WorldWideScience

Sample records for virus hemagglutinin suggest

  1. Radioimmunoassay of measles virus hemagglutinin protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G.A.; Salmi, A.A. (Turku Univ. (Finland))

    1982-08-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 ..mu..g of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells.

  2. Unique Structural Features of Influenza Virus H15 Hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Tzarum, Netanel; McBride, Ryan; Nycholat, Corwin M.; Peng, Wenjie; Paulson, James C.; Wilson, Ian A. (Scripps)

    2017-04-12

    Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.

    IMPORTANCEIn the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can

  3. Isolation of influenza virus A hemagglutinin C-terminal domain by hemagglutinin proteolysis in octylglucoside micelles.

    Science.gov (United States)

    Radyukhin, Victor A; Serebryakova, Marina V; Ksenofontov, Alexander L; Lukashina, Elena V; Baratova, Lyudmila A

    2006-01-01

    A method of isolation of hydrophobic membrane-bound C-terminal domain of influenza virus A hemagglutinin (HA) is suggested. The method is based on the insertion of HA into octylglucoside micelles followed by pepsin or thermolysin hydrolysis. Subsequent treatment of proteolytic digests with chloroform-hexafluoroisopropanol mixture resulted in the extraction of a few hydrophobic peptides into organic phase. Mass-spectrometry (MALDI-TOF) analysis revealed that the peptides with ion masses corresponding to the anchoring C-terminal domain with or without modifications predominated in the organic solution. The data obtained confirmed our speculation on the possibility of the suggested isolation scheme following from the strong interactions of anchoring domains in compact trimeric structure of HA spikes combined with micelle protection effect. Several appropriate peptides presence in the organic phase apparently arises from the presence of a few accessible proteolytic sites in HA transmembrane region.

  4. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection.IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  5. Gnarled-trunk evolutionary model of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Kimihito Ito

    Full Text Available Human influenza A viruses undergo antigenic changes with gradual accumulation of amino acid substitutions on the hemagglutinin (HA molecule. A strong antigenic mismatch between vaccine and epidemic strains often requires the replacement of influenza vaccines worldwide. To establish a practical model enabling us to predict the future direction of the influenza virus evolution, relative distances of amino acid sequences among past epidemic strains were analyzed by multidimensional scaling (MDS. We found that human influenza viruses have evolved along a gnarled evolutionary pathway with an approximately constant curvature in the MDS-constructed 3D space. The gnarled pathway indicated that evolution on the trunk favored multiple substitutions at the same amino acid positions on HA. The constant curvature was reasonably explained by assuming that the rate of amino acid substitutions varied from one position to another according to a gamma distribution. Furthermore, we utilized the estimated parameters of the gamma distribution to predict the amino acid substitutions on HA in subsequent years. Retrospective prediction tests for 12 years from 1997 to 2009 showed that 70% of actual amino acid substitutions were correctly predicted, and that 45% of predicted amino acid substitutions have been actually observed. Although it remains unsolved how to predict the exact timing of antigenic changes, the present results suggest that our model may have the potential to recognize emerging epidemic strains.

  6. Hemagglutinin-esterase-fusion (HEF protein of influenza C virus

    Directory of Open Access Journals (Sweden)

    Mingyang Wang

    2015-07-01

    Full Text Available ABSTRACT Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA and Neuraminidase (NA of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and post-translational modification, such as N-glycosylation, disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.

  7. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.

    Science.gov (United States)

    Wang, Wei; DeFeo, Christopher J; Alvarado-Facundo, Esmeralda; Vassell, Russell; Weiss, Carol D

    2015-10-01

    Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation

  8. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies.

    Science.gov (United States)

    Krammer, Florian; Pica, Natalie; Hai, Rong; Margine, Irina; Palese, Peter

    2013-06-01

    Current influenza virus vaccine strategies stimulate immune responses toward the globular head domain of the hemagglutinin protein in order to inhibit key steps of the virus life cycle. Because this domain is highly variable across strains, new vaccine formulations are required in most years. Here we demonstrate a novel vaccine strategy that generates immunity to the highly conserved stalk domain by using chimeric hemagglutinin constructs that express unique head and stalk combinations. By repeatedly immunizing mice with constructs that expressed the same stalk but an irrelevant head, we specifically stimulated a stalk-directed response that provided broad-based heterologous and heterosubtypic immunity in mice. Notably, our vaccination scheme provides a universal vaccine approach that protects against challenge with an H5 subtype virus. Furthermore, through in vivo studies using passively transferred antibodies or depletion of CD8(+) T cells, we demonstrated the critical role that humoral mechanisms of immunity play in the protection observed. The present data suggest that a vaccine strategy based on the stalk domain of the hemagglutinin protein could be used in humans to broadly protect against a variety of influenza virus subtypes.

  9. Relative contributions of measles virus hemagglutinin- and fusion protein- specific serum antibodies to virus neutralization.

    NARCIS (Netherlands)

    R.L. de Swart (Rik); S. Yüksel (Selma); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractThe relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by

  10. Defining Influenza A Virus Hemagglutinin Antigenic Drift by Sequential Monoclonal Antibody Selection

    OpenAIRE

    Das, Suman R.; Hensley, Scott E.; Ince, William L.; Brooke, Christopher B.; Subba, Anju; Delboy, Mark G.; Russ, Gustav; Gibbs, James S.; Bennink, Jack R.; Yewdell, Jonathan W.

    2013-01-01

    Human influenza A virus (IAV) vaccination is limited by “antigenic drift,” rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined ...

  11. 78 FR 9355 - Influenza Viruses Containing the Hemagglutinin From the Goose/Guangdong/1/96 Lineage

    Science.gov (United States)

    2013-02-08

    ... HUMAN SERVICES 42 CFR Part 73 Influenza Viruses Containing the Hemagglutinin From the Goose/ Guangdong/1... from the public regarding whether highly pathogenic avian influenza (HPAI) H5N1 viruses that contain a... concerning highly pathogenic avian influenza (HPAI) H5N1 viruses that contain a hemagglutinin (HA) from the...

  12. Influenza A virus transfectants with chimeric hemagglutinins containing epitopes from different subtypes.

    OpenAIRE

    Li, S Q; Schulman, J L; Moran, T; Bona, C; Palese, P

    1992-01-01

    Influenza virus transfectants with chimeric hemagglutinins were constructed by using a ribonucleoprotein transfection method. Transfectants W(H1)-H2 and W(H1)-H3 contained A/WSN/33(H1N1) (WSN) hemagglutinins in which the six-amino-acid loop (contained in antigenic site B) was replaced by the corresponding structures of influenza viruses A/Japan/57(H2N2) and A/Hong Kong/8/68(H3N2) (HK), respectively. Serological analysis indicated that the W(H1)-H3 transfectant virus reacted with antibodies ag...

  13. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene.

    Science.gov (United States)

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K; Goldberg, Tony L; Osorio, Jorge E

    2014-11-01

    A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein.

    Science.gov (United States)

    Tahara, Maino; Ito, Yuri; Brindley, Melinda A; Ma, Xuemin; He, Jilan; Xu, Songtao; Fukuhara, Hideo; Sakai, Kouji; Komase, Katsuhiro; Rota, Paul A; Plemper, Richard K; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.

  15. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates

    NARCIS (Netherlands)

    Ivanovic, Tijana; Choi, Jason L.; Whelan, Sean P.; Oijen, Antoine M. van; Harrison, Stephen C.

    2013-01-01

    Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing

  16. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, Xin; van Oers, Monique M; Vlak, Just M; Braakman, Ineke

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined in mammalian cells. In different mammalian cell lines the protein follows the same folding pathway with identical folding intermediates, but folds with very different kinetics. To examine the effect of

  17. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, X.; Oers, van M.M.; Vlak, J.M.; Braakman, I.

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined inmammalian cells. In different mammalian cell lines the protein follows the same folding pathway withidentical folding intermediates, but folds with very different kinetics. To examine the effect of

  18. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection.

    Science.gov (United States)

    Das, Suman R; Hensley, Scott E; Ince, William L; Brooke, Christopher B; Subba, Anju; Delboy, Mark G; Russ, Gustav; Gibbs, James S; Bennink, Jack R; Yewdell, Jonathan W

    2013-03-13

    Human influenza A virus (IAV) vaccination is limited by "antigenic drift," rapid antibody-driven escape reflecting amino acid substitutions in the globular domain of hemagglutinin (HA), the viral attachment protein. To better understand drift, we used anti-hemagglutinin monoclonal Abs (mAbs) to sequentially select IAV escape mutants. Twelve selection steps, each resulting in a single amino acid substitution in the hemagglutinin globular domain, were required to eliminate antigenicity defined by monoclonal or polyclonal Abs. Sequential mutants grow robustly, showing the structural plasticity of HA, although several hemagglutinin substitutions required an epistatic substitution in the neuraminidase glycoprotein to maximize growth. Selecting escape mutants from parental versus sequential variants with the same mAb revealed distinct escape repertoires, attributed to contextual changes in antigenicity and the mutation landscape. Since each hemagglutinin mutation potentially sculpts future mutation space, drift can follow many stochastic paths, undermining its unpredictability and underscoring the need for drift-insensitive vaccines. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding.

    Science.gov (United States)

    Crusat, Martin; Liu, Junfeng; Palma, Angelina S; Childs, Robert A; Liu, Yan; Wharton, Stephen A; Lin, Yi Pu; Coombs, Peter J; Martin, Stephen R; Matrosovich, Mikhail; Chen, Zi; Stevens, David J; Hien, Vo Minh; Thanh, Tran Tan; Nhu, Le Nguyen Truc; Nguyet, Lam Anh; Ha, Do Quang; van Doorn, H Rogier; Hien, Tran Tinh; Conradt, Harald S; Kiso, Makoto; Gamblin, Steve J; Chai, Wengang; Skehel, John J; Hay, Alan J; Farrar, Jeremy; de Jong, Menno D; Feizi, Ten

    2013-12-01

    As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process. Copyright © 2013 The Authros. Published by Elsevier Inc. All rights reserved.

  20. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Naganori Nao

    2017-02-01

    Full Text Available Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4. Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes.

  1. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin.

    Science.gov (United States)

    Chen, Xueqing; Si, Longlong; Liu, Dong; Proksch, Peter; Zhang, Lihe; Zhou, Demin; Lin, Wenhan

    2015-03-26

    A class of prenylated indole diketopiperazine alkaloids including 15 new compounds namely rubrumlines A-O obtained from marine-derived fungus Eurotium rubrum, were tested against influenza A/WSN/33 virus. Neoechinulin B (18) exerted potent inhibition against H1N1 virus infected in MDCK cells, and is able to inhibit a panel of influenza virus strains including amantadine- and oseltamivir-resistant clinical isolates. Mechanism of action studies indicated that neoechinulin B binds to influenza envelope hemagglutinin, disrupting its interaction with the sialic acid receptor and the attachment of viruses to host cells. In addition, neoechinulin B was still efficient in inhibiting influenza A/WSN/33 virus propagation even after a fifth passage. The high potency and broad-spectrum activities against influenza viruses with less drug resistance make neoechinulin B as a new lead for the development of potential inhibitor of influenza viruses. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Inhibition of influenza A virus (H1N1 fusion by benzenesulfonamide derivatives targeting viral hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available Hemagglutinin (HA of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.

  3. Antigenic determinants of influenza virus hemagglutinin. XI. Conformational changes detected by monoclonal antibodies.

    Science.gov (United States)

    Jackson, D C; Nestorowicz, A

    1985-08-01

    At pH 5 influenza virus hemagglutinin undergoes an irreversible conformational change (J.J. Skehel, P. M. Bayley, E. B. Brown, S. R. Martin, M. D. Waterfield, J. M. White, I. A. Wilson, and D. C. Wiley (1982). Proc. Natl. Acad. Sci. USA 79, 968-972) which parallels the appearance of fusion activity of this molecule. This paper describes experiments which explore the conformational change using a panel of monoclonal antibodies which define four of the major antigenic sites of this protein. The results indicate that three of the major antigenic sites of hemagglutinin undergo changes when exposed to acid pH. These changes have little effect on the binding avidity of influenza virus to glycophorin, the major receptor present on the red blood cell surface. These findings have been used to postulate a mechanism where the molecule flexes around a central region resulting in rearrangement in space of its component domains on exposure to low pH.

  4. Second Sialic Acid Binding Site in Newcastle Disease Virus Hemagglutinin-Neuraminidase: Implications for Fusion

    OpenAIRE

    Zaitsev, Viatcheslav; von Itzstein, Mark; Groves, Darrin; Kiefel, Milton; Takimoto, Toru; Portner, Allen; Taylor, Garry

    2004-01-01

    Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we ...

  5. An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Viruses.

    Science.gov (United States)

    Holthausen, David J; Lee, Song Hee; Kumar, Vineeth Tv; Bouvier, Nicole M; Krammer, Florian; Ellebedy, Ali H; Wrammert, Jens; Lowen, Anice C; George, Sanil; Pillai, Madhavan Radhakrishna; Jacob, Joshy

    2017-04-18

    Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Domestic dog origin of canine distemper virus in free-ranging wolves in Portugal as revealed by hemagglutinin gene characterization.

    Science.gov (United States)

    Müller, Alexandra; Silva, Eliane; Santos, Nuno; Thompson, Gertrude

    2011-07-01

    Serologic evidence for canine distemper virus (CDV) has been described in grey wolves but, to our knowledge, virus strains circulating in wolves have not been characterized genetically. The emergence of CDV in several non-dog hosts has been associated with amino acid substitutions at sites 530 and 549 of the hemagglutinin (H) protein. We sequenced the H gene of wild-type canine distemper virus obtained from two free-ranging Iberian wolves (Canis lupus signatus) and from one domestic dog (Canis familiaris). More differences were found between the two wolf sequences than between one of the wolves (wolf 75) and the dog. The latter two had a very high nucleotide similarity resulting in identical H gene amino acid sequences. Possible explanations include geographic and especially temporal proximity of the CDV obtained from wolf 75 and the domestic dog, taken in 2007-2008, as opposed to that from wolf 3 taken more distantly in 1998. Analysis of the deduced amino acids of the viral hemagglutinin revealed a glycine (G) and a tyrosine (Y) at amino acid positions 530 and 549, respectively, of the partial signaling lymphocytic activation molecule (SLAM)-receptor binding region which is typically found in viral strains obtained from domestic dogs. This suggests that the CDV found in these wolves resulted from transmission events from local domestic dogs rather than from wildlife species.

  7. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  8. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Donald D.; Bajic, Goran; Ferdman, Jack; Suphaphiphat, Pirada; Settembre, Ethan C.; Moody, M. Anthony; Schmidt, Aaron G.; Harrison, Stephen C. (Duke-MED); (CH-Boston); (Seqirus)

    2017-12-18

    Antigenic variation requires frequent revision of annual influenza vaccines. Next-generation vaccine design strategies aim to elicit a broader immunity by directing the human immune response toward conserved sites on the principal viral surface protein, the hemagglutinin (HA). We describe a group of antibodies that recognize a hitherto unappreciated, conserved site on the HA of H1 subtype influenza viruses. Mutations in that site, which required a change in the H1 component of the 2017 vaccine, had not previously “taken over” among circulating H1 viruses. Our results encourage vaccine design strategies that resurface a protein to focus the immune response on a specific region.

  9. Structure-function analysis of two variants of mumps virus hemagglutinin-neuraminidase protein

    Directory of Open Access Journals (Sweden)

    Gerardo Santos-López

    Full Text Available A point mutation from guanine (G to adenine (A at nucleotide position 1081 in the hemagglutinin-neuraminidase (HN gene has been associated with neurovirulence of Urabe AM9 mumps virus vaccine. This mutation corresponds to a glutamic acid (E to lysine (K change at position 335 in the HN glycoprotein. We have experimentally demonstrated that two variants of Urabe AM9 strain (HN-A1081 and HN-G1081 differ in neurotropism, sialic acidbinding affinity and neuraminidase activity. In the present study, we performed a structure-function analysis of that amino acid substitution; the structures of HN protein of both Urabe AM9 strain variants were predicted. Based on our analysis, the E/K mutation changes the protein surface properties and to a lesser extent their conformations, which in turn reflects in activity changes. Our modeling results suggest that this E/K interchange does not affect the structure of the sialic acid binding motif; however, the electrostatic surface differs drastically due to an exposed short alpha helix. Consequently, this mutation may affect the accessibility of HN to substrates and membrane receptors of the host cells. Our findings appear to explain the observed differences in neurotropism of these vaccine strains.

  10. Molecular Evolution and Characterization of Hemagglutinin (H in Peste des Petits Ruminants Virus.

    Directory of Open Access Journals (Sweden)

    Zhongxiang Liang

    Full Text Available Peste des Petits Ruminants (PPR is an acute, highly contagious, and febrile viral disease that affects both domestic and wild small ruminants. The disease has become a major obstacle to the development of sustainable Agriculture. Hemagglutinin (H, the envelope glycoprotein of Peste des Petits Ruminants Virus (PPRV, plays a crucial role in regulating viral adsorption and entry, thus determining pathogenicity, and release of newly produced viral particles. In order to accurately understand the epidemic of the disease and the interactions between the virus and host, we launch the work. Here, we examined H gene from all four lineages of the PPRV to investigate evolutionary and epidemiologic dynamics of PPRV by the Bayesian method. In addition, we predicted positive selection sites due to selective pressures. Finally, we studied the interaction between H protein and SLAM receptor based on homology model of the complex. Phylogenetic analysis suggested that H gene can also be used to investigate evolutionary and epidemiologic dynamics of PPRV. Positive selection analysis identified four positive selection sites in H gene, in which only one common site (aa246 was detected by two methods, suggesting strong operation structural and/or functional constraint of changes on the H protein. This target site may be of interest for future mutagenesis studies. The results of homology modeling showed PPRVHv-shSLAM binding interface and MVH-maSLAM binding interface were consistent, wherein the groove in the B4 blade and B5 of the head domain of PPRVHv bound to the AGFCC' β-sheets of the membrane-distal ectodomain of shSLAM. The binding regions could provide insight on the nature of the protein for epitope vaccine design, novel drug discovery, and rational drug design against PPRV.

  11. Antiviral activity of stachyflin on influenza A viruses of different hemagglutinin subtypes.

    Science.gov (United States)

    Motohashi, Yurie; Igarashi, Manabu; Okamatsu, Masatoshi; Noshi, Takeshi; Sakoda, Yoshihiro; Yamamoto, Naoki; Ito, Kimihito; Yoshida, Ryu; Kida, Hiroshi

    2013-04-16

    The hemagglutinin (HA) of influenza viruses is a possible target for antiviral drugs because of its key roles in the initiation of infection. Although it was found that a natural compound, Stachyflin, inhibited the growth of H1 and H2 but not H3 influenza viruses in MDCK cells, inhibitory activity of the compound has not been assessed against H4-H16 influenza viruses and the precise mechanism of inhibition has not been clarified. Inhibitory activity of Stachyflin against H4-H16 influenza viruses, as well as H1-H3 viruses was examined in MDCK cells. To identify factors responsible for the susceptibility of the viruses to this compound, Stachyflin-resistant viruses were selected in MDCK cells and used for computer docking simulation. It was found that in addition to antiviral activity of Stachyflin against influenza viruses of H1 and H2 subtypes, it inhibited replication of viruses of H5 and H6 subtypes, as well as A(H1N1)pdm09 virus in MDCK cells. Stachyflin also inhibited the virus growth in the lungs of mice infected with A/WSN/1933 (H1N1) and A/chicken/Ibaraki/1/2005 (H5N2). Substitution of amino acid residues was found on the HA2 subunit of Stachyflin-resistant viruses. Docking simulation indicated that D37, K51, T107, and K121 are responsible for construction of the cavity for the binding of the compound. In addition, 3-dimensional structure of the cavity of the HA of Stachyflin-susceptible virus strains was different from that of insusceptible virus strains. Antiviral activity of Stachyflin was found against A(H1N1)pdm09, H5, and H6 viruses, and identified a potential binding pocket for Stachyflin on the HA. The present results should provide us with useful information for the development of HA inhibitors with more effective and broader spectrum.

  12. Influence of additional acylation site(s) of influenza B virus hemagglutinin on syncytium formation.

    Science.gov (United States)

    Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri

    2005-01-01

    We studied the effects of an increase in the hydrophobicity of the transmembrane domain (TM) and cytoplasmic tail (CT) of influenza B virus hemagglutinin (BHA) on fusion activities. For this purpose, we created mutant HAs with novel acylation site(s) in the TM and/or CT. All mutants were able to induce hemifusion and to form fusion pores as well as could wild type (wt) BHA. However, the ability of these mutants to form syncytia was impaired, indicating that the increase in the hydrophobicity of these domains (especially the CT) affected fusion pore dilation.

  13. Roll of hemagglutinin gene in the biology of avian inflenza virus

    Directory of Open Access Journals (Sweden)

    Masoud Soltanialvar

    2016-06-01

    Full Text Available The hemagglutinin (HA, the major envelope glycoprotein of influenza, plays an important role during the early stage of infection, and changes in the HA gene prior to the emergence of pathogenic avian influenza viruses. The HA protein controls viral entry through membrane fusion of the viral envelope with the host cell membrane and allows the genetic information released to initiate new virus synthesis. Sharp antigenic variation of HA remains the critical challenge to the development of effective vaccines. Therefore, we highlight the role of HA in need of review: structure of HA, the fusion process and the HA receptor binding specificity in interspecies transmission and the impact of multiple mutations at antigenic sites and host antibodies to the parental virus, and the host susceptibility to productive infection by the drift strains.

  14. Antibodies elicited by influenza virus hemagglutinin fail to bind to synthetic peptides representing putative antigenic sites.

    Science.gov (United States)

    Nestorowicz, A; Tregear, G W; Southwell, C N; Martyn, J; Murray, J M; White, D O; Jackson, D C

    1985-02-01

    A number of peptides of the hemagglutinin (HA) of X-31 influenza virus have been synthesised. The amino acid sequences of some of these peptides represent regions of HA which have been postulated [Wiley et al., Nature, Lond. 289, 373-378 (1981)] to form the antigenic sites of this molecule. Animals were immunized with free peptide or peptide conjugated to a carrier and the resulting antisera examined for their capacities to bind to homologous peptide, whole HA, reduced and alkylated HA, and intact virus. Not all peptides examined in this way were immunogenic. Only antibodies raised against the C-terminus of HA1 peptide displayed binding to virus. This antiserum bound to the intact HA but not to the reduced and alkylated form of the molecule. These results raise questions as to the feasibility of using synthetic peptides of the influenza HA in short linear sequences to elicit neutralising antibody.

  15. Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jana Verena Roedig

    Full Text Available The genome of influenza A viruses is constantly changing (genetic drift resulting in small, gradual changes in viral proteins. Alterations within antibody recognition sites of the viral membrane glycoproteins hemagglutinin (HA and neuraminidase (NA result in an antigenetic drift, which requires the seasonal update of human influenza virus vaccines. Generally, virus adaptation is necessary to obtain sufficiently high virus yields in cell culture-derived vaccine manufacturing. In this study detailed HA N-glycosylation pattern analysis was combined with in-depth pyrosequencing analysis of the virus genomic RNA. Forward and backward adaptation from Madin-Darby Canine Kidney (MDCK cells to African green monkey kidney (Vero cells was investigated for two closely related influenza A virus PR/8/34 (H1N1 strains: from the National Institute for Biological Standards and Control (NIBSC or the Robert Koch Institute (RKI. Furthermore, stability of HA N-glycosylation patterns over ten consecutive passages and different harvest time points is demonstrated. Adaptation to Vero cells finally allowed efficient influenza A virus replication in Vero cells. In contrast, during back-adaptation the virus replicated well from the very beginning. HA N-glycosylation patterns were cell line dependent and stabilized fast within one (NIBSC-derived virus or two (RKI-derived virus successive passages during adaptation processes. However, during adaptation new virus variants were detected. These variants carried "rescue" mutations on the genomic level within the HA stem region, which result in amino acid substitutions. These substitutions finally allowed sufficient virus replication in the new host system. According to adaptation pressure the composition of the virus populations varied. In Vero cells a selection for "rescue" variants was characteristic. After back-adaptation to MDCK cells some variants persisted at indifferent frequencies, others slowly diminished and even

  16. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.; Stevens, James; Schultz-Cherry, S.

    2016-04-06

    ABSTRACT

    During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential.

    IMPORTANCEThe H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.

  17. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium.

    Directory of Open Access Journals (Sweden)

    Guadalupe Ayora-Talavera

    2009-11-01

    Full Text Available The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

  18. Prediction of common epitopes on hemagglutinin of the influenza A virus (H1 subtype).

    Science.gov (United States)

    Guo, Chunyan; Xie, Xin; Li, Huijin; Zhao, Penghua; Zhao, Xiangrong; Sun, Jingying; Wang, Haifang; Liu, Yang; Li, Yan; Hu, Qiaoxia; Hu, Jun; Li, Yuan

    2015-02-01

    Influenza A virus infection is a persistent threat to public health worldwide due to hemagglutinin (HA) variation. Current vaccines against influenza A virus provide immunity to viral isolates similar to vaccine strains. Antibodies against common epitopes provide immunity to diverse influenza virus strains and protect against future pandemic influenza. Therefore, it is vital to analyze common HA antigenic epitopes of influenza virus. In this study, 14 strains of monoclonal antibodies with high sensitivity to common epitopes of influenza virus antigens identified in our previous study were selected as the tool to predict common HA epitopes. The common HA antigenic epitopes were divided into four categories by ELISA blocking experiments, and separately, into three categories according to the preliminary results of computer simulation. Comparison between the results of computer simulations and ELISA blocking experiments indicated that at least two classes of common epitopes are present in influenza virus HA. This study provides experimental data for improving the prediction of HA epitopes of influenza virus (H1 subtype) and the development of a potential universal vaccine as well as a novel approach for the prediction of epitopes on other pathogenic microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  20. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope.

    Science.gov (United States)

    Chen, Shaoheng; Zheng, Dan; Li, Changgui; Zhang, Wenjie; Xu, Wenting; Liu, Xueying; Fang, Fang; Chen, Ze

    2015-01-01

    We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP). Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB(*)) adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8) (H1N1)). In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB(*) adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  1. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1.

    Science.gov (United States)

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J; Fuchs, Serge Y; McDermott, Adrian B; Hahm, Bumsuk

    2015-12-16

    Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we

  2. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination.

    Science.gov (United States)

    Gopinath, Subash C B; Kumar, Penmetcha K R

    2013-11-01

    Influenza virus hemagglutinin (HA) mediates both receptor (glycan) binding and membrane fusion for cell entry and has been the basis for typing influenza A viruses. In this study we have selected RNA aptamers (D-12 and D-26) that specifically target the HA protein of the recent pandemic influenza virus pdmH1N1 (A/California/07/2009). Among the selected aptamers the D-26 aptamer showed higher affinity for the HA of pdmH1N1 and was able to distinguish HA derived from other sub-types of influenza A viruses. The affinity of the D-26 aptamer was further improved upon incorporation of 2'-fluoropyrimidines to a level of 67 fM. Furthermore, the high affinity D-12 and D-26 aptamers were tested for their ability to interfere with HA-glycan interactions using a chicken red blood cell (RBC) agglutination assay. At a concentration of 200 nM the D-26 aptamer completely abolished the agglutination of RBCs, whereas D-12 only did so at 400 nM. These studies suggest that the selected aptamer D-26 not only has a higher affinity and specificity for the HA of pdmH1N1 but also has a better ability to efficiently interfere with HA-glycan interactions compared with the D-12 aptamer. The D-26 aptamer warrants further study regarding its application in developing topical virucidal products against the pdmH1N1 virus and also in surveillance of the pdmH1N1 influenza virus. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Insight into highly conserved H1 subtype-specific epitopes in influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Ki Joon Cho

    Full Text Available Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutralizing activities against H1 subtype influenza viruses, and determined the complex structure of HA derived from a 2009 pandemic virus A/Korea/01/2009 (KR01 and the Fab fragment from H1-specific monoclonal antibody GC0587. The overall structure of the complex was essentially identical to the previously determined KR01 HA-Fab0757 complex structure. Both Fab0587 and Fab0757 recognize readily accessible head regions of HA, revealing broadly shared and conserved antigenic determinants among H1 subtypes. The β-strands constituted by Ser110-Glu115 and Lys169-Lys170 form H1 epitopes with distinct conformations from those of H1 and H3 HA sites. In particular, Glu112, Glu115, Lys169, and Lys171 that are highly conserved among H1 subtype HAs have close contacts with HCDR3 and LCDR3. The differences between Fab0587 and Fab0757 complexes reside mainly in HCDR3 and LCDR3, providing distinct antigenic determinants specific for 1918 pdm influenza strain. Our results demonstrate a potential key neutralizing epitope important for H1 subtype specificity in influenza virus.

  4. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  5. [High-yield reassortant virus containing hemagglutinin and neuraminidase genes of pandemic influenza A/Moscowl/01/2009 (H1N1) virus].

    Science.gov (United States)

    Ignat'eva, A V; Rudneva, I A; Timofeeva, T A; Shilov, A A; Zaberezhnyĭ, A D; Aliper, T I; Kaverin, N V; L'vov, D K

    2011-01-01

    The crossing of influenza A/Moscow/01/2009 (H1N1) virus and reassortant strain X31 (H3N2) containing the genes of internal and non-structural proteins of A/Puerto Rico/8/34 (H1N1) strain gave rise to reassortant virus ReM8. The reassortant contained hemagglutinin (HA) and neuraminidase (NA) genes of pandemic 2009 influenza virus and 6 genes of high-yield A/Puerto Rico/8/34 (H1N1) strain. The reassortant ReM8 produced higher yields in the embryonated chicken eggs than the parent pandemic virus, as suggested by infectivity and HA activity titration as well as by ELISA and the measurement of HA protein content by scanning electrophoresis in polyacrylamide gel slabs. High immunogenicity of ReM8 reassortant was demonstrated by immune protection studies in mice. The reassortant virus ReM8 is suitable as a candidate strain for the production of inactivated and subunit influenza vaccines.

  6. Protection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin.

    Science.gov (United States)

    Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Lee, F Eun-Hyung; Kang, Sang-Moo

    2016-04-01

    A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering.

    Science.gov (United States)

    Li, Yang; Bostick, David L; Sullivan, Colleen B; Myers, Jaclyn L; Griesemer, Sara B; Stgeorge, Kirsten; Plotkin, Joshua B; Hensley, Scott E

    2013-09-01

    The hemagglutination inhibition (HAI) assay is the primary measurement used for identifying antigenically novel influenza virus strains. HAI assays measure the amount of reference sera required to prevent virus binding to red blood cells. Receptor binding avidities of viral strains are not usually taken into account when interpreting these assays. Here, we created antigenic maps of human H3N2 viruses that computationally account for variation in viral receptor binding avidities. These new antigenic maps differ qualitatively from conventional antigenic maps based on HAI measurements alone. We experimentally focused on an antigenic cluster associated with a single N145K hemagglutinin (HA) substitution that occurred between 1992 and 1995. Reverse-genetics experiments demonstrated that the N145K HA mutation increases viral receptor binding avidity. Enzyme-linked immunosorbent assays (ELISA) revealed that the N145K HA mutation does not prevent antibody binding; rather, viruses possessing this mutation escape antisera in HAI assays simply by attaching to cells more efficiently. Unexpectedly, we found an asymmetric antigenic effect of the N145K HA mutation. Once H3N2 viruses acquired K145, an epitope involving amino acid 145 became antigenically dominant. Antisera raised against an H3N2 strain possessing K145 had reduced reactivity to H3N2 strains possessing N145. Thus, individual mutations in HA can influence antigenic groupings of strains by altering receptor binding avidity and by changing the dominance of antibody responses. Our results indicate that it will be important to account for variation in viral receptor binding avidity when performing antigenic analyses in order to identify genuine antigenic differences among influenza virus variants.

  8. Epitope dampening monotypic measles virus hemagglutinin glycoprotein results in resistance to cocktail of monoclonal antibodies.

    Science.gov (United States)

    Lech, Patrycja J; Tobin, Gregory J; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P; Russell, Stephen J; Nara, Peter L

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs.

  9. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  10. Synthesis of a cluster-forming sialylthio-D-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase.

    Science.gov (United States)

    Tollas, Szilvia; Bereczki, Ilona; Borbás, Anikó; Batta, Gyula; Vanderlinden, Evelien; Naesens, Lieve; Herczegh, Pál

    2014-06-01

    In order to obtain self assembling, multivalent ligand for influenza virus hemagglutinin α-N-acetylneuraminyl-(2-6)-D-galactopyranose has been synthesized and bonded to a water soluble fullerene derivative using 1,3-dipolar cycloaddition click reaction. The aggregating amphiphilic compound did not inhibit the influenza virus hemagglutinin, but it proved to be an inhibitor of its neuraminidase with a 50% inhibitory concentration of 81 μM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Different Origins of Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein Modulate the Replication Efficiency and Pathogenicity of the Virus

    Directory of Open Access Journals (Sweden)

    Ji-hui Jin

    2017-08-01

    Full Text Available To investigate the exact effects of different origins of Newcastle disease virus (NDV hemagglutinin-neuraminidase (HN protein to the biological characteristics of the virus, we systematically studied the correlation between the HN protein and NDV virulence by exchanging the HN of velogenic or lentogenic NDV strains with the HN from other strains of different virulence. The results revealed that the rSG10 or rLaSota derivatives bearing the HN gene of other viruses exhibited decreased or increased hemadsorption (HAd, neuraminidase and fusion promotion activities. In vitro and in vivo tests further showed that changes in replication level, tissue tropism and virulence of the chimeric viruses were also consistent with these biological activities. These findings demonstrated that the balance among three biological activities caused variation in replication and pathogenicity of the virus, which was closely related to the origin of the HN protein. Our study highlights the importance of the HN glycoprotein in modulating the virulence of NDV and contributes to a more complete understanding of the virulence of NDV.

  12. Development of subtype-specific and heterosubtypic antibodies to the influenza A virus hemagglutinin after primary infection in children.

    OpenAIRE

    Burlington, D B; Wright, P F; van Wyke, K L; Phelan, M A; Mayner, R E; Murphy, B R

    1985-01-01

    Children undergoing primary infection with an H1N1 or H3N2 influenza A virus developed subtype-specific hemagglutination inhibition antibodies and enzyme-linked immunosorbent assay antibodies to purified hemagglutinin (HA) of the infecting virus subtype. They also developed lower titered ELISA antibodies to the noninfecting H1 or H3 HA and to H8 (an avian strain) HA. Thus, after primary infection with an influenza A virus, children develop enzyme-linked immunosorbent assay, but not hemaggluti...

  13. Sublingual administration of bacteria-expressed influenza virus hemagglutinin 1 (HA1) induces protection against infection with 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    Shim, Byoung-Shik; Choi, Jung-Ah; Song, Ho-Hyun; Park, Sung-Moo; Cheon, In Su; Jang, Ji-Eun; Woo, Sun Je; Cho, Chung Hwan; Song, Min-Suk; Kim, Hyemi; Song, Kyung Joo; Lee, Jae Myun; Kim, Suhng Wook; Song, Dae Sub; Choi, Young Ki; Kim, Jae-Ouk; Nguyen, Huan Huu; Kim, Dong Wook; Bahk, Young Yil; Yun, Cheol-Heui; Song, Man Ki

    2013-02-01

    Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.

  14. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  15. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  16. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates.

    Science.gov (United States)

    Ivanovic, Tijana; Choi, Jason L; Whelan, Sean P; van Oijen, Antoine M; Harrison, Stephen C

    2013-02-19

    Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing low-pH-induced fusion kinetics of individual virions and validated the analysis by computer simulation. We detect initial engagement with the target membrane of fusion peptides from independently triggered HAs within the larger virus-target contact patch; fusion then requires engagement of three or four neighboring HA trimers. Effects of mutations in HA indicate that withdrawal of the fusion peptide from a pocket in the pre-fusion trimer is rate-limiting for both events, but the requirement for cooperative action of several HAs to bring the fusing membranes together leads to a long-lived intermediate state for single, extended HA trimers. This intermediate is thus a fundamental aspect of the fusion mechanism. DOI:http://dx.doi.org/10.7554/eLife.00333.001.

  17. The receptor-binding site of the measles virus hemagglutinin protein itself constitutes a conserved neutralizing epitope.

    Science.gov (United States)

    Tahara, Maino; Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A; Rota, Paul A; Plemper, Richard K; Maenaka, Katsumi; Takeda, Makoto

    2013-03-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature.

  18. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape.

    Science.gov (United States)

    Lion, Adrien; Richard, Mathilde; Esnault, Evelyne; Kut, Emmanuel; Soubieux, Denis; Guillory, Vanaïque; Germond, Mélody; Blondeau, Caroline; Guabiraba, Rodrigo; Short, Kirsty R; Marc, Daniel; Quéré, Pascale; Trapp, Sascha

    2018-01-01

    Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging

    Directory of Open Access Journals (Sweden)

    Pedroso de Lima Maria C.

    1999-01-01

    Full Text Available It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity. By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  20. Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus

    Directory of Open Access Journals (Sweden)

    Roopali eRajput

    2015-09-01

    Full Text Available Human influenza A viruses have been the cause of enormous socio-economic losses worldwide. In order to combat such a notorious pathogen, hemagglutinin protein (HA has been a preferred target for generation of neutralizing-antibodies, as potent therapeutic/ diagnostic agents. In the present study, recombinant anti-HA single chain variable fragment (scFv antibodies were constructed using the phage display technology to aid in diagnosis and treatment of human influenza A virus infections. Spleen cells of mice hyper-immunized with A/New Caledonia/20/99 (H1N1 virus were used as the source for recombinant antibody (rAb production. The antigen-binding phages were quantified after 6 rounds of bio-panning against A/New Caledonia/20/99 (H1N1, A/California/07/2009 (H1N1-like, or A/Udorn/307/72(H3N2 viruses. The phage yield was maximum for the A/New Caledonia/20/99 (H1N1, however, considerable cross-reactivity was observed for the other virus strains as well. The HA-specific polyclonal rAb preparation was subjected to selection of single clones for identification of high reactive relatively conserved epitopes. The high affinity rAbs were tested against certain known conserved HA epitopes by peptide ELISA. Three recombinant mAbs showed reactivity with both the H1N1 strains and one (C5 showed binding with all the three viral strains. The C5 antibody was thus used for development of an ELISA test for diagnosis of influenza virus infection. Based on the sample size in the current analysis, the ELISA test demonstrated 83.9% sensitivity and 100% specificity. Thus, the ELISA, developed in our study, may prove as a cheaper alternative to the presently used real time RT-PCR test for detection of human influenza A viruses in clinical specimens, which will be beneficial, especially in the developing countries. Since, the two antibodies identified in this study are reactive to conserved HA epitopes; these may prove as potential therapeutic agents as well.

  1. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  2. Influenza virus M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface.

    Science.gov (United States)

    Alvarado-Facundo, Esmeralda; Gao, Yamei; Ribas-Aparicio, Rosa María; Jiménez-Alberto, Alicia; Weiss, Carol D; Wang, Wei

    2015-02-01

    The influenza virus hemagglutinin (HA) envelope protein mediates virus entry by first binding to cell surface receptors and then fusing viral and endosomal membranes during endocytosis. Cleavage of the HA precursor (HA0) into a surface receptor-binding subunit (HA1) and a fusion-inducing transmembrane subunit (HA2) by host cell enzymes primes HA for fusion competence by repositioning the fusion peptide to the newly created N terminus of HA2. We previously reported that the influenza virus M2 protein enhances pandemic 2009 influenza A virus [(H1N1)pdm09] HA-pseudovirus infectivity, but the mechanism was unclear. In this study, using cell-cell fusion and HA-pseudovirus infectivity assays, we found that the ion channel function of M2 was required for enhancement of HA fusion and HA-pseudovirus infectivity. The M2 activity was needed only during HA biosynthesis, and proteolysis experiments indicated that M2 proton channel activity helped to protect (H1N1)pdm09 HA from premature conformational changes as it traversed low-pH compartments during transport to the cell surface. While M2 has previously been shown to protect avian influenza virus HA proteins of the H5 and H7 subtypes that have polybasic cleavage motifs, this study demonstrates that M2 can protect HA proteins from human H1N1 strains that lack a polybasic cleavage motif. This finding suggests that M2 proton channel activity may play a wider role in preserving HA fusion competence among a variety of HA subtypes, including HA proteins from emerging strains that may have reduced HA stability. Influenza virus infects cells when the hemagglutinin (HA) surface protein undergoes irreversible pH-induced conformational changes after the virus is taken into the cell by endocytosis. HA fusion competence is primed when host cell enzymes cleave the HA precursor. The proton channel function of influenza virus M2 protein has previously been shown to protect avian influenza virus HA proteins that contain a polybasic cleavage

  3. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding.

    Directory of Open Access Journals (Sweden)

    Henry Memczak

    Full Text Available Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/Mute Swan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.

  4. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    Science.gov (United States)

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  5. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  6. Avian adeno-associated virus-based expression of Newcastle disease virus hemagglutinin-neuraminidase protein for poultry vaccination.

    Science.gov (United States)

    Perozo, F; Villegas, P; Estevez, C; Alvarado, I R; Purvis, L B; Saume, E

    2008-06-01

    The avian adeno-associated virus (AAAV) is a replication-defective nonpathogenic virus member of the family Parvoviridae that has been proved to be useful as a viral vector for gene delivery. The use of AAAV for transgenic expression of Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein and its ability to induce immunity in chickens were assessed. Proposed advantages of this system include no interference with maternal antibodies, diminished immune response against the vector, and the ability to accommodate large fragments of genetic information. In this work the generation of recombinant AAAV virions expressing the HN protein (rAAAV-HN) was demonstrated by electron microscopy, immunocytochemistry, and western blot analysis. Serological evidence of HN protein expression after in ovo or intramuscular inoculation of the recombinant virus in specific-pathogen-free chickens was obtained. Serum from rAAAV-HN-vaccinated birds showed a systemic immune response evidenced by NDV-specific enzyme-linked immunosorbent assay and hemagglutination inhibition testing. Positive virus neutralization in embryonated chicken eggs and indirect immunofluorescence detection of NDV infected cells by serum from rAAAV-HN vaccinated birds is also reported. A vaccine-challenge experiment in commercial broiler chickens using a Venezuelan virulent viscerotropic strain of NDV was performed. All unvaccinated controls died within 5 days postchallenge. Protection up to 80% was observed in birds vaccinated in ovo and revaccinated at 7 days of age with the rAAAV-HN. The results demonstrate the feasibility of developing and using an AAAV-based gene delivery system for poultry vaccination.

  7. Purification and production of monospecific antibody to the hemagglutinin from Subtype H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2010-12-01

    Full Text Available The purpose of this study was to purify the hemagglutinin from H5N1 virus and to generate monospecific antibody appropriate for production of sensitive and specific immunoassay for H5N1 avian influenza. For this purpose, a local isolate H5N1 virus (A/Ck/West Java/Hamd/2006 was propagated in chicken embryos. The viral pellet was dissolved in a Triton-X-100 solution, undissolved viral particles were pelleted by ultracentrifuge, and the supernatant containing viral surface glycoproteins (Hemagglutinin and neuraminidase was collected. The neuraminidase in the supernatant was absorbed by passing the supernatant through an Oxamic-acid-superose column. After dialyzing extensively, the filtrate was further fractionated with an anion exchange chromatography (Q-sepharose column. Proteins adsorbed by the column were eluted stepwisely with 0.10, 0.25, 0.25 and 0.75 M NaCl in 20 mM Tris, ph 8. Hemagglutinin (H5 was found to be eluted from the column with the 0.5 M NaCl elution buffer. The purified H5 was free from other viral proteins based on immunoassays using commercial antibodies to H5N1 nucleoprotein and neuraminidase. When used as ELISA’s coating antigen, the purified H5 proved to be sensitive and specific for hemagglutinin H5. Cross reactions with other type-A-influenza virus, H6, H7 dan H9, were negligibly low. For the production of monospecific antiserum, the purified H5 was separated with SDS-PAGE, the band containing the H5 monomer was cut out , homogenised and injected into rabbits. The antiserum was capable of detecting the presence of inactivated H5N1 virus in a very dilute suspension, with a detection limit of 0.04 heagglutination (HA unit. The purified hemagglutinin and the serum raised against it should be useful for developing specific, sensitive and affordable immunoassay for H5N1 avian influenza.

  8. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity.

    Directory of Open Access Journals (Sweden)

    Rebecca M DuBois

    2011-12-01

    Full Text Available Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  9. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian ‘avian-like’ H1N1 swine viruses in mice

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-01-01

    Objectives To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian “avian-like” (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Design Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Sample Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Setting Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Main outcome measures Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Results and Conclusions Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. PMID:24373385

  10. Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins.

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Sauer

    Full Text Available Binding of influenza viruses to target cells is mediated by the viral surface protein hemagglutinin. To determine the presence of binding sites for influenza A viruses on cells and tissues, soluble hemagglutinins of the H7 and H9 subtype were generated by connecting the hemagglutinin ectodomain to the Fc portion of human immunoglobulin G (H7Fc and H9Fc. Both chimeric proteins bound to different cells and tissues in a sialic acid-dependent manner. Pronounced differences were observed between H7Fc and H9Fc, in the binding both to different mammalian and avian cultured cells and to cryosections of the respiratory epithelium of different virus host species (turkey, chicken and pig. Binding of the soluble hemagglutinins was similar to the binding of virus particles, but showed differences in the binding pattern when compared to two sialic acid-specific plant lectins. These findings were substantiated by a comparative glycan array analysis revealing a very narrow recognition of sialoglycoconjugates by the plant lectins that does not reflect the glycan structures preferentially recognized by H7Fc and H9Fc. Thus, soluble hemagglutinins may serve as sialic acid-specific lectins and are a more reliable indicator of the presence of binding sites for influenza virus HA than the commonly used plant lectins.

  11. 'a'-Position-mutated and G4-mutated hemagglutinin-neuraminidase proteins of Newcastle disease virus impair fusion and hemagglutinin-neuraminidase-fusion interaction by different mechanisms.

    Science.gov (United States)

    Chu, Fu-lu; Wen, Hong-ling; Zhang, Wen-qiang; Lin, Bin; Zhang, Yan; Sun, Cheng-xi; Ren, Gui-jie; Song, Yan-yan; Wang, Zhiyu

    2013-01-01

    To determine the effects of heptad repeat regions (HRs) and N-linked carbohydrate sites of the Newcastle disease virus hemagglutinin-neuraminidase (HN) protein on fusion of HN and fusion (F) proteins and HN-F interaction. We mutated six 'a' residues in the HRs and four asparagines in N-linked carbohydrate sites to alanine in the HN protein. A vaccinia-T7 RNA polymerase expression system was used to express HN cDNAs in BHK-21 cells to determine the HN functions. Deglycosylation was treated with PGNase F digestion. The formation of HN-F protein complexes was determined by the coimmunoprecipitation assay. Each HR-mutated protein interfered with fusion and the HN-F interaction. The G4-mutated protein not only impaired fusion and HN-F interaction but also decreased activities in cell fusion promotion, hemadsorption and neuraminidase. It is assumed that two different mechanisms for mutations in these two regions are responsible for the decreased fusion promotion activity and the reduced ability of interaction with F protein. Mutations in the HRs impair fusion and HN-F interaction by altering the transmission of a signal from the globular domain to the F-specific region in the stalk, but the G4 mutation modulates fusion and HN-F interaction by the misfolding of some important structures. Copyright © 2012 S. Karger AG, Basel.

  12. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  13. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    Science.gov (United States)

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  14. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  15. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009.

    Science.gov (United States)

    Xu, Songtao; Zhang, Yan; Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J; Rota, Paul A; Xu, Wenbo

    2013-01-01

    China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.

  16. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Science.gov (United States)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  17. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    Science.gov (United States)

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  18. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens

    Science.gov (United States)

    The fusion (F) protein of Newcastle disease virus (NDV) plays an important role in viral infection and pathogenicity through mediating membrane fusion between the virion and host cells in the presence of the hemagglutinin-neuraminidase (HN). Previously, we obtained a velogenic NDV genotype VII muta...

  19. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin.

    Science.gov (United States)

    Krammer, Florian; Palese, Peter; Steel, John

    2015-01-01

    The threat of novel influenza viruses emerging into the human population from animal reservoirs, as well as the short duration of protection conferred by licensed vaccines against human seasonal strains has spurred research efforts to improve upon current vaccines and develop novel therapeutics against influenza viruses. In recent years these efforts have resulted in the identification of novel, highly conserved epitopes for neutralizing antibodies on the influenza virus hemagglutinin protein, which are present in both the stalk and globular head domains of the molecule. The existence of such epitopes may allow for generation of novel therapeutic antibodies, in addition to serving as attractive targets of novel vaccine design. The aims of developing improved vaccines include eliciting broader protection from drifted strains, inducing long-lived immunity against seasonal strains, and allowing for the rational design of vaccines that can be stockpiled for use as pre-pandemic vaccines. In addition, an increased focus on influenza virus vaccine research has prompted an improved understanding of how the immune system responds to influenza virus infection.

  20. Biosafety Recommendations for Work with Influenza Viruses Containing a Hemagglutinin from the A/goose/Guangdong/1/96 Lineage.

    Science.gov (United States)

    Gangadharan, Denise; Smith, Jacinta; Weyant, Robbin

    2013-06-28

    The CDC and National Institutes of Health (NIH) Biosafety in Microbiological and Biomedical Laboratories (BMBL) manual describes biosafety recommendations for work involving highly pathogenic avian influenza (HPAI) (US Department of Health and Human Services [HHS], CDC. Biosafety in microbiological and biomedical laboratories, 5th ed. Atlanta, GA: CDC; 2009. HHS publication no. [CDC] 21-1112. Available at http://www.cdc.gov/biosafety/publications/bmbl5). The U.S. Department of Agriculture Guidelines for Avian Influenza Viruses builds on the BMBL manual and provides additional biosafety and biocontainment guidelines for laboratories working with HPAI (US Department of Agriculture, Animal and Plant Health Inspection Service, Agricultural Select Agent Program. Guidelines for avian influenza viruses. Washington, DC: US Department of Agriculture; 2011. Available at http://www.selectagents.gov/Guidelines_for_Avian_Influenza_Viruses.html). The recommendations in this report, which are intended for laboratories in the United States, outline the essential baseline biosafety measures for working with the subset of influenza viruses that contain a hemagglutinin (HA) from the HPAI influenza A/goose/Guangdong/1/96 lineage, including reassortant influenza viruses created in a laboratory setting. All H5N1 influenza virus clades known to infect humans to date have been derived from this lineage (WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A [H5N1]: updated nomenclature. Influenza Other Respir Viruses 2012;6:1-5). In 2009, the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules were amended to include specific biosafety and biocontainment recommendations for laboratories working with Recombinant Risk Group 3 influenza viruses, including HPAI H5N1 influenza viruses within the Goose/Guangdong/1/96-like H5 lineage. In February 2013, the NIH guidelines were further revised to provide additional

  1. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yuval Avnir

    2014-05-01

    Full Text Available Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs. Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met and Phe54, and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination.

  2. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain.

    Science.gov (United States)

    Kawaoka, Y; Nestorowicz, A; Alexander, D J; Webster, R G

    1987-05-01

    Comparative sequence analysis of the hemagglutinin (HA) genes of a highly virulent H5N8 virus isolated from turkeys in Ireland in 1983 and a virus of the same subtype detected simultaneously in healthy ducks showed only four amino acid differences between these strains. Partial sequencing of six of the other genes and antigenic similarity of the neuraminidases established the overall genetic similarity of these two viruses. Comparison of the complete sequence of two H5 gene sequences and partial sequences of other virulent and avirulent H5 viruses provides evidence for at least two different lineages of H5 influenza virus in the world, one in Europe and the other in North America, with virulent and avirulent members in each group. In vivo studies in domestic ducks showed that all of the H5 viruses that are virulent in chickens and turkeys replicate in the internal organs of ducks but did not produce any disease signs. Additionally, both viruses isolated from turkeys and ducks in Ireland were detected in the blood. These studies provide the first conclusive evidence for the possibility that fully virulent influenza viruses in domestic poultry can arise directly from viruses in wild aquatic birds. Studies on the cleavability of the HA of virulent and avirulent H5 viruses showed that the principles established for H7 viruses (F. X. Bosch, M. Orlich, H. D. Klenk, and R. Rott, 1979, Virology 95, 197-207; F. X. Bosch, W. Garten, H. D. Klenk, and R. Rott, 1981, Virology 113, 725-735) also apply to the H5 subtype. These are (1) only the HAs of virulent influenza viruses were cleaved in tissue culture in the absence of trypsin and (2) virulent H5 influenza viruses contain a series of basic amino acids at the cleavage site of the HA, whereas avirulent strains contain only a single arginine with the exception of the avirulent Chicken/Pennsylvania virus. Thus, a series of basic amino acids at the cleavage site probably forms a recognition site for the enzyme(s) responsible for

  3. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Nicolas Jacquet

    Full Text Available The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  4. B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination.

    Science.gov (United States)

    Sangster, Mark Y; Baer, Jane; Santiago, Felix W; Fitzgerald, Theresa; Ilyushina, Natalia A; Sundararajan, Aarthi; Henn, Alicia D; Krammer, Florian; Yang, Hongmei; Luke, Catherine J; Zand, Martin S; Wright, Peter F; Treanor, John J; Topham, David J; Subbarao, Kanta

    2013-06-01

    The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza.

  5. Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA)

    Science.gov (United States)

    Mochizuki, Yuji; Yamashita, Katsumi; Fukuzawa, Kaori; Takematsu, Kazutomo; Watanabe, Hirofumi; Taguchi, Naoki; Okiyama, Yoshio; Tsuboi, Misako; Nakano, Tatsuya; Tanaka, Shigenori

    2010-06-01

    Two proteins on the influenza virus surface have been well known. One is hemagglutinin (HA) associated with the infection to cells. The fragment molecular orbital (FMO) calculations were performed on a complex consisting of HA trimer and two Fab-fragments at the third-order Møller-Plesset perturbation (MP3) level. The numbers of residues and 6-31G basis functions were 2351 and 201276, and thus a massively parallel-vector computer was utilized to accelerate the processing. This FMO-MP3 job was completed in 5.8 h with 1024 processors. Another protein is neuraminidase (NA) involved in the escape from infected cells. The FMO-MP3 calculation was also applied to analyze the interactions between oseltamivir and surrounding residues in pharmacophore.

  6. Characterization of glycan binding specificities of influenza B viruses with correlation with hemagglutinin genotypes and clinical features.

    Science.gov (United States)

    Wang, Ya-Fang; Chang, Chuan-Fa; Chi, Chia-Yu; Wang, Hsuan-Chen; Wang, Jen-Ren; Su, Ih-Jen

    2012-04-01

    The carbohydrate binding specificities are different among avian and human influenza A viruses and may affect the tissue tropism and transmission of these viruses. The glycan binding biology for influenza B, however, has not been systematically characterized. Glycan binding specificities of influenza B viral isolates were analyzed and correlated to hemagglutinin (HA) genotypes and clinical manifestations. A newly developed solution glycan array was applied to characterize the receptor binding specificities of influenza B virus clinical isolates from 2001 to 2007 in Taiwan. Thirty oligosaccharides which include α-2,3 and α-2,6 linkage glycans were subjected to analysis. The glycan binding patterns of 53 influenza B isolates could be categorized into three groups and were well correlated to their HA genotypes. The Yamagata-like strains predominantly bound to α-2,6-linkage glycan (24:29, 83%) while Victoria-like strains preferentially bound to both α-2,3- and α-2,6-linkage glycans (13:24, 54%). A third group of viruses bound to sulfated glycans and these all belonged to Victoria-like strains. Based on the HA sequences, Asn-163, Glu-198, Ala-202, and Lys-203 were conserved among Victoria-like strains which may influence their carbohydrate recognition. The viruses bound to dual type glycans were more likely to be associated with the development of bronchopneumonia and gastrointestinal illness than those bound only to α-2,6 sialyl glycans (P B viruses, and will contribute to virus surveillance and vaccine strain selection. Copyright © 2012 Wiley Periodicals, Inc.

  7. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    Science.gov (United States)

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Conclusions Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China. PMID

  8. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009.

    Directory of Open Access Journals (Sweden)

    Songtao Xu

    Full Text Available BACKGROUND: China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H gene of MeV, the major target for virus neutralizing antibodies. PRINCIPAL FINDINGS: Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn, which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3 substitutions per site per year, and the ratio of dN to dS (dN/dS was <1 indicating the absence of selective pressure. CONCLUSIONS: Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in

  9. Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs

    Science.gov (United States)

    Ridenour, Callie; Johnson, Adam; Winne, Emily; Hossain, Jaber; Mateu-Petit, Guaniri; Balish, Amanda; Santana, Wanda; Kim, Taejoong; Davis, Charles; Cox, Nancy J; Barr, John R; Donis, Ruben O; Villanueva, Julie; Williams, Tracie L; Chen, Li-Mei

    2015-01-01

    Background The emergence of avian influenza A(H7N9) virus in poultry causing zoonotic human infections was reported on March 31, 2013. Development of A(H7N9) candidate vaccine viruses (CVV) for pandemic preparedness purposes was initiated without delay. Candidate vaccine viruses were derived by reverse genetics using the internal genes of A/Puerto/Rico/8/34 (PR8). The resulting A(H7N9) CVVs needed improvement because they had titers and antigen yields that were suboptimal for vaccine manufacturing in eggs, especially in a pandemic situation. Methods Two CVVs derived by reverse genetics were serially passaged in embryonated eggs to improve the hemagglutinin (HA) antigen yield. The total viral protein and HA antigen yields of six egg-passaged CVVs were determined by the BCA assay and isotope dilution mass spectrometry (IDMS) analysis, respectively. CVVs were antigenically characterized by hemagglutination inhibition (HI) assays with ferret antisera. Results Improvement of total viral protein yield was observed for the six egg-passaged CVVs; HA quantification by IDMS indicated approximately a twofold increase in yield of several egg-passaged viruses as compared to that of the parental CVV. Several different amino acid substitutions were identified in the HA of all viruses after serial passage. However, HI tests indicated that the antigenic properties of two CVVs remained unchanged. Conclusions If influenza A(H7N9) viruses were to acquire sustained human-to-human transmissibility, the improved HA yield of the egg-passaged CVVs generated in this study could expedite vaccine manufacturing for pandemic mitigation. PMID:25962412

  10. Amino Acid substitutions in matrix, fusion and hemagglutinin proteins of wild measles virus for adaptation to vero cells.

    Science.gov (United States)

    Xin, Ji Yi; Ihara, Toshiaki; Komase, Katsuhiro; Nakayama, Tetsuo

    2011-01-01

    Wild-type measles virus (MV) is isolated in B95a but not in Vero cells. Through an adaptation process of wild-type MV to Vero cells, several amino acid substitutions were reported. Six strains were adapted to Vero cells and membrane (M), fusion (F) and hemagglutinin (H) genes were sequenced. Cell fusion was assessed and recombinant MVs were constructed, having wild-type H or M gene with or without mutations. No F gene substitution was noted. Amino-acid substitutions at positions 481 from Asn to Tyr (N481Y) and 546 from Ser to Gly (S546G) were observed in the H protein. Glu at position 89 of the M protein was substituted for Gly (E89G) and two mutations were noted at positions 62 (S62R) and 83 (S83P) in M protein. Recombinant viruses with mutation(s) detected in Vero-adapted strains induced a cytopathic effect and grew well in Vero cells, but those with the wild type did not. Recombinant viruses with mutation(s) demonstrated lower viral growth in B95a cells. Substitutions of E89G, S62R and S83P of the M protein were newly observed through adaptation to Vero cells, besides the mutations described in previous reports, with varying adaptation for each strain. Copyright © 2011 S. Karger AG, Basel.

  11. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Science.gov (United States)

    Tate, Michelle D.; Job, Emma R.; Deng, Yi-Mo; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Reading, Patrick C.

    2014-01-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity. PMID:24638204

  12. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Directory of Open Access Journals (Sweden)

    Michelle D. Tate

    2014-03-01

    Full Text Available Seasonal influenza A viruses (IAV originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.

  13. Immunization with a hemagglutinin-derived synthetic peptide formulated with a CpG-DNA-liposome complex induced protection against lethal influenza virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Rhee

    Full Text Available Whole-virus vaccines, including inactivated or live-attenuated influenza vaccines, have been conventionally developed and supported as a prophylaxis. These currently available virus-based influenza vaccines are widely used in the clinic, but the vaccine production takes a long time and a huge number of embryonated chicken eggs. To overcome the imperfection of egg-based influenza vaccines, epitope-based peptide vaccines have been studied as an alternative approach. Here, we formulated an efficacious peptide vaccine without carriers using phosphodiester CpG-DNA and a special liposome complex. Potential epitope peptides predicted from the hemagglutinin (HA protein of the H5N1 A/Viet Nam/1203/2004 strain (NCBI database, AAW80717 were used to immunize mice along with phosphodiester CpG-DNA co-encapsulated in a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE:cholesterol hemisuccinate (CHEMS complex (Lipoplex(O without carriers. We identified a B cell epitope peptide (hH5N1 HA233 epitope, 14 amino acids that can potently induce epitope-specific antibodies. Furthermore, immunization with a complex of the B cell epitope and Lipoplex(O completely protects mice challenged with a lethal dose of recombinant H5N1 virus. These results suggest that our improved peptide vaccine technology can be promptly applied to vaccine development against pandemic influenza. Furthermore our results suggest that potent epitopes, which cannot be easily found using proteins or a virus as an antigen, can be screened when we use a complex of peptide epitopes and Lipoplex(O.

  14. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles.

    Science.gov (United States)

    Kim, Yeu-Chun; Yoo, Dae-Goon; Compans, Richard W; Kang, Sang-Moo; Prausnitz, Mark R

    2013-12-10

    The need for annual revaccination against influenza is a burden on the healthcare system, leads to low vaccination rates and makes timely vaccination difficult against pandemic strains, such as during the 2009 H1N1 influenza pandemic. In an effort toward achieving a broadly protective vaccine that provides cross-protection against multiple strains of influenza, this study developed a microneedle patch to co-immunize with A/PR8 influenza hemagglutinin DNA and A/PR8 inactivated virus vaccine. We hypothesize that this dual component vaccination strategy administered to the skin using microneedles will provide cross-protection against other strains of influenza. To test this hypothesis, we developed a novel coating formulation that did not require additional excipients to increase coating solution viscosity by using the DNA vaccine itself to increase viscosity and thereby enable thick coatings of DNA vaccine and inactivated virus vaccine on metal microneedles. Co-immunization in this way not only generated robust antibody responses against A/PR8 influenza but also generated robust heterologous antibody responses against pandemic 2009 H1N1 influenza in mice. Challenge studies showed complete cross-protection against lethal challenge with live pandemic 2009 H1N1 virus. Control experiments using A/PR8 inactivated influenza virus vaccine with placebo DNA coated onto microneedles produced lower antibody titers and provided incomplete protection against challenge. Overall, this is the first study showing DNA solution as a microneedle coating agent and demonstrating cross-protection by co-immunization with inactivated virus and DNA vaccine using coated microneedles. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Platform technology to generate broadly cross-reactive antibodies to α-helical epitopes in hemagglutinin proteins from influenza a viruses.

    Science.gov (United States)

    Jiang, Ziqing; Gera, Lajos; Mant, Colin T; Hirsch, Brooke; Yan, Zhe; Qian, Zhaohui; Holmes, Kathryn V; Shortt, Jonathan A; Pollock, David D; Hodges, Robert S

    2016-01-21

    We have utilized a de novo designed two-stranded α-helical coiled-coil template to display conserved α-helical epitopes from the stem region of hemagglutinin (HA) glycoproteins of influenza A. The immunogens have all the surface-exposed residues of the native α-helix in the native HA protein of interest displayed on the surface of the two-stranded α-helical coiled-coil template. This template when used as an immunogen elicits polyclonal antibodies which bind to the α-helix in the native protein. We investigated the highly conserved sequence region 421-476 of HA by inserting 21 or 28 residue sequences from this region into our template. The cross-reactivity of the resulting rabbit polyclonal antibodies prepared to these immunogens was determined using a series of HA proteins from H1N1, H2N2, H3N2, H5N1, H7N7 and H7N9 virus strains which are representative of Group 1 and Group 2 virus subtypes of influenza A. Antibodies from region 449-476 were Group 1 specific. Antibodies to region 421-448 showed the greatest degree of cross-reactivity to Group 1 and Group 2 and suggested that this region has a great potential as a "universal" synthetic peptide vaccine for influenza A. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  16. Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.

    Directory of Open Access Journals (Sweden)

    Adam Johnson

    Full Text Available One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8, as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA and neuraminidase (NA genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.

  17. Identification of Influenza A/PR/8/34 Donor Viruses Imparting High Hemagglutinin Yields to Candidate Vaccine Viruses in Eggs.

    Science.gov (United States)

    Johnson, Adam; Chen, Li-Mei; Winne, Emily; Santana, Wanda; Metcalfe, Maureen G; Mateu-Petit, Guaniri; Ridenour, Callie; Hossain, M Jaber; Villanueva, Julie; Zaki, Sherif R; Williams, Tracie L; Cox, Nancy J; Barr, John R; Donis, Ruben O

    2015-01-01

    One of the important lessons learned from the 2009 H1N1 pandemic is that a high yield influenza vaccine virus is essential for efficient and timely production of pandemic vaccines in eggs. The current seasonal and pre-pandemic vaccine viruses are generated either by classical reassortment or reverse genetics. Both approaches utilize a high growth virus, generally A/Puerto Rico/8/1934 (PR8), as the donor of all or most of the internal genes, and the wild type virus recommended for inclusion in the vaccine to contribute the hemagglutinin (HA) and neuraminidase (NA) genes encoding the surface glycoproteins. As a result of extensive adaptation through sequential egg passaging, PR8 viruses with different gene sequences and high growth properties have been selected at different laboratories in past decades. The effect of these related but distinct internal PR8 genes on the growth of vaccine viruses in eggs has not been examined previously. Here, we use reverse genetics to analyze systematically the growth and HA antigen yield of reassortant viruses with 3 different PR8 backbones. A panel of 9 different HA/NA gene pairs in combination with each of the 3 different lineages of PR8 internal genes (27 reassortant viruses) was generated to evaluate their performance. Virus and HA yield assays showed that the PR8 internal genes influence HA yields in most subtypes. Although no single PR8 internal gene set outperformed the others in all candidate vaccine viruses, a combination of specific PR8 backbone with individual HA/NA pairs demonstrated improved HA yield and consequently the speed of vaccine production. These findings may be important both for production of seasonal vaccines and for a rapid global vaccine response during a pandemic.

  18. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  19. Two glycosylation sites in H5N1 influenza virus hemagglutinin that affect binding preference by computer-based analysis.

    Directory of Open Access Journals (Sweden)

    Wentian Chen

    Full Text Available Increasing numbers of H5N1 influenza viruses (IVs are responsible for human deaths, especially in North Africa and Southeast Asian. The binding of hemagglutinin (HA on the viral surface to host sialic acid (SA receptors is a requisite step in the infection process. Phylogenetic analysis reveals that H5N1 viruses can be divided into 10 clades based on their HA sequences, with most human IVs centered from clade 1 and clade 2.1 to clade 2.3. Protein sequence alignment in various clades indicates the high conservation in the receptor-binding domains (RBDs is essential for binding with the SA receptor. Two glycosylation sites, 158N and 169N, also participate in receptor recognition. In the present work, we attempted to construct a serial H5N1 HA models including diverse glycosylated HAs to simulate the binding process with various SA receptors in silico. As the SA-α-2,3-Gal and SA-α-2,6-Gal receptor adopted two distinctive topologies, straight and fishhook-like, respectively, the presence of N-glycans at 158N would decrease the affinity of HA for all of the receptors, particularly SA-α-2,6-Gal analogs. The steric clashes of the huge glycans shown at another glycosylation site, 169N, located on an adjacent HA monomer, would be more effective in preventing the binding of SA-α-2,3-Gal analogs.

  20. Two glycosylation sites in H5N1 influenza virus hemagglutinin that affect binding preference by computer-based analysis.

    Science.gov (United States)

    Chen, Wentian; Sun, Shisheng; Li, Zheng

    2012-01-01

    Increasing numbers of H5N1 influenza viruses (IVs) are responsible for human deaths, especially in North Africa and Southeast Asian. The binding of hemagglutinin (HA) on the viral surface to host sialic acid (SA) receptors is a requisite step in the infection process. Phylogenetic analysis reveals that H5N1 viruses can be divided into 10 clades based on their HA sequences, with most human IVs centered from clade 1 and clade 2.1 to clade 2.3. Protein sequence alignment in various clades indicates the high conservation in the receptor-binding domains (RBDs) is essential for binding with the SA receptor. Two glycosylation sites, 158N and 169N, also participate in receptor recognition. In the present work, we attempted to construct a serial H5N1 HA models including diverse glycosylated HAs to simulate the binding process with various SA receptors in silico. As the SA-α-2,3-Gal and SA-α-2,6-Gal receptor adopted two distinctive topologies, straight and fishhook-like, respectively, the presence of N-glycans at 158N would decrease the affinity of HA for all of the receptors, particularly SA-α-2,6-Gal analogs. The steric clashes of the huge glycans shown at another glycosylation site, 169N, located on an adjacent HA monomer, would be more effective in preventing the binding of SA-α-2,3-Gal analogs.

  1. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    Science.gov (United States)

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  2. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  3. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    Science.gov (United States)

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  4. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    Directory of Open Access Journals (Sweden)

    Hao Song

    2016-01-01

    Full Text Available Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health.

  5. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-05-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.

  6. Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins.

    Science.gov (United States)

    Polack, Fernando P; Lydy, Shari L; Lee, Sok-Hyong; Rota, Paul A; Bellini, William J; Adams, Robert J; Robinson, Harriet L; Griffin, Diane E

    2013-02-01

    A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.

  7. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  8. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinsheng, E-mail: xzhang@iavi.org [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY (United States); Wallace, Olivia L.; Domi, Arban; Wright, Kevin J.; Driscoll, Jonathan [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Anzala, Omu [Kenya AIDS Vaccine Initiative (KAVI)-Institute of Clinical Research, Nairobi (Kenya); Sanders, Eduard J. [Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya & Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington (United Kingdom); Kamali, Anatoli [MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka and Entebbe (Uganda); Karita, Etienne [Projet San Francisco, Kigali (Rwanda); Allen, Susan [Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Fast, Pat [Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY (United States); Gilmour, Jill [Human Immunology Laboratory, International AIDS Vaccine Initiative, London (United Kingdom); Price, Matt A. [Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY (United States); Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA (United States); Parks, Christopher L. [AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY (United States); Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY (United States)

    2015-08-15

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.

  9. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies.

    Directory of Open Access Journals (Sweden)

    Peter H Goff

    Full Text Available The global population remains vulnerable in the face of the next pandemic influenza virus outbreak, and reformulated vaccinations are administered annually to manage seasonal epidemics. Therefore, development of a new generation of vaccines is needed to generate broad and persistent immunity to influenza viruses. Here, we describe three adjuvants that enhance the induction of stalk-directed antibodies against heterologous and heterosubtypic influenza viruses when administered with chimeric HA proteins. Addavax, an MF59-like nanoemulsion, poly(I:C, and an RNA hairpin derived from Sendai virus (SeV Cantell were efficacious intramuscularly. The SeV RNA and poly(I:C also proved to be effective respiratory mucosal adjuvants. Although the quantity and quality of antibodies induced by the adjuvants varied, immunized mice demonstrated comparable levels of protection against challenge with influenza A viruses on the basis of HA stalk reactivity. Finally, we present that intranasally, but not intramuscularly, administered chimeric HA proteins induce mucosal IgA antibodies directed at the HA stalk.

  10. Structural insights into the membrane fusion mechanism mediated by influenza virus hemagglutinin.

    Science.gov (United States)

    Ni, Fengyun; Chen, Xiaorui; Shen, Jun; Wang, Qinghua

    2014-02-11

    Membrane fusion is involved in many fundamental cellular processes and entry of enveloped viruses into host cells. Influenza type A virus HA has long served as a paradigm for mechanistic studies of protein-mediated membrane fusion via large-scale structural rearrangements induced by acidic pH. Here we report the newly determined crystal structure of influenza B virus HA2 in the postfusion state. Together with a large number of previously determined prefusion structures of influenza A and B virus HA and a postfusion structure of influenza A/H3N2 HA2, we identified conserved features that are shared between influenza A and B virus HA in the conformational transition and documented substantial differences that likely influence the detailed mechanisms of this process. Further studies are needed to dissect the effects of these and other structural differences in HA conformational changes and influenza pathogenicity and transmission, which may ultimately expedite the discovery of novel anti-influenza fusion inhibitors.

  11. Impact of cultivation conditions on N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture.

    Science.gov (United States)

    Rödig, Jana Verena; Rapp, Erdmann; Bohne, Jana; Kampe, Michael; Kaffka, Helene; Bock, Andreas; Genzel, Yvonne; Reichl, Udo

    2013-06-01

    Manufacturers worldwide produce influenza vaccines in different host systems. So far, either fertilized chicken eggs or mammalian cell lines are used. In all these vaccines, hemagglutinin (HA) and neuraminidase are the major components. Both are highly abundant glycoproteins in the viral envelope, and particularly HA is able to induce a strong and protective immune response. The quality characteristics of glycoproteins, such as specific activity, antigenicity, immunogenicity, binding avidity, and receptor-binding specificity can strongly depend on changes or differences in their glycosylation pattern (potential N-glycosylation occupancy as well as glycan composition). In this study, capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) based glycoanalysis (N-glycan fingerprinting) was used to determine the impact of cultivation conditions on the HA N-glycosylation pattern of Madin-Darby canine kidney (MDCK) cell-derived influenza virus A PR/8/34 (H1N1). We found that adaptation of adherent cells to serum-free growth has only a minor impact on the HA N-glycosylation pattern. Only relative abundances of N-glycan structures are affected. In contrast, host cell adaptation to serum-free suspension growth resulted in significant changes in the HA N-glycosylation pattern regarding the presence of specific N-glycans as well as their abundance. Further controls such as different suppliers for influenza virus A PR/8/34 (H1N1) seed strains, different cultivation scales and vessels in standard or high cell density mode, different virus production media varying in either composition or trypsin activity, different temperatures during virus replication and finally, the impact of β-propiolactone inactivation resulted-at best-only in minor changes in the relative N-glycan structure abundances of the HA N-glycosylation pattern. Surprisingly, these results demonstrate a rather stable HA N-glycosylation pattern despite various (significant) changes in

  12. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice

    Science.gov (United States)

    Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai

    2016-01-01

    ABSTRACT H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues

  13. Chimeric Bovine Respiratory Syncytial Virus with Attachment and Fusion Glycoproteins Replaced by Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins

    Science.gov (United States)

    Stope, Matthias B.; Karger, Axel; Schmidt, Ulrike; Buchholz, Ursula J.

    2001-01-01

    Chimeric bovine respiratory syncytial viruses (BRSV) expressing glycoproteins of bovine parainfluenza virus type 3 (BPIV-3) instead of BRSV glycoproteins were generated from cDNA. In the BRSV antigenome cDNA, the open reading frames of the major BRSV glycoproteins, attachment protein G and fusion protein F, were replaced individually or together by those of the BPIV-3 hemagglutinin-neuraminidase (HN) and/or fusion (F) glycoproteins. Recombinant virus could not be recovered from cDNA when the BRSV F open reading frame was replaced by the BPIV-3 F open reading frame. However, cDNA recovery of the chimeric virus rBRSV-HNF, with both glycoproteins replaced simultaneously, and of the chimeric virus rBRSV-HN, with the BRSV G protein replaced by BPIV-3 HN, was successful. The replication rates of both chimeras were similar to that of standard rBRSV. Moreover, rBRSV-HNF was neutralized by antibodies specific for BPIV-3, but not by antibodies specific to BRSV, demonstrating that the BRSV glycoproteins can be functionally replaced by BPIV-3 glycoproteins. In contrast, rBRSV-HN was neutralized by BRSV-specific antisera, but not by BPIV-3 specific sera, showing that infection of rBRSV-HN is mediated by BRSV F. Hemadsorption of cells infected with rBRSV-HNF and rBRSV-HN proved that BPIV-3 HN protein expressed by rBRSV is functional. Colocalization of the BPIV-3 glycoproteins with BRSV M protein was demonstrated by confocal laser scan microscopy. Moreover, protein analysis revealed that the BPIV-3 glycoproteins were present in chimeric virions. Taken together, these data indicate that the heterologous glycoproteins were not only expressed but were incorporated into the envelope of recombinant BRSV. Thus, the envelope glycoproteins derived from a member of the Respirovirus genus can together functionally replace their homologs in a Pneumovirus background. PMID:11533200

  14. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    DEFF Research Database (Denmark)

    Sun, Jing; Kudahl, Ulrich J.; Simon, Christian

    2014-01-01

    Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) represent targets for prophylactic...... and therapeutic treatments of influenza. We performed a systematic bioinformatics study of cross-reactivity of neutralizing antibodies (nAbs) against influenza virus surface glycoprotein hemagglutinin (HA). This study utilized the available crystal structures of HA complexed with the antibodies for the analysis...... of tens of thousands of HA sequences. The detailed description of B-cell epitopes, measurement of epitope area similarity among different strains, and estimation of antibody neutralizing coverage provide insights into cross-reactivity status of existing nAbs against influenza virus. We have developed...

  15. Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding

    NARCIS (Netherlands)

    Crusat, Martin; Liu, Junfeng; Palma, Angelina S.; Childs, Robert A.; Liu, Yan; Wharton, Stephen A.; Lin, Yi Pu; Coombs, Peter J.; Martin, Stephen R.; Matrosovich, Mikhail; Chen, Zi; Stevens, David J.; Hien, Vo Minh; Thanh, Tran Tan; Nhu, Le Nguyen Truc; Nguyet, Lam Anh; Ha, Do Quang; van Doorn, H. Rogier; Hien, Tran Tinh; Conradt, Harald S.; Kiso, Makoto; Gamblin, Steve J.; Chai, Wengang; Skehel, John J.; Hay, Alan J.; Farrar, Jeremy; de Jong, Menno D.; Feizi, Ten

    2013-01-01

    As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of

  16. Nanodisc-Incorporated Hemagglutinin Provides Protective Immunity against Influenza Virus Infection ▿

    OpenAIRE

    Bhattacharya, Palash; Grimme, Steve; Ganesh, Balaji; Gopisetty, Anupama; Sheng, Jian Rong; Martinez, Osvaldo; Jayarama, Shankar; Artinger, Michael; Meriggioli, Matthew; Prabhakar, Bellur S.

    2009-01-01

    Every year, influenza virus infection causes significant mortality and morbidity in human populations. Although egg-based inactivated viral vaccines are available, their effectiveness depends on the correct prediction of the circulating viral strains and is limited by the time constraint of the manufacturing process. Recombinant subunit vaccines are easier to manufacture with a relatively short lead time but are limited in their efficacy partly because the purified recombinant membrane protei...

  17. Evolution of human receptor binding affinity of H1N1 hemagglutinins from 1918 to 2009 pandemic influenza A virus.

    Science.gov (United States)

    Nunthaboot, Nadtanet; Rungrotmongkol, Thanyada; Malaisree, Maturos; Kaiyawet, Nopporn; Decha, Panita; Sompornpisut, Pornthep; Poovorawan, Yong; Hannongbua, Supot

    2010-08-23

    The recent outbreak of the novel 2009 H1N1 influenza in humans has focused global attention on this virus, which could potentially have introduced a more dangerous pandemic of influenza flu. In the initial step of the viral attachment, hemagglutinin (HA), a viral glycoprotein surface, is responsible for the binding to the human SIA alpha2,6-linked sialopentasaccharide host cell receptor (hHAR). Dynamical and structural properties, based on molecular dynamics simulations of the four different HAs of Spanish 1918 (H1-1918), swine 1930 (H1-1930), seasonal 2005 (H1-2005), and a novel 2009 (H1-2009) H1N1 bound to the hHAR were compared. In all four HA-hHAR complexes, major interactions with the receptor binding were gained from HA residue Y95 and the conserved HA residues of the 130-loop, 190-helix, and 220-loop. However, introduction of the charged HA residues K145 and E227 in the 2009 HA binding pocket was found to increase the HA-hHAR binding efficiency in comparison to the three previously recognized H1N1 strains. Changing of the noncharged HA G225 residue to a negatively charged D225 provides a larger number of hydrogen-bonding interactions. The increase in hydrophilicity of the receptor binding region is apparently an evolution of the current pandemic flu from the 1918 Spanish, 1930 swine, and 2005 seasonal strains. Detailed analysis could help the understanding of how different HAs effectively attach and bind with the hHAR.

  18. Large-scale sequence analysis of hemagglutinin of influenza A virus identifies conserved regions suitable for targeting an anti-viral response.

    Science.gov (United States)

    Sahini, Leepakshi; Tempczyk-Russell, Anna; Agarwal, Ritu

    2010-02-17

    Influenza A viral surface protein, hemagglutinin, is the major target of neutralizing antibody response and hence a main constituent of all vaccine formulations. But due to its marked evolutionary variability, vaccines have to be reformulated so as to include the hemagglutinin protein from the emerging new viral strain. With the constant fear of a pandemic, there is critical need for the development of anti-viral strategies that can provide wider protection against any Influenza A pathogen. An anti-viral approach that is directed against the conserved regions of the hemaggutinin protein has a potential to protect against any current and new Influenza A virus and provide a solution to this ever-present threat to public health. Influenza A human hemagglutinin protein sequences available in the NCBI database, corresponding to H1, H2, H3 and H5 subtypes, were used to identify highly invariable regions of the protein. Nine such regions were identified and analyzed for structural properties like surface exposure, hydrophilicity and residue type to evaluate their suitability for targeting an anti-peptide antibody/anti-viral response. This study has identified nine conserved regions in the hemagglutinin protein, five of which have the structural characteristics suitable for an anti-viral/anti-peptide response. This is a critical step in the design of efficient anti-peptide antibodies as novel anti-viral agents against any Influenza A pathogen. In addition, these anti-peptide antibodies will provide broadly cross-reactive immunological reagents and aid the rapid development of vaccines against new and emerging Influenza A strains.

  19. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus.

    Science.gov (United States)

    Wesley, Ronald D; Lager, Kelly M

    2006-11-26

    Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.

  20. Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin.

    Science.gov (United States)

    Lin, Dongguo; Luo, Yinzhu; Yang, Guang; Li, Fangfang; Xie, Xiangkun; Chen, Daiwei; He, Lifang; Wang, Jingyu; Ye, Chunfeng; Lu, Shengsheng; Lv, Lin; Liu, Shuwen; He, Jian

    2017-11-15

    Influenza A viruses (IAVs) induce acute respiratory disease and cause significant morbidity and mortality throughout the world. With the emergence of drug-resistant viral strains, new and effective anti-IAV drugs with different modes of action are urgently needed. In this study, by conjugating cholesterol to the N-terminus of the short peptide KKWK, a lipopeptide named S-KKWK was created. The anti-IAV test indicated that S-KKWK and its derivatives displayed potent antiviral activities against a broad variety of influenza A viral strains including oseltamivir-resistant strains and clinically relevant isolates with IC 50 values ranging from 0.7 to 3.0µM. An extensive mechanistic study showed that these peptides functioned as viral "entry blockers" by inhibiting the conformational rearrangements of HA2 subunit, thereby interrupting the fusion of virus-host cell membranes. Significantly, a computer-aided docking simulation and protein sequence alignment identified conserved residues in the stem region of HA2 as the possible binding site of S-KKWK, which may be employed as a potential drug target for designing anti-IAVs with a broad-spectrum of activity. By targeting this region, a potent anti-IAV agent was subsequently created. In addition, the anti-IAV activity of S-KKWK was assessed by experiments with influenza A virus-infected mice, in which S-KKWK reduced the mortality of infected animals and extended survival time significantly. Overall, in addition to providing a strategy for designing broad-spectrum anti-IAV agents, these results indicate that S-KKWK and its derivatives are prospective candidates for potent antivirals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site.

    Directory of Open Access Journals (Sweden)

    Jessica Bogs

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV originate from avirulent precursors but differ from all other influenza viruses by the presence of a polybasic cleavage site in their hemagglutinins (HA of subtype H5 or H7. In this study, we investigated the ability of a low-pathogenic avian H5N1 strain to transform into an HPAIV. Using reverse genetics, we replaced the monobasic HA cleavage site of the low-pathogenic strain A/Teal/Germany/Wv632/2005 (H5N1 (TG05 by a polybasic motif from an HPAIV (TG05(poly. To elucidate the virulence potential of all viral genes of HPAIV, we generated two reassortants carrying the HA from the HPAIV A/Swan/Germany/R65/06 (H5N1 (R65 plus the remaining genes from TG05 (TG05-HA(R65 or in reversed composition the mutated TG05 HA plus the R65 genes (R65-HA(TG05poly. In vitro, TG05(poly and both reassortants were able to replicate without the addition of trypsin, which is characteristic for HPAIV. Moreover, in contrast to avirulent TG05, the variants TG05(poly, TG05-HA(R65, and R65-HA(TG05poly are pathogenic in chicken to an increasing degree. Whereas the HA cleavage site mutant TG05(poly led to temporary non-lethal disease in all animals, the reassortant TG05-HA(R65 caused death in 3 of 10 animals. Furthermore, the reassortant R65-HA(TG05poly displayed the highest lethality as 8 of 10 chickens died, resembling "natural" HPAIV strains. Taken together, acquisition of a polybasic HA cleavage site is only one necessary step for evolution of low-pathogenic H5N1 strains into HPAIV. However, these low-pathogenic strains may already have cryptic virulence potential. Moreover, besides the polybasic cleavage site, the additional virulence determinants of H5N1 HPAIV are located within the HA itself and in other viral proteins.

  2. Glycosylation of the Hemagglutinin Protein of H5N1 Influenza Virus Increases Its Virulence in Mice by Exacerbating the Host Immune Response.

    Science.gov (United States)

    Zhao, Dongming; Liang, Libin; Wang, Shuai; Nakao, Tomomi; Li, Yanbing; Liu, Liling; Guan, Yuntao; Fukuyama, Satoshi; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2017-04-01

    The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to circulate in nature and threaten public health. Although several viral determinants and host factors that influence the virulence of HPAI H5N1 viruses in mammals have been identified, the detailed molecular mechanism remains poorly defined and requires further clarification. In our previous studies, we characterized two naturally isolated HPAI H5N1 viruses that had similar viral genomes but differed substantially in their lethality in mice. In this study, we explored the molecular determinants and potential mechanism for this difference in virulence. By using reverse genetics, we found that a single amino acid at position 158 of the hemagglutinin (HA) protein substantially affected the systemic replication and pathogenicity of these H5N1 influenza viruses in mice. We further found that the G158N mutation introduced an N-linked glycosylation at positions 158 to 160 of the HA protein and that this N-linked glycosylation enhanced viral productivity in infected mammalian cells and induced stronger host immune and inflammatory responses to viral infection. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.IMPORTANCE Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to evolve in nature and threaten human health. Key mutations in the virus hemagglutinin (HA) protein or reassortment with other pandemic viruses endow HPAI H5N1 viruses with the potential for aerosol transmissibility in mammals. A thorough understanding of the pathogenic mechanisms of these viruses will help us to develop more effective control strategies; however, such mechanisms and virulent determinants for H5N1 influenza viruses have not been fully elucidated. In this study, we identified glycosylation at positions 158 to 160 of the HA protein of two naturally occurring H5N1 viruses as an important virulence determinant. This glycosylation event enhanced viral

  3. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1 Viruses.

    Directory of Open Access Journals (Sweden)

    William T Harvey

    2016-04-01

    Full Text Available Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1 virus isolates (1997-2009 and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens.

  4. Composition of hemagglutinin and neuraminidase affects the antigen yield of influenza A(H1N1)pdm09 candidate vaccine viruses.

    Science.gov (United States)

    Shirakura, Masayuki; Kawaguchi, Akira; Tashiro, Masato; Nobusawa, Eri

    2013-01-01

    To improve the hemagglutinin (HA) antigen yield of influenza A(H1N1)pdm09 candidate vaccine viruses, we generated 7:1, 6:2, and 5:3 genetic reassortant viruses between wild-type (H1N1)pdm09 (A/California/7/2009) (Cal7) and a high-yielding master virus, A/Puerto Rico/8/34 (PR8). These viruses contained the HA; HA and neuraminidase (NA); and HA, NA, and M genes, respectively, derived from Cal7, on a PR8 backbone. The influence of the amino acid residue at position 223 in Cal7 HA on virus growth and HA antigen yield differed between these reassortant viruses. NIIDRG-7, a 7:1 virus possessing arginine at position 223, exhibited a 10-fold higher 50% egg infectious dose (EID(50)) (10.0 log(10)EID(50)/ml) than the 5:3 and 6:2 viruses. It also had 1.5- to 3-fold higher protein (13.8 μg/ml of allantoic fluids) and HA antigen (4.1 μg/ml of allantoic fluids) yields than the 5:3 and 6:2 viruses, which possessed identical Cal7 HA proteins. However, the HA antigen yield of the other 7:1 virus, which possessed glutamine at position 223 was 60% of that of NIIDRG-7. In addition, a novel 6:2 virus possessing Cal7 HA and the NA of A/Wisconsin/10/98 (a triple reassortant swine-like H1N1 virus), produced 107% of the HA yield of NIIDRG-7. In this study, we showed that the balance between HA and NA in the influenza A(H1N1)pdm09 virus affects its protein and antigen yield.

  5. Casein kinase 1α mediates degradation of receptors for type I and type II interferons caused by hemagglutinin of influenza A virus.

    Science.gov (United States)

    Xia, Chuan; Wolf, Jennifer J; Vijayan, Madhuvanthi; Studstill, Caleb J; Ma, Wenjun; Hahm, Bumsuk

    2018-01-17

    Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1) as well as IFNAR1 via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or siRNA-based knockdown of CK1α repressed the degradation process of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating a condition favorable for viral propagation. Therefore, the study uncovers a new immune evasive pathway of influenza virus.IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans by causing seasonal and pandemic influenza. Upon infection, the innate and adaptive immunity such as the interferon (IFN) response is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses. Yet, the detailed mechanisms need to be elucidated

  6. Fluorescence polarization-based assay using N-glycan-conjugated quantum dots for screening in hemagglutinin blockers for influenza A viruses.

    Science.gov (United States)

    Okamatsu, Masatoshi; Feng, Fei; Ohyanagi, Tatsuya; Nagahori, Noriko; Someya, Kazuhiko; Sakoda, Yoshihiro; Miura, Nobuaki; Nishimura, Shin-Ichiro; Kida, Hiroshi

    2013-02-01

    Attachment of influenza virus to susceptible cells is mediated by viral protein hemagglutinin (HA), which recognizes cell surface glycoconjugates that terminate in α-sialosides. To develop anti-influenza drugs based on inhibition of HA-mediated infection, novel fluorescent nanoparticles displaying multiple biantennary N-glycan chains with α-sialosides (A2-PC-QDs) that have high affinity for the HA were designed and constructed. The A2-PC-QDs enabled an easy and efficient fluorescence polarization (FP) assay for detection of interaction with the HA and competitive inhibition even by small molecule compounds against A2-PC-QDs-HA binding. The quantum dot (QD)-based FP assay established in the present study is a useful tool for high-throughput screening and to accelerate the development of novel and more effective blockers of the viral attachment of influenza virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiangjie; Belser, Jessica A.; Tumpey, Terrence M., E-mail: tft9@cdc.gov

    2016-01-15

    In 2012, an avian influenza A H7N3 (A/Mexico/InDRE7218/2012; Mx/7218) virus was responsible for two confirmed cases of human infection and led to the death or culling of more than 22 million chickens in Jalisco, Mexico. Interestingly, this virus acquired an 8-amino acid (aa)-insertion (..PENPK-DRKSRHRR-TR/GLF) near the hemagglutinin (HA) cleavage site by nonhomologous recombination with host rRNA. It remains unclear which specific residues at the cleavage site contribute to the virulence of H7N3 viruses in mammals. Using loss-of-function approaches, we generated a series of cleavage site mutant viruses by reverse genetics and characterized the viruses in vitro and in vivo. We found that the 8-aa insertion and the arginine at position P4 of the Mx/7218 HA cleavage site are essential for intracellular HA cleavage in 293T cells, but have no effect on the pH of membrane fusion. However, we identified a role for the histidine residue at P5 position in viral fusion pH. In mice, the 8-aa insertion is required for Mx/7218 virus virulence; however, the basic residues upstream of the P4 position are dispensable for virulence. Overall, our study provides the first line of evidence that the insertion in the Mx/7218 virus HA cleavage site confers its intracellular cleavability, and consequently contributes to enhanced virulence in mice. - Highlights: • An avian influenza H7N3 virus acquired a unique 8-amino acid (aa) insertion. • The role of specific basic residues in the HA insertion in viral pathogenesis was determined. • In mice, the 8-aa insertion is required for H7N3 virus virulence. • The R residue at position P4 is essential for HA intracellular cleavage and virus virulence.

  8. Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential.

    Science.gov (United States)

    Tsukamoto, Kenji; Ashizawa, Hisayoshi; Nakanishi, Koji; Kaji, Noriyuki; Suzuki, Kotaro; Okamatsu, Masatoshi; Yamaguchi, Shigeo; Mase, Masaji

    2008-09-01

    Serious concern about the worldwide transmission of the Asian H5N1 highly pathogenic (HP) avian influenza (AI) virus by migratory birds surrounds the importance of the AI global surveillance in wild aquatic birds and underscores the requirement for a reliable subtyping method of AI viruses. PCR is advantageous due to its simplicity, lower cross-reactivity, and unlimited reagent supply. Currently, the only available hemagglutinin (HA) subtyping primer set that can subtype H1 through H15 is not fully evaluated and, since it only targets HA1, is unavailable for molecular pathotyping of AI viruses. Our preliminary experiments found that these primer sets were cross-reactive and missed some recent AI viruses. In this study, we developed new primer sets against HA cleavage sites for subtyping H1 to H15 genes and for molecular pathotyping. Our primer sets were subtype specific and detected 99% of previously identified HA genes (115/116, 1949 to March 2006), and the correct amplifications of HA genes were confirmed by sequence analyses of all 115 PCR products. The primer sets successfully subtyped most of the recent AI viruses isolated in Japan (96% [101/105], October 2006 to March 2007). Taken together, our primer sets could efficiently detect HA genes (98% [216/221]) of both previously and recently identified HA genes or of both American (29/29) and Eurasian (187/192) lineages. All 38 H5 and 13 H7 viruses were molecularly pathotyped by sequencing analyses of the HA cleavage site. In contrast, despite efficient detection of previously identified strains (98% [114/116]), the published primer sets exhibited lower specificity and lower detection efficiency against recent AI viruses (80% [84 of 105]). These results indicate that our primers are useful not only for HA subtyping but also for molecular pathotyping of both previous and recent AI viruses. These advancements will enable general diagnostic laboratories to subtype AI viruses for the surveillance in wild aquatic birds.

  9. Subtyping of Avian Influenza Viruses H1 to H15 on the Basis of Hemagglutinin Genes by PCR Assay and Molecular Determination of Pathogenic Potential▿

    Science.gov (United States)

    Tsukamoto, Kenji; Ashizawa, Hisayoshi; Nakanishi, Koji; Kaji, Noriyuki; Suzuki, Kotaro; Okamatsu, Masatoshi; Yamaguchi, Shigeo; Mase, Masaji

    2008-01-01

    Serious concern about the worldwide transmission of the Asian H5N1 highly pathogenic (HP) avian influenza (AI) virus by migratory birds surrounds the importance of the AI global surveillance in wild aquatic birds and underscores the requirement for a reliable subtyping method of AI viruses. PCR is advantageous due to its simplicity, lower cross-reactivity, and unlimited reagent supply. Currently, the only available hemagglutinin (HA) subtyping primer set that can subtype H1 through H15 is not fully evaluated and, since it only targets HA1, is unavailable for molecular pathotyping of AI viruses. Our preliminary experiments found that these primer sets were cross-reactive and missed some recent AI viruses. In this study, we developed new primer sets against HA cleavage sites for subtyping H1 to H15 genes and for molecular pathotyping. Our primer sets were subtype specific and detected 99% of previously identified HA genes (115/116, 1949 to March 2006), and the correct amplifications of HA genes were confirmed by sequence analyses of all 115 PCR products. The primer sets successfully subtyped most of the recent AI viruses isolated in Japan (96% [101/105], October 2006 to March 2007). Taken together, our primer sets could efficiently detect HA genes (98% [216/221]) of both previously and recently identified HA genes or of both American (29/29) and Eurasian (187/192) lineages. All 38 H5 and 13 H7 viruses were molecularly pathotyped by sequencing analyses of the HA cleavage site. In contrast, despite efficient detection of previously identified strains (98% [114/116]), the published primer sets exhibited lower specificity and lower detection efficiency against recent AI viruses (80% [84 of 105]). These results indicate that our primers are useful not only for HA subtyping but also for molecular pathotyping of both previous and recent AI viruses. These advancements will enable general diagnostic laboratories to subtype AI viruses for the surveillance in wild aquatic birds

  10. Single electrode genosensor for simultaneous determination of sequences encoding hemagglutinin and neuraminidase of avian influenza virus type H5N1.

    Science.gov (United States)

    Grabowska, Iwona; Malecka, Kamila; Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Radecka, Hanna; Radecki, Jerzy

    2013-11-05

    The duo-genosensor consisting of two different oligonucleotide probes immobilized covalently on the surface of one gold electrode via Au-S bond formation was used for simultaneous determination of two different oligonucleotide targets. One of the probes, decorated on its 5'-end with ferrocene (SH-ssDNA-Fc), is complementary to the cDNA representing a sequence encoding part of H5 hemagglutinin from H5N1 virus. The second probe, decorated on its 5'-end with methylene blue (SH-ssDNA-MB), is complementary to cDNA representing the fragment of N1 neuraminidase from the same virus. The presence of both probes on the surface of gold electrodes was confirmed with Osteryoung square-wave voltammetry (OSWV). The changes in redox activity of both redox active complexes before and after the hybridization process were used as analytical signal. The peak at +400 ± 2 mV was observed in the presence of 40 nM ssDNA used as a target for SH-ssDNA-Fc probe. This peak increased with the increase of concentration of target ssDNA. It indicates the "signal on" mode of analytical signal generation. The peak at -250 ± 4 mV, characteristic for SH-ssDNA-MB probe, was decreasing with the increase of the concentration of the complementary ssDNA target starting from 8 to 100 nM. This indicates the generation of electrochemical signal according to the "signal off" mode. The proposed duo-genosensor is capable of simultaneous, specific, and good sensitivity probing for the sequences derived from genes encoding two main markers of the influenza virus, hemagglutinin and neuraminidase.

  11. Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan

    Directory of Open Access Journals (Sweden)

    Mizuta Katsumi

    2011-12-01

    Full Text Available Abstract Background Human parainfluenza virus type 1 (HPIV1 causes various acute respiratory infections (ARI. Hemagglutinin-neuraminidase (HN glycoprotein of HPIV1 is a major antigen. However, the molecular epidemiology and genetic characteristics of such ARI are not exactly known. Recent studies suggested that a phylogenetic analysis tool, namely the maximum likelihood (ML method, may be applied to estimate the evolutionary time scale of various viruses. Thus, we conducted detailed genetic analyses including homology analysis, phylogenetic analysis (using both the neighbor joining (NJ and ML methods, and analysis of the pairwise distances of HN gene in HPIV1 isolated from patients with ARI in Yamagata prefecture, Japan. Results A few substitutions of nucleotides in the second binding site of HN gene were observed among the present isolates. The strains were classified into two major clusters in the phylogenetic tree by the NJ method. Another phylogenetic tree constructed by the ML method showed that the strains diversified in the late 1980s. No positively selected sites were found in the present strains. Moreover, the pairwise distance among the present isolates was relatively short. Conclusions The evolution of HN gene in the present HPIV1 isolates was relatively slow. The ML method may be a useful phylogenetic method to estimate the evolutionary time scale of HPIV and other viruses.

  12. Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran, 2015.

    Science.gov (United States)

    Ghafouri, Syed Ali; Langeroudi, Arash Ghalyanchi; Maghsoudloo, Hossein; Tehrani, Farshad; Khaltabadifarahani, Reza; Abdollahi, Hamed; Fallah, Mohammad Hossein

    2017-02-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR. The positive samples (n = 10) were characterized as HPAI H5N1 by sequencing analysis for the hemagglutinin and neuraminidase genes. Phylogenetic analysis of the samples revealed that the viruses belonged to clade 2.3.2.1c, and cluster with the HPAI H5N1 viruses isolated from different avian species in Bulgaria, Romania, and Nigeria in 2015. They were not closely related to other H5N1 isolates detected in previous years in Iran. Our study provides new insights into the evolution and genesis of H5N1 influenza in Iran and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Iran.

  13. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Jing eSun

    2014-02-01

    Full Text Available Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies represent targets for prophylactic and therapeutic treatments of influenza. We performed a systematic bioinformatics study of cross-reactivity of neutralizing antibodies against influenza virus surface glycoprotein hemagglutinin (HA. This study utilized the available crystal structures of HA complexed with the antibodies for the analysis of tens of thousands of HA sequences. The detailed description of B-cell epitopes, measurement of epitope area similarity among different strains, and estimation of antibody neutralizing coverage provide insights into cross-reactivity status of existing neutralizing antibodies against influenza virus. We have developed a method to assess the likely cross-reactivity potential of broadly neutralizing antibodies for influenza strains, either newly emerged or existing. Our method catalogs influenza strains by a new concept named discontinuous peptide, and then provide assessment of cross-reactivity. Potentially cross-reactive strains are those that share 100% identity with experimentally verified neutralized strains. By cataloging influenza strains and their B-cell epitopes for known broadly neutralizing antibodies, our method provides guidance for selection of representative strains for further experimental design. The knowledge of sequences, their B-cell epitopes, and differences between historical influenza strains, we enhance our preparedness and the ability to respond to the emerging pandemic threats.

  14. Isolation and sequence analysis of hemagglutinin gene of Influenza A H1N1 virus from Iranian clinical samples during 2009 pandemic flu

    Directory of Open Access Journals (Sweden)

    Seyyedeh Fahimeh Mousavi

    2014-05-01

    Full Text Available Background: Influenza virus is a globally important respiratory pathogen causing high degree of morbidity and mortality annually. The novel Influenza virus (A/H1N1 which involved many populations of the world in 2009 is a sort of triple reassortment between swine, bird and human viruses. Given the important role of hemagglutinin in the infectivity of influenza virus, genome sequencing of this protein and investigation of its changes seems necessary. Material and Method: In this experimental study, the viral genome was extracted from clinical throat swab samples, in which the presence of swine influenza genome has been confirmed by Real-time PCR according to WHO protocol in Influenza Research Lab, Pasteur Institute of Iran. Full-length of HA genome was amplified using specific primers by one step-RT-PCR, cloned into pGEM-T Easy vector followed by identification with restriction enzyme analysis and sequencing. Results: Full genome of novel influenza A/H1N1 from clinical samples was amplified by PCR and the expected 1777 bp segment PCR product was visualized by electrophoresis, gel purified, cloned into pGEM-TEasy vector and then sequenced. Analysis of sequencing was accomplished by chromas software (version 1.45-Australia and the nucleotide sequence data was deposited in GenBank database under the accession number: “HQ419001.1”. Conclusion: The result of sequencing was well-matched with the recommended vaccine strain and other registered sequences in NCBI.

  15. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2016-11-01

    Full Text Available Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1 multiple lineages have been circulating globally; (2 there have been weak and infrequent selective bottlenecks; (3 the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4 there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.

  16. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    Science.gov (United States)

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    .S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health. PMID:27807224

  17. Conserved synthetic peptides from the hemagglutinin of influenza viruses induce broad humoral and T-cell responses in a pig model.

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    Full Text Available Outbreaks involving either H5N1 or H1N1 influenza viruses (IV have recently become an increasing threat to cause potential pandemics. Pigs have an important role in this aspect. As reflected in the 2009 human H1N1 pandemia, they may act as a vehicle for mixing and generating new assortments of viruses potentially pathogenic to animals and humans. Lack of universal vaccines against the highly variable influenza virus forces scientists to continuously design vaccines à la carte, which is an expensive and risky practice overall when dealing with virulent strains. Therefore, we focused our efforts on developing a broadly protective influenza vaccine based on the Informational Spectrum Method (ISM. This theoretical prediction allows the selection of highly conserved peptide sequences from within the hemagglutinin subunit 1 protein (HA1 from either H5 or H1 viruses which are located in the flanking region of the HA binding site and with the potential to elicit broader immune responses than conventional vaccines. Confirming the theoretical predictions, immunization of conventional farm pigs with the synthetic peptides induced humoral responses in every single pig. The fact that the induced antibodies were able to recognize in vitro heterologous influenza viruses such as the pandemic H1N1 virus (pH1N1, two swine influenza field isolates (SwH1N1 and SwH3N2 and a H5N1 highly pathogenic avian virus, confirm the broad recognition of the antibodies induced. Unexpectedly, all pigs also showed T-cell responses that not only recognized the specific peptides, but also the pH1N1 virus. Finally, a partial effect on the kinetics of virus clearance was observed after the intranasal infection with the pH1N1 virus, setting forth the groundwork for the design of peptide-based vaccines against influenza viruses. Further insights into the understanding of the mechanisms involved in the protection afforded will be necessary to optimize future vaccine formulations.

  18. Fusion activity of influenza virus PR8/34 correlates with a temperature-induced conformational change within the hemagglutinin ectodomain detected by photochemical labeling

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, J.; Zugliani, C. (Swiss Federal Inst. of Tech., Zuerich (Switzerland)); Mischler, R. (Swiss Serum and Vaccine Inst., Bern (Switzerland))

    1991-03-05

    Fusion of influenza viruses with membranes is catalyzed by the viral spike protein hemagglutinin (HA). Under mildly acidic conditions ({approximately}pH 5) this protein undergoes a conformational change that triggers the exposure of the fusion peptide, the hydrophobic N-terminal segment of the HA2 polypeptide chain. Insertion of this segment into the target membrane (or viral membrane ) is likely to represent a key step along the fusion pathway, but the details are far from being clear. The photoreactive phospholipid 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-{sup 3}H)undecanoyl)-sn-glycero-3-phosphocholine (({sup 3}H)PTPC/11), inserted into the bilayer of large unilamellar vesicles (LUVs), allowed the authors to investigate both the interaction of viruses with the vesicles under perfusion conditions and the fusion process itself occurring at elevated temperatures only. Despite the observed binding of viruses to LUVs at pH 5 and 0C, labeling of HA2 was very weak. They have studied also the effect of temperature on the acid-induced (pH 5) interaction of bromelain-solubilized HA (BHA) with vesicles.

  19. Dual Roles of the Hemagglutinin Segment-Specific Noncoding Nucleotides in the Extended Duplex Region of the Influenza A Virus RNA Promoter.

    Science.gov (United States)

    Wang, Jingfeng; Li, Jinghua; Zhao, Lili; Cao, Mengmeng; Deng, Tao

    2017-01-01

    We recently reported that the segment-specific noncoding regions (NCRs) of the hemagglutinin (HA) and neuraminidase (NA) segments are subtype specific, varying significantly in sequence and length at both the 3' and 5' ends. Interestingly, we found that nucleotides CC at positions 13 and 14 at the 3' end and GUG at positions 14 to 16 at the 5' end (termed 14' and 16' to distinguish them from 3' positions) are absolutely conserved among all HA subtype-specific NCRs. These HA segment-specific NCR nucleotides are located in the extended duplex region of the viral RNA promoter. In order to understand the significance of these highly conserved HA segment-specific NCR nucleotides in the virus life cycle, we performed extensive mutagenesis on the HA segment-specific NCR nucleotides and studied their functional significance in regulating influenza A virus replication in the context of the HA segment with both RNP reconstitution and virus infection systems. We found that the base pairing of the 3'-end 13 position with the 5'-end 14' position ((3')13-(5')14') position is critical for RNA promoter activity while the identity of the base pair is critical in determining HA segment packaging. Moreover, the identity of the residue at the 3'-end 14 position is functionally more important in regulating virus genome packaging than in regulating viral RNA synthesis. Taken together, these results demonstrated that the HA segment-specific NCR nucleotides in the extended duplex region of the promoter not only form part of the promoter but also play a key role in controlling virus selective genome packaging. The segment-specific complementary nucleotides (13 to 15 in the 3' end and 14' to 16' in the 5' end) in the extended duplex region of the influenza virus RNA promoter vary significantly among different segments and have rarely been studied. Here, we performed mutagenesis analysis of the highly conserved HA segment-specific nucleotides in the extended duplex region and examined their

  20. Wheat germ cell-free system-based production of hemagglutinin-neuraminidase protein of human parainfluenza virus type 3: generation and characterization of monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Satoko eMatsunaga

    2014-05-01

    Full Text Available Human parainfluenza virus 3 (HPIV3 commonly causes respiratory disorders in infants and young children. Monoclonal antibodies (MAbs have been produced to several components of HPIV3 and commercially available. However, the utility of these antibodies for several immunological and proteomic assays for understanding the nature of HPIV3 infection remain to be characterized. Herein, we report the development and characterization of monoclonal antibodies against hemagglutinin-neuraminidase (HN of HPIV3. A recombinant full-length HPIV3-HN was successfully synthesized using the wheat-germ cell-free protein production system. After immunization and cell fusion, 36 mouse hybridomas producing MAbs to HPIV3-HN were established. The MAbs obtained were fully characterized using ELISA, immunoblotting and immunofluorescent analyses. Of the MAbs tested, single clone was found to be applicable in both flow cytometry and immunoprecipitation procedures. By utilizing the antibody, we newly identified HPIV3-HN binding host proteins via immunoprecipitation-based mass spectrometry analysis. This study provides the availability of our newly-developed MAbs as a valuable tool for the study of HPIV3 infection as well as the several diagnostic tests of this virus.

  1. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens.

    Science.gov (United States)

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M; Kapczynski, Darrell R

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. Copyright © 2016. Published by Elsevier Inc.

  2. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants.

    Science.gov (United States)

    Wong, Terianne M; Allen, James D; Bebin-Blackwell, Anne-Gaelle; Carter, Donald M; Alefantis, Timothy; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines. IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated

  3. Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin.

    Science.gov (United States)

    Schwarzer, Jana; Rapp, Erdmann; Hennig, René; Genzel, Yvonne; Jordan, Ingo; Sandig, Volker; Reichl, Udo

    2009-07-09

    Mammalian cell culture processes are commonly used for production of recombinant glycoproteins, antibodies and viral vaccines. Since several years there is an increasing interest in cell culture-based influenza vaccine production to overcome limitations of egg-based production systems, to improve vaccine supply and to increase flexibility in vaccine manufacturing. With the switch of the production system several key questions concerning the possible impact of host cell lines on antigen quality, passage-dependent selection of certain viral phenotypes or changes in hemagglutinin (HA) conformation have to be addressed to guarantee safety and efficiency of vaccines. In contrast to the production of recombinant glycoproteins, comparatively little is known regarding glycosylation of HA, derived from mammalian cell cultures. Within this study, a capillary DNA-sequencer (based on CGE-LIF technology), was utilized for N-glycan analysis of three different influenza virus strains, which were replicated in six different cell lines. Detailed results concerning the influence of the host cell line on complexity and composition of the HA N-glycosylation pattern, are presented. Strong host cell but also virus type and subtype dependence of HA N-glycosylation was found. Clear differences were already observed, by N-glycan fingerprint comparison. Further structural investigations of the N-glycan pools revealed that host cell dependence of HA N-glycosylation was mainly related to minor variations of the (monomeric) constitution of single N-glycans. To some extent, shifts in the N-glycan pool composition regarding the proportion of different N-glycan types were observed. In contrast to this, a principal switch of the N-glycan type attached to HA was observed when comparing different virus types (A and B) and subtypes (H1N1 and H3N2).

  4. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    Science.gov (United States)

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  5. 77 FR 63783 - Influenza Viruses Containing the Hemagglutinin from the Goose/Guangdong/1/96 Lineage

    Science.gov (United States)

    2012-10-17

    ....regulations.gov , including any personal information provided. For access to the docket to read background... highly pathogenic avian influenza viruses. Adv Virus Res. 2009;73:55-97. 12. WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature...

  6. On the possibility of lipid-induced regulation of conformation and immunogenicity of influenza a virus H1/N1 hemagglutinin as antigen of TI-complexes.

    Science.gov (United States)

    Vorobieva, Natalia; Sanina, Nina; Vorontsov, Vladimir; Kostetsky, Eduard; Mazeika, Andrey; Tsybulsky, Alexander; Kim, Natalia; Shnyrov, Valery

    2014-01-01

    The tubular immunostimulating complex (TI-complex) consisting of cucumarioside A2-2, cholesterol and monogalactosyldiacylglycerol (MGDG) from marine macrophytes is the perspective antigen delivery system for subunit vaccines. MGDG is a lipid matrix for the protein antigen incorporated in the TI-complex. The aim of the present work was to study the influence of MGDGs from different macrophytes on conformation and immunogenicity of the secreted recombinant uncleaved hemagglutinin monomer (HA0S) of influenza A virus H1/N1. Differential scanning calorimetry, fluorescence spectroscopy and circular dichroism showed a dependence of the conformational changes of HA0S on the microviscosity of MGDG. The most viscous MGDG from Zostera marina induced the strongest rearrangements in protein conformation. Immunization of mice with HA0S within TI-complexes comprising different MGDGs resulted in an approximately 2-fold increase of the levels of anti-HA0S antibodies and granulocyte-macrophage colony-stimulating factor (GM-CSF) compared with those induced by HA0S alone. TI-complexes based on MGDG from Z. marina stimulated the maximal production of GM-CSF. However, humoral immune response (anti-HA0S antibodies), unlike cell-mediated immune response (GM-CSF), did not depend on the physicochemical properties of MGDGs. It is assumed that this is due to the different localization and conformational lipid sensitivity of the HA0S regions, which are responsible for these types of immune responses. © 2014 S. Karger AG, Basel.

  7. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH

    Energy Technology Data Exchange (ETDEWEB)

    Harter, C.; Baechi, T.S.; Semenza, G.; Brunner, J.

    1988-03-22

    To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) and a new analogue of a phospholipid, 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-/sup 3/H) undecanoyl)-sn-glycero-3-phosphocholine ((/sup 3/H)-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with (/sup 125/I)TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes is mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.

  8. Influenza virus hemagglutinin spike neck architectures and interaction with model enzymes evaluated by MALDI-TOF mass spectrometry and bioinformatics tools.

    Science.gov (United States)

    Serebryakova, Marina V; Kordyukova, Larisa V; Semashko, Tatiana A; Ksenofontov, Alexander L; Rudneva, Irina A; Kropotkina, Ekaterina A; Filippova, Irina Yu; Veit, Michael; Baratova, Lyudmila A

    2011-09-01

    Interactions between model enzymes and the influenza virus hemagglutinin (HA) homotrimeric spike were addressed. We digested influenza virions (naturally occurring strains and laboratory reassortants) with bromelain or subtilisin Carlsberg and analyzed by MALDI-TOF mass spectrometry the resulting HA2 C-terminal segments. All cleavage sites, together with (minor) sites detected in undigested HAs, were situated in the linker region that connects the transmembrane domain to the ectodomain. In addition to cleavage at highly favorable amino acids, various alternative enzyme preferences were found that strongly depended on the HA subtype/type. We also evaluated the surface electrostatic potentials, binding cleft topographies and spatial dimensions of stem bromelain (homologically modeled) and subtilisin Carlsberg (X-ray resolved). The results show that the enzymes (∼45Å(3)) would hardly fit into the small (∼18-20Å) linker region of the HA-spike. However, the HA membrane proximal ectodomain region was predicted to be intrinsically disordered. We propose that its motions allow steric adjustment of the enzymes' active sites to the neck of the HA spike. The subtype/type-specific architectures in this region also influenced significantly the cleavage preferences of the enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    Science.gov (United States)

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  10. Evidences Suggesting Involvement of Viruses in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kanupriya Gupta

    2013-01-01

    Full Text Available Oral cancer is one of the most common cancers and it constitutes a major health problem particularly in developing countries. Oral squamous cell carcinoma (OSCC represents the most frequent of all oral neoplasms. Several risk factors have been well characterized to be associated with OSCC with substantial evidences. The etiology of OSCC is complex and involves many factors. The most clearly defined potential factors are smoking and alcohol, which substantially increase the risk of OSCC. However, despite this clear association, a substantial proportion of patients develop OSCC without exposure to them, emphasizing the role of other risk factors such as genetic susceptibility and oncogenic viruses. Some viruses are strongly associated with OSCC while the association of others is less frequent and may depend on cofactors for their carcinogenic effects. Therefore, the exact role of viruses must be evaluated with care in order to improve the diagnosis and treatment of OSCC. Although a viral association within a subset of OSCC has been shown, the molecular and histopathological characteristics of these tumors have yet to be clearly defined.

  11. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies.

    Science.gov (United States)

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei; Zhou, Paul

    2017-06-01

    Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific.IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly

  12. Production of polyclonal antibody against Tehran strain influenza virus (A/H1N1/2009 hemagglutinin conserved domain (HA2: brief report

    Directory of Open Access Journals (Sweden)

    Somayeh Zamani

    2015-10-01

    Full Text Available Background: The influenza virus is one of the most important factors for higher morbidity and mortality in the world. Recently, researchers have been focused on influenza conserved antigenic proteins such as hemagglutinin stalk domain (HA2 for vaccine production and serological studies. The HA2 plays a major role in the fusion of the virus with host cells membrane. The immunity system enables to produce antibody against HA2. The aim of this study is polyclonal antibody production against influenza HA2. Methods: This study was done in the Influenza Research Lab, Pasteur Institute of Iran, Tehran for one year from September 2013 to October 2014. In the present study, recombinant HA2 protein was produced in prokaryotic system and purified using Nickel affinity chromatography. The purified HA2 was mixed with Freund’s adjuvant (complete and incomplete and injected into two New Zealand white rabbits by intramuscularly and subcutaneously routes. Immunization was continued for several months with two weeks interval. Before each immunization, blood was drawn by venous puncture from the rabbit ear. Function of rabbit's sera was evaluated using radial immunodiffusion (RID in both forms, Single RID (SRID and Double RID (DRID. Finally, antiserum activity against HA2 was evaluated using western blotting as serological assay. Results: Sedimentary line and zone was observed in RID assays (SRID and DRID represent interaction between HA2 protein and anti- HA2 antibody. As well as, western blotting results was positive for HA2 protein. Therefore, these results showed that polyclonal antibody produced against HA2 protein can identify HA2 protein antigenic sites. Conclusion: These findings show that humoral immune responses have properly been stimulated in rabbits and these antibodies can identify HA2 protein and may be suitable for other serological methods.

  13. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk; Choi, Young Ki

    2017-03-15

    In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian

  14. Anti-Tumor Effects of an Oncolytic Adenovirus Expressing Hemagglutinin-Neuraminidase of Newcastle Disease Virus in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Dongyun He

    2014-02-01

    Full Text Available Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT promoter (Ad-hTERTp-E1a-HN, to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining, increase reactive oxygen species (ROS, reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials.

  15. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    Science.gov (United States)

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  16. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

    OpenAIRE

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J.; Fuchs, Serge Y.; McDermott, Adrian B.; Hahm, Bumsuk

    2016-01-01

    Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decre...

  17. Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    2010-07-01

    Full Text Available In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 "Spanish Flu". The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic.Recombinant technology can be used to express the hemagglutinin (HA of the emerging new influenza strain in a variety of systems including mammalian, insect, and bacterial cells. In this study, two forms of HA proteins derived from the currently circulating novel H1N1 A/California/07/2009 virus, HA1 (1-330 and HA (1-480, were expressed and purified from E. coli under controlled redox refolding conditions that favoured proper protein folding. However, only the recombinant HA1 (1-330 protein formed oligomers, including functional trimers that bound receptor and caused agglutination of human red blood cells. These proteins were used to vaccinate ferrets prior to challenge with the A/California/07/2009 virus. Both proteins induced neutralizing antibodies, and reduced viral loads in nasal washes. However, the HA1 (1-330 protein that had higher content of multimeric forms provided better protection from fever and weight loss at a lower vaccine dose compared with HA (1-480. Protein yield for the HA1 (1-330 ranged around 40 mg/Liter, while the HA (1-480 yield was 0.4-0.8 mg/Liter.This is the first study that describes production in bacterial system of properly folded functional globular HA1 domain trimers, lacking the HA2 transmembrane protein, that elicit potent neutralizing antibody responses following vaccination and protect ferrets from in vivo challenge. The combination of bacterial expression system with established quality control methods could provide a mechanism for rapid large scale production of influenza vaccines in the face of influenza pandemic

  18. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Directory of Open Access Journals (Sweden)

    Kara McCormick

    Full Text Available Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling technology to create a panel of chimeric HA genes.Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129 was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129 and a A/swine/Texas/4199-2/98 backbone (TX98-129. When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  19. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  20. Virus-like particles comprising H5, H7 and H9 hemagglutinins elicit protective immunity to heterologous avian influenza viruses in chickens

    Science.gov (United States)

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained inf...

  1. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity.

    Science.gov (United States)

    Hervé, Pierre-Louis; Lorin, Valérie; Jouvion, Grégory; Da Costa, Bruno; Escriou, Nicolas

    2015-12-01

    Highly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics. These viruses evolve regularly by substitutions in antigenic sites of the hemagglutinin (HA), which prevent neutralization by antibodies directed against previous strains (antigenic drift). For seasonal H3N2 viruses, an addition of N-glycosylation sites (glycosites) on H3 contributed to this drift. Here, we questioned whether additional glycosites on H5 could induce an escape of H5N1 virus from neutralization, as it was observed for seasonal H3N2 viruses. Seven H5N1 mutants were produced by adding glycosites on H5. The most glycosylated virus escaped from neutralizing antibodies, in vitro and in vivo. Furthermore, a single additional glycosite was responsible for this escape. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship.

    Science.gov (United States)

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D; Sandaa, Ruth-Anne

    2017-04-20

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.

  3. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains.IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  4. Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro.

    Science.gov (United States)

    Hendin, Hilary E; Pillet, Stéphane; Lara, Amanda N; Wu, Cheng-Ying; Charland, Nathalie; Landry, Nathalie; Ward, Brian J

    2017-05-02

    The recent emergence of avian influenza strains has fuelled concern about pandemic preparedness since vaccines targeting these viruses are often poorly immunogenic. Weak antibody responses to vaccines have been seen across multiple platforms including plant-made VLPs. To better understand these differences, we compared the in vitro responses of human immune cells exposed to plant-made virus-like particle (VLP) vaccines targeting H1N1 (H1-VLP) and H5N1 (H5-VLP). Peripheral blood mononuclear cells (PBMC) from healthy adults were stimulated ex vivo with 2-5µg/mL VLPs bearing the hemagglutinin (HA) of either H1N1 (A/California/7/2009) or H5N1 (A/Indonesia/5/05). VLP-immune cell interactions were characterized by confocal microscopy and flow cytometry 30min after stimulation with dialkylaminostyryl dye-labeled (DiD) VLP. Expression of CD69 and pro-inflammatory cytokines were used to assess innate immune activation 6h after stimulation. H1- and H5-VLPs rapidly associated with all subsets of human PBMC but exhibited unique binding preferences and frequencies. The H1-VLP bound to 88.7±1.6% of the CD19 + B cells compared to only 21.9±1.8% bound by the H5-VLP. At 6h in culture, CD69 expression on B cells was increased in response to H1-VLP but not H5-VLP (22.79±3.42% vs. 6.15±0.82% respectively: pvaccines. Plant-made VLP vaccines bearing H1 or H5 rapidly elicit immune activation and cytokine production in human PBMC. Differences in the VLP-immune cell interactions suggest that features of the HA proteins themselves, such as receptor specificity, influence innate immune responses. Although not generally considered for inactivated vaccines, the distribution and characteristics of influenza receptor(s) on the immune cells themselves may contribute to both the strength and pattern of the immune response generated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    Directory of Open Access Journals (Sweden)

    N. Bajwa

    2014-03-01

    Full Text Available Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1. Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  6. Membrane Fusion and Infection of the Influenza Hemagglutinin.

    Science.gov (United States)

    Smrt, Sean T; Lorieau, Justin L

    2017-01-01

    The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.

  7. Newcastle Disease Virus Establishes Persistent Infection in Tumor Cells In Vitro: Contribution of the Cleavage Site of Fusion Protein and Second Sialic Acid Binding Site of Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rangaswamy, Udaya S; Wang, Weijia; Cheng, Xing; McTamney, Patrick; Carroll, Danielle; Jin, Hong

    2017-08-15

    Newcastle disease virus (NDV) is an oncolytic virus being developed for the treatment of cancer. Following infection of a human ovarian cancer cell line (OVCAR3) with a recombinant low-pathogenic NDV, persistent infection was established in a subset of tumor cells. Persistently infected (PI) cells exhibited resistance to superinfection with NDV and established an antiviral state, as demonstrated by upregulation of interferon and interferon-induced genes such as myxoma resistance gene 1 (Mx1) and retinoic acid-inducing gene-I (RIG-I). Viruses released from PI cells induced higher cell-to-cell fusion than the parental virus following infection in two tumor cell lines tested, HT1080 and HeLa, and remained attenuated in chickens. Two mutations, one in the fusion (F) protein cleavage site, F117S (F117S), and another in hemagglutinin-neuraminidase (HN), G169R (HN169R), located in the second sialic acid binding region, were responsible for the hyperfusogenic phenotype. F117S improves F protein cleavage efficiency, facilitating cell-to-cell fusion, while HN169R possesses a multifaceted role in contributing to higher fusion, reduced receptor binding, and lower neuraminidase activity, which together result in increased fusion and reduced viral replication. Thus, establishment of persistent infection in vitro involves viral genetic changes that facilitate efficient viral spread from cell to cell as a potential mechanism to escape host antiviral responses. The results of our study also demonstrate a critical role in the viral life cycle for the second receptor binding region of the HN protein, which is conserved in several paramyxoviruses.IMPORTANCE Oncolytic Newcastle disease virus (NDV) could establish persistent infection in a tumor cell line, resulting in a steady antiviral state reflected by constitutively expressed interferon. Viruses isolated from persistently infected cells are highly fusogenic, and this phenotype has been mapped to two mutations, one each in the

  8. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of IgA for heterosubtypic immunity.

    Directory of Open Access Journals (Sweden)

    Mieko Muramatsu

    Full Text Available Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this

  9. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of IgA for heterosubtypic immunity.

    Science.gov (United States)

    Muramatsu, Mieko; Yoshida, Reiko; Yokoyama, Ayaka; Miyamoto, Hiroko; Kajihara, Masahiro; Maruyama, Junki; Nao, Naganori; Manzoor, Rashid; Takada, Ayato

    2014-01-01

    Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be

  10. Spatial screening of hemagglutinin on Influenza A virus particles: Sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders.

    Science.gov (United States)

    Bandlow, Victor; Liese, Susanne; Lauster, Daniel; Ludwig, Kai; Netz, Roland R; Herrmann, Andreas; Seitz, Oliver

    2017-10-20

    Attachment of the Influenza A virus onto host cells involves multivalent interactions between virus surface hemagglutinin (HA) and sialoside-containing glyco ligands. Despite the development of extremely powerful multivalent bind-ers of the Influenza virus and other viruses, comparably little is known about the optimal spacing of HA ligands, which ought to bridge binding sites within or across the trimeric HA molecules. To explore the criteria for ligand economical high affinity binding, we systematically probed distance-affinity relationships by means of two differently behaving scaffold types based on i) flexible polyethylene glycol (PEG) conjugates and ii) rigid self-assembled DNA·PNA complexes. The bivalent scaffolds presented two sialyl-LacNAc ligands in 23-101 Å distance. A combined analysis of binding by means of microscale thermophoresis measurements and statistical mechanics models exposed the inherent limitations of PEG-based spacers. Given the distance requirements of HA, the flexibility of PEG scaffolds is too high to raise the effective concentration of glyco ligands above a value that allows interactions with the low affinity binding site. By contrast, spatial screening with less flexible, self-assembled peptide nucleic acid (PNA)·DNA complexes uncovered a well-defined and, surprisingly, bimodal distance-affinity relationship for interactions of the Influenza A virus HA with bivalent displays of the natural sialyl-LacNAc ligand. Optimal constructs conferred 10(3)-fold binding enhancements with only two ligands. We discuss the existence of secondary binding sites and shine light on the preference for intramolecular rather than intermolecular recognition of HA trimers on the virus surface.

  11. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  12. Unexpected Genome Variability at Multiple Loci Suggests Cacao Swollen Shoot Virus Comprises Multiple, Divergent Molecular Variants.

    Science.gov (United States)

    Cacao swollen shoot virus (CSSV) [Badnavirus, Caulimoviridae] causes swollen shoot disease of Theobroma cacao L. in West Africa. Since ~2000, various diagnostic tests have failed to detect CSSV in ~50-70% of symptomatic cacao plants, suggesting the possible emergence of new, previously uncharacteriz...

  13. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Directory of Open Access Journals (Sweden)

    Naoki Takizawa

    2016-09-01

    Full Text Available The influenza glycoproteins, hemagglutinin (HA and neuraminidase (NA, which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1 in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  14. Ultra-deep pyrosequencing of partial surface protein genes from infectious Salmon Anaemia virus (ISAV suggest novel mechanisms involved in transition to virulence.

    Directory of Open Access Journals (Sweden)

    Turhan Markussen

    Full Text Available Uncultivable HPR0 strains of infectious salmon anaemia viruses (ISAVs infecting gills are non-virulent putative precursors of virulent ISAVs (vISAVs causing systemic disease in farmed Atlantic salmon (Salmo salar. The transition to virulence involves two molecular events, a deletion in the highly polymorphic region (HPR of the hemagglutinin-esterase (HE gene and a Q266→L266 substitution or insertion next to the putative cleavage site (R267 in the fusion protein (F. We have performed ultra-deep pyrosequencing (UDPS of these gene regions from healthy fish positive for HPR0 virus carrying full-length HPR sampled in a screening program, and a vISAV strain from an ISA outbreak at the same farming site three weeks later, and compared the mutant spectra. As the UDPS data shows the presence of both HE genotypes at both sampling times, and the outbreak strain was unlikely to be directly related to the HPR0 strain, this is the first report of a double infection with HPR0s and vISAVs. For F amplicon reads, mutation frequencies generating L266 codons in screening samples and Q266 codons in outbreak samples were not higher than at any random site. We suggest quasispecies heterogeneity as well as RNA structural properties are linked to transition to virulence. More specifically, a mechanism where selected single point mutations in the full-length HPR alter the RNA structure facilitating single- or sequential deletions in this region is proposed. The data provides stronger support for the deletion hypothesis, as opposed to recombination, as the responsible mechanism for generating the sequence deletions in HE.

  15. Influence of the water molecules near surface of viral protein on virus activation process

    Science.gov (United States)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  16. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  17. Vectors based on modified vaccinia Ankara expressing influenza H5N1 hemagglutinin induce substantial cross-clade protective immunity.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA vector vaccine. METHODOLOGY/PRINCIPAL FINDINGS: The replication-deficient MVA virus was used to express influenza hemagglutinin (HA proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203, the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05, the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05 and A/chicken/Egypt/3/2006 (CE/06, and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05 were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades. CONCLUSIONS/SIGNIFICANCE: The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines

  18. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests

    Science.gov (United States)

    Tsukamoto, K.; Javier, P.C.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.-M.; Jeong, O.M.; Lee, Y.-J.; Nakanishi, K.; Ashizawa, T.

    2012-01-01

    Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10 1.5, 10 2.3, and 10 3.1 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples. Copyright ?? 2012, American Society for Microbiology. All Rights Reserved.

  19. Vesicular stomatitis virus polymerase's strong affinity to its template suggests exotic transcription models.

    Directory of Open Access Journals (Sweden)

    Xiaolin Tang

    2014-12-01

    Full Text Available Vesicular stomatitis virus (VSV is the prototype for negative sense non segmented (NNS RNA viruses which include potent human and animal pathogens such as Rabies, Ebola and measles. The polymerases of NNS RNA viruses only initiate transcription at or near the 3' end of their genome template. We measured the dissociation constant of VSV polymerases from their whole genome template to be 20 pM. Given this low dissociation constant, initiation and sustainability of transcription becomes nontrivial. To explore possible mechanisms, we simulated the first hour of transcription using Monte Carlo methods and show that a one-time initial dissociation of all polymerases during entry is not sufficient to sustain transcription. We further show that efficient transcription requires a sliding mechanism for non-transcribing polymerases and can be realized with different polymerase-polymerase interactions and distinct template topologies. In conclusion, we highlight a model in which collisions between transcribing and sliding non-transcribing polymerases result in release of the non-transcribing polymerases allowing for redistribution of polymerases between separate templates during transcription and suggest specific experiments to further test these mechanisms.

  20. Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza viruses: role of passerine birds in maintenance or transmission?

    Science.gov (United States)

    Nestorowicz, A; Kawaoka, Y; Bean, W J; Webster, R G

    1987-10-01

    In 1985 a fowl plague-like disease occurred in chickens in Lockwood, Victoria, Australia and caused high mortality. An H7N7 influenza virus was isolated from the chickens (A/Chicken/Victoria/1/85); additionally, an antigenically similar virus was isolated from starlings (A/Starling/Victoria/5156/85) and serological evidence of H7N7 virus infection was found in sparrows. Antigenic analysis with monoclonal antibodies to H7, oligonucleotide mapping of total vRNA, and sequence analysis of the HA genes established that the chicken and starling influenza viruses were closely related and probably came from the same source. There was high nucleotide sequence homology (95.3%) between the HA genes of A/Chick/Vic/85 and a fowl plague-like virus isolated from chickens in Victoria 9 years earlier [A/Fowl/Vic/76 (H7N7)]. The sequence homologies indicated that the A/Chick/Vic/85 and A/Fowl/Vic/76 were derived from a common recent ancestor, while another recent H7N7 virus, Seal/Mass/1/80 originated from a different evolutionary lineage. Experimental infection of chickens and starlings with A/Chick/Vic/1/85 (H7N7) was associated with high mortality (100%), transmission to contact birds of the same species, and virus in all organs. In sparrows one-third of the birds died after infection and virus was isolated from most organs; transmission to contact sparrows did not occur. In contrast, the H7N7 virus replicated in ducks and spread to contact ducks but caused no mortality. These studies establish that the host species plays a role in determining the virulence of avian influenza viruses, and provide the first evidence for transmission of virulent influenza viruses between domestic poultry and passerine birds. They support the hypothesis that potentially virulent H7N7 influenza viruses could be maintained in ducks where they cause no apparent disease and may sometimes spread to other wild birds and domestic poultry.

  1. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  2. Improvement of H5N1 influenza vaccine viruses: influence of internal gene segments of avian and human origin on production and hemagglutinin content.

    Science.gov (United States)

    Abt, Marion; de Jonge, Jørgen; Laue, Michael; Wolff, Thorsten

    2011-07-18

    The H5N1-clade 1 influenza vaccine strain NIBRG-14 produces exceptionally low amounts of antigen, a problem recently encountered also for initial pandemic H1N1-2009 vaccine seeds. Here, we report on a strategy that may contribute to overcome this obstacle. Influenza vaccine viruses usually consist of two segments coding for the antigenic HA and NA proteins of a wild-type strain and the six residual internal gene segments of the vaccine donor strain A/PR/8/34 (PR8). To enhance the antigen yield from H5N1 vaccine virus we generated by reverse genetics a set of PR8-based reassortant viruses expressing the HA and NA segments of the prototypic strain A/Vietnam/1203/2004 and additional replacements of the internal M or PB1 genes of PR8. The reassortants were compared to the parental PR8 and H5N1 viruses in terms of growth in embryonated chicken eggs and the amount of incorporated antigenic HA protein. Compared to NIBRG-14, three out of six viruses displayed an increased replication in embryonated chicken eggs and higher HA content that was also maintained after ether/detergent extraction of virions. Electron microscopic analysis showed that the reassortment hardly affected particle shape and size. Two selected H5N1 reassortant viruses were investigated concerning their pathogenicity in ferrets and found to behave as low pathogenic as the PR8 donor strain. In conclusion, this study shows that replication and antigen content of PR8-derived H5N1 influenza vaccine viruses can be improved by incorporation of heterologous internal gene segments without compromising their attenuated character. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  4. Cold co-extraction of hemagglutinin and matrix M1 protein from influenza virus A by a combination of non-ionic detergents allows for visualization of the raft-like nature of the virus envelope.

    Science.gov (United States)

    Radyukhin, V; Fedorova, N; Ksenofontov, A; Serebryakova, M; Baratova, L

    2008-01-01

    Membrane solubilization with a mixture of cold non-ionic detergents has been applied to isolate detergent-resistant membranes from intact virus A lipid bilayer. Association of the viral envelope glycoproteins and M1 into a raft lipid-protein complex was verified via detergent insolubility experiments, and the M1:HA stoichiometry of the proposed supramolecular complex was estimated via amino acid analysis. Electron microscopy and dynamic light scattering data revealed that these lipid-protein rafts form unilamellar vesicles with HA spikes on their surfaces similar to influenza virus virions. Together, our data suggest that the cold co-extraction technique visualizes the raft-like nature of the viral envelope and demonstrates the interaction of matrix M1 protein with the envelope.

  5. Influenza virus H1N1pdm09 infections in the young and old: evidence of greater antibody diversity and affinity for the hemagglutinin globular head domain (HA1 Domain) in the elderly than in young adults and children.

    Science.gov (United States)

    Verma, Nitin; Dimitrova, Milena; Carter, Donald M; Crevar, Corey J; Ross, Ted M; Golding, Hana; Khurana, Surender

    2012-05-01

    The H1N1 2009 influenza virus (H1N1pdm09) pandemic had several unexpected features, including low morbidity and mortality in older populations. We performed in-depth evaluation of antibody responses generated following H1N1pdm09 infection of naïve ferrets and of 130 humans ranging from the very young (0 to 9 years old) to the very old (70 to 89 years old). In addition to hemagglutination inhibition (HI) titers, we used H1N1pdm09 whole-genome-fragment phage display libraries (GFPDL) to evaluate the antibody repertoires against internal genes, hemagglutinin (HA), and neuraminidase (NA) and also measured antibody affinity for antigenic domains within HA. GFPDL analyses of H1N1pdm09-infected ferrets demonstrated gradual development of antibody repertoires with a focus on M1 and HA1 by day 21 postinfection. In humans, H1N1pdm09 infection in the elderly (>70 years old) induced antibodies with broader epitope recognition in both the internal genes and the HA1 receptor binding domain (RBD) than for the younger age groups (0 to 69 years). Importantly, post-H1N1 infection serum antibodies from the elderly demonstrated substantially higher avidity for recombinant HA1 (rHA1) (but not HA2) than those from younger subjects (50% versus elderly following H1N1pdm09 infection, indicative of recall of long-term memory B cells or long-lived plasma cells. These findings may help explain the age-related morbidity and mortality pattern observed during the H1N1pdm09 pandemic.

  6. Exploring the nature of the H-bonds between the human class II MHC protein, HLA-DR1 (DRB*0101) and the influenza virus hemagglutinin peptide, HA306-318, using the quantum theory of atoms in molecules.

    Science.gov (United States)

    Aray, Yosslen; Aguilera-García, Ricardo; Izquierdo, Daniel R

    2018-01-02

    The nature of the H-bonds between the human protein HLA-DR1 (DRB*0101) and the hemagglutinin peptide HA306-318 has been studied using the Quantum Theory of Atoms in Molecules for the first time. We have found four H-bond groups: one conventional CO··HN bond group and three nonconventional CO··HC, π··HC involving aromatic rings and HN··HCaliphatic groups. The calculated electron density at the determined H-bond critical points suggests the follow protein pocket binding trend: P1 (2,311) > P9 (1.109) > P4 (0.950) > P6 (0.553) > P7 (0.213) which agrees and reveal the nature of experimental findings, showing that P1 produces by a long way the strongest binding of the HLA-DR1 human protein molecule with the peptide backbone as consequence of the vast number of H-bonds in the P1 area and at the same time the largest specific binding of the peptide Tyr308 residue with aromatic residues located at the binding groove floor. The present results suggest the topological analysis of the electronic density as a valuable tool that allows a non-arbitrary partition of the pockets binding energy via the calculated electron density at the determined critical points.

  7. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles

    NARCIS (Netherlands)

    Schoen, P; Chonn, A; Cullis, PR; Wilschut, J; Scherrer, P

    Hemagglutinin, the membrane fusion protein of influenza virus,is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we

  8. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses

    Directory of Open Access Journals (Sweden)

    Diemer Geoffrey S

    2012-06-01

    Full Text Available Abstract Background Viruses are known to be the most abundant organisms on earth, yet little is known about their collective origin and evolutionary history. With exceptionally high rates of genetic mutation and mosaicism, it is not currently possible to resolve deep evolutionary histories of the known major virus groups. Metagenomics offers a potential means of establishing a more comprehensive view of viral evolution as vast amounts of new sequence data becomes available for comparative analysis. Results Bioinformatic analysis of viral metagenomic sequences derived from a hot, acidic lake revealed a circular, putatively single-stranded DNA virus encoding a major capsid protein similar to those found only in single-stranded RNA viruses. The presence and circular configuration of the complete virus genome was confirmed by inverse PCR amplification from native DNA extracted from lake sediment. The virus genome appears to be the result of a RNA-DNA recombination event between two ostensibly unrelated virus groups. Environmental sequence databases were examined for homologous genes arranged in similar configurations and three similar putative virus genomes from marine environments were identified. This result indicates the existence of a widespread but previously undetected group of viruses. Conclusions This unique viral genome carries implications for theories of virus emergence and evolution, as no mechanism for interviral RNA-DNA recombination has yet been identified, and only scant evidence exists that genetic exchange occurs between such distinct virus lineages. Reviewers This article was reviewed by EK, MK (nominated by PF and AM. For the full reviews, please go to the Reviewers' comments section.

  9. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  10. Suggested mechanisms for Zika virus causing microcephaly: what do the genomes tell us?

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Wanchai, Visanu; Patumcharoenpol, Preecha; Nookaew, Intawat; Ussery, David W

    2017-12-28

    Zika virus (ZIKV) is an emerging human pathogen. Since its arrival in the Western hemisphere, from Africa via Asia, it has become a serious threat to pregnant women, causing microcephaly and other neuropathies in developing fetuses. The mechanisms behind these teratogenic effects are unknown, although epidemiological evidence suggests that microcephaly is not associated with the original, African lineage of ZIKV. The sequences of 196 published ZIKV genomes were used to assess whether recently proposed mechanistic explanations for microcephaly are supported by molecular level changes that may have increased its virulence since the virus left Africa. For this we performed phylogenetic, recombination, adaptive evolution and tetramer frequency analyses, and compared protein sequences for the presence of protease cleavage sites, Pfam domains, glycosylation sites, signal peptides, trans-membrane protein domains, and phosphorylation sites. Recombination events within or between Asian and Brazilian lineages were not observed, and likewise there were no differences in protease cleavage, glycosylation sites, signal peptides or trans-membrane domains between African and Brazilian strains. The frequency of Retinoic Acid Response Element (RARE) sequences was increased in Brazilian strains. Genetic adaptation was also apparent by tetramer signatures that had undergone major changes in the past but has stabilized in the Brazilian lineage despite subsequent geographic spread, suggesting the viral population presently propagates in the same host species in various regions. Evidence for selection pressure was recognized for several amino acid sites in the Brazilian lineage compared to the African lineage, mainly in nonstructural proteins, especially protein NS4B. A number of these positively selected mutations resulted in an increased potential to be phosphorylated in the Brazilian lineage compared to the African linage, which may have increased their potential to interfere with

  11. Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009

    Directory of Open Access Journals (Sweden)

    Almajhdi Fahad N

    2012-12-01

    Full Text Available Abstract Background Although human parainfluenza type 2 (HPIV-2 virus is an important respiratory pathogen, a little is known about strains circulating in Saudi Arabia. Findings Among 180 nasopharyngeal aspirates collected from suspected cases in Riyadh, only one sample (0.56% was confirmed HPIV-2 positive by nested RT-PCR. The sample that was designated Riyadh 105/2009 was used for sequencing and phylogenetic analysis of the most variable virus gene; the haemagglutinin-neuramindase (HN. Comparison of HN gene of Riyadh 105/2009 strain and the relevant sequences available in GenBank revealed a strong relationship with Oklahoma-94-2009 strain. Phylogenetic analysis indicated four different clusters of HPIV-2 strains (G1-4. Twenty-three amino acid substitutions were recorded for Riyadh 105/2009, from which four are unique. The majority of substitutions (n=18 had changed their amino acids characteristics. By analyzing the effect of the recorded substitutions on the protein function using SIFT program, only two located at positions 360 and 571 were predicted to be deleterious. Conclusions The presented changes of Riyadh 105/2009 strain may possess potential effect on the protein structure and/or function level. This is the first report that describes partial characterization of Saudi HPIV-2 strain.

  12. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  13. In silico analysis suggests repurposing of ibuprofen for prevention and treatment of EBOLA virus disease

    NARCIS (Netherlands)

    V. Veljkovic (Veljko); M. Goeijenbier (Marco); S. Glisic (Sanja); N. Veljkovic (Nevena); V.R. Perovic (Vladimir R.); M. Sencanski (Milan); D.R. Branch (Donald R.); S. Paessler (Slobodan)

    2015-01-01

    textabstractThe large 2014/2015 Ebola virus outbreak in West Africa points out the urgent need to develop new preventive and therapeutic approaches that are effective against Ebola viruses and can be rapidly utilized. Recently, a simple theoretical criterion for the virtual screening of molecular

  14. Molecular and phylogenetic analyses suggest an additional hepatitis B virus genotype "I".

    Directory of Open Access Journals (Sweden)

    Hai Yu

    Full Text Available A novel hepatitis B virus (HBV strain (W29 was isolated from serum samples in the northwest of China. Phylogenetic and distance analyses indicate that this strain is grouped with a series of distinct strains discovered in Vietnam and Laos that have been proposed to be a new genotype I. TreeOrderScan and GroupScan methods were used to study the intergenotype recombination of this special group. Recombination plots and tree maps of W29 and these putative genotype I strains exhibit distinct characteristics that are unexpected in typical genotype C strains of HBV. The amino acids of P gene, S gene, X gene, and C gene of all genotypes (including subtypes were compared, and eight unique sites were found in genotype I. In vitro and in vivo experiments were also conducted to determine phenotypic characteristics between W29 and other representative strains of different genotypes obtained from China. Secretion of HBsAg in Huh7 cells is uniformly abundant among genotypes A, B, C, and I (W29, but not genotype D. HBeAg secretion is low in genotype I (W29, whose level is close to genotype A and much lower than genotypes B, C, and D. Results from the acute hydrodynamic injection mouse model also exhibit a similar pattern. From an overview of the results, the viral markers of W29 (I1 in Huh7 cells and mice had a more similar level to genotype A than genotype C, although the latter was closer to W29 in distance analysis. All evidence suggests that W29, together with other related strains found in Vietnam and Laos, should be classified into a new genotype.

  15. Discrete Dynamical Modeling of Influenza Virus Infection Suggests Age-Dependent Differences in Immunity.

    Science.gov (United States)

    Keef, Ericka; Zhang, Li Ang; Swigon, David; Urbano, Alisa; Ermentrout, G Bard; Matuszewski, Michael; Toapanta, Franklin R; Ross, Ted M; Parker, Robert S; Clermont, Gilles

    2017-12-01

    Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection.IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the

  16. High similarity between isolates of pepino mosaic virus suggests a common origin

    NARCIS (Netherlands)

    Verhoeven, J.Th.J.; Vlugt, van der R.A.A.; Roenhorst, J.W.

    2003-01-01

    The almost simultaneous outbreaks of Pepino mosaic virus in tomato crops in different European and non-European countries, was reason to have a closer look at the relationship between these isolates and the original isolate from pepino. Fifteen isolates from tomato from different locations and the

  17. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  18. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen; Mata, Douglas A.; Li, Kunpeng; Yin, Changcheng; Zhang, Jingqiang; Tao, Yizhi Jane; (Sun Yat-Sen); (Rice); (Peking)

    2009-08-25

    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsid protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.

  19. In Vitro Infection of Pupae with Israeli Acute Paralysis Virus Suggests Disturbance of Transcriptional Homeostasis in Honey Bees (Apis mellifera)

    Science.gov (United States)

    Boncristiani, Humberto F.; Evans, Jay D.; Chen, Yanping; Pettis, Jeff; Murphy, Charles; Lopez, Dawn L.; Simone-Finstrom, Michael; Strand, Micheline; Tarpy, David R.; Rueppell, Olav

    2013-01-01

    The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV) into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health. PMID:24039938

  20. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Humberto F Boncristiani

    Full Text Available The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health.

  1. Enhanced protective efficacy of H5 subtype influenza vaccine with modification of the multibasic cleavage site of hemagglutinin in retroviral pseudotypes.

    Science.gov (United States)

    Tao, Ling; Chen, Jianjun; Meng, Jin; Chen, Yao; Li, Hongxia; Liu, Yan; Zheng, Zhenhua; Wang, Hanzhong

    2013-06-01

    Traditionally, the multibasic cleavage site (MBCS) of surface protein H5-hemagglutinin (HA) is converted to a monobasic one so as to weaken the virulence of recombinant H5N1 influenza viruses and to produce inactivated and live attenuated vaccines. Whether such modification benefits new candidate vaccines has not been adequately investigated. We previously used retroviral vectors to generate wtH5N1 pseudotypes containing the wild-type HA (wtH5) from A/swine/Anhui/ca/2004 (H5N1) virus. Here, we generated mtH5N1 pseudotypes, which contained a mutant-type HA (mtH5) with a modified monobasic cleavage site. Groups of mice were subcutaneously injected with the two types of influenza pseudotypes. Compared to the group immunized with wtH5N1 pseudotypes, the inoculation of mtH5N1 pseudotypes induced significantly higher levels of HA specific IgG and IFN-γ in immunized mice, and enhanced protection against the challenge of mouse-adapted avian influenza virus A/Chicken/Henan/12/2004 (H5N1). This study suggests modification of the H5-hemagglutinin MBCS in retroviral pseudotypes enhances protection efficacy in mice and this information may be helpful for development of vaccines from mammalian cells to fight against H5N1 influenza viruses.

  2. Receptor binding specificity of recent human H3N2 influenza viruses

    Directory of Open Access Journals (Sweden)

    Cummings Richard D

    2007-05-01

    Full Text Available Abstract Background Human influenza viruses are known to bind to sialic acid linked α2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection. Results Viruses that agglutinate, or do not agglutinate, chicken red cells show identical binding to a Glycan Array of 264 oligosaccharides, binding exclusively to a subset of α2-6-sialylsaccharides. We identified an amino acid change in hemagglutinin that seemed to correlate with chicken red cell binding but when tested by mutagenesis there was no effect. Recombinant hemagglutinins expressed on Sf-9 cells bound chicken red cells but the released recombinant baculoviruses agglutinated only human red cells. Similarly, an isolate that does not agglutinate chicken red cells show hemadsorption of chicken red cells to infected MDCK cells. We suggest that binding of chicken red cells to cell surface hemagglutinin but not to virions is due to a more favorable hemagglutinin density on the cell surface. We investigated whether a virus specific for α2-6 sialyloligosaccharides shows differential entry into cells that have varying proportions of α2-6 and α2-3 sialic acids, including human A549 and HeLa cells with high levels of α2-6 sialic acid, and CHO cells that have only α2-3 sialic acid. We found that the virus enters all cell types tested and synthesizes viral nucleoprotein, localized in the nucleus, and hemagglutinin, transported to the cell surface, but infectious progeny viruses were released only from MDCK cells. Conclusion Agglutination of chicken red cells does not correlate with altered binding to any oligosaccharide on the Glycan

  3. A case of human immunodeficiency virus infection with cerebellar ataxia that suggested by an association with autoimmunity.

    Science.gov (United States)

    Nagao, Shigeto; Kondo, Takayuki; Nakamura, Takashi; Nakagawa, Tomokazu; Matsumoto, Sadayuki

    2016-04-28

    We report a case of human immunodeficiency virus (HIV) infection that showed subacute progressive cerebellar ataxia without HIV encephalopathy or other encephalopathies, including progressive multifocal leukoencephalopathy or encephalitis of other human herpes virus (HHV) infections. A 43-year-old man exhibited unsteady gait. Neurological examination disclosed ataxia of the trunk and lower extremities. Personality change and dementia were absent. Magnetic resonance imaging did not reveal any abnormal finding, including of the cerebellum. The serum HIV-1-RNA was 1.2 × 10(5) copies/ml, and the absolute CD4 lymphocyte count was 141 cells/ml. Remarkably, the serum anti-Yo antibody, as an anti-cerebellar antibody of paraneoplastic syndrome, and anti-gliadin antibody, associated with celiac disease or gluten ataxia, were positive. The cerebrospinal fluid (CSF) immunoglobulin G index was 1.2 (ataxia, cerebellar ataxia associated with anti-glutamic acid decarboxylase antibody, and Hashimoto's encephalopathy might manifest as autoimmune cerebellar ataxia. As regards the association of HIV infection and autoimmune cerebellar ataxia, a previous report suggested that anti-gliadin antibody was detected in about 30% of HIV-infected children, though there is no reference to an association with cerebellar ataxia. Moreover, to our knowledge, detection of anti-Yo antibody in an HIV-infected patient with cerebellar ataxia has not been reported. These findings suggest that, although it is extremely rare, clinicians need to consider HIV infection in a patient exhibiting autoimmune cerebellar ataxia.

  4. Influenza A hemagglutinin C-terminal anchoring peptide: identification and mass spectrometric study.

    Science.gov (United States)

    Kordyukova, Larisa V; Ksenofontov, Aleksander L; Serebryakova, Marina V; Ovchinnikova, Tatyana V; Fedorova, Natalija V; Ivanova, Valeria T; Baratova, Ludmila A

    2004-08-01

    MALDI-TOF MS and N-terminal amino acid sequencing allowed us to identify several fragments of the C-terminal peptide of Influenza A hemagglutinin (HA) containing transmembrane domains (TMD). These fragments were detected in the organic phase of chloroform-methanol extracts from bromelain-treated virus particles. Heterogeneous fatty acylation of the C-terminus was revealed. Tritium bombardment technique might open an opportunity for 3D structural investigation of the HA TMD in situ.

  5. Sialyl alpha(2-->3) lactose clusters using carbosilane dendrimer core scaffolds as influenza hemagglutinin blockers.

    Science.gov (United States)

    Oka, Hiroyuki; Onaga, Tomotsune; Koyama, Tetsuo; Guo, Chao-Tan; Suzuki, Yasuo; Esumi, Yasuaki; Hatano, Ken; Terunuma, Daiyo; Matsuoka, Koji

    2008-08-01

    An efficient synthesis of a series of carbosilane dendrimers uniformly functionalized with sialyl alpha(2-->3) lactose (Neu5Acalpha(2-->3)Galbeta(1-->4)Glcbeta1-->) moieties was accomplished. The results of a preliminary study on biological responses against influenza virus hemagglutinin, using the sialyl lactose clusters showed unique biological activities on the basis of the structure-activity relationship according to the carbosilane scaffolds.

  6. Analysis of the coding-complete genomic sequence of groundnut ringspot virus suggests a common ancestor with tomato chlorotic spot virus.

    Science.gov (United States)

    de Breuil, Soledad; Cañizares, Joaquín; Blanca, José Miguel; Bejerman, Nicolás; Trucco, Verónica; Giolitti, Fabián; Ziarsolo, Peio; Lenardon, Sergio

    2016-08-01

    Groundnut ringspot virus (GRSV) and tomato chlorotic spot virus (TCSV) share biological and serological properties, so their identification is carried out by molecular methods. Their genomes consist of three segmented RNAs: L, M and S. The finding of a reassortant between these two viruses may complicate correct virus identification and requires the characterization of the complete genome. Therefore, we present for the first time the complete sequences of all the genes encoded by a GRSV isolate. The high level of sequence similarity between GRSV and TCSV (over 90 % identity) observed in the genes and proteins encoded in the M RNA support previous results indicating that these viruses probably have a common ancestor.

  7. Outcome of patients with serology suggestive of past hepatitis B virus infection during antitumor necrosis factor therapy for psoriasis.

    Science.gov (United States)

    Navarro, Raquel; Concha-Garzón, María José; Castaño, Carlos; Casal, Cristina; Guiu, Alba; Daudén, Esteban

    2014-07-01

    Recently, the reactivation during treatment with tumor necrosis factor (TNF) blockers has exceptionally been described in patients with hepatitis B virus (HBV) antigen-negative (HBsAg). The objective was to evaluate the influence of anti-TNF agents in patients with psoriasis and serology suggesting past hepatitis B state. The inclusion criteria were chronic plaque psoriasis treated with anti-TNF therapy, HBsAg-negative, and HBcAb-positive. We gathered the demographic data and type and duration of anti-TNF agent. Serum aminotransferase levels and HBV serologic status were requested at baseline and during follow-up. We have included 13 patients (four women, nine men) (mean age of 62.1 years). The agent was etanercept in seven cases, infliximab in four patients, and adalimumab in the other two. The mean duration of TNF therapy was 28.6 months. None of them became HBsAg-positive. Neither signs nor symptoms of acute hepatitis were reported. The management of HBsAg-negative patients is unresolved. Only nine cases of HBV reactivation during treatment with TNF blockers have been reported. Despite the low risk of reactivation in these patients, we recommend the monitoring of serum aminotransferase levels, HBsAb titers, HBsAg and, if possible, viral load. © 2014 The International Society of Dermatology.

  8. Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus

    Directory of Open Access Journals (Sweden)

    Mohsen eNavari

    2014-12-01

    Full Text Available Epstein Barr virus (EBV infection is commonly associated with human cancer and, in particular, with lymphoid malignancies. Although the precise role of the virus in the pathogenesis of different lymphomas is largely unknown, it is well recognized that the expression of viral latent proteins and miRNA can contribute to its patoghenetic role.In this study, we compared the gene and miRNA expression profile of two EBV-associated aggressive B non-Hodgkin lymphomas known to be characterized by differential expression of the viral latent proteins aiming to dissect the possible different contribution of such proteins and EBV-encoded miRNAs.By applying extensive bioinformatic inferring and an experimental model, we found that EBV+ Burkitt lymphoma presented with significant over-expression of EBV-encoded miRNAs that were likely to contribute to its global molecular profile. On the other hand, EBV+ post transplant diffuse large B-cell lymphomas presented a significant enrichment in genes regulated by the viral latent proteins.Based on these different viral and cellular gene expression patterns, a clear distinction between EBV+ Burkitt lymphoma and post transplant diffuse large B-cell lymphomas was made. In this regard, the different viral and cellular expression patterns seemed to depend on each other, at least partially, and the latency type most probably played a significant role in their regulation.In conclusion, our data indicate that EBV influence over B-cell malignant clones may act through different mechanisms of transcriptional regulation and suggest that potentially different pathogenetic mechanisms may depend upon the conditions of the interaction between EBV and the host that finally determine the latency pattern.

  9. Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks.

    Directory of Open Access Journals (Sweden)

    Karel A Schat

    Full Text Available Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2 from glutamic acid (E in avian isolates to lysine (K in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203 virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi, while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.

  10. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus.

    Science.gov (United States)

    Mitra, Namita; Cernicchiaro, Natalia; Torres, Siddartha; Li, Feng; Hause, Ben M

    2016-08-01

    Bovine respiratory disease (BRD) is the most costly disease affecting the cattle industry. The pathogenesis of BRD is complex and includes contributions from microbial pathogens as well as host, environmental and animal management factors. In this study, we utilized viral metagenomic sequencing to explore the virome of nasal swab samples obtained from feedlot cattle with acute BRD and asymptomatic pen-mates at six and four feedlots in Mexico and the USA, respectively, in April-October 2015. Twenty-one viruses were detected, with bovine rhinitis A (52.7 %) and B (23.7 %) virus, and bovine coronavirus (24.7 %) being the most commonly identified. The emerging influenza D virus (IDV) tended to be significantly associated (P=0.134; odds ratio=2.94) with disease, whereas viruses commonly associated with BRD such as bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus and bovine parainfluenza 3 virus were detected less frequently. The detection of IDV was further confirmed using a real-time PCR assay. Nasal swabs from symptomatic animals had significantly more IDV RNA than those collected from healthy animals (P=0.04). In addition to known viruses, new genotypes of bovine rhinitis B virus and enterovirus E were identified and a newly proposed species of bocaparvovirus, Ungulate bocaparvovirus 6, was characterized. Ungulate tetraparvovirus 1 was also detected for the first time in North America to our knowledge. These results illustrate the complexity of the virome associated with BRD and highlight the need for further research into the contribution of other viruses to BRD pathogenesis.

  11. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens

    Directory of Open Access Journals (Sweden)

    Sakoda Yoshihiro

    2011-02-01

    Full Text Available Abstract Background Outbreaks of avian influenza (AI caused by infection with low pathogenic H9N2 viruses have occurred in poultry, resulting in serious economic losses in Asia and the Middle East. It has been difficult to eradicate the H9N2 virus because of its low pathogenicity, frequently causing in apparent infection. It is important for the control of AI to assess whether the H9N2 virus acquires pathogenicity as H5 and H7 viruses. In the present study, we investigated whether a non-pathogenic H9N2 virus, A/chicken/Yokohama/aq-55/2001 (Y55 (H9N2, acquires pathogenicity in chickens when a pair of di-basic amino acid residues is introduced at the cleavage site of its HA molecule. Results rgY55sub (H9N2, which had four basic amino acid residues at the HA cleavage site, replicated in MDCK cells in the absence of trypsin after six consecutive passages in the air sacs of chicks, and acquired intravenous pathogenicity to chicken after four additional passages. More than 75% of chickens inoculated intravenously with the passaged virus, rgY55sub-P10 (H9N2, died, indicating that it is pathogenic comparable to that of highly pathogenic avian influenza viruses (HPAIVs defined by World Organization for Animal Health (OIE. The chickens inoculated with the virus via the intranasal route, however, survived without showing any clinical signs. On the other hand, an avirulent H5N1 strain, A/duck/Hokkaido/Vac-1/2004 (Vac1 (H5N1, acquired intranasal pathogenicity after a pair of di-basic amino acid residues was introduced into the cleavage site of the HA, followed by two passages by air sac inoculation in chicks. Conclusion The present results demonstrate that an H9N2 virus has the potential to acquire intravenous pathogenicity in chickens although the morbidity via the nasal route of infection is lower than that of H5N1 HPAIV.

  12. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin

    Directory of Open Access Journals (Sweden)

    Andrew R. Dalby

    2014-10-01

    Full Text Available A complete phylogenetic analysis of all of the H9N2 hemagglutinin sequences that were collected between 1966 and 2012 was carried out in order to build a picture of the geographical and host specific evolution of the hemagglutinin protein. To improve the quality and applicability of the output data the sequences were divided into subsets based upon location and host species.The phylogenetic analysis of hemagglutinin reveals that the protein has distinct lineages between China and the Middle East, and that wild birds in both regions retain a distinct form of the H9 molecule, from the same lineage as the ancestral hemagglutinin. The results add further evidence to the hypothesis that the current predominant H9N2 hemagglutinin lineage might have originated in Southern China. The study also shows that there are sampling problems that affect the reliability of this and any similar analysis. This raises questions about the surveillance of H9N2 and the need for wider sampling of the virus in the environment.The results of this analysis are also consistent with a model where hemagglutinin has predominantly evolved by neutral drift punctuated by occasional selection events. These selective events have produced the current pattern of distinct lineages in the Middle East, Korea and China. This interpretation is in agreement with existing studies that have shown that there is widespread intra-country sequence evolution.

  13. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza.

    Science.gov (United States)

    Anderson, Ane Marie; Baranowska-Hustad, Marta; Braathen, Ranveig; Grodeland, Gunnveig; Bogen, Bjarne

    2018-02-02

    There is a need for vaccines that can confer broad immunity against highly diverse pathogens, such as influenza. The efficacy of conventional influenza vaccines is dependent on accurate matching of vaccines to circulating strains, but slow and limited production capacities increase the probability of vaccine mismatches. In contrast, DNA vaccination allows for rapid production of vaccines encoding novel influenza Ags. The efficacy of DNA vaccination is greatly improved if the DNA-encoded vaccine proteins target APCs. In this study, we have used hemagglutinin (HA) genes from each of six group 1 influenza viruses (H5, H6, H8, H9, H11, and H13), and inserted these into a DNA vaccine format that induces delivery of the HA protein Ags to MHC class II molecules on APCs. Each of the targeted DNA vaccines induced high titers of strain-specific anti-HA Abs. Importantly, when the six HA vaccines were mixed and injected simultaneously, the strain-specific Ab titers were maintained. In addition, the vaccine mixture induced Abs that cross-reacted with strains not included in the vaccine mixture (H1) and could protect mice against a heterosubtypic challenge with the H1 viruses A/Puerto Rico/8/1934 (H1N1) and A/California/07/2009 (H1N1). The data suggest that vaccination with a mixture of HAs could be useful for induction of strain-specific immunity against strains represented in the mixture and, in addition, confer some degree of cross-protection against unrelated influenza strains. Copyright © 2018 by The American Association of Immunologists, Inc.

  14. A rapid Flp-In system for expression of secreted H5N1 influenza hemagglutinin vaccine immunogen in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Hanxin Lu

    2011-02-01

    Full Text Available Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing.We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330 and HA0(1-500 proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1 as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine.Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains.

  15. Influenza Virus-specific CD8+ T Cells : -longevity, cross-reactivity and viral evasion-

    NARCIS (Netherlands)

    C.E. van de Sandt (Carolien)

    2016-01-01

    markdownabstractInfluenza viruses are among the leading causes of acute respiratory tract infections worldwide. Natural influenza virus infections elicit both humoral and cellular immune responses. Although, neutralizing antibodies directed to the hemagglutinin (HA) globular head domain prevent

  16. Reassortant Pandemic (H1N1) 2009 Virus in Pigs, United Kingdom

    Science.gov (United States)

    Howard, Wendy A.; Essen, Steve C.; Strugnell, Benjamin W.; Russell, Christine; Barrass, Laura; Reid, Scott M.

    2011-01-01

    Surveillance for influenza virus in pigs in the United Kingdom during spring 2010 detected a novel reassortant influenza virus. This virus had genes encoding internal proteins from pandemic (H1N1) 2009 virus and hemagglutinin and neuraminidase genes from swine influenza virus (H1N2). Our results demonstrate processes contributing to influenza virus heterogeneity. PMID:21749767

  17. Antibodies to Antigenic Site A of Influenza H7 Hemagglutinin Provide Protection against H7N9 Challenge

    OpenAIRE

    Falko Schmeisser; Anupama Vasudevan; Swati Verma; Wei Wang; Esmeralda Alvarado; Carol Weiss; Vajini Atukorale; Clement Meseda; Weir, Jerry P.

    2015-01-01

    Identifying major antigenic and protective epitopes of the H7 hemagglutinin (HA) will be important for understanding the antibody response to vaccines developed against the novel influenza H7N9 viruses that emerged in China in 2013. To facilitate antigenic characterization of the H7N9 HA and to develop reagents for evaluation of H7N9 candidate vaccines, we generated a panel of murine monoclonal antibodies (mAbs) to the HA of A/Shanghai/2/2013 using mammalian cell-derived virus-like particles ...

  18. Protection from avian influenza H5N1 virus infection with antibody-impregnated filters

    Directory of Open Access Journals (Sweden)

    Tsukamoto Masaya

    2011-02-01

    Full Text Available Abstract There is worldwide concern over the possibility of a new influenza pandemic originating from the highly pathogenic avian H5N1 influenza viruses. We herein demonstrate that functional air filters impregnated with ostrich antibodies against the hemagglutinin of the H5N1 virus protect chickens from death by H5N1 transmission. These results suggest that the use of ostrich antibody-impregnated filters might be a powerful way to prevent the transmission of H5N1.

  19. New world bats harbor diverse influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Suxiang Tong

    Full Text Available Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

  20. New World Bats Harbor Diverse Influenza A Viruses

    Science.gov (United States)

    Tong, Suxiang; Zhu, Xueyong; Li, Yan; Shi, Mang; Zhang, Jing; Bourgeois, Melissa; Yang, Hua; Chen, Xianfeng; Recuenco, Sergio; Gomez, Jorge; Chen, Li-Mei; Johnson, Adam; Tao, Ying; Dreyfus, Cyrille; Yu, Wenli; McBride, Ryan; Carney, Paul J.; Gilbert, Amy T.; Chang, Jessie; Guo, Zhu; Davis, Charles T.; Paulson, James C.; Stevens, James; Rupprecht, Charles E.; Holmes, Edward C.; Wilson, Ian A.; Donis, Ruben O.

    2013-01-01

    Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses. PMID:24130481

  1. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses

    Directory of Open Access Journals (Sweden)

    Boland Wilhelm

    2008-04-01

    Full Text Available Abstract Background Ectocarpus siliculosus virus-1 (EsV-1 is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail. Results Analysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system. Conclusion Our results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system.

  2. Different patterns of codon usage in the overlapping polymerase and surface genes of hepatitis B virus suggest a de novo origin by modular evolution.

    Science.gov (United States)

    Pavesi, Angelo

    2015-12-01

    The polymerase (P) and surface (S) genes of hepatitis B virus (HBV) show the longest gene overlap in animal viruses. Gene overlaps originate by the overprinting of a novel frame onto an ancestral pre-existing frame. Identifying which frame is ancestral and which frame is de novo (the genealogy of the overlap) is an appealing topic. However, the P/S overlap of HBV is an intriguing paradox, because both genes are indispensable for virus survival. Thus, the hypothesis of a primordial virus without the surface protein or without the polymerase makes no biological sense. With the aim to determine the genealogy of the overlap, the codon usage of the overlapping frames P and S was compared to that of the non-overlapping region. It was found that the overlap of human HBV had two patterns of codon usage. One was localized in the 59 one-third of the overlap and the other in the 39 two-thirds. By extending the analysis to non-human HBVs, it was found that this feature occurred in all hepadnaviruses. Under the assumption that the ancestral frame has a codon usage significantly closer to that of the non-overlapping region than the de novo frame, the ancestral frames in the 59 and 39 region of the overlap could be predicted. They were, respectively, frame S and frame P. These results suggest that the spacer domain of the polymerase and the S domain of the surface protein originated de novo by overprinting. They support a modular evolution hypothesis for the origin of the overlap.

  3. Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses.

    Science.gov (United States)

    Hause, Ben M; Ducatez, Mariette; Collin, Emily A; Ran, Zhiguang; Liu, Runxia; Sheng, Zizhang; Armien, Anibal; Kaplan, Bryan; Chakravarty, Suvobrata; Hoppe, Adam D; Webby, Richard J; Simonson, Randy R; Li, Feng

    2013-02-01

    Of the Orthomyxoviridae family of viruses, only influenza A viruses are thought to exist as multiple subtypes and has non-human maintenance hosts. In April 2011, nasal swabs were collected for virus isolation from pigs exhibiting influenza-like illness. Subsequent electron microscopic, biochemical, and genetic studies identified an orthomyxovirus with seven RNA segments exhibiting approximately 50% overall amino acid identity to human influenza C virus. Based on its genetic organizational similarities to influenza C viruses this virus has been provisionally designated C/Oklahoma/1334/2011 (C/OK). Phylogenetic analysis of the predicted viral proteins found that the divergence between C/OK and human influenza C viruses was similar to that observed between influenza A and B viruses. No cross reactivity was observed between C/OK and human influenza C viruses using hemagglutination inhibition (HI) assays. Additionally, screening of pig and human serum samples found that 9.5% and 1.3%, respectively, of individuals had measurable HI antibody titers to C/OK virus. C/OK virus was able to infect both ferrets and pigs and transmit to naive animals by direct contact. Cell culture studies showed that C/OK virus displayed a broader cellular tropism than a human influenza C virus. The observed difference in cellular tropism was further supported by structural analysis showing that hemagglutinin esterase (HE) proteins between two viruses have conserved enzymatic but divergent receptor-binding sites. These results suggest that C/OK virus represents a new subtype of influenza C viruses that currently circulates in pigs that has not been recognized previously. The presence of multiple subtypes of co-circulating influenza C viruses raises the possibility of reassortment and antigenic shift as mechanisms of influenza C virus evolution.

  4. Isolation of a Novel Swine Influenza Virus from Oklahoma in 2011 Which Is Distantly Related to Human Influenza C Viruses

    Science.gov (United States)

    Hause, Ben M.; Ducatez, Mariette; Collin, Emily A.; Ran, Zhiguang; Liu, Runxia; Sheng, Zizhang; Armien, Anibal; Kaplan, Bryan; Chakravarty, Suvobrata; Hoppe, Adam D.; Webby, Richard J.; Simonson, Randy R.; Li, Feng

    2013-01-01

    Of the Orthomyxoviridae family of viruses, only influenza A viruses are thought to exist as multiple subtypes and has non-human maintenance hosts. In April 2011, nasal swabs were collected for virus isolation from pigs exhibiting influenza-like illness. Subsequent electron microscopic, biochemical, and genetic studies identified an orthomyxovirus with seven RNA segments exhibiting approximately 50% overall amino acid identity to human influenza C virus. Based on its genetic organizational similarities to influenza C viruses this virus has been provisionally designated C/Oklahoma/1334/2011 (C/OK). Phylogenetic analysis of the predicted viral proteins found that the divergence between C/OK and human influenza C viruses was similar to that observed between influenza A and B viruses. No cross reactivity was observed between C/OK and human influenza C viruses using hemagglutination inhibition (HI) assays. Additionally, screening of pig and human serum samples found that 9.5% and 1.3%, respectively, of individuals had measurable HI antibody titers to C/OK virus. C/OK virus was able to infect both ferrets and pigs and transmit to naive animals by direct contact. Cell culture studies showed that C/OK virus displayed a broader cellular tropism than a human influenza C virus. The observed difference in cellular tropism was further supported by structural analysis showing that hemagglutinin esterase (HE) proteins between two viruses have conserved enzymatic but divergent receptor-binding sites. These results suggest that C/OK virus represents a new subtype of influenza C viruses that currently circulates in pigs that has not been recognized previously. The presence of multiple subtypes of co-circulating influenza C viruses raises the possibility of reassortment and antigenic shift as mechanisms of influenza C virus evolution. PMID:23408893

  5. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen.

    Science.gov (United States)

    Impagliazzo, Antonietta; Milder, Fin; Kuipers, Harmjan; Wagner, Michelle V; Zhu, Xueyong; Hoffman, Ryan M B; van Meersbergen, Ruud; Huizingh, Jeroen; Wanningen, Patrick; Verspuij, Johan; de Man, Martijn; Ding, Zhaoqing; Apetri, Adrian; Kükrer, Başak; Sneekes-Vriese, Eveline; Tomkiewicz, Danuta; Laursen, Nick S; Lee, Peter S; Zakrzewska, Anna; Dekking, Liesbeth; Tolboom, Jeroen; Tettero, Lisanne; van Meerten, Sander; Yu, Wenli; Koudstaal, Wouter; Goudsmit, Jaap; Ward, Andrew B; Meijberg, Wim; Wilson, Ian A; Radošević, Katarina

    2015-09-18

    The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses. Copyright © 2015, American Association for the Advancement of Science.

  6. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route

    Directory of Open Access Journals (Sweden)

    Björn eKrenz

    2012-12-01

    Full Text Available Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the cell has yet to be unraveled. Several viruses cause a remodulation of plastid structures and stromule biogenesis within their host plants. For RNA-viruses these interactions were demonstrated to be relevant to the infection process. An involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their functional role needs to be determined. Recent findings support a participation of heat shock cognate 70 kDa protein (cpHSC70-1-containing stromules induced by a DNA-virus infection (Abutilon mosaic virus, AbMV, Geminiviridae in intra- and intercellular molecule exchange. The chaperone cpHSC70-1 was shown to interact with the AbMV movement protein (MP. Bimolecular fluorescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed a homo-oligomerization of either protein in planta. The complexes were detected at the cellular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers occurred in distinct spots at chloroplasts and in small filaments extending from plastids to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70-gene revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement, but not viral DNA accumulation. Based on these data, a model is suggested in which these stromules function in molecule exchange between plastids and other organelles and perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stromules into a neighboring cell or from plastids into the nucleus. Experimental approaches to investigate this hypothesis are discussed.

  7. Hemagglutinin inhibition assay with swine sera

    Science.gov (United States)

    Hemagglutination is based on the ability of certain viruses to agglutinate red blood cells (RBC) of certain animal species by formation of cross-linking lattices between RBC. Antibodies that have the ability to inhibit the hemagglutination property of influenza A viruses are generally thought to pro...

  8. Mutants at the 2-Fold Interface of Adeno-associated Virus Type 2 (AAV2) Structural Proteins Suggest a Role in Viral Transcription for AAV Capsids.

    Science.gov (United States)

    Aydemir, Fikret; Salganik, Maxim; Resztak, Justyna; Singh, Jasbir; Bennett, Antonette; Agbandje-McKenna, Mavis; Muzyczka, Nicholas

    2016-08-15

    a nonenveloped viral capsid that appears to have a role in promoting transcription. A total of six mutants at the AAV capsid 2-fold interface were shown to have a severe defect in expressing their genomes, and the defect was at the level of mRNA accumulation. This suggests that AAV capsids have a novel role in promoting the transcription of the genomes that they have packaged. Since wt virions could not complement the mutant viruses, and the mutant viruses did not effectively inhibit wt gene expression, our results suggest that the capsid exerts its effect on transcription in cis. Copyright © 2016 Aydemir et al.

  9. The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases.

    Science.gov (United States)

    Ferron, François; Bussetta, Cécile; Dutartre, Hélène; Canard, Bruno

    2005-10-14

    The Flaviviridae virus family includes major human and animal pathogens. The RNA dependent RNA polymerase (RdRp) plays a central role in the replication process, and thus is a validated target for antiviral drugs. Despite the increasing structural and enzymatic characterization of viral RdRps, detailed molecular replication mechanisms remain unclear. The hepatitis C virus (HCV) is a major human pathogen difficult to study in cultured cells. The bovine viral diarrhea virus (BVDV) is often used as a surrogate model to screen antiviral drugs against HCV. The structure of BVDV RdRp has been recently published. It presents several differences relative to HCV RdRp. These differences raise questions about the relevance of BVDV as a surrogate model, and cast novel interest on the "GB" virus C (GBV-C). Indeed, GBV-C is genetically closer to HCV than BVDV, and can lead to productive infection of cultured cells. There is no structural data for the GBV-C RdRp yet. We show in this study that the GBV-C RdRp is closest to the HCV RdRp. We report a 3D model of the GBV-C RdRp, developed using sequence-to-structure threading and comparative modeling based on the atomic coordinates of the HCV RdRp structure. Analysis of the predicted structural features in the phylogenetic context of the RNA polymerase family allows rationalizing most of the experimental data available. Both available structures and our model are explored to examine the catalytic cleft, allosteric and substrate binding sites. Computational methods were used to infer evolutionary relationships and to predict the structure of a viral RNA polymerase. Docking a GTP molecule into the structure allows defining a GTP binding pocket in the GBV-C RdRp, such as that of BVDV. The resulting model suggests a new proposition for the mechanism of RNA synthesis, and may prove useful to design new experiments to implement our knowledge on the initiation mechanism of RNA polymerases.

  10. The modeled structure of the RNA dependent RNA polymerase of GBV-C Virus suggests a role for motif E in Flaviviridae RNA polymerases

    Directory of Open Access Journals (Sweden)

    Dutartre Hélène

    2005-10-01

    Full Text Available Abstract Background The Flaviviridae virus family includes major human and animal pathogens. The RNA dependent RNA polymerase (RdRp plays a central role in the replication process, and thus is a validated target for antiviral drugs. Despite the increasing structural and enzymatic characterization of viral RdRps, detailed molecular replication mechanisms remain unclear. The hepatitis C virus (HCV is a major human pathogen difficult to study in cultured cells. The bovine viral diarrhea virus (BVDV is often used as a surrogate model to screen antiviral drugs against HCV. The structure of BVDV RdRp has been recently published. It presents several differences relative to HCV RdRp. These differences raise questions about the relevance of BVDV as a surrogate model, and cast novel interest on the "GB" virus C (GBV-C. Indeed, GBV-C is genetically closer to HCV than BVDV, and can lead to productive infection of cultured cells. There is no structural data for the GBV-C RdRp yet. Results We show in this study that the GBV-C RdRp is closest to the HCV RdRp. We report a 3D model of the GBV-C RdRp, developed using sequence-to-structure threading and comparative modeling based on the atomic coordinates of the HCV RdRp structure. Analysis of the predicted structural features in the phylogenetic context of the RNA polymerase family allows rationalizing most of the experimental data available. Both available structures and our model are explored to examine the catalytic cleft, allosteric and substrate binding sites. Conclusion Computational methods were used to infer evolutionary relationships and to predict the structure of a viral RNA polymerase. Docking a GTP molecule into the structure allows defining a GTP binding pocket in the GBV-C RdRp, such as that of BVDV. The resulting model suggests a new proposition for the mechanism of RNA synthesis, and may prove useful to design new experiments to implement our knowledge on the initiation mechanism of RNA

  11. Possible repurposing of seasonal influenza vaccine for prevention of Zika virus infection [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Veljko Veljkovic

    2016-03-01

    Full Text Available The in silico analysis shows that the envelope glycoproteins E of Zika viruses (ZIKV isolated in Asia, Africa and South and Central America encode highly conserved information determining their interacting profile and immunological properties. Previously it was shown that the same information is encoded in the primary structure of the hemagglutinin subunit 1 (HA1 from pdmH1N1 influenza A virus.  This similarity suggests possible repurposing of the seasonal influenza vaccine containing pdmH1N1 component for prevention of the ZIKV infection.

  12. Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure.

    Science.gov (United States)

    Tharakaraman, Kannan; Subramanian, Vidya; Cain, David; Sasisekharan, Viswanathan; Sasisekharan, Ram

    2014-05-14

    Broadly neutralizing antibodies (bNAb) that target a conserved region of a viral antigen hold significant therapeutic promise. CR8020 is a bNAb that targets the stem region of influenza A virus (IAV) hemagglutinin (HA). CR8020 is currently being evaluated for prophylactic use against group 2 IAVs in phase II studies. Structural and computational analyses reported here indicate that CR8020 targets HA residues that are prone to antigenic drift and host selection pressure. Critically, CR8020 escape mutation is seen in certain H7N9 viruses from recent outbreaks. Furthermore, the ability of the bNAb Fc region to effectively engage activating Fcγ receptors (FCγR) is essential for antibody efficacy. In this regard, our data indicate that the membrane could sterically hinder the formation of HA-CR8020-FcγRIIa/HA-IgG-FcγRIIIa ternary complexes. Altogether, our analyses suggest that epitope mutability and accessibility to immune complex assembly are important attributes to consider when evaluating bNAb candidates for clinical development. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Science.gov (United States)

    Ballandras, Allison; Moreau, Karen; Robert, Xavier; Confort, Marie-Pierre; Merceron, Romain; Haser, Richard; Ronfort, Corinne; Gouet, Patrice

    2011-01-01

    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.

  14. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Directory of Open Access Journals (Sweden)

    Allison Ballandras

    Full Text Available Integrase (IN is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1. These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1 IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T. Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3. A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.

  15. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands.

    Science.gov (United States)

    Nicolas, Gaëlle; Chevalier, Véronique; Tantely, Luciano Michaël; Fontenille, Didier; Durand, Benoît

    2014-12-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of

  16. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands.

    Directory of Open Access Journals (Sweden)

    Gaëlle Nicolas

    2014-12-01

    Full Text Available Rift Valley fever (RVF is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields

  17. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east africa suggests two independent introductions from southern africa

    DEFF Research Database (Denmark)

    Sangula, Abraham K.; Belsham, Graham; Muwanika, Vincent B.

    2010-01-01

    Background: In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our...... appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. Results: The VP1 coding sequence of 11 serotype SAT...... 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent...

  18. Cross-Neutralization between Human and African Bat Mumps Viruses.

    Science.gov (United States)

    Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru

    2016-04-01

    Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.

  19. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  20. Characterization of Mumps Viruses Circulating in Mongolia: Identification of a Novel Cluster of Genotype H▿

    Science.gov (United States)

    Kidokoro, Minoru; Tuul, Rentsengiin; Komase, Katsuhiro; Nymadawa, Pagbajab

    2011-01-01

    Although mumps virus is still causing annual epidemics in Mongolia, very few epidemiological and virological data have been reported. We describe here the first phylogenetic analysis data on the mumps viruses circulated in Mongolia in 2009. We detected 21 mumps virus cDNAs and obtained a virus isolate from 32 throat swabs of mumps patients in Ulaanbaatar, the capital of Mongolia. The phylogenetic analyses based on the 316 nucleotides of the small hydrophobic gene show that these sequences form a single cluster, with the closest relatedness to the viruses belonging to genotype H. According to the recommendation of the World Health Organization, Mongolian mumps viruses could be classified into a novel genotype because the divergence between new sequences and genotype H reference viruses is >5% (6.3 to 8.2%). However, additional analyses based on the fusion gene, the hemagglutinin-neuraminidase gene, and the whole-genome indicate that the divergences between the Mongolian isolate and other genotype H strains never exceed the within-genotype divergences of other genotypes. These results suggest that Mongolia strains should be included in genotype H and that the current criteria for mumps virus genotyping should be revised. We propose here that the Mongolian viruses should be classified as a new subgenotype termed H3. Since previous epidemiological studies suggested that genotypes H may be associated with central nervous system diseases, we evaluated the neurovirulence of the Mongolian isolate in the neonatal rat system. However, the virus does not exhibit prominent neurovirulence in rats. PMID:21411578

  1. Characterization of mumps viruses circulating in Mongolia: identification of a novel cluster of genotype H.

    Science.gov (United States)

    Kidokoro, Minoru; Tuul, Rentsengiin; Komase, Katsuhiro; Nymadawa, Pagbajab

    2011-05-01

    Although mumps virus is still causing annual epidemics in Mongolia, very few epidemiological and virological data have been reported. We describe here the first phylogenetic analysis data on the mumps viruses circulated in Mongolia in 2009. We detected 21 mumps virus cDNAs and obtained a virus isolate from 32 throat swabs of mumps patients in Ulaanbaatar, the capital of Mongolia. The phylogenetic analyses based on the 316 nucleotides of the small hydrophobic gene show that these sequences form a single cluster, with the closest relatedness to the viruses belonging to genotype H. According to the recommendation of the World Health Organization, Mongolian mumps viruses could be classified into a novel genotype because the divergence between new sequences and genotype H reference viruses is >5% (6.3 to 8.2%). However, additional analyses based on the fusion gene, the hemagglutinin-neuraminidase gene, and the whole-genome indicate that the divergences between the Mongolian isolate and other genotype H strains never exceed the within-genotype divergences of other genotypes. These results suggest that Mongolia strains should be included in genotype H and that the current criteria for mumps virus genotyping should be revised. We propose here that the Mongolian viruses should be classified as a new subgenotype termed H3. Since previous epidemiological studies suggested that genotypes H may be associated with central nervous system diseases, we evaluated the neurovirulence of the Mongolian isolate in the neonatal rat system. However, the virus does not exhibit prominent neurovirulence in rats.

  2. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions

    NARCIS (Netherlands)

    Schoen, P; Leserman, L; Wilschut, J

    1996-01-01

    Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) represent an efficient fusogenic cellular delivery system, By interaction of HA with its natural receptors, sialylated lipids (gangliosides) or proteins, virosomes bind to cells and, following endocytic

  3. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012

    Science.gov (United States)

    Nelson, Martha I.; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A.; Fedorova, Nadia; Stockwell, Timothy B.; Wentworth, David; Holmes, Edward C.; Bausch, Daniel G.

    2015-01-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains. PMID:26196599

  4. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010-2012.

    Science.gov (United States)

    Pollett, Simon; Nelson, Martha I; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A; Fedorova, Nadia; Stockwell, Timothy B; Wentworth, David; Holmes, Edward C; Bausch, Daniel G

    2015-08-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source-sink model for a Latin American country. Viruses were obtained during 2010-2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.

  5. Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Mostafa Jarahian

    2011-08-01

    Full Text Available Natural killer (NK cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV and ectromelia virus (ECTV. NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR, NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV, the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.

  6. Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east Africa suggests two independent introductions from southern Africa.

    Science.gov (United States)

    Sangula, Abraham K; Belsham, Graham J; Muwanika, Vincent B; Heller, Rasmus; Balinda, Sheila N; Masembe, Charles; Siegismund, Hans R

    2010-11-30

    In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. The VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania. Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.

  7. In silico analysis suggests repurposing of ibuprofen for prevention and treatment of EBOLA virus disease [v1; ref status: indexed, http://f1000r.es/5bs

    Directory of Open Access Journals (Sweden)

    Veljko Veljkovic

    2015-05-01

    Full Text Available The large 2014/2015 Ebola virus outbreak in West Africa points out the urgent need to develop new preventive and therapeutic approaches that are effective against Ebola viruses and  can be rapidly utilized. Recently, a simple theoretical criterion for the virtual screening of molecular libraries for candidate inhibitors of Ebola virus infection was proposed. Using this method the ‘drug space’ was screened and 267 approved and 382 experimental drugs as candidates for treatment of the Ebola virus disease (EVD have been selected. Detailed analysis of these drugs revealed the non-steroidal anti-inflammatory drug ibuprofen as an inexpensive, widely accessible and minimally toxic candidate for prevention and treatment of EVD. Furthermore, the molecular mechanism underlying this possible protective effect of ibuprofen against EVD is suggested in this article.

  8. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    Science.gov (United States)

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-05

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Intramuscular immunization of mice with live influenza virus is more immunogenic and offers greater protection than immunization with inactivated virus

    Directory of Open Access Journals (Sweden)

    Eichelberger Maryna C

    2011-05-01

    Full Text Available Abstract Background Influenza virus continues to cause significant hospitalization rates in infants and young children. A 2-dose regime of trivalent inactivated vaccine is required to generate protective levels of hemagglutination inhibiting (HAI antibodies. A vaccine preparation with enhanced immunogenicity is therefore desirable. Methods Mice were inoculated intramuscularly (IM with live and inactivated preparations of A/Wisconsin/67/2005 (H3N2. Serum cytokine levels, hemagglutinin (HA-specific antibody responses and nucleoprotein (NP-specific CD8+ T cell responses were compared between vaccinated groups, as well as to responses measured after intranasal infection. The protective efficacy of each vaccine type was compared by measuring virus titers in the lungs and weight loss of mice challenged intranasally with a heterosubtypic virus, A/PR/8/34 (H1N1. Results Intramuscular administration of live virus resulted in greater amounts of IFN-α, IL-12 and IFN-γ, HA-specific antibodies, and virus-specific CD8+ T cells, than IM immunization with inactivated virus. These increases corresponded with the live virus vaccinated group having significantly less weight loss and less virus in the lungs on day 7 following challenge with a sublethal dose of a heterosubtypic virus. Conclusions Inflammatory cytokines, antibody titers to HA and CD8+ T cell responses were greater to live than inactivated virus delivered IM. These increased responses correlated with greater protection against heterosubtypic virus challenge, suggesting that intramuscular immunization with live influenza virus may be a practical means to increase vaccine immunogenicity and to broaden protection in pediatric populations.

  10. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    Science.gov (United States)

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  11. Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity.

    Science.gov (United States)

    Peng, Wenjie; de Vries, Robert P; Grant, Oliver C; Thompson, Andrew J; McBride, Ryan; Tsogtbaatar, Buyankhishig; Lee, Peter S; Razi, Nahid; Wilson, Ian A; Woods, Robert J; Paulson, James C

    2017-01-11

    Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  13. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2.

    Science.gov (United States)

    Wang, Wei; Anderson, Christine M; De Feo, Christopher J; Zhuang, Min; Yang, Hong; Vassell, Russell; Xie, Hang; Ye, Zhiping; Scott, Dorothy; Weiss, Carol D

    2011-06-01

    Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01-2006/07 seasons. Among adults aged 48-64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05-2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure.

  14. Hemagglutinins in Anopheles quadrimaculatus, strains susceptible and refractory to Brugia malayi, and their role in the immune response to filarial parasites.

    Science.gov (United States)

    Nayar, J K; Knight, J W

    1997-01-01

    Hemagglutinins in the salivary gland extract and in the body fluid from strains of the mosquito, Anopheles quadrimaculatus, susceptible and refractory to the filarial parasite, Brugia malayi, had higher titers against Human A+, B- and O+, and sheep erythrocytes than against rabbit and jird erythrocytes. Hemagglutination activity in the body fluid was low in newly emerged females but increased and stabilized as they became older. Hemagglutination activity of the body fluid was not reduced by freezing at -20 degrees C, but it was destroyed following heating the body fluid to 60 degrees C and 100 degrees C for 45 min, indicating that the hemagglutinins are heat labile, and they are proteins or glycoproteins. Hemagglutinins in the salivary glands exhibited specificities for a broader range of carbohydrate moieties on the surface of Human A+ and sheep erythrocytes than those in the body fluid. Injections of specific carbohydrates in saline solution into B. malayi-infected females of the refractory strain of An. quadrimaculatus 24 hr after the infective blood meal showed that galactose, N-acetyl-D-galacto-samine, sorbose and mannose inhibited the increase in encapsulation (melanization) of L1 of B. malayi in the thoracic muscles of An. quadrimaculatus females when compared to those females injected with saline and other carbohydrates. The results suggest that hemagglutinins are present in the salivary gland extract and the body fluid of both strains of An. quadrimaculatus females and they may be involved in the immune response (encapsulation) to filarial parasites in An. quadrimaculatus.

  15. Effect of receptor binding specificity on the immunogenicity and protective efficacy of influenza virus A H1 vaccines.

    Science.gov (United States)

    Sun, Xiangjie; Cao, Weiping; Pappas, Claudia; Liu, Feng; Katz, Jacqueline M; Tumpey, Terrence M

    2014-09-01

    The biological basis for the poor immunogenicity of unadjuvanted avian influenza A virus vaccines in mammals is not well understood. Here, we mutated the hemagglutinin (HA) of two H1N1 virus vaccines to determine whether virus receptor binding specificity contributes to the low immunogenicity of avian influenza virus vaccines. Mutations were introduced into the HA of an avian influenza virus, A/Duck/New York/15024-21/96 (Dk/96) which switched the binding preference from α2,3- to α2,6-linked sialic acid (SA). A switch in receptor specificity of the human A/South Carolina/1/18 (SC/18) virus generated a mutant virus with α2,3 SA (avian) binding preference. Inactivated vaccines were generated and administered to mice and ferrets intramuscularly. We found that the vaccines with human receptor binding preference induced slightly higher antibody titers and cell-mediated immune responses compared to their isogenic viruses with avian receptor binding specificity. Upon challenge with DK/96 or SC18 virus, differences in lung virus titers between the vaccine groups with different receptor-binding specificities were minimal. Overall, our data suggest that receptor binding specificity contributes only marginally to the immunogenicity of avian influenza vaccines and that other factors may also be involved. Published by Elsevier Inc.

  16. Genetic characterization of canine distemper virus involved in outbreaks in farmed mink in Denmark 2012

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Struve, T.; Hjulsager, Charlotte Kristiane

    Danish farmed mink herds experienced a large outbreak of canine distemper virus in 2012. Full-length sequence analysis (1824 nucleotides) of the variable hemagglutinin (H) gene were performed on 27 viruses collected from mink and on 7 viruses collected from wild foxes. Results of the study showed...

  17. Identification of potential B cell epitope determinants by computer techniques, in hemagglutinin-neuraminidase from the porcine rubulavirus La Piedad Michoacan.

    Science.gov (United States)

    Zenteno-Cuevas, Roberto; Huerta-Yepez, Sara; Reyes-Leyva, Julio; Hernández-Jáuregui, Pablo; González-Bonilla, Cesar; Ramírez-Mendoza, Humberto; Agundis, Concepción; Zenteno, Edgar

    2007-01-01

    Hemagglutinin-neuraminidase (HN) from porcine rubulavirus La Piedad Michoacan (RvpLPM) is one of the most antigenic proteins known, and is responsible for virus-host cell interaction. We analyzed the amino acid sequence of HN, using computer-assisted techniques to identify B cell epitopes. From a pool of 18 possible antigenic peptides, we evaluated the antigenicity of the 2 peptides with the highest scores and the 1 with lowest score. Antibodies from RvpLPM-infected pigs recognized the synthesized HN-A, HN-B, and HN-R peptides (optical density [OD]: 0.33 +/- 0.02 for HN-A, 0.20 +/- 0.02 for HN-B, and 0.07 +/- 0.01 for HN-R); bovine serum albumin-coupled HN-A and HN-B induced rabbit anti-RvpLPM antibodies (OD: 0.39 +/- 0.01 for HN-A and 0.35 +/- 0.02 for HN-B). Loop 5 from the outer membrane protein, OmpC, from Salmonella typhi was replaced with HN-B; this protein was then expressed in Escherichia coli UH302. BALB/c mice were challenged intraperitoneally or orogastrically with the fusion protein expressed in E. coli and murine antibodies obtained from both types of administration inhibited virus-hemagglutinating activity, as did the antibodies from RvpLPM-infected swine. These results suggest that HN-A and HN-B are peptides involved in RvpLPM cell carbohydrate recognition, and could therefore be considered potential targets for vaccine and diagnostic procedures development.

  18. Simultaneous detection of hemagglutinin and neuraminidase genes of novel influenza A (H7N9) by duplex real-time reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Li, Yan; Wu, Tao; Qi, Xian; Ge, Yiyue; Guo, Xiling; Wu, Bin; Yu, Huiyan; Zhu, Yefei; Shi, Zhiyang; Wang, Hua; Cui, Lunbiao; Zhou, Minghao

    2013-12-01

    A novel reassortant influenza A (H7N9) virus emerged recently in China. In this study, a duplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay was developed for the simultaneous detection of hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 influenza viruses. The sensitivity of the assay was determined to be 10 RNA copies per reaction for both HA and NA genes. No cross-reactivity was observed with other influenza virus subtypes or respiratory tract viruses. One hundred and forty-six clinical and environmental specimens were tested and compared with reference methods and were found to be consistent. The assay is suitable for large-scale screening due to short turnaround times and high specificity, sensitivity, and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Internal epidemic influenza virus proteins: isolation and investigation].

    Science.gov (United States)

    Ivanova, V T; Rakutina, R O; Kordiukova, L V; Manykin, A A; Fedorova, N V; Ksenofontov, A L; Slepushkin, A N

    2006-01-01

    The internal influenza virus proteins M1 and RNP free from surface protein impurities were isolated from subviral particles (virions free from HA and NA ectomenes). The spikeless particles had no propensity to aggregate in the solution at pH 5.0 as compared with native viruses. The subviral particles of B/Hong Kong/330/01 influenza virus, which belonged to B/Victoria/2/87-lineage, were obtained by proteolytic treatment with the enzyme bromelain under the same conditions as in cases of influenza B viruses of B/Jamagata/16/88 lineage. A chromatographic analysis of the tryptic hydrolyzates obtained for matrix (M1) proteins of A(H1N1) and A(H3N2) influenza viruses revealed differences that were greatest between the protein M1 molecules isolated from influenza viruses of different subtypes of hemagglutinine. These findings suggest there are variations in the structure of this conservative internal viral protein M1 during evolution.

  20. VIRUSES

    Indian Academy of Sciences (India)

    and-mouth disease in livestock was an infectious particle smaller than any bacteria. This was the first clue to the nature of viruses, genetic entities that lie somewhere in the gray area between living and non-living states.

  1. LABEL: fast and accurate lineage assignment with assessment of H5N1 and H9N2 influenza A hemagglutinins.

    Directory of Open Access Journals (Sweden)

    Samuel S Shepard

    Full Text Available The evolutionary classification of influenza genes into lineages is a first step in understanding their molecular epidemiology and can inform the subsequent implementation of control measures. We introduce a novel approach called Lineage Assignment By Extended Learning (LABEL to rapidly determine cladistic information for any number of genes without the need for time-consuming sequence alignment, phylogenetic tree construction, or manual annotation. Instead, LABEL relies on hidden Markov model profiles and support vector machine training to hierarchically classify gene sequences by their similarity to pre-defined lineages. We assessed LABEL by analyzing the annotated hemagglutinin genes of highly pathogenic (H5N1 and low pathogenicity (H9N2 avian influenza A viruses. Using the WHO/FAO/OIE H5N1 evolution working group nomenclature, the LABEL pipeline quickly and accurately identified the H5 lineages of uncharacterized sequences. Moreover, we developed an updated clade nomenclature for the H9 hemagglutinin gene and show a similarly fast and reliable phylogenetic assessment with LABEL. While this study was focused on hemagglutinin sequences, LABEL could be applied to the analysis of any gene and shows great potential to guide molecular epidemiology activities, accelerate database annotation, and provide a data sorting tool for other large-scale bioinformatic studies.

  2. Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from Mycobacterium tuberculosis: implications for bacterial agglutination.

    Science.gov (United States)

    Esposito, Carla; Carullo, Paola; Pedone, Emilia; Graziano, Giuseppe; Del Vecchio, Pompea; Berisio, Rita

    2010-03-19

    Heparin Binding Hemagglutinin A (HBHA) is hitherto the sole virulence factor associated with tuberculosis dissemination from the lungs, the site of primary infection, to epithelial cells. We have previously reported the solution structure of HBHA, a dimeric and elongated molecule. Since oligomerisation of HBHA is associated with its ability to induce bacterial agglutination, we investigated this process using experimental and modelling techniques. We here identified a short segment of HBHA whose presence is mandatory for the stability of folded conformation, whose denaturation is a reversible two-state process. Our data suggest that agglutination-driven cell-cell interactions do not occur via association of HBHA monomers, nor via association of HBHA dimers and open the scenario to a possible trans-dimerisation process. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.

    Directory of Open Access Journals (Sweden)

    M Anthony Moody

    Full Text Available BACKGROUND: During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. METHODS AND FINDINGS: To study hemagglutinin (HA antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV and compared them to the plasma cell repertoires of subjects experimentally infected (EI with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. CONCLUSION: The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.

  4. H3N2 Influenza Infection Elicits More Cross-Reactive and Less Clonally Expanded Anti-Hemagglutinin Antibodies Than Influenza Vaccination

    Science.gov (United States)

    Walter, Emmanuel B.; Woods, Christopher W.; Ginsburg, Geoffrey S.; McClain, Micah T.; Denny, Thomas N.; Chen, Xi; Munshaw, Supriya; Marshall, Dawn J.; Whitesides, John F.; Drinker, Mark S.; Amos, Joshua D.; Gurley, Thaddeus C.; Eudailey, Joshua A.; Foulger, Andrew; DeRosa, Katherine R.; Parks, Robert; Meyerhoff, R. Ryan; Yu, Jae-Sung; Kozink, Daniel M.; Barefoot, Brice E.; Ramsburg, Elizabeth A.; Khurana, Surender; Golding, Hana; Vandergrift, Nathan A.; Alam, S. Munir; Tomaras, Georgia D.; Kepler, Thomas B.; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton F.

    2011-01-01

    Background During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. Methods and Findings To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. Conclusion The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains. PMID:22039424

  5. Specific Nucleoprotein Residues Affect Influenza Virus Morphology

    Science.gov (United States)

    Bialas, Kristy M.; Bussey, Kendra A.; Stone, Raychel L.

    2014-01-01

    Influenza virus strains are often pleiomorphic, a characteristic that is largely attributed to specific residues in matrix protein 1 (M1). Although the mechanism by which M1 controls virion morphology has not yet been defined, it is suggested that the M1 interaction with other viral proteins plays an important role. In this study, we rescued recombinant virus WSN-AichiM1 containing the spherical A/WSN/33 (WSN) backbone and the M1 protein from A/Aichi/2/68 (Aichi). Aichi M1 differs from WSN M1 by 7 amino acids but includes those identified to be responsible for filamentous virion formation. Interestingly, Aichi virus produced spherical virions, while WSN-AichiM1 exhibited a long filamentous morphology, as detected by immunofluorescence and electron microscopy. Additional incorporation of Aichi nucleoprotein (NP) but not the hemagglutinin (HA), neuraminidase (NA), or M2 gene to WSN-AichiM1 abrogated filamentous virion formation, suggesting that specific M1-NP interactions affect virion morphology. Further characterization of viruses containing WSN/Aichi chimeric NPs identified residues 214, 217, and 253 of Aichi NP as necessary and sufficient for the formation of spherical virions. NP residues 214 and 217 localize at the minor groove between the two opposite-polarity NP helical strands of viral ribonucleocapsids, and residue 253 also localizes near the surface of the groove. These findings indicate that NP plays a critical role in influenza virus morphology, possibly through its interaction with the M1 layer during virus budding. PMID:24335312

  6. Evolutionary patterning of hemagglutinin gene sequence of 2009 H1N1 pandemic.

    Science.gov (United States)

    Banerjee, Rachana; Roy, Ayan; Ahmad, Fayaz; Das, Santasabuj; Basak, Surajit

    2012-01-01

    The 2009 H1N1 swine flu is the first pandemic in decades. Infectivity of the influenza virus for human host depends largely on its ability to evade antibodies specific for viral protein called hemagglutinin (HA) that mediates attachment to the host. In the present study we analysed large number of HA gene sequences available in Flu Database maintained at NCBI. Our sequence based analysis clearly demonstrates that the amino acid usage pattern may dramatically change during the course of evolution, and there exists a clear link between a particular pattern of amino acid usage of HA genes and its potential to become infectious. Structural studies revealed how binding efficiency between the HA and sialic acid may alter the pandemic potential of infection. Our work highlights the evolutionary significance and biochemical basis of the selective advantage of certain amino acids of HA in 2009 and provides a link between the characteristics changes in HA protein and their potential to pronounce a global menace to public health.

  7. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature.

    Science.gov (United States)

    Smrt, Sean T; Draney, Adrian W; Lorieau, Justin L

    2015-01-02

    The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Differentiation and Protective Capacity of Virus-Specific CD8+T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche.

    Science.gov (United States)

    Tomov, Vesselin T; Palko, Olesya; Lau, Chi Wai; Pattekar, Ajinkya; Sun, Yuhang; Tacheva, Ralitza; Bengsch, Bertram; Manne, Sasikanth; Cosma, Gabriela L; Eisenlohr, Laurence C; Nice, Timothy J; Virgin, Herbert W; Wherry, E John

    2017-10-17

    Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8 + T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8 + T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8 + T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multiple detection of zoonotic variegated squirrel bornavirus 1 RNA in different squirrel species suggests a possible unknown origin for the virus.

    Science.gov (United States)

    Schlottau, Kore; Hoffmann, Bernd; Homeier-Bachmann, Timo; Fast, Christine; Ulrich, Rainer G; Beer, Martin; Hoffmann, Donata

    2017-09-01

    The recently discovered variegated squirrel bornavirus 1 (VSBV-1) caused the death of three squirrel breeders in Germany. Subsequent first screening of squirrels with in vivo collected swab samples and a VSBV-1-specific RT-qPCR revealed not only variegated squirrel infections (Sciurus variegatoides), but also Prevost's squirrels (Callosciurus prevostii) as positive for VSBV-1 genome. In this study, 328 squirrels were tested using the established RT-qPCR assays. In 16 individual animals VSBV-1 RNA could be detected; 15 individuals were from small breedings and zoological gardens in Germany, with the remaining individual being from a zoological garden in Croatia. Positive animals belonged to the species C. prevostii, C. finlaysonii, and Tamiops swinhoei within the subfamily Callosciurinae and Sciurus granatensis within the subfamily Sciurinae. Repeated non-invasive oral swab sampling in one holding indicated positive animals months after a first negative result. Besides the oral swabs, VSBV-1 was also detected in fecal (pool) samples allowing the future monitoring of squirrel holdings based on RT-qPCR investigation of such samples. The detection in zoological gardens emphasizes the need for further investigations into the transmission route to humans in order to develop rational public health measures for prevention of transmission. Finally, the detection of several closely related VSBV-1 sequences in squirrels from different subfamilies raises questions as to the origin of the virus.

  10. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity

    Science.gov (United States)

    Duev-Cohen, Alexandra; Bar-On, Yotam; Glasner, Ariella; Berhani, Orit; Ophir, Yael; Levi-Schaffer, Francesca; Mandelboim, Michal; Mandelboim, Ofer

    2016-01-01

    Natural Killer (NK) cells are critical in the defense against viruses in general and against influenza in particular. We previously demonstrated that the activating NK cell receptor NKp46 is involved in the killing of influenza-virus infected cells through its interaction with viral hemagglutinin (HA). Furthermore, the recognition by NKp46 and consequent elimination of influenza infected cells were determined to be sialic-acid dependent. Here, we show that the human co-activating receptors 2B4 and NTB-A directly recognize the viral HA protein and co-stimulate killing by NK cells. We demonstrate that the 2B4/NTB-A-HA interactions require the sialylation of these receptors, and we identified the binding sites mediating these interactions. We also show that the virus counters these interactions through its neuraminidase (NA) protein. These results emphasize the critical role played by NK cells in eliminating influenza, a significant cause of worldwide morbidity and mortality. PMID:26919106

  11. An Assembly Model of Rift Valley Fever Virus

    Science.gov (United States)

    Rusu, Mirabela; Bonneau, Richard; Holbrook, Michael R.; Watowich, Stanley J.; Birmanns, Stefan; Wriggers, Willy; Freiberg, Alexander N.

    2012-01-01

    Rift Valley fever virus (RVFV) is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals. PMID:22837754

  12. An assembly model of Rift Valley fever virus

    Directory of Open Access Journals (Sweden)

    Mirabela eRusu

    2012-07-01

    Full Text Available Rift Valley fever virus (RVFV is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals.

  13. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  14. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV suggest preventive drug candidates.

    Directory of Open Access Journals (Sweden)

    Paloma Encinas

    Full Text Available Spring viremia carp virus (SVCV is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections. We have used newly designed pathway-targeted microarrays 3-4-fold enriched for immune/infection functional-relevant probes by using zebrafish orthologous to human genes from selected pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG. The comparative analysis of differential expression of genes through 20 pathways in 2-day exposed or 30-day survivors of SVCV infection allowed the identification of 16 multipath genes common to more than 6 pathways. In addition, receptors (Toll-like, B-cell, T-cell, RIG1-like as well as viral RNA infection pathways were identified as the most important human-like pathways targeted by SVCV infection. Furthermore, by using bioinformatic tools to compare the promoter sequences corresponding to up and downregulated multipath gene groups, we identified putative common transcription factors which might be controlling such responses in a coordinated manner. Possible drug candidates to be tested in fish, can be identified now through search of data bases among those associated with the human orthologous to the zebrafish multipath genes. With the use of pathway-targeted microarrays, we identified some of the most important genes and transcription factors which might be implicated in viral shutoff and/or host survival responses after SVCV infection. These results could contribute to develop novel drug-based prevention methods and consolidate the zebrafish/SVCV as a

  15. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study

    Directory of Open Access Journals (Sweden)

    Teng Zhao

    2016-11-01

    Full Text Available In 2014, surveillance of sentinel chicken for avian influenza virus was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering in the hemagglutinin (HA gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only in the H5N6 virus. A deletion of three and eleven amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  16. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement.

    Science.gov (United States)

    Hall, Jeffrey S; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S; Magnusdottir, Ellen; TeSlaa, Joshua L; Nashold, Sean W; Dusek, Robert J

    2014-12-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence=75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region. Published by Elsevier B.V.

  17. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement

    Science.gov (United States)

    Hall, Jeffrey S.; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.

    2014-01-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence = 75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region.

  18. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3' proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity

    NARCIS (Netherlands)

    R.S. Tang (Roderick); J.H. Schickli (Jeanne); M. MacPhail (Mia); F. Fernandes (Fiona); L. Bicha (Leenas); J. Spaete (Joshua); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); R. Spaete (Richard); A.A. Haller (Aurelia)

    2003-01-01

    textabstractA live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory

  19. Both CD4+ and CD8+ Lymphocytes Participate in the IFN-γ Response to Filamentous Hemagglutinin from Bordetella pertussis in Infants, Children, and Adults

    OpenAIRE

    Violette Dirix; Virginie Verscheure; Françoise Vermeulen; Iris De Schutter; Tessa Goetghebuer; Camille Locht; Françoise Mascart

    2012-01-01

    Infant CD4+ T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8 + T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8 + T-cell responses upon Bordetella pertussis infection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γ secretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD...

  20. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Directory of Open Access Journals (Sweden)

    Xianliang Ji

    2016-04-01

    Full Text Available Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs composed of the hemagglutinin (HA, neuraminidase (NA and matrix protein (M1 of A/Changchun/01/2009 (H1N1 with or without either membrane-anchored cholera toxin B (CTB or ricin toxin B (RTB as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival. Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  1. Cross-reactive immunity against influenza viruses in children and adults following 2009 pandemic H1N1 infection.

    Science.gov (United States)

    Ahmed, Muhammad S; Jacques, Laura C; Mahallawi, Waleed; Ferrara, Francesca; Temperton, Nigel; Upile, Nav; Vaughan, Casey; Sharma, Ravi; Beer, Helen; Hoschler, Katja; McNamara, Paul S; Zhang, Qibo

    2015-02-01

    2009 H1N1 pandemic influenza (A(H1N1)pdm09) virus infected large numbers of people worldwide. Recent studies suggest infection with A(H1N1)pdm09 virus elicited cross-reactive anti-hemagglutinin (HA) memory B cell response to conserved regions of HA. However, the breadth and magnitude of cross-reactive immunity in children and adults following A(H1N1)pdm09 infection are unknown. We investigated serum anti-HA immunity to a number of group-1 and -2 viruses in children and adults using hemagglutination inhibition (HAI), enzyme-linked immunosorbent assay and virus neutralization assay. Applying hemagglutination inhibition (HAI) titers ⩾40 against A(H1N1)pdm09 as threshold of sero-positivity, we observed significantly higher levels of anti-HA antibodies to a number of virus subtypes, including those neutralizing H5N1, in subjects with HAI titer ⩾40 than those with HAI immunity. Our results suggest individuals exposed to A(H1N1)pdm09 virus developed a broad and age-associated cross-reactive anti-HA immunity which may have important implications for future vaccination strategies to enable protection against a broader range of influenza viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Science.gov (United States)

    2010-01-01

    Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA) protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI), and recognition of linear epitopes by peptide scanning (PepScan). Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization. PMID:20735849

  3. Serological characterization of guinea pigs infected with H3N2 human influenza or immunized with hemagglutinin protein

    Directory of Open Access Journals (Sweden)

    Bushnell Ruth V

    2010-08-01

    Full Text Available Abstract Background Recent and previous studies have shown that guinea pigs can be infected with, and transmit, human influenza viruses. Therefore guinea pig may be a useful animal model for better understanding influenza infection and assessing vaccine strategies. To more fully characterize the model, antibody responses following either infection/re-infection with human influenza A/Wyoming/03/2003 H3N2 or immunization with its homologous recombinant hemagglutinin (HA protein were studied. Results Serological samples were collected and tested for anti-HA immunoglobulin by ELISA, antiviral antibodies by hemagglutination inhibition (HI, and recognition of linear epitopes by peptide scanning (PepScan. Animals inoculated with infectious virus demonstrated pronounced viral replication and subsequent serological conversion. Animals either immunized with the homologous HA antigen or infected, showed a relatively rapid rise in antibody titers to the HA glycoprotein in ELISA assays. Antiviral antibodies, measured by HI assay, were detectable after the second inoculation. PepScan data identified both previously recognized and newly defined linear epitopes. Conclusions Infection and/or recombinant HA immunization of guinea pigs with H3N2 Wyoming influenza virus resulted in a relatively rapid production of viral-specific antibody thus demonstrating the strong immunogenicity of the major viral structural proteins in this animal model for influenza infection. The sensitivity of the immune response supports the utility of the guinea pig as a useful animal model of influenza infection and immunization.

  4. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  5. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin.

    Science.gov (United States)

    Wilson, Jason R; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-06-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the

  6. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  7. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles.

    Science.gov (United States)

    Ramirez, Alejandro; Morris, Stephen; Maucourant, Sophie; D'Ascanio, Isabella; Crescente, Vincenzo; Lu, I-Na; Farinelle, Sophie; Muller, Claude P; Whelan, Michael; Rosenberg, William

    2018-02-01

    Existing Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics. One solution is to design vaccines that target conserved protein domains of influenza, which remain largely unchanged over time and are likely to be found in emergent variants. We present a virus-like particle (VLP), built using the hepatitis B virus tandem core platform, as an IAV vaccine candidate containing multiple conserved antigens. Hepatitis B core protein spontaneously assembles into a VLP that is immunogenic and confers immunogenicity to proteins incorporated into the major insertion region (MIR) of core monomers. However, insertion of antigen sequences may disrupt particle assembly preventing VLP formation or result in unstable particles. We have overcome these problems by genetically manipulating the hepatitis B core to express core monomers in tandem, ligated with a flexible linker, incorporating different antigens at each of the MIRs. Immunisation with this VLP, named Tandiflu1, containing 4 conserved antigens from matrix protein 2 ectodomain and hemagglutinin stalk, leads to production of cross-reactive and protective antibodies. The polyclonal antibodies induced by Tandiflu1 can bind IAV Group 1 hemagglutinin types H1, H5, H11, H9, H16 and a conserved epitope on matrix protein 2 expressed by most strains of IAV. Vaccination with Tandiflu1 results in 100% protection from a lethal influenza challenge with H1N1 IAV. Serum transfer from vaccinated animals is sufficient to confer protection from influenza-associated illness in naïve mice. These data suggest that a Tandem Core based IAV vaccine might provide broad protection against common and emergent H1

  8. Reassortments and Mutations Modulating Virulence and Transmission of Influenza A Virus

    NARCIS (Netherlands)

    E.J.A. Schrauwen (Eefje)

    2013-01-01

    textabstractInfluenza A virus is a member of the Orthomyxoviridae family. The influenza A viruses are classified on the basis of antigenic properties of the glycoproteins hemagglutinin (HA) and neuraminidase (NA) into 17 HA subtypes (H1-H17) and 10 NA subtypes (N1-N10) [1-3]. These different

  9. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro. T...

  10. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  11. HOMA, BMI, and Serum Leptin Levels Variations during Antiviral Treatment Suggest Virus-Related Insulin Resistance in Noncirrhotic, Nonobese, and Nondiabetic Chronic Hepatitis C Genotype 1 Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Grasso

    2015-01-01

    Full Text Available Objective. To investigate the relationship between insulin resistance and viral load decay in nondiabetic and noncirrhotic genotype 1 chronic HCV patients during peginterferon and ribavirin treatment and the possible influence of BMI and leptin as metabolic confounders. Methods. 75 consecutive noncirrhotic, nonobese, and nondiabetic patients with genotype 1 chronic hepatitis C treated with peginterferon alpha 2a plus ribavirin were evaluated. HOMA-IR, serum leptin, and BMI were measured in all patients at baseline and at weeks 12 and 48, whereas viral load was measured at the same time points and then 24 weeks after the end of treatment. Results. HOMA-IR was significantly associated with both BMI and leptin at baseline. During peginterferon plus ribavirin treatment, there was a significant reduction of HOMA-IR at weeks 12 and 48 from baseline (P=0.033 and 0.048, resp. in patients who achieved an early viral load decay (EVR, a trend not observed in patients who not achieved EVR. No variations during treatment were observed regarding BMI and leptin irrespective of EVR. Conclusion. The early reduction of HOMA-IR but not of BMI and leptin during antiviral treatment in noncirrhotic, chronic hepatitis C genotype 1 patients who achieved EVR suggests a viral genesis of insulin resistance in patients with nonmetabolic phenotype.

  12. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  13. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  14. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses.

    Science.gov (United States)

    Sun, Shisheng; Wang, Qinzhe; Zhao, Fei; Chen, Wentian; Li, Zheng

    2012-01-01

    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.

  15. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  16. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3.

    Science.gov (United States)

    Wang, Helen; Huang, Wei; Orwenyo, Jared; Banerjee, Aditi; Vasta, Gerardo R; Wang, Lai-Xi

    2013-04-01

    We report a facile synthesis of glycoprotein-based glyco-ligands and their binding with influenza hemagglutinin and human galectin-3. Human serum albumin (HSA) was used as the scaffold and an Asn-linked complex type N-glycan prepared from chicken eggs was used as the glycan building block. It was found that Cu(I)-catalyzed alkyne-azide cycloaddition reaction (click chemistry) between the alkyne-labeled glycan and the azide-tagged HSA led to an efficient formation of the glycoconjugates. The density of glycan ligands on the protein scaffold was readily varied by changing the molar ratios of the two reactants. Binding studies indicated that the sialylated and desialylated multivalent glycoligands could selectively bind to influenza hemagglutinin and human galectin-3, respectively, with high affinity. In the two glycan-lectin interactions, a clear multivalent effect was observed. Moreover, a cell-based assay showed that the synthetic multivalent glyco-ligands could efficiently inhibit the attachment of galectin-3 to human prostate cancer and lung cancer cell lines. This study suggests that the synthetic glycoprotein-based glyco-ligands can be useful for different applications, including blocking the function of galectin-3 in cancer metastasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning.

    Directory of Open Access Journals (Sweden)

    Tiziano Gaiotto

    Full Text Available Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu, 2009 H1N1 pandemic (swine flu and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our

  18. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Ahmed O Hassan

    Full Text Available The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e, hemagglutinin (HA fusion domain (HFD, T-cell epitope of nucleoprotein (TNP. and HA α-helix domain (HαD]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.

  19. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin.

    Science.gov (United States)

    Zhou, Yu; Wu, Chao; Zhao, Lifeng; Huang, Niu

    2014-10-01

    Hemagglutinin (HA) mediates the membrane fusion process of influenza virus through its pH-induced conformational change. However, it remains challenging to study its structure reorganization pathways in atomic details. Here, we first applied continuous constant pH molecular dynamics approach to predict the pK(a) values of titratable residues in H2 subtype HA. The calculated net-charges in HA1 globular heads increase from 0e (pH 7.5) to +14e (pH 4.5), indicating that the charge repulsion drives the detrimerization of HA globular domains. In HA2 stem regions, critical pH sensors, such as Glu103(2), His18(1), and Glu89(1), are identified to facilitate the essential structural reorganizations in the fusing pathways, including fusion peptide release and interhelical loop transition. To probe the contribution of identified pH sensors and unveil the early steps of pH-induced conformational change, we carried out conventional molecular dynamics simulations in explicit water with determined protonation state for each titratable residue in different environmental pH conditions. Particularly, energy barriers involving previously uncharacterized hydrogen bonds and hydrophobic interactions are identified in the fusion peptide release pathway. Nevertheless, comprehensive comparisons across HA family members indicate that different HA subtypes might employ diverse pH sensor groups along with different fusion pathways. Finally, we explored the fusion inhibition mechanism of antibody CR6261 and small molecular inhibitor TBHQ, and discovered a novel druggable pocket in H2 and H5 subtypes. Our results provide the underlying mechanism for the pH-driven conformational changes and also novel insight for anti-flu drug development. © 2014 Wiley Periodicals, Inc.

  1. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins.

    Science.gov (United States)

    Lucchese, Guglielmo; Capone, Giovanni; Kanduc, Darja

    2014-03-01

    Epidemiologic data suggest that maternal microbial infections may cause fetal neurodevelopmental disorders, potentially increasing susceptibility to heavy psychopathologies such as schizophrenia, schizophreniform disorder, autism, pervasive developmental disorders, bipolar disorders, psychosis, epilepsy, language and speech disorders, and cognitive impairment in adult offspring. However, the molecular pathomechanisms underlying such a relationship are not clear. Here we analyze the potential role of the maternal immune response to viral infection in determining fetal brain injuries that increase the risk of neurological disorders in the adult. We use influenza infection as a disease model and human axon guidance pathway, a key process in the formation of neural network during midgestation, as a potential fetal target of immune insults. Specifically, we examined influenza A H1N1 hemagglutinin (HA), an antigenic viral protein, for amino acid sequence similarity to a random library of 188 axon guidance proteins. We obtain the results that (1) contrary to any theoretical expectations, 45 viral pentapeptide matches are distributed throughout a subset of 36 guidance molecules; (2) in 24 guidance proteins, the peptide sharing with HA antigen involves already experimentally validated influenza HA epitopes; and (3) most of the axon guidance vs HA peptide overlap is conserved among influenza A viral strains and subsets. Taken together, our data indicate that immune cross-reactivity between influenza HA and axon guidance molecules is possible and may well represent a pathologic mechanism capable of determining neurodevelopmental disruption in the fetus.

  2. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Tzvia Abramson

    Full Text Available Filamentous hemagglutinin (FHA is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-kappaB transcription factor family in these host cell responses, we examined the effect of FHA on NF-kappaB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection.Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-kappaB pathway, as manifested by the degradation of cytosolic IkappaB alpha, by NF-kappaB DNA binding, and by the subsequent secretion of NF-kappaB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IkappaB alpha, and the failure of TNF-alpha to activate NF-kappaB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells.These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-kappaB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.

  3. Cross-Neutralizing Antibodies to Pandemic 2009 H1N1 and Recent Seasonal H1N1 Influenza A Strains Influenced by a Mutation in Hemagglutinin Subunit 2

    Science.gov (United States)

    Wang, Wei; Anderson, Christine M.; De Feo, Christopher J.; Zhuang, Min; Yang, Hong; Vassell, Russell; Xie, Hang; Ye, Zhiping; Scott, Dorothy; Weiss, Carol D.

    2011-01-01

    Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure. PMID:21695241

  4. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  5. Re-emergence of H3N2 strains carrying potential neutralizing mutations at the N-linked glycosylation site at the hemagglutinin head, post the 2009 H1N1 pandemic.

    Science.gov (United States)

    Ushirogawa, Hiroshi; Naito, Tadasuke; Tokunaga, Hirotoshi; Tanaka, Toshihiro; Nakano, Takashi; Terada, Kihei; Ohuchi, Masanobu; Saito, Mineki

    2016-08-08

    Seasonally prevalent H1N1 and H3N2 influenza A viruses have evolved by antigenic drift; this evolution has resulted in the acquisition of asparagine (N)-linked glycosylation sites (NGSs) in the globular head of hemagglutinin (HA), thereby affecting the antigenic and receptor-binding properties, as well as virulence. An epidemiological survey indicated that although the traditional seasonal H1N1 strain had disappeared, H3N2 became predominant again in the seasons (2010-11 and 2011-12) immediately following the H1N1 pandemic of 2009. Interestingly, although the 2009 pandemic H1N1 strain (H1N1pdm09) lacks additional NGSs, clinically isolated H3N2 strains obtained during these seasons gained N (Asn) residues at positions 45 and 144 of HA that forms additional NGSs. To investigate whether these NGSs are associated with re-emergence of H3N2 within the subtype, we tested the effect of amino acid substitutions on neutralizing activity by using the antisera raised against H3N2 strains with or without additional NGSs. Furthermore, because the N residue at position 144 of HA was identified as the site of mismatch between the vaccine and epidemic strains of 2011-2012, we generated mutant viruses by reverse genetics and tested the functional importance of this particular NGS for antibody-mediated neutralization by intranasal inoculation of mice. The results indicated that amino acid substitution at residue 144 significantly affected neutralization activity, acting as an escape mutation. Our data suggest that the newly acquired NGSs in the HA globular head may play an important role in the re-emergence of endemic seasonal H3N2 strain by aiding the escape from humoral immunity.

  6. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    Science.gov (United States)

    1995-04-13

    colipids, as does that of bovine coronavirus (Vlasak, et al ., 1988) . The interaction of HE protein wi th its cellular l igand is not sufficient to...glycoprotein of human parainfluenza virus type 3 is required for virus spread and virus -mediated membrane fusion (Moscona, et al., 1992). The relative...affinity for sialic acid of the hemagglutinin- neuraminidase glycoproteins of different parainfluenza virus type 3 variants correlates with their

  7. Isolation and Characterization of Influenza C Viruses in the Philippines and Japan

    Science.gov (United States)

    Odagiri, Takashi; Matsuzaki, Yoko; Okamoto, Michiko; Suzuki, Akira; Saito, Mariko; Tamaki, Raita; Lupisan, Socorro P.; Sombrero, Lydia T.; Hongo, Seiji

    2014-01-01

    From November 2009 to December 2013 in the Philippines, 15 influenza C viruses were isolated, using MDCK cells, from specimens obtained from children with severe pneumonia and influenza-like illness (ILI). This is the first report of influenza C virus isolation in the Philippines. In addition, from January 2008 to December 2013, 7 influenza C viruses were isolated from specimens that were obtained from children with acute respiratory illness (ARI) in Sendai city, Japan. Antigenic analysis with monoclonal antibodies to the hemagglutinin-esterase (HE) glycoprotein showed that 19 strains (12 from the Philippines and 7 from Japan) were similar to the influenza C virus reference strain C/Sao Paulo/378/82 (SP82). Phylogenetic analysis of the HE gene showed that the strains from the Philippines and Japan formed distinct clusters within an SP82-related lineage. The clusters that included the Philippine and Japanese strains were shown to have diverged from a common ancestor around 1993. In addition, phylogenetic analysis of the internal genes showed that all strains isolated in the Philippines and Japan had emerged through reassortment events. The composition of the internal genes of the Philippine strains was different from that of the Japanese strains, although all strains were classified into an SP82-related lineage by HE gene sequence analysis. These observations suggest that the influenza C viruses analyzed here had emerged through different reassortment events; however, the time and place at which the reassortment events occurred were not determined. PMID:25552361

  8. MOLECULAR CHARACTERIZATION OF INFLUENZA B VIRUS OUTBREAK ON A CRUISE SHIP IN BRAZIL 2012

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2014-06-01

    Full Text Available In February 2012, an outbreak of respiratory illness occurred on the cruise ship MSC Armonia in Brazil. A 31-year-old female crew member was hospitalized with respiratory failure and subsequently died. To study the etiology of the respiratory illness, tissue taken at necropsy from the deceased woman and respiratory specimens from thirteen passengers and crew members with respiratory symptoms were analyzed. Influenza real-time RT-PCR assays were performed, and the full-length hemagglutinin (HA gene of influenza-positive samples was sequenced. Influenza B virus was detected in samples from seven of the individuals, suggesting that it was the cause of this respiratory illness outbreak. The sequence analysis of the HA gene indicated that the virus was closely related to the B/Brisbane/60/2008-like virus, Victoria lineage, a virus contained in the 2011-12 influenza vaccine for the Southern Hemisphere. Since the recommended composition of the influenza vaccine for use during the 2013 season changed, an intensive surveillance of viruses circulating worldwide is crucial. Molecular analysis is an important tool to characterize the pathogen responsible for an outbreak such as this. In addition, laboratory disease surveillance contributes to the control measures for vaccine-preventable influenza.

  9. Rapid and highly informative diagnostic assay for H5N1 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Nader Pourmand

    Full Text Available A highly discriminative and information-rich diagnostic assay for H5N1 avian influenza would meet immediate patient care needs and provide valuable information for public health interventions, e.g., tracking of new and more dangerous variants by geographic area as well as avian-to-human or human-to-human transmission. In the present study, we have designed a rapid assay based on multilocus nucleic acid sequencing that focuses on the biologically significant regions of the H5N1 hemagglutinin gene. This allows the prediction of viral strain, clade, receptor binding properties, low- or high-pathogenicity cleavage site and glycosylation status. H5 HA genes were selected from nine known high-pathogenicity avian influenza subtype H5N1 viruses, based on their diversity in biologically significant regions of hemagglutinin and/or their ability to cause infection in humans. We devised a consensus pre-programmed pyrosequencing strategy, which may be used as a faster, more accurate alternative to de novo sequencing. The available data suggest that the assay described here is a reliable, rapid, information-rich and cost-effective approach for definitive diagnosis of H5N1 avian influenza. Knowledge of the predicted functional sequences of the HA will enhance H5N1 avian influenza surveillance efforts.

  10. Influenza virus isolation.

    Science.gov (United States)

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  11. Characterization and evaluation of monoclonal antibodies developed for typing influenza A and influenza B viruses.

    OpenAIRE

    Walls, H H; Harmon, M.W.; Slagle, J J; Stocksdale, C; Kendal, A P

    1986-01-01

    Monoclonal antibodies that are broadly reactive with influenza A or influenza B viruses were produced as stable reagents for typing influenza viruses. Monoclonal antibodies to influenza A were specific for either matrix protein or nucleoprotein. The antibodies to influenza B were specific for nucleoprotein or hemagglutinin protein. In an enzyme immunoassay procedure, influenza A antibodies detected H1N1, H2N2, and H3N2 influenza A virus strains collected between 1934 and 1984. Each of the inf...

  12. Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes.

    Directory of Open Access Journals (Sweden)

    Neus Latorre-Margalef

    Full Text Available Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02. Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04 and the level of HA groups (p-value = 0.05. In contrast, infection patterns did not support specific immunity for neuraminidase (NA subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.

  13. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    Science.gov (United States)

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  14. The low-pH stability discovered in neuraminidase of 1918 pandemic influenza A virus enhances virus replication.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA, and neuraminidase (NA genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1 that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1 and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.

  15. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry.

    Science.gov (United States)

    Bardelli, Monia; Alleri, Liliana; Angiolini, Francesca; Buricchi, Francesca; Tavarini, Simona; Sammicheli, Chiara; Nuti, Sandra; Degl'Innocenti, Elena; Isnardi, Isabelle; Fragapane, Elena; Del Giudice, Giuseppe; Castellino, Flora; Galli, Grazia

    2013-01-01

    Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.

  16. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry.

    Directory of Open Access Journals (Sweden)

    Monia Bardelli

    Full Text Available Understanding the impact that human memory B-cells (MBC, primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.

  17. Isolation and Characterization of Equine Influenza Viruses (H3N8 from China, 2010~2011

    Directory of Open Access Journals (Sweden)

    Gang Lu1,§, Jie Chen2,§, Wei Guo1,§, Ting Qi1,§, Liping Zhao1, Hongmei Li1, Yuanyuan Ji1, Zheng Wang1, Cuiyun Liu1, Shihua Zhao1 and Wenhua Xiang1,*

    2013-04-01

    Full Text Available Two equine influenza virus (EIV strains were isolated during two restricted outbreaks from Heilongjiang Province, China in 2010 and 2011. Phylogenetic analysis of HA1 (hemagglutinin 1 gene revealed that the isolates belonged to Florida 2 sublineage of American lineage. Further analysis of the putative antigenic sites located in HA1 subunit protein revealed each isolate had a unique amino acid change. Analysis of antigenic sites between Chinese EIV and vaccine strains indicated equine influenza (EI vaccines containing Richmond/1/07-like antigen seemed to have an optimum effect in China. Meanwhile, the Ohio/03 vaccine strain contained in updated ProteqFlu had the most closely genetically relationship with recent EIV isolates in China. China has not its own commercially available EI vaccine and most horses are still unvaccinated. Therefore, to monitor antigenic variation of circulating EIVs and give considerable suggestions on selection of vaccine candidate plays an important role in preventing and controlling EIV in China.

  18. Dual function of the hemagglutinin H5 fused to chicken CD154 in a ...

    African Journals Online (AJOL)

    Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study. AG Pose, ES Rodriguez, AC Mendez, JN Gomez, AV Redondo, ER Rodriguez, EMG Ramos, AA Gutierrez, MPR Molto, DG Roche, YS Ugalde, AM Lopez ...

  19. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  20. Serological response to filamentous hemagglutinin and lymphocytosis-promoting toxin of Bordetella pertussis.

    Science.gov (United States)

    Burstyn, D G; Baraff, L J; Peppler, M S; Leake, R D; St Geme, J; Manclark, C R

    1983-01-01

    Serum antibody responses to the filamentous hemagglutinin and the lymphocytosis-promoting toxin of Bordetella pertussis after vaccination with diphtheria and tetanus toxoids and pertussis vaccine, adsorbed, were assayed by using the enzyme-linked immunosorbent assay. The effect of early immunization, during the first week of life, on the antibody response also was determined. After vaccination, immunoglobulin G (IgG) and IgM directed against both the filamentous hemagglutinin and the lymphocytosis-promoting toxin were detected. Generally, antibody titers increased with subsequent injections and the age of the children. Maternal antibodies against filamentous hemagglutinin and lymphocytosis-promoting toxin were detected in cord blood. The ability of an infant to produce serum IgG anti-lymphocytosis-promoting toxin after vaccination with pertussis vaccine was inversely related to the cord blood serum IgG anti-lymphocytosis-promoting toxin titer at birth. A good antibody response was observed in infants with low cord blood titers, and a poor antibody response was seen in infants with high cord blood values. The IgM anti-lymphocytosis-promoting toxin response was good in groups with both low and high cord blood titer, with no significant difference observed between the two groups. No IgA anti-lymphocytosis-promoting toxin or IgA anti-filamentous hemagglutinin titers were observed in vaccines. IgA antibodies were observed in convalescent sera from two adults and may be presumptive evidence of infection with B. pertussis. PMID:6309662

  1. Filamentous hemagglutinin of Bordetella pertussis: a key adhesin with immunomodulatory properties?

    Czech Academy of Sciences Publication Activity Database

    Romero, Rodrigo, Villarino; Osička, Radim; Šebo, Peter

    2014-01-01

    Roč. 9, č. 12 (2014), s. 1339-1360 ISSN 1746-0913 R&D Projects: GA ČR(CZ) P302/11/0580; GA ČR(CZ) GA13-14547S Institutional support: RVO:61388971 Keywords : Bordetella * adhesion * integrins * filamentous hemagglutinin Subject RIV: EE - Microbiology, Virology Impact factor: 4.275, year: 2014

  2. H7N9 influenza A virus in turkeys in Minnesota

    Science.gov (United States)

    Lebarbenchon, Camille; Pedersen, J.C.; Sreevatsan, Srinand; Ramey, Andy M.; Dugan, Vivien G.; Halpin, R.A.; Ferro, Paul A.; Lupiani, B.; Enomoto, Shinichiro; Poulson, Rebecca L.; Smeltzer, M.; Cardona, Carol J.; Tompkins, S.; Wentworth, D.E.; Stallknecht, D.E.; Brown, J.

    2015-01-01

    Introductions of H7 Influenza A virus (IAV) from wild birds into poultry have been documented worldwide, resulting in varying degrees of morbidity and mortality. H7 IAV infection in domestic poultry has served as a source of human infection and disease. We report the detection of H7N9 subtype IAV in Minnesota turkey farms during 2009 and 2011. The full-genome was sequenced from eight isolates as well as the hemagglutinin (HA) and neuraminidase (NA) gene segments of H7 and N9 virus subtypes for 108 isolates from North American wild birds between 1986 and 2012. Through maximum likelihood and coalescent phylogenetic analyses, we identified the recent H7 and N9 IAV ancestors of the turkey-origin H7N9 IAV, estimated the time and geographic origin of the ancestral viruses, and determined the relatedness between the 2009 and the 2011 turkey-origin H7N9 IAV. Analyses supported that the 2009 and the 2011 viruses were distantly related genetically, suggesting that the two outbreaks arose from independent introduction events from wild birds. Our findings further support that the 2011 MN turkey-origin H7N9 virus was closely related to H7N9 IAV isolated in poultry in Nebraska during the same year. Although the precise origin of the wild-bird donor of the turkey-origin H7N9 IAV could not be determined, our findings suggest that, for both the NA and HA gene segments, the MN turkey-origin H7N9 viruses were related to viruses circulating in wild birds between 2006 and 2011 in the Mississippi flyway.

  3. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.; Hai, Rong; Crowe, Jr., James E.; Wilson, Ian A. (Sinai); (Scripps); (Vanderbilt)

    2010-05-25

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.

  4. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  5. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection.

    Directory of Open Access Journals (Sweden)

    So-Hee Kim

    Full Text Available Influenza vaccines that target the highly variable surface glycoproteins hemagglutinin and neuraminidase cause inconvenience of having vaccination every year. For this reason, development of universal vaccines targeting conserved viral components is needed. In this study, we generated recombinant adenovirus (rAd vaccine encoding nucleoprotein (NP of A/PR/8/34 influenza virus, designated rAd/NP. BALB/c mice were immunized intranasally or sublingually with rAd/NP vaccine and subsequently challenged with lethal doses of heterologous as well as homologous influenza viruses. We found that intranasal immunization of rAd/NP elicited strong mucosal IgA responses as well as stronger CD8 T-cell responses toward immunodominant K(d-restricted NP147-155 epitope than sublingual immunization. Importantly, only single intranasal but not sublingual immunization of rAd/NP provides potent protection against both homologous and heterologous influenza virus challenges. These results suggest that recombinant rAd/NP could be a universal vaccine candidate for mucosal administration against influenza virus.

  6. Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza A viruses in mice.

    Science.gov (United States)

    Lei, Han; Peng, Xiaojue; Zhao, Daxian; Ouyang, Jiexiu; Jiao, Huifeng; Shu, Handing; Ge, Xinqi

    2015-02-01

    Influenza A viruses pose a serious threat to public health. Current influenza A vaccines predominantly focus on hemagglutinin (HA) and show strain-specific protection. Neuraminidase (NA) is much less studied in the context of humoral immunity against influenza A viruses. The purpose of this study is to evaluate the cross protective immunity of NA presented on Lactococcus lactis (L.lactis) surface against homologous and heterologous influenza A viruses in the mouse model. L.lactis/pNZ8110-pgsA-NA was constructed in which pgsA was used as an anchor protein. Mice vaccinated orally with L.lactis/pNZ8110-pgsA-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titers. Importantly, L.lactis/pNZ8110-pgsA-NA provided 80% protection against H5N1, 60% protection against H3N2 and H1N1, respectively. These findings suggest that recombinant L.lactis/pNZ110-pgsA-NA in the absence of adjuvant via oral administration can be served as an effective vaccine candidate against diverse strains of influenza A viruses. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Science.gov (United States)

    Halbherr, Stefan J; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  8. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  9. Phylogenetic analysis of a swine influenza A(H3N2 virus isolated in Korea in 2012.

    Directory of Open Access Journals (Sweden)

    Jin Il Kim

    Full Text Available Influenza A virus (IAV can infect avian and mammalian species, including humans. The genome nature of IAVs may contribute to viral adaptation in different animal hosts, resulting in gene reassortment and the reproduction of variants with optimal fitness. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/PL01/2012 (swPL01, H3N2 subtype. After screening nasopharyngeal samples from pigs in the Gyeongsangnam-do region of Korea from December 2011 to May 2012, we isolated the swPL01 virus and sequenced its all of 8 genome segments (polymerase basic 2, PB2; polymerase basic 1, PB1; polymerase acidic, PA; hemagglutinin, HA; nucleocapsid protein, NP; neuraminidase, NA; matrix protein, M; and nonstructural protein, NS. The phylogenetic study, analyzed with reference strains registered in the National Center for Biotechnology Information (NCBI database, indicated that the swPL01 virus was similar to the North American triple-reassortant swine strains and that the HA gene of the swPL01 virus was categorized into swine H3 cluster IV. The swPL01 virus had the M gene of the triple-reassortant swine H3N2 viruses, whereas that of other contemporary strains in Korea was transferred from the 2009 pandemic H1N1 virus. These data suggest the possibility that various swine H3N2 viruses may co-circulate in Korea, which underlines the importance of a sustained surveillance system against swine IAVs.

  10. Phylogenetic Analysis of a Swine Influenza A(H3N2) Virus Isolated in Korea in 2012

    Science.gov (United States)

    Park, Sehee; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Jang, Seok-Il; Kim, Kabsu; Park, Man-Seong

    2014-01-01

    Influenza A virus (IAV) can infect avian and mammalian species, including humans. The genome nature of IAVs may contribute to viral adaptation in different animal hosts, resulting in gene reassortment and the reproduction of variants with optimal fitness. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs and can serve as a ‘mixing vessel’ for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/PL01/2012 (swPL01, H3N2 subtype). After screening nasopharyngeal samples from pigs in the Gyeongsangnam-do region of Korea from December 2011 to May 2012, we isolated the swPL01 virus and sequenced its all of 8 genome segments (polymerase basic 2, PB2; polymerase basic 1, PB1; polymerase acidic, PA; hemagglutinin, HA; nucleocapsid protein, NP; neuraminidase, NA; matrix protein, M; and nonstructural protein, NS). The phylogenetic study, analyzed with reference strains registered in the National Center for Biotechnology Information (NCBI) database, indicated that the swPL01 virus was similar to the North American triple-reassortant swine strains and that the HA gene of the swPL01 virus was categorized into swine H3 cluster IV. The swPL01 virus had the M gene of the triple-reassortant swine H3N2 viruses, whereas that of other contemporary strains in Korea was transferred from the 2009 pandemic H1N1 virus. These data suggest the possibility that various swine H3N2 viruses may co-circulate in Korea, which underlines the importance of a sustained surveillance system against swine IAVs. PMID:24523938

  11. Site-specific glycosylation profile of influenza A (H1N1) hemagglutinin through tandem mass spectrometry.

    Science.gov (United States)

    Cruz, Esteban; Cain, Joel; Crossett, Ben; Kayser, Veysel

    2017-10-19

    The study of influenza virus evolution in humans has revealed a significant role of glycosylation profile alterations in the viral glycoproteins - hemagglutinin (HA) and neuraminidase (NA), in the emergence of both seasonal and pandemic strains. Viral antigenic drift can modify the number and location of glycosylation sites, altering a wide range of biological activities and the antigenic properties of the strain. In view of the key role of glycans in determining antigenicity, elucidating the glycosylation profiles of influenza strains is a requirement towards the development of improved vaccines. Sequence-based analysis of viral RNA has provided great insight into the role of glycosite modifications in altering virulence and pathogenicity. Nonetheless, this sequence-based approach can only predict potential glycosylation sites. Due to experimental challenges, experimental confirmation of the occupation of predicted glycosylation sites has only been carried out for a few strains. Herein, we utilized HCD/CID-MS/MS tandem mass spectrometry to characterize the site-specific profile of HA of an egg-grown H1N1 reference strain (A/New Caledonia/20/1999). We confirmed experimentally the occupancy of glycosylation sites identified by primary sequence analysis and determined the heterogeneity of glycan structures. Four glycosylation sequons on the stalk region (N28, N40, N304 and N498) and four on the globular head (N71, N104, N142 and N177) of the protein are occupied. Our results revealed a broad glycan microheterogeneity, i.e., a great diversity of glycan compositions present on each glycosite. The present methodology can be applied to characterize other viruses, particularly different influenza strains, to better understand the impact of glycosylation on biological activities and aid the improvement of influenza vaccines.

  12. Computer Viruses: An Overview.

    Science.gov (United States)

    Marmion, Dan

    1990-01-01

    Discusses the early history and current proliferation of computer viruses that occur on Macintosh and DOS personal computers, mentions virus detection programs, and offers suggestions for how libraries can protect themselves and their users from damage by computer viruses. (LRW)

  13. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  14. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    Introduction. Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus (IAV). The genome of IAV consists of 8 segments and subtype classification is based on the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). In Denmark, the influenza screening t...

  15. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Science.gov (United States)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  16. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  17. Genome Sequence of a Reassortant H5N1 Avian Influenza Virus Isolated from Domestic Green-Winged Teal.

    Science.gov (United States)

    Xiong, Chaochao; Liu, Qian; Chen, Quanjiao; Chen, Jianjun

    2013-08-15

    An avian influenza virus strain, A/domestic green-winged teal/Hunan/3450/2006(H5N1) (DGW-T3450), was isolated from domestic green-winged teals. Genome analysis demonstrated that DGW-T3450 is a novel reassortant strain. The hemagglutinin (HA) and neuraminidase (NA) genes of this strain originated from H5N1 viruses circulating in poultry, while its remaining genes are derived from multiple ancestors, including viruses like those that infect wild birds.

  18. Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans.

    Directory of Open Access Journals (Sweden)

    Shih-Chang Lin

    Full Text Available Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA, a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9 cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic and mammalian cells (CHO. While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.

  19. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy

    DEFF Research Database (Denmark)

    Martella, V.; Cirone, F.; Elia, G.

    2006-01-01

    along with CDVs of the Arctic lineage, the highest identity being to strain GR88 (98.0 and 98.4% aa, respectively). The full-length sequence of a red fox CDV strain, 207/00 was also determined and analyzed. The H protein of the fox CDV strain was unrelated to strains within the major European lineage...

  20. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem

    Directory of Open Access Journals (Sweden)

    Christy Ann Thomson

    2012-05-01

    Full Text Available Most monoclonal antibodies (mAbs generated from humans infected or vaccinated with the 2009 pandemic H1N1 (pdmH1N1 influenza virus targeted the hemagglutinin (HA stem. These anti-HA stem mAbs mostly used IGHV1-69 and bound readily to epitopes on the conventional seasonal influenza and pdmH1N1 vaccines. The anti-HA stem mAbs neutralized pdmH1N1, seasonal influenza H1N1 and avian H5N1 influenza viruses by inhibiting HA-mediated fusion of membranes and protected against and treated heterologous lethal infections in mice with H5N1 influenza virus. This demonstrated that therapeutic mAbs could be generated a few months after the new virus emerged. Human immunization with the pdmH1N1 vaccine induced circulating antibodies that protected mice from lethal, heterologous H5N1 influenza infections. We observed that the dominant heterosubtypic antibody response against the HA stem correlated with the relative absence of memory B cells against the HA head of pdmH1N1, thus enabling the rare heterosubtypic memory B cells induced by seasonal influenza and specific for conserved sites on the HA stem to compete for T-cell help. These results support the notion that broadly protective antibodies against influenza would be induced by successive vaccination with conventional influenza vaccines based on subtypes of HA in viruses not circulating in humans.

  1. Serologic evidence of influenza A(H1N1)pdm09 virus in northern sea otters

    Science.gov (United States)

    Li, Zhu-Nan; Ip, Hon S.; Frost, Jessica F.; White, C. LeAnn; Murray, Michael J.; Carney, Paul J.; Sun, Xiang-Jie; Stevens, James; Levine, Min Z.; Katz, Jacqueline M.

    2014-01-01

    Sporadic epizootics of pneumonia among marine mammals have been associated with multiple animal-origin influenza A virus subtypes (1–6); seals are the only known nonhuman host for influenza B viruses (7). Recently, we reported serologic evidence of influenza A virus infection in free-ranging northern sea otters (Enhydra lutris kenyoni) captured off the coast of Washington, USA, in August 2011 (8). To investigate further which influenza A virus subtype infected these otters, we tested serum samples from these otters by ELISA for antibody-binding activity against 12 recombinant hemagglutinins (rHAs) from 7 influenza A hemagglutinin (HA) subtypes and 2 lineages of influenza B virus (Technical Appendix Table 1). Estimated ages for the otters were 2–19 years (Technical Appendix Table 2); we also tested archived serum samples from sea otters of similar ages collected from a study conducted during 2001–2002 along the Washington coast (9).

  2. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection

    OpenAIRE

    Mallajosyula, Vamsee V. A.; Citron, Michael; Ferrara, Francesca; Lu, Xianghan; Callahan, Cheryl; Heidecker, Gwendolyn J.; Sarma, Siddhartha P.; Flynn, Jessica A.; Temperton, Nigel J.; Liang, Xiaoping; Varadarajan, Raghavan

    2014-01-01

    Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and ...

  3. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses

    Science.gov (United States)

    Schmier, Sonja; Mostafa, Ahmed; Haarmann, Thomas; Bannert, Norbert; Ziebuhr, John; Veljkovic, Veljko; Dietrich, Ursula; Pleschka, Stephan

    2015-06-01

    Newly emerging influenza A viruses (IAV) pose a major threat to human health by causing seasonal epidemics and/or pandemics, the latter often facilitated by the lack of pre-existing immunity in the general population. Early recognition of candidate pandemic influenza viruses (CPIV) is of crucial importance for restricting virus transmission and developing appropriate therapeutic and prophylactic strategies including effective vaccines. Often, the pandemic potential of newly emerging IAV is only fully recognized once the virus starts to spread efficiently causing serious disease in humans. Here, we used a novel phylogenetic algorithm based on the informational spectrum method (ISM) to identify potential CPIV by predicting mutations in the viral hemagglutinin (HA) gene that are likely to (differentially) affect critical interactions between the HA protein and target cells from bird and human origin, respectively. Predictions were subsequently validated by generating pseudotyped retrovirus particles and genetically engineered IAV containing these mutations and characterizing potential effects on virus entry and replication in cells expressing human and avian IAV receptors, respectively. Our data suggest that the ISM-based algorithm is suitable to identify CPIV among IAV strains that are circulating in animal hosts and thus may be a new tool for assessing pandemic risks associated with specific strains.

  4. Genetic characterization of clade B measles viruses isolated in Tunisia and Libya 2002-2009 and a proposed new subtype within the B3 genotype.

    Science.gov (United States)

    Haddad-Boubaker, Sondes; Rezq, Moftah; Smeo, Mohamed-Najeb; Ben Yahia, Ahlem; Abudher, Abdulhafid; Slim, Amin; Ben Ghorbel, Mohamed; Ahmed, Hinda; Rota, Paul; Triki, Hinda

    2010-11-01

    Genetic characterization was conducted on 18 wild-type measles viruses, detected in Tunisia and Libya from 2002 to 2009. Sequence analysis of the 456 nucleotides in the carboxy terminus of the nucleoprotein (N) gene and the entire hemagglutinin (H) gene indicated that all isolates were in genotype B3. All of the viruses from 2002 to 2007 and some of the isolates from 2009 belonged to subtype B3.1. In contrast, 7 of the viruses isolated during 2008 and 2009 were quite divergent from all B3 isolates. The nucleotide sequences of the N gene of these 7 isolates differed from the sequences of the Ibadan and New York reference strain by an average of 3.1 and 4.4%, respectively. The H gene sequences differed by 1.1 and 2.6% with the same reference strains. This is the first report describing the genetic characteristics of measles viruses from clade B isolated in North Africa; the results suggest that these viruses represent a new subtype of genotype B3. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  6. Genetic Lineage and Reassortment of Influenza C Viruses Circulating between 1947 and 2014

    Science.gov (United States)

    Sugawara, Kanetsu; Furuse, Yuki; Shimotai, Yoshitaka; Hongo, Seiji; Oshitani, Hitoshi; Mizuta, Katsumi; Nishimura, Hidekazu

    2016-01-01

    ABSTRACT Since influenza C virus was first isolated in 1947, the virus has been only occasionally isolated by cell culture; there are only four strains for which complete genome sequences are registered. Here, we analyzed a total of 106 complete genomes, ranging from the first isolate from 1947 to recent isolates from 2014, to determine the genetic lineages of influenza C virus, the reassortment events, and the rates of nucleotide substitution. The results showed that there are six lineages, named C/Taylor, C/Mississippi, C/Aichi, C/Yamagata, C/Kanagawa, and C/Sao Paulo. They contain both antigenic and genetic lineages of the hemagglutinin-esterase (HE) gene, and the internal genes PB2, PB1, P3, NP, M, and NS are divided into two major lineages, a C/Mississippi/80-related lineage and a C/Yamagata/81-related lineage. Reassortment events were found over the entire period of 68 years. Several outbreaks of influenza C virus between 1990 and 2014 in Japan consisted of reassortant viruses, suggesting that the genomic constellation is related to influenza C virus epidemics. The nucleotide sequences were highly homologous to each other. The minimum percent identity between viruses ranged from 91.1% for the HE gene to 96.1% for the M gene, and the rate of nucleotide substitution for the HE gene was the highest, at 5.20 × 10−4 substitutions/site/year. These results indicate that reassortment is an important factor that increases the genetic diversity of influenza C virus, resulting in its ability to prevail in humans. IMPORTANCE Influenza C virus is a pathogen that causes acute respiratory illness in children and results in hospitalization of infants. We previously demonstrated (Y. Matsuzaki et al., J Clin Virol 61:87–93, 2014, http://dx.doi.org/10.1016/j.jcv.2014.06.017) that periodic epidemics of this virus occurred in Japan between 1996 and 2014 and that replacement of the dominant antigenic group occurred every several years as a result of selection by herd immunity

  7. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA

    Directory of Open Access Journals (Sweden)

    Lednicky John A

    2004-09-01

    Full Text Available Abstract Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F -, phosphoprotein (P -, and complete hemagglutinin (H – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages.

  8. Antigenic cartography of H9N2 virus and its impact on the vaccine efficacy in chickens

    Science.gov (United States)

    The H9 subtype of avian influenza virus (AIV) is wide-spread in Asia and the Middle East. The efficacy of vaccines is enhanced by the antigenic match of the hemagglutinin protein (HA) between the vaccine and the field strain. To determine how antigenic variations affect the vaccine efficacy, speci...

  9. Airway protease/antiprotease imbalance in atopic asthmatics contributes to increased influenza A virus cleavage and replication

    Science.gov (United States)

    Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA) protein binds to sialic add residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host ce...

  10. Adaptive Mutations That Occurred during Circulation in Humans of H1N1 Influenza Virus in the 2009 Pandemic Enhance Virulence in Mice.

    Science.gov (United States)

    Otte, A; Sauter, M; Daxer, M A; McHardy, A C; Klingel, K; Gabriel, G

    2015-07-01

    During the 2009 H1N1 influenza pandemic, infection attack rates were particularly high among young individuals who suffered from pneumonia with occasional death. Moreover, previously reported determinants of mammalian adaptation and pathogenicity were not present in 2009 pandemic H1N1 influenza A viruses. Thus, it was proposed that unknown viral factors might have contributed to disease severity in humans. In this study, we performed a comparative analysis of two clinical 2009 pandemic H1N1 strains that belong to the very early and later phases of the pandemic. We identified mutations in the viral hemagglutinin (HA) and the nucleoprotein (NP) that occurred during pandemic progression and mediate increased virulence in mice. Lethal disease outcome correlated with elevated viral replication in the alveolar epithelium, increased proinflammatory cytokine and chemokine responses, pneumonia, and lymphopenia in mice. These findings show that viral mutations that have occurred during pandemic circulation among humans are associated with severe disease in mice. In this study, novel determinants of 2009 pandemic H1N1 influenza pathogenicity were identified in the viral hemagglutinin (HA) and the nucleoprotein (NP) genes. In contrast to highly pathogenic avian influenza viruses, increased virulence in mice did not correlate with enhanced polymerase activity but with reduced activity. Lethal 2009 pandemic H1N1 infection in mice correlated with lymphopenia and severe pneumonia. These studies suggest that molecular mechanisms that mediate 2009 pandemic H1N1 influenza pathogenicity are distinct from those that mediate avian influenza virus pathogenicity in mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence.

    Science.gov (United States)

    Melvin, Jeffrey A; Scheller, Erich V; Noël, Christopher R; Cotter, Peggy A

    2015-08-18

    Bordetella filamentous hemagglutinin (FHA), a primary component of acellular pertussis vaccines, contributes to virulence, but how it functions mechanistically is unclear. FHA is first synthesized as an ~370-kDa preproprotein called FhaB. Removal of an N-terminal signal peptide and a large C-terminal prodomain (PD) during secretion results in "mature" ~250-kDa FHA, which has been assumed to be the biologically active form of the protein. Deletion of two C-terminal subdomains of FhaB did not affect production of functional FHA, and the mutant strains were indistinguishable from wild-type bacteria for their ability to adhere to the lower respiratory tract and to suppress inflammation in the lungs of mice. However, the mutant strains, which produced altered FhaB molecules, were eliminated from the lower respiratory tract much faster than wild-type B. bronchiseptica, suggesting a defect in resistance to early immune-mediated clearance. Our results revealed, unexpectedly, that full-length FhaB plays a critical role in B. bronchiseptica persistence in the lower respiratory tract. The Bordetella filamentous hemagglutinin (FHA) is a primary component of the acellular pertussis vaccine and an important virulence factor. FHA is initially produced as a large protein that is processed during secretion to the bacterial surface. As with most processed proteins, the mature form of FHA has been assumed to be the functional form of the protein. However, our results indicate that the full-length form plays an essential role in virulence in vivo. Furthermore, we have found that FHA contains intramolecular regulators of processing and that this control of processing is integral to its virulence activities. This report highlights the advantage of studying protein maturation and function simultaneously, as a role for the full-length form of FHA was evident only from in vivo infection studies and not from in vitro studies on the production or maturation of FHA or even from in vitro

  12. Molecular epidemiology of measles virus infection in Shanghai in 2000–2012: the first appearance of genotype D8

    Directory of Open Access Journals (Sweden)

    Shuhua Li

    Full Text Available Purpose:The purpose of this study was to identify measles virus in Shanghai in 2012 and study the genotype trend of measles virus epidemic strains during 2000–2012.Methods:Nose and throat swab specimens were collected from 34 suspected measles cases in Shanghai. Measles virus was isolated using Vero-SLAM cells (African green monkey kidney cells/lymphoid signal activating factor-transfected African green monkey kidney cells. The 450 bp of C terminus of the N gene and the entire hemagglutinin gene sequence was amplified using RT-PCR. Phylogenetic analysis was performed by comparing the seven measles strains in Shanghai with the reference strains for H1a, H1b and D8 genotypes, as well as the Chinese measles virus vaccine strain.Results:Seven measles viruses strains were isolated from the 34 throat swap specimens. Six strains were genotype H1a, which is the predominant strain in China and one strain was genotype D8, which is the first imported strain since 2000. All these seven strains maintained most of the glycosylation sites except subtype H1a, which lost one glycosylation site.Conclusion:Since 2000, measles virus strains in Shanghai are consistent with measles virus from other provinces in China with H1a being the predominant genotype. This study is also the first report of genotype D8 strain in Shanghai. All strains maintained their glycosylation sites except H1a that lost one glycosylation site. These strains could still be neutralized by the Chinese measles vaccine. We suggest that Shanghai Center for Disease Control laboratories should strengthen their approaches to monitor measles cases to prevent further spread of imported strains.

  13. Molecular epidemiology of measles virus infection in Shanghai in 2000-2012: the first appearance of genotype D8.

    Science.gov (United States)

    Li, Shuhua; Qian, Xiaohua; Yuan, Zhengan; Sun, Xiaodong; Li, Chongshan; Tang, Xian; Yang, Yanji; Gong, Xiangzhen; Cao, Guangwen

    2014-01-01

    The purpose of this study was to identify measles virus in Shanghai in 2012 and study the genotype trend of measles virus epidemic strains during 2000-2012. Nose and throat swab specimens were collected from 34 suspected measles cases in Shanghai. Measles virus was isolated using Vero-SLAM cells (African green monkey kidney cells/lymphoid signal activating factor-transfected African green monkey kidney cells). The 450 bp of C terminus of the N gene and the entire hemagglutinin gene sequence was amplified using RT-PCR. Phylogenetic analysis was performed by comparing the seven measles strains in Shanghai with the reference strains for H1a, H1b and D8 genotypes, as well as the Chinese measles virus vaccine strain. Seven measles viruses strains were isolated from the 34 throat swap specimens. Six strains were genotype H1a, which is the predominant strain in China and one strain was genotype D8, which is the first imported strain since 2000. All these seven strains maintained most of the glycosylation sites except subtype H1a, which lost one glycosylation site. Since 2000, measles virus strains in Shanghai are consistent with measles virus from other provinces in China with H1a being the predominant genotype. This study is also the first report of genotype D8 strain in Shanghai. All strains maintained their glycosylation sites except H1a that lost one glycosylation site. These strains could still be neutralized by the Chinese measles vaccine. We suggest that Shanghai Center for Disease Control laboratories should strengthen their approaches to monitor measles cases to prevent further spread of imported strains. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  14. Hemagglutinin-targeting Artificial MicroRNAs Expressed by Adenovirus Protect Mice From Different Clades of H5N1 Infection

    Directory of Open Access Journals (Sweden)

    Xinying Tang

    2016-01-01

    Full Text Available Influenza virus (IV is a continuously evolving virus that widely spreads in humans and contributes to substantial morbidity and mortality. Re-emergence of human infection with avian influenza virus H5N1 poses extra challenge to IV control. Artificial microRNA (amiRNA-mediated RNA interference has become a powerful antiviral approach due to its high specificity and rapid effect. Here, we designed several amiRNAs targeting the hemagglutinin gene of H5N1, a major determinant of pathogenicity. Expression and delivery efficiency were enhanced by presenting functional amiRNA with chimpanzee adenovirus serotype 68 (AdC68. One amiRNA, HA-1405, significantly limited H5N1 replication in vitro and inhibited 96.7% of clade 2.3.2 replication. AdC68-conjugated HA-1405 treatment remarkably decreased different clades of H5N1 plaque formation in Madin–Darby canine kidney cells. Moreover, prophylactic administration with rAd(HA-1405 markedly alleviated clinical symptoms and reduced ≃3- to 40-folds of lung viral RNA copies against four clades of H5N1 in Institute of Cancer Research (ICR mice. Our results further showed that rAd(HA-1405 conferred 70 and 40% immediate protection against lethal clade 2.3.2 and clade 2.3.4 H5N1 challenge, respectively. In conclusion, these data provided information that HA-targeting amiRNA delivered by AdC68 could be pursued as a potential agent for highly pathogenic avian influenza viruses prevention.

  15. Estimation of the neuraminidase content of influenza viruses and split-product vaccines by immunochromatography.

    Science.gov (United States)

    Tanimoto, Takeshi; Nakatsu, Ritsuko; Fuke, Isao; Ishikawa, Toyokazu; Ishibashi, Masahide; Yamanishi, Kouichi; Takahashi, Michiaki; Tamura, Shin-ichi

    2005-08-31

    The neuraminidase (NA) of the influenza virus, as well as the hemagglutinin, is the most important protective components in the vaccine. However, the NA content of the vaccine remains to be standardized because of the labile nature of this glycoprotein during various chemical treatments and storage. In the present study, the NA content of the split-product (SP) vaccine (virus treated with ether then formalin) was estimated together with that of the virus by an immunochoromatography technique using monoclonal antibodies (mAbs) to viral NA for A/Panama/2007/99 (A/Pa) (H3N2), B/Shangdong/7/97 (B/S) or A/New Caledonia/20/99 (A/NC) (H1N1) viral strains. In the new method, the NA catalytic activity of each fraction from steps of NA purification was measured as an index of NA content. The NA level of A/Pa, B/S or A/NC viral particles was estimated at 6.9+/-0.9, 7.6+/-0.8 or 8.5+/-1.7% of total viral protein (not significant difference between viral strains). The NA level of the corresponding A/Pa, B/S or A/NC vaccines was estimated at 9.6+/-1.5, 12.7+/-0.4 or 12.2+/-1.2% of the total vaccine protein (a significant difference between each strain of virus and its vaccine). These results suggest that the NA content in the N1, N2 or B type NA virus ranges from 5 to 11% of the total viral protein, and that the NA level in each split-product vaccine is 1.4- to 1.6-fold higher than that in the corresponding viral particles. They also suggest that the NA content can be estimated by the immunochoromatography technique using anti-viral NA mAbs.

  16. Genetic characteristic of protein membran of avian influenza viruses H5N1 subtype

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2013-10-01

    Full Text Available In 2006-2008 there were findings about the antigenic drift on AI virus due to vaccination and the AI H5N1 subtype viruses which was similar to H5N1 viruses in human. The findings indicated that the AI viruses continue and undergoing to mutate and try to adapt with their environment. The objective of this study was to characterize the mutation of recent AI viruses (2009 on the membran protein namely Hemagglutinin (HA, Neuraminidase (NA and Matrix 2 (M2. In this study RT-PCR – sequencing methods and genetic analysis for the protein membran of AI viruses were used. Result revealed that there were specific mutation belong to AI 2009 viruses on HA and NA protein such as AI virus mutation in 2008 which was isolated from backyard chicken. The mutations were non synonimous and not caused by immunological pressure. Furthermore, M2 analysis indicated that the viruses were resistant to amantadine.

  17. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.|info:eu-repo/dai/nl/157222241

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently

  18. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008

    Directory of Open Access Journals (Sweden)

    Junaidi Akhmad

    2011-09-01

    Full Text Available Abstract Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1, clade 2.1.3 (80, and IDN/6/05-like viruses (3 that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA and neuraminidase (NA sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to

  19. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.

    Science.gov (United States)

    Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne

    2011-09-07

    Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are

  20. The Encapsulation of Hemagglutinin in Protein Bodies Achieves a Stronger Immune Response in Mice than the Soluble Antigen.

    Science.gov (United States)

    Hofbauer, Anna; Melnik, Stanislav; Tschofen, Marc; Arcalis, Elsa; Phan, Hoang T; Gresch, Ulrike; Lampel, Johannes; Conrad, Udo; Stoger, Eva

    2016-01-01

    Zein is a water-insoluble polymer from maize seeds that has been widely used to produce carrier particles for the delivery of therapeutic molecules. We encapsulated a recombinant model vaccine antigen in newly formed zein bodies in planta by generating a fusion construct comprising the ectodomain of hemagglutinin subtype 5 and the N-terminal part of γ-zein. The chimeric protein was transiently produced in tobacco leaves, and H5-containing protein bodies (PBs) were used to immunize mice. An immune response was achieved in all mice treated with H5-zein, even at low doses. The fusion to zein markedly enhanced the IgG response compared the soluble H5 control, and the effect was similar to a commercial adjuvant. The co-administration of adjuvants with the H5-zein bodies did not enhance the immune response any further, suggesting that the zein portion itself mediates an adjuvant effect. While the zein portion used to induce protein body formation was only weakly immunogenic, our results indicate that zein-induced PBs are promising production and delivery vehicles for subunit vaccines.

  1. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation.

    Science.gov (United States)

    Connolly, E; Millhouse, E; Doyle, R; Culshaw, S; Ramage, G; Moran, G P

    2017-02-01

    Porphyromonas gingivalis is a bacterium associated with chronic periodontitis that possesses a family of genes encoding hemagglutinins required for heme acquisition. In this study we generated ΔhagB and ΔhagC mutants in strain W83 and demonstrate that both hagB and hagC are required for adherence to oral epithelial cells. Unexpectedly, a double ΔhagB/ΔhagC mutant had less severe adherence defects than either of the single mutants, but was found to exhibit increased expression of the gingipain-encoding genes rgpA and kgp, suggesting that a ΔhagB/ΔhagC mutant is only viable in populations of cells that exhibit increased expression of genes involved in heme acquisition. Disruption of hagB in the fimbriated strain ATCC33277 demonstrated that HagB is also required for stable attachment of fimbriated bacteria to oral epithelial cells. Mutants of hagC were also found to form defective single and multi-species biofilms that had reduced biomass relative to biofilms formed by the wild-type strain. This study highlights the hitherto unappreciated importance of these genes in oral colonization and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Migration and Persistence of Human Influenza A Viruses, Vietnam, 2001–2008

    Science.gov (United States)

    Le, Mai Quynh; Lam, Ha Minh; Cuong, Vuong Duc; Lam, Tommy Tsan-Yuk; Halpin, Rebecca A; Wentworth, David E; Hien, Nguyen Tran; Thanh, Le Thi; Phuong, Hoang Vu Mai; Horby, Peter

    2013-01-01

    Understanding global influenza migration and persistence is crucial for vaccine strain selection. Using 240 new human influenza A virus whole genomes collected in Vietnam during 2001–2008, we looked for persistence patterns and migratory connections between Vietnam and other countries. We found that viruses in Vietnam migrate to and from China, Hong Kong, Taiwan, Cambodia, Japan, South Korea, and the United States. We attempted to reduce geographic bias by generating phylogenies subsampled at the year and country levels. However, migration events in these phylogenies were still driven by the presence or absence of sequence data, indicating that an epidemiologic study design that controls for prevalence is required for robust migration analysis. With whole-genome data, most migration events are not detectable from the phylogeny of the hemagglutinin segment alone, although general migratory relationships between Vietnam and other countries are visible in the hemagglutinin phylogeny. It is possible that virus lineages in Vietnam persisted for >1 year. PMID:24188643

  3. Suggestive Objects at Work

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2009-01-01

    In Western secular societies, spiritual life is no longer limited to classical religious institutions but can also be found at workplace organizations. While spirituality is conventionally understood as a subjective and internal process, this paper proposes the concept of ‘suggestive objects’, co...... scaffolding. This has deep implications for our understanding of the sacred, including a better appreciation of the way that suggestive objects make the sacred durable, the way they organize it....

  4. Suggestive techniques in advertising

    OpenAIRE

    Sora, Olena

    2011-01-01

    In my thesis I focused on a detailed analysis of suggestive techniques that appear in contemporary advertising. The issue of the effects of advertising has existed for many years and still staying timely. On the one side there are entrepreneurs and advertising agencies that are trying to influence opinions and suggest motivation for consuming. On the other side there is a potential customer, who is trying to obtain information about the product he needs and at the same time not letting anybod...

  5. [Psychoanalysis and suggestion].

    Science.gov (United States)

    Thomä, H

    1977-01-01

    In the history of psychoanalysis the problem of suggestion has been a central one. At first it involved the necessity to establish the psychoanalytic technique as independent scientific paradigm in contrast to persuasion and hypnosis. However, it was not only the symptom-oriented suggestion that had to be given up for scientific reasons and reasons of treatment technique. Since professional and human factors as well could have influenced the psychoanalytic situation to revert to the traditional "suggestion", Freud has given some technical considerations (e.g. the mirror-analogy), that were meant to counteract the confusion of the psychoanalytic technique with the persuasive one that had to come up to late. The discovery of the transference phenomena has further complicated the problem. It became obvious that the capacity of the analyst to exert an influence and to have impact, originated in very basic human categories and their specific psychogenetic developments and distortions. This understanding contributed to the development of psychoanalytic theories of suggestibility. Until the present day the discovery of the transference phenomena has determined the discussions of psychoanalytic technique in term of the relationship between the special and general therapeutic factors (i.e. interpretation versus relationship). The departure from the therapeutic mode of persuasive suggestion and the introduction of psychoanalytic technique signaled the revolutionary paradigm of Sigmund Freud, i.e. the active participation of the patient and the process of observation. Often scientific problems related to this pradigm and suggestion are discussed concurrently.

  6. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Baczko, K.; Liebert, U.G.; Billeter, M.; Cattaneo, R.; Budka, H.; Ter Meulen, V.

    1986-08-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.

  7. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins.

    Directory of Open Access Journals (Sweden)

    Amelia M Clark

    Full Text Available Antigenic drift of the hemagglutinin (HA and neuraminidase (NA influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses accounts for the limited effectiveness (around 40% of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI and HA-specific neutralizing serum antibody (Ab titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to

  8. Caractérisation des virus de la maladie de Newcastle (APMV-1), circulant sur les hautes terres de Madagascar

    OpenAIRE

    Maminiaina, Olivier Fridolin

    2011-01-01

    La maladie de Newcastle (MN) est une maladie infectieuse des volailles essentiellement les gallinacees. L'agent causal de cette maladie est une forme virulente des paramyxovirus aviaires type 1 (APMV-1). Les APMV-1 sont des virus a ARN negatif monocatenaire non segmente, dans la famille des Paramyxoviridae, genre Avulavirus. Le genome de ce virus code pour six proteines structurales dont l'ARN polymerase ARNdependant (L gene), la hemagglutinine-neuraminidase (gene de HN), la fusion (gene de F...

  9. Characterization of the sites of proteolytic activation of Newcastle disease virus membrane glycoprotein precursors.

    Science.gov (United States)

    Gorman, J J; Nestorowicz, A; Mitchell, S J; Corino, G L; Selleck, P W

    1988-09-05

    The F1- and F2-polypeptide components of the fusion proteins and the hemagglutinin/neuraminidase proteins of the avirulent Queensland (V4) and virulent Australia-Victoria (AuV) strains of Newcastle disease virus have been isolated and subjected to extensive primary structural analysis including amino-terminal sequence analysis and fast atom bombardment-mass spectrometry mapping. Nucleotide sequence analysis was performed on the gene which encodes the V4 hemagglutinin/neuraminidase protein. Signal peptidase cleavage was found to have occurred at the Ser31-Leu32 peptide bond of the primary translation products of the fusion protein genes. Activation cleavage of the V4 fusion protein precursor generated a sequence of -Gly-Lys-Gln-Gly84 at the carboxyl terminus of the F2-polypeptide and an amino-terminal sequence of the F1-polypeptide commencing with 86Leu-Ile-Gly-. The V4 hemagglutinin/neuraminidase protein gene was found to encode a primary translation product 45 amino acids longer at the carboxyl terminus than obtainable from the corresponding gene of the AuV strain (McGinnes, L. W., and Morrison, T. G. (1986) Virus Res. 5, 343-356). However, post-translational proteolytic processing, exclusive to the primary translation product of the V4 hemagglutinin/neuraminidase protein gene, was found to have removed the last 42 residues of this carboxyl-terminal appendage.

  10. Increase in viral yield in eggs and MDCK cells of reassortant H5N1 vaccine candidate viruses caused by insertion of 38 amino acids into the NA stalk.

    Science.gov (United States)

    Zhang, Wenjun; Xue, Tao; Wu, Xiaowei; Zhang, Pinghu; Zhao, Guo; Peng, Daxing; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Liu, Wenbo; Liu, Xiufan

    2011-10-19

    The H5N1 subtype of highly pathogenic avian influenza viruses has spread to over 63 countries in Asia, Europe, and Africa and has become endemic in poultry. Since 2004, vaccination against H5N1 influenza has become common in domestic poultry operations in China. Most influenza vaccines have been produced in embryonated chicken eggs. High yield is the essential feature of a good vaccine candidate virus. Therefore, the large-scale manufacture of such a vaccine requires that the viral yield of H5N1 reassortant vaccine viruses in eggs and MDCK cells be increased. We generated two sets of reassortant H5N1 viruses based on backbone viruses A/Chicken/F/98 (H9N2) and A/Puerto Rico/8/34 (H1N1) using reverse genetics. The HAs and NAs of the reassortants were derived from the three epidemic H5N1 strains found in China. We compared the replication properties of these recombinant H5N1 viruses in embryonated chicken eggs and MDCK cells after inserting either 20 or 38 amino acids into their NA stalks. In this study, we demonstrated that inserting 38 amino acids into the NA stalks can significantly increase the viral yield of H5N1 reassortant viruses in both embryonated chicken eggs and MDCK cells, while inserting only 20 amino acids into the same NA stalks does not. Hemagglutinin inhibition testing and protection assays indicated that recombinant H5N1 viruses with 38 aa inserted into their NA stalks had the same antigenicity as the viruses with wt-NA. These results suggest that the generation of an H5N1 recombinant vaccine seed by the insertion of 38 aa into the NA stalk may be a suitable and more economical strategy for the increase in viral yield in both eggs and MDCK cells for the purposes of vaccine production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Panorama phylogenetic diversity and distribution of Type A influenza virus.

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    Full Text Available BACKGROUND: Type A influenza virus is one of important pathogens of various animals, including humans, pigs, horses, marine mammals and birds. Currently, the viral type has been classified into 16 hemagglutinin and 9 neuraminidase subtypes, but the phylogenetic diversity and distribution within the viral type largely remain unclear from the whole view. METHODOLOGY/PRINCIPAL FINDINGS: The panorama phylogenetic trees of influenza A viruses were calculated with representative sequences selected from approximately 23,000 candidates available in GenBank using web servers in NCBI and the software MEGA 4.0. Lineages and sublineages were classified according to genetic distances, topology of the phylogenetic trees and distributions of the viruses in hosts, regions and time. CONCLUSIONS/SIGNIFICANCE: Here, two panorama phylogenetic trees of type A influenza virus covering all the 16 hemagglutinin subtypes and 9 neuraminidase subtypes, respectively, were generated. The trees provided us whole views and some novel information to recognize influenza A viruses including that some subtypes of avian influenza viruses are more complicated than Eurasian and North American lineages as we thought in the past. They also provide us a framework to generalize the history and explore the future of the viral circulation and evolution in different kinds of hosts. In addition, a simple and comprehensive nomenclature system for the dozens of lineages and sublineages identified within the viral type was proposed, which if universally accepted, will facilitate communications on the viral evolution, ecology and epidemiology.

  12. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1986

    1986-01-01

    Offers (1) suggestions on how to teach students the importance of regular study habits for learning to spell, (2) story ideas to help students get started with creative writing, and (3) a model of a daily record assignment book to help students organize and remember their homework assignments. (SRT)

  13. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus?

    Science.gov (United States)

    Terio, Karen A; Craft, Meggan E

    2013-09-17

    One of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in the Paramyxoviridae family and genus Morbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or "spillover" hosts but, rather, a normal part of the complex ecology of this infectious disease.

  14. The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency.

    Directory of Open Access Journals (Sweden)

    Simon E Hufton

    Full Text Available The response to the 2009 A(H1N1 influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1 hemagglutinin (HA have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i non-neutralising, (ii H1N1 restricted neutralising or (iii broad cross-subtype neutralising activity. The ability to neutralise different viral subtypes, including highly pathogenic avian influenza (H5N1, correlated with the absence of hemagglutination inhibition activity, loss of binding to HA at acid pH and the absence of binding to the head domain containing the receptor binding site. This data supports their binding to epitopes in the HA stem region and a mechanism of action other than blocking viral attachment to cell surface receptors. After conversion of cross-neutralising antibodies R1a-B6 and R1a-A5 into a bivalent format, no significant enhancement in neutralisation activity was seen against A(H1N1 and A(H5N1 viruses. However, bivalent R1a-B6 showed an 18 fold enhancement in potency against A(H9N2 virus and, surprisingly, gained the ability to neutralise an A(H2N2 virus. This demonstrates that cross-neutralising antibodies, which make lower affinity interactions with the membrane proximal stem region of more divergent HA sub-types, can be optimised by bivalency so increasing their breadth of anti-viral activity. The broad neutralising activity and favourable characteristics, such as high stability, simple engineering into bivalent molecules and low cost production make these single domain antibodies attractive candidates for diagnostics and immunotherapy of pandemic influenza.

  15. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection.

    Directory of Open Access Journals (Sweden)

    Carlos H Dumard

    Full Text Available Whole inactivated vaccines (WIVs possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.

  16. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  17. Histopathological evaluation of the diversity of cells susceptible to H5N1 virulent avian influenza virus.

    Science.gov (United States)

    Ogiwara, Haru; Yasui, Fumihiko; Munekata, Keisuke; Takagi-Kamiya, Asako; Munakata, Tsubasa; Nomura, Namiko; Shibasaki, Futoshi; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Sakoda, Yoshihiro; Kida, Hiroshi; Kohara, Michinori

    2014-01-01

    Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  19. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Kirkby, N

    1999-01-01

    degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible...

  20. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    The aim of this study is to analyze; the genetic drift in hemagglutinin (HA) and neuraminidase (NA) genes from influenza viruses isolated from Danish swine over the past decade; the antigenic evolution and relatedness between swine influenza virus strains of the H1 subtype by antigenic cartograph...... and along with the monitoring of antigenic changes in hemagglutinin subtypes it will be possible to ensure a continuous efficacy of influenza virus vaccines.......The aim of this study is to analyze; the genetic drift in hemagglutinin (HA) and neuraminidase (NA) genes from influenza viruses isolated from Danish swine over the past decade; the antigenic evolution and relatedness between swine influenza virus strains of the H1 subtype by antigenic cartography....... Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years...

  1. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  2. New measles virus genotype associated with outbreak, China.

    Science.gov (United States)

    Zhang, Yan; Ding, Zhengrong; Wang, Huiling; Li, Liqun; Pang, Yankun; Brown, Kevin E; Xu, Songtao; Zhu, Zhen; Rota, Paul A; Featherstone, David; Xu, Wenbo

    2010-06-01

    To determine the origin of the virus associated with a measles outbreak in Menglian County, Yunnan Province, People's Republic of China, in 2009, we conducted genetic analyses. Phylogenetic analyses based on nucleoprotein (N) and hemagglutinin (H) gene sequences showed that these Menglian viruses were not closely related to sequences of any World Health Organization (WHO) reference strains representing the 23 currently recognized genotypes. The minimum nucleotide divergence between the Menglian viruses and the most closely related reference strain, genotype D7, was 3.3% for the N gene and 3.0% for the H gene. A search of the databases of GenBank, WHO, and the Health Protection Agency Measles Nucleotide Surveillance showed that the Menglian viruses, together with the 2 older non-Menglian viruses, could be members of a new proposed measles genotype, d11. The new genotype designation will allow for better description of measles transmission patterns, especially in the Southeast Asian and Western Pacific regions.

  3. Characterization of temperature-sensitive HVJ (Sendai virus) infection in Vero cells: inhibitory mechanism of viral production at 41 degrees.

    Science.gov (United States)

    Hirayama, Etsuko; Ishida, Yo-ichi; Sugimoto, Masao; Hiraki, Akihiro; Kim, Jeman

    2003-01-01

    In a previous study, it was found that the synthesis of hemagglutinating virus of Japan (HVJ; Sendai virus)-specific proteins was inhibited at the transcriptional level at 41 degrees in LLC-MK2 cells. During an investigation of the temperature sensitivity of HVJ production in other host cells, the synthesis of HVJ-specific proteins was recognized even at 41 degrees in Vero cells. Viral production, however, was not detected, indicating the inhibition of steps after the synthesis of viral proteins. Hemadsorption activity was not detected at 41 degrees, suggesting problems with the envelope proteins, especially hemagglutinin-neuraminidase (HN) protein, at the cell membrane. Immunofluorescent staining and surface immunoprecipitation showed that HN protein was not present on the surface in spite of its localization in the cytoplasm. Further, analysis of the cell membrane fraction suggested that fusion (F) protein was integrated into the cell membrane but HN protein was not at 41 degrees. Electron microscopic observation showed that budding sites with spike structures formed and nucleocapsids assembled under the sites at 41 degrees without HN protein, although budded HVJ virions were not detected. At this time, F protein was exposed to the cell membrane and interacted with matrix and nucleocapsid proteins. The results suggested that the suppression of HVJ production at 41 degrees was due to the absence of HN protein in the membrane of Vero cells. Copyright 2003 S. Karger AG, Basel

  4. Genotyping of mumps virus detected in Yokohama City from 1999 to 2010.

    Science.gov (United States)

    Momoki, Tomoko Soga

    2013-01-01

    A survey of mumps infections from 1999 to 2010 was conducted in Yokohama City, Japan, and 17 cases--including 4 cases of aseptic meningitis--were positive for mumps virus (MuV). Based on the phylogenetic analysis of the small hydrophobic gene of the MuV genome, 3, 2, and 12 of the isolates were classified into genotypes B, L, and G, respectively. The results were supported by phylogenetic analysis of hemagglutinin-neuraminidase genes. The 3 isolates of genotype B, obtained in 2000, 2004, and 2007, were closely related to indigenous lineages and vaccine strains in Japan. Two isolates obtained from 1999 to 2000 were assigned to genotype L. Twelve isolates obtained from 2000 to 2010 were classified into genotype G, in which 8 isolates obtained from 2000 to 2006 and 4 isolates obtained in 2010 were closely related to MuVi/Gloucester.GBR/32.96 and MuVi/London.GBR/0.03, respectively. Precise analyses of nucleotide sequences suggested that the 4 viruses isolated in 2010 were not directly derived from the evolution of MuV existing before 2006 in the Yokohama area.

  5. Rohlin distance and the evolution of influenza A virus: weak attractors and precursors.

    Directory of Open Access Journals (Sweden)

    Raffaella Burioni

    Full Text Available The evolution of the hemagglutinin amino acids sequences of Influenza A virus is studied by a method based on an informational metrics, originally introduced by Rohlin for partitions in abstract probability spaces. This metrics does not require any previous functional or syntactic knowledge about the sequences and it is sensitive to the correlated variations in the characters disposition. Its efficiency is improved by algorithmic tools, designed to enhance the detection of the novelty and to reduce the noise of useless mutations. We focus on the USA data from 1993/94 to 2010/2011 for A/H3N2 and on USA data from 2006/07 to 2010/2011 for A/H1N1. We show that the clusterization of the distance matrix gives strong evidence to a structure of domains in the sequence space, acting as weak attractors for the evolution, in very good agreement with the epidemiological history of the virus. The structure proves very robust with respect to the variations of the clusterization parameters, and extremely coherent when restricting the observation window. The results suggest an efficient strategy in the vaccine forecast, based on the presence of "precursors" (or "buds" populating the most recent attractor.

  6. Interaction of Bordetella pertussis filamentous hemagglutinin with human TLR2: identification of the TLR2-binding domain

    NARCIS (Netherlands)

    Asgarian-Omran, Hossein; Amirzargar, Ali Akbar; Zeerleder, Sacha; Mahdavi, Marzieh; van Mierlo, Gerard; Solati, Shabnam; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Aarden, Leucien; Shokri, Fazel

    2015-01-01

    Filamentous hemagglutinin (FHA) is a major adhesion and virulence factor of Bordetella pertussis and also a main component of acellular pertussis vaccines. Interaction of FHA with different receptors on human epithelial and immune cells facilitates entrance and colonization of bacteria as well as

  7. Molecular characterization of AI viruses from poultry and wild bird surveillance in Denmark

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Krog, Jesper Schak; Madsen, Jesper J.

    Infection with avian influenza virus (AIV) in poultry may cause devastating disease although the same virus may not cause disease in wild birds. Since AI viruses can be exchanged between poultry and wild birds, surveillance in wild birds provides important knowledge for control of disease...... in poultry. AIV’s from the Danish wild bird active surveillance were characterized, focusing on viruses from 2012, and from outbreaks of AI in poultry in Denmark. The matrix (M) gene from more than 50 viruses of different subtypes and the hemagglutinin (HA) gene from more than 30 subtype H5 low pathogenic...... viruses were sequenced and compared by alignment and phylogenetic analyses. The aim was to evaluate: the origin of viruses from outbreaks of AI in Danish poultry, the design of active surveillance in Denmark, and the suitability of the molecular diagnostic RT-PCR tests employed. All M-genes from Danish...

  8. Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study

    Directory of Open Access Journals (Sweden)

    A.G. Pose

    2015-09-01

    Full Text Available In this study we demonstrated that the vaccine candidate against avian influenza virus H5N1 based on the hemagglutinin H5 (HA fused to the chicken CD154 (HACD can also be used for differentiating infected from vaccinated animals (DIVA. As the strategy of DIVA requires at least two proteins, we obtained a variant of the nucleoprotein (NP49-375 in E. coli. After its purification by IMAC, the competence of the proteins NP49-375 and HACD as coating antigens in indirect ELISA assays were tested by using the sera of chickens immunized with the proteins HA and HACD and the reference sera from several avian influenza subtypes. Together with these sera, the sera from different species of birds and the sera of chickens infected with other avian viral diseases were analyzed by competition ELISA assays coated with the proteins NP49-375 and HACD. The results showed that the segment CD154 in the chimeric protein HACD did not interfere with the recognition of the molecule HA by its specific antibodies. Also, we observed variable detection levels when the reference sera were analyzed in the ELISA plates coated with the protein NP49-375. Moreover, only the antibodies of the reference serum subtype H5 were detected in the ELISA plates coated with the protein HACD. The competition ELISA assays showed percentages of inhibition of 88-91% for the positives sera and less than 20% for the negative sera. We fixed the cut-off value of these assays at 25%. No antibody detection was observed in the sera from different species of birds or the sera of chickens infected with other avian viral diseases. This study supported the fact that the ELISA assays using the proteins NP49-375 and HACD could be valuable tools for avian influenza surveillance and as a strategy of DIVA for counteracting the highly pathogenic avian influenza virus H5N1 outbreaks.

  9. Vaccination has minimal impact on the intrahost diversity of H3N2 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Kari Debbink

    2017-01-01

    Full Text Available While influenza virus diversity and antigenic drift have been well characterized on a global scale, the factors that influence the virus' rapid evolution within and between human hosts are less clear. Given the modest effectiveness of seasonal vaccination, vaccine-induced antibody responses could serve as a potent selective pressure for novel influenza variants at the individual or community level. We used next generation sequencing of patient-derived viruses from a randomized, placebo-controlled trial of vaccine efficacy to characterize the diversity of influenza A virus and to define the impact of vaccine-induced immunity on within-host populations. Importantly, this study design allowed us to isolate the impact of vaccination while still studying natural infection. We used pre-season hemagglutination inhibition and neuraminidase inhibition titers to quantify vaccine-induced immunity directly and to assess its impact on intrahost populations. We identified 166 cases of H3N2 influenza over 3 seasons and 5119 person-years. We obtained whole genome sequence data for 119 samples and used a stringent and empirically validated analysis pipeline to identify intrahost single nucleotide variants at ≥1% frequency. Phylogenetic analysis of consensus hemagglutinin and neuraminidase sequences showed no stratification by pre-season HAI and NAI titer, respectively. In our study population, we found that the vast majority of intrahost single nucleotide variants were rare and that very few were found in more than one individual. Most samples had fewer than 15 single nucleotide variants across the entire genome, and the level of diversity did not significantly vary with day of sampling, vaccination status, or pre-season antibody titer. Contrary to what has been suggested in experimental systems, our data indicate that seasonal influenza vaccination has little impact on intrahost diversity in natural infection and that vaccine-induced immunity may be only a

  10. Novel polyvalent live vaccine against varicella-zoster and mumps virus infections.

    Science.gov (United States)

    Matsuura, Masaaki; Somboonthum, Pranee; Murakami, Kouki; Ota, Megumi; Shoji, Masaki; Kawabata, Kenji; Mizuguchi, Hiroyuki; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2013-10-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is a highly immunogenic and safe live vaccine that has long been used worldwide. Because its genome is large, making it suitable for inserting foreign genes, vOka is considered a candidate vector for novel polyvalent vaccines. Previously, a recombinant vOka, rvOka-HN, that expresses mumps virus (MuV) hemagglutinin-neuraminidase (HN) was generated by the present team. rvOka-HN induces production of neutralizing antibodies against MuV in guinea pigs. MuV also expresses fusion (F) protein, which is important for inducing neutralizing antibodies, in its viral envelope. To induce a more robust immune response against MuV than that obtained with rvOka-HN, here an rvOka expressing both HN and F (rvOka-HN-F) was generated. However, co-expression of HN and F caused the infected cells to form syncytia, which reduced virus titers. To reduce the amount of cell fusion, an rvOka expressing HN and a mutant F, F(S195Y) were generated. Almost no syncytia formed among the rvOka-HN-F(S195Y)-infected cells and the growth of rvOka-HN-F(S195Y) was similar to that of the original vOka clone. Moreover, replacement of serine 195 with tyrosine had no effect on the immunogenicity of F in mice and guinea pigs. Although obvious augmentation of neutralizing antibody production was not observed after adding F protein to vOka-HN, the anti-F antibodies did have neutralizing activity. These data suggest that F protein contributes to induction of immune protection against MuV. Therefore this recombinant virus is a promising candidate vaccine for polyvalent protection against both VZV and MuV. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  11. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    OpenAIRE

    Steglich, C.; Grund, C.; A. Röder; Zhao, N.; Mettenleiter, T C; Römer-Oberdörfer, A.

    2014-01-01

    Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV) H5 expressing Newcastle disease virus (NDV)-based vector vaccine (chNDVFHNPMV8H5) in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8). This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+). However, due to the absence of the major NDV immunogens it failed to induce protection...

  12. Immune responses to influenza virus infection.

    Science.gov (United States)

    Kreijtz, J H C M; Fouchier, R A M; Rimmelzwaan, G F

    2011-12-01

    Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Outbreak and genotyping of canine distemper virus in captive Siberian tigers and red pandas

    OpenAIRE

    Zhang, He; Shan, Fen; Zhou, Xia; Li, Bing; Zhai, Jun-Qiong; Zou, Shu-Zhan; Wu, Meng-Fan; Chen, Wu; Zhai, Shao-Lun; Luo, Man-Lin

    2017-01-01

    In this study, four canine distemper virus (CDV) strains were isolated from captive Siberian tigers (Panthera tigris altaica) and red pandas (Ailurus fulgens) during two separate CDV outbreaks in a zoo in Guangdong province, China. Sequence alignment and phylogenetic analyses based on the full-length hemagglutinin (H) and fusion (F) genes showed that they were closely identical to genotype Asia-1. Prior to confirmation of CDV in Siberian tigers, to control spread of the disease, a live attenu...

  14. INFLUENZA PANDEMIC: FACTS AND SUGGESTIONS

    Directory of Open Access Journals (Sweden)

    Yu.Z. Gendon

    2008-01-01

    Full Text Available The review highlights data on the influenza pandemic in 1918, 1957, 1968, 1977 and virus strain properties, which caused them. The author considers genesis mechanisms of the pandemic flu strains, including mutations, resulting into the increase of virulence, as well as an opportunity for the process of the human and bird flu reas sortion to take part in the genesis of the pandemic strains. The author also examines the mechanisms for turning low virulent flu viruses into high virulent ones able to induce epizootic outbreaks. The work discusses genes and proteins, defining specific character of the avian flu viruses and probable H5N1 flu pandemic appearance. The author thinks it quite unlikely for such an event to occur.Key words: flu, pandemic.

  15. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002-2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003-2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.

  16. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  17. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    Science.gov (United States)

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  18. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase.

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  19. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  20. Reassortment of Avian Influenza A/H6N6 Viruses from Live Poultry Markets in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Runyu eYuan

    2016-02-01

    Full Text Available Since early 2013, H7N9-subtype avian influenza virus (AIV has caused human infection in eastern China. To evaluate AIV contamination and the public risk of infection, we systematically implemented environmental sampling from live poultry markets in Guangdong Province. Through real-time polymerase chain reaction assays and next-generation sequencing, we generated full nucleotide sequences of all 10 H6N6 AIVs isolated during sampling. Focusing on sequence analyses of hemagglutinin genes of the 10 H6N6 AIVs revealed that the viruses were low pathogenic AIVs with the typical hemagglutinin cleavage site of P-Q-I-E-T-R-G. The hemagglutinin, neuraminidase, and nucleocapsid genes of nine AIVs were of ST2853-like (H6-subtype lineage, ST192-like (N6-subtype lineage, and HN573-like (H6-subtype lineage, respectively; whereas the other five genes were of ST339-like (H6-subtype lineage. However, the polymerase PB2 and nucleocapsid genes of one strain (HZ057 were of GS/GD-like (H5N1-subtype and ST339-like lineages. Phylogenic analysis revealed that all eight genes of the 10 viruses belonged to Eurasian avian lineage. Altogether, the 10 AIVs were reassortants of different genetic groups of exchanges with the same virus subtype, thus illustrating the genetic diversity and complexity of H6N6-subtype AIVs in Guangdong Province.

  1. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  2. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs.

    Science.gov (United States)

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A; Richt, Jürgen A; Ma, Wenjun

    2015-03-01

    At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5

  3. Automatic detection of rate change in large data sets with an unsupervised approach: the case of influenza viruses.

    Science.gov (United States)

    Labonté, Kasandra; Aris-Brosou, Stéphane

    2016-04-01

    Influenza viruses evolve at such a high rate that vaccine recommendations need to be changed, but not quite on a regular basis. This observation suggests that the rate of evolution of these viruses is not constant through time, which begs the question as to when such rate changes occur, if they do so independently of the host in which they circulate and (or) independently of their subtype. To address these outstanding questions, we introduce a novel heuristics, Mclust*, that is based on a two-tier clustering approach in a phylogenetic context to estimate (i) absolute rates of evolution and (ii) when rate change occurs. We employ the novel approach to compare the two influenza surface proteins, hemagglutinin and neuraminidase, that circulated in avian, human, and swine hosts between 1960 and 2014 in two subtypes: H3N2 and H1N1. We show that the algorithm performs well in most conditions, accounting for phylogenetic uncertainty by means of bootstrapping and scales up to analyze very large data sets. Our results show that our approach is robust to the time-dependent artifact of rate estimation, and confirm pervasive punctuated evolution across hosts and subtypes. As such, the novel approach can potentially detect when vaccine composition needs to be updated.

  4. Eye Problems May Be Tied to Zika, Lab Study Suggests

    Science.gov (United States)

    ... 165947.html Eye Problems May Be Tied to Zika, Lab Study Suggests Work with monkeys indicates birth ... 25, 2017 (HealthDay News) -- Scientists exploring how the Zika virus passes from pregnant monkeys to their fetuses ...

  5. [Results of two-year-old inspection of the presence of infuenza virus in wild birds in Western Mongolia].

    Science.gov (United States)

    Shestopalov, A M; Zolotykh, S I; Shchelkanov, M Iu; Rasumova, Iu V; Alekseev, A Iu; Durymanov, A G; Iurlov, A K; Davazhav, A; Altantsetseg, T; Tsĕrĕnnorov, D; Otgonbaatar, D; Netesov, S V; Drozdov, I G

    2006-01-01

    The results of virology inspection of the wild birds living in territory of the Western Mongolia, carried out in 2003-2004 are presented. For the specified period influenza viruses H3 and H4 subtype hemagglutinins are isolated from birds. It is revealed taxonomic and ecological heterogeneity of the birds involved in maintenance of circulation of influenza viruses in the given territory. Influenza viruses are isolated from birds of 5 special groups; among them there are preferring water and nearwater biotops, a species preferring dry plain region, and also a species which habitat does not depend from water's territories.

  6. Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe

    DEFF Research Database (Denmark)

    Bodewes, Rogier; Zohari, Siamak; Krog, Jesper Schak

    2016-01-01

    and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related...... not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from...... birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species...

  7. A Bivalent Heterologous DNA Virus-Like-Particle Prime-Boost Vaccine Elicits Broad Protection against both Group 1 and 2 Influenza A Viruses.

    Science.gov (United States)

    Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ze; Chen, Ling; Chen, Zhiwei; Zhou, Paul

    2017-05-01

    Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called "universal" vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a "universal" influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this, there is an urgent

  8. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150.

    Science.gov (United States)

    Bieringer, Maria; Han, Jung Woo; Kendl, Sabine; Khosravi, Mojtaba; Plattet, Philippe; Schneider-Schaulies, Jürgen

    2013-01-01

    Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.

  9. Experimental adaptation of wild-type canine distemper virus (CDV to the human entry receptor CD150.

    Directory of Open Access Journals (Sweden)

    Maria Bieringer

    Full Text Available Canine distemper virus (CDV, a close relative of measles virus (MV, is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2 pfu/ml in Vero cells expressing human CD150 (Vero-hSLAM. After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5 pfu/ml. Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L and Gly to Glu (G71E, and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.

  10. A Novel A(H7N2) Influenza Virus Isolated from a Veterinarian Caring for Cats in a New York City Animal Shelter Causes Mild Disease and Transmits Poorly in the Ferret Model.

    Science.gov (United States)

    Belser, Jessica A; Pulit-Penaloza, Joanna A; Sun, Xiangjie; Brock, Nicole; Pappas, Claudia; Creager, Hannah M; Zeng, Hui; Tumpey, Terrence M; Maines, Taronna R

    2017-08-01

    In December 2016, a low-pathogenic avian influenza (LPAI) A(H7N2) virus was identified to be the causative source of an outbreak in a cat shelter in New York City, which subsequently spread to multiple shelters in the states of New York and Pennsylvania. One person with occupational exposure to infected cats became infected with the virus, representing the first LPAI H7N2 virus infection in a human in North America since 2003. Considering the close contact that frequently occurs between companion animals and humans, it was critical to assess the relative risk of this novel virus to public health. The virus isolated from the human case, A/New York/108/2016 (NY/108), caused mild and transient illness in ferrets and mice but did not transmit to naive cohoused ferrets following traditional or aerosol-based inoculation methods. The environmental persistence of NY/108 virus was generally comparable to that of other LPAI H7N2 viruses. However, NY/108 virus replicated in human bronchial epithelial cells with an increased efficiency compared with that of previously isolated H7N2 viruses. Furthermore, the novel H7N2 virus was found to utilize a relatively lower pH for hemagglutinin activation, similar to human influenza viruses. Our data suggest that the LPAI H7N2 virus requires further adaptation before representing a substantial threat to public health. However, the reemergence of an LPAI H7N2 virus in the northeastern United States underscores the need for continuous surveillance of emerging zoonotic influenza viruses inclusive of mammalian species, such as domestic felines, that are not commonly considered intermediate hosts for avian influenza viruses.IMPORTANCE Avian influenza viruses are capable of crossing the species barrier to infect mammals, an event of public health concern due to the potential acquisition of a pandemic phenotype. In December 2016, an H7N2 virus caused an outbreak in cats in multiple animal shelters in New York State. This was the first detection

  11. Application of virus-like particles (VLP) to NMR characterization of viral membrane protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, Aleksandar; Kingsley, Carolyn [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States); Basu, Arnab; Bowlin, Terry L. [Microbiotix Inc. (United States); Rong, Lijun [University of Illinois at Chicago, Department of Microbiology and Immunology (United States); Caffrey, Michael, E-mail: caffrey@uic.edu [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States)

    2016-03-15

    The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.

  12. Evaluation of the efficacy and cross-protectivity of recent human and swine vaccines against the pandemic (H1N1) 2009 virus infection.

    Science.gov (United States)

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Park, Kuk Jin; Kwon, Hyeok-Il; Baek, Yun Hee; Hong, Seung-Pyo; Rho, Jong-Bok; Kim, Chul-Joong; Poo, Haryoung; Ryoo, Thomas S; Sung, Moon-Hee; Choi, Young Ki

    2009-12-23

    The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 microg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20-40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 microg HA) of both vaccine in ferrets could elicit cross-reactivity (30-60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest approximately 30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.

  13. Both CD4+ and CD8+ Lymphocytes Participate in the IFN-γ Response to Filamentous Hemagglutinin from Bordetella pertussis in Infants, Children, and Adults

    Directory of Open Access Journals (Sweden)

    Violette Dirix

    2012-01-01

    Full Text Available Infant CD4+ T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8+ T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8+ T-cell responses upon Bordetella pertussis infection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γ secretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4+ and CD8+ T lymphocytes are involved in IFN-γ production. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4+ lymphocytes were the major source of this cytokine. IFN-γ synthesis by CD8+ cells was CD4+ T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γ synthesis by CD4+ cells was sometimes inhibited by CD8+ lymphocytes, suggesting the presence of CD8+ regulatory T cells. The role of this dual IFN-γ secretion by CD4+ and CD8+ T lymphocytes in pertussis remains to be investigated.

  14. Novel virus influenza A (H1N1sw in South-Eastern France, April-August 2009.

    Directory of Open Access Journals (Sweden)

    Antoine Nougairède

    Full Text Available BACKGROUND: In April 2009, the first cases of pandemic (H1N1-2009 influenza [H1N1sw] virus were detected in France. Virological surveillance was undertaken in reference laboratories of the seven French Defence Zones. METHODOLOGY/PRINCIPAL FINDINGS: We report results of virological analyses performed in the Public Hospitals of Marseille during the first months of the outbreak. (i Nasal swabs were tested using rapid influenza diagnostic test (RIDT and two RT-PCR assays. Epidemiological characteristics of the 99 first suspected cases were analyzed, including detection of influenza virus and 18 other respiratory viruses. During three months, a total of 1,815 patients were tested (including 236 patients infected H1N1sw virus and distribution in age groups and results of RIDT were analyzed. (ii 600 sera received before April 2009 and randomly selected from in-patients were tested by a standard hemagglutination inhibition assay for antibody to the novel H1N1sw virus. (iii One early (May 2009 and one late (July 2009 viral isolates were characterized by sequencing the complete hemagglutinine and neuraminidase genes. (iiii Epidemiological characteristics of a cluster of cases that occurred in July 2009 in a summer camp were analyzed. CONCLUSIONS/SIGNIFICANCE: This study presents new virological and epidemiological data regarding infection by the pandemic A/H1N1 virus in Europe. Distribution in age groups was found to be similar to that previously reported for seasonal H1N1. The first seroprevalence data made available for a European population suggest a previous exposure of individuals over 40 years old to influenza viruses antigenically related to the pandemic (H1N1-2009 virus. Genomic analysis indicates that strains harbouring a new amino-acid pattern in the neuraminidase gene appeared secondarily and tended to supplant the first strains. Finally, in contrast with previous reports, our data support the use of RIDT for the detection of infection in

  15. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential.

    Science.gov (United States)

    Scheller, Erich V; Cotter, Peggy A

    2015-11-01

    Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    Science.gov (United States)

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  17. DC-SIGN and Influenza Hemagglutinin Dynamics in Plasma Membrane Microdomains Are Markedly Different

    Science.gov (United States)

    Itano, Michelle S.; Neumann, Aaron K.; Liu, Ping; Zhang, Feng; Gratton, Enrico; Parak, Wolfgang J.; Thompson, Nancy L.; Jacobson, Ken

    2011-01-01

    DC-SIGN, a Ca2+-dependent transmembrane lectin, is found assembled in microdomains on the plasma membranes of dendritic cells. These microdomains bind a large variety of pathogens and facilitate their uptake for subsequent antigen presentation. In this study, DC-SIGN dynamics in microdomains were explored with several fluorescence microscopy methods and compared with dynamics for influenza hemagglutinin (HA), which is also found in plasma membrane microdomains. Fluorescence imaging indicated that DC-SIGN microdomains may contain other C-type lectins and that the DC-SIGN cytoplasmic region is not required for microdomain formation. Fluorescence recovery after photobleaching measurements showed that neither full-length nor cytoplasmically truncated DC-SIGN in microdomains appreciably exchanged with like molecules in other microdomains and the membrane surround, whereas HA in microdomains exchanged almost completely. Line-scan fluorescence correlation spectroscopy indicated an essentially undetectable lateral mobility for DC-SIGN but an appreciable mobility for HA within their respective domains. Single-particle tracking with defined-valency quantum dots confirmed that HA has significant mobility within microdomains, whereas DC-SIGN does not. By contrast, fluorescence recovery after photobleaching indicated that inner leaflet lipids are able to move through DC-SIGN microdomains. The surprising stability of DC-SIGN microdomains may reflect structural features that enhance pathogen uptake either by providing high-avidity platforms and/or by protecting against rapid microdomain endocytosis. PMID:21641311

  18. Computational Docking of Antibody-Antigen Complexes, Opportunities and Pitfalls Illustrated by Influenza Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Mattia Pedotti

    2011-01-01

    Full Text Available Antibodies play an increasingly important role in both basic research and the pharmaceutical industry. Since their efficiency depends, in ultimate analysis, on their atomic interactions with an antigen, studying such interactions is important to understand how they function and, in the long run, to design new molecules with desired properties. Computational docking, the process of predicting the conformation of a complex from its separated components, is emerging as a fast and affordable technique for the structural characterization of antibody-antigen complexes. In this manuscript, we first describe the different computational strategies for the modeling of antibodies and docking of their complexes, and then predict the binding of two antibodies to the stalk region of influenza hemagglutinin, an important pharmaceutical target. The purpose is two-fold: on a general note, we want to illustrate the advantages and pitfalls of computational docking with a practical example, using different approaches and comparing the results to known experimental structures. On a more specific note, we want to assess if docking can be successful in characterizing the binding to the same influenza epitope of other antibodies with unknown structure, which has practical relevance for pharmaceutical and biological research. The paper clearly shows that some of the computational docking predictions can be very accurate, but the algorithm often fails to discriminate them from inaccurate solutions. It is of paramount importance, therefore, to use rapidly obtained experimental data to validate the computational results.

  19. Mouse-protecting and histamine-sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis.

    Science.gov (United States)

    Munoz, J J; Arai, H; Cole, R L

    1981-01-01

    We compared the protective activities of fimbrial hemagglutinin (FHA) and pertussigen and their respective antibodies in mice infected intracerebrally with Bordetella pertussis. We found that mice were protected by a 1.7-microgram/mouse dose of pertussigen which was free of detectable FHA and was detoxified by treatment with glutaraldehyde. A pertussigen preparation made from cells grown in shake cultures that did not contain demonstrable FHA protected mice at a dose of 1.4 microgram/mouse. FHA at a dose of 10 microgram/mouse protected mice from intracerebral infection, but it also sensitized mice to histamine at a dose of 2 micrograms/mouse, which indicated that it was contaminated with pertussigen. When FHA was obtained free of demonstrable pertussigen, it failed to sensitize mice to histamine at a dose of 30 micrograms/mouse and to protect mice from infection at a dose of 12 micrograms/mouse (largest doses tested). Passive protection tests with antisera known to contain antibodies to pertussigen protected mice from intracerebral infection, whereas sera lacking anti-pertussigen antibodies but containing high concentrations of anti-FHA antibodies did not protect mice. The most important antigen for the immunization of mice against intracerebral infection with B. pertussis appears to be pertussigen. Images PMID:6260681

  20. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  1. Development of a blocking ELISA for screening antibodies to porcine rubulavirus, La Piedad Michoacan Virus.

    Science.gov (United States)

    Nordengrahn, A; Svenda, M; Moreno-Lopez, J; Bergvall, A; Hernandez, P; McNeilly, F; Allan, G; Merza, M

    1999-07-01

    A blocking enzyme-linked immunosorbent assay (ELISA) was developed to detect antibodies to porcine rubulavirus (La Piedad Michoacan Virus [LPMV]) in serum samples from pigs. The test, based on a monoclonal antibody against the LPMV hemagglutinin-neuraminidase glycoprotein, had a sensitivity of 99% and a specificity of 97%. The results of this test were in agreement with those obtained by an indirect ELISA and hemagglutination inhibition, indirect immunofluorescence, and virus neutralization tests. The blocking ELISA is considered the most suitable test for routine screening for antibodies against LPMV.

  2. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion.

    Science.gov (United States)

    Calder, Lesley J; Rosenthal, Peter B

    2016-09-01

    The lipid-enveloped influenza virus enters host cells during infection by binding cell-surface receptors and, after receptor-mediated endocytosis, fusing with the membrane of the endosome and delivering the viral genome and transcription machinery into the host cell. These events are mediated by the hemagglutinin (HA) surface glycoprotein. At the low pH of the endosome, an irreversible conformational change in the HA, including the exposure of the hydrophobic fusion peptide, activates membrane fusion. Here we used electron cryomicroscopy and cryotomography to image the fusion of influenza virus with target membranes at low pH. We visualized structural intermediates of HA and their interactions with membranes during the course of membrane fusion as well as ultrastructural changes in the virus that accompany membrane fusion. Our observations are relevant to a wide range of protein-mediated membrane-fusion processes and demonstrate how dynamic membrane events may be studied by cryomicroscopy.

  3. Neuraminidase-Mediated, NKp46-Dependent Immune-Evasion Mechanism of Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Yotam Bar-On

    2013-04-01

    Full Text Available Natural killer (NK cells play an essential role in the defense against influenza virus, one of the deadliest respiratory viruses known today. The NKp46 receptor, expressed by NK cells, is critical for controlling influenza infections, as influenza-virus-infected cells are eliminated through the recognition of the viral hemagglutinin (HA protein by NKp46. Here, we describe an immune-evasion mechanism of influenza viruses that is mediated by the neuraminidase (NA protein. By using various NA blockers, we show that NA removes sialic acid residues from NKp46 and that this leads to reduced recognition of HA. Furthermore, we provide in vivo and in vitro evidence for the existence of this NA-mediated, NKp46-dependent immune-evasion mechanism and demonstrate that NA inhibitors, which are commonly used for the treatment of influenza infections, are useful not only as blockers of virus budding but also as boosters of NKp46 recognition.

  4. ANTIGENIC AND GENETIC CHARACTERIZATION OF INFLUENZA B VIRUSES IN 2012 FROM SLUMS, DHAKA, BANGLADESH.

    Science.gov (United States)

    Islam, Mohammad Ariful; Sultana, Nazneen; Ahmed, Firoz; Rahman, M Majibur; Rahman, Sabita Rezwana

    2015-07-01

    Nasal and throat swab samples were collected from 400 subjects with influenza-like illness during June to September, 2012 from two heavily crowded slums, Rayerbazar and Hazaribagh, situated southeast of Dhaka, Bangladesh. Forty-one samples were positive for influenza B virus using quantitative RT-PCR, but no influenza A virus was detected. Antigenic characterization revealed that the influenza B viruses were of Yamagata and Victoria lineages, which was confirmed from genetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes. Co-circulation of influenza B viruses of both Yamagata and Victoria lineages in the slums of Dhaka indicates that introduction of a tetravalent vaccine formulation that includes both of these influenza B virus lineages would be more effective in this population.

  5. Phylogenetic analysis of influenza A viruses (H3N2 circulating in Zhytomyr region during 2013–2014 epidemic season

    Directory of Open Access Journals (Sweden)

    Boyalska O. G.

    2015-06-01

    Full Text Available Aim. To perform phylogenetic analysis of the hemagglutinin (HA and neuraminidase (NA genes of influenza A(H3N2 viruses circulating in the Zhytomyr region during 2013–2014 epidemic season. To make comparison of the HA and NA genes sequences of the Zhytomyr region isolates with the HA and NA genes sequences of influenza viruses circulating in the world. Methods. Laboratory diagnosis was conducted by real-time polymerase chain reaction (RT-PCR. In this study the sequencing and phylogenetic analysis were carried out. Results. For the first time the genes of influenza A(H3N2 viruses isolated in the Zhytomyr region during 2013–2014 epidemic season, coding hemagglutinin and neuraminidase were compared with their orthologs. According to the results of this comparison the phylogenetic tree was constructed. Additionally, the amino acid substitutions of the influenza viruses circulating in Ukraine and worldwide were analyzed. Conclusions. The nucleotide sequences of the influenza A(H3N2 viruses genes HA and NA isolated in the Zhytomyr region were identified. Based on the nucleotide sequences of HA and NA we constructed the influenza virus phylogenetic tree demonstrating that the virus isolated in the Zhytomyr region was closely related to the Ukrainian isolate from Kharkov and in the world to the isolates from Germany, Romania, Italy.

  6. Detection of influenza C viruses among outpatients and patients hospitalized for severe acute respiratory infection, Minnesota, 2013-2016.

    Science.gov (United States)

    Thielen, Beth K; Friedlander, Hannah; Bistodeau, Sarah; Shu, Bo; Lynch, Brian; Martin, Karen; Bye, Erica; Como-Sabetti, Kathyrn; Boxrud, David; Strain, Anna K; Chaves, Sandra S; Steffens, Andrea; Fowlkes, Ashley L; Lindstrom, Stephen; Lynfield, Ruth

    2017-10-23

    Existing literature suggests that influenza C typically causes mild respiratory tract disease. However, clinical and epidemiological data are limited. Four outpatient clinics and three hospitals submitted clinical data and respiratory specimens through a surveillance network for acute respiratory infection (ARI) during May 2013 through December 2016. Specimens were tested using multi-target nucleic acid amplification tests (NAAT) for 19-22 respiratory pathogens, including influenza C. Influenza C virus was detected among 59 of 10,202 (0.58%) hospitalized SARI cases and 11 of 2,282 (0.48%) outpatients. Most detections occurred from December to March, with 73% during the 2014-2015 season. Influenza C detections occurred among patients of all ages, with similar rates between inpatients and outpatients. The highest rate of detection occurred among children aged 6 to 24 months (1.2%). Among hospitalized cases, seven required intensive care. Medical co-morbidities were reported in 58% of hospitalized cases and all who required intensive care. At least one other respiratory pathogen was detected in 40 (66%) cases, most commonly rhinovirus/enterovirus (25%) and respiratory syncytial virus (RSV) (20%). The hemagglutinin-esterase-fusion (HEF) gene was sequenced in 37 specimens, and both C/Kanagawa and C/Sao Paulo lineages were detected in inpatients and outpatients. We found seasonal circulation of influenza C with year-to-year variability. Detection was most frequent among young children, but occurred in all ages. Some cases positive for influenza C, particularly those with co-morbid conditions, had severe disease, suggesting a need for further study of the role of influenza C virus in the pathogenesis of respiratory disease.

  7. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  8. ANALISIS GEN HAEMAGGLUTININ PADA VIRUS CAMPAK LIAR

    Directory of Open Access Journals (Sweden)

    Subangkit Subangkit

    2015-05-01

    Full Text Available AbstrakPenyakit Campak disebabkan oleh virus campak yang termasuk genus Morbilivirus dan Family Paramyxoviridae. Penyakit campak masih menjadi masalah kesehatan karena masih ditemukan Kejadian Luar Biasa (KLB di Indonesia. Salah satu penyebab terjadinya KLB tersebut diduga sebagaiakibat perbedaan antigenesitas antara strain vaksin yang digunakan dengan strain virus campak liar yang beredar di Indonesia. Penelitian ini bertujuan mendapatkan gambaran tentang karakteristik genetik gen Haemagglutinin virus campak liar yang ada di Indonesia. Spesimen yang digunakan sebanyak 27 isolat virus penyebab KLB dari 17 propinsi selama periode tahun 2003-2010. Isolat virus dilakukan pemeriksaan secara RT-PCR dan sekuensing dengan metode Sanger. Hasil sekuensing dianalisis dengan menggunakan perangkat lunak Bioedit 7.0 dan MEGA 4.0. Hasil penelitian didapatkan perbedaan 10 asam amino antara virus campak strain vaksin CAM-70 dan virus campak liar pada posisi D416N; K424T; V451M; N455T; V466I; I473T; F476L; Y481S atau Y481N; H495N; G505D. Kesimpulan penelitian ini adalah terdapat perbedaan karakteristik genetik antara virus campak liar di Indonesia berbeda dengan strain virus vaksin CAM-70.Kata kunci : Campak, Analisis Molekuler, Hemagglutinin, CD46AbstractMeasles is caused by virus belonging to the genus Morbilivirus and Family Paramyxoviridae. Measles is still a public health problem because outbreak of measles still found in Indonesia. Outbreak is suspected as a result of differences in antigenicity between vaccine strains used with wild-type measles virus strains circulating in Indonesia. This study aims to get genetic characteristics of wild-type measles virus haemagglutinin gene in Indonesia. The specimens were used 27 viral isolates from 17 provinces period 2003-2010. Viral isolates examined by RT-PCR and sequencing with Sanger method. Sequencing analysis were conducted using Bioedit 7.0 and MEGA 4.0 software. The results showed 10 amino acid differences

  9. The Length of N-Glycans of Recombinant H5N1 Hemagglutinin Influences the Oligomerization and Immunogenicity of Vaccine Antigen

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    2017-04-01

    Full Text Available Hemagglutinin glycoprotein (HA is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm and with low-mannose glycosylation (H5Man5 were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

  10. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  11. Virus-specific T cells as correlate of (cross-)protective immunity against influenza.

    Science.gov (United States)

    Altenburg, Arwen F; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-15

    Since inactivated influenza vaccines mainly confer protective immunity by inducing strain-specific antibodies to the viral hemagglutinin, these vaccines only afford protection against infection with antigenically matching influenza virus strains. Due to the continuous emergence of antigenic drift variants of seasonal influenza viruses and the inevitable future emergence of pandemic influenza viruses, there is considerable interest in the development of influenza vaccines that induce broader protective immunity. It has long been recognized that influenza virus-specific CD8(+) T cells directed to epitopes located in the relatively conserved internal proteins can cross-react with various subtypes of influenza A virus. This implies that these CD8(+) T cells, induced by prior influenza virus infections or vaccinations, could afford heterosubtypic immunity. Furthermore, influenza virus-specific CD4(+) T cells have been shown to be important in protection from infection, either via direct cytotoxic effects or indirectly by providing help to B cells and CD8(+) T cells. In the present paper, we review the induction of virus-specific T cell responses by influenza virus infection and the role of virus-specific CD4(+) and CD8(+) T cells in viral clearance and conferring protection from subsequent infections with homologous or heterologous influenza virus strains. Furthermore, we discuss vector-based vaccination strategies that aim at the induction of a cross-reactive virus-specific T cell response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...... receptor binding domain mutations within the hemagglutinin (HA) gene of two H5N1 viruses and evaluated changes in receptor binding specificity by glycan microarray analysis. The impact of these mutations on replication efficiency was assessed in vitro and in vivo. Although certain mutations switched...... the receptor binding preference of the H5 HA, the rescued mutant viruses displayed reduced replication in vitro and delayed peak virus shedding in ferrets. An improvement in transmission efficiency was not observed with any of the mutants compared to the parental viruses, indicating that alternative molecular...

  13. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.

    Science.gov (United States)

    Mingo, Rebecca M; Simmons, James A; Shoemaker, Charles J; Nelson, Elizabeth A; Schornberg, Kathryn L; D'Souza, Ryan S; Casanova, James E; White, Judith M

    2015-03-01

    Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West

  14. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  15. Episodic nucleotide substitutions in seasonal influenza virus H3N2 can be explained by stochastic genealogical process without positive selection.

    Science.gov (United States)

    Kim, Kangchon; Kim, Yuseob

    2015-03-01

    Nucleotide substitutions in the HA1 domain of seasonal influenza virus H3N2 occur in temporal clusters, which was interpreted as a result of recurrent selective sweeps underlying antigenic drift. However, classical theory by Watterson suggests that episodic substitutions are mainly due to stochastic genealogy combined with unique genetic structure of influenza virus: High mutation rate over a nonrecombining viral segment. This explains why even larger variance in the number of allelic fixations per year is observed in nonantigenic gene segments of H3N2 than in antigenic (hemagglutinin and neuraminidase) segments. Using simulation, we confirm that allelic substitutions at nonrecombining segments with high mutation rate become temporally clustered without selection. We conclude that temporal clustering of fixations, as it is primarily caused by inherent randomness in genealogical process at linked sites, cannot be used as an evidence of positive selection in the H3N2 population. This effect of linkage and high mutation rate should be carefully considered in analyzing the genomic patterns of allelic substitutions in asexually reproducing systems in general. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Influenza virus antigenic variation, host antibody production and new approach to control epidemics

    Directory of Open Access Journals (Sweden)

    Deng Yi-Mo

    2009-03-01

    Full Text Available Abstract Influenza is an infectious disease and can lead to life-threatening complications like pneumonia. The disease is caused by three types of RNA viruses called influenza types A, B and C, each consisting of eight negative single-stranded RNA-segments encoding 11 proteins. Current annual vaccines contain two type A strains and one type B strain and are capable of inducing strong antibody responses to both the surface glycoprotein hemagglutinin and the neuraminidase. While these vaccines are protective against vaccine viruses they are not effective against newly emerging viruses that contain antigenic variations known as antigenic drift and shift. In nature, environmental selection pressure generally plays a key role in selecting antigenic changes in the antigen determining spots of hemagglutinin, resulting in changes in the antigenicity of the virus. Recently, a new technology has been developed where influenza-specific IgG+ antibody-secreting plasma cells can be isolated and cloned directly from vaccinated humans and high affinity monoclonal antibodies can be produced within several weeks after vaccination. The new technology holds great promise for the development of effective passive antibody therapy to limit the spread of influenza viruses in a timely manner.

  17. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    Science.gov (United States)

    Kleinlützum, Dina; Hanauer, Julia D. S.; Muik, Alexander; Hanschmann, Kay-Martin; Kays, Sarah-Katharina; Ayala-Breton, Camilo; Peng, Kah-Whye; Mühlebach, Michael D.; Abel, Tobias; Buchholz, Christian J.

    2017-01-01

    Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types. PMID:28695108

  18. Identification of amino acid residues involved in hemin binding in Porphyromonas gingivalis hemagglutinin 2.

    Science.gov (United States)

    Yang, Q B; Yu, F Y; Sun, L; Zhang, Q X; Lin, M; Geng, X Y; Sun, X N; Li, J L; Liu, Y

    2015-10-01

    Porphyromonas gingivalis (P. gingivalis) is a major etiological agent in the development and progression of chronic periodontitis. It produces cysteine proteases (gingipains), including a lysine-specific gingipain and two arginine-specific gingipains. Heme binding and uptake are fundamental to the growth and virulence of P. gingivalis. The recombinant hemagglutinin 2 domain (rHA2) of gingipain binds hemin with high affinity. The aim of the present work was to identify the key residues involved in its hemin-binding activity. A functional rHA2 was expressed and bound to hemin-agarose, and then digested with endopeptidases. The peptides bound to hemin-agarose were identified by mass spectrometry and the amino acids were assessed by mutation and peptide binding inhibition analysis. The DHYAVMISK sequence was identified in peptides derived from both Asp-N and Lys-C endopeptidase digestions of rHA2. A monoclonal antibody, mAb QB, was produced and its epitope was associated with the DGFPGDHYAVMISK peptide within the HA2 domain. Hemin was shown to competitively inhibit the immunoreactivity of rHA2 or the peptide to mAb QB. The peptide DHYAVMISK inhibited hemin-binding activity; although, this inhibition was not seen when the peptide contained the H1001E mutation (DEYAVMISK). Based on these results, we propose that residue His1001 is involved in the hemin-binding mechanism of the P. gingivalis rHA2 and the peptide containing this residue, DHYAVMISK, may be an inhibitor of hemin binding. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mutations to A/Puerto Rico/8/34 PB1 gene improves seasonal reassortant influenza A virus growth kinetics.

    Science.gov (United States)

    Plant, Ewan P; Liu, Teresa M; Xie, Hang; Ye, Zhiping

    2012-12-17

    It is desirable for influenza vaccine virus strains to have phenotypes that include good growth and hemagglutinin (HA) protein yield. The quality of these characteristics varies among the vaccine viruses and is usually due to multigenic effects. Many influenza A virus vaccine viruses are made as reassortants of the high yield virus A/Puerto Rico/8/34 (PR/8) and a circulating seasonal virus. Co-infection of eggs with the two viruses, and selection of reassortants with the HA and neuraminidase (NA) segments from the seasonal virus, can result in viruses that contain a mixture of internal genes derived from both the high yield virus and the circulating virus. Segment 2 (PB1), which encodes the RNA-dependent RNA polymerase, frequently cosegregates with the seasonal HA and NA segments. We asked whether mutations based on the seasonal PB1 genes could improve vaccine virus strains. Here we report that mutations to the PR/8 PB1 gene, based on differences observed between seasonal and PR/8 PB1 genes, accelerate egg and cell culture based replication for a reassortant virus containing HA and NA segments from the low yield A/Wyoming/03/2003 (H3N2) vaccine virus. Published by Elsevier Ltd.

  20. Genetic analysis of H3N2 avian influenza viruses isolated from live poultry markets and poultry slaughterhouses in Shanghai, China in 2013.

    Science.gov (United States)

    Yang, Dequan; Liu, Jian; Ju, Houbin; Ge, Feifei; Wang, Jian; Li, Xin; Zhou, Jinping; Liu, Peihong

    2015-08-01

    Five H3N2 avian influenza viruses (AIVs) were isolated from live poultry markets (LPMs) and poultry slaughterhouses in Shanghai, China in 2013. All viruses were characterized by whole-genome sequencing with subsequent genetic comparison and phylogenetic analysis. The hemagglutinin cleavage site of all viruses indicated that the five strains were low-pathogenic AIVs. Phylogenetic analysis of all eight viral genes showed that the five H3N2 viruses clustered in the Eurasian lineage of influenza viruses. The eight genes showed evidence of reassortment events between these H3 subtype viruses and other subtype viruses, especially H5 and H7 subtypes, probably in pigeons, domestic ducks, and wild birds. These findings emphasized the importance of AIV surveillance in LPMs and poultry slaughterhouses for understanding the genesis and emergence of novel reassortants with pandemic potential.

  1. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  2. Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska

    Science.gov (United States)

    Spivey, Timothy; Lindberg, Mark S.; Meixell, Brandt W.; Smith, Kyle R.; Puryear, Wendy B.; Davis, Kimberly R.; Runstadler, Jonathan A.; Stallknecht, David E.; Ramey, Andy M.

    2017-01-01

    Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August–April) of 2012–2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time. We captured 923 mallards during three successive sampling years: Fairbanks in 2012/13 and 2013/14, and Anchorage in 2014/15. Prevalence varied by age, season, and year/site with high and relatively stable estimates throughout the non-breeding season. Infected birds were detected in all locations/seasons except early-winter in Fairbanks during 2013/14. IAVs with 17 combinations of hemagglutinin (H1–5, H7–9, H11, H12) and neuraminidase (N1–6, N8, N9) subtypes were isolated. Antibodies to IAVs were detected throughout autumn and winter for all sampling locations and years, however, seroprevalence was higher among adults and varied among years. Mallards exhibited individual heterogeneity with regard to immune response, providing instances of both seroconversion and seroreversion to detected viral subtypes. The probability that an individual transitioned from one serostatus to another varied by age, with juvenile mallards having higher rates of seroconversion and seroreversion than adults. Our study provides evidence that a diversity of IAVs circulate in populations of mallards wintering at urban locations in Alaska, and we suggest waterfowl wintering at high

  3. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection.

    Directory of Open Access Journals (Sweden)

    Zenglin Pei

    Full Text Available Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA and neuraminidase (NA of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.

  4. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors.

    Science.gov (United States)

    Wang, Han; Xu, Renyang; Shi, Yongying; Si, Longlong; Jiao, Pingxuan; Fan, Zibo; Han, Xu; Wu, Xingyu; Zhou, Xiaoshu; Yu, Fei; Zhang, Yongmin; Zhang, Liangren; Zhang, Lihe; Zhou, Demin; Xiao, Sulong

    2016-03-03

    Since the influenza viruses can rapidly evolve, it is urgently required to develop novel anti-influenza agents possessing a novel mechanism of action. In our previous study, two pentacyclic triterpene derivatives (Q8 and Y3) have been found to have anti-influenza virus entry activities. Keeping the potential synergy of biological activity of pentacyclic triterpenes and l-ascorbic acid in mind, we synthesized a series of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives (18-26, 29-31, 35-40 and 42-43). Moreover, we evaluated these novel compounds for their anti-influenza activities against A/WSN/33 virus in MDCK cells. Among all evaluated compounds, the 2,3-O,O-dibenzyl-6-deoxy-l-ascorbic acid-betulinic acid conjugate (30) showed the most significant anti-influenza activity with an EC50 of 8.7 μM, and no cytotoxic effects on MDCK cells were observed. Time-of-addition assay indicated that compound 30 acted at an early stage of the influenza life cycle. Further analyses revealed that influenza virus-induced hemagglutination of chicken red blood cells was inhibited by treatment of compound 30, and the interaction between the influenza hemagglutinin (HA) and compound 30 was determined by surface plasmon resonance (SPR) with a dissociation constant of KD = 3.76 μM. Finally, silico docking studies indicated that compound 30 and its derivative 31 were able to occupy the binding pocket of HA for sialic acid receptor. Collectively, these results suggested that l-ascorbic acid-conjugated pentacyclic triterpenes were promising anti-influenza entry inhibitors, and HA protein associated with viral entry was a promising drug target. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Temperature-sensitive virus derived from BHK cells persistently infected with HVJ (Sendai virus).

    Science.gov (United States)

    Kimura, Y; Ito, Y; Shimokata, K; Nishiyama, Y; Nagata, I

    1975-01-01

    BHK-HVJ cells, a cell line of baby hamster kidney cells persistantly infected with HVJ (Sendai virus), started to produce infectious virus by shifting down the incubation temperature from 38 to 32 C. The virus derived from BHK-HVJ cells, designated as HJV-pB, was effectively neutralized with antibody against wild-type virus (HVJ-W) which was used for the establishment of BHK-HVJ cells. HVJ-pB replicated in eggs at 32 C, but not at 38 C, while HVJ-W grew equally well at both temperatures. When BHK cells infected with HVJ-PB were incubated at 38 C, production of infectious virus, hemagglutinin, and neuraminidase was markedly restrained, whereas a considerable amount of viral nucleocapisid and envelope antigens was detected in the cells by complement fixation tests. These viral activities became detectable immediately after temperature shift-down from 38 to 32 C even at the later stage of infection. HVJ-pB was indistinguishable from HJV-W with respect to particle size, density, and morphological characteristics, but appeared to possess a higher neuraminidase activity and was inactivated more rapidly at 50 C than HVJ-W. HVJ-pB was less cytocidal and could easily cause latent infection in BHK and mouse L cells. PMID:163346

  6. Deepening sleep by hypnotic suggestion.

    Science.gov (United States)

    Cordi, Maren J; Schlarb, Angelika A; Rasch, Björn

    2014-06-01

    Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to "sleep deeper" extends the amount of SWS. Within-subject, placebo-controlled crossover design. Sleep laboratory at the University of Zurich, Switzerland. Seventy healthy females 23.27 ± 3.17 y. Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. After participants listened to the hypnotic suggestion to "sleep deeper" subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations.