WorldWideScience

Sample records for virus mediated gene

  1. Adeno-associated virus-mediated gene transfer.

    Science.gov (United States)

    Srivastava, Arun

    2008-09-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system. (c) 2008 Wiley-Liss, Inc.

  2. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jason Lamontagne

    2016-02-01

    Full Text Available Globally, a chronic hepatitis B virus (HBV infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  3. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  4. Adeno-associated virus-mediated delivery of genes to mouse spermatogonial stem cells.

    Science.gov (United States)

    Watanabe, Satoshi; Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Matoba, Shogo; Ogura, Atsuo; Shinohara, Takashi

    2017-01-01

    Spermatogenesis is a complicated process that originates from spermatogonial stem cells (SSCs), which have self-renewal activity. Because SSCs are the only stem cells in the body that transmit genetic information to the next generation, they are an attractive target for germline modification. Although several virus vectors have been successfully used to transduce SSCs, cell toxicity or insertional mutagenesis of the transgene has limited their usage. Adeno-associated virus (AAV) is unique among virus vectors because of its target specificity and low toxicity in somatic cells, and clinical trials have shown that it has promise for gene therapy. However, there are conflicting reports on the possibility of germline integration of AAV into the genome of male germ cells, including SSCs. Here, we examined the usefulness of AAV vectors for exploring germline gene modification in SSCs. AAV1 infected cultured SSCs without apparent toxicity. Moreover, SSCs that were infected in fresh testis cells generated normal appearing spermatogenic colonies after spermatogonial transplantation. A microinsemination experiment produced offspring that underwent excision of the floxed target gene by AAV1-mediated Cre expression. Analysis of the offspring DNA showed no evidence of AAV integration, suggesting a low risk of germline integration by AAV infection. Although more extensive experiments are required to assess the risk of germline integration, our results show that AAV1 is useful for genetic manipulation of SSCs, and gene transduction by AAV will provide a useful approach to overcome potential problems associated with previous virus vector-mediated gene transduction. © The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance.

    Science.gov (United States)

    Padgett, H S; Beachy, R N

    1993-05-01

    The genome of Ob, a tobamovirus that overcomes the N gene-mediated hypersensitive response (HR), was cloned as a cDNA, and its nucleotide sequence was determined. The genomic organization of Ob is similar to that of other tobamoviruses, consisting of 6506 nucleotides and containing at least four open reading frames. These open reading frames encode a 126-kD polypeptide with a 183-kD readthrough product, a 30.6-kD movement protein, and an 18-kD coat protein. A bacteriophage T7 promoter sequence was fused to the full-length cDNA clone to obtain infectious RNA transcripts. These transcripts, when inoculated onto tobacco plants, induced disease symptoms indistinguishable from plants inoculated with Ob viral RNA. To determine which viral factor is responsible for the resistance-breaking character of Ob, a recombinant virus was constructed in which the movement protein gene of tobacco mosaic virus was replaced with that of Ob. Cultivar Xanthi NN tobacco plants infected with this virus responded with an HR, indicating that the Ob movement protein alone does not act to overcome the N gene-mediated response. Following mutagenesis of the infectious Ob cDNA clone with hydroxylamine, populations of transcripts from the mutagenized DNA were inoculated onto Xanthi NN tobacco, and a variant that induced the HR was identified. The mutant was analyzed and found to contain a single nucleotide change in the 126-kD gene. Recreating the mutation in the Ob cDNA clone by site-directed mutagenesis resulted in a virus that caused symptoms identical to the chemically induced mutant.

  6. Detection of coat protein gene of nervous necrosis virus using loop-mediated isothermal amplification.

    Science.gov (United States)

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Oh, Myung-Joo; Kim, Jong-Oh; Lee, Sukchan; Lee, Taek-Kyun

    2016-03-01

    To establish a novel and highly specific loop-mediated isothermal amplification (LAMP) assay for the identification of nervous necrosis virus (NNV) infection. A set of synthesized primers was used to match the sequences of a specific region of the nnv gene from the National Center for Biotechnology Information database, not originating from NNV-infected fish, the efficiency and specificity of LAMP were measured dependent on the concentration of DNA polymerase and the reaction temperature and time. In addition, to determine species-specific LAMP primers, cross reactivity testing was applied to the reaction between NVV and other virus families including viral hemorrhagic septicemia virus and marine birnavirus. The optimized LAMP reaction carried out at 64 °C for 60 min, and above 4 U Bst DNA polymerase. The sensitivity of LAMP for the detection of nnv was thus about 10 times greater than the sensitivity of polymerase chain reaction. The LAMP assay primers were specific for the detection NNV infection in Epinephelus septemfasciatus. The development of LAMP primers based on genetic information from a public database, not virus-infected samples, may provide a very simple and convenient method to identify viral infection in aquatic organisms. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  7. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy.

    Science.gov (United States)

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-05-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD.

  8. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    OpenAIRE

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J.

    2012-01-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Reco...

  9. Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract.

    Science.gov (United States)

    Kurosaki, F; Uchibori, R; Mato, N; Sehara, Y; Saga, Y; Urabe, M; Mizukami, H; Sugiyama, Y; Kume, A

    2017-05-01

    An efficient adeno-associated virus (AAV) vector was constructed for the treatment of respiratory diseases. AAV serotypes, promoters and routes of administration potentially influencing the efficiency of gene transfer to airway cells were examined in the present study. Among the nine AAV serotypes (AAV1-9) screened in vitro and four serotypes (AAV1, 2, 6, 9) evaluated in vivo, AAV6 showed the strongest transgene expression. As for promoters, the cytomegalovirus (CMV) early enhancer/chicken β-actin (CAG) promoter resulted in more robust transduction than the CMV promoter. Regarding delivery routes, intratracheal administration resulted in strong transgene expression in the lung, whereas the intravenous and intranasal administration routes yielded negligible expression. The combination of the AAV6 capsid and CAG promoter resulted in sustained expression, and the intratracheally administered AAV6-CAG vector transduced bronchial cells and pericytes in the lung. These results suggest that AAV6-CAG vectors are more promising than the previously preferred AAV2 vectors for airway transduction, particularly when administered into the trachea. The present study offers an optimized strategy for AAV-mediated gene therapy for lung diseases, such as cystic fibrosis and pulmonary fibrosis.

  10. Inhalation of nebulized perfluorochemical enhances recombinant adenovirus and adeno-associated virus-mediated gene expression in lung epithelium.

    Science.gov (United States)

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J; Wang, Lili; Gao, Guang Ping; Kolls, Jay K; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J

    2012-04-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (pliquid perflubron, safely enhances lung gene expression.

  11. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    Science.gov (United States)

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  12. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  13. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  14. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Marathe, Rajendra; Dinesh-Kumar, S P

    2002-05-01

    The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.

  15. Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice

    Directory of Open Access Journals (Sweden)

    Gong Jianping

    2010-12-01

    Full Text Available Abstract Objective The purpose of the study was to explore the anti-tumor effect of ultrasound -targeted microbubble destruction mediated herpes simplex virus thymidine kinase (HSV-TK suicide gene system on mice hepatoma. Methods Forty mice were randomly divided into four groups after the models of subcutaneous transplantation tumors were estabilished: (1 PBS; (2 HSV-TK (3 HSV-TK+ ultrasound (HSV-TK+US; (4 HSV-TK+ultrasound+microbubbles (HSV-TK+US+MB. The TK protein expression in liver cancer was detected by western-blot. Applying TUNEL staining detected tumor cell apoptosis. At last, the inhibition rates and survival time of the animals were compared among all groups. Results The TK protein expression of HSV-TK+MB+US group in tumor-bearing mice tissues were significantly higher than those in other groups. The tumor inhibitory effect of ultrasound-targeted microbubble destruction mediated HSV-TK on mice transplantable tumor was significantly higher than those in other groups (p Conclusion Ultrasound-targeted microbubble destruction can effectively transfect HSV-TK gene into target tissues and play a significant inhibition effect on tumors, which provides a new strategy for gene therapy in liver cancer.

  16. Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

    Directory of Open Access Journals (Sweden)

    Daniel C. Chung

    2011-11-01

    Full Text Available Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

  17. Impact of capsid modifications by selected peptide ligands on recombinant adeno-associated virus serotype 2-mediated gene transduction.

    Science.gov (United States)

    Naumer, Matthias; Popa-Wagner, Ruth; Kleinschmidt, Jürgen A

    2012-10-01

    Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today's most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.

  18. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  19. Adeno-associated virus serotypes 1 to 5 mediated tumor cell directed gene transfer and improvement of transduction efficiency.

    Science.gov (United States)

    Hacker, Ulrich T; Wingenfeld, Lisa; Kofler, David M; Schuhmann, Natascha K; Lutz, Sandra; Herold, Tobias; King, Susan B S; Gerner, Franz M; Perabo, Luca; Rabinowitz, Joseph; McCarty, Douglas M; Samulski, Richard J; Hallek, Michael; Büning, Hildegard

    2005-11-01

    Gene therapy is an attractive new approach for the treatment of cancer. Therefore, the development of efficient vector systems is of crucial importance in this field. Different adeno-associated virus (AAV) serotypes have been characterized so far, which show considerable differences in tissue tropism. Consequently, we aimed to characterize the most efficient serotype for this application. To exclude all influences other than those provided by the capsid, all serotypes contained the same transgene cassette flanked by the AAV2 inverted terminal repeats. We systematically compared these vectors for efficiency in human cancer cell directed gene transfer. In order to identify limiting steps, the influence of second-strand synthesis and proteasomal degradation of AAV in a poorly transducible cell line were examined. AAV2 was the most efficient serotype in all solid tumor cells and primary melanoma cells with transduction rates up to 98 +/- 0.3%. Transduction above 70% could be reached with serotypes 1 (in cervical and prostate carcinoma) and 3 (in cervical, breast, prostate and colon carcinoma) using 1000 genomic particles per cell. In the colon carcinoma cell line HT-29 proteasomal degradation limited AAV1-AAV4-mediated gene transfer. Moreover, inefficient second-strand synthesis prevents AAV2-mediated transgene expression in this cell line. Recent advances in AAV-vector technology suggest that AAV-based vectors can be used for cancer gene therapy. Our comparative analysis revealed that, although AAV2 is the most promising candidate for such an application, serotypes 1 and 3 are valid alternatives. Furthermore, the use of self-complementary AAV vectors and proteasome inhibitors significantly improves cancer cell transduction. Copyright (c) 2005 John Wiley & Sons, Ltd.

  20. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo, E-mail: libochen888@hotmail.com [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Guo Guoying [Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Liu Tianjing; Guo Lihe [Division of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-07-15

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated {sup 125}I{sup -} up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T{sub 1/2eff} of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or {sup 131}I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%{+-}2.5%, 43.4%{+-}2.8% and 8.6%{+-}1.2% after exposure to {sup 131}I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  1. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus.

    Science.gov (United States)

    Di Nicola-Negri, Elisa; Brunetti, Angela; Tavazza, Mario; Ilardi, Vincenza

    2005-12-01

    We report the application of the hairpin-mediated RNA silencing technology for obtaining resistance to Plum pox virus (PPV) infection in Nicotiana benthamiana plants. Four sequences, covering the P1 and silencing suppressor HC-Pro genes of an Italian PPV M isolate, were introduced into N. benthamiana plants as two inverted repeats separated by an intron sequence under the transcriptional control of the Cauliflower Mosaic Virus 35S promoter. In a leaf disk infection assay, 38 out of 40 T0 transgenic plants were resistant to PPV infection. Eight lines, 2 for each construct, randomly selected among the 38 resistant plants were further analysed. Two hundred forty eight out of 253 T1 transgenic plants were resistant to local and systemic PPV infection. All transgenic single locus lines were completely resistant. These data indicate that the RNA silencing of PPV P1/HCPro sequences results in an efficient and predictable PPV resistance, which may be utilized in obtaining stone fruit plants resistant to the devastating Sharka disease.

  2. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  3. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    Science.gov (United States)

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection

    Science.gov (United States)

    Yang, Edward; Arvin, Ann M.

    2016-01-01

    ABSTRACT The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles

  5. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    Science.gov (United States)

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic

  6. Inhibition of Histone Deacetylation and DNA Methylation Improves Gene Expression Mediated by the Adeno-Associated Virus/Phage in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amin Hajitou

    2013-10-01

    Full Text Available Bacteriophage (phage, viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV. This novel AAV/phage hybrid (AAVP specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  7. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus

    Directory of Open Access Journals (Sweden)

    Chu Justin

    2010-02-01

    Full Text Available Abstract Background Dengue virus (DENV is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti

  8. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  9. Prevention of dopaminergic neuron death by adeno-associated virus vector-mediated GDNF gene transfer in rat mesencephalic cells in vitro.

    Science.gov (United States)

    Fan, D; Ogawa, M; Ikeguchi, K; Fujimoto, K; Urabe, M; Kume, A; Nishizawa, M; Matsushita, N; Kiuchi, K; Ichinose, H; Nagatsu, T; Kurtzman, G J; Nakano, I; Ozawa, K

    1998-05-22

    Glial cell line-derived neurotrophic factor (GDNF) is known as a potent neurotrophic factor for dopaminergic neurons. Since adeno-associated virus (AAV) vector is a suitable vehicle for gene transfer into neurons, rat E14 mesencephalic cells were transduced with an AAV vector expressing GDNF. When compared with mock transduction, a larger number of dopaminergic neurons survived in AAV-GDNF-transduced cultures (234% and 325% of controls at 1 and 2 weeks, respectively; P neurons in the latter cultures grew more prominent neurites than those in the former. These findings suggest that AAV vector-mediated GDNF gene transfer may prevent dopaminergic neuron death, and is therefore a logical approach for the treatment of Parkinson's disease.

  10. Gene delivery to the vasculature mediated by low-titre adeno-associated virus serotypes 1 and 5.

    Science.gov (United States)

    Sen, S; Conroy, S; Hynes, S O; McMahon, J; O'Doherty, A; Bartlett, J S; Akhtar, Y; Adegbola, T; Connolly, C E; Sultan, S; Barry, F; Katusic, Z S; O'Brien, T

    2008-02-01

    Vascular gene therapy requires safe and efficient gene transfer in vivo. Recombinant adeno-associated virus (AAV) is a promising viral vector but its use in the vasculature has produced conflicting results and serotypes other than AAV2 have not been intensively studied. We investigated the efficiency of alternative AAV serotypes for vascular gene delivery in vitro and in vivo. Vascular cell lines were transduced in vitro with AAV vectors. Rabbit carotid arteries were transduced with AAV1, 2 and 5 encoding enhanced green fluorescent protein (eGFP) ( approximately 1.4 x 10(9) DNAse-resistant particles (drp)). Gene transfer in vivo was assessed at 14 and 28 days. High-titre doses of AAV2 encoding beta-galactosidase in vivo were also studied. In vitro, transgene expression was not observed in endothelial cells using AAV2 whereas the use of serotypes 1 and 5 resulted in detectable levels of transgene expression. Coronary artery smooth muscle cells (CASMCs) transduced with AAV2 demonstrated higher levels of GFP expression than AAV1 or 5. Transgene expression in vivo was noted using low-titre AAV1 and AAV5 ( approximately 1.4 x 10(9) drp) in the media and adventitia. Only delivery of AAV1eGFP resulted in neointimal formation (3/7 vessels examined), with transgene expression noted in the neointima. Transgene expression with AAV2 was not detected in any layer of the blood vessel wall using low titre ( approximately 10(9) drp). However, high-titre ( approximately 10(11) drp) AAV2 resulted in transduction of cells in the media and adventitia but not the endothelium. AAV1 and AAV5 have advantages over AAV2 for vascular gene delivery at low titres.

  11. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription.

    Science.gov (United States)

    Djavadian, Reza; Chiu, Ya-Fang; Johannsen, Eric

    2016-06-01

    Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit "true" late kinetics-their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these "βγ" genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt) was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes.

  12. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus.

    Science.gov (United States)

    Mitter, Neena; Zhai, Ying; Bai, Anh Xu; Chua, Keith; Eid, Sahar; Constantin, Myrna; Mitchell, Roger; Pappu, Hanu R

    2016-01-04

    Tomato spotted wilt virus (TSWV) is an economically important viral pathogen of a wide range of field and horticultural crops. We developed an artificial microRNA (amiRNA) strategy against TSWV, targeting the nucleoprotein (N) and silencing suppressor (NSs) genes. The amiRNA constructs replaced the natural miRNA in a shortened Arabidopsis 173-nucleotide (nt) miR159a precursor backbone (athmiR159a) without the stem base extending beyond the miR/miR* duplex. Further, each amiRNA was modified to contain a mismatch (wobble) sequence at nucleotide position 12 and 13 on the complementary strand amiRNA*, mimicking the endogenous miR159a sequence structure. Transient expression in Nicotiana benthamiana demonstrated that the introduction of a wobble sequence did not alter amiRNA expression levels. Following challenge inoculation with TSWV, plants expressing N-specific amiRNAs with or without the wobble remained asymptomatic and were negative for TSWV by ELISA. In contrast, plants expressing the NSs-specific amiRNAs were symptomatic and accumulated high levels of TSWV. Similar findings were obtained in stably transformed Nicotiana tabacum plants. Our results show that a shortened 173-nt athmiR159a backbone is sufficient to express amiRNAs and that the presence of mismatch at position 12-13 does not influence amiRNA expression or conferring of resistance. We also show that selection of target gene and positional effect are critical in amiRNA-based approach for introducing resistance. These findings open the possibility of employing the amiRNA approach for broad-spectrum resistance to tospoviruses as well as other viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Serino, Giovanna; Deng, Xing-Wang; Dinesh-Kumar, S P

    2002-07-01

    The tobacco N gene confers resistance to Tobacco mosaic virus (TMV) and encodes a toll-interleukin-1 receptor/nucleotide binding/Leu-rich repeat class protein. Recent evidence indicates that the Nicotiana benthamiana Rar1 gene (NbRar1), which encodes a protein with a zinc finger motif called CHORD (Cys- and His-rich domain), is required for the function of N. To investigate the role of NbRar1 in plant defense, we identified its interaction partners. We show that the NbRar1 protein interacts with NbSGT1, a highly conserved component of the SCF (Skp1/Cullin/F-box protein)-type E3 ubiquitin ligase complex involved in protein degradation. In addition, we show that NbSGT1 interacts with NbSKP1. Suppression of NbSGT1 and NbSKP1 shows that these genes play an important role in the N-mediated resistance response to TMV. Both NbRar1 and NbSGT1 associate with the COP9 signalosome, another multiprotein complex involved in protein degradation via the ubiquitin-proteasome pathway. Silencing of the NbCOP9 signalosome also compromises N-mediated resistance to TMV. Our results reveal new roles for SCF and the COP9 signalosome in plant defense signaling.

  14. Epstein-Barr virus-based vector improves the tumor cell killing effect of pituitary tumor in HVJ-liposome-mediated transcriptional targeting suicide gene therapy.

    Science.gov (United States)

    Izumo, Tsuyoshi; Ohtsuru, Akira; Tokunaga, Yoshiharu; Namba, Hiroyuki; Kaneda, Yasufumi; Nagata, Izumi; Yamashita, Shunichi

    2007-08-01

    Although tissue-specific promoters offer a promising approach to the targeting of gene therapy, the activity of such promoters is generally low, which is thus a major limitation, especially when using non-viral vectors. To establish effective transcriptional targeting gene therapy for growth hormone (GH) producing pituitary tumors, an Epstein-Barr virus (EBV) based vector system expressing herpes simplex virus type 1 thymidine kinase (HSV1-TK) driven by a rat GH promoter (pEBGTK) was developed. This harbors an EBV nuclear antigen-1 (EBNA-1) gene with an origin of the latent viral DNA replication (OriP) gene of EBV. We constructed an EBV-based luciferase plasmid (pEBGL) as a reporter plasmid. We also generated pGTK and pGL, which are non-EBV counterparts. Metastatic GH3 (mGH3) cells were used in this study. The transfection of pEBGL to mGH3 resulted in approximately a 39 times greater luciferase activity than pGL in vitro. Its expression was also prolonged 144 h after transfection. According to the results of pEBGL gene transfer in in vivo experiments, the luciferase activity was only observed in the tumors, but not detected in other normal tissues. The luciferase activities in tumor tissues were found until day 25 post transfection. During in vitro gene therapy, the transfection by pEBGTK using hemmaglutinating virus of Japan (HVJ) liposome enhances the susceptibility of mGH3 to gancyclovir (GCV) 110 times more than that by pGTK. The in vivo anti-tumor effects of pEBGTK on mGH3-tumor-bearing nude mice were evaluated. The intratumoral injection of HVJ anionic lipososme-enveloped pEBGTK followed by the intra-peritoneal injection of GCV demonstrated a significant growth inhibition against tumors without toxicity, while the tumors treated by other treatment modalities grew progressively. These results demonstrated that the EBV-based vector system can therefore contribute to the improvement of the anti-tumor effects for the HVJ-liposome-mediated transcriptional

  15. The antitumor effect of suicide gene therapy using Bifidobacterium infantis-mediated herpes simplex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma.

    Science.gov (United States)

    Xiao, Xiao; Jin, Ren; Li, Jiang; Bei, Yu; Wei, Tang

    2014-10-01

    To confirm the effectivity of Bifidobacterium infantis-mediated herpes simplex virus thymidine kinase/ganciclovir suicide gene system on the treatment of renal cell carcinoma in nude mice and further explore the mechanisms. A B infantis thymidine kinase (B infantis-TK) suicide gene system was constructed in our previous study. Tumor-bearing nude mice were randomized into 4 groups and injected with normal saline, B infantis, B infantis/pGEX-1λT, and B infantis-TK, respectively, via tail vein, followed by intraperitoneal injection of ganciclovir. The treatment effects were evaluated by the terminal deoxynucleotidyl transferase-mediated deoxynucleotide triphosphate nick end labeling assay, quantitative reverse transcriptase polymerase chain reaction, and Western blotting. Side effects were also recorded. Compared with the other 3 treatments, the treatment with B infantis-TK resulted in a significant effective antitumor activity and stronger apoptotic response. Western blot analysis showed that the expression levels of Rel A and Bcl-xL were significantly lower, whereas those of caspase 3 and Bax were significantly higher in tumor tissues resected from group B infantis-TK, which were consistent with the quantitative reverse transcriptase-polymerase chain reaction results. The B infantis-TK/ganciclovir therapy system exhibits an effective antitumor activity by promoting tumor cell apoptosis through both the intrinsic and the extrinsic apoptotic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Establishment of an efficient virus-induced gene silencing (VIGS) assay in Arabidopsis by Agrobacterium-mediated rubbing infection.

    Science.gov (United States)

    Manhães, Ana Marcia E de A; de Oliveira, Marcos V V; Shan, Libo

    2015-01-01

    Several VIGS protocols have been established for high-throughput functional genomic screens as it bypasses the time-consuming and laborious process of generation of transgenic plants. The silencing efficiency in this approach is largely hindered by a technically demanding step in which the first pair of newly emerged true leaves at the 2-week-old stage are infiltrated with a needleless syringe. To further optimize VIGS efficiency and achieve rapid inoculation for a large-scale functional genomic study, here we describe a protocol of an efficient VIGS assay in Arabidopsis using Agrobacterium-mediated rubbing infection. The Agrobacterium inoculation is performed by simply rubbing the leaves with Filter Agent Celite(®) 545. The highly efficient and uniform silencing effect was indicated by the development of a visibly albino phenotype due to silencing of the Cloroplastos alterados 1 (CLA1) gene in the newly emerged leaves. In addition, the albino phenotype could be observed in stems and flowers, indicating its potential application for gene functional studies in the late vegetative development and flowering stages.

  17. Ultrasound mediated gene transfection

    Science.gov (United States)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  18. [Targeted inhibition of Rabies virus gene expression by a chimeric multidomain protein mediated shRNA delivery].

    Science.gov (United States)

    Yang, Ruimei; Wang, Hualei; Shan, Hu; Yang, Songtao; Xia, Xianzhu

    2016-01-04

    In this study, a new chimeric protein SEG expressed in previous work was applied to evaluate its translocating efficiency of shRNA to rabies virus infected cells in mice, meanwhile, the capability of anti-rabies virus was investigated. Rabies virus strain CVS-24 was inoculated into the hind leg to establish a mouse model of rabies in a dose of 50 LD₅₀; 12 h thereafter the mice were injected intravenously with shRNA-producing plasmid mixed with SEG. To test shRNA delivery, single-cell suspensions from brain, spleen and liver were examined by flow cytometry. Rabies virus in brain tissue of mice was detected by qRT-PCR, RT-PCR, western blot and directed immunofluorescence assay. Mice were monitored for survival and serum samples were tested for IFN-α levels. No green fluorescent protein (GFP) was seen in the spleen or liver, suggesting that SEG allows specific targeting of RV-infected cells. RT-PCR and western blot showed that mice treated with SEG-shRNA had lower rabies virus RNA and protein levels than the controls. Real-time PCR showed that rabies virus was reduced 4.88 fold compared to the mock cells. Survival of RV-infected mouse showed a significant protection from rabies virus infection by SEG-shRNA treatment. The survival was up to 50% whereas the control group all died. IFN was not induced in SEG-shRNA treated animals. shRNA-producing plasmid was specifically delivered into rabies virus infected cells using the SEG protein, and effectively inhibited rabies virus geneexpression and replication in vivo. SEG-shRNA can be used for adjuvant treatment for rabies.

  19. Effect of urethral wall injection of replication-defective herpes simplex virus-mediated gene transfer of kynurenine aminotransferase on urethral pressure in spinal cord-injured rats.

    Science.gov (United States)

    Wang, Zhaoxia; Liao, Limin

    2017-04-01

    We determined whether or not replication-defective herpes simplex virus vector-mediated kynurenine aminotransferase II (HSVrd-KAT II) suppressed the tonic activity of the urethral sphincter in spinal cord-injured (SCI) rats. Thirty-six adult female Sprague-Dawley rats were used to produce a spinal cord injury model. One week after spinalization, HSVrd-KAT II was injected into the urethral wall of rats and another two groups of SCI rats were treated with saline and HSVrd as controls. Three weeks after viral injection, the urethral pressure profile (UPP), continuous cystometry, and gene expression in the L6-S1 spinal cords were evaluated in all three groups. In the HSVrd-KAT II group, the maximum urethral closure pressure (Pclo.max) and maximum voiding pressure were significantly decreased (23.6-24.9% and 31.6-30.9%, respectively), in addition to an increase in voiding efficiency(48.8-76%), compared with the sham and HSVrd groups. The KAT II protein and mRNA levels were significantly increased in HSV-KAT II group compared with the HSVrd group. KAT II gene therapy effectively reduced the urethral pressure, improving detrusor-sphincter dyssynergia (DSD), and detrusor overactivity (DO), probably by blocking the N-methyl-D-aspartate receptor (NMDAr) in the L6-S1 spinal cord. Neurourol. Urodynam. 36:1046-1051, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  1. C2-mediated decrease in DNA methylation, accumulation of siRNAs, and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus.

    Science.gov (United States)

    Yang, Li-Ping; Fang, Yuan-Yuan; An, Chun-Peng; Dong, Li; Zhang, Zhong-Hui; Chen, Hao; Xie, Qi; Guo, Hui-Shan

    2013-03-01

    Cytosine methylation is one of epigenetic information marked on the DNA sequence. In plants, small interfering RNAs (siRNAs) target homologous genomic DNA sequences for cytosine methylation. This process, known as RNA-directed DNA methylation (RdDM), plays an important role in transposon control, regulation of gene expression and virus resistance. In this paper, we demonstrate that the C2 protein encoded by a geminivirus (beet severe curly top virus, BSCTV) mediated a decrease in DNA methylation of repeat regions in the promoters of ACD6, an upstream regulator of the salicylic acid defense pathway, and GSTF14, an endogenous gene of the glutathione S-transferase superfamily that is implicated in numerous stress responses. C2-mediated decreases in DNA methylation reduced accumulation of the siRNAs derived from the promoter repeats and enhanced the steady-state expression of both ACD6 and GSTF14 transcripts. Reduced accumulation of BSCTV-derived siRNAs was detected in BSCTV-infected plants, but not in plants infected with C2-deficient BSCTV (c2(- ) BSCTV). C2 protein exhibited no siRNA-binding activity. Instead, our results revealed that C2 protein-mediated decreases in DNA methylation appeared to affect the production of siRNAs that are required for targeting and reinforcing RdDM, a process that activated expression of defense-related genes that are normally dampened by these siRNAs in the host plants. However, C2-dependent reduction in virus-derived siRNAs also benefits the viruses by disrupting the feedback loop reinforcing DNA methylation-mediated antiviral silencing. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Ultrasound enhances retrovirus-mediated gene transfer.

    Science.gov (United States)

    Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa

    2007-01-01

    Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased

  3. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets

    National Research Council Canada - National Science Library

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S; Chen, Juan; Zhang, Yulong; Welsh, Michael J; Leno, Gregory H; Engelhardt, John F

    2008-01-01

    .... In this study, we describe the production of a CFTR gene-deficient model in the domestic ferret using recombinant adeno-associated virus-mediated gene targeting in fibroblasts, followed by nuclear transfer cloning...

  4. Comparison of constitutive and inducible transcriptional enhancement mediated by kappa B-related sequences: modulation of activity in B cells by human T-cell leukemia virus type I tax gene.

    Science.gov (United States)

    Mauxion, F; Jamieson, C; Yoshida, M; Arai, K; Sen, R

    1991-03-15

    The kappa B sequence (GGGACTTTCC) binds a factor, NF-kappa B, that is constitutively found in its functional, DNA binding form only in B lymphocytes. A factor with apparently indistinguishable sequence specificity can be induced in many other cell types, where it is used to regulate inducible gene expression. For example, kappa B-related sequences have been shown to be important for the transcription of a few inducible genes, such as the interleukin 2 receptor alpha-chain gene and the beta-interferon gene. However, these genes are not constitutively active in B lymphocytes, suggesting that other regulatory mechanisms must play a role in determining the patterns of expression. We have investigated the constitutive and inducible transcriptional activity mediated by five kappa B-related sequence elements in two different cell types. We show that in S194 plasma cells the activity of each element correlates well with the relative affinity of B-cell-derived NF-kappa B for that element. This leads to significantly lower transcription enhancement by sites derived from the interleukin 2 receptor or T-cell receptor genes in S194 cells. However, in either EL-4 (T) cells or S194 cells, both lower-affinity sites can be significantly induced by the tax gene product of human T-cell leukemia virus type I, showing that NF-kappa B activity can be modulated even in a B-cell line that constitutively expresses this factor.

  5. Recombinant adeno-associated virus serotype 6 (rAAV2/6-mediated gene transfer to nociceptive neurons through different routes of delivery

    Directory of Open Access Journals (Sweden)

    Beggah Ahmed T

    2009-09-01

    Full Text Available Abstract Background Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV. Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6 to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. Results Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependant manner. More than 90% of transduced cells were small and medium sized neurons (2, predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (≈ 60% and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non

  6. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing.

    Science.gov (United States)

    Kikuchi, Yusuke; Hijikata, Nowaki; Ohtomo, Ryo; Handa, Yoshihiro; Kawaguchi, Masayoshi; Saito, Katsuharu; Masuta, Chikara; Ezawa, Tatsuhiro

    2016-09-01

    Arbuscular mycorrhizal fungi translocate polyphosphate through hyphae over a long distance to deliver to the host. More than three decades ago, suppression of host transpiration was found to decelerate phosphate delivery of the fungal symbiont, leading us to hypothesize that transpiration provides a primary driving force for polyphosphate translocation, probably via creating hyphal water flow in which fungal aquaporin(s) may be involved. The impact of transpiration suppression on polyphosphate translocation through hyphae of Rhizophagus clarus was evaluated. An aquaporin gene expressed in intraradical mycelia was characterized and knocked down by virus-induced gene silencing to investigate the involvement of the gene in polyphosphate translocation. Rhizophagus clarus aquaporin 3 (RcAQP3) that was most highly expressed in intraradical mycelia encodes an aquaglyceroporin responsible for water transport across the plasma membrane. Knockdown of RcAQP3 as well as the suppression of host transpiration decelerated polyphosphate translocation in proportion to the levels of knockdown and suppression, respectively. These results provide the first insight into the mechanism underlying long-distance polyphosphate translocation in mycorrhizal associations at the molecular level, in which host transpiration and the fungal aquaporin play key roles. A hypothetical model of the translocation is proposed for further elucidation of the mechanism. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase.

    Science.gov (United States)

    Braun-Falco, Markus; Eisenried, Angelika; Büning, Hildegard; Ring, Johannes

    2005-05-01

    Efficient gene delivery into keratinocytes is a prerequisite for successful skin gene therapy. Vectors based on recombinant adeno-associated virus type 2 (rAAV-2) offer several promising features that make them attractive for cutaneous applications. However, highly efficient gene delivery may be hampered by different cellular factors, including lack of viral receptors, impairment of cytoplasmic trafficking or limitations in viral second-strand synthesis. This study was undertaken to find factors that influence rAAV-2-mediated in vitro gene transfer into human keratinocytes and, consequently, ways to optimize gene delivery. Transduction experiments using rAAV-2 vectors expressing green fluorescent protein (GFP) demonstrated that impaired cellular trafficking of vector particles and high levels of autophosphorylation at epidermal growth factor receptor tyrosine kinase (EGF-R TK) have a negative influence on gene transfer into keratinocytes. Treatment of keratinocytes with proteasome inhibitor MG132 resulted in a transient augmentation of GFP expression in up to 37% of cells. Treatment with EGF-R TK inhibitors (quinazoline type) enhanced transgene expression in 10-14.5% of the cells. Gene expression was stable for more than 10 weeks and persisted until proliferative senescence occurred. This stable gene expression allows speculation that keratinocyte stem cells have initially been transduced. These findings might have relevance for the use of rAAV-2 vectors in skin gene therapy: transient enhancement of rAAV-2 transduction with proteasome inhibitors might be useful for genetic promotion of wound healing or skin-directed vaccination. Treatment with quinazolines may increase rAAV-2 transduction of keratinocyte stem cells, which is important for gene therapy approaches to inherited diseases.

  8. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    Science.gov (United States)

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi's sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen.

    Science.gov (United States)

    George Paul, Arun; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-05-01

    Kaposi's sarcoma-associated herpes virus (KSHV) is implicated in the pathogenesis of KS, a chronic inflammation-associated malignancy. Cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2), two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency-associated nuclear antigen-1 (LANA-1). Microsomal PGE2 synthase, PGE2, and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists downregulated LANA-1 expression as well as Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP, and c-Jun transcription factors seem to be involved in this induction. PGE2/EP receptor-induced LANA-1 promoter activity was downregulated significantly by the inhibition of Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that shows the evolution of KSHV genome plasticity to use inflammatory response for its survival advantage of maintaining latent gene expression. These data also suggest that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. (c)2010 AACR.

  10. Electro-acupuncture-mediated gene transfer.

    Science.gov (United States)

    Zhang, J; Qin, Y; Fu, A; Tang, J; Chen, G; Cai, D; Han, J

    1998-10-01

    Gene transfer is one of the key techniques in gene therapy application. Unfortunately, it seems that by now, there still exists no approach with simplicity, easiness, efficiency and safety. A novel method for gene delivery, electro-acupuncture needle-mediated gene transfer which combined the Chinese traditional acupuncture with modem gene introduction, was developed. With acupuncture needle carrying exogenous gene into muscle after direct electronic stimuli, efficient gene delivery was achieved.

  11. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses

    Science.gov (United States)

    Wu, Songsong; Cheng, Jiasen; Fu, Yanping; Chen, Tao; Jiang, Daohong; Ghabrial, Said A.

    2017-01-01

    Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD) and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4), could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins) signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility) loci. Reactive oxygen species (ROS) plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases. PMID:28334041

  12. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses.

    Directory of Open Access Journals (Sweden)

    Songsong Wu

    2017-03-01

    Full Text Available Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4, could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility loci. Reactive oxygen species (ROS plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.

  13. Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy.

    Science.gov (United States)

    Fu, Haiyan; Meadows, Aaron S; Pineda, Ricardo J; Kunkler, Krista L; Truxal, Kristen V; McBride, Kim L; Flanigan, Kevin M; McCarty, Douglas M

    2017-10-24

    Recombinant adeno-associated virus (AAV) vectors are promising gene therapy tools. However, pre-existing antibodies (Abs) to many useful AAV serotypes pose a critical challenge for the translation of gene therapies. As part of AAV gene therapy program for treating mucopolysaccharidosis (MPS) III patients, the seroprevalence profiles of AAV1-9 and rh74 were investigated in MPS IIIA/IIIB patients and in healthy children. Using enzyme-linked immunosorbent assay for αAAV-IgG, significantly higher seroprevalence was observed for AAV1 and AAVrh74 in 2- to 7-year-old MPS III patients than in healthy controls. Seroprevalence for the majority of tested AAV serotypes appears to peak before 8 years of age in MPS III subjects, with the exception of increases in αAAV8 and αAAV9 Abs in 8- to 19-year-old MPS IIIA patients. In contrast, significant increases in seroprevalence were observed for virtually all tested AAV serotypes in 8- to 15-year-old healthy children compared to 2- to 7-year-olds. Co-prevalence and Ab level correlation results followed the previously established divergence-based clade positions of AAV1-9. Interestingly, the individuals positive for αAAVrh74-Abs showed the lowest co-prevalence with Abs for AAV1-9 (22-40%). However, all or nearly all (77-100%) of subjects who were seropositive for any of serotypes 1-9 were also positive for αAAVrh74-IgG. Notably, the majority (78%) of αAAV seropositive individuals were also Ab-positive for one to five of the tested AAV serotypes, mostly with low levels of αAAV-Abs (1:50-100), while a minority (22%) were seropositive for six or more AAV serotypes, mostly with high levels of αAAV-IgG for multiple serotypes. In general, the highest IgG levels were reactive to AAV2, AAV3, and AAVrh74. The data illustrate the complex seroprevalence profiles of AAV1-9 and rh74 in MPS patients and healthy children, indicating the potential association of AAV seroprevalence with age and disease conditions. The broad co-prevalence of

  14. MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1989-01-01

    The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion, indicat......The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion...... responsiveness measured in terms of virus-specific cytotoxicity and delayed-type hypersensitivity, whereas no correlation was found with regard to NK cell activity and antiviral antibody response. Analysis of F1 progeny between H-2 identical high and low responder strains showed that low responsiveness...

  15. Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus

    Science.gov (United States)

    Talbi, Chiraz; Lemey, Philippe; Suchard, Marc A.; Abdelatif, Elbia; Elharrak, Mehdi; Jalal, Nourlil; Faouzi, Abdellah; Echevarría, Juan E.; Vazquez Morón, Sonia; Rambaut, Andrew; Campiz, Nicholas; Tatem, Andrew J.; Holmes, Edward C.; Bourhy, Hervé

    2010-01-01

    Understanding the role of humans in the dispersal of predominately animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV) in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geo-political boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens. PMID:21060816

  16. Phylodynamics and human-mediated dispersal of a zoonotic virus.

    Directory of Open Access Journals (Sweden)

    Chiraz Talbi

    2010-10-01

    Full Text Available Understanding the role of humans in the dispersal of predominantly animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geopolitical boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens.

  17. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation

    NARCIS (Netherlands)

    Ross, Colin J. D.; Twisk, Jaap; Bakker, Andrew C.; Miao, Fudan; Verbart, Dennis; Rip, Jaap; Godbey, Tamara; Dijkhuizen, Paul; Hermens, Wim T. J. M. C.; Kastelein, John J. P.; Kuivenhoven, Jan Albert; Meulenberg, Janneke M.; Hayden, Michael R.

    2006-01-01

    Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV)

  18. Involvement of the rabies virus phosphoprotein gene in neuroinvasiveness.

    Science.gov (United States)

    Yamaoka, Satoko; Ito, Naoto; Ohka, Seii; Kaneda, Shohei; Nakamura, Hiroko; Agari, Takahiro; Masatani, Tatsunori; Nakagawa, Keisuke; Okada, Kazuma; Okadera, Kota; Mitake, Hiromichi; Fujii, Teruo; Sugiyama, Makoto

    2013-11-01

    Rabies virus (RABV), which is transmitted via a bite wound caused by a rabid animal, infects peripheral nerves and then spreads to the central nervous system (CNS) before causing severe neurological symptoms and death in the infected individual. Despite the importance of this ability of the virus to spread from a peripheral site to the CNS (neuroinvasiveness) in the pathogenesis of rabies, little is known about the mechanism underlying the neuroinvasiveness of RABV. In this study, to obtain insights into the mechanism, we conducted comparative analysis of two fixed RABV strains, Nishigahara and the derivative strain Ni-CE, which cause lethal and asymptomatic infections, respectively, in mice after intramuscular inoculation. Examination of a series of chimeric viruses harboring the respective genes from Nishigahara in the genetic background of Ni-CE revealed that the Nishigahara phosphoprotein (P) gene plays a major role in the neuroinvasiveness by mediating infection of peripheral nerves. The results obtained from both in vivo and in vitro experiments strongly suggested that the Nishigahara P gene, but not the Ni-CE P gene, is important for stable viral replication in muscle cells. Further investigation based on the previous finding that RABV phosphoprotein counteracts the host interferon (IFN) system demonstrated that the Nishigahara P gene, but not the Ni-CE P gene, functions to suppress expression of the beta interferon (IFN-β) gene (Ifn-β) and IFN-stimulated genes in muscle cells. In conclusion, we provide the first data strongly suggesting that RABV phosphoprotein assists viral replication in muscle cells by counteracting the host IFN system and, consequently, enhances infection of peripheral nerves.

  19. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inflammasomes as mediators of immunity against influenza virus

    OpenAIRE

    Pang, Iris K.; Iwasaki, Akiko

    2010-01-01

    Influenza viruses infect a wide range of avian and mammalian host species including humans. Infections with influenza viruses are responsible for major causes of human respiratory infections and mortality. Influenza viruses are recognized by the innate immune system through multiple mechanisms. These include endosomal recognition through the Toll-like receptor 7 (TLR7) and cytosolic recognition through the retinoic acid inducible gene I (RIG-I). Recent studies also identified the role of NOD-...

  1. Cellular Transcription Factor YY1 Mediates the Varicella-Zoster Virus (VZV) IE62 Transcriptional Activation

    Science.gov (United States)

    Khalil, Mohamed I.; Sommer, Marvin; Arvin, Ann; Hay, John; Ruyechan, William T.

    2014-01-01

    Several cellular transcription factors have been shown to be involved in IE62-mediated activation. The YY1 cellular transcription factor has activating and repressive effects on gene transcription. Analysis of the VZV genome revealed 19 postulated YY1 binding sites located within putative promoters of 16 VZV genes. Electrophoretic mobility shift assays (EMSA) confirmed the binding of YY1 to ORF10, ORF28/29 and gI promoters and the mutation of these binding sites inhibited YY1 binding and the promoter activation by IE62 alone or following VZV infection. Mutation of the ORF28/29 YY1 site in the VZV genome displayed insignificant influence on virus growth in melanoma cells; but it inhibited the virus replication significantly at day 5 and 6 post infection in HELF cells. This work suggests a novel role for the cellular factor YY1 in VZV replication through the mediation of IE62 activation of viral gene expression. PMID:24418559

  2. Adeno-associated virus inverted terminal repeats stimulate gene editing.

    Science.gov (United States)

    Hirsch, M L

    2015-02-01

    Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.

  3. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Development of efficient adeno-associated virus (AAV)-mediated gene delivery system with a phytoactive material for targeting human melanoma cells.

    Science.gov (United States)

    Lee, John Hwan; Kim, Yoojin; Yoon, Ye-Eun; Kim, Yong-Jin; Oh, Seong-Geun; Jang, Jae-Hyung; Kim, Eunmi

    2017-07-25

    We exploited the emerging potential of gene therapy strategies to design a powerful therapeutic system that combines two key components-AAV vector and [6]-gingerol. In this study, we created an AAV2 construct expressing the proapoptotic protein BIM, which uses HSPG as its primary receptor, to target HSPG-overexpressing melanoma cells. This combination treatment showed promising results in vitro, inducing apoptosis in human melanoma cells. This new platform technology will make a significant contribution to numerous therapeutic applications, most notably for melanoma, including overcoming resistance to conventional anticancer therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Exposure to double-stranded RNA mediated by tobacco rattle virus leads to transcription up-regulation of effector gene Mi-vap-2 from Meloidogyne incognita and promotion of pathogenicity in progeny.

    Science.gov (United States)

    Chi, Yuankai; Wang, Xuan; Le, Xiuhu; Ju, Yuliang; Guan, Tinglong; Li, Hongmei

    2016-02-01

    Meloidogyne spp. are economically important plant parasites and cause enormous damage to agriculture world-wide. These nematodes use secreted effectors which modify host cells, allowing them to obtain the nutrients required for growth and development. A better understanding of the roles of effectors in nematode parasitism is critical for understanding the mechanisms of nematode-host interactions. In this study, Mi-vap-2 of Meloidogyne incognita, a gene encoding a venom allergen-like protein, was targeted by RNA interference mediated by the tobacco rattle virus. Unexpectedly, compared with a wild type line, a substantial up-regulation of Mi-vap-2 transcript was observed in juveniles collected at 7 days p.i. from Nicotiana benthamiana agroinfiltrated with TRV::vap-2. This up-regulation of the targeted transcript did not impact development of females or the production of galls, nor the number of females on the TRV::vap-2 line. In a positive control line, the transcript of Mi16D10 was knocked down in juveniles from the TRV::16D10 line at 7 days p.i., resulting in a significant inhibition of nematode development. The up-regulation of Mi-vap-2 triggered by TRV-RNAi was inherited by the progeny of the nematodes exposed to double-stranded RNA. Meanwhile, a substantial increase in Mi-VAP-2 expression in those juvenile progeny was revealed by ELISA. This caused an increase in the number of galls (71.2%) and females (84.6%) produced on seedlings of N. benthamiana compared with the numbers produced by control nematodes. Up-regulation of Mi-vap-2 and its encoded protein therefore enhanced pathogenicity of the nematodes, suggesting that Mi-vap-2 may be required for successful parasitism during the early parasitic stage of M. incognita. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors.

    Science.gov (United States)

    Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude

    2011-09-01

    With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.

  7. Experimental therapies: gene therapies and oncolytic viruses.

    Science.gov (United States)

    Hulou, M Maher; Cho, Choi-Fong; Chiocca, E Antonio; Bjerkvig, Rolf

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development. © 2016 Elsevier B.V. All rights reserved.

  8. Epstein–Barr virus latent genes

    Science.gov (United States)

    Kang, Myung-Soo; Kieff, Elliott

    2015-01-01

    Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized. PMID:25613728

  9. How do viruses control mitochondria-mediated apoptosis?

    Science.gov (United States)

    Neumann, Simon; El Maadidi, Souhayla; Faletti, Laura; Haun, Florian; Labib, Shirin; Schejtman, Andrea; Maurer, Ulrich; Borner, Christoph

    2015-11-02

    There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Robust RNA silencing-mediated resistance to Plum pox virus under variable abiotic and biotic conditions.

    Science.gov (United States)

    Di Nicola, Elisa; Tavazza, Mario; Lucioli, Alessandra; Salandri, Laura; Ilardi, Vincenza

    2014-10-01

    Some abiotic and biotic conditions are known to have a negative impact on post-transcriptional gene silencing (PTGS), thus representing a potential concern for the production of stable engineered virus resistance traits. However, depending on the strategy followed to achieve PTGS of the transgene, different responses to external conditions can be expected. In the present study, we utilized the Nicotiana benthamiana–Plum pox virus (PPV) pathosystem to evaluate in detail the stability of intron-hairpin(ihp)-mediated virus resistance under conditions known to adversely affect PTGS. The ihp plants grown at low or high temperatures were fully resistant to multiple PPV challenges, different PPV inoculum concentrations and even to a PPV isolate differing from the ihp construct by more than 28% at the nucleotide level. In addition, infections of ihp plants with viruses belonging to Cucumovirus, Potyvirus or Tombusvirus, all known to affect PTGS at different steps, were not able to defeat PPV resistance. Low temperatures did not affect the accumulation of transgenic small interfering RNAs (siRNAs), whereas a clear increase in the amount of siRNAs was observed during infections sustained by Cucumber mosaic virus and Potato virus Y. Our results show that the above stress factors do not represent an important concern for the production,through ihp-PTGS technology, of transgenic plants having robust virus resistance traits.

  11. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  12. Gene Technology for Papaya Ringspot Virus Disease Management

    Science.gov (United States)

    Azad, Md. Abul Kalam; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435

  13. Gene technology for papaya ringspot virus disease management.

    Science.gov (United States)

    Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  14. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    Science.gov (United States)

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  15. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  16. Nonviral HVJ (hemagglutinating virus of Japan) liposome-mediated retrograde gene transfer of human hepatocyte growth factor into rat nervous system promotes functional and histological recovery of the crushed nerve.

    Science.gov (United States)

    Kato, Naoki; Nemoto, Koichi; Nakanishi, Kuniaki; Morishita, Ryuichi; Kaneda, Yasufumi; Uenoyama, Maki; Ikeda, Tomosumi; Fujikawa, Kyosuke

    2005-08-01

    Hepatocyte growth factor (HGF) is well known to be involved in many biological functions, such as organ regeneration and angiogenesis, and to exert neurotrophic effects on motor, sensory, and parasympathetic neurons. In this study, we gave repeated intramuscular injections of the human HGF gene, using nonviral HVJ (hemagglutinating virus of Japan) liposome method, to examine whether transfection of the rat nervous system with this gene is able to exert neurotrophic effects facilitating recovery of a crushed nerve. The expression of HGF protein and HGF mRNA indicated that gene transfer into the nervous system did occur via retrograde axonal transport. At 4 weeks after crush, electrophysiological examination of the crushed nerve showed a significantly shorter mean latency and a significantly greater mean maximum M-wave amplitude with repeated injections of HGF gene. Furthermore, histological findings showed that the mean diameter of the axons, the axon number and the axon population were significantly larger in the group with repeated injections of HGF gene. The above results show that repeated human HGF gene transfer into the rat nervous system is able to promote crushed-nerve recovery, both electrophysiologically and histologically, and suggest that HGF gene transfer has potential for the treatment of crushed nerve.

  17. Artificial virus as trump-card to resolve exigencies in targeted gene delivery.

    Science.gov (United States)

    Ajithkumar, K C; Pramod, K

    2017-05-28

    Viruses are potent pathogens that can effectively deliver the genetic material to susceptible host cells. This capability is beneficially utilized for successfully deliver the genetic material. However, the therapeutic use of viruses for gene delivery is controversial because, the potentially replicable genomes recombine or integrates with the cell DNA resulted with immunogenicity, ranging from inflammation to death. Thus, the need for potentially effective nonviral gene therapy vehicles arises and the non-viral vectors, protein only particles and virus like particles (VLP) can be engineered which contain all the required functional modules in single chain molecules. These are resembles to viruses called artificial virus. The artificial virus eliminates the disadvantages of the viral vectors but retain the beneficial effects of the viruses. Need for further functionalization can be avoided by this approach because independent elements such as cell ligands, membrane active peptides, etc can be incorporated in to the protein. The protein-DNA complexes appeared as tight and monodisperse spherical nanoparticles of nearly 80 nm size resemble bacterial inclusion bodies. The nucleic acids act as compacting, molecular glue that affects the conformation of the protein units, altering the α- helix structure, minimizing their aggregation tendency and promoting receptor mediated cell uptake and proper intracellular trafficking to the cell nucleus. Such tunable system mimics the activities of infected viruses and used for the safe and effective delivery of drugs and genetic material in gene therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art

    Directory of Open Access Journals (Sweden)

    Nande R

    2015-11-01

    Full Text Available Rounak Nande,1 Candace M Howard,2 Pier Paolo Claudio,3,4 1Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, 2Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 3Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, 4Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: The field of ultrasound (US has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.Keywords: microbubbles, ultrasound

  19. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization.

    Science.gov (United States)

    Xu, Qingqiang; Cao, Mingmei; Song, Hongyuan; Chen, Shenglin; Qian, Xijing; Zhao, Ping; Ren, Hao; Tang, Hailin; Wang, Yan; Wei, Youheng; Zhu, Yongzhe; Qi, Zhongtian

    2016-10-01

    To investigate the detailed mechanism of Japanese encephalitis virus (JEV) cell entry. Utilize a siRNA library targeting cellular membrane trafficking genes to identify key molecules that mediate JEV entry into human neuronal cells. JEV enters human neuronal cells by caveolin-1-mediated endocytosis, which depends on a two-step regulation of actin cytoskeleton remodeling triggered by RhoA and Rac1: RhoA activation promoted the phosphorylation of caveolin-1, and then Rac1 activation facilitated caveolin-associated viral internalization. Specifically, virus attachment activates the EGFR-PI3K signaling pathway, thereby leading to RhoA activation. This work provides a detailed picture of the entry route and intricate cellular events following the entry of JEV into human neuronal cells, and promotes a better understanding of JEV entry.

  20. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  1. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  2. Aptamer-mediated cancer gene therapy.

    Science.gov (United States)

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Zhou, Shu-Feng; Li, Yong; Wei, Ming Q; Qiao, Liang; Shamaileh, Hadi Al; Zhu, Yimin; Zheng, Conglong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

  3. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    Science.gov (United States)

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  4. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer.

    Science.gov (United States)

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G; Ntziachristos, Vasilis; Szalay, Aladar A

    2013-02-26

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.

  5. Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets.

    Science.gov (United States)

    Wu, P; Phillips, M I; Bui, J; Terwilliger, E F

    1998-07-01

    The site-specific integration of wild-type adeno-associated virus (wtAAV) into the human genome is a very attractive feature for the development of AAV-based gene therapy vectors. However, knowledge about integration of wtAAV, as well as currently configured recombinant AAV (rAAV) vectors, is limited. By using a modified Alu-PCR technique to amplify and sequence the vector-cellular junctions, we provide the first direct evidence both in vitro and in vivo of rAAV-mediated transgene integration in several types of nondividing cells, including neurons. This novel technique will be highly useful for further delineating the mechanisms underlying AAV-mediated integration, including issues of frequency, site preference, and DNA rearrangement in human as well as animal cells. Results from these studies should be beneficial for the development of the next generation of gene delivery vectors.

  6. Adeno-associated viruses serotype 2-mediated RNA interference efficiently inhibits rabies virus replication in vitro and in vivo.

    Science.gov (United States)

    Wu, Hong-Xia; Wang, Hua-Lei; Guo, Xiao-Feng; Yang, Yu-Jiao; Ma, Jin-Zhu; Wang, Tie-Cheng; Gao, Yu-Wei; Zhao, Yong-Kun; Yang, Song-Tao; Xia, Xian-Zhu

    2013-10-01

    To investigate the potential of adeno-associated viruses serotype 2 (AAV2)-mediated RNA interference (RNAi) as an antiviral agent against rabies, recombinant AAV2 vectors expressing siRNA targeting the nucleoprotein (N) gene of rabies virus (RABV) (rAAV-N796) were constructed and evaluated. When NA cells pretreated with rAAV-N796 were challenged with RABV, there was a 37.8 ± 3.4% to 55.1 ± 5.3% reduction in RABV virus titer. When cells pre-challenged with RABV were treated with rAAV-N796, there was a 4.4 ± 1.4 to 28.8 ± 3.2% reduction in RABV virus titer. Relative quantification of RABV transcripts using real-time PCR and Western blot revealed that the knockdown of RABV-N gene transcripts was based on the rAAV-N796 inoculation titer. When any NA cells were treated with rAAV-N796 before or after challenged with RABV, significant reduction in virus titer was observed in both administrations. Mice treated intracerebrally with rAAV-N796 exhibited 50 ± 5.3 and 62.5 ± 4.7% protection when challenged intracerebrally or intramuscally, respectively, with lethal RABV. When mice treated intramuscularly with rAAV-N796 were challenged intramuscularly with lethal RABV, they exhibited 37.5 ± 3.7% protection. When mice were intracerebrally and intramuscularly with rAAV-N796 24 hr after exposure to RABV infection, they exhibited 25 ± 4.1% protection The N gene mRNA levels in the brains of challenged mice with three different administrations were reduced (55, 68, 32 and 25%, respectively). These results indicated that AAV2 vector-mediated siRNA delivery in vitro in NA cells inhibited RABV multiplication, inhibited RABV multiplication in vivo in the mice brain and imparted partial protection against lethal rabies. So, it may have a potential to be used as an alternative antiviral approach against rabies.

  7. Adeno-Associated Virus Vector-Mediated Transgene Integration into Neurons and Other Nondividing Cell Targets

    OpenAIRE

    WU, Ping; Phillips, M. Ian; Bui, John; Terwilliger, Ernest F.

    1998-01-01

    The site-specific integration of wild-type adeno-associated virus (wtAAV) into the human genome is a very attractive feature for the development of AAV-based gene therapy vectors. However, knowledge about integration of wtAAV, as well as currently configured recombinant AAV (rAAV) vectors, is limited. By using a modified Alu-PCR technique to amplify and sequence the vector-cellular junctions, we provide the first direct evidence both in vitro and in vivo of rAAV-mediated transgene integration...

  8. Adhesion Receptors Mediate Efficient Non-viral Gene Delivery

    NARCIS (Netherlands)

    Zuhorn, Inge S.; Kalicharan, Dharamdajal; Robillard, George T.; Hoekstra, Dick

    2007-01-01

    For a variety of reasons, including production limitations, potential unanticipated side effects, and an immunological response upon repeated systemic administration, virus-based vectors are as yet not ideal gene delivery vehicles, justifying further research into alternatives. Unlike viral vectors,

  9. Do Viruses Exchange Genes across Superkingdoms of Life?

    Directory of Open Access Journals (Sweden)

    Shahana S. Malik

    2017-10-01

    Full Text Available Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.

  10. Viral microRNAs targeting virus genes promote virus infection in shrimp in vivo.

    Science.gov (United States)

    He, Yaodong; Yang, Kai; Zhang, Xiaobo

    2014-01-01

    Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.

  11. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation

    OpenAIRE

    Crane, Yan Ma; Gelvin, Stanton B.

    2007-01-01

    We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed “chromatin genes” hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (res...

  12. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  13. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov

    2012-02-01

    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  14. Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses--related cancers.

    Science.gov (United States)

    Gao, Peng; Zheng, Jie

    2011-04-01

    Cell fusion is fundamental to the development and physiology of multicellular organisms, such as fertilization, placentation, development of skeletal muscle and bone. Oncogenic virus-mediated cell fusion, however, may lead to chromosomal instability (CIN) by various mechanisms when tumor suppressor p53 is deregulated and produce oncogenic aneuploid cells. It is worth noting that all human oncogenic viruses, including human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpesviruses-8/Kaposi sarcoma herpesvirus (HHV-8/KSHV) and human T-cell lymphotropic virus type 1 (HTLV-1), are capable of both inducing cell fusion and inhibiting the functions of p53 as well as pRb. Although it is now not clear whether a link between virus-mediated cell fusion and cancer established in experimental systems also exists in humans, the fact that the observation of tetraploid cells is more frequent in virus-positive than virus-negative premalignant lesions supports this link. Additionally, there are now no available vaccines against most oncogenic viruses except for HBV and HPV. Given these, developing fusion inhibitors is beneficial to cancer prevention and therapy of virus-associated cancers via inhibiting virus entry, spread and oncogenic role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Transgene translatability increases effectiveness of replicase-mediated resistance to cucumber mosaic virus.

    Science.gov (United States)

    Wintermantel, W M; Zaitlin, M

    2000-03-01

    Transgenic tobacco plants expressing an altered form of the 2a replicase gene from the Fny strain of Cucumber mosaic virus (CMV) exhibit suppressed virus replication and restricted virus movement when inoculated mechanically or by aphid vectors. Additional transformants have been generated which contain replicase gene constructs designed to determine the role(s) of transgene mRNA and/or protein in resistance. Resistance to systemic disease caused by CMV, as well as delayed infection, was observed in several lines of transgenic plants which were capable of expressing either full-length or truncated replicase proteins. In contrast, among plants which contained nontranslatable transgene constructs, only one of 61 lines examined exhibited delays or resistance. Once infected, plants never recovered, regardless of transgene translatability. Transgenic plants exhibiting a range of resistance levels were examined for transgene copy number, mRNA and protein levels. Although ribonuclease protection assays demonstrated that transgene mRNA levels were very low, resistant lines had consistently more steady-state transgene mRNA than susceptible lines. Furthermore, chlorotic or necrotic local lesions developed on the inoculated leaves of transgenic lines containing translatable transgenes, but not on inoculated leaves of lines containing nontranslatable transgenes. These results demonstrate that translatability of the transgene and possibly expression of the transgene protein itself facilitates replicase-mediated resistance to CMV in tobacco.

  16. Environmental factors influencing gene transfer agent (GTA mediated transduction in the subtropical ocean.

    Directory of Open Access Journals (Sweden)

    Lauren D McDaniel

    Full Text Available Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT. However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI and ambient bacterial abundance. These results indicate that GTA-mediated

  17. Expression of VP60 gene from rabbit haemorrhagic disease virus ...

    African Journals Online (AJOL)

    The VP60 gene from rabbit haemorrhagic disease virus (RHDV) YL strain in Northeast of China, under control of the ats1A promoter from Rubisco small subunit genes of Arabidopsis thaliana, was introduced into the transfer deoxyribonucleic acid (T-DNA) region of plant transfer vector pCAMBIA1300 and transferred to ...

  18. Highly Efficient CRISPR/Cas9-Mediated Homologous Recombination Promotes the Rapid Generation of Bacterial Artificial Chromosomes of Pseudorabies Virus.

    Science.gov (United States)

    Guo, Jin-Chao; Tang, Yan-Dong; Zhao, Kuan; Wang, Tong-Yun; Liu, Ji-Ting; Gao, Jia-Cong; Chang, Xiao-Bo; Cui, Hong-Yu; Tian, Zhi-Jun; Cai, Xue-Hui; An, Tong-Qing

    2016-01-01

    Bacterial artificial chromosomes (BACs) are powerful tools for the manipulation of the large genomes of DNA viruses, such as herpesviruses. However, the methods currently used to construct the recombinant viruses, an important intermediate link in the generation of BACs, involve the laborious process of multiple plaque purifications. Moreover, some fastidious viruses may be lost or damaged during these processes, making it impossible to generate BACs from these large-genome DNA viruses. Here, we introduce the CRISPR/Cas9 as a site-specific gene knock-in instrument that promotes the homologs recombination of a linearized transfer vector and the Pseudorabies virus genome through double incisions. The efficiency of recombination is as high as 86%. To our knowledge, this is the highest efficiency ever reported for Pseudorabies virus recombination. We also demonstrate that the positions and distances of the CRISPR/Cas9 single guide RNAs from the homology arms correlate with the efficiency of homologous recombination. Our work show a simple and fast cloning method of BACs with large genome inserted by greatly enhancing the HR efficiencies through CRISPR/Cas9-mediated homology-directed repair mechanism, and this method could be of helpful for manipulating large DNA viruses, and will provide a successful model for insertion of large DNA fragments into other viruses.

  19. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley.

    Science.gov (United States)

    Hein, Ingo; Barciszewska-Pacak, Maria; Hrubikova, Katarina; Williamson, Sandie; Dinesen, Malene; Soenderby, Ida E; Sundar, Suresh; Jarmolowski, Artur; Shirasu, Ken; Lacomme, Christophe

    2005-08-01

    We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley.

  20. Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley1

    Science.gov (United States)

    Hein, Ingo; Barciszewska-Pacak, Maria; Hrubikova, Katarina; Williamson, Sandie; Dinesen, Malene; Soenderby, Ida E.; Sundar, Suresh; Jarmolowski, Artur; Shirasu, Ken; Lacomme, Christophe

    2005-01-01

    We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley. PMID:16040663

  1. Dissecting insect development : baculovirus-mediated gene silencing in insects

    NARCIS (Netherlands)

    Hajós, J.P.; Vermunt, A.W.M.; Zuidema, D.; Kulcsár, P.; Varjas, L.; Kort, de C.A.D.; Závodszky, P.; Vlak, J.M.

    1999-01-01

    A novel concept applying baculovirus-mediated gene silencing to study insect gene function and regulation is described in this paper. A recombinant baculovirus, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), was constructed with the juvenile hormone esterase (JHE) gene from the

  2. The cricket paralysis virus suppressor inhibits microRNA silencing mediated by the Drosophila Argonaute-2 protein.

    Directory of Open Access Journals (Sweden)

    Corinne Besnard-Guérin

    Full Text Available Small RNAs are potent regulators of gene expression. They also act in defense pathways against invading nucleic acids such as transposable elements or viruses. To counteract these defenses, viruses have evolved viral suppressors of RNA silencing (VSRs. Plant viruses encoded VSRs interfere with siRNAs or miRNAs by targeting common mediators of these two pathways. In contrast, VSRs identified in insect viruses to date only interfere with the siRNA pathway whose effector Argonaute protein is Argonaute-2 (Ago-2. Although a majority of Drosophila miRNAs exerts their silencing activity through their loading into the Argonaute-1 protein, recent studies highlighted that a fraction of miRNAs can be loaded into Ago-2, thus acting as siRNAs. In light of these recent findings, we re-examined the role of insect VSRs on Ago-2-mediated miRNA silencing in Drosophila melanogaster. Using specific reporter systems in cultured Schneider-2 cells and transgenic flies, we showed here that the Cricket Paralysis virus VSR CrPV1-A but not the Flock House virus B2 VSR abolishes silencing by miRNAs loaded into the Ago-2 protein. Thus, our results provide the first evidence that insect VSR have the potential to directly interfere with the miRNA silencing pathway.

  3. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  4. Structural basis for antibody-mediated neutralization of Lassa virus.

    Science.gov (United States)

    Hastie, Kathryn M; Zandonatti, Michelle A; Kleinfelter, Lara M; Heinrich, Megan L; Rowland, Megan M; Chandran, Kartik; Branco, Luis M; Robinson, James E; Garry, Robert F; Saphire, Erica Ollmann

    2017-06-02

    The arenavirus Lassa causes severe hemorrhagic fever and a significant disease burden in West Africa every year. The glycoprotein, GPC, is the sole antigen expressed on the viral surface and the critical target for antibody-mediated neutralization. Here we present the crystal structure of the trimeric, prefusion ectodomain of Lassa GP bound to a neutralizing antibody from a human survivor at 3.2-angstrom resolution. The antibody extensively anchors two monomers together at the base of the trimer, and biochemical analysis suggests that it neutralizes by inhibiting conformational changes required for entry. This work illuminates pH-driven conformational changes in both receptor-binding and fusion subunits of Lassa virus, illustrates the unique assembly of the arenavirus glycoprotein spike, and provides a much-needed template for vaccine design against these threats to global health. Copyright © 2017, American Association for the Advancement of Science.

  5. Orthopoxvirus genes that mediate disease virulence and host tropism.

    Science.gov (United States)

    Shchelkunov, Sergei N

    2012-01-01

    In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.

  6. Orthopoxvirus Genes That Mediate Disease Virulence and Host Tropism

    Directory of Open Access Journals (Sweden)

    Sergei N. Shchelkunov

    2012-01-01

    Full Text Available In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox, monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.

  7. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  8. Cell-Mediated Cytotoxicity Toward Measles Virus-Infected Target Cells in Randomly Bred Syrian Hamsters

    OpenAIRE

    Cremer, Natalie E.; O'Keefe, Beatrice; Hagens, Shirley J.; Diggs, Janice

    1982-01-01

    Cell-mediated cytotoxicity (CMC) toward measles virus-infected cells was studied by a 51Cr release assay with spleen cells from hamsters inoculated with measles virus (strain Lec) or control antigen and with spleen cells from normal hamsters. Spleen cells from measles virus-inoculated hamsters showed greater CMC toward infected than toward noninfected target cells (designated specific CMC). Specific CMC was maximal 7 days after virus inoculation and was declining by 9 to 10 days. Effector cel...

  9. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  10. Structure–system correlation identifies a gene regulatory Mediator submodule

    Science.gov (United States)

    Larivière, Laurent; Seizl, Martin; van Wageningen, Sake; Röther, Susanne; van de Pasch, Loes; Feldmann, Heidi; Sträßer, Katja; Hahn, Steve; Holstege, Frank C.P.; Cramer, Patrick

    2008-01-01

    A combination of crystallography, biochemistry, and gene expression analysis identifies the coactivator subcomplex Med8C/18/20 as a functionally distinct submodule of the Mediator head module. Med8C forms a conserved α-helix that tethers Med18/20 to the Mediator. Deletion of Med8C in vivo results in dissociation of Med18/20 from Mediator and in loss of transcription activity of extracts. Deletion of med8C, med18, or med20 causes similar changes in the yeast transcriptome, establishing Med8C/18/20 as a predominantly positive, gene-specific submodule required for low transcription levels of nonactivated genes, including conjugation genes. The presented structure-based system perturbation is superior to gene deletion analysis of gene regulation. PMID:18381891

  11. Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta.

    Science.gov (United States)

    Sarkar, Shayan; Das, Abhimanyu; Khandagale, Prashant; Maiti, Indu B; Chattopadhyay, Sudip; Dey, Nrisingha

    2017-09-14

    This paper highlighted a salicylic acid-inducible Caulimoviral promoter fragment from Cestrum yellow leaf curling virus (CmYLCV). Interaction of Arabidopsis transcription factors TGA3 and WRKY53 on CmYLCV promoter resulted in the enhancement of the promoter activity via NPR1-dependent salicylic acid signaling. Several transcriptional promoters isolated from plant-infecting Caulimoviruses are being presently used worldwide as efficient tools for plant gene expression. The CmYLCV promoter has been isolated from the Cestrum yellow leaf curling virus (Caulimoviruses) and characterized more than 12 years ago; also we have earlier reported a near-constitutive, pathogen-inducible CmYLCV promoter fragment (-329 to +137 from transcription start site; TSS) that enhances stronger (3×) expression than the previously reported fragments; all these fragments are highly efficient in monocot and dicot plants (Sahoo et al. Planta 240: 855-875, 2014). Here, we have shown that the full-length CmYLCV promoter fragment (-729 to +137 from TSS) is salicylic acid (SA) inducible. In this context, we have performed an in-depth study to elucidate the factors responsible for SA-inducibility of the CmYLCV promoter. We found that the as-1 1 and W-box1 elements (located at -649 and -640 from the TSS) of the CmYLCV promoter are required for SA-induced activation by recruiting Arabidopsis TGA3 and WRKY53 transcription factors. Consequently, as a nascent observation, we established the physical interaction between TGA3 and WYKY53; also demonstrated that the N-terminal domain of TGA3 is sufficient for the interaction with the full-length WRKY53. Such interaction synergistically activates the CmYLCV promoter activity in planta. Further, we found that activation of the CmYLCV promoter by SA through TGA3 and WRKY53 interaction depends on NPR1. Finally, the findings presented here provide strong support for the direct regulatory roles of TGA3 and WRKY53 in the SA and NPR1-dependent activation of a

  12. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    Science.gov (United States)

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  13. Mumps virus F gene and HN gene sequencing as a molecular tool to study mumps virus transmission.

    Science.gov (United States)

    Gouma, Sigrid; Cremer, Jeroen; Parkkali, Saara; Veldhuijzen, Irene; van Binnendijk, Rob S; Koopmans, Marion P G

    2016-11-01

    Various mumps outbreaks have occurred in the Netherlands since 2004, particularly among persons who had received 2 doses of measles, mumps, and rubella (MMR) vaccination. Genomic typing of pathogens can be used to track outbreaks, but the established genotyping of mumps virus based on the small hydrophobic (SH) gene sequences did not provide sufficient resolution. Therefore, we expanded the sequencing to include fusion (F) gene and haemagglutinin-neuraminidase (HN) gene sequences in addition to the SH gene sequences from 109 mumps virus genotype G strains obtained between 2004 and mid 2015 in the Netherlands. When the molecular information from these 3 genes was combined, we were able to identify separate mumps virus clusters and track mumps virus transmission. The analyses suggested that multiple mumps virus introductions occurred in the Netherlands between 2004 and 2015 resulting in several mumps outbreaks throughout this period, whereas during some local outbreaks the molecular data pointed towards endemic circulation. Combined analysis of epidemiological data and sequence data collected in 2015 showed good support for the phylogenetic clustering. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    In contrast, in Chinese hamster ovary (CHO)-S cells, only a marginal effect on plasmid-mediated EGFP expression by WPRE was observed. The measurable increase of EGFP expression at the protein level was paralleled by an increase of EGFP RNA. Further test of the effect of WPRE on plasmid-mediated gene ...

  15. Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell.

    Science.gov (United States)

    Lennartz, Frank; Bayer, Karen; Czerwonka, Nadine; Lu, Yinghui; Kehr, Kristine; Hirz, Manuela; Steinmetzer, Torsten; Garten, Wolfgang; Herden, Christiane

    2016-03-01

    Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection. © 2015 John Wiley & Sons Ltd.

  16. Piracy of PGE2/EP receptor mediated signaling by Kaposi’s sarcoma associated herpes virus (KSHV/HHV-8) for latency gene expression: Strategy of a successful pathogen

    Science.gov (United States)

    Paul, Arun George; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-01-01

    KSHV is implicated in the pathogenesis of KS, a chronic inflammation associated malignancy. COX-2 and its metabolite PGE2, two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency associated nuclear antigen-1 (LANA-1). Microsomal prostaglandin E2 synthase (mPGES), PGE2 and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists down-regulated LANA-1 expression as well as Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP and c-Jun transcription factors appear to be involved in this induction. PGE2/EP receptor induced LANA-1 promoter activity was down-regulated significantly by the inhibition of Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that demonstrates the evolution of KSHV genome plasticity to utilize inflammatory response for its survival advantage of maintaining latent gene expression. This data also suggests that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. PMID:20388794

  17. The immunomodulatory gene products of myxoma virus

    Indian Academy of Sciences (India)

    Unknown

    vity regulates innate immunity. Moreover, TNF-α is in- volved in the regulation of cell differentiation, prolifera- tion and apoptosis. Rabbit RL-5 T lymphocyte cells in- fected with an M-T2 knock-out myxoma virus undergo apoptosis, resulting in an aborted infection (Macen et al. 1996). These results suggest that the binding of ...

  18. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions.

    Science.gov (United States)

    Flores, Ricardo; Ruiz-Ruiz, Susana; Soler, Nuria; Sánchez-Navarro, Jesús; Fagoaga, Carmen; López, Carmelo; Navarro, Luis; Moreno, Pedro; Peña, Leandro

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3'-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.

  19. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  20. Virus-Induced Gene Silencing in Maize with a Foxtail mosaic virus Vector.

    Science.gov (United States)

    Mei, Yu; Whitham, Steven A

    2018-01-01

    Virus-induced gene silencing (VIGS) is a powerful technology for rapidly and transiently knocking down the expression of plant genes to study their functions. A VIGS vector for maize derived from Foxtail mosaic virus (FoMV), a positive-sense single-stranded RNA virus, was recently developed. A cloning site created near the 3' end of the FoMV genome enables insertion of 200-400 nucleotide fragments of maize genes targeted for silencing. The recombinant FoMV clones are inoculated into leaves of maize seedlings by biolistic particle delivery, and silencing is typically observed within 2 weeks after inoculation. This chapter provides a protocol for constructing FoMV VIGS clones and inoculating them into maize seedlings.

  1. A study of variability of capsid protein genes of Radish mosaic virus

    OpenAIRE

    HOLÁ, Marcela

    2008-01-01

    The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

  2. CTCF-mediated chromatin loops enclose inducible gene regulatory domains

    NARCIS (Netherlands)

    Oti, M.O.; Falck, J.; Huynen, M.A.; Zhou, Huiqing

    2016-01-01

    BACKGROUND: The CCTC-binding factor (CTCF) protein is involved in genome organization, including mediating three-dimensional chromatin interactions. Human patient lymphocytes with mutations in a single copy of the CTCF gene have reduced expression of enhancer-associated genes involved in response to

  3. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  4. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  5. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.

    Science.gov (United States)

    Loskog, Angelica

    2015-11-06

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  6. Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Yeong-Hoon Lee

    2015-12-01

    Full Text Available Soybean mosaic virus (SMV is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at 58°C for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

  7. Attenuation of Semliki Forest Virus Neurovirulence by MicroRNA-Mediated Detargeting

    OpenAIRE

    Ylösmäki, Erkko; Martikainen, Miika; Hinkkanen, Ari; Saksela, Kalle

    2013-01-01

    Artificial target sequences for tissue-specific miRNAs have recently been introduced as a new means for altering the tissue tropism of viral replication. This approach can be used to improve the safety of oncolytic viruses for cancer virotherapy by restricting their replication in unwanted tissues, such as the liver. Semliki Forest virus (SFV) is a positive-strand RNA virus and, similar to the related alphaviruses, like Sindbis virus, has potential as a gene therapy vector and an oncolytic vi...

  8. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  9. Adeno-associated virus inverted terminal repeats stimulate gene editing

    OpenAIRE

    Hirsch, ML

    2014-01-01

    Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repea...

  10. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  11. VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection.

    Science.gov (United States)

    Arulanandam, Rozanne; Batenchuk, Cory; Angarita, Fernando A; Ottolino-Perry, Kathryn; Cousineau, Sophie; Mottashed, Amelia; Burgess, Emma; Falls, Theresa J; De Silva, Naomi; Tsang, Jovian; Howe, Grant A; Bourgeois-Daigneault, Marie-Claude; Conrad, David P; Daneshmand, Manijeh; Breitbach, Caroline J; Kirn, David H; Raptis, Leda; Sad, Subash; Atkins, Harold; Huh, Michael S; Diallo, Jean-Simon; Lichty, Brian D; Ilkow, Carolina S; Le Boeuf, Fabrice; Addison, Christina L; McCart, J Andrea; Bell, John C

    2015-08-10

    Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...... to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA), now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full......-2006). In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+) T cells against an epitope from Plasmodium berghei was created using Gal...

  13. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway

    Science.gov (United States)

    Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus

    2007-01-01

    Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165

  14. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  15. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    Conclusion: A method for determination of HBV genotypes using pol gene sequencing which simultaneously detects major drug resistance mutations has been established. HBV genetic diversity may play an important role in treatment decision. Keywords: Hepatitis B virus, nested PCR, genotype, sub-genotypes, YMDD ...

  16. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    Science.gov (United States)

    2016-04-12

    34--- I lr_ Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Recent Development in Gene Therapy , 2007: 77-94...ISBN: 81-7895-262-9 Editor: Jim Xiang Adenovirus-mediated gene therapy against viral biothreat agents Josh Q.H. Wu Chemical Biological Defence... therapy , which introduces therapeutic genes into mammalian cells to achieve therapeutic effective, hds a great potential for use as a defensive

  17. Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene

    Directory of Open Access Journals (Sweden)

    Seong-Han Sohn

    2015-09-01

    Full Text Available Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS. To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG comparing with wild-type. Eight lines of transgenic plants (T0 were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

  18. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  19. Cloning and analysis of the Epstein-Barr virus glycoprotein 350 genes.

    Science.gov (United States)

    Chang, S H; Kim, S H; Lee, W K; Kim, H J; Choi, S H; Park, J H; Jang, H S; Chung, G H; Kwon, T H; Kim, D H; Yang, M S; Jang, Y S

    1998-10-31

    Membrane glycoprotein 350 (gp350) of the Epstein-Barr virus (EBV) is considered as a major target for vaccine development, since the gp350 has been identified as the virus' mediator for receptor interaction and as an inducer of specific in vitro virus-neutralizing antibodies. In an initial attempt to develop an effective DNA vaccine against an EBV infection, gp350 genes were isolated from SNU-20 and SNU-1103 which are the EBV-infected lymphoblastoid cell lines established in Korea. In addition, the nucleotide sequences of the gp350 genes were determined and compared with those of other EBV strains such as B95-8, P3HR-1/AG876 and M81. Sequence analysis showed that similar high degrees of homology between 2 EBV strains derived from African Burkitt's lymphoma, P3HR-1 and AG876, was shown between the gp350 genes isolated from 2 EBV-infected lymphoblastoid cell lines established in Korea. Furthermore, these 2 Korean and 2 African strains displayed nearly identical patterns of sequence variations from B95-8. In addition, the sequence of the isolated gp350 genes, which have been reported to be associated with the biology of EBV infection, is analyzed.

  20. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2013-05-01

    Full Text Available The large RNA genome of CTV (ca. 20 kb contains 12 open reading frames (ORFs, with the 3’-terminal one corresponding to a protein of 209 amino acids (p23 that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative Zn-finger domain and some basic motifs, is unique to CTV because no homologues have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes. Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: i regulation of the asymmetrical accumulation of CTV RNA strands, ii induction of the seedling yellows syndrome in sour orange and grapefruit, iii intracellular suppression of RNA silencing, iv elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and v enhancement of systemic infection (and virus accumulation in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.

  1. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  2. A viral suppressor P1/HC-pro increases the GFP gene expression in agrobacterium-mediated transient assay.

    Science.gov (United States)

    Ma, Pengda; Liu, Jinying; He, Hongxia; Yang, Meiying; Li, Meina; Zhu, Xiaojuan; Wang, Xingzhi

    2009-08-01

    More than 20 post-transcriptional gene silencing (PTGS) suppressors have been found since HC-Pro, the first gene silencing suppressor, was found in 1998. The silencing suppressor strongly suggested that gene silencing functions as natural defense mechanisms against viruses. It also represented a valuable tool for the dissection of the gene silencing pathway. We have used P1/HC-Pro RNA silencing suppressor activity to increase green fluorescent protein (GFP) expression in tobacco using an Agrobacterium-mediated transient expression system. P1/HC-Pro stimulated GFP-gene expression but not dsGFP-gene expression was shown by RT-PCR, Northern and Western blot analysis. Expression of the gene silencing suppressor and the target gene provided a new strategy of heterogeneous gene expressing in plants. It may be of commercial significance to produce foreign proteins using plant bioreactors.

  3. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus.

    Science.gov (United States)

    Galivo, Feorillo; Diaz, Rosa Maria; Thanarajasingam, Uma; Jevremovic, Dragan; Wongthida, Phonphimon; Thompson, Jill; Kottke, Timothy; Barber, Glen N; Melcher, Alan; Vile, Richard G

    2010-04-01

    Oncolytic virotherapy can be achieved in two ways: (1) by exploiting an innate ability of certain viruses to selectively replicate in tumor tissues, and (2) by using viruses to deliver toxic or immunostimulatory genes to tumors. Vesicular stomatitis virus (VSV) selectively replicates in tumors lacking adequate type I interferon response. The efficacy of oncolytic virotherapy using VSV against B16 melanomas in C57BL/6 mice is dependent on CD8(+) T and natural killer cells. Because immunotherapies that prime specific CD8(+) T cells against melanocyte/melanoma antigens can generate significant therapeutic responses, we hypothesized that engineering VSV to express the potent T cell costimulatory molecule CD40 ligand (VSV-CD40L) would enhance virotherapy with concomitant priming of melanoma-specific T cells. However, we observed no difference in antitumor efficacy between the parental VSV-GFP and VSV-CD40L. In contrast, intratumoral injection of a replication-defective adenovirus expressing CD40L (Ad-CD40L) consistently produced significantly greater therapy than either replication-competent VSV-GFP or VSV-CD40L. The Ad-CD40L-mediated tumor regressions were associated with specific T cell responses against tumor-associated antigens (TAAs), which took several days to develop, whereas VSV-CD40L rapidly induced high levels of T cell activation without specificity for TAAs. These data suggest that the high levels of VSV-associated immunogenicity distracted immune responses away from priming of tumor-specific T cells, even in the presence of potent costimulatory signals. In contrast, a replication-defective Ad-CD40L allowed significant priming of T cells directed against TAAs. These observations suggest that an efficiently primed antitumor T cell response can produce similar, if not better, therapy against an established melanoma compared with intratumoral injection of a replication-competent oncolytic virus.

  4. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti.

    Science.gov (United States)

    Terradas, Gerard; Allen, Scott L; Chenoweth, Stephen F; McGraw, Elizabeth A

    2017-12-28

    The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the

  5. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    Science.gov (United States)

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  6. The BDLF3 gene product of Epstein-Barr virus, gp150, mediates non-productive binding to heparan sulfate on epithelial cells and only the binding domain of CD21 is required for infection.

    Science.gov (United States)

    Chesnokova, Liudmila S; Valencia, Sarah M; Hutt-Fletcher, Lindsey M

    2016-07-01

    The cell surface molecules used by Epstein-Barr virus (EBV) to attach to epithelial cells are not well-defined, although when CD21, the B cell receptor for EBV is expressed epithelial cell infection increases disproportionately to the increase in virus bound. Many herpesviruses use low affinity charge interactions with molecules such as heparan sulfate to attach to cells. We report here that the EBV glycoprotein gp150 binds to heparan sulfate proteoglycans, but that attachment via this glycoprotein is not productive of infection. We also report that only the aminoterminal two short consensus repeats of CD21 are required for efficient infection, This supports the hypothesis that, when expressed on an epithelial cell CD21 serves primarily to cluster the major attachment protein gp350 in the virus membrane and enhance access of other important glycoproteins to the epithelial cell surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular characterisation of lumpy skin disease virus and sheeppox virus based on P32 gene

    Directory of Open Access Journals (Sweden)

    P.M.A.Rashid

    2017-06-01

    Full Text Available Lumpy skin disease virus (LSDV and sheeppox virus (SPV have a considerable economic impact on the cattle and small ruminant industry. They are listed in group A of contagious disease by the World Organization for Animal Health (OIE. This study addressed molecular characterisation of first LSDV outbreak and an endemic SPV in Kurdistan region of Iraq based on P32 gene. The results indicated that P32 gene can be successfully used for diagnosis of LSDV. The phylogenic and molecular analysis showed that there may be a new LSDV isolate circulating in Kurdistan which uniquely shared the same characteristic amino acid sequence with SPV and GPV, leucine at amino acid position 51 in P32 gene as well as few genetically distinct SPV causing pox disease in Kurdistan sheep. This study provided sequence information of P32 gene for several LSDV isolates, which positively affects the epidemiological study of Capripoxvirus

  8. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  9. Foamy virus for efficient gene transfer in regeneration studies.

    Science.gov (United States)

    Khattak, Shahryar; Sandoval-Guzmán, Tatiana; Stanke, Nicole; Protze, Stephanie; Tanaka, Elly M; Lindemann, Dirk

    2013-05-03

    Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.

  10. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene.

    Science.gov (United States)

    MacKenzie, D J; Ellis, P J

    1992-01-01

    A recombinant plasmid containing the entire tomato spotted with virus (TSWV) nucleocapsid gene, with the exception of nucleotide encoding three N-terminal amino acids, was isolated by screening a complementary DNA library, prepared against random primed viral RNA, using a specific monoclonal antibody. The insert contained in plasmid pTSW1 was repaired and amplified by polymerase chain reaction, and the complete nucleocapsid protein gene was introduced into Nicotiana tabacum 'Samsun' by leaf disk transformation using Agrobacterium tumefaciens. Transgenic plants expressing the viral nucleocapsid protein were resistant to subsequent infection following mechanical inoculation with TSWV as indicated by a lack of systemic symptoms and little or no systemic accumulation of virus as determined by double antibody sandwich enzyme-liked immunosorbent assay. These results further extend the applicability of coat protein-mediated resistance, as previously demonstrated for a number of simple plant viruses composed of a positive-sense RNA genome encapsidated with a single species of coat protein, to a membrane-encapsidated, multi-component, negative-sense RNA virus.

  11. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses.

    Science.gov (United States)

    VanLeuven, James T; Ridenhour, Benjamin J; Gonzalez, Andres J; Miller, Craig R; Miura, Tanya A

    2017-01-01

    The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.

  12. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    Science.gov (United States)

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  13. GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application▿

    Science.gov (United States)

    Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.

    2007-01-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757

  14. Sheeppox Virus Kelch-Like Gene SPPV-019 Affects Virus Virulence▿

    Science.gov (United States)

    Balinsky, C. A.; Delhon, G.; Afonso, C. L.; Risatti, G. R.; Borca, M. V.; French, R. A.; Tulman, E. R.; Geary, S. J.; Rock, D. L.

    2007-01-01

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, ΔKLP, was derived from the pathogenic strain SPPV-SA. ΔKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). ΔKLP-infected cells exhibited a reduction in Ca2+-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, ΔKLP was markedly attenuated, since all ΔKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with ΔKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep. PMID:17686843

  15. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence.

    Science.gov (United States)

    Balinsky, C A; Delhon, G; Afonso, C L; Risatti, G R; Borca, M V; French, R A; Tulman, E R; Geary, S J; Rock, D L

    2007-10-01

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, DeltaKLP, was derived from the pathogenic strain SPPV-SA. DeltaKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). DeltaKLP-infected cells exhibited a reduction in Ca(2+)-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, DeltaKLP was markedly attenuated, since all DeltaKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with DeltaKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep.

  16. Agrobacterium-mediated gene transfer to chrysanthemum

    NARCIS (Netherlands)

    Wordragen, van M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross

  17. [AAV vector-mediated gene transfer and its application to the nervous system].

    Science.gov (United States)

    Ozawa, Keiya

    2003-11-01

    AAV vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells; e.g., neurons are efficiently transduced with AAV2 and AAV5 vectors, and an AAV1 vector is most suitable for muscles. Among various neurological disorders, Parkinson's disease (PD) is one of the most appropriate candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. There are two major approaches to gene therapy of PD; i.e., 1) intrastriatal expression of dopamine (DA)-synthesizing enzyme genes, and 2) neuroprotection using the glial cell line-derived neurotrophic factor (GDNF) gene to prevent the disease progression. As for the initial step of clinical application, AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by the dose of L-DOPA. Preclinical studies are being conducted in MPTP-parkinsonian monkeys. AAV vector-mediated gene therapy would be feasible as a novel treatment of PD in the near future.

  18. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  19. Male-mediated gene flow in patrilocal primates.

    Directory of Open Access Journals (Sweden)

    Grit Schubert

    Full Text Available BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus and bonobos (Pan paniscus, we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than

  20. Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling.

    Science.gov (United States)

    Jarret, Abigail; McFarland, Adelle P; Horner, Stacy M; Kell, Alison; Schwerk, Johannes; Hong, MeeAe; Badil, Samantha; Joslyn, Rochelle C; Baker, Darren P; Carrington, Mary; Hagedorn, Curt H; Gale, Michael; Savan, Ram

    2016-12-01

    Hepatitis C virus (HCV) infects 200 million people globally, and 60-80% of cases persist as a chronic infection that will progress to cirrhosis and liver cancer in 2-10% of patients. We recently demonstrated that HCV induces aberrant expression of two host microRNAs (miRNAs), miR-208b and miR-499a-5p, encoded by myosin genes in infected hepatocytes. These miRNAs, along with AU-rich-element-mediated decay, suppress IFNL2 and IFNL3, members of the type III interferon (IFN) gene family, to support viral persistence. In this study, we show that miR-208b and miR-499a-5p also dampen type I IFN signaling in HCV-infected hepatocytes by directly down-regulating expression of the type I IFN receptor chain, IFNAR1. Inhibition of these miRNAs by using miRNA inhibitors during HCV infection increased expression of IFNAR1. Additionally, inhibition rescued the antiviral response to exogenous type I IFN, as measured by a marked increase in IFN-stimulated genes and a decrease in HCV load. Treatment of HCV-infected hepatocytes with type I IFN increased expression of myosins over HCV infection alone. Since these miRNAs can suppress type III IFN family members, these data collectively define a novel cross-regulation between type I and III IFNs during HCV infection.

  1. Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses.

    Directory of Open Access Journals (Sweden)

    Kotaro Mori

    Full Text Available The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to "right next door": one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors.

  2. Efficient gene transfer into neurons in monkey brain by adeno-associated virus 8.

    Science.gov (United States)

    Masamizu, Yoshito; Okada, Takashi; Ishibashi, Hidetoshi; Takeda, Shin'ichi; Yuasa, Shigeki; Nakahara, Kiyoshi

    2010-04-21

    Although the adeno-associated virus (AAV) vector is a promising tool for gene transfer into neurons, especially for therapeutic purposes, neurotropism in primate brains is not fully elucidated for specific AAV serotypes. Here, we injected AAV serotype 8 (AAV8) vector carrying the enhanced green fluorescent protein (EGFP) gene under a ubiquitous promoter into the cerebral cortex, striatum and substantia nigra of common marmosets. Robust neuronal EGFP expression was observed at all injected sites. Cell typing with immunohistochemistry confirmed efficient AAV8-mediated gene transfer into the pyramidal neurons in the cortex, calbindin-positive medium spiny neurons in the striatum and dopaminergic neurons in the substantia nigra. The results indicate a preferential tropism of AAV8 for subsets of neurons, but not for glia, in monkey brains.

  3. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.

    Science.gov (United States)

    Hung, Sandy S C; Chrysostomou, Vicki; Li, Fan; Lim, Jeremiah K H; Wang, Jiang-Hui; Powell, Joseph E; Tu, Leilei; Daniszewski, Maciej; Lo, Camden; Wong, Raymond C; Crowston, Jonathan G; Pébay, Alice; King, Anna E; Bui, Bang V; Liu, Guei-Sheung; Hewitt, Alex W

    2016-06-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has recently been adapted to enable efficient editing of the mammalian genome, opening novel avenues for therapeutic intervention of inherited diseases. In seeking to disrupt yellow fluorescent protein (YFP) in a Thy1-YFP transgenic mouse, we assessed the feasibility of utilizing the adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas for gene modification of retinal cells in vivo. Single guide RNA (sgRNA) plasmids were designed to target YFP, and after in vitro validation, selected guides were cloned into a dual AAV system. One AAV2 construct was used to deliver Streptococcus pyogenes Cas9 (SpCas9), and the other delivered sgRNA against YFP or LacZ (control) in the presence of mCherry. Five weeks after intravitreal injection, retinal function was determined using electroretinography, and CRISPR/Cas-mediated gene modifications were quantified in retinal flat mounts. Adeno-associated virus 2-mediated in vivo delivery of SpCas9 with sgRNA targeting YFP significantly reduced the number of YFP fluorescent cells of the inner retina of our transgenic mouse model. Overall, we found an 84.0% (95% confidence interval [CI]: 81.8-86.9) reduction of YFP-positive cells in YFP-sgRNA-infected retinal cells compared to eyes treated with LacZ-sgRNA. Electroretinography profiling found no significant alteration in retinal function following AAV2-mediated delivery of CRISPR/Cas components compared to contralateral untreated eyes. Thy1-YFP transgenic mice were used as a rapid quantifiable means to assess the efficacy of CRISPR/Cas-based retinal gene modification in vivo. We demonstrate that genomic modification of cells in the adult retina can be readily achieved by viral-mediated delivery of CRISPR/Cas.

  4. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus.

    Science.gov (United States)

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-08-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  5. Neuraminidase-Mediated, NKp46-Dependent Immune-Evasion Mechanism of Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Yotam Bar-On

    2013-04-01

    Full Text Available Natural killer (NK cells play an essential role in the defense against influenza virus, one of the deadliest respiratory viruses known today. The NKp46 receptor, expressed by NK cells, is critical for controlling influenza infections, as influenza-virus-infected cells are eliminated through the recognition of the viral hemagglutinin (HA protein by NKp46. Here, we describe an immune-evasion mechanism of influenza viruses that is mediated by the neuraminidase (NA protein. By using various NA blockers, we show that NA removes sialic acid residues from NKp46 and that this leads to reduced recognition of HA. Furthermore, we provide in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrate that NA inhibitors, which are commonly used for the treatment of influenza infections, are useful not only as blockers of virus budding but also as boosters of NKp46 recognition.

  6. Nanobody-mediated resistance to Grapevine fanleaf virus in plants.

    Science.gov (United States)

    Hemmer, Caroline; Djennane, Samia; Ackerer, Léa; Hleibieh, Kamal; Marmonier, Aurélie; Gersch, Sophie; Garcia, Shahinez; Vigne, Emmanuelle; Komar, Véronique; Perrin, Mireille; Gertz, Claude; Belval, Lorène; Berthold, François; Monsion, Baptiste; Schmitt-Keichinger, Corinne; Lemaire, Olivier; Lorber, Bernard; Gutiérrez, Carlos; Muyldermans, Serge; Demangeat, Gérard; Ritzenthaler, Christophe

    2017-08-10

    Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  8. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice.

    Science.gov (United States)

    Zhang, Chao; Ding, Zuomei; Wu, Kangcheng; Yang, Liang; Li, Yang; Yang, Zhen; Shi, Shan; Liu, Xiaojuan; Zhao, Shanshan; Yang, Zhirui; Wang, Yu; Zheng, Luping; Wei, Juan; Du, Zhenguo; Zhang, Aihong; Miao, Hongqin; Li, Yi; Wu, Zujian; Wu, Jianguo

    2016-09-06

    MicroRNAs (miRNAs) are pivotal modulators of plant development and host-virus interactions. However, the roles and action modes of specific miRNAs involved in viral infection and host susceptibility remain largely unclear. In this study, we show that Rice ragged stunt virus (RRSV) infection caused increased accumulation of miR319 but decreased expression of miR319-regulated TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) genes, especially TCP21, in rice plants. Transgenic rice plants overexpressing miR319 or downregulating TCP21 exhibited disease-like phenotypes and showed significantly higher susceptibility to RRSV in comparison with the wild-type plants. In contrast, only mild disease symptoms were observed in RRSV-infected lines overexpressing TCP21 and especially in the transgenic plants overexpressing miR319-resistant TCP21. Both RRSV infection and overexpression of miR319 caused the decreased endogenous jasmonic acid (JA) levels along with downregulated expression of JA biosynthesis and signaling-related genes in rice. However, treatment of rice plants with methyl jasmonate alleviated disease symptoms caused by RRSV and reduced virus accumulation. Taken together, our results suggest that the induction of miR319 by RRSV infection in rice suppresses JA-mediated defense to facilitate virus infection and symptom development. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. Adenoviral and AAV-mediated gene transfer to the inner ear: role of serotype, promoter, and viral load on in vivo and in vitro infection efficiencies.

    Science.gov (United States)

    Luebke, Anne E; Rova, Cherokee; Von Doersten, Peter G; Poulsen, David J

    2009-01-01

    The lack of effective treatments for many forms of hearing and vestibular disorders has produced interest in virally mediated gene therapies. However, to develop a gene therapy strategy that would successfully treat inner ear disorders, appropriate viral vectors capable of transfecting cochlear and support cells must be identified. While virally mediated gene transfer into the inner ear has been accomplished using herpes simplex type I virus, vaccinia virus, retroviruses, adenovirus, and adeno-associated virus (AAV), we will restrict our discussion to AAV and adenoviral vectors. Issues such as vector toxicity and load, viral serotype and backbone, and promoter specificity are discussed and contrasted for both in vivo vs. in vitro inner ear gene transfer. Copyright (c) 2009 S. Karger AG, Basel.

  10. Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans

    Science.gov (United States)

    Bakowski, Malina A.; Desjardins, Christopher A.; Smelkinson, Margery G.; Dunbar, Tiffany A.; Lopez-Moyado, Isaac F.; Rifkin, Scott A.; Cuomo, Christina A.; Troemel, Emily R.

    2014-01-01

    Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans. PMID:24945527

  11. Identification of certain cancer-mediating genes using Gaussian ...

    Indian Academy of Sciences (India)

    2015-09-29

    Sep 29, 2015 ... ever, there is no instance of using cluster validity index, to our knowledge, which has been applied to the problem of finding disease mediating genes. The importance of the notion of fuzzy sets has been realized and successfully applied in almost all the branches of science and technology (Tripathy et al.

  12. Transgene transmission in chickens by sperm-mediated gene ...

    Indian Academy of Sciences (India)

    1989; Smith and Spadafora 2005; Collares et al. 2010). Although transgenic animals have been produced using sperm-mediated gene transfer (SMGT), the ... 2009). The poor reproducibility of SMGT was suggested to be due to the activation of defense mechanisms in the spermatozoa and seminal plasma, resulting in.

  13. Genes and mediators of inflammation and development in osteoarthritis

    NARCIS (Netherlands)

    Bos, Steffan Daniël

    2010-01-01

    Osteoarthritis (OA) mainly affects the articular cartilage covering the bones. In this thesis we investigated the relation between levels of inflammatory mediators, genes involved in their regulation and the disease status of OA. We investigated the role of genetic variation at the interleukin(IL)-1

  14. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    Science.gov (United States)

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  15. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints.

    Science.gov (United States)

    Apparailly, F; Khoury, M; Vervoordeldonk, M J B; Adriaansen, J; Gicquel, E; Perez, N; Riviere, C; Louis-Plence, P; Noel, D; Danos, O; Douar, A-M; Tak, P P; Jorgensen, C

    2005-04-01

    The potential for gene delivery to joints, using recombinant adeno-associated virus (rAAV) vectors for the treatment of rheumatoid arthritis (RA), has received much attention. Different serotypes have different virion shell proteins and, as a consequence, vary in their tropism for diverse tissues. The aim of this study was to compare the transduction efficiency of different AAV serotypes encoding murine secreted alkaline phosphatase (mSEAP) or Escherichia coli beta-galactosidase for intraarticular gene delivery in an experimental model of arthritis. The vectors contained AAV2 terminal repeats flanking the reporter gene in an AAV1, AAV2, or AAV5 capsid, producing the pseudotypes rAAV-2/1, rAAV-2/2, and rAAV-2/5. Left knee joints of mice with collagen-induced arthritis were injected and transgene expression was analyzed by chemiluminescence or direct in situ staining of frozen sections. We show for the first time that intraarticular gene transfer with AAV- 2/5 was far more efficient than with the other serotypes tested. Transgene expression was detectable as early as 7 days after injection, reached a maximum at 21 days, and was stably expressed for at least 130 days, whereas AAV-2/1- and AAV-2/2-mediated expression levels were barely detectable. These findings provide a practical application for future local AAV-mediated gene therapy trials in RA.

  16. LINGUISTIC ANALYSIS OF THE NUCLEOPROTEIN GENE OF INFLUENZA A VIRUS

    Energy Technology Data Exchange (ETDEWEB)

    A. SKOURIKHINE; T. BURR

    2000-05-01

    We applied linguistic analysis approach, specifically N-grams, to classify nucleotide and amino acids sequences of nucleoprotein (NP) gene of the Influenza A virus isolated from a range of hosts and geographic regions. We considered letter frequency (1-grams), letter pairs frequency (2-grams) and triplets' frequency (3-grams). Classification trees based on 1,2,3-grams variables were constructed for the same NP nucleotide and amino acids strains and their classification efficiency were compared with the clustering obtained using phylogenetic analysis. The results have shown that disregarding positional information for a NP gene can provide the same level of recognition accuracy like alternative more complex classification techniques.

  17. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  18. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    Science.gov (United States)

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  19. Efficient Virus-Induced Gene Silencing in Solanum rostratum.

    Directory of Open Access Journals (Sweden)

    Lan-Huan Meng

    Full Text Available Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS and Chlorophyll H subunit (ChlH of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.

  20. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome

    Directory of Open Access Journals (Sweden)

    Pei-Chun Hsu

    2018-01-01

    Full Text Available Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3′ untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes, and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.

  1. Viral-mediated gene transfer to mouse primary neural progenitor cells.

    Science.gov (United States)

    Hughes, Stephanie M; Moussavi-Harami, Farid; Sauter, Sybille L; Davidson, Beverly L

    2002-01-01

    Neural progenitor cells may provide for cell replacement or gene delivery vehicles in neurodegen-erative disease therapies. The expression of therapeutic proteins by neural progenitors would be enhanced by viral-mediated gene transfer, but the effects of several common recombinant viruses on primary progenitor cell populations have not been tested. To address this issue, we cultured cells from embryonic day 16-18 mouse brain in serum-free medium containing epidermal growth factor or basic fibroblast growth factor, and investigated how transduction with recombinant viral vectors affected maintenance and differentiation properties of progenitor cells. Neurosphere cultures were incubated with feline immunodeficiency virus (FIV), adeno-associated virus (AAV) or ade-noviral (Ad) constructs expressing either beta-galactosidase or enhanced green fluorescent protein at low multiplicity of infection. Nestin-positive neurospheres were regenerated after incubation of single progenitor cells with FIV, indicating that FIV-mediated gene transfer did not inhibit progenitor cell self-renewal. In contrast, adenovirus induced differentiation into glial fibrillary acidic protein (GFAP)-positive astrocytes. The AAV serotypes tested did not effectively transduce progenitor cells. FIV-transduced progenitors retained the potential for differentiation into neurons and glia in vitro, and when transplanted into the striatum of normal adult C57BL/6 mice differentiated into glia, or remained undifferentiated. In the presence of tumor cells, FIV-transduced progenitors migrated significantly from the injection site. Our results suggest that FIV-based vectors can transduce progenitor cell populations in vitro, with maintenance of their ability to differentiate into multiple cell types or to respond to injury within the central nervous system. These results hold promise for the use of genetically manipulated stem cells for CNS therapies.

  2. Hepatitis B virus inhibition in mice by lentiviral vector mediated short hairpin RNA

    Directory of Open Access Journals (Sweden)

    Wang Xuehao

    2009-10-01

    Full Text Available Abstract Background Chronic hepatitis B virus (HBV infection is an important cause of cirrhosis and hepatocellular carcinoma. The major challenges for current therapies are the low efficacy of current drugs and the occurrence of drug resistant HBV mutations. RNA interference (RNAi of virus-specific genes offers the possibility of developing a new anti-HBV therapy. Recent reports have shown that lentiviral vectors based on HIV-1 are promising gene delivery vehicles due to their ability to integrate transgenes into non-dividing cells. Herein, a lentivirus-based RNAi system was developed to drive expression and delivery of HBV-specific short hairpin RNA (shRNA in a mouse model for HBV replication. Methods Hepatitis B surface antigen (HBsAg and hepatitis B e antigen (HBeAg in the sera of the mice were analyzed by quantitative sandwich enzyme linked immunosorbent assay (ELISA technique, hepatitis B core antigen (HBcAg and HBsAg in the livers of the mice were detected by immunohistochemical assay, HBV DNA and HBV mRNA were measured by fluorogenic quantitative polymerase chain reaction (FQ-PCR and quantitative real-time PCR respectively. Results Co-injection of HBV plasmids together with the lentivirus targeting HBV shRNA induced an RNAi response. Secreted HBsAg was reduced by 89% in mouse serum, and HBeAg was also significantly inhibited, immunohistochemical detection of HBcAg or HBsAg in the liver tissues also revealed substantial reduction. Lentiviral mediated shRNA caused a significant suppression in the levels of viral mRNA and DNA synthesis compared to the control group. Conclusion Lentivirus-based RNAi can be used to suppress HBV replication in vivo, it might become a potential therapeutic strategy for treating HBV and other viral infections.

  3. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  4. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles

    NARCIS (Netherlands)

    Schoen, P; Chonn, A; Cullis, PR; Wilschut, J; Scherrer, P

    Hemagglutinin, the membrane fusion protein of influenza virus,is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we

  5. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector.

    Science.gov (United States)

    Mascia, Tiziana; Nigro, Franco; Abdallah, Alì; Ferrara, Massimo; De Stradis, Angelo; Faedda, Roberto; Palukaitis, Peter; Gallitelli, Donato

    2014-03-18

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi.

  6. Regression of Schwannomas Induced by Adeno-Associated Virus-Mediated Delivery of Caspase-1

    Science.gov (United States)

    Prabhakar, Shilpa; Taherian, Mehran; Gianni, Davide; Conlon, Thomas J.; Fulci, Giulia; Brockmann, Jillian; Stemmer-Rachamimov, Anat; Sena-Esteves, Miguel; Breakefield, Xandra O.

    2013-01-01

    Abstract Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene therapy for schwannomas, using a model in which immortalized human NF2 schwannoma cells expressing a fluorescent protein and luciferase are implanted in the sciatic nerve of nude mice. Direct injection of an adeno-associated virus (AAV) serotype 1 vector encoding caspase-1 (ICE) under the Schwann-cell specific promoter, P0, leads to regression of these tumors with essentially no vector-mediated neuropathology, and no changes in sensory or motor function. In a related NF2 xenograft model designed to cause measurable pain behavior, the same gene therapy leads to tumor regression and concordant resolution of tumor-associated pain. This AAV1-P0-ICE vector holds promise for clinical treatment of schwannomas by direct intratumoral injection to achieve reduction in tumor size and normalization of neuronal function. PMID:23140466

  7. Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site.

    Science.gov (United States)

    Mögling, Ramona; Richard, Mathilde J; Vliet, Stefan van der; Beek, Ruud van; Schrauwen, Eefje J A; Spronken, Monique I; Rimmelzwaan, Guus F; Fouchier, Ron A M

    2017-06-01

    Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.

  8. [Hepatitis C virus F protein-mediated inhibition of hepatoma cell proliferation].

    Science.gov (United States)

    Zhou, Fan; Liu, Jiao; Chen, Qing-mei; Shan, Xiao-ling; Chen, Lin-lin; Quan, Hui-qin; Tang, Ni

    2012-05-01

    To investigate the biological function of the hepatitis C virus (HCV)-encoded F protein in hepatocytes. The full-length F gene was amplified by PCR from HCV genotype 1a and cloned into plasmid pSEB-3Flag by restriction enzyme digestion and ligation. Hepatoma cell lines, Huh7 and SMMC7721, were transfected with the resultant recombinant pSEB-3Flag-F or the original pSEB-3Flag (negative control) and screened with the selective antibiotic, blasticidin. Stable F gene and protein expression was verified by RT-PCR analysis. Analysis of cell growth and cell cycle was carried out by MTS assay, crystal violet staining and flow cytometry. Huh7 and SMMC7721 cells transfected with pSEB-3Flag-F plasmid (Huh7-F and SMMC7721-F, respectively) uniquely expressed the F gene and protein. The Huh7-F and SMMC7721-F cells showed significantly decreased proliferation rates, compared to the respective control groups. A similar HCV F-mediated growth-inhibiting activity was observed by the cell viability assay. Furthermore, cell cycle analysis revealed that the S-phase distribution was much lower in Huh7-F (47.12%) and SMMC7721-F (30.75%) cells than in the respective controls (55.35% and 33.23%, respectively) (P less than 0.05). Stable expression of the HCV F gene reduced the in vitro proliferation rate of hepatoma cell lines, indicating that the F protein may function as a growth inhibitor of infected cells.

  9. Reverse Genetics Plasmid for Cloning Unstable Influenza A Virus Gene Segments

    OpenAIRE

    Zhou, Bin; Jerzak, Greta; Scholes, Derek T.; Donnelly, Matthew E.; Li, Yan; Wentworth, David E.

    2011-01-01

    Reverse genetics approaches that enable the generation of recombinant influenza A viruses entirely from plasmids are invaluable for studies on virus replication, morphogenesis, pathogenesis, or transmission. Furthermore, influenza virus reverse genetics is now critical for the development of new vaccines for this human and animal pathogen. Periodically, influenza gene segments are unstable within plasmids in bacteria. The PB2 gene segment of a highly pathogenic avian H5 influenza virus A/Turk...

  10. Influenza Virus Induces Apoptosis via BAD-Mediated Mitochondrial Dysregulation

    OpenAIRE

    Tran, Anh T; Cortens, John P.; Du, Qiujiang; Wilkins, John A.; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors...

  11. Effective polyethyleneimine-mediated gene transfer into zebrafish cells.

    Science.gov (United States)

    Ouyang, Sui-Dong; Pei, Yuan-Yuan; Weng, Shao-Ping; Lü, Ling; Yu, Xiao-Qiang; He, Jian-Guo

    2009-09-01

    Polyethyleneimine (PEI) has been broadly studied as a leading nonviral gene delivery carrier because of its relatively high transfection efficiency in a wide range of cell types. Here, we report gene transfer in zebrafish cells (ZF4) using PEI as a gene carrier and lipofectamine as a control. Formations of PEI-DNA complexes were characterized by a series of measurements. The particle size of PEI-DNA complexes decreased from 274 to 132 nm, the surface charge gradually increased from -26 to 29 mV, and the cytotoxicity for zebrafish cells was observed with increasing proportion of PEI. Gel retardation assay showed that DNA was completely bound by PEI with a negative-to-positive charge ratio of 4. It was observed by transmission electron microscopy that the morphology of PEI-DNA complexes was spherical with smooth surfaces. Flow cytometry revealed that the optimum transfection efficiency (27%) mediated by PEI was obtained at an negative-to-positive charge ratio of 8, which was higher than that with lipofectamine. Luciferase activity assay confirmed the increase in reporter gene expression probably due to a more efficient formation of complex between DNA and PEI than DNA and lipofectamine. In conclusion, our study demonstrates that PEI may be applied as an effective gene carrier to mediate gene transfer into zebrafish cells.

  12. Plant viruses in aqueous environment - survival, water mediated transmission and detection.

    Science.gov (United States)

    Mehle, Nataša; Ravnikar, Maja

    2012-10-15

    The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas. The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status.

    Science.gov (United States)

    Kim, M; Williamson, C T; Prudhomme, J; Bebb, D G; Riabowol, K; Lee, P W K; Lees-Miller, S P; Mori, Y; Rahman, M M; McFadden, G; Johnston, R N

    2010-07-08

    Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible that other tumor-specific signaling pathways may also contribute to viral discrimination between normal versus cancer cells. Because carcinogenesis is a multistep process involving the accumulation of both oncogene activations and the inactivation of tumor suppressor genes, we speculated that not only oncogenes but also tumor suppressor genes may have an important role in determining the tropism of these viruses for cancer cells. It has been previously shown that many cellular tumor suppressor genes, such as p53, ATM and Rb, are important for maintaining genomic stability; dysfunction of these tumor suppressors may disrupt intact cellular antiviral activity due to the accumulation of genomic instability or due to interference with apoptotic signaling. Therefore, we speculated that cells with dysfunctional tumor suppressors may display enhanced susceptibility to challenge with these oncolytic viruses, as previously seen with adenovirus. We report here that both reovirus and myxoma virus preferentially infect cancer cells bearing dysfunctional or deleted p53, ATM and Rb tumor suppressor genes compared to cells retaining normal counterparts of these genes. Thus, oncolysis by these viruses may be influenced by both oncogenic activation and tumor suppressor status.

  14. The Hepatitis C Virus Core Protein Inhibits Adipose Triglyceride Lipase (ATGL)-mediated Lipid Mobilization and Enhances the ATGL Interaction with Comparative Gene Identification 58 (CGI-58) and Lipid Droplets*

    Science.gov (United States)

    Camus, Gregory; Schweiger, Martina; Herker, Eva; Harris, Charles; Kondratowicz, Andrew S.; Tsou, Chia-Lin; Farese, Robert V.; Herath, Kithsiri; Previs, Stephen F.; Roddy, Thomas P.; Pinto, Shirly; Zechner, Rudolf; Ott, Melanie

    2014-01-01

    Liver steatosis is a common health problem associated with hepatitis C virus (HCV) and an important risk factor for the development of liver fibrosis and cancer. Steatosis is caused by triglycerides (TG) accumulating in lipid droplets (LDs), cellular organelles composed of neutral lipids surrounded by a monolayer of phospholipids. The HCV nucleocapsid core localizes to the surface of LDs and induces steatosis in cultured cells and mouse livers by decreasing intracellular TG degradation (lipolysis). Here we report that core at the surface of LDs interferes with the activity of adipose triglyceride lipase (ATGL), the key lipolytic enzyme in the first step of TG breakdown. Expressing core in livers or mouse embryonic fibroblasts of ATGL−/− mice no longer decreases TG degradation as observed in LDs from wild-type mice, supporting the model that core reduces lipolysis by engaging ATGL. Core must localize at LDs to inhibit lipolysis, as ex vivo TG hydrolysis is impaired in purified LDs coated with core but not when free core is added to LDs. Coimmunoprecipitation experiments revealed that core does not directly interact with the ATGL complex but, unexpectedly, increased the interaction between ATGL and its activator CGI-58 as well as the recruitment of both proteins to LDs. These data link the anti-lipolytic activity of the HCV core protein with altered ATGL binding to CGI-58 and the enhanced association of both proteins with LDs. PMID:25381252

  15. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways media

  16. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  17. Antibody-mediated enhancement of Wesselsbron virus in P388D1 cells.

    Science.gov (United States)

    Fagbami, A H; Halstead, S B

    1986-01-01

    Antibody-mediated enhancement of Wesselsbron virus was investigated in P388D1 cell cultures. Virus infection was enhanced in culture by various dilutions of homologous and heterologous flavivirus antibody. Highest enhancement ratios and enhancing antibody titres were obtained with the homologous antibody. Enhancement of Wesselsbron virus infection in P388D1 cultures was also dependent on the multiplicity of infection (MOI) used; cultures infected at the lowest MOI produced the highest enhancement ratios. Of the four heterologous flavivirus IMAF tested for ability to enhance Wesselsbron virus infection, Potiskum virus antibody produced highest fold enhancement and possessed the highest enhancing antibody titre. Zika, Uganda S and Dakar bat IMAF produced lower fold enhancement and had lower enhancing antibody titres.

  18. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  19. Lentiviral HSV-Tk.007-mediated suicide gene therapy is not toxic for normal brain cells.

    Science.gov (United States)

    Hossain, Jubayer A; Ystaas, Lars Rømo; Mrdalj, Jelena; Välk, Kristjan; Riecken, Kristoffer; Fehse, Boris; Bjerkvig, Rolf; Grønli, Janne; Miletic, Hrvoje

    2016-09-01

    Gene therapeutic strategies with suicide genes are currently investigated in clinical trials for brain tumors. Previously, we have shown that lentiviral vectors delivering the suicide gene HSV-Tk to experimental brain tumors promote a highly significant treatment effect and thus are promising vectors for clinical translation. In the present study, we tested lentiviral vectors delivering the suicide gene HSV-Tk.007, a highly active mutant of HSV-Tk, to rat brains as a preclinical toxicity study. We injected 10(6) vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped functional lentiviral particles harboring the suicide gene HSV-Tk.007 into the brain of healthy, immunocompetent rats. During prodrug treatment with ganciclovir (GCV), we measured weight and assessed the behavior of the rats in an open field test. After 14 days of GCV treatment, we analyzed HSV-Tk.007 expression in different brain cell populations, as well as inflammatory responses and apoptosis. During prodrug treatment with GCV, behavior experiments did not reveal differences between the treated rats and the control groups. Analysis of HSV-Tk expression in different brain cell populations showed that transduced normal brain cells survived GCV treatment. There were no statistically significant differences in the number of transduced cells between treatment and control groups. Furthermore, inflammatory responses and apoptosis of brain cells were not observed. We show that HSV-Tk.007-mediated suicide gene therapy is not toxic to normal brain cells. This observation is of high relevance for the translation of lentivirus-mediated suicide gene therapies into the clinic for the treatment of brain tumor patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  1. Agrobacterium-mediated gene transfer in plants and biosafety considerations.

    Science.gov (United States)

    Mehrotra, Shweta; Goyal, Vinod

    2012-12-01

    Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.

  2. Lentivirus vector-mediated gene transfer to the developing bronchiolar airway epithelium in the fetal lamb.

    Science.gov (United States)

    Yu, Ze-Yan; McKay, Karen; van Asperen, Peter; Zheng, Maolin; Fleming, Jane; Ginn, Samantha L; Kizana, Eddy; Latham, Margot; Feneley, Michael P; Kirkland, Peter D; Rowe, Peter B; Lumbers, Eugenie R; Alexander, Ian E

    2007-06-01

    Development of effective and durable gene therapy for treatment of the respiratory manifestations of cystic fibrosis remains a formidable challenge. Obstacles include difficulty in achieving efficient gene transfer to mature airway epithelium and the need to stably transduce self-renewing epithelial progenitor cells in order to avoid loss of transgene expression through epithelial turnover. Targeting the developing airway epithelium during fetal life offers the prospect of circumventing these challenges. In the current study we investigated vesicular stomatitis virus glycoprotein (VSVg)-pseudotyped HIV-1-derived lentivirus vector-mediated gene transfer to the airway epithelium of mid-gestation fetal lambs, both in vitro and in vivo. In the in vitro studies epithelial sheet explants and lung organ culture were used to examine transduction of the proximal and more distal airway epithelium, respectively. For the in vivo studies, vector was delivered directly into the proximal airway. We found that even during the early pseudoglandular and canalicular phases of lung development, occurring through mid-gestation, the proximal bronchial airway epithelium was relatively mature and highly resistant to lentivirus-mediated transduction. In contrast, the more distal bronchiolar airway epithelium was relatively permissive for transduction although the absolute levels achieved remained low. This result is promising as the bronchiolar airway epithelium is a major site of pathology in the cystic fibrosis airway, and much higher levels of transduction are likely to be achieved by developing strategies that increase the amount of vector reaching the more distal airway after intratracheal delivery.

  3. Inhibition of hepatitis B virus gene expression and replication by ribonuclease P.

    Science.gov (United States)

    Xia, Chuan; Chen, Yuan-Chuan; Gong, Hao; Zeng, Wenbo; Vu, Gia-Phong; Trang, Phong; Lu, Sangwei; Wu, Jianguo; Liu, Fenyong

    2013-05-01

    Nucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts. Furthermore, an attenuated Salmonella strain was constructed and used for delivery of anti-HBV EGS in cells and in mice. Substantial reduction in the levels of HBV gene expression and viral DNA was detected in cells treated with the Salmonella vector carrying the functional EGS construct. Furthermore, oral inoculation of Salmonella carrying the EGS construct led to an inhibition of ~95% in the levels of HBV gene expression and a reduction of ~200,000-fold in viral DNA level in the livers and sera of the treated mice transfected with a HBV plasmid. Our results suggest that EGSs are effective in inhibiting HBV replication in cultured cells and mammalian livers, and demonstrate the use of Salmonella-mediated delivery of EGS as a promising therapeutic approach for human diseases including HBV infection.

  4. Multiple cis-elements mediate shear stress-induced gene expression.

    Science.gov (United States)

    Shyy, J Y; Li, Y S; Lin, M C; Chen, W; Yuan, S; Usami, S; Chien, S

    1995-12-01

    Fluid shear stress activates the expression of immediate early (IE) genes in vascular endothelial cells. The transcriptional regulation can be mediated through the shear stress-sensitive cis-acting elements at the 5' promoter regions of various IE genes such as the monocyte chemotactic protein-1 (MCP-1) gene. We linked wild-type and mutated MCP-1 promoters to the reporter gene luciferase and used such constructs to investigate the role of the phorbol ester TPA responsive element (TRE) in the shear-induced MCP-1 gene expression in vascular endothelial cells. Functional analysis showed that TGACTCC (a divergent TRE) located at nt -54 to -60 is necessary for shear-inducibility in bovine aortic endothelial cells (BAEC). The induction of the wild-type MCP-1 promoter construct by shear stress was attenuated by pretreating the cells with 1 microM dexamethasone or 1 microM retinoic acid 12 h before the shear stress experiments. The induction by shear stress reduced from 13-fold in the untreated cells to 7- and 3-folds in the dexamethasone- and retinoic acid-treated cells, respectively. These results demonstrate that the glucocorticoid receptor and retinoic acid receptor may interfere with the shear stress-activated AP-1/TRE. The reporter activity of HIV(LTR), which is a plasmid construct of the long terminal repeats of the human immunodeficiency virus and contains a kappa B enhancer element, was also activated by shear stress. The results of our investigations indicate that the shear stress-induced IE gene expression can be mediated through multiple cis-elements.

  5. Adeno-associated virus (AAV) vectors in cancer gene therapy.

    Science.gov (United States)

    Santiago-Ortiz, Jorge L; Schaffer, David V

    2016-10-28

    Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Adeno-associated virus (AAV) gene therapy for neurological disease.

    Science.gov (United States)

    Weinberg, Marc S; Samulski, R Jude; McCown, Thomas J

    2013-06-01

    Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Development of a Rapid and Sensitive Method for Detection of African Swine Fever Virus Using Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Xulong Wu

    Full Text Available ABSTRACT A loop-mediated isothermal amplification (LAMP assay was developed for rapid, sensitive and specific detection of African swine fever virus (ASFV. A set of LAMP primers was designed based on the sequence of the ASFV gene K205R. Reaction temperature and time were optimized to 64 oC and 60 min, respectively. LAMP products were detected by agarose gel electrophoresis or visually with the addition of fluorescent dye. The detection limit of the LAMP assay was approximately 6 copies of the target gene per microliter, 100 times more sensitive than conventional PCR. LAMP is a simple and inexpensive molecular assay format for ASFV detection. To date, African swine fever has not been reported in China. LAMP can be used to monitor ASFV spread into China, thereby reducing the threat of ASF.

  8. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  9. Cellular unfolded protein response against viruses used in gene therapy

    Directory of Open Access Journals (Sweden)

    Dwaipayan eSen

    2014-05-01

    Full Text Available Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually ‘gutted’ and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.

  10. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid.

    Science.gov (United States)

    Su, H; Yeghiazarians, Y; Lee, A; Huang, Y; Arakawa-Hoyt, J; Ye, J; Orcino, G; Grossman, W; Kan, Y W

    2008-01-01

    Adeno-associated virus (AAV) has many properties of an ideal vector for delivery of therapeutic genes into the myocardium. Previous studies in a mouse model of myocardial infarction showed that AAV serotype 1 (AAV1) is superior to AAV serotypes 2-5 to transfer genes into the myocardium by direct injection. Since vectors may behave differently in humans and because the human and the pig hearts resemble each other closely, we tested whether AAV1 is also superior to AAV2 in transferring genes into the pig myocardium. We also compared gene transduction efficiency between AAV vectors and plasmid. We injected CMVLacZ and CMVVEGF (vectors with the cytomegalovirus (CMV) promoter driving LacZ and VEGF gene expression) unpackaged or packaged in AAV serotypes 1 or 2 capsids into pig myocardium. Hearts were collected 3, 14 and 28 days after the injection. Gene expression was analyzed by real-time reverse-transcription polymerase chain reaction (RT-PCR) and histological staining. Capillaries and smooth muscle alpha-actin (SMA)-positive vessels were quantified. Potential lymphocyte infiltration at the injection sites was analyzed by immunostaining using specific antibodies. As in the mouse, AAV1 mediated better gene transduction than AAV2. Plasmid mediated minimal gene expression only. More capillaries and SMA-positive vessels were detected at AAV1CMVVEGF- and AAV2CMVVEGF-injected than AAV1CMVLacZ-injected sites. We did not detect inflammatory cell infiltration at the injection sites. In conclusion, by direct injection, AAV1 is more efficient than AAV2, and plasmid is inefficient in mediating gene transfer into the pig myocardium. AAV-mediated VEGF gene transfer can also induce neovascular formation in the pig myocardium. (c) 2007 John Wiley & Sons, Ltd.

  11. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses.

    Science.gov (United States)

    Work, Lorraine M; Büning, Hildegard; Hunt, Ela; Nicklin, Stuart A; Denby, Laura; Britton, Nicola; Leike, Kristen; Odenthal, Margarete; Drebber, Uta; Hallek, Michael; Baker, Andrew H

    2006-04-01

    Virus-mediated gene delivery is restricted by the infectivity profile of the chosen vector. Targeting the vascular endothelium via systemic delivery has been attempted using peptides isolated in vitro (using either phage or vector display) and implicit reliance on target receptor expression in vivo. This has limited application since endothelial cells in vitro and in vivo differ vastly in receptor profiles and because of the existence of complex endothelial "zip codes" in vivo. We therefore tested whether in vivo phage display combined with adeno-associated virus (AAV) capsid modifications would allow in vivo homing to the endothelium residing in defined organs. Extensive in vivo biopanning in rats identified four consensus peptides homing to the lung or brain. Each was incorporated into the VP3 region of the AAV-2 capsid to display the peptide at the virion surface. Peptides that conferred heparan independence were shown to retarget virus to the expected vascular bed in vivo in a preferential manner, determined 28 days post-systemic injection by both virion DNA and transgene expression profiling. Our findings significantly impact the design of viral vectors for targeting individual vascular beds in vivo.

  12. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats.

    Science.gov (United States)

    Seppen, Jurgen; Bakker, Conny; de Jong, Berry; Kunne, Cindy; van den Oever, Karin; Vandenberghe, Kristin; de Waart, Rudi; Twisk, Jaap; Bosma, Piter

    2006-06-01

    Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and suffer brain damage because of bilirubin toxicity. Vectors based on adeno-associated virus (AAV) serotype 2 transduce liver cells with relatively low efficiency. Recently, AAV serotypes 1, 6, and 8 have been shown to be more efficient for liver cell transduction. We compared AAV serotypes 1, 2, 6, and 8 for correction of UGT1A1 deficiency in the Gunn rat model of CN disease. Adult Gunn rats were injected with CMV-UGT1A1 AAV vectors. Serum bilirubin was decreased over the first year by 64% for AAV1, 16% for AAV2, 25% for AAV6, and 35% for AAV8. Antibodies to UGT1A1 were detected after injection of all AAV serotypes. An AAV1 UGT1A1 vector with the liver-specific albumin promoter corrected serum bilirubin levels but did not induce UGT1A1 antibodies. Two years after injection of AAV vectors all animals had large lipid deposits in the liver. These lipid deposits were not seen in age-matched control animals. AAV1 vectors are promising candidates for CN gene therapy because they can mediate a reduction in serum bilirubin levels in Gunn rats that would be therapeutic in humans.

  13. Serum-resistant gene transfer to oral cancer cells by Metafectene and GeneJammer: application to HSV-tk/ganciclovir-mediated cytotoxicity.

    Science.gov (United States)

    Konopka, Krystyna; Fallah, Basma; Monzon-Duller, JoMarie; Overlid, Nathan; Düzgünes, Nejat

    2005-01-01

    Cationic lipids and polyamines have been used as non-viral gene transfer reagents, both in vitro and in vivo. One of the limitations to their use in vivo is the inhibition of gene delivery by serum. We showed previously that, in the absence of serum, relatively high cytotoxicity in oral cancer cell lines could be achieved via transfection of the Herpes Simplex Virus thymidine kinase (HSV-tk) gene followed by treatment with ganciclovir (GCV), despite the low efficiency of transfection (Konopka et al., Gene Ther. Mol. Biol. 8 (2004) 307-318). In this study we evaluated the effect of high concentrations (20-60%) of fetal bovine serum (FBS) on the transfection efficiency of two novel reagents, the polycationic liposome, Metafectene, and the polyamine reagent, GeneJammer, in HSC-3 and H357 human oral squamous cell carcinoma (OSCC) cells. We also examined whether the HSV-tk gene delivered in the presence of FBS (up to 60%, could induce cell death following treatment with GCV. Transfection was optimized using a luciferase-expressing plasmid. Both Metafectene- and GeneJammer-mediated luciferase gene expression in HSC-3 cells was reduced by 40-50% when transfection was performed in the presence of 20-60% FBS. The delivery of the HSV-tk gene by Metafectene in the absence and the presence of 60% FBS, followed by GCV treatment for 9 days, resulted in 95% and 70% cytotoxicity, respectively. With GeneJammer, transfection in 0% and 60% FBS resulted in 90% and 40% cytotoxicity, respectively, after 9 days. In contrast, very low transfection activity and a much higher inhibitory effect of serum were observed in H357 cells. Nevertheless, about 35% GCV-mediated cytotoxicity was observed with H357 cells at both 0% and 60% FBS, using GeneJamer. Thus, Metafectene and GeneJammer can be used in the delivery of genes in biological milieu and in the gene therapy of OSCC in animal models.

  14. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...

  15. A potentially novel overlapping gene in the genomes of Israeli acute paralysis virus and its relatives

    Directory of Open Access Journals (Sweden)

    Price Nicholas

    2009-09-01

    Full Text Available Abstract The Israeli acute paralysis virus (IAPV is a honeybee-infecting virus that was found to be associated with colony collapse disorder. The IAPV genome contains two genes encoding a structural and a nonstructural polyprotein. We applied a recently developed method for the estimation of selection in overlapping genes to detect purifying selection and, hence, functionality. We provide evolutionary evidence for the existence of a functional overlapping gene, which is translated in the +1 reading frame of the structural polyprotein gene. Conserved orthologs of this putative gene, which we provisionally call pog (predicted overlapping gene, were also found in the genomes of a monophyletic clade of dicistroviruses that includes IAPV, acute bee paralysis virus, Kashmir bee virus, and Solenopsis invicta (red imported fire ant virus 1.

  16. Varicella-Zoster Virus IE62 Protein Utilizes the Human Mediator Complex in Promoter Activation▿

    OpenAIRE

    Yang, Min; Hay, John; Ruyechan, William T.

    2008-01-01

    The varicella-zoster virus (VZV) major transactivator, IE62, is involved in the expression of all kinetic classes of VZV genes and can also activate cellular promoters, promoters from heterologous viruses, and artificial promoters containing only TATA elements. A key component of the mechanism of IE62 transactivation is an acidic activation domain comprising the N-terminal 86 amino acids of IE62. However, the cellular target of this N-terminal acidic activation is unknown. In the work present...

  17. Comparison of the nucleoprotein genes of a chicken and a mink influenza A H 10 virus.

    Science.gov (United States)

    Reinhardt, U; Scholtissek, C

    1988-01-01

    The base sequences of the coding region of the nucleoprotein (NP) genes of two H 10 influenza A viruses, one avian (virus N) and one mink virus, have been determined by primer extension. When the NP genes and the NP sequences derived from the only open reading frame of the two H 10 viruses were compared with those of other human and avian influenza A viruses, it turned out that the mink virus NP was highly related to that of other avian strains, but differed from that of the human strains. Comparison of the NP genes of the mink and avian strains of European origin suggests a direct lineage between them. Since the NP plays a major role in species specificity, it is assumed that an avian influenza virus has directly invaded the mink population.

  18. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures

    Science.gov (United States)

    Ni, Chao; Chen, Yuhui; Zeng, Musheng; Pei, Rongjuan; Du, Yong; Tang, Linquan; Wang, Mengyi; Hu, Yazhuo; Zhu, Hanyu; He, Meifang; Wei, Xiawei; Wang, Shan; Ning, Xiangkai; Wang, Manna; Wang, Jufang; Ma, Li; Chen, Xinwen; Sun, Qiang; Tang, Hong; Wang, Ying; Wang, Xiaoning

    2015-01-01

    Epstein-Barr virus (EBV) can infect both susceptible B lymphocytes and non-susceptible epithelial cells (ECs). Viral tropism analyses have revealed two intriguing means of EBV infection, either by a receptor-mediated infection of B cells or by a cell-to-cell contact-mediated infection of non-susceptible ECs. Herein, we report a novel “in-cell infection” mechanism for EBV infection of non-susceptible ECs through the formation of cell-in-cell structures. Epithelial CNE-2 cells were invaded by EBV-infected Akata B cells to form cell-in-cell structures in vitro. Such unique cellular structures could be readily observed in the specimens of nasopharyngeal carcinoma. Importantly, the formation of cell-in-cell structures led to the autonomous activation of EBV within Akata cells and subsequent viral transmission to CNE-2 cells, as evidenced by the expression of viral genes and the presence of virion particles in CNE-2 cells. Significantly, EBV generated from in-cell infected ECs displayed altered tropism with higher infection efficacy to both B cells and ECs. In addition to CNE-2 tumor cells, cell-in-cell structure formation could also mediate EBV infection of NPEC1-Bmi1 cells, an immortalized nasopharyngeal epithelial cell line. Furthermore, efficient infection by this mechanism involved the activation of the PI3K/AKT signaling pathway. Thus, our study identified “in-cell infection” as a novel mechanism for EBV infection. Given the diversity of virus-infected cells and the prevalence of cell-in-cell structures during chronic infection, we speculate that “in-cell infection” is likely a general mechanism for EBV and other viruses to infect non-susceptible ECs. PMID:25916549

  19. Trophic activity of Rabies G protein-pseudotyped equine infectious anemia viral vector mediated IGF-I motor neuron gene transfer in vitro.

    Science.gov (United States)

    Teng, Qingshan; Garrity-Moses, Mary; Federici, Thais; Tanase, Diana; Liu, James K; Mazarakis, Nicholas D; Azzouz, Mimoun; Walmsley, Lucy E; Carlton, Erin; Boulis, Nicholas M

    2005-12-01

    The present study examines gene delivery to cultured motor neurons (MNs) with the Rabies G protein (RabG)-pseudotyped lentiviral equine infectious anemia virus (RabG.EIAV) vector. RabG.EIAV-mediated beta-galactosidase (RabG.EIAV-LacZ) gene expression in cultured MNs plateaus 120 h after infection. The rate and percent of gene expression observed are titer-dependent (P vector (RabG.EIAV-IGF-I) and was shown to induce IGF-I expression in HEK 293 cells. MNs infected with RabG.EIAV-IGF-I demonstrate enhanced survival compared to MNs infected with RabG.EIAV-LacZ virus (P control virus (P motor neuron tropism of RabG.EIAV previously demonstrated in vivo, together with the trophic effects of RabG.EIAV-IGF-I MN gene expression may lend this vector to therapeutic application in motor neuron disease.

  20. Development of next-generation respiratory virus vaccines through targeted modifications to viral immunomodulatory genes

    Science.gov (United States)

    Stobart, Christopher C.; Moore, Martin L.

    2016-01-01

    Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus. PMID:26434947

  1. Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.

    Science.gov (United States)

    Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi

    2014-09-01

    Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Sequence analysis of the capsid gene of Aichi viruses detected from Japan, Bangladesh, Thailand, and Vietnam.

    Science.gov (United States)

    Pham, Ngan Thi Kim; Trinh, Quang Duy; Khamrin, Pattara; Nguyen, Tuan Anh; Dey, Shuvra Kanti; Phan, Tung Gia; Hoang, Le Phuc; Maneekarn, Niwat; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2008-07-01

    Sequence analysis of the capsid gene of Aichi viruses was performed on 12 strains detected in Japan, Bangladesh, Thailand, and Vietnam during 2002-2005. The phylogenetic tree constructed from 17 nucleotide sequences of the capsid gene of the strains studied and reference strains demonstrated that Aichi virus strains clustered into two branches. A classification of Aichi viruses based on the capsid gene was proposed, in which lineage I consists of the Aichi virus strains detected from Japan, Thailand, Vietnam, and Germany, and lineage II includes Bangladeshi strains and a Brazilian strain.

  3. DNA-mediated immunization of glycoprotein 350 of Epstein-Barr virus induces the effective humoral and cellular immune responses against the antigen.

    Science.gov (United States)

    Jung, S; Chung, Y K; Chang, S H; Kim, J; Kim, H R; Jang, H S; Lee, J C; Chung, G H; Jang, Y S

    2001-08-31

    Epstein-Barr virus (EBV) is a human pathogen that is involved in numerous diseases and tumors. Since the EBV infection occurs in the early ages of life, and most of the population is subsequently exposed to EBV, the conventional method of vaccination to induce the prophylactic immunity cannot be considered effective in coping with the virus infection. In this study, we tested whether the injection of a plasmid vector that contained the gene for glycoprotein 350 (gp350), which had been identified as a ligand for virus' adsorption and a target for virus neutralizing antibodies, could induce effective immune responses against the antigen. As a result, the injection of the constructed plasmid vector into mice induced the production of gp350-specific antibodies. A major isotype of the gp350-specific antibodies was IgG1. The antibodies efficiently mediated the antibody-dependent cellular cytotoxicity against the cells expressing the gp350 antigen. In addition, the injection of the constructed plasmid vector stimulated the precursor T cell population that was specific to the gp350 antigen. In addition, gp350-specific cytotoxic T lymphocytes were efficiently stimulated by the injection of the constructed plasmid vector. These results suggested that the injection of the plasmid vector, containing the gp350 gene of Epstein-Barr virus, could be one of the most effective ways to induce both prophylactic and therapeutic vaccinations against the virus infection.

  4. Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins

    National Research Council Canada - National Science Library

    Masafumi Sakata; Hideki Tani; Masaki Anraku; Michiyo Kataoka; Noriyo Nagata; Fumio Seki; Maino Tahara; Noriyuki Otsuki; Kiyoko Okamoto; Makoto Takeda; Yoshio Mori

    2017-01-01

    .... To establish an infection the host cells must be susceptible and permissible. To assess the susceptibility of individual cell lines, we generated a pseudotype vesicular stomatitis virus bearing RV envelope proteins (VSV-RV/CE2E1...

  5. Recombinant AAV-mediated gene delivery to the central nervous system.

    Science.gov (United States)

    Tenenbaum, L; Chtarto, A; Lehtonen, E; Velu, T; Brotchi, J; Levivier, M

    2004-02-01

    Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. In contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors. Copyright 2004

  6. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation.

    Science.gov (United States)

    de Pater, Sylvia; Pinas, Johan E; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-05-01

    Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum.

    Science.gov (United States)

    Várallyay, Eva; Giczey, Gábor; Burgyán, József

    2012-07-01

    Powdery mildew is one of the most important cereal diseases worldwide. Genetic analysis has revealed that mutant alleles of the Mlo gene cause broad-spectrum resistance against this pathogen in barley. In this study, the possibility of inducing broad-spectrum powdery mildew resistance against this pathogen by RNAi of the barley Mlo ortholog in wheat was examined using virus-induced gene silencing (VIGS). A clear correlation was found between resistance and accumulation of Mlo-specific siRNAs, raising the possibility of designing powdery mildew resistance in wheat by RNA silencing using both transgenic and non-transgenic approaches.

  8. Derepression of a novel class of vaccinia virus genes upon DNA replication

    NARCIS (Netherlands)

    Vos, J C; Stunnenberg, H.G.

    1988-01-01

    A novel class of vaccinia virus genes, called intermediate, is expressed immediately post-replication and prior to the onset of late gene transcription. Intermediate transcription is dependent on trans-acting factors which are present in an active state in virus-infected cells prior to the onset of

  9. Computational fitness landscape for all gene-order permutations of an RNA virus.

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2009-02-01

    Full Text Available How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV, a prototype RNA virus that encodes five genes (N-P-M-G-L, to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.

  10. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    OpenAIRE

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-01-01

    Abstract Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and...

  11. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.

    Science.gov (United States)

    Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong

    2016-04-22

    Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.

  12. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Michael G Brown

    Full Text Available Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of

  13. Toward microRNA-mediated gene regulatory networks in plants.

    Science.gov (United States)

    Meng, Yijun; Shao, Chaogang; Chen, Ming

    2011-11-01

    Current achievements in plant microRNA (miRNA) research area are inspiring. Molecular cloning and functional elucidation have greatly advanced our understanding of this small RNA species. As one of the ultimate goals, many research efforts devoted to draw a comprehensive view of miRNA-mediated gene regulatory networks in plants. Numerous bioinformatics tools competent for network analysis have been available. However, the most important point for network construction is to obtain reliable analytical results based on sufficient experimental data. Here, we introduced a general workflow to retrieve and analyze the desired data sets that serve as the cornerstones for network construction. For the upstream analyses of miRNA genes, the sequence feature of miRNA promoters should be characterized. And, regulatory relationships between transcription factors (TFs) and miRNA genes need to be investigated. For the downstream part, we emphasized that the high-throughput degradome sequencing data were especially useful for genuine miRNA-target pair identification. Functional characterization of the miRNA targets is essential to provide deep biological insights into certain miRNA-mediated pathways. For miRNAs themselves, studies on their organ- or tissue-specific expression patterns and the mechanism of self-regulation were discussed. Besides, exhaustive literature mining is required to further support or improve the established networks. It is desired that the introduced framework for miRNA-mediated network construction is timely and useful and could inspire more research efforts in the miRNA research area.

  14. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus.

    Science.gov (United States)

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W; Moe, Roar; Blystad, Dag-Ragnar

    2008-06-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.

  15. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes.

    Science.gov (United States)

    Bourquain, Daniel; Dabrowski, Piotr Wojtek; Nitsche, Andreas

    2013-02-20

    Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell's gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus infections in certain host species.

  16. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes

    Directory of Open Access Journals (Sweden)

    Feuer Gerold

    2004-11-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.

  17. Immunization of rabbits with cottontail rabbit papillomavirus E1 and E2 genes: protective immunity induced by gene gun-mediated intracutaneous delivery but not by intramuscular injection.

    Science.gov (United States)

    Han, R; Reed, C A; Cladel, N M; Christensen, N D

    2000-07-01

    We previously demonstrated that gene gun-based intracutaneous vaccination of rabbits with a combination of, but not with individual papillomavirus E1, E2, E6 and E7 genes provided complete protection against cottontail rabbit papillomavirus (CRPV) infection. In the present study, we tested whether vaccination of inbred and outbred rabbits with a combination of CRPV E1 and E2 genes could provide complete protection against virus infection. In the first experiment, gene gun-based intracutaneous vaccination with E1 and E2 genes prevented papilloma formation in the majority of inbred rabbits and promoted systemic papilloma regression in one non-protected rabbit. In contrast, needle-mediated intramuscular injection of E1 and E2 genes did not prevent papilloma formation nor promoted systemic papilloma regression, indicating an absence of strong protective immunity. In the second experiment, six outbred rabbits were immunized by gene gun-based intracutaneous administration of the E1 and E2 genes. Prevention of papilloma formation or systemic papilloma regression was observed in three vaccinated rabbits. Papillomas persisted on the remaining three rabbits, but were significantly smaller than that on control rabbits. These results suggested that gene gun-based intracutaneous vaccination with the combination of papillomavirus E1 and E2 genes induced strong protective antivirus immunity but may be insufficient for complete protection in an outbred population.

  18. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues.

    Science.gov (United States)

    Zhang, F-L; Jia, S-Q; Zheng, S-P; Ding, W

    2011-02-01

    The transduction of adeno-associated virus (AAV) in adipose tissues was not well characterized and appeared to be insufficient as compared with other targeted tissues in gene therapy. We have found that celastrol, a chemical from a traditional Chinese herb known to inhibit the proteasome activity, was able to enhance the transgene expression mediated by AAV1 in 3T3-L1 preadipocytes both before and after induced differentiation. A synergism of celastrol and nonionic surfactant pluronic F68 cotreatment on AAV1 transduction was observed in the experiments with rat primary preadipocyte cultures and in adipose tissues in vivo. By fluorescent microscopy using Alexa Fluor 647-labeled AAV and quantitative PCR assays, we found that celastrol treatments increased the nuclear distribution of AAV genomic DNAs, but not the total amount of viral cellular uptake in preadipocytes, which was different from the effect of pluronic F68 treatment to significantly promote the AAV internalization. Our data suggested that bioactive monomeric compounds extracted from herbal medicines might be used to facilitate AAV-mediated gene transfer applications.

  19. Chimeric cDNA Sequences from Citrus tristeza virus Confer RNA Silencing-Mediated Resistance in Transgenic Nicotiana benthamiana Plants.

    Science.gov (United States)

    Roy, Gourgopal; Sudarshana, Mysore R; Ullman, Diane E; Ding, Shou-Wei; Dandekar, Abhaya M; Falk, Bryce W

    2006-08-01

    ABSTRACT RNA silencing has been shown to be an important mechanism for conferring resistance in transgenic, virus-resistant plants. We used this approach to evaluate resistance in Nicotiana benthamiana plants transformed with chimeric coding and noncoding sequences from Citrus tristeza virus (CTV). Several independent transgenic plant lines were generated, using two constructs (pCTV1 and pCTV2) designed to produce self-complementary transcripts. The pCTV1 contained cDNA sequences from the CTV capsid protein (CP), p20, and 3' untranslated region (UTR); and pCTV2 contained CP, p23, and 3' UTR sequences. Heterologous recombinant Potato virus X (PVX) containing either homologous or heterologous CTV sequences was used to challenge plants and resistance was evaluated phenotypically and validated with reverse-transcriptase polymerase chain reaction and northern hybridization analysis. Transgenic plants (T1 generation) for each construct showed resistance to recombinant PVX constructs used for challenge experiments when PVX contained p20 or UTR (for CTV1 plants), or p23 or UTR (for CTV2 plants). However, no resistance was seen when plants were challenged with PVX containing the CTV CP. T2 generation plants also showed resistance even when challenged with PVX containing the cognate CTV sequences obtained from heterologous CTV isolates. The presence of transgene-specific small interfering RNAs in the resistant CTV1 and CTV2 plants indicated that resistance was mediated by post-transcriptional gene silencing.

  20. Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses.

    Science.gov (United States)

    Bar-On, Yotam; Glasner, Ariella; Meningher, Tal; Achdout, Hagit; Gur, Chamutal; Lankry, Dikla; Vitenshtein, Alon; Meyers, Adrienne F A; Mandelboim, Michal; Mandelboim, Ofer

    2013-04-25

    Natural killer (NK) cells play an essential role in the defense against influenza virus, one of the deadliest respiratory viruses known today. The NKp46 receptor, expressed by NK cells, is critical for controlling influenza infections, as influenza-virus-infected cells are eliminated through the recognition of the viral hemagglutinin (HA) protein by NKp46. Here, we describe an immune-evasion mechanism of influenza viruses that is mediated by the neuraminidase (NA) protein. By using various NA blockers, we show that NA removes sialic acid residues from NKp46 and that this leads to reduced recognition of HA. Furthermore, we provide in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrate that NA inhibitors, which are commonly used for the treatment of influenza infections, are useful not only as blockers of virus budding but also as boosters of NKp46 recognition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David George James [ORNL; McKnight, Timothy E [ORNL; Mcpherson, Jackson [University of Tennessee, Knoxville (UTK); Hoyt, Peter R [ORNL; Melechko, Anatoli Vasilievich [ORNL; Simpson, Michael L [ORNL; Sayler, Gary Steven [ORNL

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and introduced alongside the yfp marker gene into Chinese hamster ovary cells using spatially indexed vertically aligned carbon nanofiber arrays (VACNFs) in a gene delivery process termed impalefection. The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. 24 hours after nanofiber-mediated delivery, 53.1% 10.4% of the cells that expressed the yfp marker gene were also fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  2. Gene overexpression and gene silencing in Birch using an Agrobacterium-mediated transient expression system.

    Science.gov (United States)

    Zhang, Yan; Wang, Yucheng; Wang, Chao

    2012-05-01

    As transient expression systems are effective methods for the functional characterization of genes, a transient gene expression and silencing system was developed for Betula platyphylla Suk (Chinese Birch). Firstly, the cinnamoyl-CoA reductase (CCR) gene and its promoter were isolated from Chinese Birch. The vectors for overexpression of CCR and RNAi-based silence of CCR were constructed and transformed into Agrobacterium, respectively. Overexpression and silence of the CCR gene were respectively, performed on Birch seedlings using an Agrobacterium-mediated transient expression system. The expression levels of CCR were determined using real-time PCR. The results showed that the transcripts of CCR notably increased in the Birch plants transformed with the CCR overexpression construct, and notably decreased in plants transformed with the silencing construct when compared with nontransgenic plants. These studies confirmed that this transient genetic transformation system works well on Birch plants, and can be used for the functional characterization of genes and protein production in Birch.

  3. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    NARCIS (Netherlands)

    Michielse, C.B.; Arentshorst, M.; Ram, A.F.; Hondel, C.A. van den

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated

  4. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  5. The p10 gene of Bombyx mori nucleopolyhedrosis virus encodes a ...

    Indian Academy of Sciences (India)

    In baculovirus-based high-level expression of cloned foreign genes, the viral very late gene promoters of polyhedrin (polh) and p10 are extensively exploited. Here we report the cloning and characterization of the p10 gene from a local isolate of Bombyx mori nucleopolyhedrosis virus (BmNPV). The gene harbours a 213-bp ...

  6. Epstein-Barr virus candidate genes and multiple sclerosis.

    Science.gov (United States)

    Claire Simon, Kelly; Schmidt, Hollie; Loud, Sara; Ascherio, Alberto

    2015-01-01

    Previous infection with Epstein-Barr virus (EBV) and a history of infectious mononucleosis (IM) have been previously associated with an increased risk of multiple sclerosis (MS). Whether there are common genetic factors that may partially explain these associations has not been thoroughly explored. To investigate whether select polymorphisms in genes associated with IM susceptibility are related to MS risk-a self-reported history of IM or antibody titer against Epstein-Barr virus nuclear antigen 1 (anti-EBNA1). A case-control study including 1213 MS cases and 454 controls enrolled in the Accelerated Cure Project for MS (ACP) Repository. Select polymorphisms in HLA-A, SH2D1A and IL15RA and anti-EBNA1 Ab titers were measured using stored blood samples provided by participants. Generalized linear models were used to assess the associations between select polymorphisms and odds of MS, odds of IM or anti-EBNA1 Ab titers. No significant associations were observed between the selected polymorphisms and odds of MS, odds of IM or anti-EBNA1 Ab titer. It is unlikely that any of the studied polymorphisms contribute to the explaining the association between anti-EBNA1 Ab titer or history of IM and MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Artificial transcription factor-mediated regulation of gene expression.

    Science.gov (United States)

    van Tol, Niels; van der Zaal, Bert J

    2014-08-01

    The transcriptional regulation of endogenous genes with artificial transcription factors (TFs) can offer new tools for plant biotechnology. Three systems are available for mediating site-specific DNA recognition of artificial TFs: those based on zinc fingers, TALEs, and on the CRISPR/Cas9 technology. Artificial TFs require an effector domain that controls the frequency of transcription initiation at endogenous target genes. These effector domains can be transcriptional activators or repressors, but can also have enzymatic activities involved in chromatin remodeling or epigenetic regulation. Artificial TFs are able to regulate gene expression in trans, thus allowing them to evoke dominant mutant phenotypes. Large scale changes in transcriptional activity are induced when the DNA binding domain is deliberately designed to have lower binding specificity. This technique, known as genome interrogation, is a powerful tool for generating novel mutant phenotypes. Genome interrogation has clear mechanistic and practical advantages over activation tagging, which is the technique most closely resembling it. Most notably, genome interrogation can lead to the discovery of mutant phenotypes that are unlikely to be found when using more conventional single gene-based approaches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Science.gov (United States)

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  9. Total vascular exclusion safely facilitates liver specific gene transfer by the HVJ (sendai virus)-liposome method in rats.

    Science.gov (United States)

    Kawashita, Yujo; Fujioka, Hikaru; Ohtsuru, Akira; Kuroda, Hiroaki; Eguchi, Susumu; Kaneda, Yasufumi; Yamashita, Shunichi; Kanematsu, Takashi

    2006-05-01

    Most virus mediated transfection systems are efficient; however, their highly immunogenic properties do tend to cause clinical problems. HVJ-liposome vector is a hybrid vector consisting of liposome and inactivated sendai virus (hemagglutinating virus of Japan HVJ), which has been reported to be have a low immunogenicity, while it can also be repeatedly administered. To enhance the transfection efficiency, especially in the liver, we investigated the efficacy of total vascular exclusion (TVE) during the portal vein injection (PVI) of the vectors. beta-galactosidase and luciferase expression were used as reporter genes. Wistar rats were injected with HVJ-liposome through PVI without TVE (PVI group, n = 10) or PVI with TVE (PVI + TVE group, n = 10). The control rats were infused with equal volumes of saline through the portal vein (control group n = 12). The transfection efficiencies were assessed by beta-galactosidase staining and a luciferase assay. Biochemical and histological analyses were performed to evaluate the tissue toxicity after gene transfer. The reporter genes expression in the liver dramatically increased after PVI + TVE in comparison to after PVI alone (1.2 x 10(5)versus 1.5 x 10(4) RLU/mg protein, P HVJ-liposome method and this modality might also be applicable to other gene transfer systems.

  10. Regulation of Smad-mediated gene transcription by RGS3.

    Science.gov (United States)

    Yau, Douglas M; Sethakorn, Nan; Taurin, Sebastien; Kregel, Steven; Sandbo, Nathan; Camoretti-Mercado, Blanca; Sperling, Anne I; Dulin, Nickolai O

    2008-05-01

    Regulator of G protein signaling (RGS) proteins are united into a family by the presence of the homologous RGS domain that binds the alpha subunits of heterotrimeric G proteins and accelerates their GTPase activity. A member of this family, RGS3 regulates the signaling mediated by G(q) and G(i) proteins by binding the corresponding Galpha subunits. Here we show that RGS3 interacts with the novel partners Smad2, Smad3, and Smad4-the transcription factors that are activated through a transforming growth factor-beta (TGF-beta) receptor signaling. This interaction is mediated by the region of RGS3 outside of the RGS domain and by Smad's Mad homology 2 domain. Overexpression of RGS3 results in inhibition of Smad-mediated gene transcription. RGS3 does not affect TGF-beta-induced Smad phosphorylation, but it prevents heteromerization of Smad3 with Smad4, which is required for transcriptional activity of Smads. This translates to functional inhibition of TGF-beta-induced myofibroblast differentiation by RGS3. In conclusion, this study identifies a novel, noncanonical role of RGS3 in regulation of TGF-beta signaling through its interaction with Smads and interfering with Smad heteromerization.

  11. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene.

    OpenAIRE

    Wiktor, T. J.; Macfarlan, R I; Reagan, K J; Dietzschold, B; Curtis, P. J.; Wunner, W. H.; Kieny, M P; Lathe, R; Lecocq, J P; Mackett, M.

    1984-01-01

    Inoculation of rabbits and mice with a vaccinia-rabies glycoprotein recombinant (V-RG) virus resulted in rapid induction of high concentrations of rabies virus-neutralizing antibodies and protection from severe intracerebral challenge with several strains of rabies virus. Protection from virus challenge also was achieved against the rabies-related Duvenhage virus but not against the Mokola virus. Effective immunization by V-RG depended on the expression of a rabies glycoprotein that registere...

  12. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants, which are difficult to transform. The pea early-browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. However......, the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...

  13. Simian virus 40 vectors for pulmonary gene therapy

    Directory of Open Access Journals (Sweden)

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  14. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  15. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    Energy Technology Data Exchange (ETDEWEB)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application.

  16. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    Science.gov (United States)

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  17. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  18. Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets.

    Science.gov (United States)

    Marsh, Glenn A; Virtue, Elena R; Smith, Ina; Todd, Shawn; Arkinstall, Rachel; Frazer, Leah; Monaghan, Paul; Smith, Greg A; Broder, Christopher C; Middleton, Deborah; Wang, Lin-Fa

    2013-03-25

    Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.

  19. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  20. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ezequiel Balmori Melian

    2014-11-01

    Full Text Available West Nile virus (WNV is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed -1 ribosomal frameshift (PRF resulting in production of an additional NS protein NS1'. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts.

  1. Adenovirus-like transformation of hamster embryo cells mediated by Simian virus 40.

    Science.gov (United States)

    Diamandopoulos, G T; Sanborn-Redmond, S

    1973-04-01

    Primary hamster cells, derived from embryos of 10 days gestation, were exposed in culture to the oncogenic effect of the DNA virus SV40. While the fibroblastoid cells transformed soon after virus inoculation, the small, round or oval cells also present preserved their characteristic mophologic features for a long time. When these cells finally transformed under the influence of SV40, they developed the capacity to induce, in the homologous host, small-, round-cell sarcomas, that were morphologically indistinguishable from neoplasms usually produced by adenoviruses. These findings indicate that different cells differ in their susceptibility to virus-mediated neoplastic transformation. They demonstrate also that the morphology of virally induced tumors is not always pathognomonic of their specific etiology.

  2. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  3. IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus.

    Science.gov (United States)

    Demoor, Tine; Petersen, Bryan C; Morris, Susan; Mukherjee, Sumanta; Ptaschinski, Catherine; De Almeida Nagata, Denise E; Kawai, Taro; Ito, Toshihiro; Akira, Shizuo; Kunkel, Steven L; Schaller, Matthew A; Lukacs, Nicholas W

    2012-12-15

    The cytosolic RNA helicases melanoma differentiation-associated gene 5 and retinoic acid-inducible gene-I and their adaptor IFN-β promoter stimulator (IPS-1) have been implicated in the recognition of viral RNA and the production of type I IFN. Complementing the endosomal TLR, melanoma differentiation-associated gene 5, and retinoic acid-inducible gene-I provides alternative mechanisms for viral detection in cells with reduced phagocytosis or autophagy. The infection route of respiratory syncytial virus (RSV)-via fusion of virus particles with the cell membrane-points to IPS-1 signaling as the pathway of choice for downstream antiviral responses. In the current study, viral clearance and inflammation resolution were indeed strongly affected by the absence of an initial IPS-1-mediated IFN-β response. Despite the blunted inflammatory response in IPS-1-deficient alveolar epithelial cells, pulmonary macrophages, and CD11b(+) dendritic cells (DC), the lungs of RSV-infected IPS-1-knockout mice showed augmented recruitment of inflammatory neutrophils, monocytes, and DC. Interestingly, pulmonary CD103(+) DC could functionally compensate for IPS-1 deficiency with the upregulation of certain inflammatory cytokines and chemokines, possibly via TLR3 and TLR7 signaling. The increased inflammation and reduced viral clearance in IPS-1-knockout mice was accompanied by increased T cell activation and IFN-γ production. Experiments with bone marrow chimeras indicated that RSV-induced lung pathology was most severe when IPS-1 expression was lacking in both immune and nonimmune cell populations. Similarly, viral clearance was rescued upon restored IPS-1 signaling in either the nonimmune or the immune compartment. These data support a nonredundant function for IPS-1 in controlling RSV-induced inflammation and viral replication.

  4. Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection

    Energy Technology Data Exchange (ETDEWEB)

    Chotiwan, Nunya; Roehrig, John T. [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Schlesinger, Jacob J. [Department of Medicine, University of Rochester, Rochester, NY 14642 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H., E-mail: yxh0@cdc.gov [Arboviral Diseases Branch, Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2014-05-15

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus–Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. - Highlights: • KKK305/307/310 in DENV2 E-DIII is critical for virus attachment in ADE and non-ADE infection. • Binding of DENV2–Ab complex with FcγRII alone is not sufficient for virus entry in ADE infection. • Other primary receptors were required for DENV2 internalization during FcγRII–mediated ADE. • G104 and L135 of DENV2 E are critical for virus-mediated membrane fusion. • DENV2 virus-mediated membrane fusion is required for both ADE and non-ADE infection.

  5. NF-κB directly mediates epigenetic deregulation of common microRNAs in Epstein-Barr virus-mediated transformation of B-cells and in lymphomas.

    Science.gov (United States)

    Vento-Tormo, Roser; Rodríguez-Ubreva, Javier; Lisio, Lorena Di; Islam, Abul B M M K; Urquiza, Jose M; Hernando, Henar; López-Bigas, Nuria; Shannon-Lowe, Claire; Martínez, Nerea; Montes-Moreno, Santiago; Piris, Miguel A; Ballestar, Esteban

    2014-01-01

    MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  7. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology

    Science.gov (United States)

    Tsunoda, Ikuo; Omura, Seiichi; Sato, Fumitaka; Kusunoki, Susumu; Fujita, Mitsugu; Park, Ah-Mee; Hasanovic, Faris; Yanagihara, Richard; Nagata, Satoshi

    2017-01-01

    Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Flavivirus, family Flaviviridae, which includes many human and animal pathogens, such as dengue virus (DENV), West Nile virus, and Japanese encephalitis virus. In the original as well as subsequent experimental and clinical reports, ZIKV seems to have moderate neurotropism (in animal models) and neurovirulence (in human fetuses), but no neuroinvasiveness (in human adults). Intrauterine ZIKV infection (viral pathology) has been linked to an increased incidence of microcephaly, while increased Guillain-Barré syndrome (GBS) following ZIKV infection is likely immune-mediated (immunopathology). Clinically, in ZIKV infection, antibodies against other flaviviruses, such as DENV, have been detected; these antibodies can cross-react with ZIKV without ZIKV neutralization. In theory, such non-neutralizing antibodies are generated at the expense of decreased production of neutralizing antibodies (“antigenic sin”), leading to poor viral clearance, while the non-neutralizing antibodies can also enhance viral replication in Fc receptor (FcR)-bearing cells via antibody-dependent enhancement (ADE). Here, we propose three potential roles of the antibody-mediated pathogenesis of ZIKV infection: 1) cross-reactive antibodies that recognize ZIKV and neural antigens cause GBS; 2) ZIKV-antibody complex is transported transplacentally via neonatal FcR (FcRn), resulting in fetal infection; and 3) ZIKV-antibody complex is taken up at peripheral nerve endings and transported to neurons in the central nervous system (CNS), by which the virus can enter the CNS without crossing the blood-brain barrier. PMID:28428682

  8. Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum.

    Science.gov (United States)

    Sánchez, Gerardo; Gerhardt, Nadia; Siciliano, Florencia; Vojnov, Adrián; Malcuit, Isabelle; Marano, María Rosa

    2010-04-01

    To evaluate the role of salicylic acid (SA) in Nb-mediated hypersensitive resistance to Potato virus X (PVX) avirulent strain ROTH1 in Solanum tuberosum, we have constructed SA-deficient transgenic potato plant lines by overexpressing the bacterial enzyme salicylate hydroxylase (NahG), which degrades SA. Evaluation of these transgenic lines revealed hydrogen peroxide accumulation and spontaneous lesion formation in an age- and light-dependent manner. In concordance, NahG potato plants were more sensitive to treatment with methyl viologen, a reactive oxygen species-generating compound. In addition, when challenged with PVX ROTH1, NahG transgenic lines showed a decreased disease-resistance response to infection and were unable to induce systemic acquired resistance. However, the avirulent viral effector, the PVX 25-kDa protein, does induce expression of the pathogenesis-related gene PR-1a in NahG potato plants. Taken together, our data indicate that SA is involved in local and systemic defense responses mediated by the Nb gene in Solanum tuberosum. This is the first report to show that basal levels of SA correlate with hypersensitive resistance to PVX.

  9. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  10. Study on the expression of human lysozyme in oviduct bioreactor mediated by recombinant avian adeno-associated virus.

    Science.gov (United States)

    Wang, A P; Wang, Y J; Wu, S; Zuo, W Y; Guo, C M; Hong, W M; Zhu, S Y

    2017-07-01

    Due to its antimicrobial properties and low toxicity, human lysozyme (hLYZ) has broad application in the medical field and as a preservative used by the food industry. However, limited availability hinders its widespread use. Hence, we constructed a recombinant avian adeno-associated virus (rAAAV) that would specifically express hLYZ in the chicken oviduct and harvested hLYZ from the egg whites of laying hens. The oviduct-specific human lysozyme expression cassette flanked by avian adeno-associated virus (AAAV) inverted terminal repeats (ITRs) was subcloned into the modified baculovirus transfer vector pFBX, and then the recombinant baculovirus rBac-ITRLYZ was generated. The recombinant avian adeno-associated virus was produced by co-infecting Sf9 cells with rBac-ITRLYZ and the other 2 baculoviruses containing AAAV functional genes and structural genes, respectively. Electron microscopy and real-time PCR revealed that the recombinant viral particles were generated successfully with a typical AAAV morphology and a high titer. After one intravenous injection of each laying hen with 2 × 1011 viral particles, oviduct-specific expression of recombinant human lysozyme (rhLYZ) was detected by reverse transcription-PCR. The expression level of rhLYZ in the first wk increased to 258 ± 11.5 μg/mL, reached a maximum of 683 ± 16.4 μg/mL at the fifth wk, and then progressively declined during the succeeding 7 wk of the study. Western blotting indicated that the oviduct-expressed rhLYZ had the same molecular weight as the natural enzyme. These results indicate that an efficient and convenient oviduct bioreactor mediated by rAAAV has been established, and it is useful for production of other recombinant proteins. © 2017 Poultry Science Association Inc.

  11. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  12. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats.

    Science.gov (United States)

    Han, Pu; Deem, Michael W

    2017-02-01

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon. © 2017 The Author(s).

  13. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    2011-01-01

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  14. Thymidine Kinase Suicide Gene-mediated Ganciclovir Ablation of Autologous Gene-modified Rhesus Hematopoiesis

    Science.gov (United States)

    Barese, Cecilia N; Krouse, Allen E; Metzger, Mark E; King, Connor A; Traversari, Catia; Marini, Frank C; Donahue, Robert E; Dunbar, Cynthia E

    2012-01-01

    Despite the genotoxic complications encountered in clinical gene therapy trials for primary immunodeficiency diseases targeting hematopoietic cells with integrating vectors; this strategy holds promise for the cure of several monogenic blood, metabolic and neurodegenerative diseases. In this study, we asked whether the inclusion of a suicide gene in a standard retrovirus vector would allow elimination of vector-containing stem and progenitor cells and their progeny in vivo following transplantation, using our rhesus macaque transplantation model. Following stable engraftment with autologous CD34+ cells transduced with a retrovirus vector encoding a highly sensitive modified Herpes simplex virus thymidine kinase SR39, the administration of the antiviral prodrug ganciclovir (GCV) was effective in completely eliminating vector-containing cells in all hematopoietic lineages in vivo. The sustained absence of vector-containing cells over time, without additional GCV administration, suggests that the ablation of TkSR39 GCV-sensitive cells occurred in the most primitive hematopoietic long-term repopulating stem or progenitor cell compartment. These results are a proof-of-concept that the inclusion of a suicide gene in integrating vectors, in addition to a therapeutic gene, can provide a mechanism for later elimination of vector-containing cells, thereby increasing the safety of gene transfer. PMID:22910293

  15. Structural insights into the membrane fusion mechanism mediated by influenza virus hemagglutinin.

    Science.gov (United States)

    Ni, Fengyun; Chen, Xiaorui; Shen, Jun; Wang, Qinghua

    2014-02-11

    Membrane fusion is involved in many fundamental cellular processes and entry of enveloped viruses into host cells. Influenza type A virus HA has long served as a paradigm for mechanistic studies of protein-mediated membrane fusion via large-scale structural rearrangements induced by acidic pH. Here we report the newly determined crystal structure of influenza B virus HA2 in the postfusion state. Together with a large number of previously determined prefusion structures of influenza A and B virus HA and a postfusion structure of influenza A/H3N2 HA2, we identified conserved features that are shared between influenza A and B virus HA in the conformational transition and documented substantial differences that likely influence the detailed mechanisms of this process. Further studies are needed to dissect the effects of these and other structural differences in HA conformational changes and influenza pathogenicity and transmission, which may ultimately expedite the discovery of novel anti-influenza fusion inhibitors.

  16. Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation

    Science.gov (United States)

    Price, Alexander M.; Luftig, Micah A.

    2016-01-01

    Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315

  17. Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing.

    Science.gov (United States)

    Bierle, Craig J; Anderholm, Kaitlyn M; Wang, Jian Ben; McVoy, Michael A; Schleiss, Mark R

    2016-08-01

    The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates. The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial

  18. Antagonistic Effects of Cellular Poly(C) Binding Proteins on Vesicular Stomatitis Virus Gene Expression ▿

    Science.gov (United States)

    Dinh, Phat X.; Beura, Lalit K.; Panda, Debasis; Das, Anshuman; Pattnaik, Asit K.

    2011-01-01

    Immunoprecipitation and subsequent mass spectrometry analysis of the cellular proteins from cells expressing the vesicular stomatitis virus (VSV) P protein identified the poly(C) binding protein 2 (PCBP2) as one of the P protein-interacting proteins. To investigate the role of PCBP2 in the viral life cycle, we examined the effects of depletion or overexpression of this protein on VSV growth. Small interfering RNA-mediated silencing of PCBP2 promoted VSV replication. Conversely, overexpression of PCBP2 in transfected cells suppressed VSV growth. Further studies revealed that PCBP2 negatively regulates overall viral mRNA accumulation and subsequent genome replication. Coimmunoprecipitation and immunofluorescence microscopic studies showed that PCBP2 interacts and colocalizes with VSV P protein in virus-infected cells. The P-PCBP2 interaction did not result in reduced levels of protein complex formation with the viral N and L proteins, nor did it induce degradation of the P protein. In addition, PCBP1, another member of the poly(C) binding protein family with homology to PCBP2, was also found to interact with the P protein and inhibit the viral mRNA synthesis at the level of primary transcription without affecting secondary transcription or genome replication. The inhibitory effects of PCBP1 on VSV replication were less pronounced than those of PCBP2. Overall, the results presented here suggest that cellular PCBP2 and PCBP1 antagonize VSV growth by affecting viral gene expression and highlight the importance of these two cellular proteins in restricting virus infections. PMID:21752917

  19. Identification, cloning, and expression analysis of three putative Lymantria dispar nuclear polyhedrosis virus immediate early genes

    Science.gov (United States)

    James M. Slavicek; Nancy Hayes-Plazolles

    1991-01-01

    Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...

  20. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range.

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J; Garnsey, Stephen M; Dawson, William O

    2011-10-18

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host-defense systems tend to be less conserved. Closteroviridae encode 1-5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus-plant interactions.

  1. Identification and characterization of the ecdysteroid UDPglucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus

    Science.gov (United States)

    Christopher I. Riegel; Carita Lanner-Herrera; James M. Slavicek

    1994-01-01

    We have located, cloned, sequenced and characterized the ecdysteroid UDP-glucosyltransferase gene (egt) gene from the baculovirus Lymantria dispar multinucleocapsid nuclear polyhedrosis virus,(LdMNPV), which is specific for the gypsy moth (L. dispar). The egt gene from the related baculovirus Autographa californica...

  2. Ebola virus mediated infectivity is restricted in canine and feline cells.

    Science.gov (United States)

    Han, Ziying; Bart, Stephen M; Ruthel, Gordon; Vande Burgt, Nathan H; Haines, Kathleen M; Volk, Susan W; Vite, Charles H; Freedman, Bruce D; Bates, Paul; Harty, Ronald N

    2016-01-01

    Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  4. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver.

    Science.gov (United States)

    Loiler, S A; Conlon, T J; Song, S; Tang, Q; Warrington, K H; Agarwal, A; Kapturczak, M; Li, C; Ricordi, C; Atkinson, M A; Muzyczka, N; Flotte, T R

    2003-09-01

    Human pancreatic islet cells and hepatocytes represent the two most likely target cells for genetic therapy of type I diabetes. However, limits to the efficiency of rAAV serotype 2 (rAAV2)-mediated gene transfer have been reported for both of these cell targets. Here we report that nonserotype 2 AAV capsids can mediate more efficient transduction of islet cells, with AAV1 being the most efficient serotype in murine islets, suggesting that receptor abundance could be limiting. In order to test this, we generated rAAV particles that display a ligand (ApoE) that targets the low-density lipoprotein receptor, which is present on both of these cell types. The rAAV/ApoE viruses greatly enhanced the efficiency of transduction of both islet cells ex vivo and murine hepatocytes in vivo when compared to native rAAV2 serotype (220- and four-fold, respectively). The use of receptor-targeted rAAV particles may circumvent the lower abundance of receptors on certain nonpermissive cell types.

  5. Optimized cDNA libraries for virus-induced gene silencing (VIGS using tobacco rattle virus

    Directory of Open Access Journals (Sweden)

    Page Jonathan E

    2008-01-01

    Full Text Available Abstract Background Virus-induced gene silencing (VIGS has emerged as a method for performing rapid loss-of-function experiments in plants. Despite its expanding use, the effect of host gene insert length and other properties on silencing efficiency have not been systematically tested. In this study, we probed the optimal properties of cDNA fragments of the phytoene desaturase (PDS gene for efficient VIGS in Nicotiana benthamiana using tobacco rattle virus (TRV. Results NbPDS inserts of between 192 bp and 1304 bp led to efficient silencing as determined by analysis of leaf chlorophyll a levels. The region of the NbPDS cDNA used for silencing had a small effect on silencing efficiency with 5' and 3' located inserts performing more poorly than those from the middle. Silencing efficiency was reduced by the inclusion of a 24 bp poly(A or poly(G homopolymeric region. We developed a method for constructing cDNA libraries for use as a source of VIGS-ready constructs. Library construction involved the synthesis of cDNA on a solid phase support, digestion with RsaI to yield short cDNA fragments lacking poly(A tails and suppression subtractive hybridization to enrich for differentially expressed transcripts. We constructed two cDNA libraries from methyl-jasmonate treated N. benthamiana roots and obtained 2948 ESTs. Thirty percent of the cDNA inserts were 401–500 bp in length and 99.5% lacked poly(A tails. To test the efficiency of constructs derived from the VIGS-cDNA libraries, we silenced the nicotine biosynthetic enzyme, putrescine N-methyltransferase (PMT, with ten different VIGS-NbPMT constructs ranging from 122 bp to 517 bp. Leaf nicotine levels were reduced by more than 90% in all plants infected with the NbPMT constructs. Conclusion Based on the silencing of NbPDS and NbPMT, we suggest the following design guidelines for constructs in TRV vectors: (1 Insert lengths should be in the range of ~200 bp to ~1300 bp, (2 they should be positioned in

  6. Mutations in the S gene region of hepatitis B virus genotype D in ...

    Indian Academy of Sciences (India)

    The gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the 'a'-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to ...

  7. Identification and phylogeny of a protein kinase gene of white spot syndrome virus

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a virus infecting shrimp and other crustaceans, which is unclassified taxonomically. A 2193 bp long open reading frame, encoding a putative protein kinase (PK), was found on a 8.4 kb EcoRI fragment of WSSV proximal to the gene for the major envelope protein

  8. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens

    Science.gov (United States)

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  9. Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene.

    Science.gov (United States)

    Urbasic, Ashlee S; Hynes, Stacy; Somrak, Amy; Contakos, Stacey; Rahman, Masmudur M; Liu, Jia; MacNeill, Amy L

    2012-08-01

    To determine the oncolytic efficacy of an attenuated form of myxoma virus lacking the serp2 gene in canine tumor cells. Primary cells were isolated from tumors that were surgically removed from dogs and from connective tissue obtained from the cadaver of a dog. Cells of various established cell lines from tumors and nontumorous tissues were obtained. Experiments were performed with cells in monolayer culture. Cell cultures were inoculated with wild-type myxoma viruses or myxoma viruses lacking the serp2 gene, and measures of cytopathic effects, viral growth kinetics, and cell death and apoptosis were determined. Myxoma viruses replicated in cells of many of the primary and established canine tumor cell lines. Canine tumor cells in which expression of activated protein kinase B was upregulated were more permissive to myxoma virus infection than were cells in which expression of activated protein kinase B was not upregulated. Myxoma viruses lacking the serp2 gene caused more cytopathic effects in canine tumor cells because of apoptosis than did wild-type myxoma viruses. Results of the present study indicated myxoma viruses lacking the serp2 gene may be useful for treatment of cancer in dogs. Impact for Human Medicine-Results of the present study may be useful for development of novel oncolytic treatments for tumors in humans.

  10. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and Tomato spotted wilt virus.

    Science.gov (United States)

    García-Marcos, Alberto; Pacheco, Remedios; Manzano, Aranzazu; Aguilar, Emmanuel; Tenllado, Francisco

    2013-05-01

    One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta.

  11. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Deshui Liu

    Full Text Available Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41 were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X. Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N

  12. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  13. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq.

    Science.gov (United States)

    Concha, Monica; Wang, Xia; Cao, Subing; Baddoo, Melody; Fewell, Claire; Lin, Zhen; Hulme, William; Hedges, Dale; McBride, Jane; Flemington, Erik K

    2012-02-01

    Using an enhanced RNA-Seq pipeline to analyze Epstein-Barr virus (EBV) transcriptomes, we investigated viral and cellular gene expression in the Akata cell line following B-cell-receptor-mediated reactivation. Robust induction of EBV gene expression was observed, with most viral genes induced >200-fold and with EBV transcripts accounting for 7% of all mapped reads within the cell. After induction, hundreds of candidate splicing events were detected using the junction mapper TopHat, including a novel nonproductive splicing event at the gp350/gp220 locus and several alternative splicing events at the LMP2 locus. A more detailed analysis of lytic LMP2 transcripts showed an overall lack of the prototypical type III latency splicing events. Analysis of nuclear versus cytoplasmic RNA-Seq data showed that the lytic forms of LMP2, EBNA-2, EBNA-LP, and EBNA-3A, -3B, and -3C have higher nuclear-to-cytoplasmic accumulation ratios than most lytic genes, including classic late genes. These data raise the possibility that at least some lytic transcripts derived from these latency gene loci may have unique, noncoding nuclear functions during reactivation. Our analysis also identified two previously unknown genes, BCLT1 and BCRT2, that map to the BamHI C-region of the EBV genome. Pathway analysis of cellular gene expression changes following B-cell receptor activation identified an inflammatory response as the top predicted function and ILK and TREM1 as the top predicted canonical pathways.

  14. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  15. Prediction of virus-host protein-protein interactions mediated by short linear motifs.

    Science.gov (United States)

    Becerra, Andrés; Bucheli, Victor A; Moreno, Pedro A

    2017-03-09

    Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predicting motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1). We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2) located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D,R are united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly inferred with them - with experimental validation. The comparison is done with HIV-1 sequences and interactions from the National Institute of Allergy and Infectious Diseases (NIAID). The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D∪R and C. The ordering of the sets is descending on the probability of capturing functional interactions. With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteins mediated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions. We have developed a method for predicting protein-protein interactions mediated by linear motifs between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we will use it to explore possible viral attack mechanisms based on linear motif mimicry.

  16. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  17. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis.

    Science.gov (United States)

    Wynne, James W; Shiell, Brian J; Marsh, Glenn A; Boyd, Victoria; Harper, Jennifer A; Heesom, Kate; Monaghan, Paul; Zhou, Peng; Payne, Jean; Klein, Reuben; Todd, Shawn; Mok, Lawrence; Green, Diane; Bingham, John; Tachedjian, Mary; Baker, Michelle L; Matthews, David; Wang, Lin-Fa

    2014-01-01

    Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.

  18. Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses

    Directory of Open Access Journals (Sweden)

    Wilkinson John

    2007-12-01

    Full Text Available Abstract The choice of an appropriate housekeeping gene for normalisation purposes has now become an essential requirement when designing QPCR experiments. This is of particular importance when using QPCR to measure viral and cellular gene transcription levels in the context of viral infections as viruses can significantly interfere with host cell pathways, the components of which traditional housekeeping genes often encode. In this study we have determined the reliability of 10 housekeeping genes in context of four heavily studied viral infections; human immunodeficiency virus type 1, herpes simplex virus type 1, cytomegalovirus and varicella zoster virus infections using a variety of cell types and virus strains. This provides researchers of these viruses with a shortlist of potential housekeeping genes to use as normalisers for QPCR experiments.

  19. Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors.

    Science.gov (United States)

    Navarro; Oudrhiri; Fabrega; Lehn

    1998-03-02

    Although most research in the field of somatic gene therapy has investigated the use of recombinant viruses for transferring genes into somatic target cells, various methods for nonviral gene delivery have also been proposed. Both types of gene delivery systems have advantages and drawbacks. Schematically, viral vectors are particularly efficient for gene delivery, whereas nonviral systems are free of the difficulties associated with the use of recombinant viruses but need to be further optimized to reach their full potential. In order to bridge the gap between viral vectors and synthetic reagents, we discuss here some specific features of the viral vector systems of today that could advantageously be taken into account for the design of improved nonviral gene delivery systems. Indeed, although nonviral systems differ fundamentally from viral systems, one possible approach towards enhanced artificial reagents aims at developing 'artificial viruses' that mimic the highly efficient processes of viral infection.

  20. Ebola Virus GP Gene Polyadenylation Versus RNA Editing.

    Science.gov (United States)

    Volchkova, Valentina A; Vorac, Jaroslav; Repiquet-Paire, Laurie; Lawrence, Philip; Volchkov, Viktor E

    2015-10-01

    Synthesis of Ebola virus (EBOV) surface glycoprotein (GP) is dependent on transcriptional RNA editing. Northern blot analysis of EBOV-infected cells using GP-gene-specific probes reveals that, in addition to full-length GP messenger RNAs (mRNAs), a shorter RNA is also synthesized, representing >40% of the total amount of GP mRNA. Sequence analysis demonstrates that this RNA is a truncated version of the full-length GP mRNA that is polyadenylated at the editing site and thus lacks a stop codon. An absence of detectable levels of protein synthesis in cellulo is consistent with the existence of tight regulation of the translation of such mRNA. However, nonstop GP mRNA was shown to be only slightly less stable than the same mRNA containing a stop codon, against the general belief in nonstop decay mechanisms aimed at detecting and destroying mRNAs lacking a stop codon. In conclusion, we demonstrate that the editing site indeed serves as a cryptic transcription termination/polyadenylation site, which rarely also functions to edit GP mRNA for expression of surface GP. This new data suggest that the downregulation of surface GP expression is even more dramatic than previously thought, reinforcing the importance of the GP gene editing site for EBOV replication and pathogenicity. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors

    National Research Council Canada - National Science Library

    Schuster, Benjamin S; Kim, Anthony J; Kays, Joshua C; Kanzawa, Mia M; Guggino, William B; Boyle, Michael P; Rowe, Steven M; Muzyczka, Nicholas; Suk, Jung Soo; Hanes, Justin

    2014-01-01

    .... We investigated whether CF sputum acts as a barrier to leading adeno-associated virus (AAV) gene vectors, including AAV2, the only serotype tested in CF clinical trials, and AAV1, a leading candidate for future trials...

  2. Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins.

    Science.gov (United States)

    Sakata, Masafumi; Tani, Hideki; Anraku, Masaki; Kataoka, Michiyo; Nagata, Noriyo; Seki, Fumio; Tahara, Maino; Otsuki, Noriyuki; Okamoto, Kiyoko; Takeda, Makoto; Mori, Yoshio

    2017-09-14

    Rubella virus (RV) generally causes a systemic infection in humans. Viral cell tropism is a key determinant of viral pathogenesis, but the tropism of RV is currently poorly understood. We analyzed various human cell lines and determined that RV only establishes an infection efficiently in particular non-immune cell lines. To establish an infection the host cells must be susceptible and permissible. To assess the susceptibility of individual cell lines, we generated a pseudotype vesicular stomatitis virus bearing RV envelope proteins (VSV-RV/CE2E1). VSV-RV/CE2E1 entered cells in an RV envelope protein-dependent manner, and thus the infection was neutralized completely by an RV-specific antibody. The infection was Ca2+-dependent and inhibited by endosomal acidification inhibitors, further confirming the dependency on RV envelope proteins for the VSV-RV/CE2E1 infection. Human non-immune cell lines were mostly susceptible to VSV-RV/CE2E1, while immune cell lines were much less susceptible than non-immune cell lines. However, susceptibility of immune cells to VSV-RV/CE2E1 was increased upon stimulation of these cells. Our data therefore suggest that immune cells are generally less susceptible to RV infection than non-immune cells, but the susceptibility of immune cells is enhanced upon stimulation.

  3. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  4. Immunogenic Human Papillomavirus Pseudovirus-Mediated Suicide-Gene Therapy for Bladder Cancer.

    Science.gov (United States)

    Hojeij, Rim; Domingos-Pereira, Sonia; Nkosi, Marianne; Gharbi, Dalila; Derré, Laurent; Schiller, John T; Jichlinski, Patrice; Nardelli-Haefliger, Denise

    2016-07-14

    Bladder cancer is the second most common urological malignancy in the world. In 70% of cases it is initially diagnosed as non-muscle-invasive bladder cancer (NMIBC) and it is amenable to local treatments, with intravesical (IVES) Bacillus-Calmette-Guerin (BCG) immunotherapy being routinely used after transurethral resection of the lesion. However, this treatment is associated with significant side-effects and treatment failures, highlighting the necessity of novel strategies. One potent approach is the suicide-gene mediated therapy/prodrug combination, provided tumor-specificity can be ensured and anti-tumor immune responses induced. Using the mouse syngeneic orthotopic MB49-bladder tumor model, here we show that IVES human papillomavirus non-replicative pseudovirions (PsV) can pseudoinfect tumors with a ten-fold higher efficacy than normal bladders. In addition, PsV carrying the suicide-gene herpes-simplex virus thymidine kinase (PsV-TK) combined to Ganciclovir (GCV) led to immunogenic cell-death of tumor cells in vitro and to MB49-specific CD8 T-cells in vivo. This was associated with reduction in bladder-tumor growth and increased mice survival. Altogether, our data show that IVES PsV-TK/GCV may be a promising alternative or combinatory treatment for NMIBC.

  5. Immunogenic Human Papillomavirus Pseudovirus-Mediated Suicide-Gene Therapy for Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Rim Hojeij

    2016-07-01

    Full Text Available Bladder cancer is the second most common urological malignancy in the world. In 70% of cases it is initially diagnosed as non-muscle-invasive bladder cancer (NMIBC and it is amenable to local treatments, with intravesical (IVES Bacillus-Calmette-Guerin (BCG immunotherapy being routinely used after transurethral resection of the lesion. However, this treatment is associated with significant side-effects and treatment failures, highlighting the necessity of novel strategies. One potent approach is the suicide-gene mediated therapy/prodrug combination, provided tumor-specificity can be ensured and anti-tumor immune responses induced. Using the mouse syngeneic orthotopic MB49-bladder tumor model, here we show that IVES human papillomavirus non-replicative pseudovirions (PsV can pseudoinfect tumors with a ten-fold higher efficacy than normal bladders. In addition, PsV carrying the suicide-gene herpes-simplex virus thymidine kinase (PsV-TK combined to Ganciclovir (GCV led to immunogenic cell-death of tumor cells in vitro and to MB49-specific CD8 T-cells in vivo. This was associated with reduction in bladder-tumor growth and increased mice survival. Altogether, our data show that IVES PsV-TK/GCV may be a promising alternative or combinatory treatment for NMIBC.

  6. Long-term Cre-mediated Retrograde Tagging of Neurons Using a Novel Recombinant Pseudorabies Virus

    Directory of Open Access Journals (Sweden)

    Hassana eOyibo

    2014-09-01

    Full Text Available Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP. These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.

  7. MAVS-mediated host cell defense is inhibited by Borna disease virus.

    Science.gov (United States)

    Li, Yujun; Song, Wuqi; Wu, Jing; Zhang, Qingmeng; He, Junming; Li, Aimei; Qian, Jun; Zhai, Aixia; Hu, Yunlong; Kao, Wenping; Wei, Lanlan; Zhang, Fengmin; Xu, Dakang

    2013-08-01

    Viruses often have strategies for preventing host cell apoptosis, which antagonizes viral replication. Borna disease virus (BDV) is a neurotropic RNA virus that establishes a non-cytolytic persistent infection. Although BDV suppresses type I Interferon (IFN) through (TANK)-binding kinase 1 (TBK-1) associated BDV P protein, it is still unclear how BDV can survive in the host cell and establish a persistent infection. Recently, it has been recognized that mitochondria-mediated apoptosis through the mitochondrial antiviral signaling protein (MAVS) and the RIG-I-like receptor (RLR) signaling pathway is a crucial component of the innate immune response. In this work we show that BDV X protein colocalizes and interacts with MAVS in the mitochondria to block programmed cell death. BDV X protein-mediated inhibition of apoptosis was independent of type I IFN production and NF-κB activity. The reduction of BDV X expression with RNA interference (RNAi) or the mutation of BDV X enhanced MAVS-induced cell death. Collectively, our data provide novel insights into how BDV X protein inhibits antiviral-associated programmed cell death, through its action of MAVS function. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression

    Directory of Open Access Journals (Sweden)

    Hiscott John

    2006-09-01

    Full Text Available Abstract Background Hepatitis C virus (HCV encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-β gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I and Toll-like receptor 3 (TLR3-mediated signaling pathways. Results In the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-α, IFN-β and IFN-λ1/IL-29 and chemokine (CCL5, CXCL8 and CXCL10 gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA. Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-α strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-β gene expression. Conclusion HCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.

  9. [Gene modification in the genome of Epstein-Barr virus cloned as a bacterial artificial chromosome].

    Science.gov (United States)

    Lu, Jianhong; Tang, Yunlian; Zhou, Ming; Wu, Minghua; Ouyang, Jue; Gao, Jianming; Zhang, Liming; Li, Dan; Chen, Qiong; Xiong, Wei; Li, Xiaoling; Tang, Ke; Li, Guiyuan

    2008-03-01

    Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with a variety of malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma (NPC). Functions of most EBV genes have not been determined. The use of bacterial artificial chromosome (BAC) to clone and modify the genome of EBV has enhanced the gene function study in the context of genome. Infectious clones of EBV were previously established by using EBV-BAC plasmid p2089. In order to further investigate EBV mutant biology, an easy and efficient method for gene modification in EBV-BAC was developed and detailed. The kanamycin gene (kan) flanked by recombinase FLP recognition targets (FRTs) was amplified from plasmid pKD13 and inserted into the vector of pcDNA3.1(+). Through the introduction of restriction endonuclease BsmB I in PCR primers, NPC-derived LMP1 gDNA containing the full-length ORF was then precisely ligated with kan on pcDNA3.1(+). The linear DNA segment of kan-LMP1 was transformed into E. coli DH10B cells containing p2089 and plasmid pKD46, homologous recombination was subsequently mediated by redalphabetagamma system from bacteriophage lambda. By this linear transformation and ET cloning, the full-length LMP1 in EBV-BAC (p2089) was replaced by the kan-LMP1. The introduced kan gene in EBV-BAC genome was eliminated specifically by the recombinase FLP when transformed by plasmid pCP20, leaving an FRT scar of 69 bp. The mutant could be identified by antibiotic screening and PCR amplification on bacteria medium. This method allows the gene of interest to be easily modified alone and then to be introduced into EBV-BAC genome. Following this example of gene substitution, other mutations such as deletion, insertion and point mutation become convenient work, and this improved method can be a potential use of gene modification in other BAC-based herpesvirus genome.

  10. A mechanism for negative gene regulation in Autographa californica multinucleocapsid nuclear polyhedrosis virus

    Science.gov (United States)

    Leisy, D.J.; Rasmussen, C.; Owusu, E.O.; Rohrmann, G.F.

    1997-01-01

    The Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) ie-1 gene product (IE-1) is thought to play a central role in stimulating early viral transcription. IE-1 has been demonstrated to activate several early viral gene promoters and to negatively regulate the promoters of two other AcMNPV regulatory genes, ie-0 and ie-2. Our results indicate that IE-1 negatively regulates the expression of certain genes by binding directly, or as part of a complex, to promoter regions containing a specific IE-1-binding motif (5'-ACBYGTAA-3') near their mRNA start sites. The IE-1 binding motif was also found within the palindromic sequences of AcMNPV homologous repeat (hr) regions that have been shown to bind IE-1. The role of this IE-1 binding motif in the regulation of the ie-2 and pe-38 promoters was examined by introducing mutations in these promoters in which the central 6 bp were replaced with Bg/II sites. GUS reporter constructs containing ie-2 and pe-38 promoter fragments with and without these specific mutations were cotransfected into Sf9 cells with various amounts of an ie-1-containing plasmid (ple-1). Comparisons of GUS expression produced by the mutant and wild-type constructs demonstrated that the IE-1 binding motif mediated a significant decrease in expression from the ie-2 and pe-38 promoters in response to increasing pIe-1 concentrations. Electrophoretic mobility shift assays with pIe-1-transfected cell extracts and supershift assays with IE-1- specific antiserum demonstrated that IE-1 binds to promoter fragments containing the IE-1 binding motif but does not bind to promoter fragments lacking this motif.

  11. Functional analysis of a melanin biosynthetic gene using RNAi-mediated gene silencing in Rosellinia necatrix.

    Science.gov (United States)

    Shimizu, Takeo; Ito, Tsutae; Kanematsu, Satoko

    2014-04-01

    Rosellinia necatrix causes white root rot in a wide range of fruit trees and persists for extended periods as pseudosclerotia on root debris. However, the pathogenesis of this disease has yet to be clarified. The functions of endogeneous target genes have not been determined because of the inefficiency in genetic transformation. In this study, the function of a melanin biosynthetic gene was determined to examine its role in morphology and virulence. A polyketide synthase gene (termed as RnPKS1) in the R. necatrix genome is homologous to the 1,8-dihydroxynaphthalene (DHN) melanin biosynthetic gene of Colletotrichum lagenarium. Melanin-deficient strains of R. necatrix were obtained by RNA interference-mediated knockdown of RnPKS1. The virulence of these strains was not significantly reduced compared with the parental melanin-producing strain. However, knockdown strains failed to develop pseudosclerotia and were degraded sooner in soil than the parental strain. Microscopic observations of albino conidiomata produced by knockdown strains revealed that melanization is involved in synnema integrity. These results suggest that melanin is not necessary for R. necatrix pathogenesis but is involved in survival through morphogenesis. This is the first report on the functional analysis of an endogenous target gene in R. necatrix. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Zhee Sheen Wong

    Full Text Available The outcome of microbial infection of insects is dependent not only on interactions between the host and pathogen, but also on the interactions between microbes that co-infect the host. Recently the maternally inherited endosymbiotic bacteria Wolbachia has been shown to protect insects from a range of microbial and eukaryotic pathogens. Mosquitoes experimentally infected with Wolbachia have upregulated immune responses and are protected from a number of pathogens including viruses, bacteria, Plasmodium and filarial nematodes. It has been hypothesised that immune upregulation underpins Wolbachia-mediated protection. Drosophila is a strong model for understanding host-Wolbachia-pathogen interactions. Wolbachia-mediated antiviral protection in Drosophila has been demonstrated for a number of different Wolbachia strains. In this study we investigate whether Wolbachia-infected flies are also protected against pathogenic bacteria. Drosophila simulans lines infected with five different Wolbachia strains were challenged with the pathogenic bacteria Pseudomonas aeruginosa PA01, Serratia marcescens and Erwinia carotovora and mortality compared to paired lines without Wolbachia. No difference in mortality was observed in the flies with or without Wolbachia. Similarly no antibacterial protection was observed for D. melanogaster infected with Wolbachia. Interestingly, D. melanogaster Oregon RC flies which are naturally infected with Wolbachia showed no upregulation of the antibacterial immune genes TepIV, Defensin, Diptericin B, PGRP-SD, Cecropin A1 and Attacin D compared to paired flies without Wolbachia. Taken together these results indicate that Wolbachia-mediated antibacterial protection is not ubiquitous in insects and furthermore that the mechanisms of antibacterial and antiviral protection are independent. We suggest that the immune priming and antibacterial protection observed in Wolbachia-infected mosquitoes may be a consequence of the recent

  13. Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy.

    Directory of Open Access Journals (Sweden)

    Peter C Huszthy

    Full Text Available BACKGROUND: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model. METHODOLOGY/PRINCIPAL FINDINGS: We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP and vesicular stomatitis virus glycoprotein (VSV-G pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001 compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect. CONCLUSIONS/SIGNIFICANCE: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery

  14. Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin.

    Science.gov (United States)

    Piccinotti, Silvia; Kirchhausen, Tomas; Whelan, Sean P J

    2013-11-01

    Rabies virus (RABV) causes a fatal zoonotic encephalitis. Disease symptoms require replication and spread of the virus within neuronal cells; however, in infected animals as well as in cell culture the virus replicates in a broad range of cell types. Here we use a single-cycle RABV and a recombinant vesicular stomatitis virus (rVSV) in which the glycoprotein (G) was replaced with that of RABV (rVSV RABV G) to examine RABV uptake into the African green monkey kidney cell line BS-C-1. Combining biochemical studies and real-time spinning-disk confocal fluorescence microscopy, we show that the predominant entry pathway of RABV particles into BS-C-1 cells is clathrin dependent. Viral particles enter cells in pits with elongated structures and incomplete clathrin coats which depend upon actin to complete the internalization process. By measuring the time of internalization and the abundance of the clathrin adaptor protein AP2, we further show that the pits that internalize RABV particles are similar to those that internalize VSV particles. Pharmacological perturbations of dynamin or of actin polymerization inhibit productive infection, linking our observations on particle uptake with viral infectivity. This work extends to RABV particles the finding that clathrin-mediated endocytosis of rhabdoviruses proceeds through incompletely coated pits which depend upon actin.

  15. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  16. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.

    Science.gov (United States)

    Khatodia, Surender; Bhatotia, Kirti; Tuteja, Narendra

    2017-05-04

    Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) system of targeted genome editing has already revolutionized the plant science research. This is a RNA guided programmable endonuclease based system composed of 2 components, the Cas9 nuclease and an engineered guide RNA targeting any DNA sequence of the form N20-NGG for novel genome editing applications. The CRISPR/Cas9 technology of targeted genome editing has been recently applied for imparting virus resistance in plants. The robustness, wide adaptability, and easy engineering of this system has proved its potential as an antiviral tool for plants. Novel DNA free genome editing by using the preassembled Cas9/gRNA ribonucleoprotein complex for development of virus resistance in any plant species have been prospected for the future. Also, in this review we have discussed the reports of CRISPR/Cas9 mediated virus resistance strategy against geminiviruses by targeting the viral genome and transgene free strategy against RNA viruses by targeting the host plant factors. In conclusion, CRISPR/Cas9 technology will provide a more durable and broad spectrum viral resistance in agriculturally important crops which will eventually lead to public acceptance and commercialization in the near future.

  17. IN VITRO PRODUCTION OF VIRUS FREE SWEET POTATO ...

    African Journals Online (AJOL)

    preferred customer

    translatable coat protein (CP) gene fragments of Potato virus Y (PVY), Potato leafroll virus (PLRV) and. Potato virus X (PVX) with and without selectable marker gene was conducted using Agrobacterium- mediated transformation. Preliminary ...... Plant–cell. 5:1749–1759. 30. Lu, H-J., Zhou, X.R., Gong, Z–X. and Upadhyaya,.

  18. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  19. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  20. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.513 Potato Leaf Roll... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  1. Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs.

    Directory of Open Access Journals (Sweden)

    Masayuki Sano

    Full Text Available Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study, we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp. Because of the capacity of Sendai virus (SeV nonstructural C proteins to specifically inhibit viral RNA synthesis, overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression, target sequences for an endogenous microRNA were incorporated into the 3' untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore, the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications.

  2. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime.

    Science.gov (United States)

    Fagoaga, Carmen; López, Carmelo; de Mendoza, Alfonso Hermoso; Moreno, Pedro; Navarro, Luis; Flores, Ricardo; Peña, Leandro

    2006-01-01

    Previously, we have shown that most Mexican limes (Citrus aurantifolia (Christ.) Swing.) expressing the p23 gene of Citrus tristeza virus (CTV) exhibit aberrations resembling viral leaf symptoms. Here we report that five independent transgenic lines having normal phenotype displayed characteristics typical of post-transcriptional gene silencing (PTGS): multiple copies of the transgene, low levels of the corresponding mRNA, methylation of the silenced transgene, and accumulation of p23-specific small interfering RNAs (siRNAs). When graft- or aphid-inoculated with CTV, some propagations of these silenced lines were immune: they neither expressed symptoms nor accumulated virions and viral RNA as estimated by DAS-ELISA and Northern blot hybridization, respectively. Other propagations were moderately resistant because they became infected later and showed attenuated symptoms compared to controls. The susceptible propagations, in addition to symptom expression and elevated virus titer, accumulated p23-specific siRNAs at levels significantly higher than immune or non-inoculated propagations, and showed transgene demethylation. This variable response among clonal transformants indicates that factors other than the genetic background of the transgenic plants play a key role in PTGS-mediated resistance.

  3. The evolution of novel fungal genes from non-retroviral RNA viruses

    Directory of Open Access Journals (Sweden)

    Bruenn Jeremy

    2009-12-01

    Full Text Available Abstract Background Endogenous derivatives of non-retroviral RNA viruses are thought to be absent or rare in eukaryotic genomes because integration of RNA viruses in host genomes is impossible without reverse transcription. However, such derivatives have been proposed for animals, plants and fungi, often based on surrogate bioinformatic evidence. At present, there is little known of the evolution and function of integrated non-retroviral RNA virus genes. Here, we provide direct evidence of integration by sequencing across host-virus gene boundaries and carry out phylogenetic analyses of fungal hosts and totivirids (dsRNA viruses of fungi and protozoans. Further, we examine functionality by tests of neutral evolution, comparison of residues that are necessary for viral capsid functioning and assays for transcripts, dsRNA and viral particles. Results Sequencing evidence from gene boundaries was consistent with integration. We detected previously unknown integrated Totivirus-like sequences in three fungi (Candida parapsilosis, Penicillium marneffei and Uromyces appendiculatus. The phylogenetic evidence strongly indicated that the direction of transfer was from Totivirus to fungus. However, there was evidence of transfer of Totivirus-like sequences among fungi. Tests of selection indicated that integrated genes are maintained by purifying selection. Transcripts were apparent for some gene copies, but, in most cases, the endogenous sequences lacked the residues necessary for normal viral functioning. Conclusions Our findings reveal that horizontal gene transfer can result in novel gene formation in eukaryotes despite miniaturized genomic targets and a need for co-option of reverse transcriptase.

  4. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J.; Garnsey, Stephen M.; Dawson, William O.

    2011-01-01

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host–defense systems tend to be less conserved. Closteroviridae encode 1–5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus–plant interactions. PMID:21987809

  5. Recombinant avian adeno-associated virus-mediated oviduct-specific expression of recombinant human tissue kallikrein.

    Science.gov (United States)

    Wang, A P; Sun, H C; Wang, J Y; Wang, Y J; Yuan, W F

    2008-04-01

    Human tissue kallikrein (hK1) plays an important role in regulation of blood pressure, electrolyte and glucose transport, and renal function. To evaluate the feasibility of viral vector-mediated expression of recombinant human tissue kallikrein (rhK1) in the egg white of laying hens, human tissue kallikrein gene (hKLK1) cDNA-expression cassette was subcloned into avian adeno-associated virus (AAAV) transfer vector pAITR and transfected into AAV-293 cells with AAAV helper vector pcDNA-ARC and adenovirus helper vector pHelper. The recombinant viral particles with a typical AAAV morphology and relatively high titer were generated and identified by PCR and electron microscopy. After 1 intravenous injection of each laying hen with 2 x 10(10) viral particles, oviduct-specific expression of hKLK1 cDNA was demonstrated by reverse transcription-PCR. Secretion of rhK1 into the egg white was detected by enzymatic assay from d 2, reaching the highest level of 107 U/mL in wk 3, and lasted for more than 6 wk after injection. Western blotting showed that the oviduct-expressed rhK1 had the same molecular mass with the natural enzyme. These data suggest that rAAAV can mediate high level and long-lasting transgene expression in oviduct cells, and the established expression system is useful for production of other recombinant proteins.

  6. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  7. Adeno-associated virus vector-mediated delivery of pigment epithelium-derived factor restricts neuroblastoma angiogenesis and growth.

    Science.gov (United States)

    Streck, Christian J; Zhang, Youbin; Zhou, Junfang; Ng, Catherine; Nathwani, Amit C; Davidoff, Andrew M

    2005-01-01

    The purpose of this study was to evaluate the ability of adeno-associated virus (AAV) vector-mediated delivery of pigment epithelium-derived factor (PEDF) to inhibit neuroblastoma (NB) xenograft growth. Pigment epithelium-derived factor was chosen for this study because, in addition to being a potent inhibitor of angiogenesis, it is capable of inducing neuronal differentiation. Cohorts of mice received either recombinant AAV encoding human PEDF (rAAV-hPEDF) at a range of doses or control vector via tail vein. Subsequent hPEDF expression was measured by enzyme-linked immunoassay. After 6 weeks, the mice were given human NB cells by retroperitoneal injection and then killed 5 weeks later. Tumor weight, microvessel density, tumor differentiation, apoptosis, and levels of intratumoral vascular endothelial growth factor (VEGF) expression were determined at that time. In subsequent cohorts of mice, AAV-mediated murine PEDF expression was tested against both human NB xenografts and murine tumors. In a series of in vitro studies, PEDF was shown to inhibit endothelial cell activation and to stimulate differentiation of NB cell lines. After tail vein injection of rAAV-hPEDF, stable transgene expression was generated and correlated with levels of vector administration. Human NB xenograft growth was restricted by hPEDF in a dose-dependent fashion. Intratumoral VEGF expression and microvessel density were decreased, and tumor cell apoptosis was increased in PEDF-treated mice. Treatment with PEDF had a significant impact on NB growth in mice when delivered continuously using a gene therapy-mediated approach. The activity of PEDF appears to be mediated in part by inhibition of tumor-induced angiogenesis through down-regulation of tumor-elaborated VEGF, with subsequent intratumoral apoptosis. Furthermore, hPEDF was able to induce NB differentiation in vitro and in vivo. In addition, antitumor efficacy was seen when mouse PEDF was used to treat syngeneic murine tumors. In our

  8. A role for protein kinase PKR in the mediation of Epstein-Barr virus latent membrane protein-1-induced IL-6 and IL-10 expression.

    Science.gov (United States)

    Lin, San San; Lee, Davy C W; Law, Anna H Y; Fang, Jun Wei; Chua, Daniel T T; Lau, Allan S Y

    2010-05-01

    Expression of Epstein-Barr virus-encoded oncogenic latent membrane protein 1 (LMP1) has been substantially associated with tumorigenic transformation in the virus-infected cells. The pathogenic complexity of LMP1 is partly due to the cytokine dysregulation including IL-6 and IL-10 in perturbing the host immune responses. Here we have identified an important signaling event mediated by a dsRNA-dependent serine/threonine protein kinase, PKR, in regulating LMP1-induced IL-6 and IL-10 expression. We first demonstrated that PKR plays a significant role in mediating LMP1-induced cytokine expression by using a PKR inhibitor 2-aminopurine, and the specific role of PKR involved was confirmed by the use of siRNA oligos targeting PKR and/or a dominant-negative PKR mutant. We next revealed that PKR activity mediates LMP1-enhanced NF-kappaB nuclear translocation resulting in cytokine induction. We further demonstrated at the chromatin level that LMP1 can significantly elevate the phosphorylation of histone H3 on serine 10 (Ser 10), and the process was dependent on PKR activity. Our findings thus suggest that PKR plays an important role in mediating the cytokine gene expression induced by LMP1 through NF-kappaB activation and histone H3 Ser 10 phosphorylation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. PexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Irfan J. Lodhi

    2017-09-01

    Full Text Available How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning, increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-β1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARγ, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling.

  10. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  11. Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein.

    Science.gov (United States)

    Kim, Ah-Ra; Lee, Dong-Hun; Lee, Su-Hwa; Rubino, Ilaria; Choi, Hyo-Jick; Quan, Fu-Shi

    2018-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, young children and the elderly. However, there is no licensed vaccine available against RSV infection. In this study, we generated virus-like particle (VLP) vaccine and investigated the vaccine efficacy in a mouse model. For VLP vaccines, tandem gene (1-780 bp) for V1 VLPs and tandem repeat gene (repeated 450-780 bp) for V5 VLPs were constructed in pFastBacTM vectors, respectively. Influenza matrix protein 1 (M1) was used as a core protein in the VLPs. Notably, upon challenge infection, significantly lower virus loads were measured in the lung of mice immunized with V1 or V5 VLPs compared to those of naïve mice and formalin-inactivated RSV immunized control mice. In particular, V5 VLPs immunization showed significantly lower virus titers than V1 VLPs immunization. Furthermore, V5 VLPs immunization elicited increased memory B cells responses in the spleen. These results indicated that V5 VLP vaccine containing tandem repeat gene protein provided better protection than V1 VLPs with significantly decreased inflammation in the lungs. Thus, V5 VLPs could be a potential vaccine candidate against RSV.

  12. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2017-11-20

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesised in medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-D-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used Tobacco Rattle Virus (TRV)-mediated Virus-Induced Gene Silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total chlorophyll as well as carotenoid content for each silenced gene apprehending a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of a complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation, at different levels, as compared to control plants. Comparative analysis also suggests major role of MVA pathway as compared to MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis providing new horizons to further explore this process, in planta. © The Author 2017. Published by Oxford

  13. Preparation of vesicular stomatitis virus-G (VSV-G) conjugate and its use in gene transfer.

    Science.gov (United States)

    Miyanohara, Atsushi

    2012-04-01

    The fusiogenic envelope G glycoprotein of the vesicular stomatitis virus (VSV-G) that has been used to pseudotype retrovirus and lentivirus vectors can be used alone as an efficient vehicle for gene transfer. VSV-G protein is secreted into the culture medium as sendimentable vesicles from cells transfected with a VSV-G expression plasmid in the absence of other viral components. The VSV-G vesicles in the conditioned medium can be partially purified by pelleting through sucrose cushion ultracentrifugation. Protein-DNA complexes are formed by mixing the VSV-G vesicles with naked plasmid DNA. Such complexes show markedly enhanced transfection efficiency when added to the culture medium of recipient cells. The cell tropism of VSV-G-DNA complex-mediated gene transfer resembles that of VSV-G-pseudotyped retrovirus and lentivirus vectors, and the complex is therefore particularly useful for transfection of cells that are refractory to other methods. Still, some cells are refractory to VSV-G-mediated transfection. It should also be noted that overdose of VSV-G can be quite toxic to the recipient cells. The primitive complexes formed by mixing a viral fusiogenic envelope protein with naked DNA may represent a step toward fusing useful features of viral and nonviral vectors for safer and more efficient gene transfer. This protocol describes simple methods for preparation of VSV-G and for gene transfer with DNA-VSV-G complexes.

  14. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  15. Mutations to A/Puerto Rico/8/34 PB1 gene improves seasonal reassortant influenza A virus growth kinetics.

    Science.gov (United States)

    Plant, Ewan P; Liu, Teresa M; Xie, Hang; Ye, Zhiping

    2012-12-17

    It is desirable for influenza vaccine virus strains to have phenotypes that include good growth and hemagglutinin (HA) protein yield. The quality of these characteristics varies among the vaccine viruses and is usually due to multigenic effects. Many influenza A virus vaccine viruses are made as reassortants of the high yield virus A/Puerto Rico/8/34 (PR/8) and a circulating seasonal virus. Co-infection of eggs with the two viruses, and selection of reassortants with the HA and neuraminidase (NA) segments from the seasonal virus, can result in viruses that contain a mixture of internal genes derived from both the high yield virus and the circulating virus. Segment 2 (PB1), which encodes the RNA-dependent RNA polymerase, frequently cosegregates with the seasonal HA and NA segments. We asked whether mutations based on the seasonal PB1 genes could improve vaccine virus strains. Here we report that mutations to the PR/8 PB1 gene, based on differences observed between seasonal and PR/8 PB1 genes, accelerate egg and cell culture based replication for a reassortant virus containing HA and NA segments from the low yield A/Wyoming/03/2003 (H3N2) vaccine virus. Published by Elsevier Ltd.

  16. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  17. Soluble Flt-1 gene delivery in acute myeloid leukemic cells mediating a nonviral gene carrier.

    Science.gov (United States)

    Amini, Razieh; Azizi Jalilian, Farid; Veerakumarasivam, Abhi; Abdullah, Syahril; Abdulamir, Ahmed S; Nadali, Fatemeh; Rosli, Rozita

    2013-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML). Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1) delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.

  18. Soluble Flt-1 Gene Delivery in Acute Myeloid Leukemic Cells Mediating a Nonviral Gene Carrier

    Directory of Open Access Journals (Sweden)

    Razieh Amini

    2013-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML. Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1 delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.

  19. Viral small interfering RNAs target host genes to mediate disease symptoms in plants.

    Directory of Open Access Journals (Sweden)

    Neil A Smith

    2011-05-01

    Full Text Available The Cucumber mosaic virus (CMV Y-satellite RNA (Y-Sat has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco. How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.

  20. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped.

  1. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  2. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    Science.gov (United States)

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.

    2016-01-01

    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  3. Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization.

    Science.gov (United States)

    Mockett, B; Binns, M M; Boursnell, M E; Skinner, M A

    1992-10-01

    We have derived a restriction enzyme map for the fowlpox virus FP9 strain. Sites for BamHI, PvuII, PstI and NcoI have been mapped mainly by Southern blotting. The size of the genome derived from the restriction maps (254 kb) corresponds to the figure of 260 +/- 8 kb determined from analysis of genomic DNA by pulsed-field electrophoresis. The map can be compared with a previously published map for a different strain of fowlpox virus using the PstI digest which is common to both studies. Some 65 kb of fowlpox virus sequence, in 11 blocks, as well as individual M13 clones have been aligned with the map. Where those blocks correspond with blocks of homologous genes in vaccinia virus, it is possible to compare the genomic locations for those genes in the two viruses. This comparison reveals that, whereas there are blocks of sequence within which genes exist in the same relative position in the two viruses, the genomic location of those sequence blocks differs widely between the two viruses.

  4. Patterns of evolution and host gene mimicry in influenza and other RNA viruses.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    2008-06-01

    Full Text Available It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has

  5. Efficient dsRNA-mediated transgenic resistance to Beet necrotic yellow vein virus in sugar beets is not affected by other soilborne and aphid-transmitted viruses.

    Science.gov (United States)

    Lennefors, Britt-Louise; van Roggen, Petra M; Yndgaard, Flemming; Savenkov, Eugene I; Valkonen, Jari P T

    2008-04-01

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.

  6. Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene.

    Science.gov (United States)

    Tabin, C J; Hoffmann, J W; Goff, S P; Weinberg, R A

    1982-01-01

    We investigated the feasibility of using retroviruses as vectors for transferring DNA sequences into animal cells. The thymidine kinase (tk) gene of herpes simplex virus was chosen as a convenient model. The internal BamHI fragments of a DNA clone of Moloney leukemia virus (MLV) were replaced with a purified BamHI DNA segment containing the tk gene. Chimeric genomes were created carrying the tk insert in both orientations relative to the MLV sequence. Each was transfected into TK- cells along with MLV helper virus, and TK+ colonies were obtained by selection in the presence of hypoxanthine, aminopterin, and thymidine (HAT). Virus collected from TK+-transformed, MLV producer cells passed the TK+ phenotype to TK- cells. Nonproducer cells were isolated, and TK+ transducing virus was subsequently rescued from them. The chimeric virus showed single-hit kinetics in infections. Virion and cellular RNA and cellular DNA from infected cells were all shown to contain sequences which hybridized to both MLV- and tk-specific probes. The sizes of these sequences were consistent with those predicted for the chimeric virus. In all respects studied, the chimeric MLV-tk virus behaved like known replication-defective retroviruses. These experiments suggest great general applicability of retroviruses as eucaryotic vectors. Images PMID:6180306

  7. RNAi screen reveals a role of SPHK2 in dengue virus-mediated apoptosis in hepatic cell lines.

    Directory of Open Access Journals (Sweden)

    Atthapan Morchang

    Full Text Available Hepatic dysfunction is a feature of dengue virus (DENV infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12, and sphingosine kinase 2 (SPHK2, were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.

  8. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants.

    Science.gov (United States)

    Zhao, Fumei; Lim, Seungmo; Igori, Davaajargal; Yoo, Ran Hee; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-05-01

    We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. SF2/ASF binding region within JC virus NCCR limits early gene transcription in glial cells.

    Science.gov (United States)

    Uleri, Elena; Regan, Patrick; Dolei, Antonina; Sariyer, Ilker Kudret

    2013-05-14

    Patients undergoing immune modulatory therapies for the treatment of autoimmune diseases such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS patients, are in the high risk group of developing progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the white matter caused by human neurotropic polyomavirus, JC virus. It is now widely accepted that pathologic strains of JCV shows unique rearrangements consist of deletions and insertions within viral NCCR. While these kinds of rearrangements are related to viral tropism and pathology of the disease, their roles in molecular regulation of JCV gene expression and replication are unclear. We have previously identified SF2/ASF as a negative regulator of JCV gene expression in glial cells. This negative impact of SF2/ASF was dependent on its ability to bind a specific region mapped to the tandem repeat within viral promoter. In this report, functional role of SF2/ASF binding region in viral gene expression and replication was investigated by using deletion mutants of viral regulatory sequences. The second 98-base-pair tandem repeat on Mad1 strain was first mutated by deletion and named Mad1-(1X98). In addition to this mutant, the CR3 region which served the binding side for SF2/ASF was also mutated and named Mad1-ΔCR3 (1X73). Both mutations were tested for SF2/ASF binding by ChIP assay. While SF2/ASF was associated with Mad1-WT and Mad1-(1X98), its interaction was completely abolished on Mad1-ΔCR3 (1X73) construct as expected. Surprisingly, reporter gene analysis of Mad1-(1X98) and Mad1-ΔCR3 (1X73) early promoter sequences showed two and three fold increase in promoter activities, respectively. The impact of "CR3" region on JCV propagation was also tested on the viral background. While replication of Mad1-(1X98) strain in glial cells was similar to Mad1-WT strain, propagation of Mad1-ΔCR3 (1X73) was less productive. Further analysis of the

  10. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Pradip B Ranaware

    Full Text Available The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV or the low pathogenic avian influenza virus (LPAIV infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011 and LPAI H9N2 (A/duck/India/249800/2010 viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG, cytokines (IL1B, IL18, IL22, IL13, and IL12B, chemokines (CCL4, CCL19, CCL10, and CX3CL1 and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  11. A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease.

    Science.gov (United States)

    Beyene, Getu; Chauhan, Raj Deepika; Taylor, Nigel J

    2017-03-07

    Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12-18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. Following inoculation, visual assessment for CMD symptom development and recovery requires 12-22 weeks. Here we report a rapid screening system for determining resistance and susceptibility to CMD based on virus-induced gene silencing (VIGS) of an endogenous cassava gene. A VIGS vector was developed based on an infectious clone of the virulent strain of East African cassava mosaic virus (EACMV-K201). A sequence from the cassava (Manihot esculenta) ortholog of Arabidopsis SPINDLY (SPY) was cloned into the CP position of the DNA-A genomic component and used to inoculate cassava plants by Helios® Gene Gun microparticle bombardment. Silencing of Manihot esculenta SPY (MeSPY) using MeSPY1-VIGS resulted in shoot-tip necrosis followed by death of the whole plant in CMD susceptible cassava plants within 2-4 weeks. CMD resistant cultivars were not affected and remained healthy after challenge with MeSPY1-VIGS. Significantly higher virus titers were detected in CMD-susceptible cassava lines compared to resistant controls and were correlated with a concomitant reduction in MeSPY expression in susceptible plants. A rapid VIGS-based screening system was developed for assessing resistance and susceptibility to CMD. The method is space and resource efficient, reducing the time required to perform CMD screening to as little as 2-4 weeks. It can be employed as a high throughput rapid screening system to assess new cassava cultivars and for

  12. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Science.gov (United States)

    Tugume, Arthur K; Amayo, Robert; Weinheimer, Isabel; Mukasa, Settumba B; Rubaihayo, Patrick R; Valkonen, Jari P T

    2013-01-01

    The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis. SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was

  13. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    Energy Technology Data Exchange (ETDEWEB)

    Upton, C.; McFadden, G.

    1986-12-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively.

  14. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection.

    Science.gov (United States)

    Babu, Mohan; Griffiths, Jonathan S; Huang, Tyng-Shyan; Wang, Aiming

    2008-07-09

    Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q or = 2.5 fold) and downregulated (viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions.

  15. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    Science.gov (United States)

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  16. Chasing the Origin of Viruses: Capsid-Forming Genes as a Life-Saving Preadaptation within a Community of Early Replicators.

    Science.gov (United States)

    Jalasvuori, Matti; Mattila, Sari; Hoikkala, Ville

    2015-01-01

    Virus capsids mediate the transfer of viral genetic information from one cell to another, thus the origin of the first viruses arguably coincides with the origin of the viral capsid. Capsid genes are evolutionarily ancient and their emergence potentially predated even the origin of first free-living cells. But does the origin of the capsid coincide with the origin of viruses, or is it possible that capsid-like functionalities emerged before the appearance of true viral entities? We set to investigate this question by using a computational simulator comprising primitive replicators and replication parasites within a compartment matrix. We observe that systems with no horizontal gene transfer between compartments collapse due to the rapidly emerging replication parasites. However, introduction of capsid-like genes that induce the movement of randomly selected genes from one compartment to another rescues life by providing the non-parasitic replicators a mean to escape their current compartments before the emergence of replication parasites. Capsid-forming genes can mediate the establishment of a stable meta-population where parasites cause only local tragedies but cannot overtake the whole community. The long-term survival of replicators is dependent on the frequency of horizontal transfer events, as systems with either too much or too little genetic exchange are doomed to succumb to replication-parasites. This study provides a possible scenario for explaining the origin of viral capsids before the emergence of genuine viruses: in the absence of other means of horizontal gene transfer between compartments, evolution of capsid-like functionalities may have been necessary for early life to prevail.

  17. Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development.

    Science.gov (United States)

    Nogales, Aitor; Baker, Steven F; Ortiz-Riaño, Emilio; Dewhurst, Stephen; Topham, David J; Martínez-Sobrido, Luis

    2014-09-01

    Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of

  18. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control.

    Science.gov (United States)

    Mishra, Rabinarayan; Polic, Bojan; Welsh, Raymond M; Szomolanyi-Tsuda, Eva

    2013-07-15

    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.

  19. Hepatitis C virus genomic RNA dimerization is mediated via a kissing complex intermediate.

    Science.gov (United States)

    Shetty, Sumangala; Kim, Seungtaek; Shimakami, Tetsuro; Lemon, Stanley M; Mihailescu, Mihaela-Rita

    2010-05-01

    With over 200 million people infected with hepatitis C virus (HCV) worldwide, there is a need for more effective and better-tolerated therapeutic strategies. The HCV genome is a positive-sense; single-stranded RNA encoding a large polyprotein cleaved at multiple sites to produce at least ten proteins, among them an error-prone RNA polymerase that confers a high mutation rate. Despite considerable overall sequence diversity, in the 3'-untranslated region of the HCV genomic RNA there is a 98-nucleotide (nt) sequence named X RNA, the first 55 nt of which (X55 RNA) are 100% conserved among all HCV strains. The X55 region has been suggested to be responsible for in vitro dimerization of the genomic RNA in the presence of the viral core protein, although the mechanism by which this occurs is unknown. In this study, we analyzed the X55 region and characterized the mechanism by which it mediates HCV genomic RNA dimerization. Similar to a mechanism proposed previously for the human immunodeficiency 1 virus (HIV-1) genome, we show that dimerization of the HCV genome involves formation of a kissing complex intermediate, which is converted to a more stable extended duplex conformation in the presence of the core protein. Mutations in the dimer linkage sequence loop sequence that prevent RNA dimerization in vitro significantly reduced but did not completely ablate the ability of HCV RNA to replicate or produce infectious virus in transfected cells.

  20. Triptolide-mediated inhibition of interferon signaling enhances vesicular stomatitis virus-based oncolysis.

    Science.gov (United States)

    Ben Yebdri, Fethia; Van Grevenynghe, Julien; Tang, Vera A; Goulet, Marie-Line; Wu, Jian Hui; Stojdl, David F; Hiscott, John; Lin, Rongtuan

    2013-11-01

    Preclinical and clinical trials demonstrated that use of oncolytic viruses (OVs) is a promising new therapeutic approach to treat multiple types of cancer. To further improve their viral oncolysis, experimental strategies are now combining OVs with different cytotoxic compounds. In this study, we investigated the capacity of triptolide - a natural anticancer molecule - to enhance vesicular stomatitis virus (VSV) oncolysis in OV-resistant cancer cells. Triptolide treatment increased VSV replication in the human prostate cancer cell line PC3 and in other VSV-resistant cells in a dose- and time-dependent manner in vitro and in vivo. Mechanistically, triptolide (TPL) inhibited the innate antiviral response by blocking type I interferon (IFN) signaling, downstream of IRF3 activation. Furthermore, triptolide-enhanced VSV-induced apoptosis in a dose-dependent fashion in VSV-resistant cells, as measured by annexin-V, cleaved caspase-3, and B-cell lymphoma 2 staining. In vivo, using the TSA mammary adenocarcinoma and PC3 mouse xenograft models, combination treatment with VSV and triptolide delayed tumor growth and prolonged survival of tumor-bearing animals by enhancing viral replication. Together, these results demonstrate that triptolide inhibition of IFN production sensitizes prostate cancer cells to VSV replication and virus-mediated apoptosis.

  1. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus.

    Science.gov (United States)

    Varga, Aniko; James, Delano

    2006-12-01

    A one step, accelerated reverse transcription loop-mediated isothermal amplification (RT-LAMP) procedure was developed for the detection of Plum pox virus (PPV). The six primers required for accelerated RT-LAMP were designed using a conserved region in the C-terminus of the coat protein coding region of PPV. RT-LAMP was used to detect isolates of five strains of PPV including the strains D, M, EA, C, and W. The virus was detected reliably in both infected herbaceous and woody hosts. RT-LAMP was compared to real-time RT-PCR with SYBR Green I and melting curve analysis, using serial dilutions of total RNA extracts. Similar sensitivities were observed, except that real-time RT-PCR was more consistent at lower template concentrations. The purity of the FIP and BIP primers affected the efficiency of the reaction, and incubation time and template concentration affected the ladder-like pattern observed after agarose gel electrophoresis. Although PPV could be detected after 30min of incubation at 63 degrees C, a longer incubation time was required for lower concentrations of the target. RT-LAMP is a very sensitive, low cost diagnostic tool that should be of value in more accurate determination of the distribution of PPV. This should assist in preventing further spread of this devastating virus.

  2. Technical advance: transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression

    Science.gov (United States)

    Bohner; Lenk; Rieping; Herold; Gatz

    1999-07-01

    A chemically regulated gene expression system that can be switched on with dexamethasone and switched off with tetracycline was constructed. It is based on a transcriptional activator (TGV) that consists of the Tn10 encoded Tet repressor, the rat glucocorticoid receptor hormone binding domain and the transcriptional activation domain of Herpes simplex virion protein VP16. When stably expressed in transgenic tobacco plants, it mediates dexamethasone-inducible transcription from a synthetic promoter (PTop10) consisting of seven tet operators upstream of a TATA-box. Tetracycline interferes with induction by negatively regulating the DNA-binding activity of the TetR moiety of TGV. The boundaries of the expression window of the TGV-driven PTop10 reach from undetectable levels of the reporter enzyme beta-glucuronidase in the absence of dexa- methasone to induced levels reaching 15-20% of the Cauliflower Mosaic Virus 35S promoter (PCaMV35S). By modifying the sequence of PTop10, we generated a new target promoter (PTax) that is stably expressed over several generations and that can be activated to levels comparable to PCaMV35S, while yielding only slightly elevated background activities.

  3. Citrus tristeza virus p23: a unique protein mediating key virus–host interactions

    Science.gov (United States)

    Flores, Ricardo; Ruiz-Ruiz, Susana; Soler, Nuria; Sánchez-Navarro, Jesús; Fagoaga, Carmen; López, Carmelo; Navarro, Luis; Moreno, Pedro; Peña, Leandro

    2013-01-01

    The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3′-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23. PMID:23653624

  4. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation.

    Science.gov (United States)

    Qi, Xuefeng; Liu, Caihong; Li, Ruiqiao; Zhang, Huizhu; Xu, Xingang; Wang, Jingyu

    2017-04-01

    Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1β) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-β3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analysis of the fusion protein gene of Newcastle disease viruses isolated in Japan.

    Science.gov (United States)

    Mase, Masaji; Murayama, Kazunori; Karino, Ayako; Inoue, Toshikazu

    2011-01-01

    The complete nucleotide sequences of the fusion (F) protein gene of Newcastle disease viruses (NDV) isolated in Japan from 1930 to 2007 (45 strains total) were determined and genetically analyzed. In the deduced amino acid sequences of fusion protein, the 5 potential asparagine-linked glycosylation sites and 10 cysteine residues were all conserved in the NDV examined in this study. The major epitopes involved in virus neutralization are conserved in most of the NDV strains isolated in Japan except a few strains. By virus neutralization test, no major antigenic differences were observed among representative strains of each genotype in Japan. All chickens vaccinated with the B1 strain survived without clinical signs after challenge with 2 NDV strains isolated in Japan (velogenic strains, JP/Ibaraki/2000 and JP/Kagoshima/91), which possess amino acids substitutions involved in virus neutralization in the F protein gene.

  6. Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato

    Science.gov (United States)

    Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...

  7. A preclinical animal model to assess the effect of pre-existing immunity on AAV-mediated gene transfer.

    Science.gov (United States)

    Li, Hua; Lin, Shih-Wen; Giles-Davis, Wynetta; Li, Yan; Zhou, Dongming; Xiang, Zhi Quan; High, Katherine A; Ertl, Hildegund C J

    2009-07-01

    Hepatic adeno-associated virus (AAV)-serotype 2-mediated gene transfer results in sustained transgene expression in experimental animals but not in human subjects. We hypothesized that loss of transgene expression in humans might be caused by immune memory mechanisms that become reactivated upon AAV vector transfer. Here, we tested the effect of immunological memory to AAV capsid on AAV-mediated gene transfer in a mouse model. Upon hepatic transfer of an AAV2 vector expressing human factor IX (hF.IX), mice immunized with adenovirus (Ad) vectors expressing AAV8 capsid before AAV2 transfer developed less circulating hF.IX and showed a gradual loss of hF.IX gene copies in liver cells as compared to control animals. This was not observed in mice immunized with an Ad vectors expressing AAV2 capsid before transfer of rAAV8-hF.IX vectors. The lower hF.IX expression was primarily linked to AAV-binding antibodies that lacked AAV-neutralizing activity in vitro rather than to AAV capsid-specific CD8(+) T cells.

  8. Enhancement or Attenuation of Disease by Deletion of Genes from Citrus Tristeza Virus

    Science.gov (United States)

    Tatineni, Satyanarayana

    2012-01-01

    Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development. PMID:22593155

  9. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus.

    Science.gov (United States)

    Tatineni, Satyanarayana; Dawson, William O

    2012-08-01

    Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.

  10. Systemic cancer gene therapy using adeno-associated virus type 1 vector expressing MDA-7/IL24.

    Science.gov (United States)

    Tahara, Ichiro; Miyake, Koichi; Hanawa, Hideki; Kurai, Toshiyuki; Hirai, Yukihiko; Ishizaki, Masamichi; Uchida, Eiji; Tajiri, Takashi; Shimada, Takashi

    2007-10-01

    Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL24), selectively induces apoptosis in cancer cells without harming normal cells. It also exerts immunomodulatory and antiangiogenic effects, as well as potent antitumor bystander effects, making it an ideal candidate for a new anticancer gene therapy. Here, we examined the feasibility of adeno-associated virus type 1 (AAV1) vector-mediated systemic gene therapy using mda-7/IL24. In vitro studies showed that medium conditioned by AAV1-mda7-transducedC2C12 cells induces tumor cell-specific apoptosis and inhibits angiogenesis in a human umbilical vein endothelial cell tube formation assay. To assess the in vivo effects of AAV1-mediated systemic delivery of MDA-7/IL24, we generated a subcutaneous tumor model by injecting Ehrlich ascites tumor cells into the dorsum of DDY mice. A single intravenous injection of AAV1-mda7 (2.0 x 10(11) viral genomes) significantly inhibited tumor growth. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and immunohistochemical analyses showed significant induction of tumor-cell-specific apoptosis and reduction of microvessel formation within the tumors, and there was a significant increase in survival among the AAV1-mda7-treated mice. These results clearly demonstrate that continuous systemic delivery of MDA-7/IL24 can serve as an effective treatment for cancer. Thus, AAV1 vector-mediated systemic delivery of MDA-7/IL24 represents a potentially important new approach to anticancer therapy.

  11. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics.

    Science.gov (United States)

    Tollenaere, C; Bryja, J; Galan, M; Cadet, P; Deter, J; Chaval, Y; Berthier, K; Ribas Salvador, A; Voutilainen, L; Laakkonen, J; Henttonen, H; Cosson, J-F; Charbonnel, N

    2008-09-01

    We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.

  12. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Science.gov (United States)

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  13. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  14. Molecular Determinants of Dengue Virus 2 Envelope Protein Important for Virus Entry in FcγRIIA-Mediated Antibody-Dependent Enhancement of Infection

    Science.gov (United States)

    Chotiwan, Nunya; Roehrig, John T.; Schlesinger, Jacob J.; Blair, Carol D.; Huang, Claire Y.-H.

    2015-01-01

    Antibody-dependent enhancement (ADE) of infection may cause severe illness in patients suffering a secondary infection by a heterologous dengue virus (DENV) serotype. During ADE of infection, cross-reactive non- or poorly-neutralizing antibodies form infectious virus-Ab complexes with the newly infecting serotype and enhance virus infection by binding to the Fcγ receptors (FcγR) on FcγR-bearing cells. In this study, we determined that molecular determinants of DENV2 envelope protein critical for virus entry during non-ADE infection are also required for ADE infection mediated by FcγRIIA, and binding of virus-Ab complexes with FcγRIIA alone is not sufficient for ADE of infection. The FcγRIIA mainly plays an auxiliary role in concentrating the virus-Ab complex to the cell surface, and other primary cellular receptors are required for virus entry. Understanding the viral entry pathway in ADE of DENV infection will greatly facilitate rational designs of anti-viral therapeutics against severe dengue disease associated with ADE. PMID:24889243

  15. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    Science.gov (United States)

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-10-17

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. [Differential display of messenger RNA and identification of selenocysteine lyase gene in hepatocellular carcinoma cells transiently expressing hepatitis C virus core protein].

    Science.gov (United States)

    Yepes, Jesús Orlando; Luz Gunturiz, María; Henao, Luis Felipe; Navas, María Cristina; Balcázar, Norman; Gómez, Luis Alberto

    2006-06-01

    Hepatitis C virus is associated with diverse liver diseases including acute and chronic hepatitis, steatosis, cirrhosis and hepatocellular carcinoma. Several studies have explored viral mechanisms involved in the establishment of persistent infection and oncogenic Hepatitis C virus. Expression assays of Hepatitis C virus core protein suggest that this protein has transforming and carcinogenic properties with multifunctional activities in host cells. Characterization of expressed genes in cells expressing Core protein is important in order to identify candidate genes responsible for these pathogenic alterations. To compare and identify gene expression profiles in the human hepatocarcinoma derived cell line, HepG2, with transient expression of Hepatitis C virus Core protein. We have used comparative PCR-mediated differential display of mRNA from HepG2 hepatocarcinoma with and without transient expression of HCV Core protein or green fluorescent protein, previously obtained using the Semliki Forest Virus-based expression, through transduction of recombinant particles, rSFV-Core and rSFV-GFP, respectively. We observed differences in band intensities of mRNA in HepG2 cells transduced with rSFV-Core compared with those detected in cells without transduction, and transduced with rSFV-GFP. Cloning and sequencing of a gene fragment (258 bp) that was expressed differentially in HepG2 cells transduced with rSFV-Core, was identified as selenocystein lyase. The results confirm that HCV Core protein expressed in HepG2 is associated with specific changes in mRNA expression, including the gene for selenocystein lyase. This gene may be involved in the pathophysiology of hepatocellular carcinoma.

  17. Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco

    Directory of Open Access Journals (Sweden)

    Teppei Sugawara

    2016-11-01

    Full Text Available Abstract Background The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus. Results Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV, whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene. Conclusion We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.

  18. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  19. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    Science.gov (United States)

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-09

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata

    DEFF Research Database (Denmark)

    Grønlund, Mette; Kjær, Gabriela Didina Constantin; Piednoir, Elodie

    2008-01-01

    Virus-induced gene silencing (VIGS) has become an important reverse genetics tool for functional genomics. VIGS vectors based on Pea early browning virus (PEBV, genus Tobravirus) and Bean pod mottle virus (genus Comovirus) are available for the legume species Pisum sativum and Glycine max...

  1. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  2. Genetic variation in V gene of class II Newcastle disease virus.

    Science.gov (United States)

    Hao, Huafang; Chen, Shengli; Liu, Peng; Ren, Shanhui; Gao, Xiaolong; Wang, Yanping; Wang, Xinglong; Zhang, Shuxia; Yang, Zengqi

    2016-01-01

    The genetic variation and molecular evolution of the V gene of the class II Newcastle disease virus (NDV) isolates with genotypes I-XVIII were determined using bioinformatics. Results indicated that low homology existed in different genotype viruses, whereas high homology often for the same genotypes, exception may be existed within genotypes I, V, VI, and XII. Sequence analysis showed that the genetic variation of V protein was consistent with virus genotype, and specific signatures on the V protein for nine genotypes were identified. Phylogenetic analysis demonstrated that the phylogenetic trees were highly consistent between the V and F genes, with slight discrepancies in the sub-genotypes. Evolutionary rate analyses based on V and F genes revealed the evolution rates varied in genotypes. These data indicate that the genetic variation of V protein is genotype-related and will help in elucidating the molecular evolution of NDV. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses

    Science.gov (United States)

    Krupovic, Mart; Koonin, Eugene V.

    2014-06-01

    Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.

  4. Agrobacterium mediated transformation of annexin gene in tobacco ...

    African Journals Online (AJOL)

    STORAGESEVER

    The present study involves the development of genetically engineered tobacco plants with annexin gene. The plasmid pUC 119 with the Annexin gene and pGPTV vector were isolated from the. Escherichia coli. These plasmids were subjected to restriction digestion with EcoRI and Xbal where the. Annexin gene is released ...

  5. Agrobacterium mediated transformation of annexin gene in tobacco ...

    African Journals Online (AJOL)

    The present study involves the development of genetically engineered tobacco plants with annexin gene. The plasmid pUC 119 with the Annexin gene and pGPTV vector were isolated from the Escherichia coli. These plasmids were subjected to restriction digestion with EcoRI and Xbal where the Annexin gene is released ...

  6. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available Nipah virus (NiV is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis in up to 75% of infected humans. Like other paramyxoviruses, NiV employs co-transcriptional mRNA editing during transcription of the phosphoprotein (P gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternative reading frame. There is evidence from both in vitro and in vivo studies to show that the P gene products play a role in NiV pathogenesis. We have developed a reverse genetic system to dissect the individual roles of the NiV P gene products in limiting the antiviral response in primary human microvascular lung endothelial cells, which represent important targets in human NiV infection. By characterizing growth curves and early antiviral responses against a number of recombinant NiVs with genetic modifications altering expression of the proteins encoded by the P gene, we observed that multiple elements encoded by the P gene have both distinct and overlapping roles in modulating virus replication as well as in limiting expression of antiviral mediators such as IFN-β, CXCL10, and CCL5. Our findings corroborate observations from in vivo hamster infection studies, and provide molecular insights into the attenuation and the histopathology observed in hamsters infected with C, V, and W-deficient NiVs. The results of this study also provide an opportunity to verify the results of earlier artificial plasmid expression studies in the context of authentic viral infection.

  7. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response.

    Science.gov (United States)

    Lo, Michael K; Peeples, Mark E; Bellini, William J; Nichol, Stuart T; Rota, Paul A; Spiropoulou, Christina F

    2012-01-01

    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis in up to 75% of infected humans. Like other paramyxoviruses, NiV employs co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternative reading frame. There is evidence from both in vitro and in vivo studies to show that the P gene products play a role in NiV pathogenesis. We have developed a reverse genetic system to dissect the individual roles of the NiV P gene products in limiting the antiviral response in primary human microvascular lung endothelial cells, which represent important targets in human NiV infection. By characterizing growth curves and early antiviral responses against a number of recombinant NiVs with genetic modifications altering expression of the proteins encoded by the P gene, we observed that multiple elements encoded by the P gene have both distinct and overlapping roles in modulating virus replication as well as in limiting expression of antiviral mediators such as IFN-β, CXCL10, and CCL5. Our findings corroborate observations from in vivo hamster infection studies, and provide molecular insights into the attenuation and the histopathology observed in hamsters infected with C, V, and W-deficient NiVs. The results of this study also provide an opportunity to verify the results of earlier artificial plasmid expression studies in the context of authentic viral infection.

  8. Gene-Specific Contributions to Mumps Virus Neurovirulence and Neuroattenuation ▿

    Science.gov (United States)

    Sauder, Christian J.; Zhang, Cheryl X.; Ngo, Laurie; Werner, Kellie; Lemon, Ken; Duprex, W. Paul; Malik, Tahir; Carbone, Kathryn; Rubin, Steven A.

    2011-01-01

    Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence. PMID:21543475

  9. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Laurent Meertens

    2017-01-01

    Full Text Available ZIKA virus (ZIKV is an emerging pathogen responsible for neurological disorders and congenital microcephaly. However, the molecular basis for ZIKV neurotropism remains poorly understood. Here, we show that Axl is expressed in human microglia and astrocytes in the developing brain and that it mediates ZIKV infection of glial cells. Axl-mediated ZIKV entry requires the Axl ligand Gas6, which bridges ZIKV particles to glial cells. Following binding, ZIKV is internalized through clathrin-mediated endocytosis and traffics to Rab5+ endosomes to establish productive infection. During entry, the ZIKV/Gas6 complex activates Axl kinase activity, which downmodulates interferon signaling and facilitates infection. ZIKV infection of human glial cells is inhibited by MYD1, an engineered Axl decoy receptor, and by the Axl kinase inhibitor R428. Our results highlight the dual role of Axl during ZIKV infection of glial cells: promoting viral entry and modulating innate immune responses. Therefore, inhibiting Axl function may represent a potential target for future antiviral therapies.

  10. Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury

    Science.gov (United States)

    Kato, Ryuichi; Wolfe, Darren; Coyle, Christian H.; Wechuck, James B.; Tyagi, Pradeep; Tsukamoto, Taiji; Nelson, Joel B.; Glorioso, Joseph C.; Chancellor, Michael B.; Yoshimura, Naoki

    2008-01-01

    Summary Neurturin (NTN), a member of glial cell line-derived neurotrophic factor (GDNF) family, is known as an important neurotrphic factor for penis-projecting neurons. We recently demonstrated significant protection from erectile dysfunction (ED) following a replication defective herpes simplex virus (HSV) vector-mediated GDNF delivery to the injured cavernous nerve. Herein we applied HSV vector-mediated delivery of NTN to this ED model. Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20μl of vector stock was administered directly to the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein (GFP) and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before sacrifice to assess neuronal survival. Four weeks after nerve injury, rats treated with HSV-NTN exhibited significantly higher ICP/AP compared to untreated or control vector treated groups. The HSV-NTN group had more FG-positive MPG neurons than control group following injury. HSV vector-mediated delivery of NTN could be a viable approach for improvement of erectile dysfunction following cavernous nerve injury. PMID:18668142

  11. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  12. Cell-mediated cytotoxicity in rainbow trout, Oncorhynchus mykiss, infected with viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Utke, K.; Bergmann, S.; Lorenzen, Niels

    2007-01-01

    Mammalian cytotoxic T cells as part of the adaptive immune system recognize virus-infected target cells by binding of their T-cell receptors (TCR) to classical MHC class I molecules loaded with viral peptides. Our previous studies have shown that the allele of the single dominant polymorphic...... classical MHC class I locus Onmy-UBA is identical in the rainbow trout clone C25 and in the permanent rainbow trout cell line RTG-2. This enabled us to develop an assay to measure antiviral cytotoxicity in rainbow trout using a system of MHC class I-matched effector and target cells. Peripheral blood...... level of the CD8 alpha gene which is a typical marker for mammalian cytotoxic T cells. Concurrently, the expression of the natural killer cell enhancement factor (NKEF)-like gene was enhanced as measured by real-time RT-PCR. Taken together, these results suggest that both innate and adaptive cell...

  13. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L

    1999-01-01

    We describe replication competent retroviruses capable of expressing heterologous genes during multiple rounds of infection. An internal ribosome entry site (IRES) from encephalomyocarditis virus was inserted in the U3 region of Akv- and SL3-3-murine leukemia viruses (MLV) to direct translation...... of neo or the enhanced green fluorescence protein gene (EGFP). Akv-MLV's with IRES-neo and IRES-EGFP cassettes replicated with titers of about 10(6) infectious units/ml while SL3-3-MLV with IRES-neo gave about 10(3)-fold lower titers. Interestingly, RNA analysis showed a drastic reduction in the amount...

  14. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    sami siraj

    2012-09-13

    Sep 13, 2012 ... 2Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. 3Institute of Agricultural ... first report on the molecular characterization of full length PVX coat protein sequence infecting potato from Pakistan. ... sensitive and reliable detection methods (Salazar, 1994). Potato virus X ...

  15. Application of HVJ-liposome mediated gene transfer in lung transplantation-distribution and transfection efficiency in the lung.

    Science.gov (United States)

    Ohmori, Kenichi; Takeda, Shin-ichi; Miyoshi, Shinichiro; Minami, Masato; Nakane, Shigeru; Ohta, Mitsunori; Sawa, Yoshiki; Matsuda, Hikaru

    2005-05-01

    A novel hemagglutinating virus of Japan (HVJ)-liposome-mediated gene transfer system has been shown to have benefits of a high efficiency of transfection and low immunogenicity. The aims of this study were to determine the effect of re-transfection of the HVJ-liposome system via the airway, and to quantify the distribution of gene expression between transtracheal and transplantation approaches. Beta-galactosidase (beta-gal) plasmid DNA was introduced into lung tissues using the HVJ-liposome method. Two groups of Sprague-Dawley (SD) rats received intratracheal instillation of 10 microg of the beta-gal gene, once on Day 0 in 1 group (Group Tb-1, n=4) and 3 times on Days 0-2 in another (Group Tb-3, n=4). In a third group of SD rats (Group Tx, n=5), an orthotopic left lung transplantation was performed after the donor lung was flushed with an HVJ-liposome complex solution and preserved for 1h. Gene expression and distribution in lung tissue was then quantified by counting the X-gal stained cells. Both the transtracheal and transplantation approaches resulted in low levels of transfection in the vascular endothelial cells (0.2+/-0.1 and 4.0+/-1.8%), respectively, but a moderate degree of transfection to the airway (11.0+/-7.1 and 28.0+/-20.7%) and alveolar cells (3.0+/-1.8 and 6.0+/-3.6%). Three repetitive injections via the airway increased gene expression in airway epithelial cells of 41.0+/-12.0% compared with the single administration of 11.0+/-4.3%. Our results suggest that the repeated transtracheal gene transfection using HVJ-liposome may have benefits for treatment of problems after lung transplantation. In addition, gene transfer using a flushing solution during harvest may provide an opportunity for gene manipulation in the setting of lung transplantation.

  16. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  17. Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys.

    Science.gov (United States)

    Magnani, Diogo M; Ricciardi, Michael J; Bailey, Varian K; Gutman, Martin J; Pedreño-Lopez, Núria; Silveira, Cassia G T; Maxwell, Helen S; Domingues, Aline; Gonzalez-Nieto, Lucas; Su, Qin; Newman, Ruchi M; Pack, Melissa; Martins, Mauricio A; Martinez-Navio, José M; Fuchs, Sebastian P; Rakasz, Eva G; Allen, Todd M; Whitehead, Stephen S; Burton, Dennis R; Gao, Guangping; Desrosiers, Ronald C; Kallas, Esper G; Watkins, David I

    2017-10-04

    Development of vaccines against mosquito-borne Flaviviruses is complicated by the occurrence of antibody-dependent enhancement (ADE), which can increase disease severity. Long-term delivery of neutralizing antibodies (nAbs) has the potential to effectively block infection and represents an alternative to vaccination. The risk of ADE may be avoided by using prophylactic nAbs harboring amino acid mutations L234A and L235A (LALA) in the immunoglobulin G (IgG) constant region. Here, we used recombinant adeno-associated viruses (rAAVs) to deliver the anti-dengue virus 3 (DENV3) nAb P3D05. While the administration of rAAV-P3D05-rhesus immunoglobulin G1 (rhIgG1)-LALA to rhesus macaques engendered DENV3-neutralizing activity in serum, it did not prevent infection. The emergence of viremia following DENV3 challenge was delayed by 3-6 days in the rAAV-treated group, and replicating virus contained the envelope mutation K64R. This neutralization-resistant variant was also confirmed by virus outgrowth experiments in vitro. By delivering P3D05 with unmutated Fc sequences, we further demonstrated that DENV3 also evaded wild-type nAb prophylaxis, and serum viral loads appeared to be higher in the presence of low levels of unmutated P3D05-rhIgG1. Our study shows that a vectored approach for long-term delivery of nAbs with the LALA mutations is promising, but prophylaxis using a single nAb is likely insufficient at preventing DENV infection and replication. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  18. Varicella-Zoster Virus Infectious Cycle: ER Stress, Autophagic Flux, and Amphisome-Mediated Trafficking.

    Science.gov (United States)

    Grose, Charles; Buckingham, Erin M; Carpenter, John E; Kunkel, Jeremy P

    2016-12-10

    Varicella-zoster virus (VZV) induces abundant autophagy. Of the nine human herpesviruses, the VZV genome is the smallest (~124 kbp), lacking any known inhibitors of autophagy, such as the herpes simplex virus ICP34.5 neurovirulence gene. Therefore, this review assesses the evidence for VZV-induced cellular stress, endoplasmic-reticulum-associated degradation (ERAD), and autophagic flux during the VZV infectious cycle. Even though VZV is difficult to propagate in cell culture, the biosynthesis of the both N - and O -linked viral glycoproteins was found to be abundant. In turn, this biosynthesis provided evidence of endoplasmic reticulum (ER) stress, including a greatly enlarged ER and a greatly diminished production of cellular glycoproteins. Other signs of ER stress following VZV infection included detection of the alternatively spliced higher-molecular-weight form of XBP1 as well as CHOP. VZV infection in cultured cells leads to abundant autophagosome production, as was visualized by the detection of the microtubule-associated protein 1 light chain 3-II (LC3-II). The degree of autophagy induced by VZV infection is comparable to that induced in uninfected cells by serum starvation. The inhibition of autophagic flux by chemicals such as 3-methyladenine or ATG5 siRNA, followed by diminished virus spread and titers, has been observed. Since the latter observation pointed to the virus assembly/trafficking compartments, we purified VZ virions by ultracentrifugation and examined the virion fraction for components of the autophagy pathway. We detected LC3-II protein (an autophagy marker) as well as Rab11 protein, a component of the endosomal pathway. We also observed that the virion-containing vesicles were single-walled; thus, they are not autophagosomes. These results suggested that some VZ virions after secondary envelopment were transported to the outer cell membrane in a vesicle derived from both the autophagy and endosomal pathways, such as an amphisome. Thus, these

  19. Expression of the Epstein-Barr virus gp350/220 gene in rodent and primate cells.

    OpenAIRE

    Whang, Y.; Silberklang, M; Morgan, A; Munshi, S; Lenny, A B; Ellis, R.W.; Kieff, E

    1987-01-01

    The gene encoding the Epstein-Barr virus envelope glycoproteins gp350 and gp220 was inserted downstream of the cytomegalovirus immediate-early, Moloney murine leukemia virus, mouse mammary tumor virus, or varicella-zoster virus gpI promoters in vectors containing selectable markers. Host cell and recombinant vector systems were defined which enabled the isolation of rodent or primate cell clones which expressed gp350/220 in substantial quantities. Continued expression of gp350/220 required ma...

  20. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Directory of Open Access Journals (Sweden)

    Ichou Mohamed

    2010-07-01

    Full Text Available Abstract Monkeypox virus (MPV is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2 using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our

  1. Effect of SERCA2a overexpression in the pericardium mediated by the AAV1 gene transfer on rapid atrial pacing in rabbits.

    Science.gov (United States)

    Kuken, B N; Aikemu, A N W E; Xiang, S Y; Wulasihan, M H Y T

    2015-10-29

    To study the effects of overexpression of the sarcoplasmic reticulum ATPase 2a (SERCA2a) gene on the activity and protein expression of SERCA2a after rapid atrial pacing (RAP) in New Zealand white rabbits. New Zealand white rabbits were randomly divided into a sham-operated group (group A), adeno-associated virus 1 (AAV1)/EGFP + atrial fibrillation (AF) model group (group B), or AVV1/SERCA2a + AF group (group C). The sham-operated group was used as a negative control. Each group consisted of 10 animals. Groups B and C were injected with 500 μL of the AAV1-EGFP reporter gene and 500 μL of the AAV1-SERCA2a target gene, respectively. Four weeks after AAV1-mediated gene transfer, the rabbits underwent 24 h of RAP to the right atrium. The animals were sacrificed and protein activity and protein expression in the myocardium were measured using the westernblot method. Four weeks after AAV1-mediated gene transfer, SERCA2a protein activity and expression were significantly higher in Group C than in Groups A and B (P < 0.05). RAP of the right atrium induced atrial fibrillation in rabbits, resulting in decreases in the activity and protein expression of SERCA2a. Pericardial AAV-1 mediated SERCA2a gene transfer resulted in the overexpression of SERCA2a, restoring SERCA2a activity and protein expression.

  2. Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection.

    Science.gov (United States)

    Dutta, Kallol; Mishra, Manoj Kumar; Nazmi, Arshed; Kumawat, Kanhaiya Lal; Basu, Anirban

    2010-11-01

    Japanese encephalitis virus (JEV) is a neurotropic flavivirus that is the causative agent of a major mosquito-borne encephalitis in the world. Evasion of peripheral immune system facilitates the entry of the virus into the central nervous system (CNS) where it causes extensive neuronal inflammatory damage that leads to death or severe neuropschychiatric sequel in survivors. It has been proposed that after entry into the body, the virus is carried into the CNS by peripheral immune cells that act as Trojan horses. In this study we investigate whether macrophages can be considered as such a Trojan horse. We also investigate the role of minocycline, a synthetic tetracycline, in such processes. Minocycline has been found to be broadly protective in neurological disease models featuring inflammation and cell death but there has been no report of it having any modulatory role in peripheral macrophage-mediated immune response against viral infection. Persistence of internalized virus within macrophages was visualized by immunofluorescent staining. Cytotoxicity assay revealed that there was no significant cell death after 24 h and 72 h infection with JEV. Proinflammatory cytokine levels were elevated in cells that were infected with JEV but it was abrogated following minocycline treatment. Reactive oxygen species level was also increased after JEV infection. Nitric oxide level was found to increase after 72 h post infection but remained unchanged after 24h. The cellular levels of signaling molecules such as PI3 kinase, phophoAkt and phospho p38MAP kinase were found to be altered after JEV infection and minocycline treatment. JEV infection also affected the VEGF-MMP pathway. Increased activity of MMP-9 was detected from JEV-infected macrophage culture supernatants after 72 h; minocycline treatment resulted in reduced activity. Thus it seems that minocycline dampens peripheral immune reactions by decreasing proinflammatory cytokine release from infected macrophages and the

  3. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    Science.gov (United States)

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  4. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Phylodynamics and molecular evolution of influenza A virus nucleoprotein genes in Taiwan between 1979 and 2009.

    Directory of Open Access Journals (Sweden)

    Jih-Hui Lin

    Full Text Available BACKGROUND: Many studies concentrate on variation in the hemagglutinin glycoprotein (HA because of its significance in host immune response, the evolution of this virus is even more complex when other genome segments are considered. Recently, it was found that cytotoxic T lymphocytes (CTL play an important role in immunity against influenza and most CTL epitopes of human influenza viruses were remarkably conserved. The NP gene has evolved independently in human and avian hosts after 1918 flu pandemic and it has been assigned a putative role as a determinant of host range. METHODS AND FINDINGS: Phylodynamic patterns of the genes encoding nucleoprotein (NP of influenza A viruses isolated from 1979-2009 were analyzed by applying the Bayesian Markov Chain Monte Carlo framework to better understand the evolutionary mechanisms of these Taiwanese isolates. Phylogenetic analysis of the NP gene showed that all available H3 worldwide isolates collected so far were genetically similar and divided into two major clades after the year 2004. We compared the deduced amino acid sequences of the NP sequences from human, avian and swine hosts to investigate the emergence of potential adaptive mutations. Overall, selective pressure on the NP gene of human influenza A viruses appeared to be dominated by purifying selection with a mean d(N/d(S ratio of 0.105. Site-selection analysis of 488 codons, however, also revealed 3 positively selected sites in addition to 139 negatively selected ones. CONCLUSIONS: The demographic history inferred by Bayesian skyline plot showed that the effective number of infections underwent a period of smooth and steady growth from 1998 to 2001, followed by a more recent rise in the rate of spread. Further understanding the correlates of interspecies transmission of influenza A virus genes from other host reservoirs to the human population may help to elucidate the mechanisms of variability among influenza A virus.

  6. Epstein-Barr virus latent gene sequences as geographical markers of viral origin: unique EBNA3 gene signatures identify Japanese viruses as distinct members of the Asian virus family.

    Science.gov (United States)

    Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J

    2011-05-01

    Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.

  7. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  8. In vitro evaluation of herpes simplex virus type 1 thymidine kinase reporter system in dynamic studies of transcriptional gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C.-H. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Liu, R.-S. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); National Yang-Ming University Medical School and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wang, H.-E. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Deng, W.-P. [Institute of Biomedical Material, Taipei Medical University, Taipei 112, Taiwan (China); Chen, J.-C. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Chen, F.-D. [Department of Medical Radiation Technology and Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China) and Institute of Radiological Sciences, Central Taiwan University of Science and Technology Taichung 112, Taiwan (China)]. E-mail: d49220009@ym.edu.tw

    2006-07-15

    The herpes simplex virus type 1 thymidine kinase (HSV1-TK) reporter system is being used to directly and indirectly monitor therapeutic gene expression, immune cell trafficking and protein-protein interactions in various living animals. However, the issues of HSV1-TK enzyme stability in living cells and whether this reporter system is optimal for dynamic studies of gene expression events in genetic imaging have not be addressed. The purpose of the present study was to evaluate the application of this reporter system in dynamic studies of transcriptional gene regulation. To achieve this purpose, we established two tetracycline-inducible murine sarcoma cell lines, tetracycline-turn-off HSV1-tk-expressing cell line (NG4TL4/tet-off-HSV1-tk) and tetracycline-turn-off Luc-expressing cell line (NG4TL4/tet-off-Luc), to create an artificially regulated gene expression model in vitro. The dynamic transcriptional events mediating a series of doxycycline (Dox) inductions were monitored by HSV1-TK or by the firefly luciferase reporter gene using HSV1-TK enzyme activity assay and luciferase assay, respectively. The results of dynamic gene expression studies showed that the luciferase gene is an optimal reporter gene for monitoring short-timescale, dynamic transcriptional events mediating a series of Dox inductions, whereas the HSV1-tk is not optimal to achieve this purpose. Furthermore, the enzyme half-life of HSV1-TK in NG4TL4 cells is about 35 h after cycloheximide-induced protein inhibition. On the other hand, the results of an efflux assay of [{sup 131}I] FIAU and [{sup 3}H] GCV revealed that the molecular probe phosphorylated by HSV1-TK can be trapped long term within HSV1-TK stably transformed cells. Therefore, a long half-life radionuclide is not suitable for dynamic gene expression studies. Based on these results, we suggest that the HSV1-TK reporter system is not optimal for monitoring short-timescale dynamic processes such as kinetic gene expression controlled by

  9. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    Science.gov (United States)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P viruses.

  10. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway.

    Science.gov (United States)

    Lee, Sang-Myeong; Kleiboeker, Steven B

    2007-09-01

    As with a number of other viruses, Porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to induce apoptosis, although the mechanism(s) involved remain unknown. In this study we have characterized the apoptotic pathways activated by PRRSV infection. PRRSV-infected cells showed evidence of apoptosis including phosphatidylserine exposure, chromatin condensation, DNA fragmentation, caspase activation (including caspase-8, 9, 3), and PARP cleavage. DNA fragmentation was dependent on caspase activation but blocking apoptosis by a caspase inhibitor did not affect PRRSV replication. Upregulation of Bax expression by PRRSV infection was followed by disruption of the mitochondria transmembrane potential, resulting in cytochrome c redistridution to the cytoplasm and subsequent caspase-9 activation. A crosstalk between the extrinsic and intrinsic pathways was demonstrated by dependency of caspase-9 activation on active caspase-8 and by Bid cleavage. Furthermore, in this study we provide evidence of the possible involvement of reactive oxygen species (ROS)-mediated oxidative stress in apoptosis induced by PRRSV. Our data indicated that cell death caused by PRRSV infection involves necrosis as well as apoptosis. In summary, these findings demonstrate mechanisms by which PRRSV induces apoptosis and will contribute to an enhanced understanding of PRRSV pathogenesis.

  11. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    Science.gov (United States)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P < 0.0005) when DTH response was diminished than when DTH was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter result in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  12. Genetic Inactivation of COPI Coatomer Separately Inhibits Vesicular Stomatitis Virus Entry and Gene Expression

    Science.gov (United States)

    Burdeinick-Kerr, Rebeca

    2012-01-01

    Viruses coopt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatomer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early stage of vesicular stomatitis virus (VSV) replication. To dissect which replication stage(s) was affected by coatomer inactivation, we used visual and biochemical assays to independently measure the efficiency of viral entry and gene expression in hamster (ldlF) cells depleted of the temperature-sensitive ε-COP subunit. We show that ε-COP depletion for 12 h caused a primary block to virus internalization and a secondary defect in viral gene expression. Using brefeldin A (BFA), a chemical inhibitor of COPI function, we demonstrate that short-term (1-h) BFA treatments inhibit VSV gene expression, while only long-term (12-h) treatments block virus entry. We conclude that prolonged coatomer inactivation perturbs cellular endocytic transport and thereby indirectly impairs VSV entry. Our results offer an explanation of why COPI coatomer is frequently identified in screens for cellular factors that support cell invasion by microbial pathogens. PMID:22072764

  13. Chilli leaf curl virus-based vector for phloem-specific silencing of endogenous genes and overexpression of foreign genes.

    Science.gov (United States)

    Kushwaha, Nirbhay Kumar; Chakraborty, Supriya

    2017-03-01

    Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.

  14. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    Science.gov (United States)

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  15. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses.

    OpenAIRE

    Chang, E H; Gonda, M A; Ellis, R.W.; Scolnick, E M; Lowy, D R

    1982-01-01

    Harvey and Kirsten murine sarcoma viruses each encode a structurally and functionally related 21-kilodalton protein (p21), which is the transforming protein of each virus. Using probes from the 0.9-kilobase (kb) p21-coding region of each virus (called v-Ha-ras and v-Ki-ras, respectively), we have molecularly cloned from normal human genomic DNA the sequences that hybridize to these probes. Four evolutionarily divergent restriction endonuclease fragments were isolated. Two hybridized preferent...

  16. Adeno-associated virus mediated delivery of a non-membrane targeted human soluble CD59 attenuates some aspects of diabetic retinopathy in mice.

    Directory of Open Access Journals (Sweden)

    Mehreen Adhi

    Full Text Available Diabetic retinopathy is the leading cause of visual dysfunction in working adults and is attributed to retinal vascular and neural cell damage. Recent studies have described elevated levels of membrane attack complex (MAC and reduced levels of membrane associated complement regulators including CD55 and CD59 in the retina of diabetic retinopathy patients as well as in animal models of this disease. We have previously described the development of a soluble membrane-independent form of CD59 (sCD59 that when delivered via a gene therapy approach using an adeno-associated virus vector (AAV2/8-sCD59 to the eyes of mice, can block MAC deposition and choroidal neovascularization. Here, we examine AAV2/8-sCD59 mediated attenuation of MAC deposition and ensuing complement mediated damage to the retina of mice following streptozotocin (STZ induced diabetes. We observed a 60% reduction in leakage of retinal blood vessels in diabetic eyes pre-injected with AAV2/8-sCD59 relative to negative control virus injected diabetic eyes. AAV2/8-sCD59 injected eyes also exhibited protection from non-perfusion of retinal blood vessels. In addition, a 200% reduction in retinal ganglion cell apoptosis and a 40% reduction in MAC deposition were documented in diabetic eyes pre-injected with AAV2/8-sCD59 relative to diabetic eyes pre-injected with the control virus. This is the first study characterizing a viral gene therapy intervention that targets MAC in a model of diabetic retinopathy. Use of AAV2/8-sCD59 warrants further exploration as a potential therapy for advanced stages of diabetic retinopathy.

  17. Disruption of PML Nuclear Bodies Is Mediated by ORF61 SUMO-Interacting Motifs and Required for Varicella-Zoster Virus Pathogenesis in Skin

    Science.gov (United States)

    Wang, Li; Oliver, Stefan L.; Sommer, Marvin; Rajamani, Jaya; Reichelt, Mike; Arvin, Ann M.

    2011-01-01

    Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier. PMID:21901090

  18. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  19. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Science.gov (United States)

    Panfil, Amanda R.; Al-Saleem, Jacob; Howard, Cory M.; Mates, Jessica M.; Kwiek, Jesse J.; Baiocchi, Robert A.; Green, Patrick L.

    2015-01-01

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment. PMID:26729154

  20. Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN-Mediated Innate Immune Responses to Influenza A Virus Infection.

    Science.gov (United States)

    Vijayan, Madhuvanthi; Xia, Chuan; Song, Yul Eum; Ngo, Hanh; Studstill, Caleb J; Drews, Kelly; Fox, Todd E; Johnson, Marc C; Hiscott, John; Kester, Mark; Alexander, Stephen; Hahm, Bumsuk

    2017-07-15

    Sphingosine 1-phosphate (S1P) lyase (SPL) is an intracellular enzyme that mediates the irreversible degradation of the bioactive lipid S1P. We have previously reported that overexpressed SPL displays anti-influenza viral activity; however, the underlying mechanism is incompletely understood. In this study, we demonstrate that SPL functions as a positive regulator of IKKε to propel type I IFN-mediated innate immune responses against viral infection. Exogenous SPL expression inhibited influenza A virus replication, which correlated with an increase in type I IFN production and IFN-stimulated gene accumulation upon infection. In contrast, the lack of SPL expression led to an elevated cellular susceptibility to influenza A virus infection. In support of this, SPL-deficient cells were defective in mounting an effective IFN response when stimulated by influenza viral RNAs. SPL augmented the activation status of IKKε and enhanced the kinase-induced phosphorylation of IRF3 and the synthesis of type I IFNs. However, the S1P degradation-incompetent form of SPL also enhanced IFN responses, suggesting that SPL's pro-IFN function is independent of S1P. Biochemical analyses revealed that SPL, as well as the mutant form of SPL, interacts with IKKε. Importantly, when endogenous IKKε was downregulated using a small interfering RNA approach, SPL's anti-influenza viral activity was markedly suppressed. This indicates that IKKε is crucial for SPL-mediated inhibition of influenza virus replication. Thus, the results illustrate the functional significance of the SPL-IKKε-IFN axis during host innate immunity against viral infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Class A scavenger receptor 1 (MSR1 restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells.

    Directory of Open Access Journals (Sweden)

    Hiromichi Dansako

    Full Text Available Persistent infections with hepatitis C virus (HCV may result in life-threatening liver disease, including cirrhosis and cancer, and impose an important burden on human health. Understanding how the virus is capable of achieving persistence in the majority of those infected is thus an important goal. Although HCV has evolved multiple mechanisms to disrupt and block cellular signaling pathways involved in the induction of interferon (IFN responses, IFN-stimulated gene (ISG expression is typically prominent in the HCV-infected liver. Here, we show that Toll-like receptor 3 (TLR3 expressed within uninfected hepatocytes is capable of sensing infection in adjacent cells, initiating a local antiviral response that partially restricts HCV replication. We demonstrate that this is dependent upon the expression of class A scavenger receptor type 1 (MSR1. MSR1 binds extracellular dsRNA, mediating its endocytosis and transport toward the endosome where it is engaged by TLR3, thereby triggering IFN responses in both infected and uninfected cells. RNAi-mediated knockdown of MSR1 expression blocks TLR3 sensing of HCV in infected hepatocyte cultures, leading to increased cellular permissiveness to virus infection. Exogenous expression of Myc-MSR1 restores TLR3 signaling in MSR1-depleted cells with subsequent induction of an antiviral state. A series of conserved basic residues within the carboxy-terminus of the collagen superfamily domain of MSR1 are required for binding and transport of dsRNA, and likely facilitate acidification-dependent release of dsRNA at the site of TLR3 expression in the endosome. Our findings reveal MSR1 to be a critical component of a TLR3-mediated pattern recognition receptor response that exerts an antiviral state in both infected and uninfected hepatocytes, thereby limiting the impact of HCV proteins that disrupt IFN signaling in infected cells and restricting the spread of HCV within the liver.

  2. Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato.

    Science.gov (United States)

    Bhaskar, Pudota B; Venkateshwaran, Muthusubramanian; Wu, Lei; Ané, Jean-Michel; Jiang, Jiming

    2009-06-05

    Potato is the third most important food crop worldwide. However, genetic and genomic research of potato has lagged behind other major crops due to the autopolyploidy and highly heterozygous nature associated with the potato genome. Reliable and technically undemanding techniques are not available for functional gene assays in potato. Here we report the development of a transient gene expression and silencing system in potato. Gene expression or RNAi-based gene silencing constructs were delivered into potato leaf cells using Agrobacterium-mediated infiltration. Agroinfiltration of various gene constructs consistently resulted in potato cell transformation and spread of the transgenic cells around infiltration zones. The efficiency of agroinfiltration was affected by potato genotypes, concentration of Agrobacterium, and plant growth conditions. We demonstrated that the agroinfiltration-based transient gene expression can be used to detect potato proteins in sub-cellular compartments in living cells. We established a double agroinfiltration procedure that allows to test whether a specific gene is associated with potato late blight resistance pathway mediated by the resistance gene RB. This procedure provides a powerful approach for high throughput functional assay for a large number of candidate genes in potato late blight resistance.

  3. In vivo electroporation mediated gene delivery to the beating heart.

    Directory of Open Access Journals (Sweden)

    Erick L Ayuni

    Full Text Available Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase and TNT (Troponin T were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.

  4. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped. 180 F2 individuals ...

  5. Relationship between gene responses and symptoms induced by Rice grassy stunt virus

    Directory of Open Access Journals (Sweden)

    Kouji eSatoh

    2013-10-01

    Full Text Available Rice grassy stunt virus (RGSV is a serious threat to rice production in Southeast Asia. RGSV is a member of the genus Tenuivirus, and it induces leaf yellowing, stunting, and excess tillering on rice plants. Here we examined gene responses of rice to RGSV infection to gain insight into the gene responses which might be associated with the disease symptoms. The results indicated that 1 many genes related to cell wall synthesis and chlorophyll synthesis were predominantly suppressed by RGSV infection; 2 RGSV infection induced genes associated with tillering process; 3 RGSV activated genes involved in inactivation of gibberellic acid and indole-3-acetic acid ; and 4 the genes for strigolactone signaling were suppressed by RGSV. These results suggest that these gene responses to RGSV infection account for the excess tillering specific to RGSV infection as well as other symptoms by RGSV, such as stunting and leaf chlorosis.

  6. Effective inhibition of specific gene by adenoassociated virus (AAV ...

    African Journals Online (AJOL)

    RNA-interference is the mechanism of sequence-specific, post-transcriptional gene silencing, initiated by small interfering RNA (siRNA), homologous to the gene being suppressed. Several techniques are utilized to transfer siRNA into cultured cells or animal models, while every method has advantages and disadvantages.

  7. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  8. Efficient Oligo nucleotide mediated CRISPR-Cas9 Gene Editing in Aspergilli

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur; Hoof, Jakob Blæsbjerg; Kogle, Martin Engelhard

    2018-01-01

    CRISPR-Cas9 technologies are revolutionizing fungal gene editing. Here we show that survival of specific Cas9/sgRNA mediated DNA double strand breaks (DSBs) depends on the non-homologous end-joining, NHEJ, DNA repair pathway and we use this observation to develop a tool to assess protospacer....... niger, and in A. oryzae indicating that this type of repair may be wide spread in filamentous fungi. Importantly, we demonstrate that by using single-stranded oligo nucleotides for CRISPR-Cas9 mediated gene editing it is possible to introduce specific point mutations as well gene deletions...

  9. Norepinephrine transport-mediated gene expression in noradrenergic neurogenesis

    Directory of Open Access Journals (Sweden)

    Sieber-Blum Maya

    2009-04-01

    Full Text Available Abstract Background We have identified a differential gene expression profile in neural crest stem cells that is due to deletion of the norepinephrine transporter (NET gene. NET is the target of psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit hyperactivity disorder (ADHD. NET function in adult noradrenergic neurons of the peripheral and central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during embryogenesis norepinephrine (NE transport promotes differentiation of neural crest stem cells and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block noradrenergic differentiation. While the structure of NET und the regulation of NET function are well described, little is known about downstream target genes of norepinephrine (NE transport. Results We have prepared gene expression profiles of in vitro differentiating wild type and norepinephrine transporter-deficient (NETKO mouse neural crest cells using long serial analysis of gene expression (LongSAGE. Comparison analyses have identified a number of important differentially expressed genes, including genes relevant to neural crest formation, noradrenergic neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic protein (BMP signaling pathway, the Phox2b binding partner Tlx2, the ubiquitin ligase Praja2, and the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute to the NETKO phenotype include dopamine-β-hydroxylase (Dbh, tyrosine hydroxylase (Th, the peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart, and the serotonin receptor subunit Htr3a. Real-time PCR confirmed differential expression

  10. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques.

    Science.gov (United States)

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert-; Landucci, Gary; Forthal, Donald N; Franchini, Genoveffa

    2011-12-09

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. Published by Elsevier Ltd.

  11. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Directory of Open Access Journals (Sweden)

    Kara McCormick

    Full Text Available Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling technology to create a panel of chimeric HA genes.Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129 was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129 and a A/swine/Texas/4199-2/98 backbone (TX98-129. When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  12. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  13. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system.

    Science.gov (United States)

    Kaneda, Yasufumi; Nakajima, Toshihiro; Nishikawa, Tomoyuki; Yamamoto, Seiji; Ikegami, Hiroyuki; Suzuki, Naho; Nakamura, Hitomi; Morishita, Ryuichi; Kotani, Hitoshi

    2002-08-01

    We have developed a simple method for converting the lipid envelope of an inactivated virus to a gene transfer vector. Hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector was constructed by incorporating plasmid DNA into inactivated HVJ particles. This HVJ envelope vector introduced plasmid DNA efficiently and rapidly into various cell lines, including cancer cells and several types of primary cell culture. Efficiency of gene transfer was greatly enhanced by protamine sulfate and centrifugation. Fluorescein isothiocyanate-labeled oligodeoxynucleotides (FITC-ODN) were also delivered to cells at > 95% efficiency. When HVJ envelope vector was injected into organs directly, reporter gene expression was observed in organs including liver, brain, skin, uterus, tumor masses, lung, and eye. When HVJ envelope vector containing luciferase gene was injected into mouse tail vein, luciferase gene expression was detected primarily in spleen. FITC-ODN were also delivered to spleen cells by intravenous injection of HVJ envelope. These results suggest that HVJ envelope vector will be useful for both ex vivo and in vivo gene therapy experiments.

  14. Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.

    Science.gov (United States)

    Vozárová, Z; Žilová, M; Šubr, Z

    2015-12-01

    Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.

  15. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system

    Directory of Open Access Journals (Sweden)

    Tuttle John

    2012-08-01

    Full Text Available Abstract Background We previously developed a virus-induced gene silencing (VIGS vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV. The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens. We also describe the construction of two low-cost particle inflow guns. Results The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV VIGS vector respectively. Conclusions These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns.

  16. Semliki Forest virus is an efficient and selective vector for gene delivery in infarcted rat heart

    NARCIS (Netherlands)

    Loot, AE; Henning, RH; Deelman, LE; Tio, RA; Schoen, P; Wilschut, JC; van Gijst, WH; Roks, AJM

    Gene therapy is emerging as a realistic addition to the therapeutic arsenal in heart failure, but the search for suitable vectors for cardiac transfection is still ongoing. In this study, we explore the applicability of recombinant Semliki Forest virus (SFV) in heart failure. SFV was intracoronarily

  17. Detection Of Caprine Arthritis Encephalitis Virus Gag-Gene By Rt ...

    African Journals Online (AJOL)

    Predominantly, cells of the monocyte-macrophage lineage were specifically infected by the virus as proviral DNA was detected in infected cultures by amplification of a 414 base-pair (bp) fragment of the viral gag-gene by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) technique. The present study revealed ...

  18. Molecular evolution of respiratory syncytial virus fusion gene, Canada, 2006-2010.

    Science.gov (United States)

    Papenburg, Jesse; Carbonneau, Julie; Hamelin, Marie-Ève; Isabel, Sandra; Bouhy, Xavier; Ohoumanne, Najwa; Déry, Pierre; Paes, Bosco A; Corbeil, Jacques; Bergeron, Michel G; De Serres, Gaston; Boivin, Guy

    2012-01-01

    To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006-2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.

  19. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene

    NARCIS (Netherlands)

    Chalmers, D; Ferrand, C; Apperley, JF; Melo, JV; Ebeling, S; Newton, [No Value; Duperrier, A; Hagenbeek, A; Garrett, E; Tiberghien, P; Garin, M

    Introduction of the Herpes simplex virus thymidine kinase (HSV-tk) gene into target cells renders them susceptible to killing by ganciclovir (GCV). We are studying the use of HSV-tk-transduced T lymphocytes in the context of hematopoietic stem cell transplantation. We have previously shown, in vitro

  20. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints

    NARCIS (Netherlands)

    Apparailly, F.; Khoury, M.; Vervoordeldonk, M. J. B.; Adriaansen, J.; Gicquel, E.; Perez, N.; Riviere, C.; Louis-Plence, P.; Noel, D.; Danos, O.; Douar, A.-M.; Tak, P. P.; Jorgensen, C.

    2005-01-01

    The potential for gene delivery to joints, using recombinant adeno-associated virus (rAAV) vectors for the treatment of rheumatoid arthritis ( RA), has received much attention. Different serotypes have different virion shell proteins and, as a consequence, vary in their tropism for diverse tissues.

  1. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Pompe-Novak, M.; Gruden, K.; Baebler, P.; Krecic-Stress, H.; Kovac, M.; Jongsma, M.A.; Ravnikar, M.

    2005-01-01

    The tuber necrotic strain of Potato virus Y (PVYNTN) causes potato tuber necrotic ringspot disease in sensitive potato cultivars. Gene expression in the disease response of the susceptible potato (Solanum tuberosum L.) cultivar Igor was investigated at different times after infection, using

  2. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene.

    NARCIS (Netherlands)

    X.W. Wang (Xin Wei); M.K. Gibson (Michael); W. Vermeulen (Wim); H. Yeh; K. Forrester; H.-W. Stürzbecher; J.H.J. Hoeijmakers (Jan); C.C. Harris

    1996-01-01

    textabstractThe p53 tumor suppressor gene product is a transcriptional transactivator and a potent apoptotic inducer. The fact that many of the DNA tumor virus oncoproteins bind to p53 and affect these p53 functions indicates that this interaction is an important step in oncogenic transformation. We

  3. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  4. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  5. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Montanez, Cecilia [Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies (CINVESTAV), IPN, Mexico City 07360 (Mexico); Wong, Carlos [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Baeza, Isabel, E-mail: ibaeza@encb.ipn.mx [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico)

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  6. Reactivation of hepatitis B virus during targeted therapies for cancer and immune-mediated disorders.

    Science.gov (United States)

    Viganò, Mauro; Serra, Giuseppe; Casella, Giovanni; Grossi, Glenda; Lampertico, Pietro

    2016-07-01

    Targeted therapies have gained popularity in the treatment of several oncologic and immune-mediated diseases. Immunosuppression caused by these drugs has been associated to reactivation of hepatitis B virus (HBV) in both hepatitis B surface antigen (HBsAg) positive patients (overt infection) and HBsAg negative/anti-hepatitis B core antigen (anti-HBc) positive carriers (resolved infection), leading to premature discontinuation of therapy and potentially fatal hepatitis. This review summarizes the evidence of HBV reactivation in patients with overt or resolved HBV infection undergoing targeted therapies for cancer or immune-mediated disorders, providing recommendations for the management of these patients. The risk of HBV reactivation relies on the immunosuppressive potency and duration of these therapies, the underlying disease and the virological patient's profile. However, HBV reactivation is preventable by screening for HBV markers in all patients scheduled to receive targeted therapies, assessing the virological profile and patient's clinical state, followed by appropriate antiviral treatment or prophylaxis in those patients at high risk of HBV reactivation. Close monitoring of HBV carriers at low risk of reactivation is warranted with the aim to start antiviral therapy as soon as HBV reactivates.

  7. PCR-mediated epitope tagging of genes in yeast.

    Science.gov (United States)

    Mathur, Radhika; Kaiser, Peter

    2014-01-01

    Epitope tagging of genes is a powerful technique facilitating assays for gene function, determination of subcellular distribution of proteins, affinity purification, study of protein interaction with other proteins, DNA or RNA, and any other antibody-based approach in the absence of protein-specific antibodies. Here, we describe a one-step PCR-based strategy for insertion of epitope tags at the chromosomal locus. This method takes advantage of efficient homologous recombination in yeast. PCR amplified tags are directed to desired chromosomal loci with the help of primer-encoded flanking homologous sequences enabling selective epitope tagging of genes of interest.

  8. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  9. mediated isothermal amplification of the pat selectable marker gene

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... *Corresponding author. E-mail: wuzhongyi@yahoo.com. Tel: 86-10-51503668; Fax: 86-10-51503980. Abbreviations: LAMP, Loop-mediated isothermal amplification;. PCR, polymerase chain reaction; FIP, forward inner primer;. BIP, backward inner primer; GMOs, genetically modified organisms; CTAB, cetyl ...

  10. Gene S characterization of Hantavirus species Seoul virus isolated from Rattus norvegicuson an Indonesian island

    Directory of Open Access Journals (Sweden)

    Dian Perwitasari

    2014-08-01

    Full Text Available AbstrakLatar belakang: Hantavirus hidup dan berkembang biak di tubuh hewan pengerat, salah satunya Rattus norvegicus yang banyak ditemukan di daerah kepulauan di Indonesia. Hantavirus spesies Seoul virus (SEOV adalah virus RNA negatif rantai tunggal yang termasuk dalam keluarga Bunyaviridae, mempunyai beberapa gen spesifik terutama gen S yang dapat dikembangkan untuk uji diagnostik. Tujuan penelitian ini ialah untuk mengetahui karakter dari gen S dari Hantavirus spesies Seoulvirus.Metode:Pada penelitian ini dilakukan sekuensing gen S yang berasal dari jaringan paru-paru rodensia.  Fragmen DNA yang disekuensing menggunakan primer DNA SEOS-28F danSEOS -360R,VNS-1501F dan VNS-CSR. Hasil sekuensing dianalisis menggunakan program seqscapedan dianalisis menggunakan program Bioedit dan Mega5. Analisis filogenetik untuk homologi nukleotida dan asam amino dari ketiga strain Kepulauan Seribu tersebut dibandingkan dengan spesies hantavirus lainnya yang diambil dari genebank. Hasil:Analisis Homologi nukleotida dan asam amino antara strain Kepulauan Seribu dengan SEOV menunjukkan homologi nukleotida tertinggi pada strain KS74 (88,4% dan terendah pada KS90 (87,2%, sedangkan homologi asam amino tertinggi adalah strain KS74 (91.3% dan terendah pada strain KS90 (89,5%. Kesimpulan:Karakter gen S virus yang ditemukan di Kepulauan Seribu sebanding dengan virus SEOV yang ditemukan di Singapura dan Korea.  (Health Science Indones 2014;1:1-6Kata kunci:Seoul virus, gen S, Kepulauan Seribu, IndonesiaAbstractBackground: Hantavirus lives and reproduces in the body of rodents. Rattus norvegicuswas one found in th