation of the cortical granule serine protease during fertilization in echinoderms was tested both functionally in sea stars, and computationally throughout the echinoderm phylum. We find that the inhibitor of serine protease (soybean trypsin inhibitor) effectively blocks proper transition of the sea star fertilization envelope into a protective sperm repellent, whereas inhibitors of the other main types of proteases had no effect. Scanning the transcriptomes of 15 different echinoderm ovaries revealed sequences of high conservation to the originally identified sea urchin cortical serine protease, CGSP1. These conserved sequences contained the catalytic triad necessary for enzymatic activity, and the tandemly repeated LDLr-like repeats. We conclude that the protease involved in the slow block to polyspermy is an essential and conserved element of fertilization in echinoderms, and may provide an important reagent for identification and testing of the cell surface proteins in eggs necessary for sperm binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The role of serine proteases in the pathogenesis of bacterial infections

    Directory of Open Access Journals (Sweden)

    Ewa Burchacka

    2016-06-01

    Full Text Available An increasing resistance of pathogenic bacterial species has been considered as one of the major health problems worldwide. The discovery of novel protein targets and development of effective anti-bacterial therapeutics is of high need since for some extremely resistant pathogens we are simply left unarmed. One of new promising therapeutic strategy is the application of specific inhibitors targeting bacterial serine proteases. Pathogenic microorganisms secrete abroad range of hydrolases, including serine proteases which lead to activation of various virulence factors. Herein, we review the specific bacteria serine proteases which have an influence on pathogenicity of bacterial infection as well as we introduce the reader with a brief history of the subject.

  19. Serine-Dependent Sphingolipid Synthesis Is a Metabolic Liability of Aneuploid Cells

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    2017-12-01

    Full Text Available Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness of aneuploid cells. Remarkably, the fitness of aneuploid cells improves or deteriorates upon genetically decreasing or increasing ceramides, respectively. Combined targeting of serine and sphingolipid synthesis could be exploited to specifically target cancer cells, the vast majority of which are aneuploid.

  20. Serine, Glycine and One-carbon Metabolism in Colorectal Cancer Cell in Heterogeneous Microenvironment

    Science.gov (United States)

    Lin, Ke-Chih; Austin, Robert; Ducker, Greg; Sturm, James; Sturm, James

    The up-regulation of serine metabolism associated with one-carbon metabolism has been identified to support cellular biosynthesis and redox maintenance of tumors. The consistently over-expressed one-carbon genes have been targeted for potential drug development. To investigate the biological function of specific enzymes, we had genetic engineered HCT116 cell lines, methylenetetrahydrofolate dehydrogenase (MTHFD) and phosphoglycerate dehydrogenase (PHGDH) deleted cell lines, growing in the artificial microhabitats array with serine and glycine gradient across. The impact of depletion of serine and the blocking of biosynthesis pathway will be shown in terms of cell morphology, proliferation rate, and cell motility. The evolution dynamic and migration rate can also be tracked throughout the experiments.

  1. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith; Scheel, Troels; Høgh, Mette

    2007-01-01

    , which has a high prevalence worldwide. METHODS: Huh7.5 cells were transfected with RNA transcripts of an intergenotypic 3a/JFH1 recombinant with core, E1, E2, p7, and NS2 of the 3a reference strain S52, and released viruses were passaged. Cultures were examined for HCV core and/or NS5A expression...... (immunostaining), HCV RNA titers (real-time PCR), and infectivity titers (50% tissue culture infectious dose). The role of mutations identified by sequencing of recovered S52/JFH1 viruses was analyzed by reverse genetics studies. RESULTS: S52/JFH1 and J6/JFH viruses passaged in Huh7.5 cells showed comparable...... growth kinetics and similar peak HCV RNA and infectivity titers. However, analysis of S52/JFH1 viruses identified 9 putative adaptive mutations in core, E2, p7, NS3, and NS5A. All 7 S52/JFH1 recombinants with an amino acid change in p7 combined with a change in NS3 or NS5A, but only 2 of 9 recombinants...

  2. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses

    DEFF Research Database (Denmark)

    Gottwein, J.M.; Scheel, Troels Kasper Høyer; Hoegh, A.M.

    2007-01-01

    (immunostaining), HCV RNA titers (real-time PCR), and infectivity titers (50% tissue culture infectious dose). The role of mutations identified by sequencing of recovered S52/JFH1 viruses was analyzed by reverse genetics studies. RESULTS: S52/JFH1 and J6/JFH viruses passaged in Huh7.5 cells showed comparable...... growth kinetics and similar peak HCV RNA and infectivity titers. However, analysis of S52/JFH1 viruses identified 9 putative adaptive mutations in core, E2, p7, NS3, and NS5A. All 7 S52/JFH1 recombinants with an amino acid change in p7 combined with a change in NS3 or NS5A, but only 2 of 9 recombinants......, which has a high prevalence worldwide. METHODS: Huh7.5 cells were transfected with RNA transcripts of an intergenotypic 3a/JFH1 recombinant with core, E1, E2, p7, and NS2 of the 3a reference strain S52, and released viruses were passaged. Cultures were examined for HCV core and/or NS5A expression...

  3. Similarities between Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Genetic and Phenotypic Protease Quasispecies Diversity.

    Science.gov (United States)

    Martinez, Miguel Angel; Nevot, Maria; Jordan-Paiz, Ana; Franco, Sandra

    2015-10-01

    Human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are two highly variable RNA viruses that cause chronic infections in humans. Although HCV likely preceded the AIDS epidemic by some decades, the global spread of both viruses is a relatively recent event. Nevertheless, HCV global diversity is higher than that of HIV-1. To identify differences in mutant diversity, we compared the HIV-1 protease and HCV NS3 protease quasispecies. Three protease gene quasispecies samples per virus, isolated from a total of six infected patients, were genetically and phenotypically analyzed at high resolution (HIV-1, 308 individual clones; HCV, 299 clones). Single-nucleotide variant frequency did not differ between quasispecies from the two viruses (HIV-1, 2.4 × 10(-3) ± 0.4 × 10(-3); HCV, 2.1 × 10(-3) ± 0.5 × 10(-3)) (P = 0.1680). The proportion of synonymous substitutions to potential synonymous sites was similar (3.667 ± 0.6667 and 2.183 ± 0.9048, respectively) (P = 0.2573), and Shannon's entropy values did not differ between HIV-1 and HCV (0.84 ± 0.02 and 0.83 ± 0.12, respectively) (P = 0.9408). Of note, 65% (HIV-1) and 67% (HCV) of the analyzed enzymes displayed detectable protease activity, suggesting that both proteases have a similar mutational robustness. In both viruses, there was a rugged protease enzymatic activity landscape characterized by a sharp peak, representing the master sequence, surrounded by a collection of diverse variants present at lower frequencies. These results indicate that nucleotide quasispecies diversification during chronic infection is not responsible for the higher worldwide genetic diversity observed in HCV. HCV global diversity is higher than that of HIV-1. We asked whether HCV genetic diversification during infection is responsible for the higher worldwide genetic diversity observed in HCV. To this end, we analyzed and compared the genotype and enzymatic activities of HIV-1 and HCV protease quasispecies existing in

  4. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture.

    Directory of Open Access Journals (Sweden)

    Eliane Silva

    Full Text Available Endogenous retroviruses, non-retroviral RNA viruses and DNA viruses have been found in the mammalian genomes. The origin of Hepatitis C virus (HCV, the major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans, remains unclear since its discovery. Here we show that fragments homologous to HCV structural and non-structural (NS proteins present in the European rabbit (Oryctolagus cuniculus and hare (Lepus europaeus genomes replicate in bovine cell cultures. The HCV genomic homolog fragments were demonstrated by RT-PCR, PCR, mass spectrometry, and replication in bovine cell cultures by immunofluorescence assay (IFA and immunogold electron microscopy (IEM using specific MAbs for HCV NS3, NS4A, and NS5 proteins. These findings may lead to novel research approaches on the HCV origin, genesis, evolution and diversity.

  5. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2.

    Directory of Open Access Journals (Sweden)

    Ryan Richards

    Full Text Available Channelrhodopsin-2 (ChR2 is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.

  6. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood.Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans.Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase.Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  7. A novel serine protease with caspase- and legumain-like activities from edible basidiomycete Flammulina velutipes.

    Science.gov (United States)

    Iketani, Aya; Nakamura, Mayumi; Suzuki, Yuya; Awai, Koichiro; Shioi, Yuzo

    2013-03-01

    A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes.

    Science.gov (United States)

    Simon-Szabó, Laura; Kokas, Márton; Greff, Zoltán; Boros, Sándor; Bánhegyi, Péter; Zsákai, Lilián; Szántai-Kis, Csaba; Vantus, Tibor; Mandl, József; Bánhegyi, Gábor; Vályi-Nagy, István; Őrfi, László; Ullrich, Axel; Csala, Miklós; Kéri, György

    2016-01-15

    Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in β-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass....... CG shows a strong preference for the charged amino acid Lys at P(1) in tropoelastin, whereas Lys was not identified at P(1) in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P(2) and P(4...

  10. Characterisation of an extracellular serine protease gene (nasp gene) from Dermatophilus congolensis.

    Science.gov (United States)

    Garcia-Sanchez, Alfredo; Cerrato, Rosario; Larrasa, Jose; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Hermoso-de-Mendoza, Miguel; Rey, Joaquin M; Mine, Madisa O; Carnegie, Patrick R; Ellis, Trevor M; Masters, Anne M; Pemberton, Alan D; Hermoso-de-Mendoza, Javier

    2004-02-09

    A partial amino acid sequence of a serine protease from Dermatophilus congolensis allowed the design of oligonucleotide primers that were complemented with additional ones from previously published partial sequences of the gene encoding the enzyme. The polymerase chain reaction (PCR), using combinations of specific and degenerate oligonucleotide primers, allowed the amplification of a 1738-bp internal fragment of the gene, which was finally characterised by inverse PCR as the first full-length sequenced serine protease gene (nasp) from Dermatophilus congolensis. The deduced amino acid sequence of this enzyme, probably involved in the pathogenesis of dermatophilosis, links it to the subtilisin family of proteases.

  11. Nucleotide sequence and expression of a cDNA encoding rabbit liver cytosolic serine hydroxymethyltransferase.

    OpenAIRE

    Byrne, P C; Sanders, P. G.; Snell, K

    1992-01-01

    A rabbit liver cDNA library in phage lambda gt10 was screened using a portion of the coding sequences for rabbit cytosolic serine hydroxymethyltransferase (amino acids 244-420) that had been amplified by PCR, with total rabbit liver RNA as a template. A clone of 2.3 kb (pUS1203) was isolated and the nucleotide sequence showed that it contained an open reading frame of 1452 bp, which coded for serine hydroxymethyltransferase and was flanked by 155 bp at the 5' end and 653 bp at the 3' end. The...

  12. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  13. Serine protease immunohistochemistry and lectin histochemistry in the small intestine of weaned and unweaned pigs

    DEFF Research Database (Denmark)

    Brown, P J; Poulsen, Steen Seier; Wells, M

    1991-01-01

    The distribution of goblet cells containing serine protease and of those binding the lectin Ulex europaeus agglutinin-1 (UEA-1) in the pig small intestine is altered during the period after weaning. Goblet cells exhibiting binding of other lectins were not altered. These alterations and other cha...

  14. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    DEFF Research Database (Denmark)

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    We have demonstrated that Penicillium chrysogenum possesses the L-cysteine biosynthetic enzyme O-acetyI-L-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates...

  15. Localization of a new serine protease, ingobsin, in goblet cells in rat, pig and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part of the inte...

  16. Mannan-binding lectin and MBL-associated serine protease-2

    DEFF Research Database (Denmark)

    Jorgensen, J.; Ytting, H.; Steffensen, R.M.

    2008-01-01

    be used for detection, evaluation of prognosis, therapy selection and monitoring. The serum proteins of the innate immune system mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are novel biomarkers under validation in CRC. Low preoperative MBL levels are predictive of pneumonia...

  17. Molecular Recognition of Cobalt(III)-ligated Peptides by Serine Proteases: The Role of Electrostatic Effects

    DEFF Research Database (Denmark)

    Bagger, Sven; Wagner, Kim

    1998-01-01

    A series of peptides with a positively charged cobalt(III)-complex group attached to the carboxylate terminal was synthesized. The behaviour of these metallopeptides as acceptor nucleophiles in acyl transfer reactions catalyzed by the three serine proteases bovine pancreatic à-chymotrypsin, porcine...

  18. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases

    NARCIS (Netherlands)

    Siezen, Roland J.; Vos, Willem M. de; Leunissen, Jack A.M.; Dijkstra, Bauke W.

    1991-01-01

    Subtilases are members of the family of subtilisin-like serine proteases. Presently, >50 subtilases are known, >40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and

  19. Nucleotide sequence and expression of a cDNA encoding rabbit liver cytosolic serine hydroxymethyltransferase.

    Science.gov (United States)

    Byrne, P C; Sanders, P G; Snell, K

    1992-08-15

    A rabbit liver cDNA library in phage lambda gt10 was screened using a portion of the coding sequences for rabbit cytosolic serine hydroxymethyltransferase (amino acids 244-420) that had been amplified by PCR, with total rabbit liver RNA as a template. A clone of 2.3 kb (pUS1203) was isolated and the nucleotide sequence showed that it contained an open reading frame of 1452 bp, which coded for serine hydroxymethyltransferase and was flanked by 155 bp at the 5' end and 653 bp at the 3' end. The full-length cDNA was cloned into an expression vector and transfected into COS-1 cells. Serine hydroxymethyltransferase activity was increased by 33% in the transfected cells and a new protein band of the appropriate size was seen by SDS/PAGE analysis of proteins extracted from transfected cells. The protein sequence for rabbit cytosolic serine hydroxymethyltransferase derived from the cDNA nucleotide sequence was compared with three other derived or known prokaryotic and eukaryotic sequences. An overall sequence similarity of 34% was noted between all four sequences, whereas the similarity between the rabbit cytosolic and mitochondrial isoforms was 62%.

  20. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis

    NARCIS (Netherlands)

    Bardou, Olivier; Menou, Awen; François, Charlène; Duitman, Jan Willem; von der Thüsen, Jan H.; Borie, Raphaël; Sales, Katiuchia Uzzun; Mutze, Kathrin; Castier, Yves; Sage, Edouard; Liu, Ligong; Bugge, Thomas H.; Fairlie, David P.; Königshoff, Mélanie; Crestani, Bruno; Borensztajn, Keren S.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis.

  1. Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis

    NARCIS (Netherlands)

    Bardou, O. (Olivier); Menou, A. (Awen); François, C. (Charlène); J.W. Duitman (Jan Willem); J. von der Thusen (Jan); Borie, R. (Raphaël); Sales, K.U. (Katiuchia Uzzun); Mutze, K. (Kathrin); Y. Castier (Yves); Sage, E. (Edouard); Liu, L. (Ligong); Bugge, T.H. (Thomas H.); Fairlie, D.P. (David P.); Königshoff, M. (Mélanie); B. Crestani (Bruno); K. Borensztajn (Keren)

    2016-01-01

    textabstractRationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and

  2. CSF d-serine concentrations are similar in Alzheimer's disease, other dementias, and elderly controls

    NARCIS (Netherlands)

    Biemans, E.A.L.M.; Verhoeven-Duif, N.M.; Gerrits, J.; Claassen, J.A.H.R.; Kuiperij, H.B.; Verbeek, M.M.

    2016-01-01

    Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with

  3. CSF d-serine concentrations are similar in Alzheimer's disease, other dementias, and elderly controls

    NARCIS (Netherlands)

    Biemans, Elisanne A L M; Verhoeven-Duif, Nanda M|info:eu-repo/dai/nl/310926556; Gerrits, Johan; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with

  4. Studies on aerolysin and a serine protease from Aeromonas trota sp. nov.

    Science.gov (United States)

    Husslein, V; Bergbauer, H; Chakraborty, T

    1991-05-15

    Hybridization of 257 mesophilic aeromonads revealed that the aerolysin gene is present in virtually all strains irrespective of origin of isolation. A probe comprising the promotor region was specific for a species now defined as Aeromonas trota sp. nov. Finally, isolation of a serine protease that is concomitantly expressed with aerolysin is described.

  5. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus

    NARCIS (Netherlands)

    van der Laan, J.M.; Teplyakov, A.V.; Kelders, H.; Kalk, K.H.; Misset, O.; Mulleners, L.J.S.M.; Dijkstra, B.W.

    The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 Å resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has

  6. HOMOLOGY MODELING AND PROTEIN ENGINEERING STRATEGY OF SUBTILASES, THE FAMILY OF SUBTILISIN-LIKE SERINE PROTEINASES

    NARCIS (Netherlands)

    SIEZEN, RJ; DEVOS, WM; LEUNISSEN, JAM

    1991-01-01

    Subtilases are members of the family of subtilisin-like serine proteases. Presently, > 50 subtilases are known, > 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase

  7. Molecular Interactions in the Replication of Mouse Hepatitis Virus

    Science.gov (United States)

    1987-05-08

    the form of an RNA sequence or secondary structure, ~ · ~·, in tobacco and papaya 148 i . I. I I ~,. I . mosaic virus nucleation (Butler et al...sequences have been localized near the 3’ ends of the RNAs (Butler, 1974; Zuidema et al., 1984), and at the 5’ end of papaya mosaic virus RNA (Lok and...and IBV. The major serine cluster of MHV-A59 lies in the same region of the molecule as that of BCV N protein. Regions of hydrophobicity

  8. Distinct biochemical properties of human serine hydroxymethyltransferase compared with the Plasmodium enzyme: implications for selective inhibition.

    Science.gov (United States)

    Pinthong, Chatchadaporn; Maenpuen, Somchart; Amornwatcharapong, Watcharee; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree; Chaiyen, Pimchai

    2014-06-01

    Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a hydroxymethyl group from l-serine to tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Our previous investigations have shown that SHMTs from Plasmodium spp. (P. falciparum, Pf; P. vivax, Pv) are different from the enzyme from rabbit liver in that Plasmodium SHMT can use d-serine as a substrate. In this report, the biochemical and biophysical properties of the Plasmodium and the human cytosolic form (hcSHMT) enzymes including ligand binding and kinetics were investigated. The data indicate that, similar to Plasmodium enzymes, hcSHMT can use d-serine as a substrate. However, hcSHMT displays many properties that are different from those of the Plasmodium enzymes. The molar absorption coefficient of hcSHMT-bound pyridoxal-5'-phosphate (PLP) is much greater than PvSHMT-bound or PfSHMT-bound PLP. The binding interactions of hcSHMT and Plasmodium SHMT with d-serine are different, as only the Plasmodium enzyme undergoes formation of a quinonoid-like species upon binding to d-serine. Furthermore, it has been noted that hcSHMT displays strong substrate inhibition by tetrahydrofolate (THF) (at THF > 40 μm), compared with SHMTs from Plasmodium and other species. The pH-activity profile of hcSHMT shows higher activities at lower pH values corresponding to a pKa value of 7.8 ± 0.1. Thiosemicarbazide reacts with hcSHMT following a one-step model [k1 of 12 ± 0.6 m(-1) ·s(-1) and k-1 of (1.0 ± 0.6) × 10(-3) s(-1) ], while the same reaction with PfSHMT involves at least three steps. All data indicated that the ligand binding environment of SHMT from human and Plasmodium are different, indicating that it should be possible to develop species-selective inhibitors in future studies. serine hydroxymethyltransferase, EC 2.1.2.1; 5,10-methylenetetrahydrofolate dehydrogenase, EC 1.5.1.5. © 2014 FEBS.

  9. Hepatitis C virus: virology and life cycle

    Directory of Open Access Journals (Sweden)

    Chang Wook Kim

    2013-03-01

    Full Text Available Hepatitis C virus (HCV is a positive sense, single-stranded RNA virus in the Flaviviridae family. It causes acute hepatitis with a high propensity for chronic infection. Chronic HCV infection can progress to severe liver disease including cirrhosis and hepatocellular carcinoma. In the last decade, our basic understanding of HCV virology and life cycle has advanced greatly with the development of HCV cell culture and replication systems. Our ability to treat HCV infection has also been improved with the combined use of interferon, ribavirin and small molecule inhibitors of the virally encoded NS3/4A protease, although better therapeutic options are needed with greater antiviral efficacy and less toxicity. In this article, we review various aspects of HCV life cycle including viral attachment, entry, fusion, viral RNA translation, posttranslational processing, HCV replication, viral assembly and release. Each of these steps provides potential targets for novel antiviral therapeutics to cure HCV infection and prevent the adverse consequences of progressive liver disease.

  10. Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy.

    Science.gov (United States)

    Brockerman, Jacob A; Okon, Mark; McIntosh, Lawrence P

    2014-01-01

    Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.

  11. Statistical linkage analysis of substitutions in patient-derived sequences of genotype 1a hepatitis C virus nonstructural protein 3 exposes targets for immunogen design.

    Science.gov (United States)

    Quadeer, Ahmed A; Louie, Raymond H Y; Shekhar, Karthik; Chakraborty, Arup K; Hsing, I-Ming; McKay, Matthew R

    2014-07-01

    Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver failure and liver cancer, affecting around 3% of the world's population. The extreme sequence variability of the virus resulting from error-prone replication has thwarted the discovery of a universal prophylactic vaccine. It is known that vigorous and multispecific cellular immune responses, involving both helper CD4(+) and cytotoxic CD8(+) T cells, are associated with the spontaneous clearance of acute HCV infection. Escape mutations in viral epitopes can, however, abrogate protective T-cell responses, leading to viral persistence and associated pathologies. Despite the propensity of the virus to mutate, there might still exist substitutions that incur a fitness cost. In this paper, we identify groups of coevolving residues within HCV nonstructural protein 3 (NS3) by analyzing diverse sequences of this protein using ideas from random matrix theory and associated methods. Our analyses indicate that one of these groups comprises a large percentage of residues for which HCV appears to resist multiple simultaneous substitutions. Targeting multiple residues in this group through vaccine-induced immune responses should either lead to viral recognition or elicit escape substitutions that compromise viral fitness. Our predictions are supported by published clinical data, which suggested that immune genotypes associated with spontaneous clearance of HCV preferentially recognized and targeted this vulnerable group of residues. Moreover, mapping the sites of this group onto the available protein structure provided insight into its functional significance. An epitope-based immunogen is proposed as an alternative to the NS3 epitopes in the peptide-based vaccine IC41. Despite much experimental work on HCV, a thorough statistical study of the HCV sequences for the purpose of immunogen design was missing in the literature. Such a study is vital to identify epistatic couplings among residues that can

  12. Daclatasvir for the treatment of chronic hepatitis C virus infection.

    Science.gov (United States)

    Temesgen, Z; Rizza, S A

    2015-05-01

    Daclatasvir is a nonstructural protein 5A (NS5A) replication complex inhibitor that has shown potent in vitro activity against multiple hepatitis C virus (HCV) genotypes (GT). It is currently in advanced clinical development as a component of combination treatment regimens in a variety of HCV-infected patient populations. In studies conducted thus far, it has been generally well tolerated. It has been approved for the treatment of HCV GTs 1-4 in the European Union. The combination of daclatasvir and asunaprevir (an HCV NS3/4A protease inhibitor) has been approved in Japan for the treatment of patients with GT1 HCV infection. Here we review the available literature on daclatasvir, including its information on its discovery, mechanism of action, pharmacology, preclinical and clinical activity, resistance and safety. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  13. Genetic history of hepatitis C virus in Pakistan.

    Science.gov (United States)

    ur Rehman, Irshad; Vaughan, Gilberto; Purdy, Michael A; Xia, Guo-liang; Forbi, Joseph C; Rossi, Livia Maria Gonçalves; Butt, Sadia; Idrees, Muhammad; Khudyakov, Yury E

    2014-10-01

    Hepatitis C virus (HCV) genotype 3a accounts for ∼80% of HCV infections in Pakistan, where ∼10 million people are HCV-infected. Here, we report analysis of the genetic heterogeneity of HCV NS3 and NS5b subgenomic regions from genotype 3a variants obtained from Pakistan. Phylogenetic analyses showed that Pakistani genotype 3a variants were as genetically diverse as global variants, with extensive intermixing. Bayesian estimates showed that the most recent ancestor for genotype 3a in Pakistan was last extant in ∼1896-1914 C.E. (range: 1851-1932). This genotype experienced a population expansion starting from ∼1905 to ∼1970 after which the effective population leveled. Death/birth models suggest that HCV 3a has reached saturating diversity with decreasing turnover rate and positive extinction. Taken together, these observations are consistent with a long and complex history of HCV 3a infection in Pakistan. Published by Elsevier B.V.

  14. Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region

    DEFF Research Database (Denmark)

    Norberg, Peter; Olofsson, Sigvard; Tarp, Mads Agervig

    2007-01-01

    Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for O-glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed...

  15. Chikungunya virus

    Science.gov (United States)

    Chikungunya virus infection; Chikungunya ... Where Chikungunya is Found Before 2013, the virus was found in Africa, Asia, Europe, and the Indian and Pacific oceans. In late 2013, outbreaks occurred for the first time in the ...

  16. Zika Virus

    Science.gov (United States)

    ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, the ... not travel to areas where there is a Zika virus outbreak. If you do decide to travel, first ...

  17. Chikungunya Virus

    Science.gov (United States)

    ... Gaines, PhD, MPH, MA, CHES Differentiating Chikungunya From Dengue: A Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya virus in the United States ...

  18. Zika Virus

    Science.gov (United States)

    ... Funding CDC Activities For Healthcare Providers Clinical Evaluation & Disease Sexual Transmission HIV Infection & Zika Virus Testing for Zika Test Specimens – At Time of Birth Diagnostic Tests Understanding Zika Virus Test Results ...

  19. L-Serine-Mediated Neuroprotection Includes the Upregulation of the ER Stress Chaperone Protein Disulfide Isomerase (PDI).

    Science.gov (United States)

    Dunlop, R A; Powell, J T; Metcalf, J S; Guillemin, G J; Cox, P A

    2018-01-01

    The unfolded protein response (UPR) is a highly evolutionarily conserved response to endoplasmic reticulum (ER) stress, which functions to return cells to homeostasis or send them into apoptosis, depending on the degree of cellular damage. β-N-methylamino-L-alanine (L-BMAA) has been shown to induce ER stress in a variety of models and has been linked to several types of neurodegenerative disease including Guamanian amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). L-Serine, an amino acid critical for cellular metabolism and neurological signaling, has been shown to be protective against L-BMAA-induced neurotoxicity in both animal and cell culture models. While the mechanisms of L-BMAA neurotoxicity have been well characterized, less is known about L-serine neuroprotection. We recently reported that L-serine and L-BMAA generate similar differential expression profiles in a human ER stress/UPR array, despite L-serine being neuroprotective and L-BMAA being linked to neurodegenerative disease. Here, we further investigate the mechanism(s) of L-serine-induced UPR dysregulation by examining key genes and proteins in the ER stress/UPR pathways. We report that L-serine selectively increased protein disulfide isomerase (PDI) protein translation, an ER chaperone involved in refolding misfolded proteins, suggesting it may be modulating the UPR to favor recovery from ER stress. This constitutes a new mechanism for L-serine-mediated neuroprotection and has implications for its use as a therapy for neurodegenerative illnesses.

  20. Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis.

    Science.gov (United States)

    Zou, Chengyu; Crux, Sophie; Marinesco, Stephane; Montagna, Elena; Sgobio, Carmelo; Shi, Yuan; Shi, Song; Zhu, Kaichuan; Dorostkar, Mario M; Müller, Ulrike C; Herms, Jochen

    2016-10-17

    Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  1. Optimisation of freeze drying conditions for purified serine protease from mango (Mangifera indicaCv. Chokanan) peel.

    Science.gov (United States)

    Mehrnoush, Amid; Tan, Chin Ping; Hamed, Mirhosseini; Aziz, Norashikin Ab; Ling, Tau Chuan

    2011-09-01

    This study investigated the possible relationship between the encapsulation variables, namely serine protease content (9-50mg/ml, X1), Arabic gum (0.2-10%(w/w), X2), maltodextrin (2-5%(w/w), X3) and calcium chloride (1.3-5.5%(w/w), X4) on the enzymatic properties of encapsulated serine protease. The study demonstrated that Arabic gum, maltodextrin and calcium chloride, as coating agents, protected serine protease from activity loss during freeze-drying. The overall optimum region resulted in a suitable freeze drying condition with a yield of 92% for the encapsulated serine protease, were obtained using 29.5mg/ml serine protease content, 5.1%(w/w) Arabic gum, 3.5%(w/w) maltodextrin and 3.4%(w/w) calcium chloride. It was found that the interaction effect of Arabic gum and calcium chloride improved the serine protease activity, and Arabic gum was the most effective amongst the examined coating agents. Thus, Arabic gum should be considered as potential protection in freeze drying of serine protease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    Science.gov (United States)

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  3. Efficient hepatitis c virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Pham, Long V.; Ramirez Almeida, Santseharay; Carlsen, Thomas H R

    2017-01-01

    Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants...... cell culture adaptive substitutions A1226G, R1496L, and Q1773H. These viruses spread efficiently in Huh7.5 cells by acquiring additional adaptive substitutions, and final recombinants yielded peak supernatant infectivity titers of 4 to 5 log10 focus-forming units (FFU)/ml. We subsequently succeeded...... in adapting a JFH1- based 5=UTR-NS5A DH1 recombinant to efficient growth in cell culture. We evaluated the efficacy of clinically relevant NS3/4A protease and NS5A inhibitors against the novel genotype 1b viruses, as well as against previously developed 1a viruses. The inhibitors were efficient against all...

  4. Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori

    Science.gov (United States)

    Duan, Jun; Wang, Genhong; Wang, Lingyan; Li, Youshan; Xiang, Zhonghuai; Xia, Qingyou

    2012-01-01

    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein. PMID:22348050

  5. Screening of serine protease inhibitors with antimicrobial activity using iron oxide nanoparticles functionalized with dextran conjugated trypsin and in silico analyses of bacterial serine protease inhibition.

    Science.gov (United States)

    Mandal, Santi M; Porto, William F; De, Debasis; Phule, Ajit; Korpole, Suresh; Ghosh, Ananta K; Roy, Sanat K; Franco, Octavio L

    2014-01-21

    Plants produce a variety of proteins and peptides which are involved in their defense against pathogens. Serine protease inhibitors are a well-established class of inhibitors correlated with plant defense. Increased levels of protease inhibitors delay cell damage and expand the cell's life-span. Recently, the rapid emergence of antibiotic-resistant microbial pathogens has prompted immense interest in purifying novel antimicrobial proteins or peptides from plant sources. Usually, the purification of protease inhibitors is accomplished by salt-extraction, ultrafiltration and affinity chromatography. Here, we developed a novel approach based on iron oxide nanoparticles conjugated to dextran functionalized with trypsin beads that accelerate the quick screening and purification of antimicrobial peptides with serine protease inhibitor activity. The method described here also works for screening other inhibitors using particular protein kinases, and it is therefore a novel tool for use as the leading method in the development of novel antimicrobial agents with protease inhibitory activity. Finally, and no less important, molecular modelling and dynamics studies of a homologous inhibitor studied here with Escherichia coli trypsin and chymotrypsin are provided in order to shed some light on inhibitor-enzyme interactions.

  6. Accumulation and Phosphorylation of RecQ-Mediated Genome Instability Protein 1 (RMI1 at Serine 284 and Serine 292 during Mitosis

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2015-11-01

    Full Text Available Chromosome instability usually leads to tumorigenesis. Bloom syndrome (BS is a genetic disease associated with chromosome instability. The BS gene product, BLM, has been reported to function in the spindle assembly checkpoint (SAC to prevent chromosome instability. BTR complex, composed of BLM, topoisomerase IIIα (Topo IIIα, RMI1 (RecQ-mediated genome instability protein 1, BLAP75 and RMI2 (RecQ-mediated genome instability protein 2, BLAP18, is crucial for maintaining genome stability. Recent work has demonstrated that RMI2 also plays critical role in SAC. However, little is know about RMI1 regulation during the cell cycle. Here we present that RMI1 protein level does not change through G1, S and G2 phases, but significantly increases in M phase. Moreover, phosphorylation of RMI1 occurs in mitosis. Upon microtubule-disturbing agent, RMI1 is phosphorylated primarily at the sites of Serine 284 and Serine 292, which does not interfere with the formation of BTR complex. Additionally, this phosphorylation is partially reversed by roscovitine treatment, implying cycling-dependent kinase 1 (CDK1 might be one of the upstream kinases.

  7. Inhibitors of Escherichia coli serine acetyltransferase block proliferation of Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Agarwal, Subhash M; Jain, Ruchi; Bhattacharya, Alok; Azam, Amir

    2008-02-01

    The protozoan parasite Entamoeba histolytica is the etiologic agent of amebiasis, a major global public health problem, particularly in developing countries. There is an effective anti-amoebic drug available, however its long term use produces undesirable side effects. As E. histolytica is a micro-aerophilic organism, it is sensitive to high levels of oxygen and the enzymes that are involved in protecting against oxygen-stress are crucial for its survival. Therefore serine acetyltransferase, an enzyme involved in cysteine biosynthesis, was used as a target for identifying potential inhibitors. Virtual screening with Escherichia coli serine acetyltransferase was carried out against the National Cancer Institute chemical database utilizing molecular docking tools such as GOLD and FlexX. The initial analysis yielded 11 molecules of which three compounds were procured and tested for biological activity. The results showed that these compounds partially block activity of the E. coli enzyme and the growth of E. histolytica trophozoites but not mammalian cells.

  8. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis

    DEFF Research Database (Denmark)

    Hein, Jamin B; Hertz, Emil P T; Garvanska, Dimitriya H

    2017-01-01

    Protein phosphatase 2A (PP2A) in complex with B55 regulatory subunits reverses cyclin-dependent kinase 1 (Cdk1) phosphorylations at mitotic exit. Interestingly, threonine and serine residues phosphorylated by Cdk1 display distinct phosphorylation dynamics, but the biological significance remains...... unexplored. Here we demonstrate that the phosphothreonine preference of PP2A-B55 provides an essential regulatory element of mitotic exit. To allow rapid activation of the anaphase-promoting complex/cyclosome (APC/C) co-activator Cdc20, inhibitory phosphorylation sites are conserved as threonines while...... translocation of the chromosomal passenger complex to the central spindle is prevented by mutation of a single phosphorylated threonine to serine in inner centromere protein (INCENP), leading to failure of cytokinesis. Altogether, the findings of our work reveal that the inherent residue preference of a protein...

  9. Processing of Neutrophil α-Defensins Does Not Rely on Serine Proteases In Vivo

    DEFF Research Database (Denmark)

    Glenthøj, Andreas; Nickles, Katrin; Cowland, Jack

    2015-01-01

    The α-defensins, human neutrophil peptides (HNPs) are the predominant antimicrobial peptides of neutrophil granules. They are synthesized in promyelocytes and myelocytes as proHNPs, but only processed in promyelocytes and stored as mature HNPs in azurophil granules. Despite decades of search...... lines. Subcellular fractionation of the human promyelocytic cell line PLB-985 demonstrated proHNP processing to commence in fractions containing endoplasmic reticulum. Processing of 35S-proHNP was insensitive to serine protease inhibitors. Simultaneous knockdown of NE, CG, and PR3 did not decrease pro...... of fully processed HNP in peripheral neutrophils. Contradicting earlier assumptions, our study found serine proteases dispensable for processing of proHNPs in vivo. This calls for study of other protease classes in the search for the proHNP processing protease(s)....

  10. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  11. Nucleotide sequences of three tRNA(Ser) from Drosophila melanogaster reading the six serine codons.

    Science.gov (United States)

    Cribbs, D L; Gillam, I C; Tener, G M

    1987-10-05

    The nucleotide sequences of three serine tRNAs from Drosophila melanogaster, together capable of decoding the six serine codons, were determined. tRNA(Ser)2b has the anticodon GCU, tRNA(Ser)4 has CGA and tRNA(Ser)7 has IGA. tRNA(Ser)2b differs from the last two by about 25%. However, tRNA(Ser)4 and tRNA(Ser)7 are 96% homologous, differing only at the first position of the anticodon and two other sites. This unusual sequence relationship suggests, together with similar pairs in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, that eukaryotic tRNA(Ser)UCN may be undergoing concerted evolution.

  12. Effect of CO2 Concentration on Glycine and Serine Formation during Photorespiration 1

    Science.gov (United States)

    Snyder, F. W.; Tolbert, N. E.

    1974-01-01

    Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant. PMID:16658736

  13. Fluorimetric and HPLC-based dengue virus protease assays using a FRET substrate.

    Science.gov (United States)

    Nitsche, Christoph; Klein, Christian D

    2013-01-01

    The number of dengue virus infections is increasing and the dengue NS2B-NS3 protease is considered a promising target for the development of antiviral therapies. Therefore, reliable and fast screening systems are needed for the discovery of new lead structures. In this chapter, we describe two dengue virus protease assays based on an internally quenched, high-affinity Förster resonance energy transfer (FRET) substrate (Km = 105 μM). A fluorimetric assay using a microtiter fluorescence plate reader can be used for high-throughput screening of a large number of compounds. Alternatively, an HPLC-based assay with fluorescence detection can be applied to confirm the compound hits and to avoid false-positive results that may arise due to the inner filter effect of some compounds.

  14. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    Science.gov (United States)

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.

  15. Novel role of serine racemase in anti-apoptosis and metabolism.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Ishimoto, Tetsuya; Yaku, Keisuke; Nakagawa, Takashi; Mori, Hisashi

    2017-01-01

    Serine racemase (SR) catalyzes the production of d-serine, a co-agonist of the N-methyl-d-aspartate receptor (NMDAR). A previous report shows the contribution of SR in the NMDAR-mediated neuronal cell death process. To analyze the intrinsic role of SR in the cell death process, we established the epithelial human embryonic kidney 293T (HEK293T) cell lines expressing wild-type SR (SR-WT), catalytically inactive mutant SR (SR-K56G), and catalytically hyperactive mutant SR (SR-Q155D). To these cell lines, staurosporine (STS), which induces apoptosis, was introduced. The cells expressing SR-WT and SR-Q155D showed resistance to STS-induced apoptosis, compared with nontransfected HEK293T cells and cells expressing SR-K56G. The SR-WT cells also showed a significant higher viability than the SR-QD cells. Furthermore, we detected elevated phosphorylation levels of Bcl-2 at serine-70 and Akt at serine-473 and threonine-308, which are related to cell survival, in the cells expressing SR-WT and SR-Q155D. From the results of metabolite analysis, we found elevated levels of acetyl CoA and ATP in cells expressing SR-WT. Because SR has two enzymatic activities, namely, racemization and α, β-elimination, and SR-Q155D shows enhanced racemization and reduced α, β-elimination activities, we concluded that the racemization reaction catalyzed by SR may have a more protective role against apoptosis than the α, β-elimination reaction. Moreover, both of these activities are important for maximal survival and elevated levels of acetyl CoA and ATP. Our findings reveal the NMDAR-independent roles of SR in metabolism and cell survival. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations.

    Science.gov (United States)

    Snelgrove, Robert J; Gregory, Lisa G; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A; Walker, Simone A; Lloyd, Clare M

    2014-09-01

    The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. IL-33 levels were quantified in wild-type and ST2(-/-) mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease-IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    Science.gov (United States)

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  18. The Contribution of Serine 194 Phosphorylation to Steroidogenic Acute Regulatory Protein Function

    OpenAIRE

    Sasaki, Goro; Zubair, Mohamad; Ishii, Tomohiro; Mitsui, Toshikatsu; Hasegawa, Tomonobu; Auchus, Richard J.

    2014-01-01

    The steroidogenic acute regulatory protein (StAR) facilitates the delivery of cholesterol to the inner mitochondrial membrane, where the cholesterol side-chain cleavage enzyme catalyzes the initial step of steroid hormone biosynthesis. StAR was initially identified in adrenocortical cells as a phosphoprotein, the expression and phosphorylation of which were stimulated by corticotropin. A number of in vitro studies have implicated cAMP-dependent phosphorylation at serine 194 (S194, S195 in hum...

  19. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis

    OpenAIRE

    Pollari, Sirkku; Kakonen, Sanna-Maria; Edgren, Henrik; Wolf, Maija; Kohonen, Pekka; Sara, Henri; Guise, Theresa,; Nees, Matthias; Kallioniemi, Olli

    2010-01-01

    Abstract Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic...

  20. Comparative characterization of Aedes 3-hydroxykynurenine transaminase/alanine glyoxylate transaminase and Drosophila serine pyruvate aminotransferase

    OpenAIRE

    Han, Qian; Li, Jianyong

    2002-01-01

    This study describes the comparative analysis of two insect recombinant aminotransferases, Aedes aegypti 3-hy-droxykynurenine (3-HK) transaminase/alanine glyoxylate aminotransferase (Ae-HKT/AGT) and Drosophila melanogaster serine pyruvate aminotransferase (Dm-Spat), which share 52% identity in their amino acid sequences. Both enzymes showed AGT activity. In addition, Ae-HKT/AGT is also able to catalyze the transamination of 3-HK or kynurenine with glyoxylate, pyruvate or oxaloacetate as the a...

  1. Distinct and site-specific phosphorylation of the retinoblastoma protein at serine 612 in differentiated cells.

    Directory of Open Access Journals (Sweden)

    Takayuki Hattori

    Full Text Available The retinoblastoma susceptibility protein (pRB is a phosphoprotein that regulates cell cycle progression at the G1/S transition. In quiescent and early G1 cells, pRB predominantly exists in the active hypophosphorylated form. The cyclin/cyclin-dependent protein kinase complexes phosphorylate pRB at the late G1 phase to inactivate pRB. This event leads to the dissociation and activation of E2F family transcriptional factors. At least 12 serine/threonine residues in pRB are phosphorylated in vivo. Although there have been many reports describing bulk phosphorylation of pRB, detail research describing the function of each phosphorylation site remains unknown. Besides its G1/S inhibitory function, pRB is involved in differentiation, prevention of cell death and control of tissue fate. To uncover the function of phosphorylation of pRB in various cellular conditions, we have been investigating phosphorylation of each serine/threonine residue in pRB with site-specific phospho-serine/threonine antibodies. Here we demonstrate that pRB is specifically phosphorylated at Ser612 in differentiated cells in a known kinase-independent manner. We also found that pRB phosphorylated at Ser612 still associates with E2F-1 and tightly binds to nuclear structures including chromatin. Moreover, expression of the Ser612Ala mutant pRB failed to induce differentiation. The findings suggest that phosphorylation of Ser612 provides a distinct function that differs from the function of phosphorylation of other serine/threonine residues in pRB.

  2. Long term persistence of NS5A inhibitor-resistant hepatitis C virus in patients who failed daclatasvir and asunaprevir therapy.

    Science.gov (United States)

    Yoshimi, Satoshi; Imamura, Michio; Murakami, Eisuke; Hiraga, Nobuhiko; Tsuge, Masataka; Kawakami, Yoshiiku; Aikata, Hiroshi; Abe, Hiromi; Hayes, C Nelson; Sasaki, Tamito; Ochi, Hidenori; Chayama, Kazuaki

    2015-11-01

    Although interferon-free antiviral treatment is expected to improve treatment of hepatitis C, it is unclear to what extent pre-existing drug-resistant amino acid substitutions influence response to therapy. The impact of pre-existing drug-resistant substitutions on virological response to daclatasvir and asunaprevir combination therapy was studied in genotype 1b hepatitis C virus (HCV)-infected patients. Thirty-one patients were treated with daclatasvir and asunaprevir for 24 weeks. Twenty-six patients achieved sustained virological response (SVR), three patients experienced viral breakthrough, and two patients relapsed. Direct sequencing analysis of HCV showed the existence of daclatasvir-resistant NS5A-L31M or -Y93H/F variants in nine out of 30 patients (30%) prior to treatment, while asunaprevir-resistant NS3-D168 mutations were not detected in any patient. All 21 patients with wild-type NS5A-L31 and -Y93 achieved SVR, whereas only four out of nine patients (44%) with L31M or Y93F/H substitutions achieved SVR (P = 0.001). Ultra-deep sequencing analysis showed that treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. NS5A-L31/Y93 variants remained at high frequency through post-treatment weeks 103 through 170, while NS3-D168 variants were replaced by wild-type in all patients. In conclusion, pre-existence of NS5A inhibitor-resistant substitutions compromised the response to daclatasvir and asunaprevir combination therapy, and treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. While asunaprevir-resistant variants that emerged during therapy returned to wild-type, daclatasvir-resistant variants tended to persist in the absence of the drug. © 2015 Wiley Periodicals, Inc.

  3. Carnein, a serine protease from noxious plant weed Ipomoea carnea (morning glory).

    Science.gov (United States)

    Patel, Ashok Kumar; Singh, Vijay Kumar; Jagannadham, Medicherla V

    2007-07-11

    A new serine protease from the latex of Ipomoea carnea spp. fistulosa (Morning glory), belonging to the Convolvulaceae family, was purified to homogeneity by ammonium sulfate fractionation followed by cation exchange chromatography. The enzyme, named carnein, has a molecular mass of 80.24 kDa (matrix-assisted laser desorption/ionization time-of-flight) and an isoelectric point of pH 5.6. The pH and temperature optima for proteolytic activity were 6.5 and 65 degrees C, respectively. The extinction coefficient (epsilon2801%) of the enzyme was estimated as 37.12, and the protein molecule consists of 35 tryptophan, 76 tyrosine, and seven cysteine residues. The effect of several inhibitors such as iodoacetic acid, diisopropylfluorophosphate, phenyl-methanesulfonyl fluoride, chymostatin, soybean trypsin inhibitor, HgCl2, 3S-3-(N-{(S)-1-[N-(4-guanidinobutyl)carbamoyl]3-ethylbutyl}carbamoyl)oxirane-2-carboxylic acid, N-ethyl maleimide, ethylene glycol-bis(alpha-amino ethyl ether)tetraacetic acid, ethylenediamminetetraacetic acid, and o-phenonthroline indicates that carnein belongs to the family of serine proteases. The enzyme is not prone to autolysis even at very low concentrations. The N-terminal sequence of carnein (T-T-H-S-P-E-F-L-G-L-A-E-S-S-G-L-X-P-N-S) exhibited considerable similarity to those of other plant serine proteases; the highest similarity was with alnus AG12, one of the subtilase family endopepetidases.

  4. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2010-01-01

    Full Text Available Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent.

  5. Control of serine integrase recombination directionality by fusion with the directionality factor.

    Science.gov (United States)

    Olorunniji, Femi J; McPherson, Arlene L; Rosser, Susan J; Smith, Margaret C M; Colloms, Sean D; Stark, W Marshall

    2017-08-21

    Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-07-01

    Full Text Available Abstract The fractionation of serine protease inhibitor (SPI from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000 precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP, bastard halibut (BH, skipjack tuna (ST, and yellowfin tuna (YT roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR, chymotrypsin (CH, trypsin (TR, papain-EDTA (PED, and alcalase (AL as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%, were the PEG1 fraction (0–5 %, w/v against cysteine proteases (BR and PA and the PEG4 fraction (20–40 %, w/v against serine proteases (CH and TR. The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg followed by ST (6687 and 2064 U/mg, YT (3951 and 1536 U/mg, and BH (538 and 98 U/mg. The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

  7. HATL5: a cell surface serine protease differentially expressed in epithelial cancers.

    Directory of Open Access Journals (Sweden)

    Gregory S Miller

    Full Text Available Over the last two decades, cell surface proteases belonging to the type II transmembrane serine protease (TTSP family have emerged as important enzymes in the mammalian degradome, playing critical roles in epithelial biology, regulation of metabolic homeostasis, and cancer. Human airway trypsin-like protease 5 (HATL5 is one of the few family members that remains uncharacterized. Here we demonstrate that HATL5 is a catalytically active serine protease that is inhibited by the two Kunitz type serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI-1 and 2, as well as by serpinA1. Full-length HATL5 is localized on the cell surface of cultured mammalian cells as demonstrated by confocal microscopy. HATL5 displays a relatively restricted tissue expression profile, with both transcript and protein present in the cervix, esophagus, and oral cavity. Immunohistochemical analysis revealed an expression pattern where HATL5 is localized on the cell surface of differentiated epithelial cells in the stratified squamous epithelia of all three of these tissues. Interestingly, HATL5 is significantly decreased in cervical, esophageal, and head and neck carcinomas as compared to normal tissue. Analysis of cervical and esophageal cancer tissue arrays demonstrated that the squamous epithelial cells lose their expression of HATL5 protein upon malignant transformation.

  8. Structure-Based Mechanism for Early PLP-Mediated Steps of Rabbit Cytosolic Serine Hydroxymethyltransferase Reaction

    Directory of Open Access Journals (Sweden)

    Martino L. Di Salvo

    2013-01-01

    Full Text Available Serine hydroxymethyltransferase catalyzes the reversible interconversion of L-serine and glycine with transfer of one-carbon groups to and from tetrahydrofolate. Active site residue Thr254 is known to be involved in the transaldimination reaction, a crucial step in the catalytic mechanism of all pyridoxal 5′-phosphate- (PLP- dependent enzymes, which determines binding of substrates and release of products. In order to better understand the role of Thr254, we have expressed, characterized, and determined the crystal structures of rabbit cytosolic serine hydroxymethyltransferase T254A and T254C mutant forms, in the absence and presence of substrates. These mutants accumulate a kinetically stable gem-diamine intermediate, and their crystal structures show differences in the active site with respect to wild type. The kinetic and crystallographic data acquired with mutant enzymes permit us to infer that conversion of gem-diamine to external aldimine is significantly slowed because intermediates are trapped into an anomalous position by a misorientation of the PLP ring, and a new energy barrier hampers the transaldimination reaction. This barrier likely arises from the loss of the stabilizing hydrogen bond between the hydroxymethyl group of Thr254 and the ε-amino group of active site Lys257, which stabilizes the external aldimine intermediate in wild type SHMTs.

  9. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  10. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids.

    Science.gov (United States)

    Zhang, Gen; He, Li-Sheng; Him Wong, Yue; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-10-05

    The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands.

  11. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  12. Structure of haptoglobin heavy chain and other serine protease homologs by comparative model building

    Energy Technology Data Exchange (ETDEWEB)

    Grer, J.

    1980-10-01

    Proteins often occur in families whose structure is closely similar, even though the proteins may come from widely different sources and have quite distinct functions. It would be useful to be able to construct the three-dimensional structure of these proteins from the known structure of one or more of them without having to solve the structure of each protein ab initio. We have been using comparative model building to derive the structure of an unusual protein of the trypsin-like serine protease family. We have recently extended this comparison to include other serine protease homologs for which a primary structure is available. To generate structures for the different members of the serine protease family, it is necessary to extract the common structural features of the molecule. Fortunately, three independently determined protein structures are available: schymotrypsin, trypsin, and elastase. These three structures were compared in detail and the structurally conserved regions in all three, mainly the BETA-sheet and the ..cap alpha..-helix, were identified. The variable portions occur in the loops on the surface of the molecule. By using these structures, the primary sequences of these three proteins were aligned. From this alignment, it is clear that sequence homology between the proteins occurs mainly in the structurally conserved regions of the molecule, while the variable portions show very little sequence homology.

  13. A 25-kDa serine peptidase with keratinolytic activity secreted by Coccidioides immitis.

    Science.gov (United States)

    Lopes, Bárbara Gabriela Brum; Santos, André Luis Souza Dos; Bezerra, Cláudia de Carvalho Falci; Wanke, Bodo; Dos Santos Lazéra, Márcia; Nishikawa, Marília Martins; Mazotto, Ana Maria; Kussumi, Vânia Monteiro; Haido, Rosa Maria Tavares; Vermelho, Alane Beatriz

    2008-07-01

    Coccidioides immitis is the causative agent of coccidioidomycosis, a systemic mycosis that attacks humans and a wide variety of animals. In the present study, we showed that the C. immitis mycelial form is able to release proteolytic enzyme into the extracellular environment. Under chemically defined growth conditions, mycelia secreted seven distinct polypeptides ranging from 15 to 65 kDa and an extracellular peptidase of 25 kDa. This enzyme had its activity fully inhibited by phenylmethylsulphonyl fluoride, a serine peptidase inhibitor. Conversely, metallo, cysteine, and aspartyl peptidase inhibitors did not alter the 25-kDa enzyme behavior. This extracellular serine peptidase was able to degrade keratin, a fibrous protein that composes human epidermis. Additionally, this peptidase cleaved different protein substrates, including gelatin, casein, hemoglobin, and albumin. Curiously, an 18-kDa serine peptidase activity was evidenced solely when casein was used as the co-polymerized protein substrate into the gel. The existence of different secreted peptidases could be advantageous for the adaptation of C. immitis to distinct environments during its complex life cycle.

  14. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

    Directory of Open Access Journals (Sweden)

    James P R Connolly

    2016-01-01

    Full Text Available The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.

  16. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    Science.gov (United States)

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that

  17. Purification and Functional Characterisation of Rhinocerase, a Novel Serine Protease from the Venom of Bitis gabonica rhinoceros

    Science.gov (United States)

    Vaiyapuri, Sakthivel; Harrison, Robert A.; Bicknell, Andrew B.; Gibbins, Jonathan M.; Hutchinson, Gail

    2010-01-01

    Background Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes. PMID:20300193

  18. Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances L-serine production.

    Science.gov (United States)

    Chao, H; Wu, B; Shen, P

    2015-10-01

    Increase in L-serine production is of interest for industry. Here, we describe a metabolic engineering approach to increase the production of L-serine in a methylotrophic bacterium. mxaF, the gene encoding the large subunit of a methanol dehydrogenase, was cloned from Methylobacterium sp. MB200 through transposon mutagenesis. Deletion of mxaF gene prevented the strain to grow on methanol, suggesting that mxaF is involved in methanol metabolism. Overexpression of mxaF gene in the strain MB200 resulted in a fivefold increase in methanol dehydrogenase activity compared to the wild-type. Resting cell assays showed that the recombinant strain accumulated 6·6 mg ml(-1) L-serine in 72 h with 30 mg ml(-1) wet cells from 50 mg ml(-1) glycine and 50 mg ml(-1) methanol, representing a 1·5-fold increment for L-serine production in contrast to the wild-type strain. These results demonstrate that the potential for improving the production of L-serine can be achieved by overexpressing mxaF gene in methylotrophic bacteria. The amount of L-serine produced each year worldwide is relatively small compared with the amounts of the other amino acids and hence it is in great demand. Here, we describe a metabolic engineering approach to increase the production of L-serine in a methylotrophic bacterium Methylobacterium sp. MB200. The result demonstrates that raising the output of L-serine can be achieved by overexpressing mxaF gene in methylotrophic bacteria. © 2015 The Society for Applied Microbiology.

  19. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization

    OpenAIRE

    Winkler, Ingrid G.; Hendy, Jean; Coughlin, Paul; Horvath, Anita; Lévesque, Jean-Pierre

    2005-01-01

    Mobilization of hematopoietic progenitor cells into the blood involves a massive release of neutrophil serine proteases in the bone marrow. We hypothesize that the activity of these neutrophil serine proteases is regulated by the expression of naturally occurring inhibitors (serpina1 and serpina3) produced locally within the bone marrow. We found that serpina1 and serpina3 were transcribed in the bone marrow by many different hematopoietic cell populations and that a strong reduction in expre...

  20. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  1. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200.

    Science.gov (United States)

    Shen, Peihong; Chao, Hongjun; Jiang, Chengjian; Long, Zhangde; Wang, Changhao; Wu, Bo

    2010-03-01

    Microbial fermentation using methylotrophic bacteria is one of the most promising methods for L-serine production. Here we describe the metabolic engineering of a Methylobacterium strain to increase the production of L-serine. The glyA gene, encoding serine hydroxymethyltransferase (SHMT), was isolated from the genomic DNA of Methylobacterium sp. MB200, using a DNA fragment encoding Methylobacterium extorquens AM1 SHMT as a probe, and inserted into the vector pLAFR3. The resulting construct was transformed into Methylobacterium sp. MB200 using triparental mating. The genetic-engineered strain, designated as Methylobacterium sp. MB202, was shown to produce 11.4 + or - 0.6 mg/ml serine in resting cell reactions from 30 mg/ml wet cells, 20 mg/ml glycine, and 70 mg/ml methanol in 2 days, representing a 4.4-fold increase from that of the wild strain. The results demonstrated the potential for improving L-serine production by manipulating the glyA in bacteria and should facilitate the production of L-serine using Methylobacterium sp. strains.

  2. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  4. Zika virus-like particle (VLP) based vaccine

    Science.gov (United States)

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  5. CHLORELLA VIRUSES

    Science.gov (United States)

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  6. Virus Crystallography

    Science.gov (United States)

    Fry, Elizabeth; Logan, Derek; Stuart, David

    Crystallography provides a means of visualizing intact virus particles as well as their isolated constituent proteins and enzymes (1-3) at near-atomic resolution, and is thus an extraordinarily powerful tool in the pursuit of a fuller understanding of the functioning of these simple biological systems. We have already expanded our knowledge of virus evolution, assembly, antigenic variation, and host-cell interactions; further studies will no doubt reveal much more. Although the rewards are enormous, an intact virus structure determination is not a trivial undertaking and entails a significant scaling up in terms of time and resources through all stages of data collection and processing compared to a traditional protein crystallographic structure determination. It is the methodology required for such studies that will be the focus of this chapter. The computational requirements were satisfied in the late 1970s, and when combined with the introduction of phase improvement techniques utilizing the virus symmetry (4,5), the application of crystallography to these massive macromolecular assemblies became feasible. This led to the determination of the first virus structure (the small RNA plant virus, tomato bushy stunt virus), by Harrison and coworkers in 1978 (6). The structures of two other plant viruses followed rapidly (7,8). In the 1980s, a major focus of attention was a family of animal RNA viruses; the Picornaviridae.

  7. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  8. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    Science.gov (United States)

    Ip, Peng Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W; Daemen, Toos

    2014-01-01

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8+ T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections. PMID:24370701

  9. Rapid and sensitive homogenous detection of the Ibaraki virus non-structural protein using magnetic modulation biosensing system

    Science.gov (United States)

    Danielli, Amos; Porat, Noga; Arie, Ady; Ehrlich, Marcelo

    2010-02-01

    Magnetic modulation biosensing (MMB) system rapidly and homogeneously detected coding sequences of the nonstructural Ibaraki virus protein 3 (NS3) complementary DNA (cDNA). A novel fluorescent resonance energy transfer (FRET)-based probe discriminated the target DNA from the control. When the target sequence is detected, the FRETbased probe is cleaved using Taq-polymerase activity and upon excitation with a laser beam fluorescent light is produced. The biotinylated probes are attached to streptavidin-coupled superparamagnetic beads and are maneuvered into oscillatory motion by applying an alternating magnetic field gradient. The beads are condensed into the detection area and their movement in and out of an orthogonal laser beam produces a periodic fluorescent signal that is demodulated using synchronous detection. Condensation of the beads from the entire volume increases the signal while modulation separates the signal from the background noise of the non-magnetized solution. 1.9 picomolar of the Ibaraki virus NS3 cDNA was detected in homogeneous solution within 18 minutes without separation or washing steps. In this paper we will review the magnetic modulation system and present its capability in specific DNA sequences detection.

  10. Oncogenic Potential of Hepatitis C Virus Proteins

    Directory of Open Access Journals (Sweden)

    Ranjit Ray

    2010-09-01

    Full Text Available Chronic hepatitis C virus (HCV infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC. The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.

  11. Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction

    Science.gov (United States)

    Marnata, Caroline; Saulnier, Aure; Mompelat, Dimitri; Krey, Thomas; Cohen, Lisette; Boukadida, Célia; Warter, Lucile; Fresquet, Judith; Vasiliauskaite, Ieva; Escriou, Nicolas; Cosset, François-Loïc; Rey, Felix A.; Lanford, Robert E.; Karayiannis, Peter; Rose, Nicola J.; Lavillette, Dimitri

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. IMPORTANCE Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal

  12. Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction.

    Science.gov (United States)

    Marnata, Caroline; Saulnier, Aure; Mompelat, Dimitri; Krey, Thomas; Cohen, Lisette; Boukadida, Célia; Warter, Lucile; Fresquet, Judith; Vasiliauskaite, Ieva; Escriou, Nicolas; Cosset, François-Loïc; Rey, Felix A; Lanford, Robert E; Karayiannis, Peter; Rose, Nicola J; Lavillette, Dimitri; Martin, Annette

    2015-12-01

    Hepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal model for this

  13. CHANDIPURA VIRUS

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. CHANDIPURA VIRUS. First isolated from a village called Chandipura near Nagpur in 1965 in India. Belongs to rhabdoviridae family. Used as a Model System to study RNA virus multiplication in the infected cell at molecular level. Notes:

  14. Clinical and metabolic consequences of L-serine supplementation in hereditary sensory and autonomic neuropathy type 1C.

    Science.gov (United States)

    Auranen, Mari; Toppila, Jussi; Suriyanarayanan, Saranya; Lone, Museer A; Paetau, Anders; Tyynismaa, Henna; Hornemann, Thorsten; Ylikallio, Emil

    2017-11-01

    Hereditary sensory neuropathy type 1 (HSAN1) may be the first genetic neuropathy amenable to a specific mechanism-based treatment, as L-serine supplementation can be used to lower the neurotoxic levels of 1-deoxysphingolipids (1-deoxySL) that cause the neurodegeneration. The treatment is so far untested in HSAN1C caused by variants in the serine palmitoyl transferase subunit 2 (SPTLC2) gene. The aim of this study was to establish whether oral L-serine lowers 1-deoxySL in a patient with HSAN1C, to perform a dose escalation to find the minimal effective dose, and to assess the safety profile and global metabolic effects of the treatment. Our patient underwent a 52-wk treatment in which the L-serine dose was titrated up to 400 mg/kg/day. She was followed up by repeated clinical examination, nerve conduction testing, and skin biopsies to document effects on small nerve fibers. Serum was assayed for 1-deoxySL and metabolomics analysis of 111 metabolites. We found a robust lowering of 1-deoxySL, which correlated in a near-linear fashion with increased serum L-serine levels. Metabolomics analysis showed a modest elevation in glycine and a marked reduction in the level of cytosine, whereas most of the other assayed metabolites did not change. There were no direct side effects from the treatment, but the patient developed a transitory toe ulceration during the course of the study. The Charcot-Marie-Tooth neuropathy score increased by 1 point. We conclude that oral supplementation of L-serine decreases 1-deoxySL in HSAN1C without major global effects on metabolism. L-serine is therefore a potential treatment for HSAN1C. © 2017 Auranen et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    Science.gov (United States)

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  16. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  17. D-configuration of serine is crucial in maintaining the phalloidin-like conformation of viroisin.

    Science.gov (United States)

    Zanotti, G; Kobayashi, N; Munekata, E; Zobeley, S; Faulstich, H

    1999-08-17

    NMR studies have revealed that the conformation of the monocyclic viroisin is dissimilar to that of the corresponding monocyclic derivative of phalloidin, dethiophalloidin, but has much similarity with the conformation of the bicyclic phalloidin. Obviously, one of three structural features found exclusively in the virotoxins is able to compensate for the conformational strain that in the bicyclic phallotoxins maintains the toxic conformation. Synthetic work on virotoxin analogues has shown that both the additional hydroxy group in allo-hydroxyproline and the methylsulfonyl moiety in the 2'-position of tryptophan are unlikely to represent the structural element in question, leaving the D-serine moiety as the supposed key element. In this study we asked whether it is the hydroxy group of this amino acid or its D-configuration that is responsible for the effect. We synthesized four viroisin analogues and submitted them to conformational analysis by NMR as well as to an actin binding assay. While the rotating-frame nuclear Overhauser effect (ROESY) spectra of the analogues with L-configured amino acids showed several sets of signals, indicating the existence of conformers interconverting more slowly than the NMR time scale, the spectra of the analogues with D-configured amino acids showed only one set of signals. Remarkably, the two viroisin analogues with D-serine and D-alanine also had distinctly higher affinities for filamentous actin than their L-configured counterparts, suggesting that the high biological activity may be correlated with the absence of multiple and slowly interconverting conformers. Anyhow, D-configuration of serine is the structural element that maintains the phalloidin-like structure, while the hydroxy group does not contribute to conformational stability but is likely to be in contact with the actin surface.

  18. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival.

    Science.gov (United States)

    Kugadas, Abirami; Lamont, Elise A; Bannantine, John P; Shoyama, Fernanda M; Brenner, Evan; Janagama, Harish K; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  19. Serine proteolytic pathway activation reveals an expanded ensemble of wound response genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rachel A Patterson

    Full Text Available After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues.

  20. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  1. Characterization of a serine proteinase homologous (SPH) in Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Qin, Chuanjie; Chen, Liqiao; Qin, Jian G; Zhao, Daxian; Zhang, Hao; Wu, Ping; Li, Erchao

    2010-01-01

    The serine protease homologous (SPH) is an important cofactor of prophenoloxidase-activating enzyme (PPAE). The gene of SPH of Chinese mitten crab Eriocheir sinensis (EsSPH) in hemocytes was cloned and characterized using reverse transcript polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The SPH cDNA consisted of 1386 bp with an open reading frame (ORF) encoded a protein of 378 amino acids, 154 bp 5'-untranslated region, and 95 bp 3'-untranslated region. Sequence comparisons against the GenBank database showed that EsSPH deduced amino acids had an overall identity to the gene of serine protease family from 41% to 70% of 15 invertebrate species. The protein had the structural characteristics of SPH, including the conserved six cysteine residues in the N-terminal clip domain and the functional activity (His157, Asp209, Gly311) in the C-terminal serine proteinase-like domain. To analyze the role of EsSPH in an acute infection, the temporal expression of the EsSPH gene after the Aeromonas hydrophila challenge was measured by real-time RT-PCR. The EsSPH transcripts in hemocytes significantly increased at 6 h, 12 h and 48 h over time after the A. hydrophila injection. This expression pattern shows that EsSPH has the potential to defend against invading microorganisms. The mRNA transcripts of EsSPH were detected in all tissues with the highest in the hepatopancreas. Interestingly, the mRNA transcripts of EsSPH and proPO were found in ova and expressed in oosperms, suggesting that the maternal transfer of EsSPH and proPO may exit in crab, but this warrants confirmation in further research.

  2. Phylogenesys and homology modeling in Zika virus epidemic: food for thought.

    Science.gov (United States)

    Angeletti, Silvia; Lo Presti, Alessandra; Giovanetti, Marta; Grifoni, Alba; Amicosante, Massimo; Ciotti, Marco; Alcantara, Luiz-Carlos J; Cella, Eleonora; Ciccozzi, Massimo

    Zika virus (ZIKV) is an emerging Flavivirus that have recently caused an outbreak in Brazil and rapid spread in several countries. In this study, the consequences of ZIKV evolution on protein recognition by the host immune system have been analyzed. Evolutionary analysis was combined with homology modeling and T-B cells epitope predictions. Two separate clades, the African one with the Uganda sequence, as the most probable ancestor, and the second one containing all the most recent sequences from the equatorial belt were identified. Brazilian strains clustered all together and closely related to the French Polynesia isolates. A strong presence of a negatively selected site in the envelope gene (Env) protein was evidenced, suggesting a probable purging of deleterious polymorphisms in functionally important genes. Our results show relative conservancy of ZIKV sequences when envelope and other non-structural proteins (NS3 and NS5) are analyzed by homology modeling. However, some regions within the consensus sequence of NS5 protein and to a lesser extent in the envelope protein, show localized high mutation frequency corresponding to a considerable alteration in protein stability. In terms of viral immune escape, envelope protein is under a higher selective pressure than NS5 and NS3 proteins for HLA class I and II molecules. Moreover, envelope mutations that are not strictly related to T-cell immune responses are mostly located on the surface of the protein in putative B-cell epitopes, suggesting an important contribution of B cells in the immune response as well.

  3. Global origin and transmission of hepatitis C virus nonstructural protein 3 Q80K polymorphism.

    Science.gov (United States)

    McCloskey, Rosemary M; Liang, Richard H; Joy, Jeffrey B; Krajden, Mel; Montaner, Julio S G; Harrigan, P Richard; Poon, Art F Y

    2015-04-15

    Hepatitis C virus (HCV) has a naturally occurring polymorphism, Q80K, in the nonstructural protein 3 (NS3) gene encoding the viral protease, which has been associated with reduced susceptibility to the direct-acting antiviral inhibitor simeprevir. Q80K is observed predominantly in HCV genotype 1a and seldom in other HCV genotypes; moreover, it has a markedly high prevalence in the United States. Here, we reconstruct the evolutionary history of this polymorphism to investigate why it is so highly localized in prevalence and whether it is stably transmitted between hosts. We found that the majority (96%) of HCV infections carrying Q80K were descended from a single lineage in which a Q80K substitution occurred around the 1940s in the United States, which implies that this polymorphism is likely highly transmissible. Furthermore, we identified 2 other substitutions in NS3 that may interact with Q80K and contribute to its stability. Our results imply that the current distribution and prevalence of Q80K are unlikely to change significantly in the short term. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom.

    Science.gov (United States)

    Patiño, Arley Camilo; Pereañez, Jaime Andrés; Gutiérrez, José María; Rucavado, Alexandra

    2013-03-01

    Two clotting serine proteinases, named Cdc SI and Cdc SII, were isolated and characterized for the first time from Colombian Crotalus durissus cumanensis snake venom. The enzymes were purified using two chromatographic steps: molecular exclusion on Sephacryl S-200 and RP-HPLC on C8 Column. The molecular masses of the proteins, determined by MALDI-TOF mass spectrometry, were 28,561.4 and 28,799.2 Da for Cdc SI and Cdc SII, respectively. The aim of the present study was to evaluate enzymatic, coagulant and toxic properties of the two enzymes. The serine proteinases hydrolyzed specific chromogenic substrate (BaPNA) and exhibited a Michaelis-Menten behavior. Cdc SI had V(max) of 0.038 ± 0.003 nmol/min and K(M) of 0.034 ± 0.017 mM, while Cdc SII displayed values of V(max) of 0.267 ± 0.011 nmol/min and K(M) of 0.145 ± 0.023 mM. N-terminal sequences were VIGGDEXNIN and VIGGDICNINEHNFLVALYE for Cdc SI and Cdc SII, respectively. Molecular masses, N-terminal sequences, inhibition assays, and enzymatic profile suggest that Cdc SI and Cdc SII belong to the family of snake venom thrombin-like enzymes. These serine proteinases differed in their clotting activity on human plasma, showing a minimum coagulant dose of 25 μg and 0.571 μg for Cdc SI and Cdc SII, respectively. Enzymes also showed coagulant activity on bovine fibrinogen and degraded chain α of this protein. Toxins lack hemorrhagic and myotoxic activities, but are capable to induce defibrin(ogen)ation, moderate edema, and an increase in vascular permeability. These serine proteinases may contribute indirectly to the local hemorrhage induced by metalloproteinases, by causing blood clotting disturbances, and might also contribute to cardiovascular alterations characteristic of patients envenomed by C. d. cumanensis in Colombia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Loering, Svenja; Sørensen, Anna Lahn

    2017-01-01

    Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cel-lular level. It is upregulated in neurodegenerative diseases and cancer although...... its function is far from clear. Here, we report the finding of a new binding partner to MIF, the ser-ine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the func-tion of the binding between...

  6. Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal

    Directory of Open Access Journals (Sweden)

    K. Rajesh

    2014-01-01

    Full Text Available Nonlinear optical single crystal of organic amino acid L-Serine (LS was grown by slow evaporation technique. Solubility study of the compound was measured and metastable zone width was found. Single crystal X-ray diffraction study was carried out for the grown crystal. The linear and nonlinear optical properties of the crystal were confirmed by UV-Vis analysis and powder SHG tester. FT-IR spectrum was recorded and functional groups were analyzed. Vickers’ microhardness studies showed the mechanical strength of the grown crystal. Laser damage threshold value of the crystal was calculated. Photoconductivity studies reveal the conductivity of the crystal.

  7. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  8. Distal hinge of plasminogen activator inhibitor-1 involves its latency transition and specificities toward serine proteases

    Directory of Open Access Journals (Sweden)

    Shaltiel Shmuel

    2003-07-01

    Full Text Available Abstract Background The plasminogen activator inhibitor-1 (PAI-1 spontaneously converts from an inhibitory into a latent form. Specificity of PAI-1 is mainly determined by its reactive site (Arg346-Met347, which interacts with serine residue of tissue-type plasminogen activator (tPA with concomitant formation of SDS-stable complex. Other sites may also play roles in determining the specificity of PAI-1 toward serine proteases. Results To understand more about the role of distal hinge for PAI-1 specificities towards serine proteases and for its conformational transition, wild type PAI-1 and its mutants were expressed in baculovirus system. WtPAI-1 was found to be about 12 fold more active than the fibrosarcoma PAI-1. Single site mutants within the Asp355-Arg356-Pro357 segment of PAI-1 yield guanidine activatable inhibitors (a that can still form SDS stable complexes with tPA and urokinase plasminogen activator (uPA, and (b that have inhibition rate constants towards plasminogen activators which resemble those of the fibrosarcoma inhibitor. More importantly, latency conversion rate of these mutants was found to be ~3–4 fold faster than that of wtPAI-1. We also tested if Glu351 is important for serine protease specificity. The functional stability of wtPAI-1, Glu351Ala, Glu351Arg was about 18 ± 5, 90 ± 8 and 14 ± 3 minutes, respectively, which correlated well with both their corresponding specific activities (84 ± 15 U/ug, 112 ± 18 U/ug and 68 ± 9 U/ug, respectively and amount of SDS-stable complex formed with tPA after denatured by Guanidine-HCl and dialyzed against 50 mM sodium acetate at 4°C. The second-order rate constants of inhibition for uPA, plasmin and thrombin by Glu351Ala and Glu351Arg were increased about 2–10 folds compared to wtPAI-1, but there was no change for tPA. Conclusion The Asp355-Pro357 segment and Glu351 in distal hinge are involved in maintaining the inhibitory conformation of PAI-1. Glu351 is a specificity

  9. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    Science.gov (United States)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  10. Comparative characterization of Aedes 3-hydroxykynurenine transaminase/alanine glyoxylate transaminase and Drosophila serine pyruvate aminotransferase.

    Science.gov (United States)

    Han, Qian; Li, Jianyong

    2002-09-11

    This study describes the comparative analysis of two insect recombinant aminotransferases, Aedes aegypti 3-hydroxykynurenine (3-HK) transaminase/alanine glyoxylate aminotransferase (Ae-HKT/AGT) and Drosophila melanogaster serine pyruvate aminotransferase (Dm-Spat), which share 52% identity in their amino acid sequences. Both enzymes showed AGT activity. In addition, Ae-HKT/AGT is also able to catalyze the transamination of 3-HK or kynurenine with glyoxylate, pyruvate or oxaloacetate as the amino acceptor. Kinetic analysis and other data suggest that Ae-HKT/AGT plays a critical role in mosquito tryptophan catabolism by detoxifying 3-HK and that Dm-Spat is primarily involved in glyoxylate detoxification.

  11. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Řezáč, Jan; Fanfrlík, Jindřich; Otyepka, M.; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-01

    Roč. 89, Jan 7 (2015), s. 189-197 ISSN 0223-5234 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : NMDA receptor * pyridoxal-5 '-phosphate-dependent enzyme * human/mouse serine racemase * malonate-based inhibitors * semiempirical quantum mechanical calculations Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  12. Identification and Characterization of a Novel Non-Structural Protein of Bluetongue Virus

    Science.gov (United States)

    Ratinier, Maxime; Caporale, Marco; Golder, Matthew; Franzoni, Giulia; Allan, Kathryn; Nunes, Sandro Filipe; Armezzani, Alessia; Bayoumy, Amr; Rixon, Frazer; Shaw, Andrew; Palmarini, Massimo

    2011-01-01

    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell. PMID:22241985

  13. Recovery and identification of West Nile virus from a hawk in winter.

    Science.gov (United States)

    Garmendia, A E; Van Kruiningen, H J; French, R A; Anderson, J F; Andreadis, T G; Kumar, A; West, A B

    2000-08-01

    West Nile virus was recovered from the brain of a red-tailed hawk that died in Westchester County, N.Y., in February 2000. Multiple foci of glial cells, lymphocytes, and a few pyknotic nuclei were observed in the brain. Three to 4 days after inoculation of Vero cells with brain homogenates, cytopathic changes were detected. The presence of West Nile virus antigen in fixed cells or cell lysates was revealed by fluorescent antibody testing or enzyme-linked immunosorbent assay, respectively. Furthermore, Reverse transcriptase-PCR with primers specific for the NS3 gene of West Nile virus resulted in an amplicon of the expected size (470 bp). Electron microscopy of thin sections of infected Vero cells revealed the presence of viral particles approximately 40 nm in diameter, within cytoplasmic vesicles. The demonstration of infection with the West Nile virus in the dead of the winter, long after mosquitoes ceased to be active, is significant in that it testifies to the survival of the virus in the region beyond mosquito season and suggests another route of transmission: in this case, prey to predator.

  14. Characterization of a second open reading frame in genome segment 10 of bluetongue virus

    Science.gov (United States)

    Stewart, Meredith; Hardy, Alexandra; Barry, Gerald; Pinto, Rute Maria; Caporale, Marco; Melzi, Eleonora; Hughes, Joseph; Taggart, Aislynn; Janowicz, Anna; Varela, Mariana

    2015-01-01

    Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF. PMID:26290332

  15. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    Full Text Available Abstract Background Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr, which contributes to an increase in the steady-state (adapted methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA and an adaptor protein (CheW, but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation. Results Methyl group incorporation was measured in a series of membrane samples in which the Tsr molecules were engineered to have one available methyl-accepting glutamate residue (297, 304, 311 or 493. The relative rates at these sites (0.14, 0.05, 0.05 and 1, respectively differed from those found previously for the aspartate receptor (Tar, which was in part due to sequence differences between Tar and Tsr near site four. The addition of CheW generated unexpectedly large and site-specific rate increases, equal to or larger than the increases produced by serine. The increases produced by serine and CheW (added separately were the largest at site one, ~3 and 6-fold, respectively, and the least at site four, no change and ~2-fold, respectively. The rate increases were even larger when serine and CheW were added together, larger than the sums of the increases produced by serine and CheW added separately (except site four. This resulted in substantially larger serine-stimulated increases when CheW was present. Also, CheW enhanced methylation rates when either two or all four sites were available. Conclusion The increase in the rate of receptor methylation upon CheW binding contributes significantly to the ligand specificity and kinetics of sensory adaptation. The synergistic effect of

  16. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  17. Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes

    Science.gov (United States)

    Tanahashi, Shunske; Yamamura, Satoshi; Nakagawa, Masanori; Motomura, Eishi; Okada, Motohiro

    2012-01-01

    BACKGROUND AND PURPOSE Deficient transmission at the glutamate NMDA receptor is considered a key component of the pathophysiology of schizophrenia. However, the effects of antipsychotic drugs on the release of the endogenous NMDA receptor partial agonist, d-serine, remain to be clarified. EXPERIMENTAL APPROACH We determined the interaction between antipsychotic drugs (clozapine and haloperidol) and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on the release of L-glutamate and d-serine in the medial prefrontal cortex (mPFC) of freely moving rats, using microdialysis, and primary cultures of astrocytes using extreme high-pressure liquid chromatography. KEY RESULTS Release of L-glutamate and d-serine in the mPFC and in cultured astrocytes was inhibited by tetanus toxin (a synaptobrevin inhibitor) and fluorocitrate (a glial toxin), whereas tetrodotoxin (a voltage-sensitive Na+ blocker) inhibited depolarization-induced L-glutamate release in the mPFC without affecting that of d-serine. Clozapine (1 and 5 mg·kg−1), but not haloperidol (0.5 and 1 mg·kg−1), dose-dependently increased L-glutamate and d-serine release from both astrocytes and mPFC. Clozapine-induced release of L-glutamate and d-serine was also reduced by tetanus toxin and fluorocitrate. Tetrodotoxin reduced clozapine-induced mPFC L-glutamate release but not that of d-serine. Clozapine-induced L-glutamate release preceded clozapine-induced d-serine release. MK-801 (a NMDA receptor antagonist) inhibited the delayed clozapine-induced L-glutamate release without affecting that of d-serine. CONCLUSIONS AND IMPLICATIONS Clozapine predominantly activated glial exocytosis of d-serine, and this clozapine-induced d-serine release subsequently enhances neuronal L-glutamate release via NMDA receptor activation. The enhanced d-serine associated glial transmission seems a novel mechanism of action of clozapine but not haloperidol. PMID:21880034

  18. ‘Heat-Treatment Aqueous Two Phase System’ for Purification of Serine Protease from Kesinai (Streblus asper Leaves

    Directory of Open Access Journals (Sweden)

    Shuhaimi Mustafa

    2011-12-01

    Full Text Available A ‘Heat treatment aqueous two phase system’ was employed for the first time to purify serine protease from kesinai (Streblus asper leaves. In this study, introduction of heat treatment procedure in serine protease purification was investigated. In addition, the effects of different molecular weights of polyethylene glycol (PEG 4000, 6000 and 8000 at concentrations of 8, 16 and 21% (w/w as well as salts (Na-citrate, MgSO4 and K2HPO4 at concentrations of 12, 15, 18% (w/w on serine protease partition behavior were studied. Optimum conditions for serine protease purification were achieved in the PEG-rich phase with composition of 16% PEG6000-15% MgSO4. Also, thermal treatment of kesinai leaves at 55 °C for 15 min resulted in higher purity and recovery yield compared to the non-heat treatment sample. Furthermore, this study investigated the effects of various concentrations of NaCl addition (2, 4, 6 and 8% w/w and different pH (4, 7 and 9 on the optimization of the system to obtain high yields of the enzyme. The recovery of serine protease was significantly enhanced in the presence of 4% (w/w of NaCl at pH 7.0. Based on this system, the purification factor was increased 14.4 fold and achieved a high yield of 96.7%.

  19. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  20. Hemoglobin Decrease with Iron Deficiency Induced by Daclatasvir plus Asunaprevir Combination Therapy for Chronic Hepatitis C Virus Genotype 1b.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsumoto

    Full Text Available Decreased hemoglobin (Hb level has been supposed to be a relatively rare side effect of a combination therapy against hepatitis C virus that consists of the NS5A inhibitor daclatasvir (DCV and the NS3/4A protease inhibitor asunaprevir (ASV.The study was conducted in 75 patients with genotype 1b chronic hepatitis C virus infection who had started combination therapy with DCV and ASV at St. Marianna University School of Medicine Hospital between September 2014 and December 2014.Among the patients examined, decreased Hb level by ≥1.5 g/dL from the values at treatment initiation was observed in 11 individuals. This was accompanied by decreased mean corpuscular volume, and iron and ferritin levels.These findings suggest that the mechanism of the phenomenon is caused by iron deficiency. The underlying mechanism and clinical impacts will need to be further examined.

  1. Computer viruses

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  2. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    Science.gov (United States)

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates.

  3. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    Directory of Open Access Journals (Sweden)

    Joanna Homa

    Full Text Available Formation of extracellular traps (ETs capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA, histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i facilitating decondensation of chromatin by citrullination of histones, and (ii serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27 and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates.

  4. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells

    Directory of Open Access Journals (Sweden)

    Jeehye Maeng

    2015-04-01

    Full Text Available Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.

  5. Serum response factor MADS box serine -162 phosphorylation switches proliferation and myogenic gene programs

    Science.gov (United States)

    Iyer, Dinakar; Chang, David; Marx, Joe; Wei, Lei; Olson, Eric N.; Parmacek, Michael S.; Balasubramanyam, Ashok; Schwartz, Robert J.

    2006-01-01

    Phosphorylation of a cluster of amino acids in the serum response factor (SRF) “MADS box” αI coil DNA binding domain regulated the transcription of genes associated with proliferation or terminal muscle differentiation. Mimicking phosphorylation of serine-162, a target of protein kinase C-α, with an aspartic acid substitution (SRF-S162D) completely inhibited SRF–DNA binding and blocked α-actin gene transcription even in the presence of potent myogenic cofactors, while preserving c-fos promoter activity because of stabilization of the ternary complex via Elk-1. Introduction of SRF-S162D into SRF null ES cells permitted transcription of the c-fos gene but was unable to rescue expression of myogenic contractile genes. Transition of proliferating C2C12 myoblasts to postfusion myocytes after serum withdrawal was associated with a progressive decline in SRF-S162 phosphorylation and an increase in α-actin gene expression. Hence, the phosphorylation status of serine-162 in the αI coil may constitute a novel switch that directs target gene expression into proliferation or differentiation programs. PMID:16537394

  6. Crystal Structure of the Catalytic Domain of a Serine Threonine Protein Phosphatase

    Science.gov (United States)

    Swinglel, Mark; Honkanel, Richard; Ciszak, Ewa

    2003-01-01

    Reversible phosphorylation of serine and threonine residues is a well-recognized mechanism in eukaryotic cells for the regulation of cell-cycle progression, cell growth and metabolism. Human serine/threonine phosphatases can be placed into two major families, PPP and PPM. To date the structure on one PPP family member (PPl) has been determined. Here we present the structure of a 323-residue catalytic domain of a second phosphatase belonging to the PPP family of enzyme. catalytic domain of the enzyme has been determined to 1.60Angstrom resolution and refined to R=17.5 and Rfree = 20.8%. The catalytic domain possesses a unique fold consisting of a largely monolithic structure, divisible into closely-associated helical and sheet regions. The catalytic site contains two manganese ions that are involved in substrate binding and catalysis. The enzyme crystallizes as a dimer that completely buries catalytic surfaces of both monomers, Also, the structure shows evidence of some flexibility around the active site cleft that may be related to substrate specificity of this enzyme.

  7. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Chemical modification of serine at the active site of penicillin acylase from Kluyvera citrophila.

    Science.gov (United States)

    Martín, J; Slade, A; Aitken, A; Arche, R; Virden, R

    1991-01-01

    The site of reaction of penicillin acylase from Kluyvera citrophila with the potent inhibitor phenylmethanesulphonyl fluoride was investigated by incubating the inactivated enzyme with thioacetic acid to convert the side chain of the putative active-site serine residue to that of cysteine. The protein product contained one thiol group, which was reactive towards 2,2'-dipyridyl disulphide and iodoacetic acid. Carboxymethylcysteine was identified as the N-terminal residue of the beta-subunit of the carboxy[3H]methylthiol-protein. No significant changes in tertiary structure were detected in the modified penicillin acylase using near-u.v. c.d. spectroscopy. However, the catalytic activity (kcat) with either an anilide or an ester substrate was decreased in the thiol-protein by a factor of more than 10(4). A comparison of sequences of apparently related acylases shows no other extensive regions of conserved sequence containing an invariant serine residue. The side chain of this residue is proposed as a candidate nucleophile in the formation of an acyl-enzyme during catalysis. PMID:1764029

  9. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    Science.gov (United States)

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  10. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  11. The conformation change and tumor suppressor role of Merlin are both independent of Serine 518 phosphorylation.

    Science.gov (United States)

    Xing, Wancai; Li, Meng; Zhang, Fayou; Ma, Xing; Long, Jiafu; Zhou, Hao

    2017-11-04

    Merlin functions as a tumor suppressor and suppresses malignant activity of cancer cells through multiple mechanisms. However, whether Serine 518 phosphorylation regulates the conformation of Merlin as well as the open-closed conformational changes affect Merlin's tumor inhibitory activity remain controversial. In this study, we used different mutants to mimic related conformational states of Merlin and investigated its physiological functions. Our results showed that the phosphorylation at Serine 518 has no influence on Merlin's conformation, subcellular localization, or cell proliferation inhibitory activity. As a fully closed conformational state, the A585W mutant loses the ability to recruit Lats2 to the cell membrane, but it does not affect its subcellular distribution or cell proliferation inhibitory activity. As a fully open conformational state, mimicking the conformation of Merlin isoform II, the ΔEL mutant has the same physiological function as the wild type Merlin isoform I. Collectively, we provide for the first time in vivo evidence that the function of Merlin, as a tumor suppressor is independent of its conformational change. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Midgut serine proteinases and alternative host plant utilization in Pieris brassicae L.

    Directory of Open Access Journals (Sweden)

    Rakesh eKumar

    2015-03-01

    Full Text Available Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of theworld. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolummajus L., of the family Tropaeolaceae. Proteolytic digestion was studied in larvaefeeding on multiple hosts. Fourth instars were collected from cauliflower fields beforetransfer onto detached, aerial tissues of selected host plants in the lab. Variable levels ofmidgut serine proteinases were detected in larvae fed on different hosts using proteinsubstrates (casein and recombinant RBCL cloned from cauliflower and diagnostic,synthetic substrates. Qualitative changes in midgut trypsin activities and quantitativechanges in midgut chymotrypsin activities were implicated in physiological adaptation oflarvae transferred to T. majus. Midgut proteolytic activities were inhibited to differentextents by serine proteinase inhibitors, including putative trypsin inhibitors isolated fromherbivore-attacked and herbivore-free leaves of cauliflower (CfTI and T. majus (TpTI.Transfer of larvae to T. majus significantly influenced feeding parameters but notnecessarily when transferred to different tissues of the same host. Results obtained arerelevant for devising sustainable pest management strategies, including transgenicapproaches using genes encoding plant protease inhibitors.

  13. Realizing Serine/Threonine Ligation: Scope and Limitations and Mechanistic Implication Thereof

    Directory of Open Access Journals (Sweden)

    Clarence T. T. Wong

    2014-05-01

    Full Text Available Serine/Threonine ligation (STL has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the serine/threonine ligation strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val and Ile is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.

  14. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases.

    Science.gov (United States)

    Uritsky, Neta; Shokhen, Michael; Albeck, Amnon

    2016-01-26

    General-base catalysis in serine proteases still poses mechanistic challenges despite decades of research. Whether proton transfer from the catalytic Ser to His and nucleophilic attack on the substrate are concerted or stepwise is still under debate, even for the classical Asp-His-Ser catalytic triad. To address these key catalytic steps, the transformation of the Michaelis complex to tetrahedral complex in the covalent inhibition of two prototype serine proteases was studied: chymotrypsin (with the catalytic triad) inhibition by a peptidyl trifluoromethane and GlpG rhomboid (with Ser-His dyad) inhibition by an isocoumarin derivative. The sampled MD trajectories of averaged pKa  values of catalytic residues were QM calculated by the MD-QM/SCRF(VS) method on molecular clusters simulating the active site. Differences between concerted and stepwise mechanisms are controlled by the dynamically changing pKa  values of the catalytic residues as a function of their progressively reduced water exposure, caused by the incoming ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    Science.gov (United States)

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder.

    Directory of Open Access Journals (Sweden)

    James J Valdés

    Full Text Available A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions.We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases.By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.

  17. A serine proteinase homologue, SPH-3, plays a central role in insect immunity.

    Science.gov (United States)

    Felföldi, Gabriella; Eleftherianos, Ioannis; Ffrench-Constant, Richard H; Venekei, István

    2011-04-15

    Numerous vertebrate and invertebrate genes encode serine proteinase homologues (SPHs) similar to members of the serine proteinase family, but lacking one or more residues of the catalytic triad. These SPH proteins are thought to play a role in immunity, but their precise functions are poorly understood. In this study, we show that SPH-3 (an insect non-clip domain-containing SPH) is of central importance in the immune response of a model lepidopteran, Manduca sexta. We examine M. sexta infection with a virulent, insect-specific, Gram-negative bacterium Photorhabdus luminescens. RNA interference suppression of bacteria-induced SPH-3 synthesis severely compromises the insect's ability to defend itself against infection by preventing the transcription of multiple antimicrobial effector genes, but, surprisingly, not the transcription of immune recognition genes. Upregulation of the gene encoding prophenoloxidase and the activity of the phenoloxidase enzyme are among the antimicrobial responses that are severely attenuated on SPH-3 knockdown. These findings suggest the existence of two largely independent signaling pathways controlling immune recognition by the fat body, one governing effector gene transcription, and the other regulating genes encoding pattern recognition proteins.

  18. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection

    Science.gov (United States)

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D. A.; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M.

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas. PMID:27530689

  19. Novel Serine 176 Phosphorylation of YBX1 Activates NF-κB in Colon Cancer.

    Science.gov (United States)

    Martin, Matthew; Hua, Laiqing; Wang, Benlian; Wei, Han; Prabhu, Lakshmi; Hartley, Antja-Voy; Jiang, Guanglong; Liu, Yunlong; Lu, Tao

    2017-02-24

    Y box protein 1 (YBX1) is a well known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Previously, we have shown that YBX1 could function as a tumor promoter through phosphorylation of its Ser-165 residue, leading to the activation of the NF-κB signaling pathway (1). In this study, using mass spectrometry analysis, we discovered a distinct phosphorylation site, Ser-176, on YBX1. Overexpression of the YBX1-S176A (serine-to-alanine) mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB-activating ability compared with that of WT-YBX1, confirming that Ser-176 phosphorylation is critical for the activation of NF-κB by YBX1. Importantly, the mutant of Ser-176 and the previously reported Ser-165 sites regulate distinct groups of NF-κB target genes, suggesting the unique and irreplaceable function of each of these two phosphorylated serine residues. Our important findings could provide a novel cancer therapy strategy by blocking either Ser-176 or Ser-165 phosphorylation or both of YBX1 in colon cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A novel serine protease secreted by medicinal maggots enhances plasminogen activator-induced fibrinolysis.

    Directory of Open Access Journals (Sweden)

    Mariena J A van der Plas

    Full Text Available Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis.

  1. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  2. Purification and characterization of manganese-dependent alkaline serine protease from Bacillus pumilus TMS55.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Karutha Pandian, Shunmugiah

    2011-01-01

    The purification and characterization of a Mn2+-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be 60 degreesC. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. Mn2+ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants (H2O2, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.

  3. Purification and molecular cloning of a novel serine protease from the centipede, Scolopendra subspinipes mutilans.

    Science.gov (United States)

    You, Weon-Kyoo; Sohn, Young-Doug; Kim, Ki-Yong; Park, Doo-Hong; Jang, Yangsoo; Chung, Kwang-Hoe

    2004-03-01

    A novel serine protease, named as scolonase, was purified and characterized from the tissue of the Korean centipede, Scolopendra subspinipes mutilans. Purified scolonase showed an apparent molecular weight of 25 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and an isoelectric point of 4.8 on isoelectric focusing gel. Scolonase was able to preferentially hydrolyze arginine over lysine at the cleavage site among the several synthetic peptide substrates. Scolonase has also a potent fibrinolytic activity by converting human Glu-plasminogen to activated plasmin due to the specific cleavage of the molecule at the peptide bond Arg(561)-Val(562). The enzyme activity of scolonase was completely inhibited by phenylmethanesulfonyl fluoride and difluorophosphate. The cDNA encoding scolonase was cloned from the cDNA library of the centipede constructed with oligonucleotide probe, which was designed on the basis of the N-terminal amino acid sequence of scolonase. The deduced complete amino acid sequence of scolonase demonstrated that the protein is composed of 277 amino acids including 33 amino acids as a leader sequence, and that it has significant sequence homology with other serine proteases.

  4. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  5. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  6. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    Science.gov (United States)

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  7. Characterization of a family of novel cysteine- serine-rich nuclear proteins (CSRNP.

    Directory of Open Access Journals (Sweden)

    Sébastien Gingras

    2007-08-01

    Full Text Available Gene array analysis has been widely used to identify genes induced during T cell activation. Our studies identified an immediate early gene that is strongly induced in response to IL-2 in mouse T cells which we named cysteine- serine-rich nuclear protein-1 (CSRNP-1. The human ortholog was previously identified as an AXIN1 induced gene (AXUD1. The protein does not contain sequence defined domains or motifs annotated in public databases, however the gene is a member of a family of three mammalian genes that share conserved regions, including cysteine- and serine-rich regions and a basic domain, they encode nuclear proteins, possess transcriptional activation domain and bind the sequence AGAGTG. Consequently we propose the nomenclature of CSRNP-1, -2 and -3 for the family. To elucidate the physiological functions of CSRNP-1, -2 and -3, we generated mice deficient for each of these genes by homologous recombination in embryonic stem cells. Although the CSRNP proteins have the hallmark of transcription factors and CSRNP-1 expression is highly induced by IL-2, deletion of the individual genes had no obvious consequences on normal mouse development, hematopoiesis or T cell functions. However, combined deficiencies cause partial neonatal lethality suggesting that the genes have redundant functions.

  8. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins

    Directory of Open Access Journals (Sweden)

    Soares Célia MA

    2010-11-01

    Full Text Available Abstract Background Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM. Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. Results A cDNA (Pbsp encoding a secreted serine protease (PbSP, was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. Conclusions A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.

  9. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription.

    Directory of Open Access Journals (Sweden)

    Mark Ou

    Full Text Available During herpes simplex virus 1 (HSV-1 infection there is a loss of the serine-2 phosphorylated form of RNA polymerase II (RNAP II found in elongation complexes. This occurs in part because RNAP II undergoes ubiquitination and proteasomal degradation during times of highly active viral transcription, which may result from stalled elongating complexes. In addition, a viral protein, ICP22, was reported to trigger a loss of serine-2 RNAP II. These findings have led to some speculation that the serine-2 phosphorylated form of RNAP II may not be required for HSV-1 transcription, although this form is required for cellular transcription elongation and RNA processing. Cellular kinase cdk9 phosphorylates serine-2 in the C-terminal domain (CTD of RNAP II. To determine if serine-2 phosphorylated RNAP II is required for HSV-1 transcription, we inhibited cdk9 during HSV-1 infection and measured viral gene expression. Inhibition was achieved by adding cdk9 inhibitors 5,6-dichlorobenzimidazone-1-β-D-ribofuranoside (DRB or flavopiridol (FVP or by expression of a dominant-negative cdk9 or HEXIM1, which in conjunction with 7SK snRNA inhibits cdk9 in complex with cyclin 1. Here we report that inhibition of cdk9 resulted in decreased viral yields and levels of late proteins, poor formation of viral transcription-replication compartments, reduced levels of poly(A+ mRNA and decreased RNA synthesis as measured by uptake of 5-bromouridine into nascent RNA. Importantly, a global reduction in viral mRNAs was seen as determined by microarray analysis. We conclude that serine-2 phosphorylation of the CTD of RNAP II is required for HSV-1 transcription.

  10. Characterization of virologic escape in hepatitis C virus genotype 1b patients treated with the direct-acting antivirals daclatasvir and asunaprevir.

    Science.gov (United States)

    Karino, Yoshiyasu; Toyota, Joji; Ikeda, Kenji; Suzuki, Fumitaka; Chayama, Kazuaki; Kawakami, Yoshiiku; Ishikawa, Hiroki; Watanabe, Hideaki; Hernandez, Dennis; Yu, Fei; McPhee, Fiona; Kumada, Hiromitsu

    2013-04-01

    Daclatasvir and asunaprevir are NS5A and NS3 protease-targeted antivirals currently under development for treatment of chronic hepatitis C virus infection. Clinical data on baseline and on-treatment correlates of drug resistance and response to these agents are currently limited. Hepatitis C virus genotype 1b Japanese patients (prior null responders to PegIFN-α/RBV [n=21] or PegIFN-α/RBV ineligible or intolerant [n=22]) were administered daclatasvir/asunaprevir for 24 weeks during a phase 2a open-label study. Genotypic and phenotypic analyses of NS3 and NS5A substitutions were performed at baseline, after virologic failure, and post-treatment through follow-up week 36. There were three viral breakthroughs and four relapsers. Baseline NS3 polymorphisms (T54S, Q80L, V170M) at amino acid positions previously associated with low-level resistance (daclatasvir resistance (daclatasvir-resistant substitutions persisted through 48weeks post-treatment, whereas asunaprevir-resistant substitutions were no longer detectable. Overall, 5/10 patients with baseline NS5A-Y93H experienced virologic failure, while 5/10 achieved a sustained virologic response. The potential association of a pre-existing NS5A-Y93H polymorphism with virologic failure on daclatasvir/asunaprevir combination treatment will be examined in larger studies. The persistence of treatment-emergent daclatasvir- and asunaprevir-resistant substitutions will require assessment in longer-term follow-up studies. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Viperin is induced following dengue virus type-2 (DENV-2 infection and has anti-viral actions requiring the C-terminal end of viperin.

    Directory of Open Access Journals (Sweden)

    Karla J Helbig

    Full Text Available The host protein viperin is an interferon stimulated gene (ISG that is up-regulated during a number of viral infections. In this study we have shown that dengue virus type-2 (DENV-2 infection significantly induced viperin, co-incident with production of viral RNA and via a mechanism requiring retinoic acid-inducible gene I (RIG-I. Viperin did not inhibit DENV-2 entry but DENV-2 RNA and infectious virus release was inhibited in viperin expressing cells. Conversely, DENV-2 replicated to higher tires earlier in viperin shRNA expressing cells. The anti-DENV effect of viperin was mediated by residues within the C-terminal 17 amino acids of viperin and did not require the N-terminal residues, including the helix domain, leucine zipper and S-adenosylmethionine (SAM motifs known to be involved in viperin intracellular membrane association. Viperin showed co-localisation with lipid droplet markers, and was co-localised and interacted with DENV-2 capsid (CA, NS3 and viral RNA. The ability of viperin to interact with DENV-2 NS3 was associated with its anti-viral activity, while co-localisation of viperin with lipid droplets was not. Thus, DENV-2 infection induces viperin which has anti-viral properties residing in the C-terminal region of the protein that act to restrict early DENV-2 RNA production/accumulation, potentially via interaction of viperin with DENV-2 NS3 and replication complexes. These anti-DENV-2 actions of viperin show both contrasts and similarities with other described anti-viral mechanisms of viperin action and highlight the diverse nature of this unique anti-viral host protein.

  12. Molecular cloning and expression analysis of chymotrypsin-like serine protease from the redclaw crayfish (Cherax quadricarinatus): a possible role in the junior and adult innate immune systems.

    Science.gov (United States)

    Fang, Di-An; Huang, Xian-Ming; Zhang, Zhi-Qin; Xu, Dong-Po; Zhou, Yan-Feng; Zhang, Min-Ying; Liu, Kai; Duan, Jin-Rong; Shi, Wei-Gang

    2013-06-01

    A novel chymotrypsin-like serine protease (CLSP) was isolated from the hepatopancreas of the redclaw crayfish Cherax quadricarinatus (Cq-chy). The full-length cDNA of Cq-chy contains 951 nucleotides encodes a peptide of 270 amino acids. The mature peptide comprising 223 amino acids contains the conserved catalytic triad (H, D, and S). Similarity analysis showed that Cq-chy shares high identity with chymotrypsins from the fiddler crab; Uca pugilator. Cq-chy mRNA expression in C. quadricarinatus was shown to be: (a) tissue-related with the highest expression in the hepatotpancreas and widely distributed, (b) highly responsive in the hepatopancreas to White Spot Syndrome Virus (WSSV) challenge, and (c) differently regulated in immature and adult crayfish. In this study we successfully isolated Cq-chy. Our observations indicate that Cq-chy is differently involved in the immature and adult innate immune reactions, thus suggesting a role for CLSPs in the invertebrate innate immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Similar prevalence of low-abundance drug-resistant variants in treatment-naive patients with genotype 1a and 1b hepatitis C virus infections as determined by ultradeep pyrosequencing.

    Science.gov (United States)

    Margeridon-Thermet, Severine; Le Pogam, Sophie; Li, Lewyn; Liu, Tommy F; Shulman, Nancy; Shafer, Robert W; Najera, Isabel

    2014-01-01

    Hepatitis C virus (HCV) variants that confer resistance to direct-acting-antiviral agents (DAA) have been detected by standard sequencing technology in genotype (G) 1 viruses from DAA-naive patients. It has recently been shown that virological response rates are higher and breakthrough rates are lower in G1b infected patients than in G1a infected patients treated with certain classes of HCV DAAs. It is not known whether this corresponds to a difference in the composition of G1a and G1b HCV quasispecies in regards to the proportion of naturally occurring DAA-resistant variants before treatment. We used ultradeep pyrosequencing to determine the prevalence of low-abundance (<25% of the sequence reads) DAA-resistant variants in 191 NS3 and 116 NS5B isolates from 208 DAA-naive G1-infected patients. A total of 3.5 million high-quality reads of ≥ 200 nucleotides were generated. The median coverage depth was 4150x and 4470x per NS3 and NS5B amplicon, respectively. Both G1a and G1b populations showed Shannon entropy distributions, with no difference between G1a and G1b in NS3 or NS5B region at the nucleotide level. A higher number of substitutions that confer resistance to protease inhibitors were observed in G1a isolates (mainly at amino acid 80 of the NS3 region). The prevalence of amino acid substitutions that confer resistance to NS5B non-nucleoside inhibitors was similar in G1a and G1b isolates. The NS5B S282T variant, which confers resistance to the polymerase inhibitors mericitabine and sofosbuvir, was not detected in any sample. The quasispecies genetic diversity and prevalence of DAA-resistant variants was similar in G1a and G1b isolates and in both NS3 and NS5B regions, suggesting that this is not a determinant for the higher level of DAA resistance observed across G1a HCV infected patients upon treatment.

  14. Similar prevalence of low-abundance drug-resistant variants in treatment-naive patients with genotype 1a and 1b hepatitis C virus infections as determined by ultradeep pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Severine Margeridon-Thermet

    Full Text Available Hepatitis C virus (HCV variants that confer resistance to direct-acting-antiviral agents (DAA have been detected by standard sequencing technology in genotype (G 1 viruses from DAA-naive patients. It has recently been shown that virological response rates are higher and breakthrough rates are lower in G1b infected patients than in G1a infected patients treated with certain classes of HCV DAAs. It is not known whether this corresponds to a difference in the composition of G1a and G1b HCV quasispecies in regards to the proportion of naturally occurring DAA-resistant variants before treatment.We used ultradeep pyrosequencing to determine the prevalence of low-abundance (<25% of the sequence reads DAA-resistant variants in 191 NS3 and 116 NS5B isolates from 208 DAA-naive G1-infected patients.A total of 3.5 million high-quality reads of ≥ 200 nucleotides were generated. The median coverage depth was 4150x and 4470x per NS3 and NS5B amplicon, respectively. Both G1a and G1b populations showed Shannon entropy distributions, with no difference between G1a and G1b in NS3 or NS5B region at the nucleotide level. A higher number of substitutions that confer resistance to protease inhibitors were observed in G1a isolates (mainly at amino acid 80 of the NS3 region. The prevalence of amino acid substitutions that confer resistance to NS5B non-nucleoside inhibitors was similar in G1a and G1b isolates. The NS5B S282T variant, which confers resistance to the polymerase inhibitors mericitabine and sofosbuvir, was not detected in any sample.The quasispecies genetic diversity and prevalence of DAA-resistant variants was similar in G1a and G1b isolates and in both NS3 and NS5B regions, suggesting that this is not a determinant for the higher level of DAA resistance observed across G1a HCV infected patients upon treatment.

  15. Extraterrestrial Viruses?

    OpenAIRE

    Jurado Hernández, Daniel José

    2017-01-01

    Fundamentals of Life - Origin and Fundamentals of Living Things. Evaluation rubric to evaluate the debate and presentation about the point of view regarding the possibility of viruses from the outer space.

  16. Polymorphisms of clip domain serine proteinase and serine proteinase homolog in the swimming crab Portunus trituberculatus and their association with Vibrio alginolyticus

    Science.gov (United States)

    Liu, Meng; Liu, Yuan; Hui, Min; Song, Chengwen; Cui, Zhaoxia

    2017-03-01

    Clip domain serine proteases (cSPs) and their homologs (SPHs) play an important role in various biological processes that are essential components of extracellular signaling cascades, especially in the innate immune responses of invertebrates. Here, polymorphisms of PtcSP and PtSPH from the swimming crab Portunus trituberculatus were investigated to explore their association with resistance/susceptibility to Vibrio alginolyticus. Polymorphic loci were identified using Clustal X, and characterized with SPSS 16.0 software, and then the significance of genotype and allele frequencies between resistant and susceptible stocks was determined by a χ 2 test. A total of 109 and 77 single nucleotide polymorphisms (SNPs) were identified in the genomic fragments of PtcSP and PtSPH, respectively. Notably, nearly half of PtSPH polymorphisms were found in the non-coding exon 1. Fourteen SNPs investigated were significantly associated with susceptibility/resistance to V. alginolyticus ( P <0.05). Among them, eight SNPs were observed in introns, and one synonymous, four non-synonymous SNPs and one ins-del were found in coding exons. In addition, five simple sequence repeats (SSRs) were detected in intron 3 of PtcSP. Although there was no statistically significant difference of allele frequencies, the SSRs showed different polymorphic alleles on the basis of the repeat number between resistant and susceptible stocks. After further validation, polymorphisms investigated here might be applied to select potential molecular markers of P. trituberculatus with resistance to V. alginolyticus.

  17. Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3

    DEFF Research Database (Denmark)

    Woetmann, A; Nielsen, M; Christensen, S T

    1999-01-01

    STAT3. We show that an inhibitor of protein phosphatases (PPs) PP1/PP2A, calyculin A, induces (i) phosphorylation of STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phosphorylation and DNA binding activity, and (iii) relocation of STAT3 from the nucleus to the cytoplasm......, whereas inhibitors of serine/threonine kinases, such as mitogen-activated protein kinase-1 extracellular-regulated kinase-kinase, mitogen-activated protein p38 kinase, and phosphatidylinositol 3-kinase, did not. In conclusion, we provide evidence that PP2A plays a crucial role in the regulation of STAT3....... Similar results were obtained with other PP2A inhibitors (okadaic acid, endothall thioanhydride) but not with inhibitors of PP1 (tautomycin) or PP2B (cyclosporine A). Pretreatment with the broad serine/threonine kinase inhibitor staurosporine partly blocked the calyculin A-induced STAT3 phosphorylation...

  18. Paracoccus seriniphilus sp. nov., an L-serine-dehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa.

    Science.gov (United States)

    Pukall, Rüdiger; Laroche, Marc; Kroppenstedt, Reiner M; Schumann, Peter; Stackebrandt, Erko; Ulber, Roland

    2003-03-01

    A novel marine Gram-negative, non-motile, non-spore-forming, aerobic bacterium, associated with the bryozoan Bugula plumosa, was isolated in a screening programme for strains containing enzymes able to convert the amino acid L-serine. Strain MBT-A4T produced L-serine dehydratase and was able to grow on L-serine as the sole carbon and nitrogen source. The nearest phylogenetic neighbour was Paracoccus marcusii, as determined by 16S rDNA sequence analysis (97.8% similarity). The DNA-DNA reassociation value obtained for Paracoccus marcusii DSM11574T and MBT-A4T was 32.6%. The major ubiquinone was 0-10. Based on genotypic, chemotaxonomic and physiological characteristics, a new species of the genus Paracoccus is proposed, Paracoccus seriniphilus sp. nov., the type strain being strain MBT-A4T (=DSM 14827T =CIP 107400T).

  19. Zika Virus

    OpenAIRE

    Musso, Didier; Gubler, Duane J.

    2016-01-01

    Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especi...

  20. Targeting an Oncolytic Influenza A Virus to Tumor Tissue by Elastase

    Directory of Open Access Journals (Sweden)

    Irina Kuznetsova

    2017-12-01

    Full Text Available Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA, which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses. Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker “elastase cleavage site” in viral HA allows for safe, effective oncolytic virus therapy.

  1. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat.

    Directory of Open Access Journals (Sweden)

    Anette Ericsson

    Full Text Available The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%, largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra for glycine (45.5 ± 5.8 versus 17.4 ± 2.7 µmol/kg/min and serine (21.0 ± 1.4 versus 12.0 ± 1.0 in WY 14,643 versus control. Arginine was substantially decreased (-62% in plasma with estimated Ra reduced from 3.1 ± 0.3 to 1.2 ± 0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.

  2. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity

    Directory of Open Access Journals (Sweden)

    Price Brendan D

    2001-07-01

    Full Text Available Abstract Background The p53 protein is activated by genotoxic stress, oncogene expression and during senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53 activation is regulated by post-translational modification, including phosphorylation of the N-terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3, a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and regulates p53. Results The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-Ser(P when the C-terminal serine residue is already phosphorylated. Several p53 kinases were examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition. GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33 or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity. GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response. Conclusions GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33. However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead, GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

  3. Studies of Environmental Risk Factors in Amyotrophic Lateral Sclerosis (ALS) and a Phase I Clinical Trial of L-Serine.

    Science.gov (United States)

    Bradley, Walter G; Miller, R X; Levine, T D; Stommel, E W; Cox, P A

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) has been linked to Guam ALS/PDC and shown to produce neurodegeneration in vitro and in vivo (Drosophila, mice, rats, primates). BMAA misincorporation into neuroproteins produces protein misfolding and is inhibited by L-serine. Case-control studies in Northern New England indicate that living near to water-bodies with cyanobacterial blooms increases the risk of developing amyotrophic lateral sclerosis (ALS). The distribution of addresses of ALS cases in New Hampshire, Vermont, and Florida was compared to that of controls. Areas of statistically significantly increased numbers of ALS cases were examined for sources of environmental toxins. A phase I trial of oral L-serine was performed in 20 ALS patients (0.5 to 15 g twice daily). Safety and tolerability were assessed by comparing the rate of deterioration with 430 matched placebo controls. The distribution of residential addresses of ALS cases in New England and Florida revealed many areas where the age- and gender-adjusted frequency of ALS was greater than expected (P L-serine, two patients withdrew from because of gastrointestinal side effects. Three patients died during the study, which was about the expected number. The ALSFRS-R in the L-serine-treated patients showed a dose-related decrease in the rate of progression (34% reduction in slope, P = 0.044). The non-random distribution of addresses of ALS patients suggests that residential exposure to environmental pollutants may play an important role in the etiology of ALS. L-Serine in doses up to 15 g twice daily appears to be safe in patients with ALS. Exploratory studies of efficacy suggested that L-serine might slow disease progression. A phase II trial is planned.

  4. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  5. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    de Almeida Nogueira, Natália Pereira; Morgado-Díaz, José Andrés; Menna-Barreto, Rubem Figueiredo Sadok; Paes, Marcia Cristina; da Silva-López, Raquel Elisa

    2013-10-01

    It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

    Science.gov (United States)

    Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi

    2016-03-15

    Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Newcastle Disease Virus (PDQ)

    Science.gov (United States)

    ... to Ask about Your Treatment Research Newcastle Disease Virus (PDQ®)–Patient Version Overview Go to Health Professional ... Question 8 ). Questions and Answers About Newcastle Disease Virus What is Newcastle disease virus? Newcastle disease virus ( ...

  8. Powassan (POW) Virus Basics

    Science.gov (United States)

    ... Professionals Related Topics For International Travelers Powassan (POW) Virus Basics Download this fact sheet formatted for print: ... POW) Virus Fact Sheet (PDF) What is Powassan virus? Powassan (POW) virus is a flavivirus that is ...

  9. Computer Viruses. Technology Update.

    Science.gov (United States)

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  10. Alteration in plasma and striatal levels of d-serine after d-serine administration with or without nicergoline: An in vivo microdialysis study.

    Science.gov (United States)

    Onozato, Mayu; Nakazawa, Hiromi; Ishimaru, Katsuyuki; Nagashima, Chihiro; Fukumoto, Minori; Hakariya, Hitomi; Sakamoto, Tatsuya; Ichiba, Hideaki; Fukushima, Takeshi

    2017-09-01

    d-Serine (d-Ser), a co-agonist of N-methyl-d-aspartate receptor (NMDAR), is effective for treating schizophrenia. The present study investigated changes in plasma and striatal d-Ser levels in Sprague-Dawley (SD) rats after intraperitoneal d-Ser administration alone or together with nicergoline (Nic), a commercial cerebral ameliorating drug, using in vivo microdialysis (MD) to explore the function of Nic. Phosphate-buffered saline (PBS) or Nic (0, 1.0, or 3.0 mg/kg) followed by d-Ser (5.0, 10.0, 20.0, and 50.0 mg/kg for PBS or 20.0 mg/kg for Nic) was administered intraperitoneally to male SD rats, and the profiles of d-Ser levels in plasma and striatal MD samples were examined by high-performance liquid chromatography (HPLC) with fluorescence detection. The area under the curve (AUC) for the MD and plasma samples was also calculated and statistically compared among groups. AUC values of d-Ser increased in a d-Ser dose-dependent manner in plasma samples, while a proportional increase in the AUC values of striatal MD samples was only observed in d-Ser doses up to 20 mg/kg. The Nic co-administered group showed a significant increase in the AUC of plasma d-Ser in a Nic dose-dependent manner, but the AUC in striatal d-Ser significantly decreased with increasing Nic doses suggesting that Nic may prevent excess d-Ser from penetrating the central nervous system (CNS). Nic may prevent an excessive distribution of exogenous d-Ser, such as that from a dietary origin, into the CNS by suppressing excitatory neurotransmission through NMDAR.

  11. Viruses Avian influenza, bovine herpes, bovine viral diarrhea virus ...

    Indian Academy of Sciences (India)

    ... human cytomegalovirus, herpes simplex virus, human immunodeficiency virus I, influenza, lymphocytic choriomeningitis virus, measles, papilloma, rabies, respiratory syncitial virus, simian immunodeficiency virus, simian virus 40. Bacteria Borrelia burgdorferi (Lyme disease), Moraxella bovis, Mycobacterium tuberculosis, ...

  12. Outbreak and Cocirculation of Three Different Usutu Virus Strains in Eastern Germany.

    Science.gov (United States)

    Sieg, Michael; Schmidt, Volker; Ziegler, Ute; Keller, Markus; Höper, Dirk; Heenemann, Kristin; Rückner, Antje; Nieper, Hermann; Muluneh, Aemero; Groschup, Martin H; Vahlenkamp, Thomas W

    2017-09-01

    Usutu virus (USUV) is a mosquito-borne flavivirus accounting for large-scale deaths in resident bird populations. In this study, we show the introduction of USUV to Eastern Germany resulting in massive death of birds, particularly blackbirds (Turdus merula). We found that three diverse USUV lineages ("Europe 3," "Africa 2," and "Africa 3-like") circulated simultaneously. Moreover, we detected USUV in Culex pipiens in a region where no dead birds were reported, strengthening the need for mosquito monitoring to uncover the spread of arboviruses. Furthermore, phylogenetic analyses revealed that mutations accumulated, in particular, in the NS3 region within short time periods. In addition, comparison of whole-genome sequences showed that diverse isolates of the cluster "Africa 3-like" are cocirculating in Germany due to independent introduction events.

  13. Computer viruses

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, F.B.

    1986-01-01

    This thesis investigates a recently discovered vulnerability in computer systems which opens the possibility that a single individual with an average user's knowledge could cause widespread damage to information residing in computer networks. This vulnerability is due to a transitive integrity corrupting mechanism called a computer virus which causes corrupted information to spread from program to program. Experiments have shown that a virus can spread at an alarmingly rapid rate from user to user, from system to system, and from network to network, even when the best-availability security techniques are properly used. Formal definitions of self-replication, evolution, viruses, and protection mechanisms are used to prove that any system that allows sharing, general functionality, and transitivity of information flow cannot completely prevent viral attack. Computational aspects of viruses are examined, and several undecidable problems are shown. It is demonstrated that a virus may evolve so as to generate any computable sequence. Protection mechanisms are explored, and the design of computer networks that prevent both illicit modification and dissemination of information are given. Administration and protection of information networks based on partial orderings are examined, and probably correct automated administrative assistance is introduced.

  14. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms

    DEFF Research Database (Denmark)

    Thiel, S; Steffensen, R; Christensen, I J

    2007-01-01

    Mannan-binding lectin (MBL) and ficolins distinguish between self, non-self and altered-self by recognizing patterns of ligands on the surface of microorganisms or aberrant cells. When this happens MBL-associated serine protease-2 (MASP-2) is activated and cleaves complement factors to start...... Caucasians (416 ng/ml). In the Chinese population, we uncovered a novel four amino-acid tandem duplication (p.156_159dupCHNH) associated with low levels of MASP-2. The frequency of this mutation as well as the SNPs p.R99C, p.R118C, p.D120G, p.P126L and p.V377A were analyzed. The p.156_159dupCHNH was only...

  15. Serine Hydroxymethyltransferase Anchors de Novo Thymidylate Synthesis Pathway to Nuclear Lamina for DNA Synthesis*

    Science.gov (United States)

    Anderson, Donald D.; Woeller, Collynn F.; Chiang, En-Pei; Shane, Barry; Stover, Patrick J.

    2012-01-01

    The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks. PMID:22235121

  16. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.

    Science.gov (United States)

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L; Singh, Rajendra; Niranjan, Rampal S

    2012-01-01

    Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.

  17. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis

    Science.gov (United States)

    Gómez-Velasco, Anaximandro; Bach, Horacio; Rana, Amrita K.; Cox, Liam R.; Bhatt, Apoorva; Besra, Gurdyal S.

    2013-01-01

    Mycobacterium tuberculosis possesses a complex cell wall that is unique and essential for interaction of the pathogen with its human host. Emerging evidence suggests that the biosynthesis of complex cell-wall lipids is mediated by serine/threonine protein kinases (STPKs). Herein, we show, using in vivo radiolabelling, MS and immunostaining analyses, that targeted deletion of one of the STPKs, pknH, attenuates the production of phthiocerol dimycocerosates (PDIMs), a major M. tuberculosis virulence lipid. Comparative protein expression analysis revealed that proteins in the PDIM biosynthetic pathway are differentially expressed in a deleted pknH strain. Furthermore, we analysed the composition of the major lipoglycans, lipoarabinomannan (LAM) and lipomannan (LM), and found a twofold higher LAM/LM ratio in the mutant strain. Thus, we provide experimental evidence that PknH contributes to the production and synthesis of M. tuberculosis cell-wall components. PMID:23412844

  18. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  19. The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution

    DEFF Research Database (Denmark)

    Jürgensen, Vibeke Würtz; Jalkanen, Karl J.

    2006-01-01

    measured spectra. In addition, we compare to previously reported studies for both structural determination and spectral simulations and measurements. A comparison of the various ways to treat the effects of the environment and solvation on both the structure and the spectral properties is thoroughly...... investigated for one conformer, with the goal to determine which level of theory is appropriate to use in the systematic search of the conformational space. In addition, the effects of the counterion, here Cl- anion, are also investigated. Here we present the current state of the art in nanobiology, where...... the latest methods in experimental and theoretical vibrational spectroscopy are used to gain useful information about the coupling of the nuclear, electronic and magnetic degrees of freedom and structure of tri-L-serine and its capped peptide analog with the environment....

  20. The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity

    DEFF Research Database (Denmark)

    Peters, Diane E; Szabo, Roman; Friis, Stine

    2014-01-01

    . Prostasin null (Prss8(-/-)) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders...

  1. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia

    NARCIS (Netherlands)

    de Stoppelaar, Sacha F.; Bootsma, Hester J.; Zomer, Aldert; Roelofs, Joris J. T. H.; Hermans, Peter W. M.; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA

  2. Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Directory of Open Access Journals (Sweden)

    Jiesi Wang

    2017-05-01

    Full Text Available The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporte