WorldWideScience

Sample records for virus activates deoxynucleotide

  1. Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F. (NWU)

    2012-06-19

    The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

  2. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma.

    Science.gov (United States)

    Lim, S E; Copeland, W C

    2001-06-29

    Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.

  3. Simultaneous determination of endogenous deoxynucleotides and phosphorylated nucleoside reverse transcriptase inhibitors in peripheral blood mononuclear cells using ion-pair liquid chromatography coupled to mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Kampen, J.J.A. van; Groot, R. de; Gerritsen, H.W.; Bas, R.C.; Dongen, W.D. van; Brüll, L.P.; Luider, T.M.

    2008-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) are activated intracellularly to their triphosphate (TP) form, which compete with endogenous deoxynucleotide-triphosphates (dNTP) as substrate for HIV reverse transcriptase. The activity of NRTIs is thus described by the NRTI-TP to-dNTP ratio in

  4. Internal fluorescence labeling with fluorescent deoxynucleotides in two-label peak-height encoded DNA sequencing by capillary electrophoresis.

    OpenAIRE

    Starke, H R; J. Y. Yan; ZHANG, J. Z.; Mühlegger, K; Effgen, K; Dovichi, N J

    1994-01-01

    Fluorescently labeled deoxynucleotides were used for internal labeling of DNA sequencing fragments generated in a two-color peak-height encoded protocol. Sequenase and a manganese-containing buffer were used to generate uniform peak heights. Tetramethyl rhodamine - dATP was used in a labeling step, followed by termination with ddATP and ddCTP in a 3:1 ratio. Fluorescein - dATP was used in a second reaction, followed by termination with ddGTP and ddTTP in a 3:1 ratio. The fragments were pooled...

  5. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  6. Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A. G. S. C.; Sanders, E. A. M.; van der Ende, A.; van Loon, A. M.; Hoes, A. W.; Hak, E.

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  7. Chronic Active Epstein–Barr Virus Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kimura

    2017-12-01

    Full Text Available Chronic active Epstein–Barr virus (CAEBV disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  8. Internal fluorescence labeling with fluorescent deoxynucleotides in two-label peak-height encoded DNA sequencing by capillary electrophoresis.

    Science.gov (United States)

    Starke, H R; Yan, J Y; Zhang, J Z; Mühlegger, K; Effgen, K; Dovichi, N J

    1994-09-25

    Fluorescently labeled deoxynucleotides were used for internal labeling of DNA sequencing fragments generated in a two-color peak-height encoded protocol. Sequenase and a manganese-containing buffer were used to generate uniform peak heights. Tetramethyl rhodamine - dATP was used in a labeling step, followed by termination with ddATP and ddCTP in a 3:1 ratio. Fluorescein - dATP was used in a second reaction, followed by termination with ddGTP and ddTTP in a 3:1 ratio. The fragments were pooled and separated by capillary gel electrophoresis. The results were compared with peak-height encoded sequencing based on fluorescently labeled primers. The dye-labeled primers produced higher resolution separations for shorter fragments. However, dye-labeled primer fragments suffered from an earlier onset of biased reptation and produced shorter sequencing reads. Fragments from 50 to at least 500 bases in length could be sequenced with the internal labels.

  9. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1.

    Science.gov (United States)

    Badia, Roger; Angulo, Guillem; Riveira-Muñoz, Eva; Pujantell, Maria; Puig, Teresa; Ramirez, Cristina; Torres-Torronteras, Javier; Martí, Ramón; Pauls, Eduardo; Clotet, Bonaventura; Ballana, Ester; Esté, José A

    2016-02-01

    Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. [Chronic active Epstein-Barr virus infection].

    Science.gov (United States)

    Kimura, Hiroshi

    2011-12-01

    The ubiquitous Epstein-Barr virus (EBV), which establishes latency after primary infection, does not cause any symptomatic diseases as long as cellular immunity is intact. In apparently immunocompetent individuals, a chronic infection can develop, and this has been called as chronic active EBV infection (CAEBV). CAEBV is characterized by chronic or recurrent infectious mononucleosis-like symptoms, such as fever, extensive lymphadenopathy, and, hepatosplenomegaly. This disease is rare but severe with high morbidity and mortality. Recently, its pathophysiology is not an infection but a clonal expansion of EBV-infected T or natural killer NK cells. In this review, I discuss our current understanding of the pathogenesis of CAEBV and summarize its clinical features, therapies, and prognosis.

  11. Increased nucleoside diphosphate kinase activity induces white spot syndrome virus infection in Litopenaeus vannamei.

    Directory of Open Access Journals (Sweden)

    Peng-Fei Liu

    Full Text Available Nucleoside diphosphate kinase (NDK, which has the same sequence as oncoprotein (OP in humans, can induce nucleoside triphosphates in DNA replication by maintenance of the deoxynucleotide triphosphate (dNTP's and is known to be regulated by viral infection in the shrimp Litopenaeus vannamei. This paper describes the relationship between NDK and white spot syndrome virus (WSSV infection. The recombinant NDK was produced by a prokaryotic expression system. WSSV copy numbers and mRNA levels of IE1 and VP28 were significantly increased in shrimp injected with recombinant NDK at 72 h after WSSV infection. After synthesizing dsRNA-NDK and confirming the efficacy of NDK silencing, we recorded the cumulative mortality of WSSV-infected shrimp injected with NDK and dsRNA-NDK. A comparison between the results demonstrated that silencing NDK delayed the death of shrimps. These findings indicate that NDK has an important role influencing the replication of WSSV replication in shrimp. Furthermore, NDK may have potential target as a new therapeutic strategy against WSSV infection in shrimp.

  12. Investigation of Influenza Virus Polymerase Activity in Pig Cells

    Science.gov (United States)

    Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.

    2013-01-01

    Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313

  13. Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas.

    Science.gov (United States)

    Lun, Xueqing; Yang, Wenqing; Alain, Tommy; Shi, Zhong-Qiao; Muzik, Huong; Barrett, John W; McFadden, Grant; Bell, John; Hamilton, Mark G; Senger, Donna L; Forsyth, Peter A

    2005-11-01

    Myxoma virus, a poxvirus previously considered rabbit specific, can replicate productively in a variety of human tumor cells in culture. The purpose of this study was to determine if there was efficacy or toxicities of this oncolytic virus against experimental models of human malignant gliomas in vitro, in vivo, and ex vivo in malignant glioma specimens. In vitro, the majority of glioma cell lines tested (7 of 8, 87.5%) were fully permissive for myxoma virus replication and killed by infection. In vivo, intracerebral (i.c.) myxoma virus inoculation was well tolerated and produced only minimal focal inflammatory changes at the site of viral inoculation. U87 and U251 orthotopic xenograft models were used to assess myxoma virus efficacy in vivo. A single intratumoral injection of myxoma virus dramatically prolonged median survival compared with treatment with UV-inactivated myxoma virus. Median survival was not reached in myxoma virus-treated groups versus 47.3 days (U87; P = 0.0002) and 50.7 days (U251; P = 0.0027) in UV-inactivated myxoma virus-treated groups. Most myxoma virus-treated animals (12 of 13, 92%) were alive and apparently "cured" when the experiment was finished (>130 days). Interestingly, we found a selective and long-lived myxoma virus infection in gliomas in vivo. This is the first demonstration of the oncolytic activity of myxoma virus in vivo. The nonpathogenic nature of myxoma virus outside of the rabbit host, its capacity to be genetically modified, its ability to produce a long-lived infection in human tumor cells, and the lack of preexisting antibodies in the human population suggest that myxoma virus may be an attractive oncolytic agent against human malignant glioma.

  14. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  15. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar......, suggesting that TMV contains less hydrated alpha-helix. Small differences in other spectral regions reflect differences in some loop, turn and side-chain compositions and conformations among the three viruses. A pattern recognition program based on principal component analysis of ROA spectra indicates...

  16. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells

    OpenAIRE

    Villa, Nancy Y.; Wasserfall, Clive H.; Meacham, Amy M.; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R.

    2015-01-01

    MYXV binds human T lymphocytes but does not enter and infect T cells until after activation.MYXV-infected T lymphocytes proliferate less and secrete less inflammatory cytokines but deliver oncolytic virus to augment GVM.

  17. Antiviral activity of lauryl gallate against animal viruses.

    Science.gov (United States)

    Hurtado, Carolina; Bustos, Maria Jose; Sabina, Prado; Nogal, Maria Luisa; Granja, Aitor G; González, Maria Eugenia; Gónzalez-Porqué, Pedro; Revilla, Yolanda; Carrascosa, Angel L

    2008-01-01

    Antiviral compounds are needed in the control of many animal and human diseases. We analysed the effect of the antitumoural drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (herpes simplex and vaccinia) and RNA (influenza, porcine transmissible gastroenteritis and Sindbis) viruses, paying attention to its effect on the viability of the corresponding host cells. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 microM), reducing the titres 3->5 log units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5-8 h post-infection. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug; however, the early viral protein synthesis and the virus-mediated increase of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells. Furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. Lauryl gallate is a powerful antiviral agent against several pathogens of clinical and veterinary importance. The overall results indicate that a cellular factor or function might be the target of the antiviral action of alkyl gallates.

  18. SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication.

    Science.gov (United States)

    Kim, Eui Tae; White, Tommy E; Brandariz-Núñez, Alberto; Diaz-Griffero, Felipe; Weitzman, Matthew D

    2013-12-01

    Macrophages play important roles in host immune defense against virus infection. During infection by herpes simplex virus 1 (HSV-1), macrophages acquire enhanced antiviral potential. Restriction of HSV-1 replication and progeny production is important to prevent viral spread, but the cellular mechanisms that inhibit the DNA virus in macrophages are unknown. SAMHD1 was recently identified as a retrovirus restriction factor highly expressed in macrophages. The SAMHD1 protein is expressed in both undifferentiated monocytes and differentiated macrophages, but retroviral restriction is limited to differentiated cells by modulation of SAMHD1 phosphorylation. It is proposed to block reverse transcription of retroviral RNA into DNA by depleting cellular deoxynucleotide triphosphates (dNTPs). Viruses with DNA genomes do not employ reverse transcription during infection, but replication of their viral genomes is also dependent on intracellular dNTP concentrations. Here, we demonstrate that SAMHD1 restricts replication of the HSV-1 DNA genome in differentiated macrophage cell lines. Depleting SAMHD1 in THP-1 cells enhanced HSV-1 replication, while ectopic overexpression of SAMHD1 in U937 cells repressed HSV-1 replication. SAMHD1 did not impact viral gene expression from incoming HSV-1 viral genomes. HSV-1 restriction involved the dNTP triphosphohydrolase activity of SAMHD1 and was partially overcome by addition of exogenous deoxynucleosides. Unlike retroviruses, restriction of HSV-1 was not affected by SAMHD1 phosphorylation status. Our results suggest that SAMHD1 functions broadly to inhibit replication of DNA viruses in nondividing macrophages.

  19. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  20. Tuning of influenza A virus neuraminidase activity

    NARCIS (Netherlands)

    Dai, Meiling

    2017-01-01

    Influenza A viruses (IAVs) are zoonotic pathogens that constantly circulate in a wide variety of species, including birds, pigs and humans. In humans, IAVs cause seasonal epidemics and occasional influenza pandemics. Annual epidemics caused by seasonal IAVs usually lead to millions of human

  1. Passive immunization and active vaccination against Hendra and Nipah viruses.

    Science.gov (United States)

    Broder, C C

    2013-01-01

    Hendra virus and Nipah virus are viral zoonoses first recognized in the mid and late 1990's and are now categorized as the type species of the genus Henipavirus within the family Paramyxoviridae. Their broad species tropism together with their capacity to cause severe and often fatal disease in both humans and animals make Hendra and Nipah "overlap agents" and significant biosecurity threats. The development of effective vaccination strategies to prevent or treat henipavirus infection and disease has been an important area of research. Here, henipavirus active and passive vaccination strategies that have been examined in animal challenge models of Hendra and Nipah virus disease are summarized and discussed.

  2. Antiviral Activity of HPMPC (Cidofovir) Against ORF Virus Infected Lambs

    Science.gov (United States)

    Scagliarini, A.; McInnes, C.J.; Gallina, L.; Dal, Pozzo F.; Scagliarini, L.; Snoeck, R.; Prosperi, S.; Sales, J.; Gilray, J.A.; Nettleton, P.F.

    2007-01-01

    (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPC, cidofovir, CDV, Vistide®) is an acyclic nucleoside analogue with a potent and selective activity against a broad spectrum of DNA viruses including the poxviruses. In this study we present the results of different treatment regimens in lambs experimentally infected with orf virus with different cidofovir formulations prepared in Beeler basis and Unguentum M. Our results show that choice of excipient, concentration of cidofovir and treatment regimen were all important to the clinical outcome of the therapy. Whilst one particular regimen appeared to exacerbate the lesion, treatment with 1% w/v cidofovir cream, prepared in Beeler Basis, for 4 consecutive days did result in milder lesions that resolved more quickly than untreated lesions. Furthermore the scabs of the treated animals contained significantly lower amounts of viable virus meaning there should be less contamination of the environment with virus than would normally occur. PMID:17049627

  3. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    Science.gov (United States)

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens. © 2015 by The American Society of Hematology.

  4. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus.

    Science.gov (United States)

    Vilas Boas, Liana Costa Pereira; de Lima, Lídia Maria Pinto; Migliolo, Ludovico; Mendes, Gabriele Dos Santos; de Jesus, Maianne Gonçalves; Franco, Octávio Luiz; Silva, Paula Andréia

    2017-03-01

    Viruses are the major cause of disease and mortality worldwide. Nowadays there are treatments based on antivirals or prophylaxis with vaccines. However, the rising number of reports of viral resistance to current antivirals and the emergence of new types of virus has concerned the scientific community. In this scenario, the search for alternative treatments has led scientists to the discovery of antimicrobial peptides (AMPs) derived from many different sources. Since some of them have shown antiviral activities, here we challenged 10 synthetic peptides from different animal and plant sources against, herpes simplex virus 1 (HSV-1), and Aichi virus. Among them, the highlight was Pa-MAP from the polar fish Pleuronectes americanus, which caused around 90% of inhibition of the HSV with a selectivity index of 5 and a virucidal mechanism of action. Moreover, LL-37 from human neutrophils showed 96% of inhibition against the Aichi virus, showing a selectivity index of 3.4. The other evaluated peptides did not show significant antiviral activity. In conclusion, the present study demonstrated that Pa-MAP seems to be a reliable candidate for a possible alternative drug to treat HSV-1 infections. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-6, 2017. © 2016 Wiley Periodicals, Inc.

  5. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  6. Restrictive influence of SAMHD1 on Hepatitis B Virus life cycle.

    Science.gov (United States)

    Sommer, Andreas F R; Rivière, Lise; Qu, Bingqian; Schott, Kerstin; Riess, Maximilian; Ni, Yi; Shepard, Caitlin; Schnellbächer, Esther; Finkernagel, Malin; Himmelsbach, Kiyoshi; Welzel, Karin; Kettern, Nadja; Donnerhak, Christian; Münk, Carsten; Flory, Egbert; Liese, Juliane; Kim, Baek; Urban, Stephan; König, Renate

    2016-05-27

    Deoxynucleotide triphosphates (dNTPs) are essential for efficient hepatitis B virus (HBV) replication. Here, we investigated the influence of the restriction factor SAMHD1, a dNTP hydrolase (dNTPase) and RNase, on HBV replication. We demonstrated that silencing of SAMHD1 in hepatic cells increased HBV replication, while overexpression had the opposite effect. SAMHD1 significantly affected the levels of extracellular viral DNA as well as intracellular reverse transcription products, without affecting HBV RNAs or cccDNA. SAMHD1 mutations that interfere with the dNTPase activity (D137N) or in the catalytic center of the histidine-aspartate (HD) domain (D311A), and a phospho-mimetic mutation (T592E), abrogated the inhibitory activity. In contrast, a mutation diminishing the potential RNase but not dNTPase activity (Q548A) and a mutation disabling phosphorylation (T592A) did not affect antiviral activity. Moreover, HBV restriction by SAMHD1 was rescued by addition of deoxynucleosides. Although HBV infection did not directly affect protein level or phosphorylation of SAMHD1, the virus upregulated intracellular dATPs. Interestingly, SAMHD1 was dephosphorylated, thus in a potentially antiviral-active state, in primary human hepatocytes. Furthermore, SAMHD1 was upregulated by type I and II interferons in hepatic cells. These results suggest that SAMHD1 is a relevant restriction factor for HBV and restricts reverse transcription through its dNTPase activity.

  7. Hepatitis b virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function

    NARCIS (Netherlands)

    A.M. Woltman (Andrea); M.L.O. den Brouw; P.J. Biesta (Paula); C.C. Shi (Cui); H.L.A. Janssen (Harry)

    2011-01-01

    textabstractChronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and

  8. Mechanisms of virus resistance and antiviral activity of snake venoms

    Directory of Open Access Journals (Sweden)

    JVR Rivero

    2011-01-01

    Full Text Available Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.

  9. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  10. Uncompromised NK cell activation is essential for virus-specific CTL activity during acute influenza virus infection.

    Science.gov (United States)

    Liu, Yuan; Zheng, Jian; Liu, Yinping; Wen, Liyan; Huang, Lei; Xiang, Zheng; Lam, Kwok-Tai; Lv, Aizhen; Mao, Huawei; Lau, Yu-Lung; Tu, Wenwei

    2017-04-17

    Natural killer (NK) cells are indispensable components of both the innate and adaptive immune response. However, their precise roles in the cross-talk between innate and adaptive immunity during influenza virus infection remain controversial. By comparing NK cell dynamics and activity under a sub-lethal dose and high dose of influenza virus infection, we showed that influenza virus PR8 directly infected NK cells during natural infection, which was consistent with our previous findings obtained from an in vitro investigation of human NK cells. The impairments in cytotoxicity and IFN-γ production by spleen NK cells following high-dose infection were accompanied by decreased virus-specific killing mediated by cytotoxic T lymphocytes (CTLs). Importantly, the weakened CTL activity could be reversed by adoptive transfer of spleen NK cells harvested from low-dose-infected mice but not healthy donors. Taken together, our data provide direct evidence supporting the contribution of NK cells to antiviral T-cell responses. This study also indicates that a novel NK-targeted immune evasion strategy is used by influenza virus to shrink both innate and adaptive immune responses.Cellular & Molecular Immunology advance online publication, 17 April 2017; doi:10.1038/cmi.2017.10.

  11. Novel antiviral activity of baicalein against dengue virus

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2012-11-01

    Full Text Available Abstract Background Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits. Methods In the present study, antiviral activity of a bioflavonoid, baicalein, was evaluated against different stages of dengue virus type 2 (DENV-2 replication in Vero cells using focus forming unit reduction assay and quantitative RT-PCR. Results Baicalein inhibited DENV-2 replication in Vero cells with IC50= 6.46 μg/mL and SI= 17.8 when added after adsorption to the cells. The IC50 against DENV-2 was 5.39 μg/mL and SI= 21.3 when cells were treated 5 hours before virus infection and continuously up to 4 days post infection. Baicalein exhibited direct virucidal effect against DENV-2 with IC 50= 1.55 μg/mL and showed anti-adsorption effect with IC50 = 7.14 μg/mL. Conclusions Findings presented here suggest that baicalein exerts potent antiviral activity against DENV. Baicalein possesses direct virucidal activity against DENV besides its effects against dengue virus adsorption and intracellular replication of DENV-2. Baicalein, hence, should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV.

  12. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  13. Virus activity on the surface of glaciers and ice sheets

    Science.gov (United States)

    Bellas, C. M.; Anesio, A. M.; Telling, J.; Stibal, M.; Barker, G.; Tranter, M.; Yallop, M.; Cook, J.

    2012-12-01

    Viruses are found wherever there is life. They are major components of aquatic ecosystems and through interactions with their hosts they significantly alter global biogeochemical cycles and drive evolutionary processes. Here we focus on the interactions between bacteriophages and their hosts inhabiting the microbially dominated supraglacial ecosystems known as cryoconite holes. The diversity of phages present in the sediments of cryoconites was examined for the first time by using a molecular based approach to target the T4-type bacteriophage. Through phylogenetic analysis it was determined that the phage community was diverse, consisting of strains that grouped with those from other global habitats and those that formed several completely new T4-type phage clusters. The activity of the viral community present on glaciers from Svalbard and the Greenland Ice Sheet was also addressed through a series of incubation experiments. Here new virus production was found to be capable of turning over the viral population approximately twice a day, a rate comparable to marine and freshwater sediments around the globe. This large scale viral production was found to be theoretically capable of accounting for all heterotrophic bacterial mortality in cryoconite holes. The mode of infection that viruses employ in cryoconite holes was also addressed to show that a variety of viral life strategies are likely responsible for the continued dominance of viruses in these unique habitats. The implications of viral activity are discussed in terms of carbon cycling in supraglacial ecosystems.

  14. Antiviral Activity of Marine Actinobacteria against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    OpenAIRE

    Juliana Cristina Santiago Bastos; Cláudia Beatriz Afonso de Menezes; Fabiana Fantinatti-Garboggini; Marina Aiello Padilla; Clarice Weis Arns; Luciana Konecny Kohn

    2015-01-01

    The Hepatitis C virus (Flaviviridae family, Hepacivirus genus) represents a major public health problem worldwide and it is responsible for chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. As this virus does not replicate efficiently in cell culture and in animals, bovine viral diarrhea virus (BVDV) is used as a surrogate model for screening assays of antiviral activity, and mechanism of action assays. From marine invertebrates and their microor...

  15. Vaccinia virus encodes a polypeptide with DNA ligase activity.

    Science.gov (United States)

    Kerr, S M; Smith, G L

    1989-11-25

    Vaccinia virus gene SalF 15R potentially encodes a polypeptide of 63 kD which shares 30% amino acid identity with S. pombe and S. cerevisiae DNA ligases. DNA ligase proteins can be identified by incubation with alpha-(32P)ATP, resulting in the formation of a covalent DNA ligase-AMP adduct, an intermediate in the enzyme reaction. A novel radio-labelled polypeptide of approximately 61 kD appears in extracts from vaccinia virus infected cells after incubation with alpha-(32P)ATP. This protein is present throughout infection and is a DNA ligase as the radioactivity is discharged in the presence of either DNA substrate or pyrophosphate. DNA ligase assays show an increase in enzyme activity in cell extracts after vaccinia virus infection. A rabbit antiserum, raised against a bacterial fusion protein of beta-galactosidase and a portion of SalF 15R, immune-precipitates polypeptides of 61 and 54 kD from extracts of vaccinia virus-infected cells. This antiserum also immune-precipitates the novel DNA ligase-AMP adduct, thus proving that the observed DNA ligase is encoded by SalF 15R.

  16. Antiviral activity of maca (Lepidium meyenii) against human influenza virus.

    Science.gov (United States)

    Del Valle Mendoza, Juana; Pumarola, Tomàs; Gonzales, Libertad Alzamora; Del Valle, Luis J

    2014-09-01

    To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic effect on cell culture and multiplex RT-PCR. The methanol extract of maca showed low cytotoxicity and inhibited influenza-induced cytopathic effect significantly, while viral load was reduced via inhibition of viral growth in MDCK infected cells. Maca contains potent inhibitors of Flu-A and Flu-B with a selectivity index [cytotoxic concentration 50%/IC50] of 157.4 and 110.5, respectively. In vitro assays demonstrated that maca has antiviral activity not only against Flu-A (like most antiviral agents) but also Flu-B viruses, providing remarkable therapeutic benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Antiviral activity of carnosic acid against respiratory syncytial virus

    Science.gov (United States)

    2013-01-01

    Background Human respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study. Methods Effects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs. Results Among the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV. Conclusions The current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic

  18. Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus ReplicationSummary

    Directory of Open Access Journals (Sweden)

    Marianna Hösel

    2017-11-01

    Full Text Available Background & Aims: The human hepatitis B virus (HBV is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. Methods: We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3 was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA–mediated knockdown of STAT3. Results: Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6–dependent and –independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA–mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. Conclusions: HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis. Keywords: Hepatitis B Virus Infection, STAT3 Signaling

  19. Antiviral activity of stachyflin on influenza A viruses of different hemagglutinin subtypes.

    Science.gov (United States)

    Motohashi, Yurie; Igarashi, Manabu; Okamatsu, Masatoshi; Noshi, Takeshi; Sakoda, Yoshihiro; Yamamoto, Naoki; Ito, Kimihito; Yoshida, Ryu; Kida, Hiroshi

    2013-04-16

    The hemagglutinin (HA) of influenza viruses is a possible target for antiviral drugs because of its key roles in the initiation of infection. Although it was found that a natural compound, Stachyflin, inhibited the growth of H1 and H2 but not H3 influenza viruses in MDCK cells, inhibitory activity of the compound has not been assessed against H4-H16 influenza viruses and the precise mechanism of inhibition has not been clarified. Inhibitory activity of Stachyflin against H4-H16 influenza viruses, as well as H1-H3 viruses was examined in MDCK cells. To identify factors responsible for the susceptibility of the viruses to this compound, Stachyflin-resistant viruses were selected in MDCK cells and used for computer docking simulation. It was found that in addition to antiviral activity of Stachyflin against influenza viruses of H1 and H2 subtypes, it inhibited replication of viruses of H5 and H6 subtypes, as well as A(H1N1)pdm09 virus in MDCK cells. Stachyflin also inhibited the virus growth in the lungs of mice infected with A/WSN/1933 (H1N1) and A/chicken/Ibaraki/1/2005 (H5N2). Substitution of amino acid residues was found on the HA2 subunit of Stachyflin-resistant viruses. Docking simulation indicated that D37, K51, T107, and K121 are responsible for construction of the cavity for the binding of the compound. In addition, 3-dimensional structure of the cavity of the HA of Stachyflin-susceptible virus strains was different from that of insusceptible virus strains. Antiviral activity of Stachyflin was found against A(H1N1)pdm09, H5, and H6 viruses, and identified a potential binding pocket for Stachyflin on the HA. The present results should provide us with useful information for the development of HA inhibitors with more effective and broader spectrum.

  20. Activation mechanisms of natural killer cells during influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Ilwoong Hwang

    Full Text Available During early viral infection, activation of natural killer (NK cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs, but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.

  1. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Directory of Open Access Journals (Sweden)

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  2. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Jennifer Jungfleisch

    2016-12-01

    Full Text Available Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.

  3. Neutralizing activities of human immunoglobulin derived from donors in Japan against mosquito-borne flaviviruses, Japanese encephalitis virus, West Nile virus, and dengue virus

    Directory of Open Access Journals (Sweden)

    Yunoki M

    2016-07-01

    Full Text Available Mikihiro Yunoki,1-3 Takeshi Kurosu,2 Ritsuko Kubota Koketsu,2,4 Kazuo Takahashi,5 Yoshinobu Okuno,4 Kazuyoshi Ikuta2,4 1Research and Development Division, Japan Blood Products Organization, Tokyo, 2Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 3Pathogenic Risk Evaluation, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, 4Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Kagawa, 5Osaka Prefectural Institute of Public Health, Osaka, Japan Abstract: Japanese encephalitis virus (JEV, West Nile virus (WNV, and dengue virus (DenV are causal agents of Japanese encephalitis, West Nile fever, and dengue fever, respectively. JEV is considered to be indigenized and widespread in Japan, whereas WNV and DenV are not indigenized in Japan. Globulin products seem to reflect the status of the donor population according to antivirus neutralization activity. However, the anti-JEV, -WNV, and -DenV neutralization activities of globulin products derived from donors in Japan have not been clarified. Furthermore, potential candidates for the development of an effective immunotherapeutic drug for encephalitis caused by JEV, WNV, or DenV have also not been identified. Therefore, the aim of this study was to determine the overall status of the donor population in Japan based on globulin products by evaluating anti-JEV, -WNV, and -DenV neutralizing activities of intravenous immunoglobulin. Overall, intravenous immunoglobulin products showed stable neutralizing activity against JEV but showed no or only weak activity against WNV or DenV. These results suggest that the epidemiological level against WNV and DenV in the donor population of Japan is still low, suggesting that these viruses are not yet indigenized. In addition, JEV vaccinations and/or infections in the donor population do not induce a cross-reactive antibody against WNV. Keywords

  4. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  5. Functional analysis of the complex trans-activating response element RNA structure in simian immunodeficiency virus

    NARCIS (Netherlands)

    Centlivre, Mireille; Klaver, Bep; Berkhout, Ben; Das, Atze T.

    2008-01-01

    Transcription of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is activated through binding of the viral Tat protein to the trans-activating response (TAR) element at the 5 ' end of the nascent transcript. Whereas HIV type 1 (HIV-1) TAR folds a simple hairpin structure,

  6. Myxoma Virus Is a Novel Oncolytic Virus with Significant Antitumor Activity against Experimental Human Gliomas

    OpenAIRE

    Lun, Xueqing; Yang, Wenqing; Alain, Tommy; Shi, Zhong-Qiao; Muzik, Huong; Barrett, John W.; McFadden, Grant; Bell, John; Hamilton, Mark G.; Senger, Donna L.; Forsyth, Peter A.

    2005-01-01

    Myxoma virus, a poxvirus previously considered rabbit specific, can replicate productively in a variety of human tumor cells in culture. The purpose of this study was to determine if there was efficacy or toxicities of this oncolytic virus against experimental models of human malignant gliomas in vitro, in vivo, and ex vivo in malignant glioma specimens. In vitro, the majority of glioma cell lines tested (7 of 8, 87.5%) were fully permissive for myxoma virus replication and killed by infectio...

  7. Differential Reovirus-Specific and Herpesvirus-Specific Activator Protein 1 Activation of Secretogranin II Leads to Altered Virus Secretion.

    Science.gov (United States)

    Berard, Alicia R; Severini, Alberto; Coombs, Kevin M

    2015-12-01

    Viruses utilize host cell machinery for propagation and manage to evade cellular host defense mechanisms in the process. Much remains unknown regarding how the host responds to viral infection. We recently performed global proteomic screens of mammalian reovirus TIL- and T3D-infected and herpesvirus (herpes simplex virus 1 [HSV-1])-infected HEK293 cells. The nonenveloped RNA reoviruses caused an upregulation, whereas the enveloped DNA HSV-1 caused a downregulation, of cellular secretogranin II (SCG2). SCG2, a member of the granin family that functions in hormonal peptide sorting into secretory vesicles, has not been linked to virus infections previously. We confirmed SCG2 upregulation and found SCG2 phosphorylation by 18 h postinfection (hpi) in reovirus-infected cells. We also found a decrease in the amount of reovirus secretion from SCG2 knockdown cells. Similar analyses of cells infected with HSV-1 showed an increase in the amount of secreted virus. Analysis of the stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) pathway indicated that each virus activates different pathways leading to activator protein 1 (AP-1) activation, which is the known SCG2 transcription activator. We conclude from these experiments that the negative correlation between SCG2 quantity and virus secretion for both viruses indicates a virus-specific role for SCG2 during infection. Mammalian reoviruses affect the gastrointestinal system or cause respiratory infections in humans. Recent work has shown that all mammalian reovirus strains (most specifically T3D) may be useful oncolytic agents. The ubiquitous herpes simplex viruses cause common sores in mucosal areas of their host and have coevolved with hosts over many years. Both of these virus species are prototypical representatives of their viral families, and investigation of these viruses can lead to further knowledge of how they and the other more pathogenic members of their respective families interact with the

  8. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    Energy Technology Data Exchange (ETDEWEB)

    Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel); Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv (Israel); Shaul, Yosef [Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  9. How we treat chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Sawada, Akihisa; Inoue, Masami; Kawa, Keisei

    2017-04-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a prototype of the EBV-associated T- or NK-cell lymphoproliferative diseases, which also include hypersensitivity to mosquito bites and severe-type hydroavacciniforme. The manifestations of CAEBV are often self-limiting with minimum supportive care or only prednisolone and cyclosporine A with or without etoposide. However, allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure, without which patients with CAEBV die within several years. A severe hypercytokinemia and hemophagocytic syndrome, which may occur suddenly, often results in a fatal clinical course. At out institute, we have established a 3-step strategy, including allogeneic HSCT, for the treatment of CAEBV. Seventy-nine patients with CAEBV and related diseases have been treated to date. The 3-year overall survival rate (3y-OS) is currently 87.3 ± 4.2% after planned allogeneic HSCT. However, 3y-OS in patients with uncontrolled active disease is only 16.7 ± 10.8%. To maximize survival rates with minimized late sequelae, we recommend earlier initiation and completion of the 3-step treatment without watchful waiting. We present six illustrative and difficult cases (including severe hypercytokinemia or emergent HSCT) and discuss them together with 73 residual cases.

  10. VIRUSES

    Indian Academy of Sciences (India)

    and-mouth disease in livestock was an infectious particle smaller than any bacteria. This was the first clue to the nature of viruses, genetic entities that lie somewhere in the gray area between living and non-living states.

  11. Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyril Le Nouën

    Full Text Available BACKGROUND: Human respiratory syncytial virus (HRSV, and to a lesser extent human metapneumovirus (HMPV and human parainfluenza virus type 3 (HPIV3, re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPVviruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and

  12. Chronic active Epstein-Barr virus infection in an adult with no detectable immune deficiency.

    NARCIS (Netherlands)

    Boer, M. de; Mol, M.J.T.M.; Bogman, M.J.J.T.; Galama, J.M.D.; Raymakers, R.A.P.

    2003-01-01

    INTRODUCTION: Epstein-Barr virus (EBV) establishes lifelong latent infection. In some patients the host-virus balance is disturbed, resulting in a chronic active EBV infection. The following case illustrates the difficulty in diagnosing and treating chronic EBV infection. CASE: A 30-year-old woman

  13. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus

    NARCIS (Netherlands)

    Tuladhar, E.; Koning, de M.C.; Fundeanu, I.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Virucidal activity of immobilized quaternary ammonium compounds (IQACs) coated onto glass and plastic surfaces was tested against enveloped influenza A (H1N1) virus and nonenveloped poliovirus Sabin1. The IQACs tested were virucidal against the influenza virus within 2 min, but no virucidal effect

  14. Rapid NK-cell activation in chicken after infection with infectious bronchitis virus M41

    NARCIS (Netherlands)

    Vervelde, L.; Matthijs, M.G.R.; van Haarlem, D.A.; de Wit, Sjaak; Jansen, C.A.

    2013-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes and play an important role in the early defence against viruses. In this study we focussed on NK cell and interferon (IFN) responses after infection with infectious bronchitis virus (IBV). Based on surface expression of CD107+, enhanced activation

  15. The herpes simplex virus type 2 alkaline DNase activity is essential for replication and growth.

    Science.gov (United States)

    Moss, H

    1986-06-01

    A mutant of herpes simplex virus type 2 (HSV-2), which is temperature-sensitive (ts) for the induction of an alkaline DNase activity, was examined at a number of different temperatures. Induction of DNase activity by this mutant resembled that of wild-type (wt) virus at 31 degrees C but was greatly reduced at 38.5 degrees C and barely detectable at 39.2 degrees C. Virus DNA synthesis showed similar patterns, exhibiting wt levels at 31 degrees C, reduced levels at 38.5 degrees C and very little incorporation at 39.2 degrees C. Similarly, virus growth in cells infected with this mutant was equal to that of wt at 31 degrees C, slightly reduced at 38.5 degrees C but considerably reduced at 39.2 degrees C. Marker rescue of the ts DNase lesion restored wt levels of virus DNase activity, of virus DNA synthesis and of virus growth, thus providing direct evidence that HSV DNase activity is essential for virus replication.

  16. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Directory of Open Access Journals (Sweden)

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  17. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum cultivars with different sensitivities to buckwheat burn virus

    Directory of Open Access Journals (Sweden)

    Y. R. Sindarovska

    2014-06-01

    Full Text Available Ribonucleases (RNases are present in base-level amounts in intact plants, but this level is able to increase greatly under stress conditions. The possible cause for such an increase is protection against plant RNA-virus attack. Buckwheat burn virus (BBV is a highly virulent pathogen that belongs to Rhabdoviridae family. In our study, we have analyzed the correlation between RNase activity and resistance of different buckwheat cultivars to BBV infection. Two cultivars, Kara-Dag and Roksolana, with different sensitivities to BBV have been used. Kara-Dag is a cultivar with medium sensitivity to virus and Roksolana is a tolerant cultivar. It has been shown that the base level of RNase activity in Roksolana cultivar was in most cases higher than the corresponding parameter in Kara-Dag cultivar. Both infected and uninfected plants of Roksolana cultivar demonstrated high RNase activity during two weeks. Whereas infected plants of Kara-Dag cultivar demonstrated unstable levels of RNase activity. Significant decline in RNase activity was detected on the 7th day post infection with subsequent gradual increase in RNase activity. Decline of the RNase activity during the first week could promote the virus replication and therefore more successful infection of upper leaves of plants. Unstable levels of RNase activity in infected buckwheat plants may be explained by insufficiency of virus-resistant mechanisms that determines the medium sensitivity of the cultivar to BBV. Thus, plants of buckwheat cultivar having less sensitivity to virus, displayed in general higher RNase activity.

  18. [Chronic active Epstein-Barr virus infection in an adult].

    Science.gov (United States)

    Kościelak, Jerzy

    2009-01-01

    A chronic active Epstein-Barr virus infection (CAEBV) following infectious mononucleosis in a 58 years old woman is reported. The disease lasted for one year, and in spite of an intensive search for its cause, was diagnosed only at the 8th months since its onset. A low frequency of CAEBV in caucasians and patient's age were likely responsible for the belated diagnosis. The disease presented with a high, intermittent fever, general lymphoadenopathy, splenomegalia, hypoalbuminemia, polyclonal gamma globulinemia and malaise. Starting from the 6th month, i.e. before the diagnosis was established, a high dose oral therapy with methylprednisolone was introduced. The improvement was significant but the disease recurred after drug withdrawal. Nevertheless its course was milder. At the 8th month since the disease onset elevated antibody to viral capsid antigen (VCA) together with antibody to early antigen (EA) and nuclear antigen (EBNA) were still found in patient's blood. DNA of EBV was detected by PCR in patient's blood and saliva. The patient recovered completely after one year, and as of today i.e. June 2009, is feeling well. A likely cause of the successful steroid therapy is discussed. A review part of the article describes etiopathogenesis, complications, occurrence and treatment of CAEBV, as well as its relation to various lymphoproliferation disorders.

  19. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Abdoulaye J Dabo

    Full Text Available Increased lung levels of matrix metalloproteinase 9 (MMP9 are frequently observed during respiratory syncytial virus (RSV infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9's role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.

  20. Avian influenza virus directly infects human natural killer cells and inhibits cell activity.

    Science.gov (United States)

    Mao, Huawei; Liu, Yinping; Sia, Sin Fun; Peiris, J S Malik; Lau, Yu-Lung; Tu, Wenwei

    2017-04-01

    Natural killer (NK) cell is a key component of innate immunity and plays an important role in host defense against virus infection by directly destroying infected cells. Influenza is a respiratory disease transmitted in the early phase of virus infection. Evasion of host innate immunity including NK cells is critical for the virus to expand and establish a successful acute infection. Previously, we showed that human influenza H1N1 virus infects NK cells and induces cell apoptosis, as well as inhibits NK cell activity. In this study, we further demonstrated that avian influenza virus also directly targeted NK cells as an immunoevasion strategy. The avian virus infected human NK cells and induced cell apoptosis. In addition, avian influenza virion and HA protein inhibited NK cell cytotoxicity. This novel strategy has obvious advantages for avian influenza virus, allowing the virus sufficient time to expand and subsequent spread before the onset of the specific immune response. Our findings provide an important clue for the immunopathogenesis of avian influenza, and also suggest that direct targeting NK cells may be a common strategy used by both human and avian influenza viruses to evade NK cell immunity.

  1. In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus

    National Research Council Canada - National Science Library

    Carriel-Gomes, Márcia Cristina; Kratz, Jadel Müller; Barracco, Margherita Anna; Bachére, Evelyne; Barardi, Célia Regina Monte; Simões, Cláudia Maria Oliveira

    2007-01-01

    .... This paper describes the in vitro evaluation of the cytotoxicity and antiviral activity of nine peptides with different structures and origins against herpes simplex virus type 1, human adenovirus...

  2. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    National Research Council Canada - National Science Library

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    .... We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2...

  3. Activation of virus uptake through induction of macropinocytosis with a novel polymerizing peptide

    Science.gov (United States)

    Daniels, Sarah I.; Soule, Erin E.; Davidoff, Katharine S.; Bernbaum, John G.; Hu, Duosha; Maeda, Kenji; Stahl, Stephen J.; Naiman, Nicole E.; Waheed, Abdul A.; Freed, Eric O.; Wingfield, Paul; Yarchoan, Robert; Davis, David A.

    2014-01-01

    A 27-aa peptide (P27) was previously shown to decrease the accumulation of human immunodeficiency virus type 1 (HIV-1) in the supernatant of chronically infected cells; however, the mechanism was not understood. Here, we show that P27 prevents virus accumulation by inducing macropinocytosis (MPC). Treatment of HIV-1- and human T-cell lymphotropic virus type 1 (HTLV-1)-infected cells with 2–10 μM P27 caused cell membrane ruffling and uptake of virus and polymerized forms of the peptide into large vacuoles. As demonstrated by electron microscopy, activation of MPC did not require virus or cells infected with virus, as P27 initiated its own uptake in the absence of virus. Inhibitors of MPC, Cytochalasin D and amiloride, decreased P27-mediated uptake of soluble dextran and inhibited P27-induced virus uptake by >60%, which provides further evidence that P27 induces MPC. In CD4+ HeLa cells, HIV-1 infection was enhanced by P27 up to 4-fold, and P27 increased infection at concentrations as low as 20 nM. The 5-aa C-terminal domain of P27 was necessary for virus uptake and may be responsible for the polymerization of P27 into fibrils. These forms of P27 may play a key role in triggering MPC, making this peptide a useful tool for studying virus uptake and infection, as well as MPC of other macromolecules.—Daniels, S.I., Soule, E.E., Davidoff, K.S., Bernbaum, J.G., Hu, D., Maeda, K., Stahl, S.J., Naiman, N.E., Waheed, A.E., Freed, E.O., Wingfield, P., Yarchoan, R., Davis. D.A. Activation of virus uptake through induction of macropinocytosis with a novel polymerizing peptide. PMID:24097312

  4. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection.

    Science.gov (United States)

    Müller, S; Bühler-Jungo, M; Mueller, C

    2000-02-15

    After systemic infection of mice with 104 PFU of lymphocytic choriomeningitis virus (LCMV), infected cells are detected simultaneously in various organs, including spleen and intestinal mucosa. Most notably, virus-infected cells are also present among CD11c+ dendritic cells in the subepithelial area of the small intestinal mucosa. Some of these virus-infected cells are in close spatial association with intestinal intraepithelial lymphocytes (IEL). Therefore, we compared virus-specific cytotoxic activity of CD8 splenocytes with that of IEL subsets. While ex vivo isolated TCRalphabeta+CD8alphaalpha+ IEL exert only minimal virus-specific cytotoxicity, maximum specific killing mediated by TCRalphabeta+CD8alphabeta+ IEL on day 8 postinfection exceeds maximum cytotoxic activity observed with CD8 splenocytes when assessed in vitro. Maximum cytotoxic activity of IEL is preceded by peak perforin and granzyme B mRNA expression in IEL around day 6 postinfection, suggesting a recent activation in situ. The antivirus cytotoxicity of in vivo primed IEL is further demonstrated by the protection from virus production in the spleen of mice infected with LCMV 10 h before adoptive cell transfer. These data indicate a potent priming of LCMV-specific IEL in situ after systemic LCMV infection and suggest that cytotoxic IEL markedly contribute to the elimination of virus-infected cells in the intestinal mucosa.

  5. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  6. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  7. Antiviral activity of plant extract from Tanacetum vulgare against Cucumber Mosaic Virus and Potato Virus Y

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-09-01

    Full Text Available Cucumber mosaic virus (CMV and Potato virus Y (PVY have been described among the top five important viruses infecting vegetable species worldwide. They cause severe damages in fruits and cultivated plants. There is currently no available effective pesticide to control these viral diseases. Higher plants contain a wide spectrum of secondary metabolites such as phenolics, flavonoids, quinones, tannins, essential oils, alkaloids, saponins, sterols and others. Extracts prepared from different plants have been reported to have a variety of properties including antifungal, antiviral and antibacterial properties against pathogens. Tanacetum vulgare (Tansy is native to Europe, Asia, and North Africa. It has many horticultural and pharmacological qualities. T. vulgare is principally used in traditional Asian and North African medicine as an antihelminthic, antispasmodic, stimulant to abdominal viscera, tonic, antidiabetic and diuretic, and it is antihypertensive. In our research we established antiviral effect of methanol extract from T. vulgare against CMV and PVY in tomato plants.

  8. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses.

    Science.gov (United States)

    Sample, Christopher J; Hudak, Kathryn E; Barefoot, Brice E; Koci, Matthew D; Wanyonyi, Moses S; Abraham, Soman; Staats, Herman F; Ramsburg, Elizabeth A

    2013-10-01

    Broad-spectrum antiviral drugs are urgently needed to treat individuals infected with new and re-emerging viruses, or with viruses that have developed resistance to antiviral therapies. Mammalian natural host defense peptides (mNHP) are short, usually cationic, peptides that have direct antimicrobial activity, and which in some instances activate cell-mediated antiviral immune responses. Although mNHP have potent activity in vitro, efficacy trials in vivo of exogenously provided mNHP have been largely disappointing, and no mNHP are currently licensed for human use. Mastoparan is an invertebrate host defense peptide that penetrates lipid bilayers, and we reasoned that a mastoparan analog might interact with the lipid component of virus membranes and thereby reduce infectivity of enveloped viruses. Our objective was to determine whether mastoparan-derived peptide MP7-NH2 could inactivate viruses of multiple types, and whether it could stimulate cell-mediated antiviral activity. We found that MP7-NH2 potently inactivated a range of enveloped viruses. Consistent with our proposed mechanism of action, MP7-NH2 was not efficacious against a non-enveloped virus. Pre-treatment of cells with MP7-NH2 did not reduce the amount of virus recovered after infection, which suggested that the primary mechanism of action in vitro was direct inactivation of virus by MP7-NH2. These results demonstrate for the first time that a mastoparan derivative has broad-spectrum antiviral activity in vitro and suggest that further investigation of the antiviral properties of mastoparan peptides in vivo is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Development of a model describing virus removal process in an activated sludge basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.; Shiragami, N. Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-06-20

    The virus removal process from the liquid phase in an activated sludge basin possibly consists of physicochemical processes, such as adsorption onto sludge flocs, biological processes such as microbial predating and inactivation by virucidal components excreted by microbes. To describe properly the virus behavior in an activated sludge basin, a simple model is proposed based on the experimental data obtained using a poliovirus type 1. A three-compartments model, which include the virus in the liquid phase and in the peripheral and inner regions of sludge flocs is employed. By using the model, the Virus removal process was successfully simulated to highlight the implication of its distribution in the activated sludge basin. 17 refs., 8 figs.

  10. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    Directory of Open Access Journals (Sweden)

    Yi-Ning Chen

    2016-04-01

    Full Text Available The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO sheets and GO sheets with silver particles (GO-Ag against enveloped and non-enveloped viruses, feline coronavirus (FCoV with an envelope and infectious bursal disease virus (IBDV without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.

  11. Oncolytic vesicular stomatitis virus expressing interferon-σ has enhanced therapeutic activity

    Directory of Open Access Journals (Sweden)

    Marie-Claude Bourgeois-Daigneault

    2016-01-01

    Full Text Available Oncolytic viruses are known to stimulate the antitumor immune response by specifically replicating in tumor cells. This is believed to be an important aspect of the durable responses observed in some patients and the field is rapidly moving toward immunotherapy. As a further means to engage the immune system, we engineered a virus, vesicular stomatitis virus (VSV, to encode the proinflammatory cytokine interferon-σ. We used the 4T1 mammary adenocarcinoma as well as other murine tumor models to characterize immune responses in tumor-bearing animals generated by treatment with our viruses. The interferon-σ-encoding virus demonstrated greater activation of dendritic cells and drove a more profound secretion of proinflammatory cytokines compared to the parental virus. From a therapeutic point of view, the interferon-σ virus slowed tumor growth, minimized lung tumors, and prolonged survival in several murine tumor models. The improved efficacy was lost in immunocompromized animals; hence the mechanism appears to be T-cell-mediated. Taken together, these results demonstrate the ability of oncolytic viruses to act as immune stimulators to drive antitumor immunity as well as their potential for targeted gene therapy.

  12. In vitro activation, infectivity, and production of endogenous type-C virus from OM rats.

    Science.gov (United States)

    Lennette, E T; Cremer, N E

    1975-12-01

    T24C, a continuous cell line derived from the pooled thymic tissue of normal inbred OM rats, spontaneously produced type-C virus. The virus genome was expressed cyclically. The amount of RNA-dependent DNA polymerase (RDP) and the number of 1.14 g dense particles/ml fluctuated simultaneously with cultivation. The released virus, RPT24C, did not infect cell lines from the rat, mouse, dog, or human. T31, also a rat thymus line, during its 2.5 years of cultivation did not produce type-C virus. Cocultivation with potentially permissive lines did not rescue any virus. 5-lodo-2'-deoxyuridine treatments at earlier passages yielded negative results. Chemical treatment at passages 111, 116, 123, and 128 yielded varying amounts of 3H-uridine incorporation at a sucrose density of 1.14 g/ml. Enzyme assays on chemically treated T31 cultures tested at passage 111 showed a small but transient burst of RDP activity. T31-B, a subline of T31, which was frozen and thawed once, released rat type-C virus spontaneously at passage 56. Two additional sublines of T31 (NI-T31 and NII-T31) were maintained for 2.5 years in culture without any cell-dispersing treatment. NI-T31, but not NII-T31, spontaneously released type-C virus. Once induced, the type-C viruses from T31-B and NI-T31 were continuously produced.

  13. Activation of the blood-brain barrier by SIV (simian immunodeficiency virus) requires cell-associated virus and is not restricted to endothelial cell activation.

    Science.gov (United States)

    MacLean, A G; Rasmussen, T A; Bieniemy, D; Lackner, A A

    2004-11-01

    The primary cell infected during acute HIV neuropathogenesis is the monocyte-derived macrophage. We have demonstrated that there is activation of the BBB (blood-brain barrier) during acute viral infection and at terminal AIDS. However, it has never been determined if there is a requirement for the virus to be carried through the BBB or how these Trojan horses would be induced to cross the BBB. We added SIVmac251-infected (SIV is simian immunodeficiency virus) mononuclear cells (and their supernatants) to the luminal or abluminal compartment of our BBB model. There was activation of both sides of the BBB model, only if viral-infected cells were added to the luminal compartment, as opposed to the addition of cell-free supernatants. This suggests that cell-associated virus is essential for the activation of the BBB. This, in turn, would be expected to lead to further infiltration of cells capable of viral infection. VCAM-1 (vascular cell adhesion molecule 1) staining revealed, for the first time, that there is an absolute requirement for virally infected cells, and not just the presence of virus for the activation of the BBB.

  14. A mini-review of anti-hepatitis B virus activity of medicinal plants

    Directory of Open Access Journals (Sweden)

    Manzer H. Siddiqui

    2017-01-01

    Full Text Available Medicinal plants are of undoubted value, as they have been used for centuries to treat various diseases and health disorders in almost every part of the world. In several studies, the use of medicinal plants was found effective in treatment of infectious and non-infectious diseases. The World Health Organization has been working for many years to identify all surviving medicinal plants on the earth. An important step has also been taken by the Natural Health Product Regulation of Canada for promotion and usages of natural products. At present, the rapidly growing population of the world is facing many challenges from various infectious diseases that are associated with hepatitis A, B and C virus, human immunodeficiency virus, influenza virus, dengue virus and new emerging viruses. Hepatitis B virus causes a severe and frequently transmittable disease of the liver. Millions of people worldwide suffer from hepatitis B virus (HBV infection. The drugs available on the market for the treatment of hepatitis B are not sufficient and also cause side effects in patients suffering from HBV infection. The pharmaceutical companies are searching for suitable alternative and natural inhibitors of HBV. Therefore, it is important to explore and use plants as a source of new medicines to treat this infectious disease, because single plants contain a priceless pool of active ingredients which could help in the production of pharmaceutical-grade peptides or proteins. However, the knowledge of the antiviral activity of medicinal plants is still limited.

  15. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus.

    Science.gov (United States)

    Bankova, V; Galabov, A S; Antonova, D; Vilhelmova, N; Di Perri, B

    2014-09-25

    Propolis Extract ACF(®) (PPE) is a purified extract manufactured from propolis collected in a Canadian region rich in poplar trees, and it is the active substance of a topical ointment used against herpes labialis (cold sores or fever blisters). Aim of this study was to analyze the chemical composition of PPE in order to understand the plant origin and possible relations between compounds and antiviral activity, and to characterize the antiviral activity of the extract against herpes simplex virus in vitro. The analysis of the propolis extract samples was conducted by Gas Chromatography-Mass Spectrometry (GC-MS). The antiviral activity was tested against herpes simplex viruses type 1 and type 2 in MDBK cell cultures by treating the cells with PPE at the time of virus adsorption, and by incubating the virus with the extract before infection (virucidal assay). Results from the GC-MS analyses revealed a dual plant origin of PPE, with components derived from resins of two different species of poplar. The chemical composition appeared standardized between extract samples and was also reproduced in the sample of topical ointment. The antiviral studies showed that PPE had a pronounced virucidal effect against herpes simplex viruses type 1 and type 2, and also interfered with virus adsorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Mechanisms of respiratory syncytial virus specific T cell activation

    NARCIS (Netherlands)

    Kruijsen, D.

    2011-01-01

    Respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections (LRTI) in infants, elderly people and immune compromised individuals. Moreover, RSV causes repeated symptomatic re-infections in healthy individuals, which is presumed to be due to ineffective

  17. The antitumor effect of suicide gene therapy using Bifidobacterium infantis-mediated herpes simplex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma.

    Science.gov (United States)

    Xiao, Xiao; Jin, Ren; Li, Jiang; Bei, Yu; Wei, Tang

    2014-10-01

    To confirm the effectivity of Bifidobacterium infantis-mediated herpes simplex virus thymidine kinase/ganciclovir suicide gene system on the treatment of renal cell carcinoma in nude mice and further explore the mechanisms. A B infantis thymidine kinase (B infantis-TK) suicide gene system was constructed in our previous study. Tumor-bearing nude mice were randomized into 4 groups and injected with normal saline, B infantis, B infantis/pGEX-1λT, and B infantis-TK, respectively, via tail vein, followed by intraperitoneal injection of ganciclovir. The treatment effects were evaluated by the terminal deoxynucleotidyl transferase-mediated deoxynucleotide triphosphate nick end labeling assay, quantitative reverse transcriptase polymerase chain reaction, and Western blotting. Side effects were also recorded. Compared with the other 3 treatments, the treatment with B infantis-TK resulted in a significant effective antitumor activity and stronger apoptotic response. Western blot analysis showed that the expression levels of Rel A and Bcl-xL were significantly lower, whereas those of caspase 3 and Bax were significantly higher in tumor tissues resected from group B infantis-TK, which were consistent with the quantitative reverse transcriptase-polymerase chain reaction results. The B infantis-TK/ganciclovir therapy system exhibits an effective antitumor activity by promoting tumor cell apoptosis through both the intrinsic and the extrinsic apoptotic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

    Science.gov (United States)

    2006-04-21

    and adaptive immunity by Ebola and Lassa viruses . J. Immunol. 170:2797–2801. 30. Martini, G. A., and R. Siegert. 1971. Marburg virus disease...Immunol. 6:1191–1197. 41. Slenczka, W. G. 1999. The Marburg virus outbreak of 1967 and subsequent episodes. Curr. Top. Microbiol. Immunol. 235:49–75...Microbiology. All Rights Reserved. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

  19. LGP2 downregulates interferon production during infection with seasonal human influenza A viruses that activate interferon regulatory factor 3.

    Science.gov (United States)

    Malur, Meghana; Gale, Michael; Krug, Robert M

    2012-10-01

    LGP2, a member of the RIG-I-like receptor family, lacks the amino-terminal caspase activation recruitment domains (CARDs) required for initiating the activation of interferon regulatory factor 3 (IRF3) and interferon (IFN) transcription. The role of LGP2 in virus infection is controversial, and the only LGP2 experiments previously carried out with mammalian influenza A viruses employed an attenuated, mouse-adapted H1N1 A/PR/8/34 (PR8) virus that does not encode the NS1 protein. Here we determine whether LGP2 has a role during infection with wild-type, nonattenuated influenza A viruses that have circulated in the human population, specifically two types of seasonal influenza A viruses: (i) H3N2 and H1N1 viruses that activate IRF3 and IFN transcription and (ii) recent H1N1 viruses that block these two activations. In human cells infected with an H3N2 virus that activates IRF3, overexpression of LGP2 or its repressor domain decreased STAT1 activation and IFN-β transcription approximately 10-fold. Overexpression of LGP2 also caused a 10-fold decrease of STAT1 activation during infection with other seasonal influenza A viruses that activate IRF3. Using LGP2(+/+) and LGP2(-/-) mouse cells, we show that endogenous LGP2 decreased IFN production during H3N2 virus infection 3- to 4-fold. In contrast, in both mouse and human cells infected with H1N1 viruses that do not activate IRF3, LGP2 had no detectable role. These results demonstrate that LGP2 downregulates IFN production during infection by seasonal influenza A viruses that activate IRF3 and IFN transcription. It is intriguing that LGP2, a host protein induced during influenza A virus infection, downregulates the host antiviral IFN response.

  20. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-11-01

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC 50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Cloning the Horse RNA Polymerase I Promoter and Its Application to Studying Influenza Virus Polymerase Activity

    Directory of Open Access Journals (Sweden)

    Gang Lu

    2016-05-01

    Full Text Available An influenza virus polymerase reconstitution assay based on the human, dog, or chicken RNA polymerase I (PolI promoter has been developed and widely used to study the polymerase activity of the influenza virus in corresponding cell types. Although it is an important member of the influenza virus family and has been known for sixty years, no studies have been performed to clone the horse PolI promoter or to study the polymerase activity of equine influenza virus (EIV in horse cells. In our study, the horse RNA PolI promoter was cloned from fetal equine lung cells. Using the luciferase assay, it was found that a 500 bp horse RNA PolI promoter sequence was required for efficient transcription. Then, using the developed polymerase reconstitution assay based on the horse RNA PolI promoter, the polymerase activity of two EIV strains was compared, and equine myxovirus resistance A protein was identified as having the inhibiting EIV polymerase activity function in horse cells. Our study enriches our knowledge of the RNA PolI promoter of eukaryotic species and provides a useful tool for the study of influenza virus polymerase activity in horse cells.

  2. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus.

    Science.gov (United States)

    Pacca, Carolina Colombelli; Marques, Rafael Elias; Espindola, José Wanderlan P; Filho, Gevânio B O Oliveira; Leite, Ana Cristina Lima; Teixeira, Mauro Martins; Nogueira, Mauricio L

    2017-03-01

    Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    Science.gov (United States)

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  4. Antiviral activity of Aloe vera against herpes simplex virus type 2: An ...

    African Journals Online (AJOL)

    In this study we tested the antiviral activity of a crude hot glycerine extract of Aloe vera gel which was grown in Bushehr (Southwest of Iran) against HSV-2 replication in Vero cell line. The extract showed antiviral activity against HSV-2 not only before attachment and entry of virus to the Vero cells but also on post attachment ...

  5. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    Science.gov (United States)

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  6. [Shifts in the antioxidant activity in the membrane structures of virus-infected cells].

    Science.gov (United States)

    Petrenko, Iu M; Anan'ev, V A; Konstantinova, L A; Vladimirov, Iu A

    1985-01-01

    It is assumed that the process of virus infection of cells causes significant changes in the conditions of lipid peroxidation in membrane structures of such cells. Experiments with virus-infected HeLa cells demonstrated noticeable decrease in the capacity of membrane lipids for peroxidation induced by ultraviolet irradiation and iron monoxide ions. Similar changes were also observed in membranes of chick embryo liver cells infected with viruses. The established reduced capacity of lipids in membranes of virus-infected cells to induced peroxidation (interpreted as the increase of their antioxidant activity) is characteristic of whole membranes only, because the lipids extracted from infected and control cells showed no differences in their capacity to peroxidation in liposomal membranes when oxidation was induced by iron monoxide.

  7. Active myocarditis in a patient with chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Takano, Hiroyuki; Nakagawa, Keiichi; Ishio, Naoki; Daimon, Michiko; Daimon, Masao; Kobayashi, Yoshio; Hiroshima, Kenzo; Komuro, Issei

    2008-10-30

    Chronic active Epstein-Barr virus (CAEBV) infection is characterized by chronic or recurrent infectious mononucleosis-like symptoms and the prognosis of CAEBV infection is quite poor. The incidence of myocarditis as a complication of EBV infection is not so high and it is unusual that heart failure appears as the initial symptom. However, it is very important to detect and treat chronic active myocarditis in the early phase of CAEBV infection because chronic active myocarditis disorganizes and decreases cardiomyocytes, resulting in the progression to heart failure. We report a case of a 45-year-old man with CAEBV infection for 5 years. Echocardiography revealed moderate left ventricular systolic dysfunction with mild pericardial effusion. Endomyocardial biopsies demonstrated massive lymphocytic infiltration with adjacent myocytolysis and necrosis of cardiomyocytes suggesting active myocarditis. Immunohistological analysis of biopsies revealed that the infiltrating cells were mainly T lymphocytes. And some of the infiltrating cells showed a positive signal for the EBV-encoded small nuclear RNA by in situ hybridization. Positron emission tomography using (18)F-fluoro-2-deoxyglucose ((18)F-FDG) performed revealed increased uptake of (18)F-FDG of whole left ventricular wall with mild heterogeneity.

  8. A reporter system for assaying influenza virus RNP functionality based on secreted Gaussia luciferase activity

    Directory of Open Access Journals (Sweden)

    Wu Xiaobing

    2011-01-01

    Full Text Available Abstract Background Influenza A virus can infect a wide variety of animal species including humans, pigs, birds and other species. Viral ribonucleoprotein (vRNP was involved in genome replication, transcription and host adaptation. Currently, firefly luciferase (Fluc reporter system was used in vRNP functional assay. However, its limitation for the testing by virus infection resulted in an increased need for rapid, sensitive, and biosafe techniques. Here, an influenza A virus UTR-driven gene reporter for vRNP assay based on secreted Gaussia luciferase (Gluc activity was evaluated. Results By measuring Gluc levels in supernatants, reporter gene activity could be detected and quantitated after either reconstitution of influenza A virus polymerase complex or viral infection of 293T and A549 cells, respectively. As compared with Fluc reporter, Gluc-based reporter was heat-tolerant (65°C for 30 min and produced 50-fold higher bioluminescent activity at 24 h posttransfection. Signals generated by Gluc reporter gene could be detected as early as 6 h post-infection and accumulated with time. Testing by viral infection, stronger signals were detected by Gluc reporter at a MOI of 0.001 than that of 1 and the effects of PB2-627K/E or amantadine on influenza vRNP activity were elucidated more effectively by the Gluc reporter system. Conclusions This approach provided a rapid, sensitive, and biosafe assay of influenza vRNP function, particularly for the highly pathogenic avian influenza viruses.

  9. Antiviral Activity of Isatis indigotica Extract and Its Derived Indirubin against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Shu-Jen Chang

    2012-01-01

    Full Text Available Isatis indigotica is widely used in Chinese Traditional Medicine for clinical treatment of virus infection, tumor, and inflammation, yet its antiviral activities remain unclear. This study probed antiviral activity of I. indigotica extract and its marker compounds against Japanese encephalitis virus (JEV. I. indigotica methanol extract, indigo, and indirubin proved less cytotoxic than other components, showing inhibitory effect (concentration-dependent on JEV replication in vitro. Time-of-addition experiments proved the extract, indigo, and indirubin with potent antiviral effect by pretreatment (before infection or simultaneous treatment (during infection, but not posttreatment (after entry. Antiviral action of these agents showed correlation with blocking virus attachment and exhibited potent virucidal activity. In particular, indirubin had strong protective ability in a mouse model with lethal JEV challenge. The study could yield anti-JEV agents.

  10. Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation

    Science.gov (United States)

    Ranjan, Priya; Kumar, Purnima; Garten, Rebecca; Deyde, Varough; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.

    2011-01-01

    Background Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown. Principal Findings Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection. Significance Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection

  11. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Directory of Open Access Journals (Sweden)

    Michelle P. Papa

    2017-12-01

    Full Text Available Zika virus (ZIKV has been associated to central nervous system (CNS harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs, as an in vitro model of blood brain barrier (BBB, and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243, which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.

  12. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    Science.gov (United States)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  13. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  14. Influence of the water molecules near surface of viral protein on virus activation process

    Science.gov (United States)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  15. Activation of c-Jun NH(2)-terminal kinase is required for porcine reproductive and respiratory syndrome virus-induced apoptosis but not for virus replication.

    Science.gov (United States)

    Yin, Shutao; Huo, Yazhen; Dong, Yinhui; Fan, Lihong; Yang, Hanchun; Wang, Leyuan; Ning, Yibao; Hu, Hongbo

    2012-06-01

    Apoptosis of host cells plays a critical role in pathogenesis of virus infection. MAPK kinases especially stress-activated protein kinases c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 are often involved in virus-mediated apoptosis. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) infection resulted in apoptosis of the host cells both in vitro and in vivo. The current investigation was initiated to determine whether stress-activated protein kinases JNK and p38 play a role in apoptosis induction by PRRSV infection. We examined phosphorylation of JNK and p38, and found that JNK but not p38 was activated in response to PRRSV infection. We then examined effects of this kinase on apoptosis induction and virus replication by using specific inhibitor. We found that JNK inhibition by its inhibitor SP600125 led to the abolishment of PRRSV-mediated apoptosis, but did not suppress virus replication. Further studies demonstrated that ROS generation was involved in JNK activation, and Bcl-2 family anti-apoptotic proteins Mcl-1 and Bcl-xl were downstream targets of JNK to mediate apoptosis. We conclude that activation of JNK signaling pathway is essential for PRRSV-mediated apoptosis but not for virus replication. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Specific effect of zinc ions on DNA polymerase activity of avian myeloblastosis virus.

    Science.gov (United States)

    Palan, P R; Eidinoff, M L

    1978-11-01

    The effect of selected cations on DNA synthesis by DNA-polymerase of avian myeloblastosis virus (AMV) was studied. Zinc ions at low concentration (0.2mM) in the assay system enhanced the activity about 2 x fold and at higher concentration (2.0 mM) inhibited the activity completely. In contrast, addition of lithium and potassium salts produced inhibitory effects in this ionic concentration range. Replacement of K+ ion had an inhibitory effect on the activity.

  17. Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice.

    Science.gov (United States)

    Heidegger, Simon; Anz, David; Stephan, Nicolas; Bohn, Bernadette; Herbst, Tina; Fendler, Wolfgang Peter; Suhartha, Nina; Sandholzer, Nadja; Kobold, Sebastian; Hotz, Christian; Eisenächer, Katharina; Radtke-Schuller, Susanne; Endres, Stefan; Bourquin, Carole

    2013-10-10

    Early in the course of infection, detection of pathogen-associated molecular patterns by innate immune receptors can shape the subsequent adaptive immune response. Here we investigate the influence of virus-associated innate immune activation on lymphocyte distribution in secondary lymphoid organs. We show for the first time that virus infection of mice induces rapid disruption of the Peyer's patches but not of other secondary lymphoid organs. The observed effect was not dependent on an active infectious process, but due to innate immune activation and could be mimicked by virus-associated molecular patterns such as the synthetic double-stranded RNA poly(I:C). Profound histomorphologic changes in Peyer's patches were associated with depletion of organ cellularity, most prominent among the B-cell subset. We demonstrate that the disruption is entirely dependent on type I interferon (IFN). At the cellular level, we show that virus-associated immune activation by IFN-α blocks B-cell trafficking to the Peyer's patches by downregulating expression of the homing molecule α4β7-integrin. In summary, our data identify a mechanism that results in type I IFN-dependent rapid but reversible disruption of intestinal lymphoid organs during systemic viral immune activation. We propose that such rerouted lymphocyte trafficking may impact the development of B-cell immunity to systemic viral pathogens.

  18. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review.

    Science.gov (United States)

    Bloom-Feshbach, Kimberly; Alonso, Wladimir J; Charu, Vivek; Tamerius, James; Simonsen, Lone; Miller, Mark A; Viboud, Cécile

    2013-01-01

    There is limited information on influenza and respiratory syncytial virus (RSV) seasonal patterns in tropical areas, although there is renewed interest in understanding the seasonal drivers of respiratory viruses. We review geographic variations in seasonality of laboratory-confirmed influenza and RSV epidemics in 137 global locations based on literature review and electronic sources. We assessed peak timing and epidemic duration and explored their association with geography and study settings. We fitted time series model to weekly national data available from the WHO influenza surveillance system (FluNet) to further characterize seasonal parameters. Influenza and RSV activity consistently peaked during winter months in temperate locales, while there was greater diversity in the tropics. Several temperate locations experienced semi-annual influenza activity with peaks occurring in winter and summer. Semi-annual activity was relatively common in tropical areas of Southeast Asia for both viruses. Biennial cycles of RSV activity were identified in Northern Europe. Both viruses exhibited weak latitudinal gradients in the timing of epidemics by hemisphere, with peak timing occurring later in the calendar year with increasing latitude (Pvirus activity in individual years. Information on seasonal patterns remains limited in large undersampled regions, included Africa and Central America. Future studies should attempt to link the observed latitudinal gradients in seasonality of viral epidemics with climatic and population factors, and explore regional differences in disease transmission dynamics and attack rates.

  19. Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus.

    Science.gov (United States)

    Levitz, Ruth; Gao, Yajing; Dozmorov, Igor; Song, Ran; Wakeland, Edward K; Kahn, Jeffrey S

    2017-01-01

    Respiratory syncytial virus (RSV) is a major respiratory pathogen of infants and young children. Multiple strains of both subgroup A and B viruses circulate during each seasonal epidemic. Genetic heterogeneity among RSV genomes, in large part due to the error prone RNA-dependent, RNA polymerase, could mediate variations in pathogenicity. We evaluated clinical strains of RSV for their ability to induce the innate immune response. Subgroup B viruses were used to infect human pulmonary epithelial cells (A549) and primary monocyte-derived human macrophages (MDM) from a variety of donors. Secretions of IL-6 and CCL5 (RANTES) from infected cells were measured following infection. Host and viral transcriptome expression were assessed using RNA-SEQ technology and the genomic sequences of several clinical isolates were determined. There were dramatic differences in the induction of IL-6 and CCL5 in both A549 cells and MDM infected with a variety of clinical isolates of RSV. Transcriptome analyses revealed that the pattern of innate immune activation in MDM was virus-specific and host-specific. Specifically, viruses that induced high levels of secreted IL-6 and CCL5 tended to induce cellular innate immune pathways whereas viruses that induced relatively low level of IL-6 or CCL5 did not induce or suppressed innate immune gene expression. Activation of the host innate immune response mapped to variations in the RSV G gene and the M2-1 gene. Viral transcriptome data indicated that there was a gradient of transcription across the RSV genome though in some strains, RSV G was the expressed in the highest amounts at late times post-infection. Clinical strains of RSV differ in cytokine/chemokine induction and in induction and suppression of host genes expression suggesting that these viruses may have inherent differences in virulence potential. Identification of the genetic elements responsible for these differences may lead to novel approaches to antiviral agents and vaccines.

  20. Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus

    Science.gov (United States)

    Levitz, Ruth; Wakeland, Edward K.

    2017-01-01

    Respiratory syncytial virus (RSV) is a major respiratory pathogen of infants and young children. Multiple strains of both subgroup A and B viruses circulate during each seasonal epidemic. Genetic heterogeneity among RSV genomes, in large part due to the error prone RNA-dependent, RNA polymerase, could mediate variations in pathogenicity. We evaluated clinical strains of RSV for their ability to induce the innate immune response. Subgroup B viruses were used to infect human pulmonary epithelial cells (A549) and primary monocyte-derived human macrophages (MDM) from a variety of donors. Secretions of IL-6 and CCL5 (RANTES) from infected cells were measured following infection. Host and viral transcriptome expression were assessed using RNA-SEQ technology and the genomic sequences of several clinical isolates were determined. There were dramatic differences in the induction of IL-6 and CCL5 in both A549 cells and MDM infected with a variety of clinical isolates of RSV. Transcriptome analyses revealed that the pattern of innate immune activation in MDM was virus-specific and host-specific. Specifically, viruses that induced high levels of secreted IL-6 and CCL5 tended to induce cellular innate immune pathways whereas viruses that induced relatively low level of IL-6 or CCL5 did not induce or suppressed innate immune gene expression. Activation of the host innate immune response mapped to variations in the RSV G gene and the M2-1 gene. Viral transcriptome data indicated that there was a gradient of transcription across the RSV genome though in some strains, RSV G was the expressed in the highest amounts at late times post-infection. Clinical strains of RSV differ in cytokine/chemokine induction and in induction and suppression of host genes expression suggesting that these viruses may have inherent differences in virulence potential. Identification of the genetic elements responsible for these differences may lead to novel approaches to antiviral agents and vaccines

  1. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  2. Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity.

    Science.gov (United States)

    Case, James Brett; Li, Yize; Elliott, Ruth; Lu, Xiaotao; Graepel, Kevin W; Sexton, Nicole R; Smith, Everett Clinton; Weiss, Susan R; Denison, Mark R

    2018-01-01

    Coronaviruses (CoVs) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that counteract the host innate immune response to facilitate efficient viral replication. CoV nonstructural protein 14 (nsp14) encodes 3'-to-5' exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order Nidovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade double-stranded RNA (dsRNA) replication intermediates. In this study, we tested the hypothesis that CoV ExoN also functions to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-β) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor-deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-β gene expression, and in the presence of an IFN-β-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to those of untreated samples. However, ExoN(-) virus generated from IFN-β-pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest murine hepatitis virus (MHV) ExoN activity is required for resistance to the innate immune response, and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity.IMPORTANCE CoVs encode multiple antagonists that prevent or disrupt an efficient innate immune response. Additionally, no specific antiviral therapies or vaccines currently

  3. Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus.

    Science.gov (United States)

    Müller, Vanessa; Chávez, Juliana H; Reginatto, Flávio H; Zucolotto, Silvana M; Niero, Rivaldo; Navarro, Dionezine; Yunes, Rosendo A; Schenkel, Eloir P; Barardi, Célia R M; Zanetti, Carlos R; Simões, Cláudia M O

    2007-10-01

    This paper describes the screening of different South American plant extracts and fractions. Aqueous and organic extracts were prepared and tested for antiherpetic (HSV-1, KOS and 29R strains) and antirabies (PV strain) activities. The evaluation of the potential antiviral activity of these extracts was performed by using an MTT assay for HSV-1, and by a viral cytopathic effect (CPE) inhibitory method for rabies virus (RV). The results were expressed as 50% cytotoxicity (CC(50)) for MTT assay and 50% effective (EC(50)) concentrations for CPE, and with them it was possible to calculate the selectivity indices (SI = CC(50)/EC(50)) of each tested material. From the 18 extracts/fractions tested, six extracts and four fractions showed antiviral action. Ilex paraguariensis, Lafoensia pacari, Passiflora edulis, Rubus imperialis and Slonea guianensis showed values of SI > 7 against HSV-1 KOS and 29-R strains and Alamanda schottii showed a SI of 5.6 against RV, PV strain.

  4. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  5. Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Bartholdy, C; Christensen, Jan Pravsgaard; Wodarz, D

    2000-01-01

    The role of gamma interferon (IFN-gamma) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-gamma-deficient (IFN-gamma -/-) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong......). While wild-type mice rapidly cleared the infection, IFN-gamma -/- mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity...

  6. Giant cell arteritis associated with chronic active Epstein-Barr virus infection

    Directory of Open Access Journals (Sweden)

    A. Giardina

    2013-03-01

    Full Text Available Giant cell arteritis is an inflammatory vasculopathy that preferentially affects medium-sized and large arteries. A viral cause has been suspected but not confirmed in polymyalgia rheumatica and giant-cell arteritis. We report the case of a 81-year-old female who suffered from chronic active Epstein-Barr virus infection and developed giant cell temporal arteritis.

  7. Antiviral activity of Dianthus superbusn L. against hepatitis B virus in ...

    African Journals Online (AJOL)

    Antiviral activity of Dianthus superbusn L. against hepatitis B virus in vitro and in vivo. ... Journal Home > Vol 13, No 5 (2016) > ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, ...

  8. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  9. TNF-mediated survival of CD169(+) cells promotes immune activation during vesicular stomatitis virus infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2017-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain ...

  10. Active Epstein-Barr virus infection after allogeneic stem cell transplantation : re-infection or reactivation?

    NARCIS (Netherlands)

    Meijer, E; Spijkers, S; Moschatsis, S; Boland, GJ; Thijsen, SFT; van Loon, AM; Verdonck, LF

    Recipients of allogeneic stem cell transplants (SCT) often show active Epstein-Barr virus (EBV) infection, which may progress to EBV-associated lymphoproliferative disorders. It is not known whether these EBV infections are true reactivations of the endogenous EBV strain or re-infections with an

  11. Antiviral activity of Dianthus superbusn L. against hepatitis B virus in ...

    African Journals Online (AJOL)

    Background: Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo. Material and Methods: In vitro study liver cell line ...

  12. Zika Virus

    Science.gov (United States)

    ... Funding CDC Activities For Healthcare Providers Clinical Evaluation & Disease Sexual Transmission HIV Infection & Zika Virus Testing for Zika Test Specimens – At Time of Birth Diagnostic Tests Understanding Zika Virus Test Results ...

  13. [Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits].

    Science.gov (United States)

    Kuzmenko, Y V; Starodubova, E S; Karganova, G G; Timofeev, A V; Karpov, V L

    2016-01-01

    The interaction of viral proteins with host cell components plays an important role in antiviral immune response. One of the key steps of antiviral defense is the formation of immunoproteasomes. The effect of nonstructural protein 1 (NS1) of tick-borne encephalitis virus on the immunoproteasome formation was studied. It was shown that cell expression of NS1 does not reduce the efficacy of the immunoproteasome generation in response to interferon-γ stimulation and even increases the content of the immunoproteasome subunits without the interferon-γ treatment. Thus, NS1 of tick-borne encephalitis virus activates, rather than blocks the mechanisms of immune defense in the cell.

  14. Seasonal activity, vector relationships and genetic analysis of mosquito-borne Stratford virus.

    Science.gov (United States)

    Toi, Cheryl S; Webb, Cameron E; Haniotis, John; Clancy, John; Doggett, Stephen L

    2017-01-01

    There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia but little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from mosquitoes collected in New South Wales between 1995 and 2013 was examined to determine the genetic diversity between virus isolates and their relationship with mosquito species. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax, Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2010 and 2013, a sequence homology of 95.9%-98.4% was found between isolates and the 1961 STRV prototype with 96.2%-100% identified among isolates. Temporal differences but no apparent nucleotide divergence by mosquito species or geographic location was evident. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the possibility of genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.

  15. Cellular Transcription Factor YY1 Mediates the Varicella-Zoster Virus (VZV) IE62 Transcriptional Activation

    Science.gov (United States)

    Khalil, Mohamed I.; Sommer, Marvin; Arvin, Ann; Hay, John; Ruyechan, William T.

    2014-01-01

    Several cellular transcription factors have been shown to be involved in IE62-mediated activation. The YY1 cellular transcription factor has activating and repressive effects on gene transcription. Analysis of the VZV genome revealed 19 postulated YY1 binding sites located within putative promoters of 16 VZV genes. Electrophoretic mobility shift assays (EMSA) confirmed the binding of YY1 to ORF10, ORF28/29 and gI promoters and the mutation of these binding sites inhibited YY1 binding and the promoter activation by IE62 alone or following VZV infection. Mutation of the ORF28/29 YY1 site in the VZV genome displayed insignificant influence on virus growth in melanoma cells; but it inhibited the virus replication significantly at day 5 and 6 post infection in HELF cells. This work suggests a novel role for the cellular factor YY1 in VZV replication through the mediation of IE62 activation of viral gene expression. PMID:24418559

  16. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection.

    Science.gov (United States)

    Ovanesov, Mikhail V; Ayhan, Yavuz; Wolbert, Candie; Moldovan, Krisztina; Sauder, Christian; Pletnikov, Mikhail V

    2008-11-11

    Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  17. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection

    Directory of Open Access Journals (Sweden)

    Sauder Christian

    2008-11-01

    Full Text Available Abstract Neonatal Borna disease virus (BDV infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  18. NS2 Proteins of GB Virus B and Hepatitis C Virus Share Common Protease Activities and Membrane Topologies

    Science.gov (United States)

    Boukadida, Célia; Marnata, Caroline; Montserret, Roland; Cohen, Lisette; Blumen, Brigitte; Gouttenoire, Jérôme; Moradpour, Darius; Penin, François

    2014-01-01

    ABSTRACT GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion

  19. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  20. Antiviral activity of Aloe hijazensis against some haemagglutinating viruses infection and its phytoconstituents.

    Science.gov (United States)

    Abd-Alla, Howaida I; Abu-Gabal, Nagat S; Hassan, Amal Z; El-Safty, Mounir M; Shalaby, Nagwa M M

    2012-08-01

    Evaluation of the antiviral activities of flowers, flower-peduncles, leaves, and roots of Aloe hijazensis against haemagglutinating viruses of avian paramyxovirus type-1 (APMV-1), avian influenza virus type A (AI-H5N1), Newcastle disease virus (NDV), and egg-drop syndrome virus (EDSV) in specific pathogen free (SPF) chicken embryos were carried out. Extract of the flowers and leaves showed relatively higher activity than the extracts of other plant parts. Thirteen compounds were isolated from both the flowers and flower-peduncles of A. hijazensis. The isolated compounds were classified into: five anthraquinones; ziganein, ziganein-5-methyl ether, aloesaponarin I, chrysophanol, aloe-emodin, one dihydroisocoumarin; feralolide, four flavonoids; homoplantaginin, isoorientin, luteolin 7-glucuronopyranoside, isovitexin, one phenolic acid; p-coumaric acid, the anthrone; barbaloin together with aloenin. Eleven compounds were attributed to the flowers and seven to the flower-peduncles. Homoplantaginin and luteolin 7-glucuronopyranoside are reported here for the first time from Aloe spp. To the best of our knowledge, this is the first report on the chemical composition and biological activity of those plant parts.

  1. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol

    Directory of Open Access Journals (Sweden)

    FERNANDO C. SILVA

    Full Text Available ABSTRACT Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.

  2. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

    Science.gov (United States)

    Arraj, A; Bohatier, J; Laveran, H; Traore, O

    2005-01-01

    The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

  3. A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells.

    Science.gov (United States)

    Fujiyuki, Tomoko; Yoneda, Misako; Amagai, Yosuke; Obayashi, Kunie; Ikeda, Fusako; Shoji, Koichiro; Murakami, Yoshinori; Sato, Hiroki; Kai, Chieko

    2015-09-22

    Lung cancer cells, particularly those of non-small-cell lung cancer, are known to express Nectin-4. We previously generated a recombinant measles virus that uses Nectin-4 as its receptor but cannot bind its original principal receptor, signaling lymphocyte activation molecule (SLAM). This virus (rMV-SLAMblind) infects and kills breast cancer cells in vitro and in a subcutaneous xenograft model. However, it has yet to be determined whether rMV-SLAMblind is effective against other cancer types and in other tumor models that more closely represent disease. In this study, we analyzed the anti-tumor activity of this virus towards lung cancer cells using a modified variant that encodes green fluorescent protein (rMV-EGFP-SLAMblind). We found that rMV-EGFP-SLAMblind efficiently infected nine, human, lung cancer cell lines, and its infection resulted in reduced cell viability of six cell lines. Administration of the virus into subcutaneous tumors of xenotransplanted mice suppressed tumor growth. In addition, rMV-EGFP-SLAMblind could target scattered tumor masses grown in the lungs of xenotransplanted mice. These results suggest that rMV-SLAMblind is oncolytic for lung cancer and that it represents a promising tool for the treatment of this disease.

  4. Quantification of Epstein-Barr virus DNA is helpful for evaluation of chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Sakamoto, Yuichi; Mariya, Yasushi; Kubo, Kohmei

    2012-08-01

    Chronic active Epstein-Barr virus infection (CAEBV) presents with chronic or recurrent infectious mononucleosis-like symptoms, such as low-grade fever, liver dysfunction, lymphadenopathy, and hepatosplenomegaly. Immunological methods are useful for the diagnosis of viral infections. However, CAEBV patients do not necessarily have high titers of Epstein-Barr virus (EBV)-specific antibodies. Hosts that are immunocompromised after hematopoietic stem cell transplantations sometimes suffer from systemic EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and EBV-positive lymphoma. Patients with EBV-associated diseases are often diagnosed by analyses of bone marrow. Cytomegalovirus (CMV) can cause serious pneumonia or retinitis in immunocompromised hosts. In order to noninvasively understand the clinical status of patients with EBV-associated diseases, we conducted real-time polymerase chain reaction (PCR) methods in their peripheral blood in order to quantify EBV and CMV DNA levels, which reflect viral activity. Here, we describe a 30-year-old Japanese female patient with CAEBV. The patient had repeated fever, fatigue, and liver dysfunction. The histopathological results of liver biopsies were positive for EBV-encoded RNA-1. Acute hepatitis was associated with the EBV infection. The whole-blood EBV DNA levels were high and above 1.0 × 10⁷ copies/mL. After immunosuppressive and antiviral therapies, EBV DNA levels lowered. However, she had to receive bone marrow transplantation because of her EBV-HLH. As the number of lymphocytes increased in the post-transplantation period, EBV DNA levels gradually increased again. The simultaneous detection of CMV DNA was more sensitive than the CMV antigenemia test that is often used to diagnose CMV infections. Unfortunately, the patient died due to a fungal infection. Observing EBV DNA levels closely with real-time quantitative PCR methods is helpful for evaluating the changes in the clinical course.

  5. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    Science.gov (United States)

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia, its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo. Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  6. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-01-01

    Full Text Available Mx proteins are interferon (IFN-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA, overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  7. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.

    Science.gov (United States)

    Nácher-Vázquez, Montserrat; Ballesteros, Natalia; Canales, Ángeles; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara Isabel; Prieto, Alicia; Aznar, Rosa; López, Paloma

    2015-06-25

    Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... defense against viral pathogens. CD169(+) macrophages are shown to activate innate and adaptive immunity via "enforced virus replication" a controlled amplification of virus particles. However, factors regulating the CD169(+) macrophages remain to be studied. In this paper, we show that after Vesicular...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  9. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  10. Evaluation of In vitro Antiviral Activity of Datura metel Linn. Against Rabies Virus

    Science.gov (United States)

    Roy, Soumen; Mukherjee, Sandeepan; Pawar, Sandip; Chowdhary, Abhay

    2016-01-01

    Objective: The soxhlet and cold extracts of Datura metel Linn. were evaluated for in vitro antirabies activity. Materials and Methods: Soxhlet and cold extraction method were used to extract Datura (fruit and seed) extracts. In vitro cytotoxicity assay was performed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. Based on the CC50 range, the in vitro antirabies activity of the extracts was screened by rapid fluorescent focus inhibition test and molecular method. Results: The Datura (fruit and seed) extracts were not cytotoxic below 5 mg/ml (CC50). Titer of 10−4 rabies virus challenge virus standard (RV CVS) (1 50% tissue culture infective dose [1 TCID50]) was obtained by RFFT method and the challenge dose of 10 TCID50 was used for antirabies assay. Datura fruit and seed (soxhlet and cold) extracts showed 50% inhibition of RV CVS at 2.5 mg/ml and 1.25 mg/ml (inhibitory concentration 50% [IC50]), respectively. The tested extracts showed selectivity index (CC50/IC50) ranging from 2 to 4. The viral RNA was extracted and real-time reverse transcription-polymerase chain reaction was performed which also revealed a 2-fold reduction of viral load at 1.25 mg/ml of the Datura seed (soxhlet methanolic and cold aqueous) extracts. Conclusion: To the best of our knowledge, this is the first study of in vitro antiviral activity of D. metel Linn. against rabies virus. Datura seed extracts have a potential in vitro antirabies activity and, in future, can be further screened for in vivo activity against rabies virus in murine model. SUMMARY In the present study, Datura metel. Linn showed and in-vitro anti rabies activity in Vero cell line which was determined by RFFIT method and PCR method PMID:27695266

  11. Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients

    NARCIS (Netherlands)

    G.S. Sonke (Gabe); I. Ludwig (Inge); H. van Oosten (Hannah); J.W. Baars (Joke); E. Meijer (Ellen); A.P. Kater (Arnon); D. de Jong (Daphne)

    2008-01-01

    textabstractChronic active Epstein-Barr virus infection manifests as a combination of persistent infectious mononucleosis-like symptoms and high viral load in apparently immunocompetent patients. It is closely related to Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. These 2

  12. Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients

    NARCIS (Netherlands)

    Sonke, Gabe S.; Ludwig, Inge; van Oosten, Hannah; Baars, Joke W.; Meijer, Ellen; Kater, Arnon P.; de Jong, Daphne

    2008-01-01

    Chronic active Epstein-Barr virus infection manifests as a combination of persistent infectious mononucleosis-like symptoms and high viral load in apparently immunocompetent patients. It is closely related to Epstein-Barr virus associated hemophagocytic lymphohistiocytosis. These 2 abnormal

  13. The human immunodeficiency virus-reverse transcriptase inhibition activity of novel pyridine/pyridinium-type fullerene derivatives.

    Science.gov (United States)

    Yasuno, Takumi; Ohe, Tomoyuki; Takahashi, Kyoko; Nakamura, Shigeo; Mashino, Tadahiko

    2015-08-15

    In the present study, we describe the synthesis of a novel set of pyridine/pyridinium-type fullerene derivatives. The products were assessed for human immunodeficiency virus-reverse transcriptase inhibition activities. All novel fullerene derivatives showed potent human immunodeficiency virus-reverse transcriptase inhibition without cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of Anticancer Activity of Fruit and Leave Extracts from Virus Infected and Healthy Cultivars of Vitis vinifera.

    Science.gov (United States)

    Esfahanian, Zahra; Behbahani, Mandana; Shanehsaz, Mehrnaz; Hessami, Mohammad Javad; Nejatian, Mohammad Ali

    2013-01-01

    Grape virus diseases are a serious problem in Iran. Leaves and fruits of grape have been used for different purposes like cooking in Iran. The present investigation was carried out to study on the cytotoxic-activities of extracts of fruits and leaves of Vitis vinifera from both virus-free and virus-infected grape cultivars against breast cancer cell line (MDAMB- 231) and human embryonic kidney normal cell line (HEK 293). IN THIS EXPERIMENTAL STUDY, THE CONSIDERED GRAPE CULTIVARS WERE AS FOLLOWS: Rish Baba Sefid, Shahani Ghasre Shirin, Rotabi Zarghan, Asgari Najaf Abad, Fars, Kaj Angor Bojnord, Sarkesh Shiraz and Siahe Zarqan. A real-time multiplex polymerase chain reaction (real-time Multiplex PCR) assay was applied to detect virus infected cultivars. The cytotoxic effect of the methanol extracts of different Vitis vinifera varieties on cultured cells was monitored using (3- (4, 5-Dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay at different concentrations (62.5, 125, 250, 500, 750, 1000 μg mL(-1)). Among these cultivars, Grapevine fanleaf virus (GFLV) along with related symptoms was detected in Siahe Zarqan and Fars. Methanolic extracts of leaves and fruits of Vitis vinifera from both virus free and virus infected cultivars showed a range of limited to moderate cytotoxic activity. However, methanol extract of leaves belonged to virus infected cultivars was found to have strong cytotoxic effect against MDA-MB-231 at different concentrations. Grapevine fanleaf virus (GFLV) can potentially increase the cytotoxicity of grape cultivars.

  15. Antiviral activities of streptomycetes against tobacco mosaic virus ...

    African Journals Online (AJOL)

    Madina (M) areas in Saudi Arabia. Among these strains, six were selected for antiviral activity screening which are K1, K2, K3, M1, M2 and M3. All the selected strains were characterized morphologically to be under the genus Streptomyces. Primary ...

  16. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jefree Johari

    2012-12-01

    Full Text Available Japanese encephalitis (JE, a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC50 = 14.28 µg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC50 = 212.1 µg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC50 = 7.27 µg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC50 = 3.44 µg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.

  17. Induction of IFN-α subtypes and their antiviral activity in mumps virus infection.

    Science.gov (United States)

    Markušić, Maja; Šantak, Maja; Košutić-Gulija, Tanja; Jergović, Mladen; Jug, Renata; Forčić, Dubravko

    2014-12-01

    Human type I interferons (IFNs) comprise one IFN-β, -ω, -κ, and -ɛ and 12 different IFN-α subtypes, which play an important role in early host antiviral response. Despite their high structural homology and signaling through the same receptor, IFN-α subtypes exhibit different antiviral, antiproliferative, and immunomodulatory activities. Differences in the production of IFN-α subtypes therefore determine the quality of an antiviral response. In this study, we investigated the pattern of IFN-α subtypes induced in infection with different mumps virus (MuV) strains and examined the MuV sensitivity to the action of IFN-α subtypes. We found that all IFN-α subtypes are being expressed in response to MuV infection with a highly similar IFN-α subtype pattern between the virus strains. We assessed an antiviral activity of several IFN-α subtypes: IFN-α1, IFN-α2, IFN-α4, IFN-α6, IFN-α8, IFN-α14, IFN-α17, and IFN-α21. Although they were all effective in suppressing MuV replication, the intensity and pattern of their action varied between MuV strains. Our results indicate that the overall IFN antiviral activity as well as the activity of specific IFN-α subtypes against MuV depend on a virus strain.

  18. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  19. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    Science.gov (United States)

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  20. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    Science.gov (United States)

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-10-15

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16+ monocytes with a poor activation profile. In survivors, CD16+ monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

    OpenAIRE

    Achmad Fuad Hafid; Chie Aoki-Utsubo; Adita Ayu Permanasari; Myrna Adianti; Lydia Tumewu; Aty Widyawaruyanti; Sri Puji Astuti Wahyuningsih; Tutik Sri Wahyuni; Maria Inge Lusida; Soetjipto; Hak Hotta

    2017-01-01

    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells ...

  2. M-protein-positive chronic active Epstein-Barr virus infection: features mimicking HIV-1 infection.

    Science.gov (United States)

    Imashuku, Shinsaku; Azuma, Naoto; Kanegane, Hirokazu; Kasahara, Yoshihito

    2009-09-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a unique and fatal lymphoproliferative disease (LPD), which often shows high serum IgG and/or IgE. The significance of such immunoglobulin abnormalities in CAEBV has not been fully evaluated and discussed. In addition, such clinical features mimic HIV-1 infection. We report here a case of CAEBV with M-protein detected which may shed a new light on the pathogenesis of this disease.

  3. Functional activation of myelin-specific T cells by virus-induced molecular mimicry.

    Science.gov (United States)

    Olson, Julie K; Eagar, Todd N; Miller, Stephen D

    2002-09-01

    Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.

  4. Evidence for pH-Dependent Protease Activity in the Adeno-Associated Virus Capsid

    Science.gov (United States)

    Salganik, Maxim; Venkatakrishnan, Balasubramanian; Bennett, Antonette; Lins, Bridget; Yarbrough, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection. PMID:22915820

  5. Evidence for pH-dependent protease activity in the adeno-associated virus capsid.

    Science.gov (United States)

    Salganik, Maxim; Venkatakrishnan, Balasubramanian; Bennett, Antonette; Lins, Bridget; Yarbrough, Joseph; Muzyczka, Nicholas; Agbandje-McKenna, Mavis; McKenna, Robert

    2012-11-01

    Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection.

  6. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  7. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity

    Science.gov (United States)

    Martinez, Zachary S.; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R.

    2016-01-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4+ T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4+ T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. PMID:27431232

  8. Inhibition of RNA recruitment and replication of an RNA virus by acridine derivatives with known anti-prion activities.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Sasvari

    Full Text Available BACKGROUND: Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV, a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ and quinacrine (QC, which are active against prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii reduction of minus-strand synthesis by the tombusvirus replicase; and (iii inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication. CONCLUSION/SIGNIFICANCE: Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses.

  9. Inhibition of RNA Recruitment and Replication of an RNA Virus by Acridine Derivatives with Known Anti-Prion Activities

    Science.gov (United States)

    Sasvari, Zsuzsanna; Bach, Stéphane; Blondel, Marc; Nagy, Peter D.

    2009-01-01

    Background Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases. Methodology/Principal Findings Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication. Conclusion/Significance Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses. PMID:19823675

  10. In vitro and in vivo activity of ribavirin against Andes virus infection.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    Full Text Available Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS. The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV, an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 µg ml(-1. In hamsters, treatment with as little as 5 mg kg(-1 day(-1 was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1 day(-1. Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against

  11. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors.

    Science.gov (United States)

    Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle

    2017-04-01

    The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Borna disease virus blocks potentiation of presynaptic activity through inhibition of protein kinase C signaling.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Infection by Borna disease virus (BDV enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS and Munc18-1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders.

  13. Borna Disease Virus Blocks Potentiation of Presynaptic Activity through Inhibition of Protein Kinase C Signaling

    Science.gov (United States)

    Volmer, Romain; Monnet, Céline; Gonzalez-Dunia, Daniel

    2006-01-01

    Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18–1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders. PMID:16552443

  14. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein.

    Science.gov (United States)

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-06-19

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  16. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J. (Abbott)

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  17. Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase.

    Science.gov (United States)

    Jordan, Paul C; Stevens, Sarah K; Tam, Yuen; Pemberton, Ryan P; Chaudhuri, Shuvam; Stoycheva, Antitsa D; Dyatkina, Natalia; Wang, Guangyi; Symons, Julian A; Deval, Jerome; Beigelman, Leo

    2017-01-20

    Human respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation. ALS-8112, the parent molecule of ALS-8176, undergoes intracellular phosphorylation, yielding the active 5'-triphosphate metabolite. The host kinases responsible for this conversion are not known. Therefore, elucidation of the ALS-8112 activation pathway is key to further understanding its conversion mechanism, particularly given its potent antiviral effects. Here, we have identified the activation pathway of ALS-8112 and show it is unlike other antiviral cytidine analogs. The first step, driven by deoxycytidine kinase (dCK), is highly efficient, while the second step limits the formation of the active 5'-triphosphate species. ALS-8112 is a 2'- and 4'-modified nucleoside analog, prompting us to investigate dCK recognition of other 2'- and 4'-modified nucleosides. Our biochemical approach along with computational modeling contributes to an enhanced structure-activity profile for dCK. These results highlight an exciting potential to optimize nucleoside analogs based on the second activation step and increased attention toward nucleoside diphosphate and triphosphate prodrugs in drug discovery.

  18. RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection.

    Science.gov (United States)

    Coch, Christoph; Stümpel, Jan Phillip; Lilien-Waldau, Vanessa; Wohlleber, Dirk; Kümmerer, Beate M; Bekeredjian-Ding, Isabelle; Kochs, Georg; Garbi, Natalio; Herberhold, Stephan; Schuberth-Wagner, Christine; Ludwig, Janos; Barchet, Winfried; Schlee, Martin; Hoerauf, Achim; Bootz, Friedrich; Staeheli, Peter; Hartmann, Gunther; Hartmann, Evelyn

    2017-09-06

    Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies. Here, we demonstrate in an Mx1-expressing mouse model of influenza A virus infection that a single intravenous injection of low-dose RIG-I ligand 5'-triphosphate RNA (3pRNA) completely protected mice from a lethal challenge with influenza A virus for at least 7 days. Furthermore, systemic administration of 3pRNA rescued mice with pre-established fulminant influenza infection and prevented the fatal effects of a streptococcal superinfection. Type I interferon, but not interferon-λ, was required for the therapeutic effect. Our results suggest that the use of RIG-I activating oligonucleotide ligands has the clinical potential to confine influenza epidemics when a strain-specific vaccine is not yet available and to reduce lethality of influenza in severely infected patients. Copyright © 2017. Published by Elsevier Inc.

  19. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  20. Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors.

    Science.gov (United States)

    Bar-On, Yotam; Seidel, Einat; Tsukerman, Pinchas; Mandelboim, Michal; Mandelboim, Ofer

    2014-08-01

    Natural Killer (NK) cells play a central role in the defense against viral infections and in the elimination of transformed cells. The recognition of pathogen-infected and tumor cells is controlled by inhibitory and activating receptors. We have previously shown that among the activating (killer) NK cell receptors the natural cytotoxicity receptors, NKp44 and NKp46, interact with the viral hemagglutinin (HA) protein expressed on the cell surface of influenza-virus-infected cells. We further showed that the interaction between NKp44/NKp46 and viral HA is sialic-acid dependent and that the recognition of HA by NKp44 and NKp46 leads to the elimination of the infected cells. Here we demonstrate that the influenza virus developed a counter-attack mechanism and that the virus uses its neuraminidase (NA) protein to prevent the recognition of HA by both the NKp44 and NKp46 receptors, resulting in reduced elimination of the infected cells by NK cells. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. An Adult Case of Chronic Active Epstein-Barr Virus Infection with Interstitial Pneumonitis

    Science.gov (United States)

    Joo, Eun-Jeong; Ha, Young Eun; Jung, Dong Sik; Cheong, Hae Suk; Wi, Yu Mi; Song, Jae-Hoon

    2011-01-01

    Chronic active Epstein-Barr virus (CAEBV) infection is characterized by persistent infectious mononucleosis-like symptoms, an unusual pattern of Epstein-Barr virus (EBV) antibodies, detection of the EBV genome in affected tissues or peripheral blood, and chronic illness that cannot be attributed to any other known disease. This is the first reported Korean case of an immunocompetent adult with CAEBV-associated interstitial pneumonitis. A 28-year-old female was admitted with a fever that persisted for 3 weeks. She had multiple lymphadenopathy, hepatosplenomegaly, pancytopenia, and elevated serum aminotransferase levels. Serology for antibodies was positive and chest computed tomography showed diffuse ground glass opacities in both lungs. Histopathology of the lung tissue showed lymphocyte infiltration, and EBV DNA was detected in those lymphocytes using in situ hybridization with an EBV-encoded RNA probe. After 1 month of hospitalization, she improved without specific treatment. PMID:22205850

  2. Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus

    Directory of Open Access Journals (Sweden)

    Ara Silva

    2011-01-01

    Full Text Available In recent years, the search for natural plant products to fight viral diseases has been increasing. In this work, two Spondias species, namely S. mombin and S. tuberosa, found in Ceará state (Brazil, and their main phenolic components were evaluated against dengue virus. In vitro antiviral tests were performed against type-2 dengue virus by the MTT method and standard cytopathic effect reduction assay in C6/36 cells. Cytotoxicity was also evaluated by MTT. The presence of phenolic compounds quercetin, rutin, and ellagic acid in plant extracts was characterized by HPLC analysis. Both Spondias species extracts and components were nontoxic to the cells whereas rutin and quercetin displayed relevant antiviral activity with IC50 of 362.68 µg/mL and 500 µg/mL, respectively.

  3. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    Science.gov (United States)

    Mudhasani, Rajini; Kota, Krishna P; Retterer, Cary; Tran, Julie P; Whitehouse, Chris A; Bavari, Sina

    2014-08-01

    High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and

  4. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    Directory of Open Access Journals (Sweden)

    Rajini Mudhasani

    2014-08-01

    Full Text Available High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362, which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their

  5. Persistently high Epstein-Barr virus (EBV) loads in peripheral blood lymphocytes from patients with chronic active EBV infection.

    Science.gov (United States)

    Maeda, A; Wakiguchi, H; Yokoyama, W; Hisakawa, H; Tomoda, T; Kurashige, T

    1999-04-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a severe illness with unusual EBV activation that persists for years, and its pathogenesis is largely unknown. After the creation of an accurate and reproducible polymerase chain reaction system to quantify EBV DNA, virus loads in peripheral blood lymphocytes (PBL) were determined in 54 children: 15 with CAEBV, 16 with infectious mononucleosis (IM), and 23 healthy children. Children with CAEBV and those with IM had high virus loads. Lower loads were detected in 47% of seropositive healthy donors. There were two distinct differences between children with CAEBV and those with IM: The former had greater viral replication (10(3)-10(7) copies/2.5x10(5) PBL) than those with IM, and viral replication declined in children with IM whereas active replication persisted for years in subjects with CAEBV. Persisting high virus loads are a possible diagnostic criterion for CAEBV. EBV loads may enable classification and prognosis of EBV infections.

  6. Alternative nucleophilic substrates for the endonuclease activities of human immunodeficiency virus type 1 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Ealy, Julie B. [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Department of Chemistry, Penn State Lehigh Valley, 2809 E. Saucon Valley Road, Center Valley, PA 18034 (United States); Sudol, Malgorzata [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Krzeminski, Jacek; Amin, Shantu [Department of Pharmacology, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033 (United States); Katzman, Michael, E-mail: mkatzman@psu.edu [Department of Medicine, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, PO Box 850, Mail Services H036, Hershey, PA 17033 (United States); Department of Microbiology and Immunology, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033 (United States)

    2012-11-10

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase.

  7. Generalized immune activation and innate immune responses in simian immunodeficiency virus infection.

    Science.gov (United States)

    Bosinger, Steven E; Sodora, Donald L; Silvestri, Guido

    2011-09-01

    Chronic immune activation is a key factor driving the immunopathogenesis of AIDS. During pathogenic HIV/simian immunodeficiency virus (SIV) infections, innate and adaptive antiviral immune responses contribute to chronic immune activation. In contrast, nonpathogenic SIV infections of natural hosts such as sooty mangabeys and African green monkeys (AGMs) are characterized by low immune activation despite similarly high viremia. This review focuses on the role of innate immune responses in SIV infection. Several studies have examined the role of innate immune responses to SIV as potential drivers of immune activation. The key result of these studies is that both pathogenic SIV infection of macaques and nonpathogenic SIV infections of natural hosts are associated with strong innate immune responses to the virus, high production of type I interferons by plasmacytoid dendritic cells, and upregulation of interferon-stimulated genes (ISGs). However, SIV-infected sooty mangabeys and AGMs (but not SIV-infected macaques) rapidly downmodulate the interferon response within 4-6 weeks of infection, thus resulting in a state of limited immune activation during chronic infection. Studies in nonhuman primates suggest that chronic innate/interferon responses may contribute to AIDS pathogenesis. Further, the ability of natural host species to resolve innate immune responses after infection provides a novel avenue for potential immunotherapy.

  8. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Science.gov (United States)

    Bastos, Juliana Cristina Santiago; Kohn, Luciana Konecny; Fantinatti-Garboggini, Fabiana; Padilla, Marina Aiello; Flores, Eduardo Furtado; da Silva, Bárbara Pereira; de Menezes, Cláudia Beatriz Afonso; Arns, Clarice Weis

    2013-01-01

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18) and 584 (150 µg/mL, SI 27) showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C. PMID:23628828

  9. Antiviral activity of Bacillus sp. isolated from the marine sponge Petromica citrina against bovine viral diarrhea virus, a surrogate model of the hepatitis C virus.

    Science.gov (United States)

    Bastos, Juliana Cristina Santiago; Kohn, Luciana Konecny; Fantinatti-Garboggini, Fabiana; Padilla, Marina Aiello; Flores, Eduardo Furtado; da Silva, Bárbara Pereira; de Menezes, Cláudia Beatriz Afonso; Arns, Clarice Weis

    2013-04-29

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18) and 584 (150 µg/mL, SI 27) showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  10. Low pathogenic influenza A virus activity at avian interfaces in Ohio zoos, 2006-2009.

    Science.gov (United States)

    Nolting, Jacqueline M; Dennis, Patricia; Long, Lindsey; Holtvoigt, Lauren; Brown, Deniele; King, Mary Jo; Shellbarger, Wynonna; Hanley, Chris; Killian, Mary Lea; Slemons, Richard D

    2013-09-01

    This investigation to examine influenza A virus activity in avian species at four Ohio zoos was initiated to better understand the ecology of avian-origin influenza A (AIV) virus in wild aquatic birds and the possibility of spill-over of such viruses into captive zoo birds, both native and foreign species. Virus isolation efforts resulted in the recovery of three low pathogenic (LP) AIV isolates (one H7N3 and two H3N6) from oral-pharyngeal or cloacal swabs collected from over 1000 zoo birds representing 94 species. In addition, 21 LPAIV isolates possessing H3N6, H4N6, or H7N3 subtype combinations were recovered from 627 (3.3%) environmental fecal samples collected from outdoor habitats accessible to zoo and wild birds. Analysis of oral-pharyngeal and cloacal swabs collected from free-ranging mallards (Anas platyrhynchos) live-trapped at one zoo in 2007 resulted in the recovery of 164 LPAIV isolates (48% of samples) representing five HA and six NA subtypes and at least nine HA-NA combinations. The high frequency of isolate recovery is undoubtedly due to the capture and holding of wild ducks in a common pen before relocation. Serologic analyses using an agar gel immune diffusion assay detected antibodies to the influenza A virus type-specific antigen in 147 of 1237 (11.9%) zoo bird sera and in 14 of 154 (9%) wild mallard sera. Additional analyses of a limited number of zoo bird sera demonstrated HA- and NA-inhibition activity to 15 HA and nine NA subtypes. The spectrum of HA antibodies indicate antibody diversity of AIV infecting zoo birds; however, the contribution of heterologous cross-reactions and steric interference was not ruled out. This proactive investigation documented that antigenically diverse LPAIVs were active in all three components of the avian zoologic-wild bird interfaces at Ohio zoos (zoo birds, the environment, and wild birds). The resulting baseline data provides insight and justification for preventive medicine strategies for zoo birds.

  11. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  12. In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination.

    Science.gov (United States)

    Kwon, Hyung-Jun; Kim, Ha-Hyun; Yoon, So Young; Ryu, Young Bae; Chang, Jong Sun; Cho, Kyoung-Oh; Rho, Mun-Chual; Park, Su-Jin; Lee, Woo Song

    2010-11-10

    Alpinia katsumadai (AK) extracts and fractions were tested for in vitro antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1) and avian A/Chicken/Korea/MS96/96 (H9N2), by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment. In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). The 50% effective inhibitory concentrations (EC₅₀) of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 μg/mL against A/PR/8/34 (H1N1). The two AK extracts and three AK fractions had EC₅₀ values ranging from Korea/MS96/96 (H9N2). By the hemagglutination inhibition (HI) assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 μg/mL against both A/PR/8/34 (H1N1) and A/Chicken/Korea/MS96/96 (H9N2). Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR. These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis.

  13. Influenza virus M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface.

    Science.gov (United States)

    Alvarado-Facundo, Esmeralda; Gao, Yamei; Ribas-Aparicio, Rosa María; Jiménez-Alberto, Alicia; Weiss, Carol D; Wang, Wei

    2015-02-01

    The influenza virus hemagglutinin (HA) envelope protein mediates virus entry by first binding to cell surface receptors and then fusing viral and endosomal membranes during endocytosis. Cleavage of the HA precursor (HA0) into a surface receptor-binding subunit (HA1) and a fusion-inducing transmembrane subunit (HA2) by host cell enzymes primes HA for fusion competence by repositioning the fusion peptide to the newly created N terminus of HA2. We previously reported that the influenza virus M2 protein enhances pandemic 2009 influenza A virus [(H1N1)pdm09] HA-pseudovirus infectivity, but the mechanism was unclear. In this study, using cell-cell fusion and HA-pseudovirus infectivity assays, we found that the ion channel function of M2 was required for enhancement of HA fusion and HA-pseudovirus infectivity. The M2 activity was needed only during HA biosynthesis, and proteolysis experiments indicated that M2 proton channel activity helped to protect (H1N1)pdm09 HA from premature conformational changes as it traversed low-pH compartments during transport to the cell surface. While M2 has previously been shown to protect avian influenza virus HA proteins of the H5 and H7 subtypes that have polybasic cleavage motifs, this study demonstrates that M2 can protect HA proteins from human H1N1 strains that lack a polybasic cleavage motif. This finding suggests that M2 proton channel activity may play a wider role in preserving HA fusion competence among a variety of HA subtypes, including HA proteins from emerging strains that may have reduced HA stability. Influenza virus infects cells when the hemagglutinin (HA) surface protein undergoes irreversible pH-induced conformational changes after the virus is taken into the cell by endocytosis. HA fusion competence is primed when host cell enzymes cleave the HA precursor. The proton channel function of influenza virus M2 protein has previously been shown to protect avian influenza virus HA proteins that contain a polybasic cleavage

  14. Point mutations in the paramyxovirus F protein that enhance fusion activity shift the mechanism of complement-mediated virus neutralization.

    Science.gov (United States)

    Johnson, John B; Schmitt, Anthony P; Parks, Griffith D

    2013-08-01

    Parainfluenza virus 5 (PIV5) activates and is neutralized by the alternative pathway (AP) in normal human serum (NHS) but not by heat-inactivated (HI) serum. We have tested the relationship between the fusion activity within the PIV5 F protein, the activation of complement pathways, and subsequent complement-mediated virus neutralization. Recombinant PIV5 viruses with enhanced fusion activity were generated by introducing point mutations in the F fusogenic peptide (G3A) or at a distal site near the F transmembrane domain (S443P). In contrast to wild-type (WT) PIV5, the mutant G3A and S443P viruses were neutralized by both NHS and HI serum. Unlike WT PIV5, hyperfusogenic G3A and S443P viruses were potent C4 activators, C4 was deposited on NHS-treated mutant virions, and the mutants were neutralized by factor B-depleted serum but not by C4-depleted serum. Antibodies purified from HI human serum were sufficient to neutralize both G3A and S443P viruses in vitro but were ineffective against WT PIV5. Electron microscopy data showed greater deposition of purified human antibodies on G3A and S443P virions than on WT PIV5 particles. These data indicate that single amino acid changes that enhance the fusion activity of the PIV5 F protein shift the mechanism of complement activation in the context of viral particles or on the surface of virus-infected cells, due to enhanced binding of antibodies. We present general models for the relationship between enhanced fusion activity in the paramyxovirus F protein and increased susceptibility to antibody-mediated neutralization.

  15. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages.

    Science.gov (United States)

    Cheng, Xiaoming; Xia, Yuchen; Serti, Elisavet; Block, Peter Daniel; Chung, Michelle; Chayama, Kazuaki; Rehermann, Barbara; Liang, T Jake

    2017-12-01

    Hepatitis B virus (HBV) infects hepatocytes specifically and causes immune-mediated liver damage. How HBV interacts with the innate immunity at the early phase of infection, either with hepatocytes or other cells in the liver, remains controversial. To address this question, we utilized various human cell-culture models and humanized Alb-uPA/SCID mice. All these models were unable to mount an interferon (IFN) response despite robust HBV replication. To elucidate the mechanisms involved in the lack of IFN response, we examined whether HBV actively inhibits innate immune functions of hepatocytes. By treating HBV-infected cells with known inducers of the IFN signaling pathway, we observed no alteration of either sensing or downstream IFN response by HBV. We showed that the DNA innate sensing pathways are poorly active in hepatocytes, consistent with muted innate immune recognition of HBV. Upon exposure to high-level HBV, human macrophages could be activated with increased inflammatory cytokine expressions. HBV behaves like a "stealth" virus and is not sensed by, nor actively interferes with, the intrinsic innate immunity of infected hepatocytes. Macrophages are capable of sensing HBV, but require exposure to high HBV titers, potentially explaining the long "window period" during acute infection and HBV's propensity to chronic infection. (Hepatology 2017;66:1779-1793). © 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

  16. Dimerization of tetherin is not essential for its antiviral activity against Lassa and Marburg viruses.

    Directory of Open Access Journals (Sweden)

    Toshie Sakuma

    Full Text Available Tetherin (also known as BST2, CD317 or HM1.24 has recently been reported to inhibit a wide range of viruses. However, the antiviral mechanism of action of tetherin has not been determined. Both ends of the tetherin molecule are associated with the plasma membrane and it forms a homodimer. Therefore, a model in which progeny virions are retained on the cell surface by dimer formation between tetherin molecules on the viral envelope and plasma membrane has been proposed as the antiviral mechanism of action of this molecule. To investigate this possibility, we examined the correlation between dimerization and antiviral activity of tetherin in Lassa and Marburg virus-like particle production systems using tetherin mutants deficient in dimer formation. However, the tetherin mutant with complete loss of dimerization activity still showed apparent antiviral activity, indicating that dimerization of tetherin is not essential for its antiviral activity. This suggests that tetherin retains progeny virions on the cell surface by a mechanism other than dimerization.

  17. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses

    Directory of Open Access Journals (Sweden)

    Mazyar Etemadzade

    2016-11-01

    Full Text Available Objective: To evaluate the effect of novel sonochemical silver nanorods on HIV and herpes simplex virus type 1 (HSV-1 viruses in human cervical cancer HeLa cells. Methods: The formation of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The antiviral activity of this Ag-MES was examined against HIV and HSV-1 virus replication. Results: The characterizations of Ag-MES and physiochemical structure were determined by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Approximately entire viral replication was inhibited by Ag-MES at 10 µmol/mL concentration. About 90% of HSV virions failed to replicate in the present of this concentration of nanorods. However, HIV showed more sensitivity to Ag-MES than HSV-1. Conclusions: According to the obtained data, the synthesized sonochemical silver nanorod in this study is a promising candidate for further drug discovery investigation.

  18. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity.

    Science.gov (United States)

    Johansen, Lisa M; DeWald, Lisa Evans; Shoemaker, Charles J; Hoffstrom, Benjamin G; Lear-Rooney, Calli M; Stossel, Andrea; Nelson, Elizabeth; Delos, Sue E; Simmons, James A; Grenier, Jill M; Pierce, Laura T; Pajouhesh, Hassan; Lehár, Joseph; Hensley, Lisa E; Glass, Pamela J; White, Judith M; Olinger, Gene G

    2015-06-03

    Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections. Copyright © 2015, American Association for the Advancement of Science.

  19. Activity of polymerase proteins of vaccine and wild-type measles virus strains in a minigenome replication assay.

    Science.gov (United States)

    Bankamp, Bettina; Kearney, Sean P; Liu, Xin; Bellini, William J; Rota, Paul A

    2002-07-01

    The relative activities of five measles virus (MV) polymerase (L) proteins were compared in an intracellular, plasmid-based replication assay. When coexpressed with N and P proteins from an attenuated strain, L proteins from two attenuated viruses directed the production of up to eight times more reporter protein from an MV minigenome than the three wild-type L proteins. Northern blot analysis demonstrated that the differences in reporter protein production correlated with mRNA transcription levels. Increased activity of polymerases from attenuated viruses equally affected mRNA transcription and minigenome replication. The higher level of transcription may be a consequence of increased template availability or may be an independent effect of the elevated activity of the attenuated polymerases. Coexpression of wild-type L proteins with homologous N and P proteins did not affect the activity of the wild-type polymerases, indicating that the differential activity was a function of the L proteins alone. Use of a minigenome that incorporated two nucleotide changes found in the genomic leader of the three wild-type viruses did not raise the activity of the wild-type L proteins. These data demonstrate that increased polymerase activity differentiates attenuated from wild-type viruses and suggest that functions involved in RNA synthesis contribute to the attenuated phenotype of MV vaccine strains.

  20. Viroporin Activity of the Foot-and-Mouth Disease Virus Non-Structural 2B Protein.

    Directory of Open Access Journals (Sweden)

    Da Ao

    Full Text Available Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER, with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca(2+ concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.

  1. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  2. NK cells are strongly activated by Lassa and Mopeia virus-infected human macrophages in vitro but do not mediate virus suppression.

    Science.gov (United States)

    Russier, Marion; Reynard, Stéphanie; Tordo, Noël; Baize, Sylvain

    2012-07-01

    Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Arenaviruses. LASV causes hemorrhagic fever, whereas MOPV is not pathogenic. Both viruses display tropism for APCs such as DCs and macrophages. During viral infections, NK cells are involved in the clearance of infected cells and promote optimal immune responses by interacting with APCs. We used an in vitro model of human NK and APC coculture to study the role of NK cells and to characterize their interactions with APCs during LASV and MOPV infections. As expected, NK cells alone were neither infected nor activated by LASV and MOPV, and infected DCs did not activate NK cells. By contrast, LASV- and MOPV-infected macrophages activated NK cells, as shown by the upregulation of CD69, NKp30, and NKp44, the downregulation of CXCR3, and an increase in NK-cell proliferation. NK cells acquired enhanced cytotoxicity, as illustrated by the increase in granzyme B (GrzB) expression and killing of K562 targets, but did not produce IFN-γ. Contact between NK cells and infected macrophages and type I IFNs were essential for activation; however, NK cells could not kill infected cells and control infection. Overall, these findings show that MOPV- as well as pathogenic LASV-infected macrophages mediate NK-cell activation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    Science.gov (United States)

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, Carolyn

    2016-07-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  4. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    Directory of Open Access Journals (Sweden)

    Cecilia Rademeyer

    2016-07-01

    Full Text Available The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001. Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009 and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml, VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml. The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1 was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of

  5. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity.

    Science.gov (United States)

    Martinez, Zachary S; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R; Echegoyen, Luis; Llano, Manuel

    2016-10-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4(+) T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4(+) T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Activating KIRs in Chronic Lymphoproliferative Disorder of NK Cells: Protection from Viruses and Disease Induction?

    Science.gov (United States)

    Zambello, Renato; Teramo, Antonella; Barilà, Gregorio; Gattazzo, Cristina; Semenzato, Gianpietro

    2014-01-01

    Human natural killer (NK) cells are functionally regulated by killer cell immunoglobulin-like receptors (KIRs) and their interactions with HLA class I molecules. As KIR expression in a given NK cell is stochastically established, KIR repertoire perturbations reflect a dominance of discrete NK-cell subsets as the consequence of adaptation of the NK-cell compartment to exogenous agents, more often represented by virus infection. Although inhibitory interactions between KIR and their cognate HLA class I ligands abrogate effector responses of NK cells, they are also required for the functional education of NK cell. The biology and molecular specificities of the activating KIRs are less well defined, and most interactions with presumed HLA class I ligands are weak. Interestingly, epidemiologic studies link activating KIR genes to resistance against numerous virus infections. Chronic lymphoproliferative disorder of NK cells (CLPD-NK) is an indolent NK cell disease characterized by a persistent increase of circulating NK cells (usually exceeding 500 NK cells/mm(3)). The mechanism through which NK cells are induced to proliferate during CLPD-NK pathogenesis is still a matter of debate. Accumulating data suggest that exogenous agents, in particular viruses, might play a role. The etiology of CLPD-NK, however, is largely unknown. This is likely due to the fact that not a single, specific agent is responsible for the NK cells proliferation, which perhaps represents the expression of an abnormal processing of different foreign antigens, sharing a chronic inflammatory background. Interestingly, proliferating NK cells are typically characterized by expression of a restricted pattern of KIR, which have been demonstrated to be mostly represented by the activating form. This finding indicates that these receptors may be directly involved in the priming of NK cells proliferation.

  7. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity.

    Science.gov (United States)

    Hu, Yuan; Cheng, Xiaohong; Cao, Feng; Huang, Ailong; Tavis, John E

    2013-09-01

    Hepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >350 million people and kills about 1 million patients annually. Therapy primarily employs nucleos(t)ide analogs that suppress viral DNA synthesis by the viral reverse transcriptase very well but that rarely cure the infection, so additional therapies are needed. Reverse transcription requires the viral ribonuclease H (RNAseH) to destroy the viral RNA after it has been copied into DNA. We recently produced active recombinant HBV RNAseH and demonstrated that Human Immunodeficiency Virus (HIV) RNAseH antagonists could inhibit the HBV enzyme at a high frequency. Here, we extended these results to β-thujaplicinol, a hydroxylated tropolone which inhibits the HIV RNAseH. β-Thujaplicinol inhibited RNAseHs from HBV genotype D and H in biochemical assays with IC₅₀ values of 5.9±0.7 and 2.3±1.7 μM, respectively. It blocked replication of HBV genotypes A and D in culture by inhibiting the RNAseH activity with an estimated EC₅₀ of ∼5 μM and a CC₅₀ of 10.1±1. 7 μM. Activity of β-thujaplicinol against RNAseH sequences from multiple HBV genotypes implies that if chemical derivatives of β-thujaplicinol with improved efficacy and reduced toxicity can be identified, they would have promise as anti-HBV agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus

    Science.gov (United States)

    Chiba, Sotaro; Suzuki, Nobuhiro

    2015-01-01

    Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing. PMID:26283371

  9. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment

    DEFF Research Database (Denmark)

    Gonzalez, Veronica D; Falconer, Karolin; Blom, Kim G

    2009-01-01

    Chronic immune activation is a driver of human immunodeficiency virus type 1 (HIV-1) disease progression. Here, we describe that subjects with chronic hepatitis C virus (HCV)/HIV-1 coinfection display sharply elevated immune activation as determined by CD38 expression in T cells. This occurs......, despite effective antiretroviral therapy, in both CD8 and CD4 T cells and is more pronounced than in the appropriate monoinfected control groups. Interestingly, the suppression of HCV by pegylated alpha interferon and ribavirin treatment reduces activation. High HCV loads and elevated levels of chronic...

  10. A case of chronic active Epstein-Barr virus infection mimicking adult-onset Still's disease.

    Science.gov (United States)

    Yoshioka, Katsunobu; Fukushima, Hiroko; Ishii, Naomi; Kita, Akiko; Hanioka, Yusuke; Minami, Mieko; Inoue, Takeshi; Yamagami, Keiko

    2013-01-01

    An 83-year-old man was diagnosed with adult-onset Still's disease (AOSD) based on clinical and laboratory findings. However, glucocorticoid had little effect. Epstein-Barr virus (EBV)-DNA was detected in peripheral blood, and autopsy findings confirmed a diagnosis of chronic active EBV infection (CAEBV). CAEBV mimics AOSD, and the presence of articular involvement and leukocytosis does not exclude the possibility of CAEBV. CAEBV should be included in the differential diagnosis of AOSD, and measurement of EBV-DNA is essential.

  11. M-protein-positive chronic active Epstein-Barr virus infection: features mimicking HIV-1 infection

    OpenAIRE

    Imashuku, Shinsaku; Azuma, Naoto; Kanegane, Hirokazu; Kasahara, Yoshihito

    2009-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a unique and fatal lymphoproliferative disease (LPD), which often shows high serum IgG and/or IgE. The significance of such immunoglobulin abnormalities in CAEBV has not been fully evaluated and discussed. In addition, such clinical features mimic HIV-1 infection. We report here a case of CAEBV with M-protein detected which may shed a new light on the pathogenesis of this disease. © 2009 The Japanese Society of Hematology.

  12. Enhanced polymerase activity confers replication competence of Borna disease virus in mice.

    Science.gov (United States)

    Ackermann, Andreas; Kugel, Daniela; Schneider, Urs; Staeheli, Peter

    2007-11-01

    We previously showed that mouse adaptation of cDNA-derived Borna disease virus (BDV) strain He/80(FR) was associated exclusively with mutations in the viral polymerase complex. Interestingly, independent mouse adaptation of non-recombinant He/80 was correlated with different alterations in the polymerase and mutations in the viral glycoprotein. We used reverse genetics to demonstrate that changes in the polymerase which improve enzymatic activity represent the decisive host range mutations. The glycoprotein mutations did not confer replication competence in mice, although they slightly improved viral performance if combined with polymerase mutations. Our findings suggest that the viral polymerase restricts the host range of BDV.

  13. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication.

    Directory of Open Access Journals (Sweden)

    Kerstin Wunderlich

    Full Text Available There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.

  14. Infection of goats with goatpox virus triggers host antiviral defense through activation of innate immune signaling.

    Science.gov (United States)

    Zeng, Xiancheng; Wang, Song; Chi, Xiaojuan; Chen, Shi-long; Huang, Shile; Lin, Qunqun; Xie, Baogui; Chen, Ji-Long

    2016-02-01

    Goatpox, caused by goatpox virus (GTPV), is one of the most serious infectious diseases associated with high morbidity and mortality in goats. However, little is known about involvement of host innate immunity during the GTPV infection. For this, goats were experimentally infected with GTPV. The results showed that GTPV infection significantly induced mRNA expression of type I interferon (IFN)-α and IFN-β in peripheral blood lymphocytes, spleen and lung. In addition, GTPV infection enhanced expression of several inflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18; and tumor necrosis factor-α (TNF-α). Strikingly, infection with GTPV activated signal transducers and activators of transcription 3 (STAT3), a critical cytokine signaling molecule. Interestingly, the virus infection induced expression of suppressor of cytokine signaling (SOCS)-1. Importantly, the infection resulted in an increased expression of some critical interferon-stimulated genes, such as interferon-induced transmembrane protein (IFITM) 1, IFITM3, interferon stimulated gene (ISG) 15 and ISG20. Furthermore, we found that infection with GTPV up-regulated expression of Toll-like receptor (TLR) 2 and TLR9. These results revealed that GTPV infection activated host innate immune signaling and thereby triggered antiviral innate immunity. The findings provide novel insights into complex mechanisms underlying GTPV-host interaction and pathogenesis of GTPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Altered invertase activities of symptomatic tissues on Beet severe curly top virus (BSCTV) infected Arabidopsis thaliana.

    Science.gov (United States)

    Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan

    2013-09-01

    Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.

  16. Analysis of the activity of virus internal ribosome entry site in silkworm Bombyx mori.

    Science.gov (United States)

    Ye, Lupeng; Zhuang, Lanfang; Li, Jisheng; You, Zhengying; Liang, Jianshe; Wei, Hao; Lin, Jianrong; Zhong, Boxiong

    2013-07-01

    Internal ribosome entry site (IRES) has been widely used in genetic engineering; however, the application in silkworm (Bombyx mori) has hardly been reported. In this study, the biological activity of partial sequence of Encephalomyocarditis virus (EMCV) IRES, Rhopalosiphum padi virus (RhPV) IRES, and the hybrid of IRES of EMCV and RhPV were investigated in Spodoptera frugiperda (Sf9) cell line and silkworm tissues. The hybrid IRES of EMCV and RhPV showed more effective than EMCV IRES or RhPV IRES in promoting downstream gene expression in insect and silkworm. The activities of all IRESs in middle silk gland of silkworm were higher than those in the fat body and posterior silk gland. The hybrid IRES of EMCV and RhPV was integrated into silkworm genome by transgenic technology to test biological activity of IRES. Each of the positive transgenic individuals had significant expression of report gene EGFP. These results suggested that IRES has a potential to be used in the genetic engineering research of silkworm.

  17. Low prevalence of transcriptionally active human papilloma virus in Indian patients with HNSCC and leukoplakia.

    Science.gov (United States)

    Bhosale, Priyanka G; Pandey, Manishkumar; Desai, Rajiv S; Patil, Asawari; Kane, Shubhada; Prabhash, Kumar; Mahimkar, Manoj B

    2016-11-01

    In the present study, we comprehensively analyzed the prevalence of transcriptionally active human papilloma virus (HPV) in tissue samples of Indian patients with leukoplakia, predominantly hyperplastic lesions and head and neck squamous cell carcinoma (HNSCC). In addition, saliva samples from patients with HNSCC were screened for HPV detection. P16 overexpression was analyzed by immunohistochemistry. Tissue samples of leukoplakia (n = 121) and HNSCC (n = 427) and saliva from patients with HNSCC (n = 215) were tested for HPV using nested polymerase chain reaction. Positive samples were sequenced for subtyping. The presence of HPV E6/E7 mRNA was confirmed by RNA in situ hybridization. P16 expression and HPV DNA were not detected in any of the leukoplakia specimens. Of the 427 HNSCC tumors, 9 showed p16 overexpression and 7/427 cases were positive for HPV16 DNA, in saliva or tissue. E6/E7 mRNA positivity was observed in 8 HNSCC samples, primarily from patients with no habit of tobacco consumption. The prevalence of high-risk HPV was restricted to oropharynx and larynx, with very little concordance between p16 overexpression and HPV positivity. All patients with HPV-positive saliva samples had transcriptionally active HPV present in their tumors. The presence of HPV DNA does not necessarily reflect transcriptionally active virus in tumors; hence, it is important to consider this fact while categorizing HPV-associated tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rapid NK-cell activation in chicken after infection with infectious bronchitis virus M41.

    Science.gov (United States)

    Vervelde, L; Matthijs, M G R; van Haarlem, D A; de Wit, J J; Jansen, C A

    2013-02-15

    Natural killer (NK) cells are cytotoxic lymphocytes and play an important role in the early defence against viruses. In this study we focussed on NK cell and interferon (IFN) responses after infection with infectious bronchitis virus (IBV). Based on surface expression of CD107+, enhanced activation of lung NK cells was observed at 1 dpi, whereas in blood prolonged NK-cell activation was found. IFN-α and IFN-β mRNA and proteins were not rapidly induced whereas IFN-γ production in lung, measured by Elispot assay, increased over time at 2 and 4 dpi. In contrast, IFN-γ production in blood was highest at 1 dpi and decreased over time down to levels comparable to uninfected birds at 4 dpi. Collectively, infection with IBV-M41 resulted in activation of NK cells in the lung and blood and rapid production of IFN-γ and not IFN-α and IFN-β compared to uninfected birds. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    To determine the mechanism by which non-MHC genes control the rate of virus clearance in mice infected with lymphocytic choriomeningitis virus, a segregating backcross population was studied. Thirty BC1 animals were infected with virus, and virus-specific delayed-type hypersensitivity (DTH......) was followed by measurement of footpad swelling. Ten days after virus inoculation, the animals were sacrificed and spleen virus titer together with splenic Tc activity was measured. With regard to all three parameters a continuous distribution was observed in this backcross population. However, using cutoff...... values based on parental and F1 animals tested in parallel, 11/30 animals were assigned Tc responders, 23/30 DTH responders and 10/30 cleared virus with maximal efficiency. Comparison of responder status with regard to the different parameters revealed a strong correlation between Tc responsiveness...

  20. Evaluation ofin vitro antiviral activity ofVitex Negundo L., Hyptis suaveolens (L poit., Decalepis hamiltonii Wight & Arn., to Chikungunya virus

    Directory of Open Access Journals (Sweden)

    Sangeetha Kothandan

    2014-02-01

    Full Text Available Objective: To screen the three Indian plants for the antiviral activity to chikungunya virus since chikungunya infections are treated symptomatically without specific drugs till date. Methods: In vitro cytotoxicity assay of the lyophilised extracts was assessed in vero cells for the determination of maximum non toxic concentration and in vitro antiviral assay was evaluated by the inhibition of virus induced cytopathic effect. Results: Aqueous and aqueous ethanolic extracts of Hyptis suaveolens exhibited partial inhibition to Asian strain of chikungunya virus. Conclusion: Of all the three plants tested for antiviral activity to both the lineages of chikungunya virus, Hyptis suaveolens were found to be effective to Asian strain of chikungunya virus.

  1. The use of early summer mosquito surveillance to predict late summer West Nile virus activity

    Science.gov (United States)

    Ginsberg, Howard S.; Rochlin, Ilia; Campbell, Scott R.

    2010-01-01

    Utility of early-season mosquito surveillance to predict West Nile virus activity in late summer was assessed in Suffolk County, NY. Dry ice-baited CDC miniature light traps paired with gravid traps were set weekly. Maximum-likelihood estimates of WNV positivity, minimum infection rates, and % positive pools were generally well correlated. However, positivity in gravid traps was not correlated with positivity in CDC light traps. The best early-season predictors of WNV activity in late summer (estimated using maximum-likelihood estimates of Culex positivity in August and September) were early date of first positive pool, low numbers of mosquitoes in July, and low numbers of mosquito species in July. These results suggest that early-season entomological samples can be used to predict WNV activity later in the summer, when most human cases are acquired. Additional research is needed to establish which surveillance variables are most predictive and to characterize the reliability of the predictions.

  2. Predominant involvement of CD8+CD28- lymphocytes in human immunodeficiency virus-specific cytotoxic activity.

    Science.gov (United States)

    Fiorentino, S; Dalod, M; Olive, D; Guillet, J G; Gomard, E

    1996-01-01

    Distinct functional CD8+ T-cell populations have been observed during human immunodeficiency virus (HIV) infection. One of these functions is the inhibition of viral replication by a noncytotoxic mechanism, which was shown to be mediated by the CD8+CD28+ subpopulation. On the other hand, CD8+ T cells exert an HIV-specific cytotoxic activity. The present study shows that CD8+CD28- lymphocytes display this HIV-specific cytotoxic activity, which is detectable immediately after the cells are purified from peripheral blood. The CD28- population is also able to proliferate and to retain its cytotoxic activity after in vitro restimulation with autologous blast cells. Finally, HIV-specific cytotoxic T cells can be obtained in vitro from the CD8+CD28+ population. PMID:8627730

  3. Insights into the structure and activity of prototype foamy virus RNase H

    Directory of Open Access Journals (Sweden)

    Leo Berit

    2012-02-01

    Full Text Available Abstract Background RNase H is an endonuclease that hydrolyzes the RNA strand in RNA/DNA hybrids. Retroviral reverse transcriptases harbor a C-terminal RNase H domain whose activity is essential for viral replication. The RNase H degrades the viral genomic RNA after the first DNA strand is synthesized. Here, we report the biophysical and enzymatic properties of the RNase H domain of prototype foamy virus (PFV as an independently purified protein. Sequence comparisons with other retroviral RNases H indicated that PFV RNase H harbors a basic protrusion, including a basic loop and the so-called C-helix, which was suggested to be important for activity and substrate binding and is absent in the RNase H domain of human immunodeficiency virus. So far, no structure of a retroviral RNase H containing a C-helix is available. Results RNase H activity assays demonstrate that the PFV RNase H domain is active, although its activity is about 200-fold reduced as compared to the full length protease-reverse transcriptase enzyme. Fluorescence equilibrium titrations with an RNA/DNA substrate revealed a KD for the RNase H domain in the low micromolar range which is about 4000-fold higher than that of the full-length protease-reverse transcriptase enzyme. Analysis of the RNase H cleavage pattern using a [32P]-labeled substrate indicates that the independent RNase H domain cleaves the substrate non-specifically. The purified RNase H domain exhibits a well defined three-dimensional structure in solution which is stabilized in the presence of Mg2+ ions. Conclusions Our data demonstrate that the independent PFV RNase H domain is structured and active. The presence of the C-helix in PFV RNase H could be confirmed by assigning the protein backbone and calculating the chemical shift index using NMR spectroscopy.

  4. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  5. Characterization of hemagglutination activity of emerging Newcastle disease virus in Bangladesh

    Directory of Open Access Journals (Sweden)

    Helal Uddin

    2017-06-01

    Full Text Available Aim: Newcastle disease (ND is an important viral disease for poultry caused by avian paramyxovirus which can be identified by its nature of agglutination activity with red blood cell (RBC of different species. The study was aimed to characterize the hemagglutinating (HA activity of ND virus (NDV at three different temperatures using RBC of five avian species, six mammalian species, and eight different human blood groups. Materials and Methods: The study was conducted from January to December 2014 at Chittagong Veterinary and Animal Sciences University. Five avian and six different mammalian species were selected for the study. In each species, two blood samples were collected aseptically. Eight different blood groups (A+, A−, B+, B−, AB+, AB−, O+, and O− were studied in human. HA test was performed using two virus strains ND lasota and field isolate of very virulent NDV (VVNDV with mentioned species of RBC at chilling (4°C, incubating (37°C, and room temperature (24°C. Results: Avian RBC requires less time for agglutination than mammalian RBC. Incubation temperature (37°C requires lowest time and chilling temperature requires highest time for agglutination of RBC. Duck RBC requires lowest time (17.81 min while chicken RBC needs highest (57.5 min time for HA at incubation temperature and at chilling temperature, respectively, against ND lasota virus and with field strain. Goat RBC requires significantly higher time for HA (184.68 min at chilling temperature than other mammalian species. Human RBC requires almost similar time but O+ and O− blood group do not show any HA activity. Significant variation (p<0.05 found in quail RBC at incubation temperature. In mammalian species, a significant difference (p<0.05 has been observed in goat and horse RBC at chilling; horse and dog RBC at incubation; goat, horse, buffalo, and dog RBC at room temperature. In human, significant variation (p<0.05 has been found in A+, A− and B− blood group

  6. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication.

    Science.gov (United States)

    Botting, Carolyn; Lu, Xu; Triezenberg, Steven J

    2016-01-27

    Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.

  7. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation.

    Science.gov (United States)

    Wong, Joyce J W; Young, Tracy A; Zhang, Jiayan; Liu, Shiheng; Leser, George P; Komives, Elizabeth A; Lamb, Robert A; Zhou, Z Hong; Salafsky, Joshua; Jardetzky, Theodore S

    2017-10-03

    Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.

  8. Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes.

    Science.gov (United States)

    Tarn, Chi; Zou, Lin; Hullinger, Ronald L; Andrisani, Ourania M

    2002-10-01

    Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.

  9. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses.

    Science.gov (United States)

    Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús

    2017-02-28

    Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

  10. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway.

    Science.gov (United States)

    He, Jing; Hao, Ruidong; Liu, Dan; Liu, Xing; Wu, Shaoshuai; Guo, Shuting; Wang, Yuan; Tien, Po; Guo, Deyin

    2016-12-01

    Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses cytosolic DNA and catalyses synthesis of the second messenger cGAMP, which activates the downstream signalling adaptor protein STING, leading to the expression of type I interferons. Hepatitis B virus (HBV) is a small DNA virus, and the cGAS-STING pathway may inhibit HBV RNA synthesis and viral assembly in cell culture, but the exact roles of the cGAS pathway in the restriction of HBV replication in infection systems remain to be elucidated. In this study, replication of HBV was significantly inhibited both in cell culture and in vivo in a mouse model when the cGAS-STING pathway was activated by dsDNA or cGAMP. In contrast, the presence of enzymatically inactive cGAS mutant did not influence HBV replication. Moreover, knockdown of cGAS in human peripheral blood monocytes led to a higher level of intracellular HBV DNA. Collectively, our data indicate that the cGAS-STING pathway plays a role in the surveillance of HBV infection and may be exploited for development of novel anti-HBV strategies.

  11. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  12. Antiviral activity of the Lippia graveolens (Mexican oregano essential oil and its main compound carvacrol against human and animal viruses

    Directory of Open Access Journals (Sweden)

    Marciele Ribas Pilau

    2011-12-01

    Full Text Available Mexican oregano (Lippia graveolens is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3-4,5-dimethythiazol-2yl-2,5-diphenyl tetrazolium bromide was conducted to determine the selectivity index (SI of the essential oil, which was equal to 13.1, 7.4, 10.8, 9.7, and 7.2 for acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1, acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV, bovine herpesvirus type 2 (BoHV-2, and bovine viral diarrhoea virus (BVDV, respectively. The human rotavirus (RV and BoHV-1 and 5 were not inhibited by the essential oil. Carvacrol alone exhibited high antiviral activity against RV with a SI of 33, but it was less efficient than the oil for the other viruses. Thus, Mexican oregano oil and its main component, carvacrol, are able to inhibit different human and animal viruses in vitro. Specifically, the antiviral effects of Mexican oregano oil on ACVR-HHV-1 and HRSV and of carvacrol on RV justify more detailed studies.

  13. Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro

    Science.gov (United States)

    Nguyen, Jack T.; Hoopes, Justin D.; Le, Minh H.; Smee, Donald F.; Patick, Amy K.; Faix, Dennis J.; Blair, Patrick J.; de Jong, Menno D.; Prichard, Mark N.; Went, Gregory T.

    2010-01-01

    The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (Pamantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral

  14. Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro.

    Directory of Open Access Journals (Sweden)

    Jack T Nguyen

    Full Text Available The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1 has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine, and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI. To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05, including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of

  15. PCR array analysis of gene expression profiles in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Murakami, Masanao; Hashida, Yumiko; Imajoh, Masayuki; Maeda, Akihiko; Kamioka, Mikio; Senda, Yasutaka; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2014-07-01

    To determine the host cellular gene expression profiles in chronic active Epstein-Barr virus infection (CAEBV), peripheral blood samples were obtained from three patients with CAEBV and investigated using a PCR array analysis that focused on T-cell/B-cell activation. We identified six genes with expression levels that were tenfold higher in CAEBV patients compared with those in healthy controls. These results were verified by quantitative reverse transcription-PCR. We identified four highly upregulated genes, i.e., IL-10, IL-2, IFNGR1, and INHBA. These genes may be involved in inflammatory responses and cell proliferation, and they may contribute to the development and progression of CAEBV. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Immune activation in amniotic fluid from Zika virus-associated microcephaly.

    Science.gov (United States)

    Ornelas, Alice M M; Pezzuto, Paula; Silveira, Paola P; Melo, Fabiana O; Ferreira, Thales A; Oliveira-Szejnfeld, Patricia S; Leal, Jeime I; Amorim, Melania M R; Hamilton, Stuart; Rawlinson, William D; Cardoso, Cynthia C; Nixon, Douglas F; Tanuri, Amilcar; Melo, Adriana S; Aguiar, Renato S

    2017-01-01

    Recent advances in the understanding of neuropathogenesis associated with Zika virus (ZIKV) infection has led to descriptions of neonatal microcephaly cases. However, none of these reports have evaluated the humoral response during ZIKV infection. We report here polyfunctional immune activation associated with increased interferon-gamma-inducible protein 10, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), monocyte chemoattractive protein 1 (MCP-1), and granulocyte colony-stimulating factor (G-CSF) levels in the amniotic fluid of ZIKV-positive pregnant women with neonatal microcephaly. These cytokines have been associated not only with neuronal damage, but also with differentiation and proliferation of neural progenitor cells. Our results suggested that the immune activation caused by ZIKV infection in the uterine environment could also interfere with fetal development. ANN NEUROL 2017;81:152-156. © 2016 American Neurological Association.

  17. "Proliferation of cytotoxic and activated T cells during acute Epstein-Barr virus induced Infectious Mononucleosis "

    Directory of Open Access Journals (Sweden)

    Mansoori SD

    2002-05-01

    Full Text Available The immune responses that develop following Epstien-Barr Virus (EBV infection are complex and involve both humoral and to a greater extent cell-mediated immune mechanisms. To evaluate the immune response, flow cytometric analysis of the peripheral blood of six patients during the acute phase of EBV infection was performed. This analysis revealed a significant increase in the percentages and the absolute number of CD8+cytotoxic and activated (HLA-DR+ - T lymphocytes and in some cases with a concomitan decrease in the percentages of B (CD19+ lymphocytes and T helper (CD4+ lymphocytes. These patient invariably had inverted CD4/CD8 ratio. All changes reversed to normal level during the recovery phase of infection. It is therefore concluded that EBV specific cytotoxic and activated T lymphocytes are essential in controlling acute EBV infection presented by the infected B cells.

  18. Influence of pig age on virus titer and bactericidal activity of porcine reproductive and respiratory syndrome virus (PRRSV)-infected pulmonary intravascular macrophages (PIMs).

    Science.gov (United States)

    Thanawongnuwech, R; Thacker, E L; Halbur, P G

    1998-10-01

    Twelve pigs (six 4-week-old and six 4-month-old cross-bred, specific pathogen free pigs) were used as donors for both pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs). The PIMs and PAMs were infected in vitro with low (ISU-55) or high (VR-2385) virulence strains of PRRSV at 1 multiplicity of infection (m.o.i.) for comparisons of virus titers at 48 h post infection (PI). PIMs were as permissive as PAMs to infection with both PRRSV isolates yielding similar progeny titers (10(4.81) vs. 10(5.22) TCID50/ml, respectively). Both ISU-55 and VR-2385 were able to infect PIMs and no significant difference in virus replication as measured by virus titers between isolates was found (10(5.33) vs. 10(4.69) TCID50/ml, respectively). PIMs from 4-weak-old pigs yielded a higher virus titer following PRRSV infection than PIMs from 4-month-old pigs (10(5.43) vs. 10(4.59) TCID50/ml, respectively; p PIMs had significantly decreased bactericidal (Staphylococcus aureus) activity compared with uninfected PIMS at 48 h PI (p PIMs and VR-2385 (high virulence)-infected PIMs. Both ISU-55 and VR-2385 infection significantly decreased the production of superoxide anion (SOA) at 24 and 48 h PI (p PIMs, (2) PIMs from younger pigs were more permissive to PRRSV infection, and (3) the selected PRRSV strains, which differ in their abilities to induce pneumonia in vivo were not different when tested in vitro by measuring virus titer and bactericidal functions.

  19. Antiviral activity of crude extracts from Commiphora swynnertonii against Newcastle disease virus in ovo.

    Science.gov (United States)

    Bakari, Gaymary George; Max, Robert A; Mdegela, Robinson H; Phiri, Elliot C J; Mtambo, Mkumbukwa M A

    2012-10-01

    Studies were carried out to investigate the effect of crude extracts from resin, leaves, stem barks and root barks of Commiphora swynnertonii against Newcastle disease virus (NDV) using an in ovo assay. Nine-day-old embryonated chicken eggs were divided into seven groups (n = 6) and received various treatments. Six groups were inoculated with velogenic NDV strain; five groups out of these were treated with different concentrations of the four extracts or a diluent, dimethylsulphoxide. The uninoculated and inoculated groups were left as negative and positive controls, respectively. Embryo survival was observed daily and embryo weights were measured day 5 post-inoculation; a few eggs from selected groups were left to hatch. Allantoic fluid from treated eggs and serum from hatched chicks were collected for hemagglutination and hemagglutination inhibition (HI) tests to detect NDV in the eggs and antibodies against NDV in the hatched chicks respectively. Results showed that embryo survival and mean embryo weight were significantly higher (p < 0.001) in those groups which were treated with the crude extracts from C. swynnertonii than the positive control group. Also the extracts significantly (p < 0.001) reduced virus titres, whereas no viruses were detected in the allantoic fluids of the resin-treated group at the highest concentration of 500 μg/mL. Furthermore, the HI test results showed very low levels of antibodies against NDV in chicks hatched from resin and root bark extract-treated eggs suggesting that these plant materials were capable of destroying the NDV before stimulating the developing chick's immunity. The current findings have clearly demonstrated that crude extracts especially that of resin from C. swynnertonii have strong antiviral activity against NDV in ovo. In vivo trials are needed to validate the use of resin from the tree in controlling Newcastle disease in chickens.

  20. Do Sex Differences in Respiratory Burst Enzyme Activities Exist in Human Immunodeficiency Virus-1 Infection?

    Science.gov (United States)

    Emokpae, Mathias Abiodun; Mrakpor, Beatrice Aghogho

    2016-11-15

    Studies have shown that human immunodeficiency virus type 1 (HIV-1) disproportionally affects more females than males. Affected individuals are susceptible to infections due to depressed immunity, qualitative defects in phagocytic function and altered phagocytosis as well as lowered oxidative burst capacity. This study seeks to determine whether sex differences exist in serum activities of respiratory burst enzymes in HIV-1-infected female and male subjects. Serum myeloperoxidase, catalase and superoxide dismutase activities were assayed in 170 confirmed HIV-1 positive and 50 HIV-1 negative subjects using ELISA. Data were analyzed using Student's t-test and p values of less than 0.05 were considered significant. The measured enzyme activities were significantly higher (p < 0.001) in females than males in HIV-1 negative subjects while no sex differences were observed in HIV-1 positive subjects. The absence of sex differences in the activities of respiratory burst enzymes in HIV-1 infection may be due to immune activation as a result of active phagocytic leukocytes, immune reactivity and inflammation.

  1. In Vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination

    Directory of Open Access Journals (Sweden)

    Park Su-Jin

    2010-11-01

    Full Text Available Abstract Background Alpinia katsumadai (AK extracts and fractions were tested for in vitro antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1 and avian A/Chicken/Korea/MS96/96 (H9N2, by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment. Results In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. The 50% effective inhibitory concentrations (EC50 of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 μg/mL against A/PR/8/34 (H1N1. The two AK extracts and three AK fractions had EC50 values ranging from μg/mL against A/Chicken/Korea/MS96/96 (H9N2. By the hemagglutination inhibition (HI assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 μg/mL against both A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR. Conclusions These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis.

  2. Anti-Human Immunodeficiency Virus Activities of Nucleosides and Nucleotides: Correlation with Molecular Electrostatic Potential Data

    Science.gov (United States)

    Mickle, Travis; Nair, Vasu

    2000-01-01

    Examination of the anti-human immunodeficiency virus (HIV) data of some normal and isomeric dideoxynucleosides (ddNs and isoddNs), their three-dimensional (3-D) electron density patterns, their electrostatic potential surfaces (EPS), and their conformational maps reveals some interesting correlations. For example, the EPS of (S,S)-isoddA shows regions of high and low electrostatic potential remarkably similar to those of β-d-3′-azido-3′-deoxythymidine (β-d-AZT), (−)-oxetanocin A, and (−)-carbovir. Such correlations involving EPS data and anti-HIV activity were also found with many other active nucleosides. Conversely, inactive compounds had EPS different from those of compounds in the same series that were active. For example, apio-ddNs, which are inactive against HIV, exhibit clear differences in electrostatic potential and 3-D electron density shape from isoddNs that are active against HIV. Additionally, the inactivity of (S,S)-isoddC and (S,S)-isoddT can be correlated convincingly with a combination of their EPS data and their conformational energy maps. The electrostatic potential distributions of active nucleoside triphosphates show remarkable correlations. For example, (S,S)-isoddATP, AZT triphosphate (AZTTP), and oxetanocin A TP have similar 3-D electron density surface patterns and similar high and low regions of electrostatic potential, which may suggest that these compounds proceed through related mechanisms in their interactions with, and inhibition of, HIV reverse transcriptase (RT). Docking of AZTTP, (S,S)-isoddATP, and other active triphosphates into the active site of HIV RT and calculation of the EPS of both the nucleotide and the active site show that there is excellent matching between inhibitor and enzyme binding site EPS data. The structure-activity profile discovered has contributed to the development of a first predictive quantitative structure-activity relationship analysis in the area. PMID:11036004

  3. Synthesis of Nucleoside Analogues with Potential Antiviral Activity against Negative Strand RNA Virus Targets

    Science.gov (United States)

    1989-11-01

    ye Paramyxovirus Human parainfluenza , mumps Morbillivirus Measles, Rinderpest (cattle) 9 canine distemper viruses Pneumovirus Respiratory syncytial...significant effect on man include Rabies virus1 0 and Vesicular Stomatitus virus (VSV) in the Americas and Bovine Ephemeral Fever virus in Australasia. Of the...structurally related to neplanocin A, namely 9-(trans-2’,trans-3’-dihydroxycyclo- pent-4’-enyl) derivatives, 4 and 5, are potent inhibitors of bovine liver

  4. Current research on chronic active Epstein-Barr virus infection in Japan.

    Science.gov (United States)

    Fujiwara, Shigeyoshi; Kimura, Hiroshi; Imadome, Ken-ichi; Arai, Ayako; Kodama, Eiichi; Morio, Tomohiro; Shimizu, Norio; Wakiguchi, Hiroshi

    2014-04-01

    Epstein-Barr virus (EBV) infection is usually asymptomatic and persists lifelong. Although EBV-infected B cells have the potential for unlimited proliferation, they are effectively removed by the virus-specific cytotoxic T cells, and EBV-associated lymphoproliferative disease develops only in immunocompromised hosts. Rarely, however, individuals without apparent immunodeficiency develop chronic EBV infection with persistent infectious mononucleosis-like symptoms. These patients have high EBV-DNA load in the peripheral blood and systemic clonal expansion of EBV-infected T cells or natural killer (NK) cells. Their prognosis is poor with life-threatening complications including hemophagocytic lymphohistiocytosis, organ failure, and malignant lymphomas. The term "chronic active EBV infection" (CAEBV) is now generally used for this disease. The geographical distribution of CAEBV is markedly uneven and most cases have been reported from Japan and other East Asian countries. Here we summarize the current understanding of CAEBV and describe the recent progress of CAEBV research in Japan. © 2014 Japan Pediatric Society.

  5. Hsp90 inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Ron Geller

    Full Text Available Respiratory syncytial virus (RSV is a major cause of respiratory illness in young children, leading to significant morbidity and mortality worldwide. Despite its medical importance, no vaccine or effective therapeutic interventions are currently available. Therefore, there is a pressing need to identify novel antiviral drugs to combat RSV infections. Hsp90, a cellular protein-folding factor, has been shown to play an important role in the replication of numerous viruses. We here demonstrate that RSV requires Hsp90 for replication. Mechanistic studies reveal that inhibition of Hsp90 during RSV infection leads to the degradation of a viral protein similar in size to the RSV L protein, the viral RNA-dependent RNA polymerase, implicating it as an Hsp90 client protein. Accordingly, Hsp90 inhibitors exhibit antiviral activity against laboratory and clinical isolates of RSV in both immortalized as well as primary differentiated airway epithelial cells. Interestingly, we find a high barrier to the emergence of drug resistance to Hsp90 inhibitors, as extensive growth of RSV under conditions of Hsp90 inhibition did not yield mutants with reduced sensitivity to these drugs. Our results suggest that Hsp90 inhibitors may present attractive antiviral therapeutics for treatment of RSV infections and highlight the potential of chaperone inhibitors as antivirals exhibiting high barriers to development of drug resistance.

  6. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody.

    Directory of Open Access Journals (Sweden)

    Jantipa Jobsri

    Full Text Available Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP, which are structurally analogous to VLP, coupled to a weak idiotypic (Id tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant.

  7. Contact Tracing Activities during the Ebola Virus Disease Epidemic in Kindia and Faranah, Guinea, 2014.

    Science.gov (United States)

    Dixon, Meredith G; Taylor, Melanie M; Dee, Jacob; Hakim, Avi; Cantey, Paul; Lim, Travis; Bah, Hawa; Camara, Sékou Mohamed; Ndongmo, Clement B; Togba, Mory; Touré, Leonie Yvonne; Bilivogui, Pepe; Sylla, Mohammed; Kinzer, Michael; Coronado, Fátima; Tongren, Jon Eric; Swaminathan, Mahesh; Mandigny, Lise; Diallo, Boubacar; Seyler, Thomas; Rondy, Marc; Rodier, Guénaël; Perea, William A; Dahl, Benjamin

    2015-11-01

    The largest recorded Ebola virus disease epidemic began in March 2014; as of July 2015, it continued in 3 principally affected countries: Guinea, Liberia, and Sierra Leone. Control efforts include contact tracing to expedite identification of the virus in suspect case-patients. We examined contact tracing activities during September 20-December 31, 2014, in 2 prefectures of Guinea using national and local data about case-patients and their contacts. Results show less than one third of case-patients (28.3% and 31.1%) were registered as contacts before case identification; approximately two thirds (61.1% and 67.7%) had no registered contacts. Time to isolation of suspected case-patients was not immediate (median 5 and 3 days for Kindia and Faranah, respectively), and secondary attack rates varied by relationships of persons who had contact with the source case-patient and the type of case-patient to which a contact was exposed. More complete contact tracing efforts are needed to augment control of this epidemic.

  8. Autophagy Activated by Bluetongue Virus Infection Plays a Positive Role in Its Replication

    Directory of Open Access Journals (Sweden)

    Shuang Lv

    2015-08-01

    Full Text Available Bluetongue virus (BTV is an important pathogen of wild and domestic ruminants. Despite extensive study in recent decades, the interplay between BTV and host cells is not clearly understood. Autophagy as a cellular adaptive response plays a part in many viral infections. In our study, we found that BTV1 infection triggers the complete autophagic process in host cells, as demonstrated by the appearance of obvious double-membrane autophagosome-like vesicles, GFP-LC3 dots accumulation, the conversion of LC3-I to LC3-II and increased levels of autophagic flux in BSR cells (baby hamster kidney cell clones and primary lamb lingual epithelial cells upon BTV1 infection. Moreover, the results of a UV-inactivated BTV1 infection assay suggested that the induction of autophagy was dependent on BTV1 replication. Therefore, we investigated the role of autophagy in BTV1 replication. The inhibition of autophagy by pharmacological inhibitors (3-MA, CQ and RNA interference (siBeclin1 significantly decreased viral protein synthesis and virus yields. In contrast, treating BSR cells with rapamycin, an inducer of autophagy, promoted viral protein expression and the production of infectious BTV1. These findings lead us to conclude that autophagy is activated by BTV1 and contributes to its replication, and provide novel insights into BTV-host interactions.

  9. Characterization of the sites of proteolytic activation of Newcastle disease virus membrane glycoprotein precursors.

    Science.gov (United States)

    Gorman, J J; Nestorowicz, A; Mitchell, S J; Corino, G L; Selleck, P W

    1988-09-05

    The F1- and F2-polypeptide components of the fusion proteins and the hemagglutinin/neuraminidase proteins of the avirulent Queensland (V4) and virulent Australia-Victoria (AuV) strains of Newcastle disease virus have been isolated and subjected to extensive primary structural analysis including amino-terminal sequence analysis and fast atom bombardment-mass spectrometry mapping. Nucleotide sequence analysis was performed on the gene which encodes the V4 hemagglutinin/neuraminidase protein. Signal peptidase cleavage was found to have occurred at the Ser31-Leu32 peptide bond of the primary translation products of the fusion protein genes. Activation cleavage of the V4 fusion protein precursor generated a sequence of -Gly-Lys-Gln-Gly84 at the carboxyl terminus of the F2-polypeptide and an amino-terminal sequence of the F1-polypeptide commencing with 86Leu-Ile-Gly-. The V4 hemagglutinin/neuraminidase protein gene was found to encode a primary translation product 45 amino acids longer at the carboxyl terminus than obtainable from the corresponding gene of the AuV strain (McGinnes, L. W., and Morrison, T. G. (1986) Virus Res. 5, 343-356). However, post-translational proteolytic processing, exclusive to the primary translation product of the V4 hemagglutinin/neuraminidase protein gene, was found to have removed the last 42 residues of this carboxyl-terminal appendage.

  10. Synthesis and structure-activity study of myxoma virus growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yao-Zhong; Ke, Xiao-Hong; Tam, J.P. (Rockefeller Univ., New York (USA))

    1991-04-02

    Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of human EGF receptor in A431 cells and the stimulation of ({sup 3}H)thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in {beta}-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH{sub 2}-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.

  11. Hepatic inflammation mediated by hepatitis C virus core protein is ameliorated by blocking complement activation

    Directory of Open Access Journals (Sweden)

    Hsu Chen-Ming

    2009-08-01

    Full Text Available Abstract Background The pathogenesis of inflammation and fibrosis in chronic hepatitis C virus (HCV infection remains unclear. Transgenic mice with constitutive HCV core over-expression display steatosis only. While the reasons for this are unclear, it may be important that core protein production in these models begins during gestation, in contrast to human hepatitis C virus infection, which occurs post-natally and typically in adults. AIMS: To more realistically model the effect of core protein production in the adult liver, we developed a mouse with conditional expression of HCV core and examined the effect of core protein production in the adult liver. Methods Liver biopsy samples from transgenic mice with tetracycline(tet-regulated conditional core protein expression were evaluated immunohistologically. Microarray analysis of HCV core transgenic mice with steatohepatitis pointed to a role of the complement pathway. This was further explored by blocking complement activation by in vivo administration of CD55 (decay accelerating factor for complement, which inhibits activation of C3. Results Transgenic mice exhibited low, intermediate, or high HCV core protein expression when fed a permissive diet of standard chow. Aside from hepatic steatosis, hepatic inflammation and fibrosis were seen in mice with intermediate levels of core protein. Microarray analyses of inflamed liver demonstrated activation of both the complement (C3 up-regulation and coagulation pathways (fibrinogen B up-regulation. Administration of CD55 reduced hepatic inflammation. Conclusion Transgenic mice that conditionally express intermediate HCV core protein develop inflammation, steatosis, and fibrosis. These effects mediated by HCV core are reduced by administration of CD55, a regulator of the complement pathway. The model may be valuable in investigating the pathogenesis of liver inflammation in chronic hepatitis C.

  12. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    Science.gov (United States)

    Kleinlützum, Dina; Hanauer, Julia D. S.; Muik, Alexander; Hanschmann, Kay-Martin; Kays, Sarah-Katharina; Ayala-Breton, Camilo; Peng, Kah-Whye; Mühlebach, Michael D.; Abel, Tobias; Buchholz, Christian J.

    2017-01-01

    Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types. PMID:28695108

  13. Immune activation suppresses initiation of lytic Epstein-Barr virus infection.

    Science.gov (United States)

    Ladell, Kristin; Dorner, Marcus; Zauner, Ludwig; Berger, Christoph; Zucol, Franziska; Bernasconi, Michele; Niggli, Felix K; Speck, Roberto F; Nadal, David

    2007-08-01

    Primary infection with Epstein-Barr virus (EBV) is asymptomatic in children with immature immune systems but may manifest as infectious mononucleosis, a vigorous immune activation, in adolescents or adults with mature immune systems. Infectious mononucleosis and chronic immune activation are linked to increased risk for EBV-associated lymphoma. Here we show that EBV initiates progressive lytic infection by expression of BZLF-1 and the late lytic genes gp85 and gp350/220 in cord blood mononuclear cells (CBMC) but not in peripheral blood mononuclear cells (PBMC) from EBV-naive adults after EBV infection ex vivo. Lower levels of proinflammatory cytokines in CBMC, used to model a state of minimal immune activation and immature immunity, than in PBMC were associated with lytic EBV infection. Triggering the innate immunity specifically via Toll-like receptor-9 of B cells substantially suppressed BZLF-1 mRNA expression in acute EBV infection ex vivo and in anti-IgG-stimulated chronically latently EBV-infected Akata Burkitt lymphoma cells. This was mediated in part by IL-12 and IFN-gamma. These results identify immune activation as critical factor for the suppression of initiation of lytic EBV infection. We hypothesize that immune activation contributes to EBV-associated lymphomagenesis by suppressing lytic EBV and in turn promotes latent EBV with transformation potential.

  14. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  15. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  16. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Rasmussen, N S; Nielsen, C T; Houen, G

    2016-01-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytom......We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse...... and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients...

  17. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase.

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  18. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  19. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses.

    Science.gov (United States)

    Campbell, Patricia J; Danzy, Shamika; Kyriakis, Constantinos S; Deymier, Martin J; Lowen, Anice C; Steel, John

    2014-04-01

    The 2009 H1N1 lineage represented the first detection of a novel, highly transmissible influenza A virus genotype: six gene segments originated from the North American triple-reassortant swine lineage, and two segments, NA and M, derived from the Eurasian avian-like swine lineage. As neither parental lineage transmits efficiently between humans, the adaptations and mechanisms underlying the pandemic spread of the swine-origin 2009 strain are not clear. To help identify determinants of transmission, we used reverse genetics to introduce gene segments of an early pandemic isolate, A/Netherlands/602/2009 [H1N1] (NL602), into the background of A/Puerto Rico/8/1934 [H1N1] (PR8) and evaluated the resultant viruses in a guinea pig transmission model. Whereas the NL602 virus spread efficiently, the PR8 virus did not transmit. Swapping of the HA, NA, and M segments of NL602 into the PR8 background yielded a virus with indistinguishable contact transmissibility to the wild-type pandemic strain. Consistent with earlier reports, the pandemic M segment alone accounted for much of the improvement in transmission. To aid in understanding how the M segment might affect transmission, we evaluated neuraminidase activity and virion morphology of reassortant viruses. Transmission was found to correlate with higher neuraminidase activity and a more filamentous morphology. Importantly, we found that introduction of the pandemic M segment alone resulted in an increase in the neuraminidase activity of two pairs of otherwise isogenic PR8-based viruses. Thus, our data demonstrate the surprising result that functions encoded by the influenza A virus M segment impact neuraminidase activity and, perhaps through this mechanism, have a potent effect on transmissibility. Our work uncovers a previously unappreciated mechanism through which the influenza A virus M segment can alter the receptor-destroying activity of an influenza virus. Concomitant with changes to neuraminidase activity, the M

  20. Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.

    Directory of Open Access Journals (Sweden)

    Sébastien Plumet

    Full Text Available BACKGROUND: Double stranded RNA (dsRNA is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. METHODOLOGY AND PRINCIPAL FINDINGS: During measles virus infection, the IFN-beta gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-beta gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-beta expression, provided that it was delivered into the cytosol as a 5'-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-beta induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5'-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5'-triphosphate RNA end. CONCLUSIONS/SIGNIFICANCE: RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5'-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader.

  1. [A case of chronic active Epstein-Barr virus infection with a pharyngeal ulcer].

    Science.gov (United States)

    Nagano, Hiromi; Iuchi, Hiroyuki; Yoshifuku, Kosuke; Morizono, Kensuke; Kurono, Yuichi

    2013-07-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterized by chronic or recurrent infectious mononucleosis-like symptoms, such as fever, extensive lymphadenopathy, and hepatosplenomegaly. A 44-year-old women visited our ENT clinic with a four-month history of fever and throat pain. She was diagnosed as having CAEBV based on the findings of fever, liver dysfunction, lymphadenopathy, pharyngeal ulcer, the titer for IgG to the EBV capsid and pathological findings. The whole-blood EBV DNA levels were high and above 3.7 x 10(3) copies/mL. After administration of intravenous predonine (1000 mg/day for 3 days) and oral predonine (1.5 mg/kg. 60 mg/day), the liver dysfunction and pharyngeal ulcer improved. Since the prognosis is poor in adult cases of CAEBV, chemotherapy is scheduled for this case.

  2. Recent Concise Viewpoints of Chronic Active Epstein-Barr Virus Infection.

    Science.gov (United States)

    Okano, Motohiko

    2015-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterized mainly by prolonged or intermittent fever, lymphadenopathy and hepatosplenomegaly without definite underlying diseases at the diagnosis. Patients with CAEBV also may have various life-threatening conditions including hematological, neurological, pulmonary, cardiac, digestive tract, ocular and/or dermal disorders. Additionally, during the course of illness, they often develop hematological malignancies such as T cell, NK cell or B cell lymphoproliferative disorder (LPD) and/or lymphoma. No causative pathogenetic mechanisms have been sufficiently clarified, and additionally no promising efficacious treatment was demonstrated except for the hematopoietic stem cell transplantation (HSCT) in cases who develop T cell or NK cell LPD or lymphoma. This minireview outlines the recent development for the comprehensive viewpoints of CAEBV mainly regarding to virological, immunological, pathological and therapeutical progresses.

  3. Possible autoimmune hepatitis induced after chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Wada, Yoshiko; Sato, Chikako; Tomita, Kyoko; Ishii-Aso, Rika; Haga, Hiroaki; Okumoto, Kazuo; Nishise, Yuko; Watanabe, Hisayoshi; Saito, Takafumi; Ueno, Yoshiyuki

    2014-02-01

    Chronic active Epstein-Barr virus infection (CAEBV) can be manifested in a variety of systemic conditions, including interstitial pneumonia, malignant lymphoma, and coronary aneurysm. Sometimes it may be associated with hepatic failure, although the mechanism underlying CAEBV-related hepatotoxicity remains unclear. We encountered a case of autoimmune hepatitis (AIH) associated with CAEBV. A 61-year-old male was referred to our hospital because of abnormal liver enzyme levels after initial diagnosis of CAEBV had been made by laboratory tests and liver biopsy. On admission, positivity for anti-nuclear antibody was evident, and examination of the liver biopsy specimen showed findings compatible with AIH. Steroid administration was initiated, and the liver function parameters subsequently improved. Although phenotypic changes in liver biopsy specimens are rare in this condition, the present case could provide clues to the possible pathogenesis of AIH.

  4. Pulmonary arterial hypertension associated with chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Fukuda, Yutaka; Momoi, Nobuo; Akaihata, Mitsuko; Nagasawa, Katsutoshi; Mitomo, Masaki; Aoyagi, Yoshimichi; Endoh, Kisei; Hosoya, Mitsuaki

    2015-08-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by persistent infectious mononucleosis-like symptoms, can lead to cardiovascular complications including coronary artery aneurysm or myocarditis. Here, we present the case of an 11-year-old boy with pulmonary arterial hypertension (PAH) and junctional ectopic tachycardia associated with CAEBV. The patient did not have any major symptoms attributed to CAEBV, such as fever, lymphadenopathy or splenomegaly when the PAH developed. Mild liver dysfunction was found at the first examination, and it persisted. Two years after the PAH symptoms appeared, CAEBV was evident, based on deteriorated liver function, hepatosplenomegaly, and coronary artery aneurysms. CAEBV should be considered as a cause of secondary PAH, particularly when liver dysfunction coexists. © 2015 Japan Pediatric Society.

  5. Venezuelan Equine Encephalitis Virus Activity in the Gulf Coast Region of Mexico, 2003–2010

    Science.gov (United States)

    Adams, A. Paige; Navarro-Lopez, Roberto; Ramirez-Aguilar, Francisco J.; Lopez-Gonzalez, Irene; Leal, Grace; Flores-Mayorga, Jose M.; Travassos da Rosa, Amelia P. A.; Saxton-Shaw, Kali D.; Singh, Amber J.; Borland, Erin M.; Powers, Ann M.; Tesh, Robert B.; Weaver, Scott C.; Estrada-Franco, Jose G.

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas. PMID:23133685

  6. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways.

    Science.gov (United States)

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  7. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus

    Directory of Open Access Journals (Sweden)

    Elizondo-Gonzalez Regina

    2012-12-01

    Full Text Available Abstract Background Newcastle Disease Virus (NDV causes a serious infectious disease in birds that results in severe losses in the worldwide poultry industry. Despite vaccination, NDV outbreaks have increased the necessity of alternative prevention and control measures. Several recent studies focused on antiviral compounds obtained from natural resources. Many extracts from marine organisms have been isolated and tested for pharmacological purposes, and their antiviral activity has been demonstrated in vitro and in vivo. Fucoidan is a sulfated polysaccharide present in the cell wall matrix of brown algae that has been demonstrated to inhibit certain enveloped viruses with low toxicity. This study evaluated the potential antiviral activity and the mechanism of action of fucoidan from Cladosiphon okamuranus against NDV in the Vero cell line. Methods The cytotoxicity of fucoidan was determined by the MTT assay. To study its antiviral activity, fusion and plaque-forming unit (PFU inhibition assays were conducted. The mechanism of action was determined by time of addition, fusion inhibition, and penetration assays. The NDV vaccine strain (La Sota was used in the fusion inhibition assays. PFU and Western blot experiments were performed using a wild-type lentogenic NDV strain. Results Fucoidan exhibited antiviral activity against NDV La Sota, with an obtained IS50 >2000. In time of addition studies, we observed viral inhibition in the early stages of infection (0–60 min post-infection. The inhibition of viral penetration experiments with a wild-type NDV strain supported this result, as these experiments demonstrated a 48% decrease in viral infection as well as reduced HN protein expression. Ribavirin, which was used as an antiviral control, exhibited lower antiviral activity than fucoidan and high toxicity at active doses. In the fusion assays, the number of syncytia was significantly reduced (70% inhibition when fucoidan was added before cleavage of

  8. [L-Lysine-α-Oxidase in vitro Activity in Experiments on Models of Viruses Sindbis, Forest-Spring Encephalitis, Western Nile, Tyaginya and Dhori].

    Science.gov (United States)

    Smirnova, I P; Larichev, V F; Shneider, Yu A

    2015-01-01

    The antitumor effect of L-lysine-α-oxidase from the culture fluid of Trichoderma harzianum Rifai F-180 was investigated for the first time. The in vitro studies revealed its high activity on a model of the forest-spring encephalitis virus and no activity against the Sindbis, Western Nile, Tyaginya and Dhori viruses.

  9. Long-term use of first-line highly active antiretroviral therapy is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients

    Directory of Open Access Journals (Sweden)

    Haohui Zhu

    2014-09-01

    Conclusion: The first-line highly active antiretroviral therapy currently used in China is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients with good highly active antiretroviral therapy compliance. Human immunodeficiency virus may play a role in the development of atherosclerosis.

  10. Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.

    Science.gov (United States)

    Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim

    2017-07-01

    Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.

  11. Engineered tobacco etch virus (TEV) protease active in the secretory pathway of mammalian cells.

    Science.gov (United States)

    Cesaratto, Francesca; López-Requena, Alejandro; Burrone, Oscar R; Petris, Gianluca

    2015-10-20

    Tobacco etch virus protease (TEVp) is a unique endopeptidase with stringent substrate specificity. TEVp has been widely used as a purified protein for in vitro applications, but also as a biological tool directly expressing it in living cells. To adapt the protease to diverse applications, several TEVp mutants with different stability and enzymatic properties have been reported. Herein we describe the development of a novel engineered TEVp mutant designed to be active in the secretory pathway. While wild type TEVp targeted to the secretory pathway of mammalian cells is synthetized as an N-glycosylated and catalytically inactive enzyme, a TEVp mutant with selected mutations at two verified N-glycosylation sites and at an exposed cysteine was highly efficient. This mutant was very active in the endoplasmic reticulum (ER) of living cells and can be used as a biotechnological tool to cleave proteins within the secretory pathway. As an immediate practical application we report the expression of a complete functional monoclonal antibody expressed from a single polypeptide, which was cleaved by our TEVp mutant into the two antibody chains and secreted as an assembled and functional molecule. In addition, we show active TEVp mutants lacking auto-cleavage activity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  13. Anti-Hepatitis C Virus Activity of a Crude Extract from Longan (Dimocarpus longan Lour.) Leaves.

    Science.gov (United States)

    Apriyanto, Dadan Ramadhan; Aoki, Chie; Hartati, Sri; Hanafi, Muhammad; Kardono, Leonardus Broto Sugeng; Arsianti, Ade; Louisa, Melva; Sudiro, Tjahjani Mirawati; Dewi, Beti Ernawati; Sudarmono, Pratiwi; Soebandrio, Amin; Hotta, Hak

    2016-05-20

    Infection with hepatitis C virus (HCV) results in hepatitis C, a disease characterized by chronic infection, cirrhosis, and hepatocellular carcinoma. Currently, the standard therapy is a combination of pegylated interferon-α plus ribavirin with NS3 protease inhibitors. Addition of NS3 protease inhibitors to the standard therapy improves response rates; however, use of NS3 protease inhibitors is also associated with significant adverse effects and an increase in the overall cost of treatment. Therefore, there is a need to develop safe and inexpensive drugs for the treatment of HCV infections. In this study, we examined the antiviral activity of a crude extract from Dimocarpus longan leaves against HCV (genotype 2a strain JFH1). The D. longan crude extract (DL-CE) exhibited anti-HCV activity with a 50% effective concentration (EC50) of 19.4 μg/ml without cytotoxicity. A time-of-addition study demonstrated that DL-CE has anti-HCV activity at both the entry and post-entry steps and markedly blocks the viral entry step through direct virucidal activity with marginal inhibition of virion assembly. Co-treatment of DL-CE with cyclosporine A, an immunosuppressant or telaprevir, an NS3 protease inhibitor, resulted in additive and synergistic antiviral effects, respectively. Our findings suggest that DL-CE may be useful as an add-on therapy candidate for treating HCV infections.

  14. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Directory of Open Access Journals (Sweden)

    Claudia Koch

    2016-04-01

    Full Text Available The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus–host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied

  15. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection.

    Directory of Open Access Journals (Sweden)

    Changbo Ou

    Full Text Available Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2 inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.

  16. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  17. The plant virus Tomato Spotted Wilt Tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis.

    Science.gov (United States)

    Medeiros, Ricardo B; Resende, Renato de O; de Avila, Antonio Carlos

    2004-05-01

    Tospoviruses have the ability to infect plants and their insect vectors. Tomato spotted wilt virus (TSWV), the type species in the Tospovirus genus, infects its most important insect vector, Frankliniella occidentalis, the western flower thrips (WFT). However, no detrimental effects on the life cycle or cytopathological changes have been reported in the WFT after TSWV infection, and relatively few viral particles can be observed even several days after infection. We hypothesized that TSWV infection triggers an immune response in the WFT. Using subtractive cDNA libraries to probe WFT DNA macroarrays, we found that the WFT's immune system is activated by TSWV infection. The activated genes included (i) those encoding antimicrobial peptides, such as defensin and cecropin; (ii) genes involved in pathogen recognition, such as those encoding lectins; (iii) those encoding receptors that activate the innate immune response, such as Toll-3; and (iv) those encoding members of signal transduction pathways activated by Toll-like receptors, such as JNK kinase. Transcriptional upregulation of these genes after TSWV infection was confirmed by Northern analysis, and the kinetics of the immune response was measured over time. Several of the detected genes were activated at the same time that viral replication was first detected by reverse transcription-PCR. To our knowledge, this is the first report of the activation of an insect vector immune response by a plant virus. The results may lead to a better understanding of insects' immune responses against viruses and may help in the future development of novel control strategies against plant viruses, as well as human and animal viruses transmitted by insect vectors.

  18. Winter Activity and Aboveground Hybridization Between the Two Biotypes of the West Nile Virus Vector Culex pipiens

    NARCIS (Netherlands)

    Vogels, C.B.F.; Peppel, van de L.J.J.; Vliet, van A.J.H.; Westenberg, M.; Ibanez-Justicia, A.; Stroo, A.; Buijs, J.A.; Visser, T.M.; Koenraadt, C.J.M.

    2015-01-01

    Culex (Cx.) pipiens mosquitoes are important vectors of West Nile virus (WNV). In Europe, the species Cx. pipiens consists of two biotypes, pipiens and molestus, which are morphologically identical, but differ in behavior. Typical behavior of the molestus biotype is the ability to remain active

  19. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Madsen, Christian M; Arfelt, Kristine N

    2013-01-01

    The Epstein-Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK...

  20. Low incidence of reinfection with the hepatitis C virus following treatment in active drug users in Amsterdam

    NARCIS (Netherlands)

    Grady, Bart P. X.; Vanhommerig, Joost W.; Schinkel, Janke; Weegink, Christine J.; Bruisten, Sylvia M.; Lindenburg, Catherina E. A.; Prins, Maria

    2012-01-01

    Background More than two-thirds of hepatitis C virus (HCV) infections are associated with injecting drug use. Despite the wide availability of standard treatment with pegylated interferon and ribavirin, active drug users (DU) have limited access to HCV treatment. Physicians may be reluctant to

  1. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Natarajan Ayithan

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host.

  2. Virus-Like Particles Activate Type I Interferon Pathways to Facilitate Post-Exposure Protection against Ebola Virus Infection

    Science.gov (United States)

    Ayithan, Natarajan; Bradfute, Steven B.; Anthony, Scott M.; Stuthman, Kelly S.; Bavari, Sina; Bray, Mike; Ozato, Keiko

    2015-01-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs) are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN) signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs) in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host. PMID:25719445

  3. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction.

    Directory of Open Access Journals (Sweden)

    Boaz Musafia

    Full Text Available This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction

  4. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction.

    Science.gov (United States)

    Musafia, Boaz; Oren-Banaroya, Rony; Noiman, Silvia

    2014-01-01

    This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the influenza

  5. The effect of highly active antiretroviral therapy on liver function in human immunodeficiency virus-infected pediatric patients with or without hepatitis virus co-infection

    Directory of Open Access Journals (Sweden)

    Lijuan Wu

    2015-01-01

    Full Text Available Background: Co-infection of hepatitis virus is common in human immunodeficiency virus (HIV infected adults in China. But little is known about hepatitis virus co-infection in pediatric HIV-infected subjects. The study aimed to investigate the impact of hepatitis B virus (HBV and/or hepatitis C virus (HCV co-infection and highly active antiretroviral therapy (HAART on liver function of pediatric HIV-infected subjects. Materials and Methods: A cohort study including 101 pediatric HIV-infected subjects with HBV/HCV co-infection and 44 pediatric comparators with HIV mono-infection was carried out in Henan Province of China from September 2011 to September 2012. All patients received HAART for 1-year. HBV and HCV infection was determined by antibody tests. HIV RNA load, CD4 + T-cell counts and liver function were determined before and after HAART. The Student′s t-test or a one-way ANOVA was used for normally distributed values and A Mann-Whitney U-test was performed for values without normal distribution using SPSS statistical package 18.0 (SPSS Inc.. Results: After HAART for 1-year, the median levels of viral load were decreased to lower limit of detection in 90.34% pediatric HIV-infected subjects with/without HBV/HCV co-infection (P < 0.001, and CD4 + T-cell counts increased significantly (P < 0.001. Compared with the pre-HAART, mean level of alanine aminotransferase (ALT in each group had a significant increase after HAART (P < 0.01. The mean levels of ALT and aspartate aminotransferase (AST in nevirapine (NVP based HAART group increased significantly after HAART (P < 0.01. Mean change values of ALT and AST were significantly higher in the NVP based regimen group than in the efavirenz (EFV based regimen group (P < 0.01. For HIV/HBV/HCV co-infected patients, mean change values of ALT and AST in NVP-based HAART group was significantly higher than that in EFV-based HAART group (P < 0.01. Conclusion: Highly active antiretroviral therapy can damage

  6. Development of RNA aptamer that inhibits methyltransferase activity of dengue virus.

    Science.gov (United States)

    Jung, Jae In; Han, Seung Ryul; Lee, Seong-Wook

    2018-02-01

    To develop an RNA aptamer specific for the methyltransferase (MTase) of dengue virus (DENV) which is essential for viral genome replication and translation acting directly on N-7 and 2'-O-methylation of the type-I cap structure of the viral RNA. We identified 2'-fluoro-modified RNA aptamers that can specifically bind DENV serotype 2 (DENV2) MTase using systematic evolution of ligands by exponential enrichment technology. We truncated the chosen aptamer into a 45-mer RNA sequence that can bind DENV2 MTase with K d  ~ 28 nM and inhibit N-7 methylation activity of the protein. Moreover, the 45-mer truncated aptamer could not only bind with an K d  ~ 15.6 nM but also inhibit methylation activity of DENV serotype 3 (DENV3) MTase. The 45-mer aptamer competitively impeded binding of both DENV2 and DENV3 genomic RNA to MTase of each serotype. The selected 45-mer truncated RNA aptamer specifically and avidly bound DENV MTase and competitively inhibited its methylation activity, and thus could be useful for the development of anti-DENV agents.

  7. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Beltrán LM

    2015-01-01

    Full Text Available Luis M Beltrán,1 Alfonso Rubio-Navarro,2 Juan Manuel Amaro-Villalobos,2 Jesús Egido,2–4 Juan García-Puig,1 Juan Antonio Moreno21Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain; 2Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain; 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, Madrid, Spain; 4Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN, Madrid, SpainAbstract: Patients infected with the human immunodeficiency virus (HIV have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.Keywords: HIV, cardiovascular disease, immune activation, inflammation, antiretroviral therapy

  8. Broad-spectrum antiviral activity including human immunodeficiency and hepatitis C viruses mediated by a novel retinoid thiosemicarbazone derivative.

    Science.gov (United States)

    Kesel, Andreas J

    2011-05-01

    Aromatic aldehyde-derived thiosemicarbazones 4-6, the S-substituted modified thiosemicarbazones 7/8, and a vitamin A-derived (retinoid) thiosemicarbazone derivative 12 were investigated as inhibitors of human hepatitis C virus (HCV) subgenomic RNA replicon Huh7 ET (luc-ubi-neo/ET) replication. Compounds 4-6 and 12 were found to be potent suppressors of HCV RNA replicon replication. The trifluoromethoxy-substituted thiosemicarbazone 6 and the retinoid thiosemicarbazone derivative 12 were even superior in selectivity to the included reference agent recombinant human alpha-interferon-2b, showing potencies in the nanomolar range of concentration. In addition, compounds 5, 6, 8 and 12 were tested as inhibitors of cytopathic effect (CPE) induced by human varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV). Compounds 4-6, 8 and 12 were additionally examined as inhibitors of CPE induced by cowpox virus and vaccinia virus. Thiosemicarbazone 4 was inhibitory on cowpox and vaccinia virus replication comparable in potency and selectivity to the reference agent cidofovir. Retinoid thiosemicarbazone derivative 12 was active as micromolar inhibitor of VZV, HCMV, and, in addition, human immunodeficiency virus type 1 (HIV-1) replication. These results indicate that thiosemicarbazone derivatives are appropriate lead structures to be evaluated in targeted antiviral therapies for hepatitis C (STAT-C), and that the vitamin A-related thiosemicarbazone derivative 12 emerges as a broad-spectrum antiviral agent, co-suppressing the multiplication of important RNA and DNA viruses. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Dryocrassin ABBA, a novel active substance for use against amantadine-resistance H5N1 avian Influenza virus

    Directory of Open Access Journals (Sweden)

    Changbo Ou

    2015-06-01

    Full Text Available The occurrence of multi-drug resistant highly pathogenic avian influenza virus (HPAIV strains highlights the urgent need for strategies for the prevention and control of avian influenza virus. The aim of our current study is to evaluate the antiviral activity of dryocrassin ABBA isolated from Rhizoma Dryopteridis Crassirhizomatis (RDC against an amantadine-resistant H5N1 (A/Chicken/Hebei/706/2005 strain in a mouse model. Post inoculation with HPAIV H5N1 virus in mice, the survival rate was 87%, 80% and 60% respectively in the 33mg/kg, 18mg/kg and 12.5 mg/kg Dryocrassin ABBA-treated groups. On the other hand, the survival rate was 53% and 20%, respectively in the amantadine-treated group and untreated group. Mice administered dryocrassin ABBA or amantadine showed a significant weight increase compared to the untreated group. Moreover, 33 mg/kg and 18 mg/kg dryocrassin ABBA have decreased lung index (P>0.05 and virus loads (P<0.01 compared to the untreated group on day 7. Also, on day 7 bronchoalveolar lavage fluid pro-inflammatory cytokines (IL-6, TNF-α and IFN-γ decreased significantly (P<0.01 while anti-inflammatory cytokines (IL-10 and MCP-1 were increased significantly (P<0.01 in the 33 mg/kg and 18 mg/kg dryocrassin ABBA-treated groups compared to the amantadine group and the untreated group. Moreover, the concentrations of IL-12 in drug-treated groups were significantly (P<0.01 lowered compared with the untreated group. Based on the above we conclude that orally administered dryocrassin ABBA provided mice protection against avian influenza virus H5N1 by inhibiting inflammation and reducing virus loads. Dryocrassin ABBA is a potential novel lead compound which had antiviral effects on amantadine-resistant avian influenza virus H5N1 infection.

  10. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases

    Directory of Open Access Journals (Sweden)

    Kristina S. Burrack

    2014-09-01

    Full Text Available When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS and arginase 1 (Arg1. Nitric oxide (NO production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.

  11. Plant Virus Particles Carrying Tumour Antigen Activate TLR7 and Induce High Levels of Protective Antibody

    Science.gov (United States)

    Jobsri, Jantipa; Allen, Alex; Rajagopal, Deepa; Shipton, Michael; Kanyuka, Kostya; Lomonossoff, George P.; Ottensmeier, Christian; Diebold, Sandra S.; Stevenson, Freda K.; Savelyeva, Natalia

    2015-01-01

    Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the “gold standard” Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe “in-built” ssRNA adjuvant. PMID:25692288

  12. Production of plum pox virus HC-Pro functionally active for aphid transmission in a transient-expression system.

    Science.gov (United States)

    Goytia, Elisa; Fernández-Calvino, Lourdes; Martínez-García, Belén; López-Abella, Dionisio; López-Moya, Juan José

    2006-11-01

    Potyviruses are non-persistently transmitted by aphid vectors with the assistance of a viral accessory factor known as helper component (HC-Pro), a multifunctional protein that is also involved in many other essential processes during the virus infection cycle. A transient Agrobacterium-mediated expression system was used to produce Plum pox virus (PPV) HC-Pro in Nicotiana benthamiana leaves from constructs that incorporated the 5' region of the genome, yielding high levels of HC-Pro in agroinfiltrated leaves. The expressed PPV HC-Pro was able to assist aphid transmission of purified virus particles in a sequential feeding assay, and to complement transmission-defective variants of the virus. Also, HC-Pro of a second potyvirus, Tobacco etch virus (TEV), was expressed and found to be functional for aphid transmission. These results show that this transient system can be useful for production of functionally active HC-Pro in potyviruses, and the possible uses of this approach to study the mechanism of transmission are discussed.

  13. Inability of NS1 protein from an H5N1 influenza virus to activate PI3K/Akt signaling pathway correlates to the enhanced virus replication upon PI3K inhibition

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2012-04-01

    Full Text Available Abstract Background Phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway, activated during influenza A virus infection, can promote viral replication via multiple mechanisms. Direct binding of NS1 protein to p85β subunit of PI3K is required for activation of PI3K/Akt signaling. Binding and subsequent activation of PI3K is believed to be a conserved character of influenza A virus NS1 protein. Sequence variation of NS1 proteins in different influenza A viruses led us to investigate possible deviation from the conservativeness. Results In the present study, NS1 proteins from four different influenza A virus subtypes/strains were tested for their ability to bind p85β subunit of PI3K and to activate PI3K/Akt. All NS1 proteins efficiently bound to p85β and activated PI3K/Akt, with the exception of NS1 protein from an H5N1 virus (A/Chicken/Guangdong/1/05, abbreviated as GD05, which bound to p85β but failed to activate PI3K/Akt, implying that as-yet-unidentified domain(s in NS1 may alternatively mediate the activation of PI3K. Moreover, PI3K inhibitor, LY294002, did not suppress but significantly increased the replication of GD05 virus. Conclusions Our study indicates that activation of PI3K/Akt by NS1 protein is not highly conserved among influenza A viruses and inhibition of the PI3K/Akt pathway as an anti-influenza strategy may not work for all influenza A viruses.

  14. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.

    OpenAIRE

    Yoshioka, Mikio; Kikuta, Hideaki; Ishiguro, Nobuhisa; Ma, Xiaoming; Kobayashi, Kunihiko

    2003-01-01

    Chronic active Epstein–Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein–Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in al...

  15. A Whole Virus Pandemic Influenza H1N1 Vaccine Is Highly Immunogenic and Protective in Active Immunization and Passive Protection Mouse Models

    OpenAIRE

    Kistner, Otfried; Crowe, Brian A.; Wodal, Walter; Kerschbaum, Astrid; Savidis-Dacho, Helga; Sabarth, Nicolas; Falkner, Falko G.; Mayerhofer, Ines; Mundt, Wolfgang; Reiter, Manfred; Grillberger, Leopold; Tauer, Christa; Graninger, Michael; Sachslehner, Alois; Schwendinger, Michael

    2010-01-01

    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus c...

  16. Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein

    Science.gov (United States)

    2012-01-01

    Superinfection exclusion, a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or a closely related virus, has been described for various viruses, including important pathogens of humans, animals, and plants. The phenomenon was initially used to test the relatedness of plant viruses. Subsequently, purposeful infection with a mild isolate has been implemented as a protective measure against virus isolates that cause severe disease. In the medical and veterinary fields, superinfection exclusion was found to interfere with repeated applications of virus-based vaccines to individuals with persistent infections and with the introduction of multicomponent vaccines. In spite of its significance, our understanding of this phenomenon is surprisingly incomplete. Recently, it was demonstrated that superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus, occurs only between isolates of the same strain, but not between isolates of different strains of the virus. In this study, I show that superinfection exclusion by CTV requires production of a specific viral protein, the p33 protein. Lack of the functional p33 protein completely eliminated the ability of the virus to exclude superinfection by the same or a closely related virus. Remarkably, the protein appeared to function only in a homology-dependent manner. A cognate protein from a heterologous strain failed to confer the exclusion, suggesting the existence of precise interactions of the p33 protein with other factors involved in this complex phenomenon. PMID:22398285

  17. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2.

    Science.gov (United States)

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-02-09

    BACKGROUND Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. MATERIAL AND METHODS All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1x105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). RESULTS The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. CONCLUSIONS We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone.

  18. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2

    Science.gov (United States)

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-01-01

    Background Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. Material/Methods All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1×105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). Results The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. Conclusions We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone. PMID:26856414

  19. Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-κB promoter activation

    Directory of Open Access Journals (Sweden)

    Zohari Siamak

    2011-08-01

    Full Text Available Abstract Background Influenza virus infection activates NF-κB and is a general prerequisite for a productive influenza virus infection. On the other hand, non-structural protein 1 (NS1 suppresses this viral activated NF-κB, presumably to prevent expression of NF-κB mediated anti-viral response. NS1 proteins of influenza A viruses are divided into two groups, known as allele A and allele B. The possible functional relevance of this NS1 division to viral pathogenicity is lacking. Findings The ability of NS1 protein from two avian influenza subtypes, H6N8 and H4N6, to inhibit NF-κB promoter activation was assessed. Further, efforts were made to characterize the genetic basis of this inhibition. We found that allele A NS1 proteins of H6N8 and H4N6 are significantly better in preventing dsRNA induced NF-κB promoter activation compared to allele B of corresponding subtypes, in a species independent manner. Furthermore, the ability to suppress NF-κB promoter activation was mapped to the effector domain while the RNA binding domain alone was unable to suppress this activation. Chimeric NS1 proteins containing either RNA binding domain of allele A and effector domain of allele B or vice versa, were equally potent in preventing NF-κB promoter activation compared to their wt. NS1 protein of allele A and B from both subtypes expressed efficiently as detected by Western blotting and predominantly localized in the nucleus in both A549 and MiLu cells as shown by in situ PLA. Conclusions Here, we present another aspect of NS1 protein in inhibiting dsRNA induced NF-κB activation in an allele dependent manner. This suggests a possible correlation with the virus's pathogenic potential.

  20. Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-κB promoter activation.

    Science.gov (United States)

    Munir, Muhammad; Zohari, Siamak; Berg, Mikael

    2011-08-02

    Influenza virus infection activates NF-κB and is a general prerequisite for a productive influenza virus infection. On the other hand, non-structural protein 1 (NS1) suppresses this viral activated NF-κB, presumably to prevent expression of NF-κB mediated anti-viral response. NS1 proteins of influenza A viruses are divided into two groups, known as allele A and allele B. The possible functional relevance of this NS1 division to viral pathogenicity is lacking. The ability of NS1 protein from two avian influenza subtypes, H6N8 and H4N6, to inhibit NF-κB promoter activation was assessed. Further, efforts were made to characterize the genetic basis of this inhibition. We found that allele A NS1 proteins of H6N8 and H4N6 are significantly better in preventing dsRNA induced NF-κB promoter activation compared to allele B of corresponding subtypes, in a species independent manner. Furthermore, the ability to suppress NF-κB promoter activation was mapped to the effector domain while the RNA binding domain alone was unable to suppress this activation. Chimeric NS1 proteins containing either RNA binding domain of allele A and effector domain of allele B or vice versa, were equally potent in preventing NF-κB promoter activation compared to their wt. NS1 protein of allele A and B from both subtypes expressed efficiently as detected by Western blotting and predominantly localized in the nucleus in both A549 and MiLu cells as shown by in situ PLA. Here, we present another aspect of NS1 protein in inhibiting dsRNA induced NF-κB activation in an allele dependent manner. This suggests a possible correlation with the virus's pathogenic potential.

  1. [Characteristics of chronic active Epstein-Barr virus infection-associated hematological disorders in children].

    Science.gov (United States)

    Liu, Ying; Tang, Suo-Qin; Liu, Li-Zhen; Yang, Guang; Feng, Chen; Lei, Qi

    2008-06-01

    The aim of this study was to analyze characteristics of chronic active Epstein-Barr virus (CAEBV) infection associated hematological disorders in children. Clinical characteristics were summarized; the morphology of hematopoietic cells in bone marrow was observed by microscopy; the lymphocyte subpopulations were analyzed by flow cytometry; the immunophenotype of liver biopsies was assayed by immunohistochemistry; EBV-related antibodies were measured by ELISA; serum EBV-DNA loads were detected by real-time quantitative PCR; EBV-encoded small RNA 1-positive cells in peripheral blood mononuclear cells were identified by in situ hybridization. The results indicated that the clinical manifestations in patients included persistent or recurrent fever, hepatosplenomegaly, liver dysfunction, anemia, thrombocytopenia, systemic inflammatory reaction. Bone marrow presented as hypocellularity, dysmaturation, myelodysplasia and hemophagocytosis. CD8(+) cell high counts were demonstrated in all 4 patients, one of them developed into a T cell lymphoma. Serum EBV-DNA load was 3.26 x 10(3) copies/ml in one patient, EBER1(+) cells were detected at a frequency of 1.7% in PBMNCs from another patient; the titers of IgG to EBV-VCA were >or= 1:5120 in the rest 2 patients. All 4 patients described above were diagnosed as CAEBV infection. In conclusion, the immune-related cytopenia, macrophage activation syndrome and lymphoproliferative disorders are characteristics of CAEBV infection associated hematological disorders in these 4 children patients.

  2. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells

    Directory of Open Access Journals (Sweden)

    Javed Tariq

    2011-05-01

    Full Text Available Abstract Hepatitis C virus (HCV belonging to the family Flaviviridae has infected 3% of the population worldwide and 6% of the population in Pakistan. The only recommended standard treatment is pegylated INF-α plus ribavirin. Due to less compatibility of the standard treatment, thirteen medicinal plants were collected from different areas of Pakistan on the basis of undocumented antiviral reports against different viral infections. Medicinal plants were air dried, extracted and screened out against HCV by infecting HCV inoculums of 3a genotype in liver cells. RT-PCR results demonstrate that acetonic and methanolic extract of Acacia nilotica (AN showed more than 50% reduction at non toxic concentration. From the above results, it can be concluded that by selecting different molecular targets, specific structure-activity relationship can be achieved by doing mechanistic analysis. So, additional studies are required for the isolation and recognition of antiviral compound in AN to establish its importance as antiviral drug against HCV. For further research, we will scrutinize the synergistic effect of active antiviral compound in combination with standard PEG INF-α and ribavirin which may be helpful in exploring further gateways for antiviral therapy against HCV.

  3. In Vitro Study on Anti-Hepatitis C Virus Activity of Spatholobus suberectus Dunn

    Directory of Open Access Journals (Sweden)

    Shao-Ru Chen

    2016-10-01

    Full Text Available Hepatitis C virus (HCV infects 200 million people worldwide, and 75% of HCV cases progress into chronic infections, which consequently cause cirrhosis and hepatocellular carcinoma. HCV infection is treated with currently considered standard drugs, including direct anti-viral agents (DAAs, alone or in combination with peginterferon-α plus ribavirin. However, sustained viral responses vary in different cohorts, and high costs limit the broad use of DAAs. In this study, the ethanol and water extracts of 12 herbs from Lingnan in China were examined in terms of their inhibitory effect on HCV replication. Among the examined extracts, Spatholobus suberectus ethanol extracts suppressed HCV replication. By comparison, Extracts from Fructus lycii, Radix astragali (root, Rubus chingii Hu (fruit, Flos chrysanthemi Indici (flower, Cassia obtusifolia (seed, Lonicera japonica Thunb (flower, Forsythia suspense Thunb (fruit, Poria cocos (sclerotia, Carthamus tinctorius L. (flower, Crataegus pinnatifida Bge. (fruit, and Leonurus japonicas Houtt. (leaf extracts failed to show a similar activity. Active S. suberectus fractions containing tannins as the major component also inhibited the in vitro translation of HCV RNA. The combination treatments of single compounds, such as epigallocatechin gallate and epicatechin gallate, were not as potent as crude S. suberectus fractions; therefore, crude S. suberectus extract may be a potential alternative treatment against HCV either alone or in combination with other agents.

  4. Yield of undetected tuberculosis and human immunodeficiency virus coinfection from active case finding in urban Uganda.

    Science.gov (United States)

    Sekandi, J N; List, J; Luzze, H; Yin, X-P; Dobbin, K; Corso, P S; Oloya, J; Okwera, A; Whalen, C C

    2014-01-01

    To determine the yield of undetected active tuberculosis (TB), TB and human immunodeficiency virus (HIV) coinfection and the number needed to screen (NNS) to detect a case using active case finding (ACF) in an urban community in Kampala, Uganda. In a door-to-door survey conducted in Rubaga community from January 2008 to June 2009, residents aged ≥15 years were screened for chronic cough (≥2 weeks) and tested for TB disease using smear microscopy and/or culture. Rapid testing was used to screen for HIV infection. The NNS to detect one case was calculated based on population screened and undetected cases found. Of 5102 participants, 3868 (75.8%) were females; the median age was 24 years (IQR 20-30). Of 199 (4%) with chronic cough, 160 (80.4%) submitted sputum, of whom 39 (24.4%, 95%CI 17.4-31.5) had undetected active TB and 13 (8.1%, 95%CI 6.7-22.9) were TB-HIV co-infected. The NNS to detect one TB case was 131 in the whole study population, but only five among the subgroup with chronic cough. ACF obtained a high yield of previously undetected active TB and TB-HIV cases. The NNS in the general population was 131, but the number needed to test in persons with chronic cough was five. These findings suggest that boosting the identification of persons with chronic cough may increase the overall efficiency of TB case detection at a community level.

  5. Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication

    DEFF Research Database (Denmark)

    Nayak, A.; Goodfellow, I. G.; Woolaway, K. E.

    2006-01-01

    The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3D(pol)), the precursor 3CD, and an RNA template containing the cre/bus...... within 3C are also essential for VPg uridylylation activity and efficient virus replication.......The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3D(pol)), the precursor 3CD, and an RNA template containing the cre....../bus. We show that certain RNA sequences within the foot-and-mouth disease virus (FMDV) 5' untranslated region but outside of the cre/bus can enhance VPg uridylylation activity. Furthermore, we have shown that the FMDV X protein alone can substitute for 3CD, albeit less efficiently. In addition, the VPg...

  6. Lymphatic Reprogramming by Kaposi Sarcoma Herpes Virus Promotes the Oncogenic Activity of the Virus-Encoded G-protein Coupled Receptor

    Science.gov (United States)

    Aguilar, Berenice; Choi, Inho; Choi, Dongwon; Chung, Hee Kyoung; Lee, Sunju; Yoo, Jaehyuk; Lee, Yong Suk; Maeng, Yong Sun; Lee, Ha Neul; Park, Eunkyung; Kim, Kyu Eui; Kim, Nam Yoon; Baik, Jae Myung; Jung, Jae U.; Koh, Chester J.; Hong, Young-Kwon

    2012-01-01

    Kaposi sarcoma (KS), the most common cancer in HIV-positive individuals, is caused by endothelial transformation mediated by the KS herpes virus (KSHV)-encoded G-protein coupled receptor (vGPCR). Infection of blood vascular endothelial cells (BECs) by KSHV reactivates an otherwise silenced embryonic program of lymphatic differentiation. Thus, KS tumors express numerous lymphatic endothelial cell (LEC)-signature genes. A key unanswered question is how lymphatic reprogramming by the virus promotes tumorigenesis leading to KS formation. In this study, we present evidence that this process creates an environment needed to license the oncogenic activity of vGPCR. We found that the G-protein regulator RGS4 is an inhibitor of vGPCR that is expressed in BECs, but not in LECs. RGS4 was downregulated by the master regulator of LEC differentiation PROX1, which is upregulated by KSHV and directs KSHV-induced lymphatic reprogramming. Moreover, we found that KSHV upregulates the nuclear receptor LRH1, which physically interacts with PROX1 and synergizes with it to mediate repression of RGS4 expression. Mechanistic investigations revealed that RGS4 reduced vGPCR-enhanced cell proliferation, migration, VEGF expression and Akt activation and to suppress tumor formation induced by vGPCR. Our findings resolve long-standing questions about the pathological impact of KSHV-induced reprogramming of host cell identity, and they offer biological and mechanistic insights supporting the hypothesis that a lymphatic microenvironment is more favorable for KS tumorigenesis. PMID:22942256

  7. Stress-activated protein kinases are involved in porcine reproductive and respiratory syndrome virus infection and modulate virus-induced cytokine production.

    Science.gov (United States)

    Lee, Yoo Jin; Lee, Changhee

    2012-06-05

    The present study examined the role of the p38 MAPK and JNK pathways during PRRSV infection in immortalized porcine alveolar macrophage (PAM) cells. Infection with PRRSV was found to progressively activate p38 and JNK1/2 up to 36 h postinfection and then their phosphorylation levels dramatically decreased to baseline at 48 h postinfection. In contrast, UV-inactivated PRRSV failed to trigger phosphorylation of these SAPKs, indicating that the post-entry process is responsible for their activation. Independent treatment of cells with a selective p38 or JNK inhibitor markedly impaired PRRSV infection, resulting in significant reduction in synthesis of viral genomic and subgenomic RNAs, viral protein expression, and progeny virus production. Notably, cytokine production in PAM cells infected with PRRSV was shown to be altered by inhibiting these SAPKs. Altogether, our data suggest that the p38 and JNK signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Peptide-activated gold nanoparticles for selective visual sensing of virus

    Science.gov (United States)

    Sajjanar, Basavaraj; Kakodia, Bhuvna; Bisht, Deepika; Saxena, Shikha; Singh, Arvind Kumar; Joshi, Vinay; Tiwari, Ashok Kumar; Kumar, Satish

    2015-05-01

    In this study, we report peptide-gold nanoparticles (AuNP)-based visual sensor for viruses. Citrate-stabilized AuNP (20 ± 1.9 nm) were functionalized with strong sulfur-gold interface using cysteinylated virus-specific peptide. Peptide-Cys-AuNP formed complexes with the viruses which made them to aggregate. The aggregation can be observed with naked eye and also with UV-Vis spectrophotometer as a color change from bright red to purple. The test allows for fast and selective detection of specific viruses. Spectroscopic measurements showed high linear correlation ( R 2 = 0.995) between the changes in optical density ratio (OD610/OD520) with the different concentrations of virus. The new method was compared with the hemagglutinating (HA) test for Newcastle disease virus (NDV). The results indicated that peptide-Cys-AuNP was more sensitive and can visually detect minimum number of virus particles present in the biological samples. The limit of detection for the NDV was 0.125 HA units of the virus. The method allows for selective detection and quantification of the NDV, and requires no isolation of viral RNA and PCR experiments. This strategy may be utilized for detection of other important human and animal viral pathogens.

  9. Peptide-activated gold nanoparticles for selective visual sensing of virus

    Energy Technology Data Exchange (ETDEWEB)

    Sajjanar, Basavaraj; Kakodia, Bhuvna; Bisht, Deepika; Saxena, Shikha; Singh, Arvind Kumar [Indian Veterinary Research Institute, Division of Veterinary Biotechnology (India); Joshi, Vinay [Lala Lajpat Rai University of Veterinary & Animal Sciences, Department of Animal Biotechnology (India); Tiwari, Ashok Kumar; Kumar, Satish, E-mail: drsatishkumar-ivri@yahoo.co.in [Indian Veterinary Research Institute, Division of Veterinary Biotechnology (India)

    2015-05-15

    In this study, we report peptide–gold nanoparticles (AuNP)-based visual sensor for viruses. Citrate-stabilized AuNP (20 ± 1.9 nm) were functionalized with strong sulfur–gold interface using cysteinylated virus-specific peptide. Peptide–Cys–AuNP formed complexes with the viruses which made them to aggregate. The aggregation can be observed with naked eye and also with UV–Vis spectrophotometer as a color change from bright red to purple. The test allows for fast and selective detection of specific viruses. Spectroscopic measurements showed high linear correlation (R{sup 2} = 0.995) between the changes in optical density ratio (OD{sub 610}/OD{sub 520}) with the different concentrations of virus. The new method was compared with the hemagglutinating (HA) test for Newcastle disease virus (NDV). The results indicated that peptide–Cys–AuNP was more sensitive and can visually detect minimum number of virus particles present in the biological samples. The limit of detection for the NDV was 0.125 HA units of the virus. The method allows for selective detection and quantification of the NDV, and requires no isolation of viral RNA and PCR experiments. This strategy may be utilized for detection of other important human and animal viral pathogens.

  10. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus.

    Science.gov (United States)

    Fatima, Munazza; Zaidi, Najam-Us-Sahar Sadaf; Amraiz, Deeba; Afzal, Farhan

    2016-01-01

    Nanoparticles have wide-scale applications in various areas, including medicine, chemistry, electronics, and energy generation. Several physical, biological, and chemical methods have been used for synthesis of silver nanoparticles. Green synthesis of silver nanoparticles using plants provide advantages over other methods as it is easy, efficient, and eco-friendly. Nanoparticles have been extensively studied as potential antimicrobials to target pathogenic and multidrug-resistant microorganisms. Their applications recently extended to development of antivirals to inhibit viral infections. In this study, we synthesized silver nanoparticles using Cinnamomum cassia (Cinnamon) and evaluated their activity against highly pathogenic avian influenza virus subtype H7N3. The synthesized nanoparticles were characterized using UVVis absorption spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Cinnamon bark extract and its nanoparticles were tested against H7N3 influenza A virus in Vero cells and the viability of cells was determined by tetrazolium dye (MTT) assay. The silver nanoparticles derived from Cinnamon extract enhanced the antiviral activity and were found to be effective in both treatments, when incubated with the virus prior to infection and introduced to cells after infection. In order to establish the safety profile, Cinnamon and its corresponding nanoparticles were tested for their cytotoxic effects in Vero cells. The tested concentrations of extract and nanoparticles (up to 500 μg/ml) were found non-toxic to Vero cells. The biosynthesized nanoparticles may, hence, be a promising approach to provide treatment against influenza virus infections.

  11. Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract.

    Science.gov (United States)

    Glatthaar-Saalmüller, B; Fal, A M; Schönknecht, K; Conrad, F; Sievers, H; Saalmüller, A

    2015-09-15

    A number of antiviral therapies have evolved that may be effectively administered to treat respiratory viral diseases. But these therapies are very often of limited efficacy or have severe side effects. Therefore there is great interest in developing new efficacious and safe antiviral compounds e.g. based on the identification of compounds of herbal origin. Since an aqueous extract of Aloe arborescens Mill. shows antiviral activity against viruses causing infections of the upper respiratory tract in vitro we hypothesised that a product containing it such as Biaron C(®) could have an antiviral activity too. Antiviral activity of Bioaron C(®), an herbal medicinal product consisting of an aqueous extract of Aloe arborescens Mill., Vitamin C, and Aronia melanocarpa Elliot. succus, added as an excipient, was tested in vitro against a broad panel of viruses involved in upper respiratory tract infections. These studies included human adenovirus and several RNA viruses and were performed either with plaque reduction assays or with tests for the detection of a virus-caused cytopathic effect. Our studies demonstrated an impressive activity of Bioaron C(®) against members of the orthomyxoviridae - influenza A and influenza B viruses. Replication of both analysed influenza A virus strains - H1N1 and H3N2 - as well as replication of two analysed influenza B viruses - strains Yamagatal and Beiying - was significantly reduced after addition of Bioaron C(®) to the infected cell cultures. In contrast antiviral activity of Bioaron C(®) against other RNA viruses showed a heterogeneous pattern. Bioaron C(®) inhibited the replication of human rhinovirus and coxsackievirus, both viruses belonging to the family of picornaviridae and both representing non-enveloped RNA viruses. In vitro infections with respiratory syncytial virus and parainfluenza virus, both belonging to the paramyxoviridae, were only poorly blocked by the test substance. No antiviral activity of Bioaron C(®) was

  12. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Chung

    2014-06-01

    Full Text Available Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV, a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM, for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.

  13. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

    Science.gov (United States)

    Chung, Dong-Hoon; Jonsson, Colleen B; Tower, Nichole A; Chu, Yong-Kyu; Sahin, Ergin; Golden, Jennifer E; Noah, James W; Schroeder, Chad E; Sotsky, Julie B; Sosa, Melinda I; Cramer, Daniel E; McKellip, Sara N; Rasmussen, Lynn; White, E Lucile; Schmaljohn, Connie S; Julander, Justin G; Smith, Jeffrey M; Filone, Claire Marie; Connor, John H; Sakurai, Yasuteru; Davey, Robert A

    2014-06-01

    Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.

  14. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  15. Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation.

    Science.gov (United States)

    Chu, Ya-Ting; Wan, Shu-Wen; Chang, Yu-Chang; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Lin, Yee-Shin

    2017-02-27

    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.

  16. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin

    Directory of Open Access Journals (Sweden)

    Pleckaityte Milda

    2011-12-01

    Full Text Available Abstract Background Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY, the main virulence factor of Gardnerella vaginalis. Results The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody. Conclusions Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the sc

  17. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Richard Sutejo

    Full Text Available The host response to the low pathogenic avian influenza (LPAI H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.

  18. Recovery of hematopoietic activity in bone marrow from human immunodeficiency virus type 1-infected patients during highly active antiretroviral therapy.

    Science.gov (United States)

    Isgrò, A; Mezzaroma, I; Aiuti, A; De Vita, L; Franchi, F; Pandolfi, F; Alario, C; Ficara, F; Riva, E; Antonelli, G; Aiuti, F

    2000-10-10

    The mechanisms responsible for the hematopoietic failure in human immunodeficiency virus type 1 (HIV-1)-infected patients are still unknown. Several findings indicate that the in vitro proliferative potential of precursor cells from AIDS patients is reduced. The changes seen in bone marrow (BM) morphology and the defective BM functions associated with cytopenias have both been proposed as potential explanations. In patients treated with highly active antiretroviral therapy (HAART) an immune reconstitution associated with increased whole blood cell counts has been described. We have investigated the effects of HAART on the number of colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs), using long-term BM cell cultures (LTBMC) in a group of subjects with HIV-1 infection enrolled in an open study to evaluate the mechanisms of immune reconstitution during HAART. In each patient, the increase in colony growth was homogeneous, regardless of the type of hematopoietic progenitor cells assayed; in four subjects an increase in the most primitive progenitor cells (LTC-ICs) was observed. These findings were associated with the in vivo data showing increased numbers of BM mononuclear cells (BMMCs) after HAART and with a rise in peripheral CD4(+) T cell counts and decreased levels of plasma HIV-1 RNA. A decreased number of hematopoietic progenitor cells and/or a defective modulation of progenitor cell growth might be the cause of the hematological abnormalities in AIDS patients. Controlling HIV-1 replication by HAART could determine a restoration of stem cell activity, probably because of the suppression of factors that inhibit normal hematopoiesis.

  19. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections.

    Science.gov (United States)

    Levin, Myron J

    2014-12-01

    Varicella-zoster virus (VZV) can be detected in the blood from approximately 5 days before to 4 days after varicella. VZV DNA, primarily in T-lymphocytes, is detected as early as 8-10 days prior to rash and can persist for a week. The duration and magnitude of VZV DNAemia correlates with immune status and the efficacy of antiviral therapy. VZV DNA is also readily detected in the oropharynx just prior to rash and for 1-2 weeks thereafter. Detection of VZV DNA in blood and saliva has been useful for diagnosis and prognosis in atypical cases of varicella. Herpes zoster (HZ) is also characterized by VZV DNAemia at onset and for many weeks thereafter, and VZV DNA is present in the oropharynx shortly after HZ onset. Detection of VZV DNA in blood and saliva facilitates the diagnosis of zoster sine herpete and other atypical manifestations of VZV reactivation, such as neurologic syndromes when cerebrospinal fluid is not available, Bell's palsy, and atypical pain syndromes. VZV DNA is sometimes present in the blood and saliva of asymptomatic individuals. In total these observations extend understanding of the pathophysiology and epidemiology of VZV, and increasingly contribute to the clinical management of VZV infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.

    Science.gov (United States)

    Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng

    2017-02-01

    Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [An adult with chronic active Epstein-Barr virus infection associated with repeated liver dysfunction].

    Science.gov (United States)

    Endo, Tetsu; Mori, Yuki; Fukushi, Tsugumi; Yamaguchi, Kohei; Sato, Ken; Sakamoto, Juichi; Fukuda, Shinsaku; Wada, Ryuichi

    2010-08-01

    A 30-year-old woman with hepatitis for 5 months was admitted to our hospital. She had been given a diagnosis of liver dysfunction 2 years previously, and the hepatitis in this case was believed to be drug-induced. On admission, the patient was asymptomatic. Serologic tests for hepatitis A, B, and C were negative, and the laboratory results showed a WBC count of 7600/mm3 (lymphocytes, 85%), an AST level of 559 U/L, ALT level of 427 U/L, and EBV-DNA of 2.9x10(6) copies/microg DNA. Histopathological examination of the liver biopsy specimens revealed moderate lymphocyte infiltration in the sinusoids and positive Epstein-Barr-encoded RNA (EBER) -lymphocytes. Therefore, chronic active Epstein-Barr virus infection (CAEBV) was diagnosed. However, 9 months after the diagnosis she died of mycotic sepsis. We presume that the patient may have developed CAEBV at the prior diagnosis of liver dysfunction 2 years previously. Therefore, CAEBV associated with liver dysfunction should be considered during the differential diagnosis of patients showing persistent liver dysfunction.

  2. Clinical features of adult-onset chronic active Epstein-Barr virus infection: a retrospective analysis.

    Science.gov (United States)

    Arai, Ayako; Imadome, Ken-Ichi; Watanabe, Yuko; Yoshimori, Mayumi; Koyama, Takatoshi; Kawaguchi, Takeharu; Nakaseko, Chiaki; Fujiwara, Shigeyoshi; Miura, Osamu

    2011-05-01

    We performed a retrospective analysis of patients with adult-onset chronic active Epstein-Barr virus infection (CAEBV). First, we analyzed five patients (aged 28-72) diagnosed at our hospitals with EBV-infected clonally proliferating T cells. Four patients were administered cyclophosphamide/doxorubicin/vincristine/prednisone (CHOP) chemotherapy, but no remarkable decrease of viral load was observed in three of the patients. The other patient died 19 days after initiation of CHOP treatment due to disease progression. Addition of high-dose cytarabine to the regimens of two of the patients was discontinued shortly after administration, due to the development of grade 4 pericardial effusion. Together, these regimens may be insufficient for treating adult-onset CAEBV. We next reviewed 23 adult-onset CAEBV patients, adding 18 previously reported patients to the five patients described in the present study. T cells were frequently infected (87%), whereas NK- and T-cell types are known to be almost equally prevalent in childhood-onset cases. The time duration from the onset of disease to initiation of treatment averaged 20 months. Reports showed that 12 patients died; seven patients died at an average of 8 months after initiation of treatment. Patients' disease courses seemed to be rapidly progressive and more aggressive than those of childhood-onset cases. More cases must be studied to clarify clinical features and establish an optimal treatment strategy.

  3. [Clinical and laboratory characteristics of chronic active Epstein-Barr virus infection in children].

    Science.gov (United States)

    Mao, Jun-Qing; Yang, Shi-Long; Song, Hua; Zhao, Fen-Ying; Xu, Xiao-Jun; Gu, Min-Er; Tang, Yong-Min

    2014-11-01

    To study the clinical and laboratory characteristics of chronic active Epstein-Barr virus (EBV) infection (CAEBV) in children and to provide a basis for the diagnosis and treatment of CAEBV. The clinical data of 13 children with CAEBV, as well as 15 cases of acute EBV infection (AEBV) as controls, were analyzed, including clinical manifestations, EBV antibodies, EBV DNA, and peripheral blood lymphocyte subsets. Both groups of patients had infectious mononucleosis-like symptoms such as fever, hepatomegaly, splenomegaly, and lymphadenectasis, but CAEBV patients had a longer course of disease and continuous and recurrent symptoms. Compared with the AEBV group, the CAEBV group had a significantly higher EBV DNA load in peripheral blood (PCAEBV patients followed up, 8 cases died, 2 cases showed an improvement, 2 cases had a recurrence, and 1 case was lost to follow-up after being transferred to another hospital. All the AEBV patients were cured and had no recurrence during the one-year follow-up. The clinical manifestations of CAEBV vary in children. It is difficult to distinguish CAEBV from AEBV early. More attention should be paid to CAEBV because of its severe complications, poor prognosis, and high mortality. Measurement of EBV DNA load, VCA-IgG titer, and lymphocyte subsets in peripheral blood may be helpful in the diagnosis and differential diagnosis of CAEBV.

  4. Interleukin-17A-producing T lymphocytes in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Ohta, Rieko; Imai, Masaki; Kawada, Jun-ichi; Kimura, Hiroshi; Ito, Yoshinori

    2013-02-01

    T helper (Th) 17 cells are reportedly effector T cells that produce interleukin (IL)-17A and play a significant role in the development of autoimmune diseases and immune responses for antimicrobial host defense. Production of IL-17A in chronic active Epstein-Barr virus infection (CAEBV) was studied to investigate its contribution to pathogenesis of this disease. Significantly more IL-17A-producing cells were detected in the peripheral blood of CAEBV patients than in that of healthy controls, although a significant difference in serum IL-17A production was not confirmed. Of the IL-17A-producing cells, 91.8% were cluster of differentiation (CD)4-positive Th17 cells. Moreover, there were significantly more IL-17A-producing cells among CD4(+) cells in peripheral blood of CAEBV patients than in that of controls (1.97 ± 0.69% vs. 1.09 ± 0.53%, P = 0.0073). These data suggest that IL-17A-producing cells may influence the pathophysiology of CAEBV. © 2012 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Chronic active Epstein-Barr virus infection mimicking Henoch-Schönlein purpura.

    Science.gov (United States)

    Guissa, Vanessa R; Aragão, Paula A; Marques, Heloisa H; Jacob, Cristina M; Silva, Clovis A

    2010-01-01

    Chronic active Epstein-Barr virus (CAEBV) infection is characterized by chronic or recurrent symptoms for at least 3 months, such as fever, hepatosplenomegaly and lymphadenopathy. The diagnosis is established due to the presence of anti-EBV antibodies or isolation of this infectious agent in affected tissues. Three cases of CAEBV infection mimicking Henoch-Schönlein purpura (HSP) were described. CASE 1: Female 3-year old patient with cervical adenomegaly, anemia and fever developed palpable purpura, haematuria and arthritis. CAEBV infection was established by serology test. She received methylprednisolone and acyclovir. She had generalized lymphadenopathy, hepatomegaly, splenomegaly, disseminated intravascular coagulation and deceased. CASE 2: Male 12-year old patient with persistent anemia, lymphadenopathy, hepatomegaly and splenomegaly had CAEBV infection diagnosis by serology test. He developed purpura and arthritis and received methylprednisolone. CASE 3: Male 13-year old patient had purpura, abdominal pain, haematuria, hepatomegaly, splenomegaly, lymphadenopathy, anemia and elevated liver enzymes. The cervical lymph node biopsy was positive to EBV infection. He received methylprednisolone and acyclovir, developing acute fulminant hepatitis and death. CAEBV infection mimicking HSP was rarely observed in our population.

  6. [A Case of Severe Chronic Active Epstein-Barr Virus Infection with Aplastic Anemia and Hepatitis].

    Science.gov (United States)

    Lee, Ja In; Lee, Sung Won; Han, Nam Ik; Ro, Sang Mi; Noh, Yong-Sun; Jang, Jeong Won; Bae, Si Hyun; Choi, Jong Young; Yoon, Seung Kew

    2016-01-25

    Epstein-Barr virus (EBV) causes various acute and chronic diseases. Chronic active EBV infection (CAEBV) is characterized by infectious mononucleosis-like symptoms that persist for more than 6 months with high viral loads in peripheral blood and/or an unusual pattern of anti-EBV antibodies. Severe CAEBV is associated with poor prognosis with severe symptoms, an extremely high EBV-related antibody titer, and hematologic complications that often include hemophagocytic lymphohistiocytosis. However, CAEBV which led to the development of aplastic anemia (AA) has not been reported yet. A 73-year-old woman was admitted to our hospital with intermittent fever, general weakness and elevated liver enzymes. In the serologic test, EBV-related antibody titer was elevated, and real-time quantitative-PCR in peripheral blood showed viral loads exceeding 10(4) copies/μg DNA. Liver biopsy showed characteristic histopathological changes of EBV hepatitis and in situ hybridization with EBV-encoded RNA-1 was positive for EBV. Pancytopenia was detected in peripheral blood, and the bone marrow aspiration biopsy showed hypocellularity with replacement by adipocytes. AA progressed and the patient was treated with prednisolone but deceased 8 months after the diagnosis due to multiple organ failure and opportunistic infection. Herein, we report a rare case of severe CAEBV in an adult patient accompanied by AA and persistent hepatitis.

  7. Cardiovascular complications associated with chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Muneuchi, Jun; Ohga, Shouichi; Ishimura, Masataka; Ikeda, Kazuyuki; Yamaguchi, Kenichiro; Nomura, Akihiko; Takada, Hidetoshi; Abe, Yasunobu; Hara, Toshiro

    2009-04-01

    This study aimed to assess the outcome of cardiovascular diseases for patients with chronic active Epstein-Barr virus infection (CAEBV). The study enrolled 15 patients (7 boys and 8 girls) who fulfilled the diagnostic criteria for CAEBV, including 10 patients with T-cell type and 3 patients with natural killer (NK)-cell type. The median age at the CAEBV onset was 6.3 years (range, 1.2-17.8 years). Regular cardiologic studies were performed during the median follow-up period of 8 years (range, 2-20 years). Nine patients (60%) had cardiac diseases including coronary artery lesion (CAL) (n = 4, 44%), decreased left ventricular ejection fraction and pericardial effusion in (n = 3, 33%), complete atrioventricular block (n = 1), and sudden arrest (n = 1). The frequency of fever (78%, p = 0.04) or cytopenias (100%, p = 0.01), as the major symptom among patients with cardiac complications, was higher than among those without complications. The median time from disease onset to detection of CAL was 3.4 years (range, 1.8-8.6 years). The mean z-score increased to 3.98. Seven patients (78%) with cardiac complications died of disease progression, hematopoietic stem cell transplantation-related events, or both. In two patients, CAL regressed after allogeneic cord blood transplantation. Among CAEBV patients, CAL was the most common cardiac complication and could not be controlled without the eradication of EBV-infected T- and NK-cells.

  8. Autoimmune lymphoproliferative syndrome mimicking chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Nomura, Keiko; Kanegane, Hirokazu; Otsubo, Keisuke; Wakiguchi, Hiroshi; Noda, Yukihiro; Kasahara, Yoshihito; Miyawaki, Toshio

    2011-06-01

    Chronic active Epstein-Barr virus infection (CAEBV) is defined as a systemic EBV-associated lymphoproliferative disease characterized by fever, lymphadenopathy, and splenomegaly in apparently immunocompetent persons. Recent studies have revealed that EBV infects T or natural killer cells in most patients with CAEBV; the etiology of CAEBV, however, remains unknown. Autoimmune lymphoproliferative disorder (ALPS) is an inherited disorder associated with defects in apoptosis, and clinically characterized by lymphadenopathy, splenomegaly, hypergammaglobulinemia, and autoimmune disease. ALPS is most often associated with mutations in the FAS gene, which is an apoptosis-signaling receptor important for homeostasis of the immune system. Based on the clinical similarity between ALPS and CAEBV with respect to lymphoproliferation, we have examined the possibility of the co-occurrence of ALPS in patients with a diagnosis of CAEBV. In this study, we have identified FAS gene mutations in three Japanese patients with lymphadenopathy, hepatosplenomegaly, and unusual EBV infection, who were diagnosed with CAEBV. These observations, which indicate that the clinical development of ALPS may be associated with EBV infection, alert us to a potential diagnostic pitfall of CAEBV.

  9. Generalized myositis mimicking polymyositis associated with chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Uchiyama, Tomoyuki; Arai, Kimito; Yamamoto-Tabata, Takako; Hirai, Kanji; Kishimoto, Kouji; Nakamura, Yoshiko; Hattori, Takamichi

    2005-05-01

    Chronic generalized myositis has not so far been reported as a complication of chronic active Epstein-Barr virus infection (CAEBV). We encountered three patients with chronic generalized myositis mimicking polymyositis associated with CAEBV. To clarify the pathological character of this myositis, we investigated the distribution, clonality, and the immunophenotype of EBV-infected cells and lymphocytes infiltrating in muscles. Clinically, two patients showed symmetrical proximal weakness and muscle atrophy as the initial and main symptom. Although the condition resembled polymyositis, they had also lingual and/or orbital myositis. The other patient showed generalized myositis at the late phase of CAEBV. In all of them, immunotherapy was ineffective and prognosis was poor. Intramuscular infiltrating lymphocytes in our patients were mainly CD45RO+, CD3+, CD4-, CD8-, TCR betaF1-, TCR deltaTCS1-, CD56-, CD79a-, CD21-, HLA-DR+, ZEBRA -, LMP1-, and EBER+ T cells. Oligoclonal expansion of EBV-infected T cells was shown in the muscles. However, there were no malignant lymphocytes. This new form of myositis must be distinguished from polymyositis and the other conventional forms of myositis. Careful investigation of hidden CAEBV is recommended when patients present with steroid non-responsive chronic progressive generalized myositis, in particular, with lingual or orbital involvement.

  10. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation.

    Directory of Open Access Journals (Sweden)

    Sophia Maschalidi

    Full Text Available Intracellular Toll-like receptors (TLRs expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV, a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+ T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases.

  11. Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent.

    Science.gov (United States)

    Krüger, Nadine; Sauder, Christian; Hoffmann, Markus; Örvell, Claes; Drexler, Jan Felix; Rubin, Steven; Herrler, Georg

    2016-11-01

    A recent study reported the detection of a bat-derived virus (BatPV/Epo_spe/AR1/DCR/2009, batMuV) with phylogenetic relatedness to human mumps virus (hMuV). Since all efforts to isolate infectious batMuV have reportedly failed, we generated recombinant mumps viruses (rMuVs) in which the open reading frames (ORFs) of the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of an hMuV strain were replaced by the corresponding ORFs of batMuV. The batMuV F and HN proteins were successfully incorporated into viral particles and the resultant chimeric virus was able to mediate infection of Vero cells. Distinct differences were observed between the fusogenicity of rMuVs expressing one or both batMuV glycoproteins: viruses expressing batMuV F were highly fusogenic, regardless of the origin of HN. In contrast, rMuVs expressing human F and bat-derived HN proteins were less fusogenic compared to hMuV. The growth kinetics of chimeric MuVs expressing batMuV HN in combination with either hMuV or batMuV F were similar to that of the backbone virus, whereas a delay in virus replication was obtained for rMuVs harbouring batMuV F and hMuV HN. Replacement of the hMuV F and HN genes or the HN gene alone by the corresponding batMuV genes led to a slight reduction in neurovirulence of the highly neurovirulent backbone strain. Neutralizing antibodies inhibited infection mediated by all recombinant viruses generated. Furthermore, group IV anti-MuV antibodies inhibited the neuraminidase activity of bat-derived HN. Our study reports the successful generation of chimeric MuVs expressing the F and HN proteins of batMuV, providing a means for further examination of this novel batMuV.

  12. Sea buckthorn bud extract displays activity against cell-cultured Influenza virus.

    Science.gov (United States)

    Torelli, A; Gianchecchi, E; Piccirella, S; Manenti, A; Piccini, G; Llorente Pastor, E; Canovi, B; Montomoli, E

    2015-08-05

    Vaccines and antiviral drugs are the most widely used methods of preventing or treating Influenza virus infection. The role of sea buckthorn (SBT) bud dry extract as a natural antiviral drug against Influenza was investigated. Influenza virus was cultured in the MDCK cell line, with or without SBT bud extract, and virus growth was assessed by HA and TCID50 virus titration in terms of cytopathic effect on cells. Several concentrations of extract were tested, the virus titer being measured on day 4 after infection. After infection, the virus titer in the control sample was calculated to be 2.5 TCID50/ml; treatment with SBT bud extract reduced the virus titer to 2.0 TCID50/ml at 50 μg/ml, while the HA titer was reduced from 1431 (control) to 178. Concentrations lower than 50μg/ml displayed an inhibitory effect in the HA assay, but not in the TCID50 virus titration; however, observation of the viral cultures confirmed a slowdown of viral growth at all concentrations. Natural dietary supplements and phytotherapy are a growing market and offer new opportunities for the treatment of several diseases and disorders. These preliminary experiments are the first to show that SBT bud extract is able to reduce the growth of the Influenza A H1N1 virus in vitro at a concentration of 50 μg/ml. This discovery opens up the possibility of using SBT bud extract as a valid weapon against Influenza and, in addition, as the starting-point for the discovery of new drugs. © Copyright by Pacini Editore SpA, Pisa, Italy.

  13. Partial antiviral activities detection of chicken Mx jointing with neuraminidase gene (NA against Newcastle disease virus.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available As an attempt to increase the resistance to Newcastle Disease Virus (NDV and so further reduction of its risk on the poultry industry. This work aimed to build the eukaryotic gene co-expression plasmid of neuraminidase (NA gene and myxo-virus resistance (Mx and detect the gene expression in transfected mouse fibroblasts (NIH-3T3 cells, it is most important to investigate the influence of the recombinant plasmid on the chicken embryonic fibroblasts (CEF cells. cDNA fragment of NA and mutant Mx gene were derived from pcDNA3.0-NA and pcDNA3.0-Mx plasmid via PCR, respectively, then NA and Mx cDNA fragment were inserted into the multiple cloning sites of pVITRO2 to generate the eukaryotic co-expression plasmid pVITRO2-Mx-NA. The recombinant plasmid was confirmed by restriction endonuclease treatment and sequencing, and it was transfected into the mouse fibroblasts (NIH-3T3 cells. The expression of genes in pVITRO2-Mx-NA were measured by RT-PCR and indirect immunofluorescence assay (IFA. The recombinant plasmid was transfected into CEF cells then RT-PCR and the micro-cell inhibition tests were used to test the antiviral activity for NDV. Our results showed that co-expression vector pVITRO2-Mx-NA was constructed successfully; the expression of Mx and NA could be detected in both NIH-3T3 and CEF cells. The recombinant proteins of Mx and NA protect CEF cells from NDV infection until after 72 h of incubation but the individually mutagenic Mx protein or NA protein protects CEF cells from NDV infection till 48 h post-infection, and co-transfection group decreased significantly NDV infection compared with single-gene transfection group (P<0. 05, indicating that Mx-NA jointing contributed to delaying the infection of NDV in single-cell level and the co-transfection of the jointed genes was more powerful than single one due to their synergistic effects.

  14. Application of speckle dynamics for studying metabolic activity of cell cultures with herpes virus

    Science.gov (United States)

    Vladimirov, A. P.; Bakharev, A. A.; Malygin, A. S.; Mikhaylova, J. A.; Borodin, E. M.; Poryvayeva, A. P.; Glinskikh, N. P.

    2014-05-01

    The report considers the results of the experiments in which digital values of light intensity I and the image area correlation index η values were recorded on a real-time basis for one or two days. Three cell cultures with viruses along with intact cultures were investigated. High correlation of dependence of η values on time t values was demonstrated for three cultures. The η=η(t) and I=I(t) dependences for cells with and without viruses differ considerably. It was shown that the presence of viruses could be determined as early as ten minutes after measurements were started.

  15. A distinct subtype of Epstein Barr virus positive T/NK-cell lymphoproliferative disorder: Adult patients with chronic active Epstein Barr virus infection-like features.

    Science.gov (United States)

    Kawamoto, Keisuke; Miyoshi, Hiroaki; Suzuki, Takaharu; Kozai, Yasuji; Kato, Koji; Miyahara, Masaharu; Yujiri, Toshiaki; Oishi, Naoki; Choi, Ilseung; Fujimaki, Katsumichi; Muta, Tsuyoshi; Kume, Masaaki; Moriguchi, Sayaka; Tamura, Shinobu; Kato, Takeharu; Tagawa, Hiroyuki; Makiyama, Junya; Kanisawa, Yuji; Sasaki, Yuya; Kurita, Daisuke; Yamada, Kyohei; Shimono, Joji; Sone, Hirohito; Takizawa, Jun; Seto, Masao; Kimura, Hiroshi; Ohshima, Koichi

    2017-12-14

    The characteristics of adult patients with chronic active Epstein-Barr virus infection (adult-onset CAEBV) are poorly recognized, hindering early diagnosis and an improved prognosis. Adult-onset CAEBV (n = 54) diagnosed between 2005 and 2015 were conducted. Adult-onset was defined as an estimated age of onset ≥15 years. To characterize the clinical features of adult-onset CAEBV, we compared them to those of pediatric-onset (estimated age of onset Epstein-Barr virus nuclear antigen antibody titer, and the presence of hemophagocytic syndrome were associated with a poor prognosis (P = 0.0087, P = 0.0236, and P = 0.0149, respectively). Allogeneic hematopoietic stem cell transplantation may improve survival (P = 0.0289). Compared to that for pediatric-onset CAEBV and ENKTL, adult-onset CAEBV had a poorer prognosis (P < 0.001 and P = 0.0484, respectively). CAEBV can develop in a wide age-range, with clinical differences between adult-onset and pediatric-onset CAEBV. Adult-onset CAEBV is a disease with a poor prognosis and further research is needed. Copyright © 2017, Ferrata Storti Foundation.

  16. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K. (Thomas Jefferson Univ., Philadelphia, PA (USA)); Rappaport, J.; Wong-Staal, F. (National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV{sub L}, in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own.

  17. Early detection of tick-borne encephalitis virus spatial distribution and activity in the province of Trento, northern Italy

    Directory of Open Access Journals (Sweden)

    Annapaola Rizzoli

    2007-05-01

    Full Text Available New human cases of tick-borne encephalitis (TBE have recently been recorded outside the recognised foci of this disease, i.e. in the province of Trento in northern Italy. In order to predict the highest risk areas for increased TBE virus activity, we have combined cross-sectional serological data, obtained from 459 domestic goats, with analysis of the autumnal cooling rate based on Moderate Resolution Imaging Spectroradiometer (MODIS land surface temperature (LST data. A significant relationship between finding antibodies against the virus in serum (seroprevalence in goats and the autumnal cooling rate was detected, indicating that the transmission intensity of the virus does not only vary spatially, but also in relation to climatic factors. Virus seroprevalence in goats was correlated with the occurrence of TBE in humans and also with the average number of forestry workers’ tick bites, demonstrating that serological screening of domestic animals, combined with an analysis of the autumnal cooling rate, can be used as early-warning predictors of TBE risk in humans.

  18. Lersivirine, a Nonnucleoside Reverse Transcriptase Inhibitor with Activity against Drug-Resistant Human Immunodeficiency Virus Type 1▿ ‡

    Science.gov (United States)

    Corbau, Romuald; Mori, Julie; Phillips, Chris; Fishburn, Lesley; Martin, Alex; Mowbray, Charles; Panton, Wendy; Smith-Burchnell, Caroline; Thornberry, Adele; Ringrose, Heather; Knöchel, Thorsten; Irving, Steve; Westby, Mike; Wood, Anthony; Perros, Manos

    2010-01-01

    The nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1). A major problem with the first approved NNRTIs was the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular K103N and Y181C, which led to resistance to the entire class. We adopted an iterative strategy to synthesize and test small molecule inhibitors from a chemical series of pyrazoles against wild-type (wt) RT and the most prevalent NNRTI-resistant mutants. The emerging candidate, lersivirine (UK-453,061), binds the RT enzyme in a novel way (resulting in a unique resistance profile), inhibits over 60% of viruses bearing key RT mutations, with 50% effective concentrations (EC50s) within 10-fold of those for wt viruses, and has excellent selectivity against a range of human targets. Altogether lersivirine is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses. PMID:20660667

  19. Lersivirine, a nonnucleoside reverse transcriptase inhibitor with activity against drug-resistant human immunodeficiency virus type 1.

    Science.gov (United States)

    Corbau, Romuald; Mori, Julie; Phillips, Chris; Fishburn, Lesley; Martin, Alex; Mowbray, Charles; Panton, Wendy; Smith-Burchnell, Caroline; Thornberry, Adele; Ringrose, Heather; Knöchel, Thorsten; Irving, Steve; Westby, Mike; Wood, Anthony; Perros, Manos

    2010-10-01

    The nonnucleoside reverse transcriptase inhibitors (NNRTIs) are key components of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1). A major problem with the first approved NNRTIs was the emergence of mutations in the HIV-1 reverse transcriptase (RT), in particular K103N and Y181C, which led to resistance to the entire class. We adopted an iterative strategy to synthesize and test small molecule inhibitors from a chemical series of pyrazoles against wild-type (wt) RT and the most prevalent NNRTI-resistant mutants. The emerging candidate, lersivirine (UK-453,061), binds the RT enzyme in a novel way (resulting in a unique resistance profile), inhibits over 60% of viruses bearing key RT mutations, with 50% effective concentrations (EC(50)s) within 10-fold of those for wt viruses, and has excellent selectivity against a range of human targets. Altogether lersivirine is a highly potent and selective NNRTI, with excellent efficacy against NNRTI-resistant viruses.

  20. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  2. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Sharmy J. James

    2015-03-01

    Full Text Available The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5, a dual-specificity phosphatase (DUSP, in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.

  3. Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2.

    Science.gov (United States)

    Lee, Jin-Ching; Chen, Wei-Chun; Wu, Shou-Fang; Tseng, Chin-Kai; Chiou, Ching-Yi; Chang, Fang-Rong; Hsu, Shih-hsien; Wu, Yang-Chang

    2011-01-01

    Chronic hepatitis C virus (HCV) infection continues to be an important cause of morbidity and mortality by chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) throughout the world. It is of tremendous importance to discover more effective and safer agents to improve the clinical treatment on HCV carriers. Here we report that the n-butanol-methanol extract obtained from Acacia confusa plant, referred as ACSB-M4, exhibited the inhibition of HCV RNA replication in the HCV replicon assay system, with an EC(50) value and CC(50)/EC(50) selective index (SI) of 5 ± 0.3 μg/ml and >100, respectively. Besides, ACSB-M4 showed antiviral synergy in combination with IFN-α and as HCV protease inhibitor (Telaprevir; VX-950) and polymerase inhibitor (2'-C-methylcytidine; NM-107) by a multiple linear logistic model and isobologram analysis. A complementary approach involving the overexpression of COX-2 protein in ACSB-M4-treated HCV replicon cells was used to evaluate the antiviral action at the molecular level. ACSB-M4 significantly suppressed COX-2 expression in HCV replicon cells. Viral replication was gradually restored if COX-2 was added simultaneously with ACSB-M4, suggesting that the anti-HCV activity of ACSB-M4 was associated with down-regulation of COX-2, which was correlated with the suppression of nuclear factor-kappaB (NF-κB) activation. ACSB-M4 may serve as a potential protective agent for use in the management of patients with chronic HCV infection. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  4. Salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors.

    Science.gov (United States)

    Sharma, Navita; Mishra, K P; Ganju, Lilly

    2016-12-01

    Dengue is an arboviral disease with no effective therapy available. Therefore, there is an urgent need to find a potent antiviral agent against dengue virus (DENV). In the present study, salidroside, a main bioactive compound of Rhodiola rosea, was evaluated for its antiviral potential against DENV serotype-2 infection and its effect on host innate immune factors. Antiviral effects of salidroside were examined in DENV-infected cells by western blotting, flow cytometry and real-time PCR. Its underlying mechanism involved in antiviral action was determined by evaluating expression of host innate immune factors including RIG-I, IRF-3, IRF-7, PKR, P-eIF2α and NF-κB. Salidroside potently inhibited DENV infection by decreasing DENV envelope protein expression more than tenfold. Salidroside exerts its antiviral activity by increasing expression of RNA helicases such as RIG-I, thereby initiating a downstream signaling cascade that induces upregulation of IRF-3 and IRF-7. It prevents viral protein synthesis by increasing the expression of PKR and P-eIF2α while decreasing NF-κB expression. It was also found to induce the expression of IFN-α. In addition, the number of NK cells and CD8(+) T cells were also found to be increased by salidroside treatment in human PBMCs, which are important in limiting DENV replication during early stages of infection. The findings presented here suggest that salidroside exhibits antiviral activity against DENV by inhibiting viral protein synthesis and boosting host immunity by increasing the expression of host innate immune factors and hence could be considered for the development of an effective therapeutic agent against DENV infection.

  5. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity.

    OpenAIRE

    Daluge, S M; Good, S S; Faletto, M B; Miller, W. H.; St Clair, M H; Boone, L R; Tisdale, M; Parry, N R; Reardon, J E; Dornsife, R E; Averett, D R; Krenitsky, T A

    1997-01-01

    1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration....

  6. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles

    OpenAIRE

    Tonkin, Daniel R; Whitmore, Alan; Johnston, Robert E; Barro, Mario

    2012-01-01

    Replicon particles derived from Venezuelan equine encephalitis virus (VEE) are infectious non-propagating particles which act as a safe and potent systemic, mucosal, and cellular adjuvant when delivered with antigen. VEE and VEE replicon particles (VRP) can target multiple cell types including dendritic cells (DCs). The role of these cell types in VRP adjuvant activity has not been previously evaluated, and for these studies we focused on the contribution of DCs to the response to VRP. By ana...

  7. A Study on in vitro antiviral activities of lyophilized extracts of Glycyrrhiza glabra on Hepatitis B Virus

    Directory of Open Access Journals (Sweden)

    Sangeetha Vani

    2016-06-01

    Full Text Available The present study is to determine the effect of lyophilized extracts of different solvents of Glycyrrhiza glabra on Hepatitis B. The lyophilized plant extracts were collected and studied for its cytotoxicity in HepG2 cell line and in vitro antiviral activity of these extracts was investigated by HBs Ag binding Inhibition Assay, Hepatitis B Virus DNA Polymerase Inhibition Assay using fluorescent probes. The results from Glycyrrhiza glabra were promising in acting as a potent antiviral agent.

  8. Plant Virus Particles Carrying Tumour Antigen Activate TLR7 and Induce High Levels of Protective Antibody

    OpenAIRE

    Jantipa Jobsri; Alex Allen; Deepa Rajagopal; Michael Shipton; Kostya Kanyuka; Lomonossoff, George P.; Christian Ottensmeier; Diebold, Sandra S.; Stevenson, Freda K.; Natalia Savelyeva

    2015-01-01

    Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a n...

  9. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    OpenAIRE

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M.; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N?Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-01-01

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16(+) monocytes with a poor activa...

  10. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  11. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein.

    Directory of Open Access Journals (Sweden)

    Magdalena Anna Krzyzaniak

    Full Text Available Respiratory Syncytial Virus (RSV is a highly pathogenic member of the Paramyxoviridae that causes severe respiratory tract infections. Reports in the literature have indicated that to infect cells the incoming viruses either fuse their envelope directly with the plasma membrane or exploit clathrin-mediated endocytosis. To study the entry process in human tissue culture cells (HeLa, A549, we used fluorescence microscopy and developed quantitative, FACS-based assays to follow virus binding to cells, endocytosis, intracellular trafficking, membrane fusion, and infection. A variety of perturbants were employed to characterize the cellular processes involved. We found that immediately after binding to cells RSV activated a signaling cascade involving the EGF receptor, Cdc42, PAK1, and downstream effectors. This led to a series of dramatic actin rearrangements; the cells rounded up, plasma membrane blebs were formed, and there was a significant increase in fluid uptake. If these effects were inhibited using compounds targeting Na⁺/H⁺ exchangers, myosin II, PAK1, and other factors, no infection was observed. The RSV was rapidly and efficiently internalized by an actin-dependent process that had all hallmarks of macropinocytosis. Rather than fusing with the plasma membrane, the viruses thus entered Rab5-positive, fluid-filled macropinosomes, and fused with the membranes of these on the average 50 min after internalization. Rab5 was required for infection. To find an explanation for the endocytosis requirement, which is unusual among paramyxoviruses, we analyzed the fusion protein, F, and could show that, although already cleaved by a furin family protease once, it underwent a second, critical proteolytic cleavage after internalization. This cleavage by a furin-like protease removed a small peptide from the F1 subunits, and made the virus infectious.

  12. Highly Attenuated Recombinant Vesicular Stomatitis Virus VSV-12′GFP Displays Immunogenic and Oncolytic Activity

    Science.gov (United States)

    Davis, John N.

    2013-01-01

    Vesicular stomatitis virus (VSV) has shown considerable promise both as an immunization vector and as an oncolytic virus. In both applications, an important concern is the safety profile of the virus. To generate a highly attenuated virus, we added two reporter genes to the 3′ end of the VSV genome, thereby shifting the NPMGL genes from positions 1 to 5 to positions 3 to 7. The resulting virus (VSV-12′GFP) was highly attenuated, generating smaller plaques than four other attenuated VSVs. In one-step growth curves, VSV-12′GFP displayed the slowest growth kinetics. The mechanism of attenuation appears to be due to reduced expression of VSV genes downstream of the reporter genes, as suggested by a 10.4-fold reduction in L-protein RNA transcript. Although attenuated, VSV-12′GFP was highly effective at generating an immune response, indicated by a high-titer antibody response against the green fluorescent protein (GFP) expressed by the virus. Although VSV-12′GFP was more attenuated than other VSVs on both normal and cancer cells, it nonetheless showed a greater level of infection of human cancer cells (glioma and melanoma) than of normal cells, and this effect was magnified in glioma by interferon application, indicating selective oncolysis. Intravenous VSV-12′GFP selectively infected human gliomas implanted into SCID mice subcutaneously or intracranially. All postnatal day 16 mice given intranasal VSV-12′GFP survived, whereas only 10% of those given VSV-G/GFP survived, indicating reduced neurotoxicity. Intratumoral injection of tumors with VSV-12′GFP dramatically suppressed tumor growth and enhanced survival. Together these data suggest this recombinant virus merits further study for its oncolytic and vaccine potential. PMID:23135719

  13. Highly attenuated recombinant vesicular stomatitis virus VSV-12'GFP displays immunogenic and oncolytic activity.

    Science.gov (United States)

    van den Pol, Anthony N; Davis, John N

    2013-01-01

    Vesicular stomatitis virus (VSV) has shown considerable promise both as an immunization vector and as an oncolytic virus. In both applications, an important concern is the safety profile of the virus. To generate a highly attenuated virus, we added two reporter genes to the 3' end of the VSV genome, thereby shifting the NPMGL genes from positions 1 to 5 to positions 3 to 7. The resulting virus (VSV-12'GFP) was highly attenuated, generating smaller plaques than four other attenuated VSVs. In one-step growth curves, VSV-12'GFP displayed the slowest growth kinetics. The mechanism of attenuation appears to be due to reduced expression of VSV genes downstream of the reporter genes, as suggested by a 10.4-fold reduction in L-protein RNA transcript. Although attenuated, VSV-12'GFP was highly effective at generating an immune response, indicated by a high-titer antibody response against the green fluorescent protein (GFP) expressed by the virus. Although VSV-12'GFP was more attenuated than other VSVs on both normal and cancer cells, it nonetheless showed a greater level of infection of human cancer cells (glioma and melanoma) than of normal cells, and this effect was magnified in glioma by interferon application, indicating selective oncolysis. Intravenous VSV-12'GFP selectively infected human gliomas implanted into SCID mice subcutaneously or intracranially. All postnatal day 16 mice given intranasal VSV-12'GFP survived, whereas only 10% of those given VSV-G/GFP survived, indicating reduced neurotoxicity. Intratumoral injection of tumors with VSV-12'GFP dramatically suppressed tumor growth and enhanced survival. Together these data suggest this recombinant virus merits further study for its oncolytic and vaccine potential.

  14. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  15. Quantifying the Protection of Activating and Inhibiting NK Cell Receptors during Infection with a CMV-Like Virus.

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Keşmir, Can; de Boer, Rob J

    2014-01-01

    The responsiveness of natural killer (NK) cells is controlled by balancing signals from activating and inhibitory receptors. The most important ligands of inhibitory NK cell receptors are the highly polymorphic major histocompatibility complex (MHC) class I molecules, which allow NK cells to screen the cellular health of target cells. Although these inhibitory receptor-ligand interactions have been well characterized, the ligands for most activating receptors are still unknown. The mouse cytomegalovirus (MCMV) represents a helpful model to study NK cell-driven immune responses. Many studies have demonstrated that CMV infection can be controlled by NK cells via their activating receptors, but the exact contribution of the different signaling potential (i.e., activating vs. inhibiting) remains puzzling. In this study, we have developed a probabilistic model, which predicts the optimal specificity of inhibitory and activating NK cell receptors needed to offer the best protection against a CMV-like virus. We confirm our analytical predictions with an agent-based model of an evolving host population. Our analysis quantifies the degree of protection of each receptor type, revealing that mixed haplotypes (i.e., haplotypes composed of activating and inhibiting receptors) are most protective against CMV-like viruses, and that the protective effect depends on the number of MHC loci per individual.

  16. Beak and feather disease virus haemagglutinating activity using erythrocytes from African Grey parrots and Brown-headed parrots : research communication

    Directory of Open Access Journals (Sweden)

    K. Kondiah

    2005-09-01

    Full Text Available Psittacine beak and feather disease (PBFD is a common viral disease of wild and captive psittacine birds characterized by symmetric feather loss and beak deformities. The causative agent, beak and feather disease virus (BFDV, is a small, circular single-stranded DNA virus that belongs to the genus Circovirus. BFDV can be detected by PCR or the use of haemagglutination (HA and haemagglutination inhibition (HI assays that detect antigen and antibodies respectively. Erythrocytes from a limited number of psittacine species of Australian origin can be used in these tests. In South Africa, the high cost of these birds makes them difficult to obtain for experimental purposes. Investigation into the use of erythrocytes from African Grey parrots and Brown-headed parrots yielded positive results showing the haemagglutinating activity of their erythrocytes with purified BFDV obtained from confirmed clinical cases of the disease. The HA activity was further confirmed by the demonstration of HI using BFDV antiserum from three different African Grey parrots previously exposed to the virus and not showing clinical signs of the disease.

  17. Central nervous system complications and neuroradiological findings in children with chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Ishikawa, Nobutsune; Kawaguchi, Hiroshi; Nakamura, Kazuhiro; Kobayashi, Masao

    2013-02-01

    Although many neurological complications have been described in acute Epstein-Barr virus infection, few reports have discussed the central nervous system complications in chronic active Epstein-Barr virus (CAEBV) infection. We retrospectively surveyed the medical records of 14 patients with CAEBV infection in our institute. Neuroradiological studies were performed in 10 of these patients. Five had no neurological symptoms, whereas two presented with posterior reversible encephalopathy syndrome, one presented with basal ganglia calcification, and one presented with falx cerebri hemorrhage. Although both of the posterior reversible encephalopathy syndrome cases developed epilepsy several years after recovering from prolonged neurological deterioration, the others had no neurological sequelae. This study revealed that various central nervous system complications may occur during the clinical course in pediatric CAEBV patients. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  18. MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1989-01-01

    The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion, indicat......The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion...... responsiveness measured in terms of virus-specific cytotoxicity and delayed-type hypersensitivity, whereas no correlation was found with regard to NK cell activity and antiviral antibody response. Analysis of F1 progeny between H-2 identical high and low responder strains showed that low responsiveness...

  19. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus.

    Science.gov (United States)

    Gómez, Luz Angela; Stashenko, Elena; Ocazionez, Raquel Elvira

    2013-02-01

    The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 microg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.

  20. Critical role for cross-linking of trimeric lectin domains of surfactant protein D in antiviral activity against influenza A virus

    DEFF Research Database (Denmark)

    Tecle, Tesfaldet; White, Mitchell R; Sørensen, Grith Lykke

    2008-01-01

    binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity...... and antiviral activity of NCRDs as assessed by haemagglutination and neuraminidase inhibition and by viral neutralization. mAb-mediated cross-linking also enabled NCRDs to induce viral aggregation and to increase viral uptake by neutrophils and virus-induced respiratory burst responses by these cells...

  1. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  2. Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction

    Science.gov (United States)

    Zhu, Banghe; Guenther, Caitlin; Kwon, Sunkuk; Sevick-Muraca, Eva M.; Suh, Junghae

    2017-02-01

    Cardiovascular diseases remain the greatest cause of death in the US and gene therapy has the potential to be an effective therapy. In this study, we demonstrated MMP-9 based protease-activatable virus (PAV) for selective infection of myocardial infarct (MI) that is associated with active MMP-9 expression. To test the specificity of PAV, we used expression of a far-red fluorescence protein (iRFP) delivered by the PAV together with a dual PET/NIRF imaging agent specific for active MMP-9 activity at the site of MI in a murine model. Calibrated fluorescence imaging employed a highly-sensitive intensified camera, laser diode excitation sources, and filtration schemes based upon the spectra of iRFP and the NIRF agent. One to two days after ligation of the left anterior descending artery, the PAV or WT AAV9 virus encoding for iRFP (5x1010 genomic particles) and radiolabeled MMP-9 imaging agent (3 nmol) were injected intravenously (i.v.). PET imaging showed MMP activity was associated with adverse tissue remodeling at the site of the MI. One week after, animals were again injected i.v. with the MMP-9 agent (3 nmol) and 18-24 h later, the animals were euthanized and the hearts were harvested, sliced, and imaged for congruent iRFP transgene expression and NIRF signals associated with MMP-9 tissue activity. The fluorescent margins of iRFP and NIRF contrasted tissues were quantified in terms Standard International units of mW/cm2/sr. The sensitivity, specificity, and accuracy of PAV and WT targeting to sites of MI was determined from these calibrated fluorescence measurements. The PAV demonstrated significantly higher delivery performance than that of the WT AAV9 virus.

  3. Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt's lymphoma.

    Science.gov (United States)

    Cerimele, Francesca; Battle, Traci; Lynch, Rebecca; Frank, David A; Murad, Emma; Cohen, Cynthia; Macaron, Nada; Sixbey, John; Smith, Kenneth; Watnick, Randolph S; Eliopoulos, Aristidis; Shehata, Bahig; Arbiser, Jack L

    2005-01-04

    Burkitt's lymphoma (BL) is an aggressive B cell neoplasm, which is one of the most common neoplasms of childhood. It is highly widespread in East Africa, where it appears in endemic form associated with Epstein-Barr virus (EBV) infection, and around the world in a sporadic form in which EBV infection is much less common. In addition to being the first human neoplasm to be associated with EBV, BL is associated with a characteristic translocation, in which the Ig promoter is translocated to constitutively activate the c-myc oncogene. Although many BLs respond well to chemotherapy, a significant fraction fails to respond to therapy, leading to death. In this article, we demonstrate that EBV-positive BL expresses high levels of activated mitogen-activated protein kinase and reactive oxygen species (ROS), and that ROS directly regulate NF-kappaB activation. EBV-negative BLs exhibit activation of phosphoinositol 3-kinase, but do not have elevated levels of ROS. Elevated reactive oxygen may play a role in diverse forms of viral carcinogenesis in humans, including cancers caused by EBV, hepatitis B, C, and human T cell lymphotropic virus. Our findings imply that inhibition of ROS may be useful in the treatment of EBV-induced neoplasia.

  4. Reactive oxygen signaling and MAPK activation distinguish Epstein–Barr Virus (EBV)-positive versus EBV-negative Burkitt's lymphoma

    Science.gov (United States)

    Cerimele, Francesca; Battle, Traci; Lynch, Rebecca; Frank, David A.; Murad, Emma; Cohen, Cynthia; Macaron, Nada; Sixbey, John; Smith, Kenneth; Watnick, Randolph S.; Eliopoulos, Aristidis; Shehata, Bahig; Arbiser, Jack L.

    2005-01-01

    Burkitt's lymphoma (BL) is an aggressive B cell neoplasm, which is one of the most common neoplasms of childhood. It is highly widespread in East Africa, where it appears in endemic form associated with Epstein–Barr virus (EBV) infection, and around the world in a sporadic form in which EBV infection is much less common. In addition to being the first human neoplasm to be associated with EBV, BL is associated with a characteristic translocation, in which the Ig promoter is translocated to constitutively activate the c-myc oncogene. Although many BLs respond well to chemotherapy, a significant fraction fails to respond to therapy, leading to death. In this article, we demonstrate that EBV-positive BL expresses high levels of activated mitogen-activated protein kinase and reactive oxygen species (ROS), and that ROS directly regulate NF-κB activation. EBV-negative BLs exhibit activation of phosphoinositol 3-kinase, but do not have elevated levels of ROS. Elevated reactive oxygen may play a role in diverse forms of viral carcinogenesis in humans, including cancers caused by EBV, hepatitis B, C, and human T cell lymphotropic virus. Our findings imply that inhibition of ROS may be useful in the treatment of EBV-induced neoplasia. PMID:15611471

  5. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A

    1995-01-01

    response is induced, which is associated with marked CD8+ cell-mediated inflammation. Two expressions of LCMV-induced inflammation were studied: meningitis induced by intracerebral infection and adoptive transfer of virus-specific delayed-type hypersensitivity. Our previous studies have shown that LCMV...... the ability to transfer virus-specific, delayed-type hypersensitivity when the donor cells were given i.v., but not when the cells were injected directly into the test site. Co-transfer of CD8-depleted cells with anti-VLA-4-blocked cells did not reveal any cooperation. Taken together, these results indicate....... This correlation could be extended to CD4+ and B cells in chronically infected low responder DBA/2 mice. The vascular ligand for VLA-4, VCAM-1, was found to be up-regulated on endothelial cells in sites of inflammation. Finally, preincubation of virus-primed donor cells with mAb to VLA-4 completely blocked...

  6. Prevalence of hepatitis C virus and human immunodeficiency virus in a group of patients newly diagnosed with active tuberculosis in Porto Alegre, Southern Brazil.

    Science.gov (United States)

    Costi, Cintia; Grandi, Tarciana; Halon, Maria Laura; Silva, Márcia Susana Nunes; Silva, Cláudia Maria Dornelles da; Gregianini, Tatiana Schäffer; Possuelo, Lia Gonçalves; Jarczewski, Carla Adriane; Niel, Christian; Rossetti, Maria Lucia Rosa

    2017-04-01

    Porto Alegre is the Brazilian state capital with second highest incidence of tuberculosis (TB) and the highest proportion of people infected with human immunodeficiency virus (HIV) among patients with TB. Hepatitis C virus (HCV) infection increases the risk of anti-TB drug-induced hepatotoxicity, which may result in discontinuation of the therapy. The aim of this study was (i) to estimate prevalence of HCV and HIV in a group of patients newly diagnosed with active TB in a public reference hospital in Porto Alegre and (ii) to compare demographic, behavioural, and clinical characteristics of patients in relation to their HCV infection status. One hundred and thirty-eight patients with TB were tested for anti-HCV antibody, HCV RNA, and anti-HIV1/2 antibody markers. HCV RNA from real-time polymerase chain reaction (PCR)-positive samples was submitted to reverse transcription and PCR amplification. The 5' non-coding region of the HCV genome was sequenced, and genotypes of HCV isolates were determined. Anti-HCV antibody, HCV RNA, and anti-HIV antibodies were detected in 27 [20%; 95% confidence interval (CI), 13-26%], 17 (12%; 95% CI, 7-18%), and 34 (25%; 95% CI, 17-32%) patients, respectively. HCV isolates belonged to genotypes 1 (n = 12) and 3 (n = 4). Some characteristics were significantly more frequent in patients infected with HCV. Among them, non-white individuals, alcoholics, users of illicit drugs, imprisoned individuals, and those with history of previous TB episode were more commonly infected with HCV (p < 0.05). HCV screening, including detection of anti-HCV antibody and HCV RNA, will be important to improving the management of co-infected patients, given their increased risk of developing TB treatment-related hepatotoxicity.

  7. Modulatory activities of Zingiber offiinale Roscoe methanol extract on the expression and activity of MMPs and TIMPs on dengue virus infected cells

    Directory of Open Access Journals (Sweden)

    Binita Koirala Sharma

    2015-06-01

    Full Text Available Objective: To evaluate the effect of methanolic extract of Zingiber officinale (ZOM rhizome on the activity and expression profile of matrix metalloproteinase (MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2 at the mRNA level in dengue virus infected Vero cells. Methods: Total phenolic content and [6]-gingerol content in ZOM were determined by utilizing Folin-Ciocalteu reagent and high performance liquid chromatography. IC50 value of ZOM for Vero cells was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Vero cells were infected with dengue virus to induce MMPs production. Modulatory effect of ZOM on the activity and expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 were demonstrated by using gelatin zymography and real time RT-PCR respectively. Results: Amount of total phenolics in ZOM in terms of mg gallic acid equivalents/g was (252.89 ± 0.56 and it possessed (137.32 ± 2.47 mg [6]-gingerol content per gram of extract. The IC 50 value of ZOM was 221.5 µg/mL for Vero cells. The activities of MMP-2 and to a lesser extent MMP-9 were significantly enhanced in the conditioned media collected from the dengue virus infected Vero cells compared to conditioned media from non-infected cells and their activities were significantly inhibited by ZOM in dose-dependent manner. ZOM significantly downregulated the mRNA expression of MMP-2 and MMP-9 and upregulated the mRNA expression of TIMP-1 and TIMP-2 in dengue virus infected Vero cells in concentrationdependent manner. Conclusions: The results of this study suggest that ZOM may be effective in the control of dengue-virus-induced permeability through the reduction of activities and expression of proteases which degrade the adhesion molecules between cells. This may provide the basis for developing new and effective methods in controlling severe dengue complications.

  8. Surveillance of respiratory viruses.

    African Journals Online (AJOL)

    Surveillance of respiratory viruses. A 10-year laboratory-based study. J. M. McAnerney, S. Johnson, B. D. Schoub. Respiratory virus isolates made at the National Institute for. Virology from 1982 to 1991 were studied. An active virus surveillance programme, 'viral watch', which recruits throat swab specimens from a network ...

  9. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates

    Energy Technology Data Exchange (ETDEWEB)

    Rabovsky, J.; Judy, D.J.; Rodak, D.J.; Petersen, M.

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under conditions of particulate exposure and virus infection, serum IFN levels peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE.

  10. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  11. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  12. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication

    Science.gov (United States)

    Wang, Wei; Zhao, Wan; Li, Jing; Luo, Lan; Kang, Le; Cui, Feng

    2017-01-01

    No evidence has shown whether insect-borne viruses manipulate the c-Jun N-terminal kinase (JNK) signaling pathway of vector insects. Using a system comprising the plant virus Rice stripe virus (RSV) and its vector insect, the small brown planthopper, we have studied the response of the vector insect’s JNK pathway to plant virus infection. We found that RSV increased the level of Tumor Necrosis Factor-α and decreased the level of G protein Pathway Suppressor 2 (GPS2) in the insect vector. The virus capsid protein competitively bound GPS2 to release it from inhibiting the JNK activation machinery. We confirmed that JNK activation promoted RSV replication in the vector, whereas JNK inhibition caused a significant reduction in virus production and thus delayed the disease incidence of plants. These findings suggest that inhibition of insect vector JNK may be a useful strategy for controling the transmission of plant viruses. DOI: http://dx.doi.org/10.7554/eLife.26591.001 PMID:28716183

  13. Persistent Borna Disease Virus (BDV infection activates microglia prior to a detectable loss of granule cells in the hippocampus

    Directory of Open Access Journals (Sweden)

    Vogel Michael W

    2008-05-01

    Full Text Available Abstract Neonatal Borna Disease Virus (BDV infection in rats leads to a neuronal loss in the cortex, hippocampus and cerebellum. Since BDV is a non-lytic infection in vitro, it has been suggested that activated microglia could contribute to neuronal damage. It is also conceivable that BDV-induced cell death triggers activation of microglia to remove cell debris. Although an overall temporal association between neuronal loss and microgliosis has been demonstrated in BDV-infected rats, it remains unclear if microgliosis precedes or results from neuronal damage. We investigated the timing of microglia activation and neuronal elimination in the dentate gyrus (DG of the hippocampus. We found a significant increase in the number of ED1+ microglia cells as early as 10 days post infection (dpi while a detectable loss of granule cells of the DG was not seen until 30 dpi. The data demonstrate for the first time that a non-lytic persistent virus infection of neurons activates microglia long before any measurable neuronal loss.

  14. Assessment of antioxidant activity and total polyphenolic compounds of peach varieties infected with the Plum pox virus

    Directory of Open Access Journals (Sweden)

    Jana Horsáková

    2013-01-01

    Full Text Available Just like in other stone fruits, also in peach trees, the Plum pox virus is commonly known to be the cause of lower yields, worse quality and smaller size of fruits and it also affects the contained substances. The fruits of peach trees infected with the Plum pox virus (PPV were subjected to various analyses to determine the content of antioxidant activity and overall polyphenolic compounds. The evaluation took place from 2011 to 2012. To conduct this experiment, two cultivars that had been infected by PPV naturally were selected – ‘Royal Glory’ and ‘Symphony’. Antioxidant activity was established using five principally different methods (DPPH, ABTS, FRAP, DMPD and Free Radicals. The content of total polyphenolic compounds was established using the Folin-Ciocalteu method. The results of these analyses are expressed as the equivalent of gallic acid (GAE in mg·kg−1. Furthermore, in the period from April to October the intensity of PPV symptoms in blossoms, leaves and fruits was also assessed. It was discovered that as a result of the PPV infection, the content of antioxidant activity as well as of total polyphenols had increased. Average reading of antioxidant activity in the PPV infected fruits had increased by 13.2 % (DPPH, 26.7 % (FRAP, 27.6 % (ABTS, 28.1 % (DMPD, 39.2 % (Free Radicals and the content of polyphenolic compounds had gone up by about 30.4 % in comparison with the control varieties.

  15. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    Science.gov (United States)

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Combined expression of p20 and p23 proteins from Citrus tristeza virus show enhanced local silencing suppressor activity

    Directory of Open Access Journals (Sweden)

    Ângela A. COSTA

    2016-07-01

    Full Text Available Viruses developed a strategy to counter-defence the posttranscriptional gene silencing mechanism (PTGS based on the activity of silencing suppressor proteins. Citrus tristeza virus (CTV, a member of the genus Closterovirus, has two suppressor proteins (p20 and p23 that target the local RNA silencing response of the host. In GFP transient co-expression assays performed on Nicotiana benthamiana 16C plants, local suppressor activity of p23 and p20 was similar. Co-expression of both proteins from a mild or a stem pitting CTV isolate showed stronger local suppression activity than either suppressor alone, with an increased GFP transcript level six- (for Gp M to nine-fold (for Gp 3a higher than non-inoculated 16C plants, in parallel with low accumulation of siRNAs. Further, GFP brightness of leaves infiltrated with Agrobacterium cultures at an OD600 of 0.5 was comparable to those infiltrated with OD600 0.25. These findings indicate that combined action of p20 and p23 proteins results in enhanced suppressor activity.

  17. A preliminary study of recombinant human interferon-α-2a activity against rabies virus in murine model.

    Science.gov (United States)

    Roy, S; Patil, D; Ghadigaonkar, S; Roy, R; Mukherjee, S; Chowdhary, A; Deshmukh, R

    2015-01-01

    Rabies remains an important public health problem in the world due to uncontrolled enzootic rabies. Although rabies associated fatalities may be prevented with timely immunoprophylaxis, but till date a therapeutic molecule has remained elusive. We investigated the role of rhuIFN α-2a in murine model challenged with rabies virus. Titre of 10(4.25) LD50/0.03 ml of 10% w/v RV CVS stock suspension were obtained. Based on 1LD50 titre, challenge dose of 50 LD 50 was administered along with rhuIFN α-2a with pre-exposure (primed) and post-exposure with the rabies virus. Both showed increased survival time as compared with the virus controls. These findings suggest that the rhuIFN α-2a might have some anti-viral activity, which can be used for the treatment of rabies infection. Further research on the efficacy of interferon along with anti-viral drugs for the treatment will be helpful in designing combination therapy against the disease.

  18. Recombinant rabies virus expressing IL-21 enhances immunogenicity through activation of T follicular helper cells and germinal centre B cells.

    Science.gov (United States)

    Zhang, Yajing; Zhou, Ming; Wang, Zhao; Yang, Jie; Li, Mingming; Wang, Kunlun; Cui, Min; Chen, Huanchun; Fu, Zhen F; Zhao, Ling

    2016-12-01

    Previous studies have demonstrated that the lack of interleukin-21 (IL-21) signalling could affect specific antibody induction after rabies vaccination. Here, to further investigate the over-expression of IL-21 on the immunogenicity of rabies virus (RABV), a recombinant RABV expressing murine IL-21, designated LBNSE-IL21, was constructed and evaluated in a mouse model. It was found that in mice immunized with LBNSE-IL21, there was a substantial increase in the number of T follicular helper cells and germinal centre B cells but no enhancement of dendritic cell activation. Furthermore, significantly higher rabies virus-neutralizing antibody (VNA) titres were produced in mice immunized with LBNSE-IL21 than in mice immunized with the parent virus LBNSE in the first six weeks, resulting in higher protection. Together, these results suggest that LBNSE-IL21 can induce a rapid and robust VNA titre, and it has the potential to be developed as a promising rabies vaccine.

  19. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus.

    Science.gov (United States)

    Bassetto, Marcella; De Burghgraeve, Tine; Delang, Leen; Massarotti, Alberto; Coluccia, Antonio; Zonta, Nicola; Gatti, Valerio; Colombano, Giampiero; Sorba, Giovanni; Silvestri, Romano; Tron, Gian Cesare; Neyts, Johan; Leyssen, Pieter; Brancale, Andrea

    2013-04-01

    Chikungunya virus (CHIKV) is an Arbovirus that is transmitted to humans primarily by the mosquito species Aedes aegypti. Infection with this pathogen is often associated with fever, rash and arthralgia. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. Albeit considered a tropical pathogen, adaptation of the virus to the mosquito species Aedes albopictus, which is also very common in temperate zones, has resulted in recent outbreaks in Europe and the US. In the present study, we report on the discovery of a novel series of compounds that inhibit CHIKV replication in the low μM range. In particular, we initially performed a virtual screening simulation of ∼5 million compounds on the CHIKV nsP2, the viral protease, after which we investigated and explored the Structure-Activity Relationships of the hit identified in silico. Overall, a series of 26 compounds, including the original hit, was evaluated in a virus-cell-based CPE reduction assay. The study of such selective inhibitors will contribute to a better understanding of the CHIKV replication cycle and may represents a first step towards the development of a clinical candidate drug for the treatment of this disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles; Lazear, Eric; Connolly, Sarah A.; Eisenberg, Roselyn J.; Cohen, Gary H.; Wiley, Don C.; Carfi, Andrea (UPENN); (IRBM); (CHLMM)

    2010-07-19

    Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.

  1. A quantitative structure-activity relationship study on a few series of anti-hepatitis C virus agents.

    Science.gov (United States)

    Varshney, Jonish; Sharma, Anjana; Gupta, Satya P

    2012-05-01

    A 2-Dimensional Quantitative Structure-Activity Relationship study has been performed on 2 series of hepatitis C virus (HCV) inhibitors, i.e., Isothiazoles and Thiazolones. In each case significant correlations are found between the anti-HCV potencies and some physicochemical, electronic and steric properties of the compounds, indicating that for the first series the activity is controlled by density and two indicator parameters (one for halogen and other for methyl), while for the second series density, Hammett constant and Kier's first order valence molecular connectivity index are important for anti-HCV activity. The validity of the correlation has been judged by leave-one-out jackknife procedure and predicting the activity of some test compounds. Using the correlations obtained, some new compounds of high potency have been predicted in each series.

  2. The physical activity levels among people living with human immunodeficiency virus/acquired immunodeficiency syndrome receiving high active antiretroviral therapy in Rwanda.

    Science.gov (United States)

    Frantz, J M; Murenzi, A

    2013-01-01

    The accessibility of high active antiretroviral therapy (HAART) for local human immunodeficiency virus (HIV) patients is improving in Rwanda. It is well known that this therapy is associated with serious adverse effects, such as metabolic and morphologic changes. One of the recommended preventive modalities for these complications is participation in physical activity. The current study aims to determine the anthropometric profile and physical activity levels among people living with HIV and receiving HAART in Kigali, Rwanda. The study was a cross-sectional, descriptive quantitative survey. The participant's levels of physical activity participation and their association with anthropometric profiles were measured, using a structured self-administered questionnaire for 407 clients passing through the clinics. Of the participants, approximately 70% were inactive and in addition, 40% were obese and 43% overweight. Obesity was found to be strongly associated with inactivity. Lack of motivation, and time as well as fear of worsening the disease were found to be barriers to participation in physical activity.

  3. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin

    NARCIS (Netherlands)

    Nalcacioglu, Remziye; Muratoglu, Hacer; Yesilyurt, Aydın; Oers, van Monique M.; Vlak, Just M.; Demirbag, Zihni

    2016-01-01

    Previously we have generated a recombinant Chilo iridescent virus (CIV) by inserting the green fluorescent protein gene (gfp) into the CIV 157L open reading frame (ORF) locus and showed that this recombinant (rCIV-Δ157L-gfp) was fully infectious both in cell culture as well as in insect larvae.

  4. Cell-line dependent antiviral activity of sofosbuvir against Zika virus

    NARCIS (Netherlands)

    Mumtaz, N. (Noreen); Jimmerson, L.C. (Leah C.); Bushman, L.R. (Lane R.); Kiser, J.J. (Jennifer J.); G.I. Aron (Georgina); C.B.E.M. Reusken (Chantal); M.P.G. Koopmans D.V.M. (Marion); J.J.A. van Kampen (Jeroen)

    2017-01-01

    textabstractThe recent epidemic of Zika virus (ZIKV) in the Americas and its association with fetal and neurological complications has shown the need to develop a treatment. Repurposing of drugs that are already FDA approved or in clinical development may shorten drug development timelines in case

  5. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A...

  6. Normal T-cell telomerase activity and upregulation in human immunodeficiency virus-1 infection

    NARCIS (Netherlands)

    Wolthers, KC; Otto, SA; Wisman, GBA; Fleury, S; Reiss, P; ten Kate, RW; van der Zee, AGJ; Miedema, F

    1999-01-01

    In human immunodeficiency virus (HIV)-1 infection, decrease of telomere length is mainly found in CD8(+) T cells and not in CD4(+) T cells. Telomerase, a ribonucleoprotein enzyme that can synthesize telomeric sequence onto chromosomal ends, can compensate for telomere loss. Here, we investigated if

  7. Anti-herpes simplex virus activity of extracts from the culinary herbs ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... steps of the viral multiplication cycle. Key words: Medicinal plant, herpes simplex virus, Ocimum sanctum L., Ocimum basilicum L., Ocimum ..... research and the Graduate school, Department of. Biology, Faculty of Science, Chiang Mai University and. Nakhon Sawan Rajabhat University, Thailand for suppor-.

  8. Entomological studies along the Colorado Front Range during a period of intense West Nile virus activity.

    Science.gov (United States)

    Bolling, B G; Moore, C G; Anderson, S L; Blair, C D; Beaty, B J

    2007-03-01

    To better understand the ecology of West Nile virus transmission in Northern Colorado, field studies were conducted in Larimer and Weld counties from September 2003 through March 2005. During summer studies, 18,540 adult mosquitoes were collected using light traps and gravid traps. West Nile virus RNA was detected in 24 of the 2,140 mosquito pools tested throughout the study area in 2003 and 2004. Culex tarsalis had the highest minimum infection rate (MIR) in both 2003 (MIR = 34.48) and in 2004 (MIR = 8.74). During winter studies, 9,391 adult mosquitoes were collected by aspirator from various overwintering sites including bridges and storm drains. The most frequently collected species was Culex pipiens. West Nile virus was not detected in our overwintering collections. The relationship between spring adult emergence and temperature inside and outside overwintering sites is described. Species composition of collections as well as the spatial and temporal distribution of West Nile virus detections are presented.

  9. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Yoshiki [School of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan; Nakajim, Syo [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Ohash, Hirofumi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya, Japan; Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Perelson, Alan S. [Los Alamos National Laboratory; Iwami, Shingo [Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan: PRESTO, JST, Saitama, Japan: CREST, JST, Saitama, Japan; Watashi, Koichi [Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan: Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, J

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  10. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1

    NARCIS (Netherlands)

    Hsu, D. H.; de Waal Malefyt, R.; Fiorentino, D. F.; Dang, M. N.; Vieira, P.; de Vries, J.; Spits, H.; Mosmann, T. R.; Moore, K. W.

    1990-01-01

    Cytokine synthesis inhibitory factor (CSIF; interleukin-10), a product of mouse TH2 T cell clones that inhibits synthesis of cytokines by mouse TH1 T cell clones, exhibits extensive sequence similarity to an uncharacterized open reading frame in the Epstein-Barr virus BCRF1. Recombinant BCRF1

  11. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  12. Soluble Urokinase Plasminogen Activator Receptor Is a Predictor of Incident Non-AIDS Comorbidity and All-Cause Mortality in Human Immunodeficiency Virus Type 1 Infection

    DEFF Research Database (Denmark)

    Kirkegaard-Klitbo, Ditte M.; Langkilde, Anne; Mejer, Niels

    2017-01-01

    Persistent inflammation and immune activation have been associated with non-AIDS comorbidity and mortality in human immunodeficiency virus (HIV) infection. We aimed to investigate the potential association between soluble urokinase plasminogen activator receptor (suPAR) and incident non-AIDS como......Persistent inflammation and immune activation have been associated with non-AIDS comorbidity and mortality in human immunodeficiency virus (HIV) infection. We aimed to investigate the potential association between soluble urokinase plasminogen activator receptor (suPAR) and incident non...... hazard rates for both non-AIDS comorbidities (cardiovascular disease, chronic kidney disease, chronic lung disease, liver disease, and cancer) and all-cause mortality....

  13. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  14. Hepatitis C Virus Indirectly Disrupts DNA Damage-Induced p53 Responses by Activating Protein Kinase R

    Directory of Open Access Journals (Sweden)

    Jonathan K. Mitchell

    2017-04-01

    Full Text Available Many DNA tumor viruses promote cellular transformation by inactivating the critically important tumor suppressor protein p53. In contrast, it is not known whether p53 function is disrupted by hepatitis C virus (HCV, a unique, oncogenic RNA virus that is the leading infectious cause of liver cancer in many regions of the world. Here we show that HCV-permissive, liver-derived HepG2 cells engineered to constitutively express microRNA-122 (HepG2/miR-122 cells have normal p53-mediated responses to DNA damage and that HCV replication in these cells potently suppresses p53 responses to etoposide, an inducer of DNA damage, or nutlin-3, an inhibitor of p53 degradation pathways. Upregulation of p53-dependent targets is consequently repressed within HCV-infected cells, with potential consequences for cell survival. Despite this, p53 function is not disrupted by overexpression of the complete HCV polyprotein, suggesting that altered p53 function may result from the host response to viral RNA replication intermediates. Clustered regularly interspaced short palindromic repeat (CRISPR/Cas9-mediated ablation of double-stranded RNA (dsRNA-activated protein kinase R (PKR restored p53 responses while boosting HCV replication, showing that p53 inhibition results directly from viral activation of PKR. The hepatocellular abundance of phosphorylated PKR is elevated in HCV-infected chimpanzees, suggesting that PKR activation and consequent p53 inhibition accompany HCV infection in vivo. These findings reveal a feature of the host response to HCV infection that may contribute to hepatocellular carcinogenesis.

  15. In vitro evaluation of the activities of the novel anticytomegalovirus compound AIC246 (letermovir) against herpesviruses and other human pathogenic viruses.

    Science.gov (United States)

    Marschall, Manfred; Stamminger, Thomas; Urban, Andreas; Wildum, Steffen; Ruebsamen-Schaeff, Helga; Zimmermann, Holger; Lischka, Peter

    2012-02-01

    AIC246 (letermovir) is a potent anticytomegalovirus drug in clinical development. Here, we report a consistent antiviral efficacy of AIC246 against human cytomegalovirus laboratory strains, clinical isolates, and virus variants resistant to approved drugs. Furthermore, we describe a remarkable selectivity of AIC246 for human cytomegaloviruses compared to that of other alpha-, beta-, or gammaherpesviruses or nonrelated pathogenic viruses, including adeno-, hepadna-, retro-, orthomyxo-, and flaviviruses. Our data confirm and support an excellent and selective anticytomegaloviral activity of AIC246.

  16. An elderly patient with chronic active Epstein-Barr virus infection with mixed cryoglobulinemia and review of the literature.

    Science.gov (United States)

    Ichinose, Kunihiro; Origuchi, Tomoki; Tashiro, Naoki; Kawashiri, Shin-Ya; Iwamoto, Naoki; Fujikawa, Keita; Aramaki, Toshiyuki; Arima, Kazuhiko; Tamai, Mami; Yamasaki, Satoshi; Nakamura, Hideki; Moriuchi, Hiroyuki; Kawakami, Atsushi

    2013-09-01

    A 76-year-old woman was diagnosed with chronic active Epstein-Barr virus (EBV) infection (CAEBV) with sustained fever, anemia, numbness of the lower limbs, and liver dysfunction. The patient had an unusual anti-EBV antibody profile and high viral load, positive rheumatoid factor, and cryoglobulinemia. She suffered from recurrent hemosputum with pleural effusion and thrombocytopenia caused by CAEBV infection, and she died in July 2008. Here, we present a rare case of CAEBV infection with cryoglobulinemia in an elderly patient.

  17. Highly active antiretroviral therapy normalizes the function of progenitor cells in human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Dam Nielsen, S; Kjaer Ersboll, A; Mathiesen, Lars Reinhardt

    1998-01-01

    CD34 cells from human immunodeficiency virus (HIV)-infected persons have been described to be impaired in function. The effect of highly active antiretroviral treatment (HAART) on the function of CD34 cells in HIV-infected patients was examined. Numbers and function of CD34 cells from 11 HIV....../mL eliminated the differences between HIV-infected patients and controls. Significant increases in numbers of CD34 cells were not detected. Of importance, the cloning efficiency of CD34 cells increased from 1.7% prior to therapy to a peak at 18.7% (P=.003). In conclusion, HAART normalized CD34 cell function...

  18. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models.

    Science.gov (United States)

    Kistner, Otfried; Crowe, Brian A; Wodal, Walter; Kerschbaum, Astrid; Savidis-Dacho, Helga; Sabarth, Nicolas; Falkner, Falko G; Mayerhofer, Ines; Mundt, Wolfgang; Reiter, Manfred; Grillberger, Leopold; Tauer, Christa; Graninger, Michael; Sachslehner, Alois; Schwendinger, Michael; Brühl, Peter; Kreil, Thomas R; Ehrlich, Hartmut J; Barrett, P Noel

    2010-02-23

    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.

  19. A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models.

    Directory of Open Access Journals (Sweden)

    Otfried Kistner

    Full Text Available The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.

  20. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.

    Directory of Open Access Journals (Sweden)

    Julien Pothlichet

    Full Text Available Influenza A virus (IAV triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58, TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

  1. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.

    Science.gov (United States)

    Pothlichet, Julien; Meunier, Isabelle; Davis, Beckley K; Ting, Jenny P-Y; Skamene, Emil; von Messling, Veronika; Vidal, Silvia M

    2013-01-01

    Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

  2. Efficacy of peroxisome proliferator activated receptor agonist in the treatment of virus-associated haemophagocytic syndrome in a rabbit model.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Lan, Bau-Shin; Chen, Yi-Ling; Chang, Yao; Chuang, Huai-Chia; Su, Ih-Jen

    2010-01-01

    Virus-associated haemophagocytic syndrome (VAHS) is a fatal complication of viral infections, such as Epstein-Barr virus and H5N1 influenza, that results from macrophage activation and pro inflammatory cytokine injuries. The high comorbidity and mortality of current therapy urgently demands an ideal agent based on VAHS pathogenesis. Peroxisome proliferator activated receptor (PPAR) agonists, regulators of metabolic syndrome, can exhibit immunomodulatory effects on macrophage activation and cytokine secretion. In this study, we adopted rosiglitazone, a PPAR-gamma agonist, for VAHS control in a Herpesvirus papio (HVP)-infected rabbit model. Various doses of rosiglitazone were orally administered to rabbits on day 7 or day 20 after intravenous challenge with 5 x 10(7) copies of HVP. The rabbits that received 4 mg/day rosiglitazone had significantly increased survival when treated at an early stage of infection (P<0.01), whereas a higher dose (8 mg/day) was required at the advanced stage of the disease (P<0.05). All rosiglitazone-treated rabbits had significantly improved laboratory parameters and plasma tumour necrosis factor-alpha levels. Importantly, rosiglitazone could also inhibit viral replication in vitro and in vivo. PPAR agonists could represent a potentially new agent for the therapy of VAHS.

  3. L-selectin Is Essential for Delivery of Activated CD8+ T Cells to Virus-Infected Organs for Protective Immunity

    Science.gov (United States)

    Mohammed, Rebar N.; Watson, H. Angharad; Vigar, Miriam; Ohme, Julia; Thomson, Amanda; Humphreys, Ian R.; Ager, Ann

    2016-01-01

    Summary Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. PMID:26804910

  4. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  5. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins.

    Directory of Open Access Journals (Sweden)

    Teymur Kazakov

    2015-04-01

    Full Text Available Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV, an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.

  6. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype

    Directory of Open Access Journals (Sweden)

    Kimberly A. Dowd

    2016-08-01

    Full Text Available Recent epidemics of Zika virus (ZIKV have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

  7. Functional restoration of human immunodeficiency virus and Epstein-Barr virus-specific CD8(+) T cells during highly active antiretroviral therapy is associated with an increase in CD4(+) T cells

    NARCIS (Netherlands)

    Kostense, Stefan; Otto, Sigrid A.; Knol, Gerlinde J.; Manting, Erik H.; Nanlohy, Nening M.; Jansen, Christine; Lange, Joep M. A.; van Oers, Marinus H. J.; Miedema, Frank; van Baarle, Debbie

    2002-01-01

    To investigate the effect of highly active antiretroviral therapy (HAART) on HIV- and Epstein-Barr virus (EBV)-specific CD8(+) T cells, total number and function of these cells was determined in 16 HIV-infected individuals using tetrameric HLA-peptide complexes and IFN-gamma ELISPOT assays after

  8. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors.

    Science.gov (United States)

    Palem, Jayavardhana R; Mudit, Mudit; Hsia, Shao-Chung V; Sayed, Khalid A El

    2017-01-01

    Herpes simplex virus type-1 (HSV-1) is a member of alpha-herpesviridae family and is known to cause contagious human infections. The marine habitat is a rich source of structurally unique bioactive secondary metabolites. A small library of marine natural product classes 1-10 has been screened to discover a new hit entity active against HSV-1. Manzamine A showed potent activity against HSV-1 via targeting the viral gene ICP0. Manzamine A is a β-carboline alkaloid isolated from the Indo-Pacific sponge Acanthostrongylophora species. Currently, acyclovir is the drug of choice for HSV-1 infections. Compared with 50 µM acyclovir, manzamine A at 1 µM concentration produced potent repressive effects on viral replication and release of infectious viruses in SIRC cells in recent studies. The potent anti-HSV-1 activity of manzamine A prompted a preliminary structure-activity relationship study by testing targeted manzamines. These included 8-hydroxymanzamine A (11), to test the effect of the C-8 hydroxy substitution at the β-carboline moiety; manzamine E (12), to assess the importance of substitution at the azacyclooctane ring; and ircinal A (13), to determine whether the β-carboline ring is required for the activity. Manzamine A was chemically transformed to its salt forms, manzamine A monohydrochloride (14) and manzamine A monotartrate (15), to test whether improving water solubility and hydrophilicity will positively affect the activity. Compounds were tested for activity against HSV-1 using fluorescent microscopy and plaque assay. The results showed the reduced anti-HSV-1 activity of 11, suggesting that C-8 hydroxy substitution might adversely affect the activity. Similarly, manzamines 12 and 13 showed no activity against HSV-1, indicating the preference of the unsubstituted azacylcooctane and β-carboline rings to the activity. Anti-HSV-1 activity was significantly improved for the manzamine A salts 14 and 15, suggesting that improving the overall water solubility

  9. NK cell activation in human hantavirus infection explained by virus-induced IL-15/IL15Rα expression.

    Science.gov (United States)

    Braun, Monika; Björkström, Niklas K; Gupta, Shawon; Sundström, Karin; Ahlm, Clas; Klingström, Jonas; Ljunggren, Hans-Gustaf

    2014-11-01

    Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention.

  10. The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation.

    Directory of Open Access Journals (Sweden)

    D Tien Nguyen

    Full Text Available Respiratory syncytial virus (RSV is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR agonists influence RSV-A2-GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4, the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The N-palmitoylated cysteine and the cationic lysines were identified as pivotal for enhanced virus binding. Surprisingly, we observed inhibition of RSV infection in immortalized epithelial cell lines, which was shown to be related to interactions between Pam3CSK4 and negatively charged glycosaminoglycans on these cells, which are known targets for binding of laboratory-adapted but not wild-type RSV. These data suggest a potential role for bacterial lipopeptides in enhanced binding of RSV and other viruses to their target cells, thus affecting

  11. Vector-Host Interactions of Culiseta melanura in a Focus of Eastern Equine Encephalitis Virus Activity in Southeastern Virginia.

    Directory of Open Access Journals (Sweden)

    Goudarz Molaei

    Full Text Available Eastern equine encephalitis virus (EEEV causes a highly pathogenic mosquito-borne zoonosis that is responsible for sporadic outbreaks of severe illness in humans and equines in the eastern USA. Culiseta (Cs. melanura is the primary vector of EEEV in most geographic regions but its feeding patterns on specific avian and mammalian hosts are largely unknown in the mid-Atlantic region. The objectives of our study were to: 1 identify avian hosts of Cs. melanura and evaluate their potential role in enzootic amplification of EEEV, 2 assess spatial and temporal patterns of virus activity during a season of intense virus transmission, and 3 investigate the potential role of Cs. melanura in epidemic/epizootic transmission of EEEV to humans and equines. Accordingly, we collected mosquitoes at 55 sites in Suffolk, Virginia in 2013, and identified the source of blood meals in engorged mosquitoes by nucleotide sequencing PCR products of the mitochondrial cytochrome b gene. We also examined field-collected mosquitoes for evidence of infection with EEEV using Vector Test, cell culture, and PCR. Analysis of 188 engorged Cs. melanura sampled from April through October 2013 indicated that 95.2%, 4.3%, and 0.5% obtained blood meals from avian, mammalian, and reptilian hosts, respectively. American Robin was the most frequently identified host for Cs. melanura (42.6% of blood meals followed by Northern Cardinal (16.0%, European Starling (11.2%, Carolina Wren (4.3%, and Common Grackle (4.3%. EEEV was detected in 106 mosquito pools of Cs. melanura, and the number of virus positive pools peaked in late July with 22 positive pools and a Maximum Likelihood Estimation (MLE infection rate of 4.46 per 1,000 mosquitoes. Our findings highlight the importance of Cs. melanura as a regional EEEV vector based on frequent feeding on virus-competent bird species. A small proportion of blood meals acquired from mammalian hosts suggests the possibility that this species may

  12. Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity.

    Science.gov (United States)

    Ackermann, Andreas; Staeheli, Peter; Schneider, Urs

    2007-08-01

    Borna disease virus (BDV) can persistently infect the central nervous system of a broad range of mammalian species. Mice are resistant to infections with primary BDV isolates, but certain laboratory strains can be adapted to replicate in mice. We determined the molecular basis of adaptation by studying mutations acquired by a cDNA-derived BDV strain during one brain passage in rats and three passages in mice. The adapted virus propagated efficiently in mouse brains and induced neurological disease. Its genome contained seven point mutations, three of which caused amino acid changes in the L polymerase (L1116R and N1398D) and in the polymerase cofactor P (R66K). Recombinant BDV carrying these mutations either alone or in combination all showed enhanced multiplication speed in Vero cells, indicating improved intrinsic viral polymerase activity rather than adaptation to a mouse-specific factor. Mutations R66K and L1116R, but not N1398D, conferred replication competence of recombinant BDV in mice if introduced individually. Virus propagation in mouse brains was substantially enhanced if both L mutations were present simultaneously, but infection remained mostly nonsymptomatic. Only if all three amino acid substitutions were combined did BDV replicate vigorously and induce early disease in mice. Interestingly, the virulence-enhancing effect of the R66K mutation in P could be attributed to reduced negative regulation of polymerase activity by the viral X protein. Our data demonstrate that BDV replication competence in mice is mediated by the polymerase complex rather than the viral envelope and suggest that altered regulation of viral gene expression can favor adaptation to new host species.

  13. Impact of hepatitis C virus coinfection on response to highly active antiretroviral therapy and outcome in HIV-infected individuals: a nationwide cohort study

    DEFF Research Database (Denmark)

    Weis, Nina Margrethe; Lindhardt, Bjarne Ø.; Kronborg, Gitte

    2006-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) in human immunodeficiency virus (HIV) type 1-infected patients may decrease the effectiveness of highly active antiretroviral therapy. We determined the impact of HCV infection on response to highly active antiretroviral therapy and outcome among...... Danish patients with HIV-1 infection. METHODS: This prospective cohort study included all adult Danish HIV-1-infected patients who started highly active antiretroviral therapy from 1 January 1995 to 1 January 2004. Patients were classified as HCV positive (positive HCV serological test and/or HCV PCR...

  14. Detoxification activity and energy cost is attenuated in whiteflies feeding on tomato yellow leaf curl China virus-infected tobacco plants.

    Science.gov (United States)

    Luan, J-B; Wang, Y-L; Wang, J; Wang, X-W; Liu, S-S

    2013-10-01

    The begomovirus Tomato yellow leaf curl China virus (TYLCCNV) can benefit its vector, the whitefly Bemisia tabaci, through suppressing the defences of their shared host plants. However, the mechanisms of this vector-virus mutualism remain largely unknown on the insect side of the interaction. Here, we compared the transcriptional profiles of female adult whiteflies of B. tabaci Middle East-Asia Minor 1 feeding on TYLCCNV-free and TYLCCNV-infected tobacco plants using the next-generation sequencing technique and quantitative real-time PCR. Interestingly, the genes involved in the oxidative phosphorylation (OXPHOS) pathway and detoxification enzyme were down-regulated in whiteflies feeding on virus-infected plants. Decreased detoxification activity costs less energy, which may reduce OXPHOS activity. Moreover, the genes involved in redox activity were also down-regulated, which may indicate that the reduced OXPHOS activity decreased reactive oxygen species production. Reduced detoxification activity is likely to attenuate energy costs, thereby enhancing the performance of whiteflies on virus-infected plants. These results provide further insight into the mechanisms of the plant-mediated whitefly-virus mutualism. Moreover, our study suggests that investigating the transcriptional profiles on the insect side of the interaction can advance our understanding of the tripartite interactions. © 2013 Royal Entomological Society.

  15. The Hepatitis B Virus (HBV) HBx Protein Activates AKT To Simultaneously Regulate HBV Replication and Hepatocyte Survival

    Science.gov (United States)

    Rawat, Siddhartha

    2014-01-01

    ABSTRACT Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an

  16. In vitro antiviral activity of Chamaecrista nictitans (Fabaceae against herpes simplex virus: Biological characterization of mechanisms of action

    Directory of Open Access Journals (Sweden)

    Libia Herrero Uribe

    2004-09-01

    Full Text Available We have previously identified a crude extract of the plant Chamaecrista nictitans (Fabaceaewith antiviral activity against herpes simplex virus.The main objectives of this research were to identify the step of the replication cycle of herpes simplex inhibited by the extract,and to attempt to characterize the chemical characteristics of this extract.The crude extract from Chamaecrista nictitans (Fabaceaewas extracted with a mixture of diclorometane/methanol,and further fractionated following a bioassay-guided protocol using a combination of preparative thin layer and column chromatography.Toxicity and bioassay experiments were carried out in monolayers of Vero cells.The antiviral activity of the extract was assessed by total inhibition of cytopathic effect after three-day incubation.The highest concentration of the extract which was not toxic to the cells was 200 mu g/ml. Western blot and immunofluorescence techniques were used to elucidate the antiviral mechanism of the extract by infecting Vero cells with the virus at different times and monitoring the synthesis of viral proteins.A 60 kDa protein was detected at 2 hr and 8 hr post-infection but no additional proteins were synthesized at later time intervals,and cytopathic effect was not observed after 24 hr.This result indicates that the extract acts at the intracellular level in order to inhibit late transcription.However,it does not inhibit transcription/translation of early viral proteins.These results were confirmed by immunofluorescence experiments.A strong fluorescent signal was observed in control cell monolayers at 24 hr post infection,accompanied with a clear cytopathic effect.In contrast,in the presence of acyclovir or the extract,cells showed very discrete immunofluorescence,characterized by a punctuated pattern, and no cytopathic effect was observed.Neutralization assays were performed using pre-incubation of virus with either specific herpes simplex-1 antiserum,200 mu g/ml of the

  17. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection.

    Science.gov (United States)

    Iwata, Seiko; Wada, Kaoru; Tobita, Satomi; Gotoh, Kensei; Ito, Yoshinori; Demachi-Okamura, Ayako; Shimizu, Norio; Nishiyama, Yukihiro; Kimura, Hiroshi

    2010-01-01

    Chronic active Epstein-Barr virus (CAEBV) infection is a systemic Epstein-Barr virus (EBV)-positive lymphoproliferative disorder characterized by persistent or recurrent infectious mononucleosis-like symptoms in patients with no known immunodeficiency. The detailed pathogenesis of the disease is unknown and no standard treatment regimen has been developed. EBV gene expression was analysed in peripheral blood samples collected from 24 patients with CAEBV infection. The expression levels of six latent and two lytic EBV genes were quantified by real-time RT-PCR. EBV-encoded small RNA 1 and BamHI-A rightward transcripts were abundantly detected in all patients, and latent membrane protein (LMP) 2 was observed in most patients. EBV nuclear antigen (EBNA) 1 and LMP1 were detected less frequently and were expressed at lower levels. EBNA2 and the two lytic genes were not detected in any of the patients. The pattern of latent gene expression was determined to be latency type II. EBNA1 was detected more frequently and at higher levels in the clinically active patients. Quantifying EBV gene expression is useful in clarifying the pathogenesis of CAEBV infection and may provide information regarding a patient's disease prognosis, as well as possible therapeutic interventions.

  18. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Rachelle eBabb

    2014-06-01

    Full Text Available Many currently available inactivated vaccines require 'adjuvants' to maximise the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent type-I interferon (IFN-I responses and the IFN-I associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest Virus (γ-SFV as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titres by 6 fold and greater neutralisation efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.

  19. Efficacy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorporation Into Biodegradable Multilayer Systems of Interest in Food Packaging.

    Science.gov (United States)

    Fabra, M J; Castro-Mayorga, J L; Randazzo, W; Lagarón, J M; López-Rubio, A; Aznar, R; Sánchez, G

    2016-06-01

    Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6-7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm(2) (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety.

  20. Host-seeking activity of bluetongue virus vectors: endo/exophagy and circadian rhythm of Culicoides in Western Europe.

    Directory of Open Access Journals (Sweden)

    Elvina Viennet

    Full Text Available Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.

  1. Deep sequencing reveals the complete genome and evidence for transcriptional activity of the first virus-like sequences identified in Aristotelia chilensis (Maqui Berry).

    Science.gov (United States)

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F; Alzate, Juan F; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-04-03

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%-73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.

  2. Correlation of cytotoxic activity in lungs to recovery of normal and gamma-irradiated cotton rats from respiratory syncytial virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Wyde, P.R.; Knight, V.

    1983-10-01

    Cotton rats (Sigmodon hispidus) that were exposed to 300, 600, or 900 rads of gamma irradiation and inoculated intranasally 2 days later with respiratory syncytial virus (RSV) exhibited prolonged virus shedding and delayed humoral and cytotoxic immune responses compared with comparably inoculated nonirradiated control rats. In nonirradiated animals and in animals exposed to 300 and 600 rads, levels of virus declined and then disappeared from the lungs during the period in which cytotoxic activity was maximal in the lungs of these animals. In contrast, in the group of cotton rats exposed to 900 rads of irradiation, local cytotoxic activity remained low throughout the 11-day observation period, and virus was not eliminated from the lungs. Although virus-neutralizing antibodies in serum and lavage fluids from these animals may have been involved, correlation of antibody concentrations with virus clearance from lungs was not as evident. These data suggest that cytotoxic effector cells have a positive role in eliminating RSV from the lungs of unprimed cotton rats.

  3. NK cell-extrinsic IL-18 signaling is required for efficient NK-cell activation by vaccinia virus.

    Science.gov (United States)

    Brandstadter, Joshua D; Huang, Xiaopei; Yang, Yiping

    2014-09-01

    NK cells are important for the control of vaccinia virus (VV) in vivo. Recent studies have shown that multiple pathways are required for effective activation of NK cells. These include both TLR-dependent and -independent pathways, as well as the NKG2D activating receptor that recognizes host stress-induced NKG2D ligands. However, it remains largely unknown what controls the upregulation of NKG2D ligands in response to VV infection. In this study using C57BL/6 mice, we first showed that IL-18 is critical for NK-cell activation and viral clearance. We then demonstrated that IL-18 signaling on both NK cells and DCs is required for efficient NK-cell activation upon VV infection in vitro. We further showed in vivo that efficient NK-cell activation in response to VV is dependent on DCs and IL-18 signaling in non-NK cells, suggesting an essential role for NK cell-extrinsic IL-18 signaling in NK-cell activation. Mechanistically, IL-18 signaling in DCs promotes expression of Rae-1, an NKG2D ligand. Collectively, our data reveal a previously unrecognized role for NK cell-extrinsic IL-18 signaling in NK-cell activation through upregulation of NKG2D ligands. These observations may provide insights into the design of effective NK-cell-based therapies for viral infections and cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification of Rhopalosiphum Padi Virus 5′ Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry

    Directory of Open Access Journals (Sweden)

    Ming-Kun Liu

    2015-07-01

    Full Text Available The 579-nucleotide 5′ untranslated region (5′UTR of the Rhopalosiphum padi virus (RhPV possesses a cross-kingdom internal ribosome entry site (IRES activity that functions in insect, mammalian, and plant-derived in vitro translation systems, and six TAAG motifs within the DNA fragment encoding the RhPV 5′UTR were previously found to confer the RhPV 5′UTR with late promoter activity in baculovirus. In the present study, various truncated RhPV 5′UTR sequences were produced, and among them, a fragment of 110 bp ranging from nucleotides 309 to 418 was identified to be the shortest fragment responsible for the late promoter activity in baculovirus infected Sf21 cells. This 110 bp fragment contains a TAAG tandem repeat that retains more than 60% of the late promoter activity of the full length RhPV 5′UTR sequence. Further, IRES activity remained unchanged in all truncated RhPV 5′UTR constructs. Taken together, this novel 110 bp fragment having late promoter activity in baculovirus as well as IRES activity in mammalian cell, renders it a useful tool for the development of a “shuttle” bi-cistronic baculovirus gene expression and/or delivery vector.

  5. Identification of Rhopalosiphum Padi Virus 5′ Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry

    Science.gov (United States)

    Liu, Ming-Kun; Lin, Jie-Zue; Jinn, Tzyy-Rong; Chan, Hong-Lin; Wu, Tzong-Yuan

    2015-01-01

    The 579-nucleotide 5′ untranslated region (5′UTR) of the Rhopalosiphum padi virus (RhPV) possesses a cross-kingdom internal ribosome entry site (IRES) activity that functions in insect, mammalian, and plant-derived in vitro translation systems, and six TAAG motifs within the DNA fragment encoding the RhPV 5′UTR were previously found to confer the RhPV 5′UTR with late promoter activity in baculovirus. In the present study, various truncated RhPV 5′UTR sequences were produced, and among them, a fragment of 110 bp ranging from nucleotides 309 to 418 was identified to be the shortest fragment responsible for the late promoter activity in baculovirus infected Sf21 cells. This 110 bp fragment contains a TAAG tandem repeat that retains more than 60% of the late promoter activity of the full length RhPV 5′UTR sequence. Further, IRES activity remained unchanged in all truncated RhPV 5′UTR constructs. Taken together, this novel 110 bp fragment having late promoter activity in baculovirus as well as IRES activity in mammalian cell, renders it a useful tool for the development of a “shuttle” bi-cistronic baculovirus gene expression and/or delivery vector. PMID:26184188

  6. Identification of Rhopalosiphum Padi Virus 5' Untranslated Region Sequences Required for Cryptic Promoter Activity and Internal Ribosome Entry.

    Science.gov (United States)

    Liu, Ming-Kun; Lin, Jie-Zue; Jinn, Tzyy-Rong; Chan, Hong-Lin; Wu, Tzong-Yuan

    2015-07-15

    The 579-nucleotide 5' untranslated region (5'UTR) of the Rhopalosiphum padi virus (RhPV) possesses a cross-kingdom internal ribosome entry site (IRES) activity that functions in insect, mammalian, and plant-derived in vitro translation systems, and six TAAG motifs within the DNA fragment encoding the RhPV 5'UTR were previously found to confer the RhPV 5'UTR with late promoter activity in baculovirus. In the present study, various truncated RhPV 5'UTR sequences were produced, and among them, a fragment of 110 bp ranging from nucleotides 309 to 418 was identified to be the shortest fragment responsible for the late promoter activity in baculovirus infected Sf21 cells. This 110 bp fragment contains a TAAG tandem repeat that retains more than 60% of the late promoter activity of the full length RhPV 5'UTR sequence. Further, IRES activity remained unchanged in all truncated RhPV 5'UTR constructs. Taken together, this novel 110 bp fragment having late promoter activity in baculovirus as well as IRES activity in mammalian cell, renders it a useful tool for the development of a "shuttle" bi-cistronic baculovirus gene expression and/or delivery vector.

  7. West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression.

    Science.gov (United States)

    Shives, Katherine D; Beatman, Erica L; Chamanian, Mastooreh; O'Brien, Caitlin; Hobson-Peters, Jody; Beckham, J David

    2014-08-01

    Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states of the United States and is now the leading cause of epidemic encephalitis in North America. As a member of the family Flaviviridae, WNV is part of a group of clinically important human pathogens, including dengue virus and Japanese encephalitis virus. The members of this family of positive-sense, single-stranded RNA viruses have limited coding capacity and are therefore obligated to co-opt a significant amount of cellular factors to translate their genomes effectively. Our previous work has shown that WNV growth was independent of macroautophagy activation, but the role of the evolutionarily conserved mammalian target of rapamycin (mTOR) pathway during WNV infection was not well understood. mTOR is a serine/threonine kinase that acts as a central cellular censor of nutrient status and exercises control of vital anabolic and catabolic cellular responses such as protein synthesis and autophagy, respectively. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection and that pharmacologic inhibition of mTOR (KU0063794) significantly reduced WNV growth. We used an inducible Raptor and Rictor knockout mouse embryonic fibroblast (MEF) system to further define the role of mTOR complexes 1 and 2 in WNV growth and viral protein synthesis. Following inducible genetic knockout of the major mTOR cofactors raptor (TOR complex 1 [TORC1]) and rictor (TORC2), we now show that TORC1 supports flavivirus protein synthesis via cap-dependent protein synthesis pathways and supports subsequent WNV growth. Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states in the United States and is now the leading cause of epidemic encephalitis in North America. Currently, the mechanism by which flaviviruses such as WNV translate their genomes in

  8. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    Science.gov (United States)

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  10. In vitro activity of daclatasvir on hepatitis C virus genotype 3 NS5A.

    Science.gov (United States)

    Wang, Chunfu; Valera, Lourdes; Jia, Lingling; Kirk, Melissa J; Gao, Min; Fridell, Robert A

    2013-01-01

    The NS5A replication complex inhibitor daclatasvir (DCV; BMS-790052) inhibits hybrid replicons containing hepatitis C virus (HCV) genotype 3a (HCV3a) NS5A genes with 50% effective concentrations (EC(50)s) ranging from 120 to 870 pM. Selection studies with a hybrid HCV3a replicon identified NS5A residues 31 and 93 as sites for DCV-selected resistance. Our results support the potential use of DCV as a component in combination therapies for HCV3a chronic infection.

  11. Determination of the In Vitro and In Vivo Activity of Compounds Tested Against Punta Toro Virus.

    Science.gov (United States)

    1987-12-29

    cells were grown in minimum essential medium (MEM; GIBCO Labs, Grand Island, NY) containing 5% fetal bovine serum (FBS; HyClone Labs, Logan, UT) and 0.1... bovine serum (FBS, HyClone Labs, Logan, UT) and 0.1% NaHCO3 without antibiotics. All were determined to be mycoplasma-free. Test Compounds: All...influenza, parainfluenza , rhino, vesicular stomatitis, bluetongue, reo and rota viruses (3-6). The compound was only slightly effective vs PTV in vitro (VR

  12. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A-stimu......-stimulated cells is higher than that of non-incubated spleen cells harvested nine days following the primary infection, and the effect is totally inhibited by anti-theta serum plus complement treatment of the effector cells immediately before the cytotoxic test....

  13. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    Directory of Open Access Journals (Sweden)

    Sang C. Lee

    2011-01-01

    Full Text Available Histone deacetylases (HDACs have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.

  14. Audit of bloodborne virus prevention activity with drug users seen in primary care.

    Science.gov (United States)

    Weightman, R; Walton, R; Bury, J

    2004-12-01

    Drug misuse is increasingly being managed in general practice. It has been proposed that better use could be made of this contact to identify people with bloodborne virus (BBV) morbidity and to deliver prevention strategies. The Hepatitis B and C Prevention Project was designed to enhance the work of primary healthcare teams in preventing transmission of BBVs in people known to have a history of problem drug use. As part of this work a baseline audit of current provision was undertaken and the results are reported here. Primary care records of 1278 people with a history of illicit drug use were audited to establish the levels of hepatitis B immunisation and testing for BBVs and to determine whether there was a record of any professional discussion of BBV issues with the patient. Records were drawn from rural and city-based general practices. Audit feedback, training, and advice were offered to raise awareness and discussion of how this work was currently being undertaken, and how it might be improved. This baseline audit showed that 90% (n = 1153) of the patients had been questioned about injecting drug use and of these 50% (579/1153) reported injecting at some point in the past. Only 4% (54/1278) had completed a course of hepatitis B immunisation and of these three quarters gave a history of injecting drug use. Another 6% (74/1278) of patients tested for hepatitis B virus (HBV) showed markers of natural immunity. Up to 90% of this group therefore remained vulnerable to this preventable disease. A discussion of BBV issues with a professional was recorded in41% (523/1278) of cases, and was more likely to have occurred in those with a known history of injecting. Individuals were less likely to have been tested for hepatitis C virus (HCV) than for HIV or HBV despite its high prevalence in this group. Only 28% (354/1278) were tested for HCV compared with 33% (416/1278) tested for HBV and 36% (454/1278) tested for HIV. Prevalence of anti-HCV for people with a history of

  15. Functional differences between antiviral activities of sulfonated and intact intravenous immunoglobulin preparations toward varicella-zoster virus and cytomegalovirus.

    Science.gov (United States)

    Yajima, Misako; Shiraki, Atsuko; Daikoku, Tohru; Oyama, Yukari; Yoshida, Yoshihiro; Shiraki, Kimiyasu

    2015-06-01

    Intravenous immunoglobulin (IVIG) is used to treat severe viral infection, especially varicella-zoster virus (VZV) and cytomegalovirus (CMV) infections. The neutralization antibody titers of eleven IVIG preparations from four companies were examined using VZV and CMV with and without complement. The neutralizing antibody titers of intact IgG preparations were three to six times higher after addition of complement. The effectiveness of the sulfonated IgG preparation was not enhanced by complement, but desulfonated IgG regained enhanced neutralization activity with complement. Antibody-dependent cellular cytotoxicity (ADCC) toward VZV-infected cells was observed with both intact and sulfonated IVIG and guinea pig splenocytes, but ADCC toward CMV-infected cells was not, although NK cell activity toward cells infected with VZV or CMV was detected by splenocytes. Sulfonated IVIG had no complement-activated neutralization of VZV and CMV but retained ADCC toward VZV with less activity after dilution than with intact IVIG. Because sulfonated IVIG is converted to the intact form after intravenous administration, it would show complement-enhanced neutralization and ADCC activity similar to that of intact IVIG in vivo. In this study we showed the effects of intact and sulfonated IgG on the functional activity of IgG against VZV and CMV. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat's immunosuppressive activity.

    Science.gov (United States)

    Gutheil, W G; Subramanyam, M; Flentke, G R; Sanford, D G; Munoz, E; Huber, B T; Bachovchin, W W

    1994-01-01

    The human immunodeficiency virus 1 (HIV-1) Tat protein suppresses antigen-induced, but not mitogen-induced, activation of human T cells when added to T-cell cultures [Viscidi, R. P., Mayur, K., Lederman, H. M. & Frankel, A. D. (1989) Science 246, 1606-1608]. This activity is potentially pertinent to the development of AIDS because lymphocytes from HIV-infected individuals exhibit a similar antigen-specific dysfunction. Here we report that Tat binds with high affinity to the T-cell activation molecule dipeptidyl aminopeptidase IV (DP IV), also known as CD26. This molecule occurs on the surface of CD4+ cells responsible for the recall antigen response and appears to play an essential role in this response. Tat binds to both the cell surface and soluble forms of DP IV at physiological salt concentrations without inhibiting the protease activity of DP IV against small chromogenic substrates used to assay activity, but Tat markedly inhibits the activity of DP IV at lower salt concentrations. The kinetics of inhibition indicate the affinity of Tat for DP IV varies from 20 pM to 11 nM, and the activity of the Tat-DP IV complex varies from 13% to 100%, as the NaCl concentration varies from 0 to 140 mM. Cytofluorometry experiments demonstrate that Tat competes with anti-Ta1, a monoclonal antibody (mAb) specific for DP IV, for binding to cell surface DP IV, thus indicating that Tat binds DP IV at or near the Ta1 epitope. Moreover, the anti-Ta1 mAb blocks the immunosuppressive activity of Tat. The high affinity of Tat for DP IV, previous evidence implicating DP IV in antigen-specific T-cell activation events, and the ability of anti-Ta1 mAb to block the immunosuppressive effect of Tat make DP IV a plausible receptor for Tat's immunosuppressive activity. Images PMID:7912830

  17. Virus activation and immune function during intense training in rugby football players.

    Science.gov (United States)

    Yamauchi, R; Shimizu, K; Kimura, F; Takemura, M; Suzuki, K; Akama, T; Kono, I; Akimoto, T

    2011-05-01

    Epidemiological studies suggest that highly trained athletes are more susceptible to upper respiratory tract infections (URTI) compared with the general population. Upper respiratory symptoms (URS) often appear as either primary invasion of pathogenic organisms and/or reactivation of latent viruses such as Epstein-Barr virus (EBV). The purpose of this study was to examine the relationship between EBV reactivation and the appearance of URS during intensive training in collegiate rugby football players. We evaluated EBV-DNA expression in saliva and examined the relationship between onset of URS and daily changes in EBV-DNA as well as secretory immunoglobulin A (SIgA) levels among 32 male collegiate rugby football players during a 1-month training camp. The EBV-DNA expression tended to be higher in subjects who exhibited sore throat (p=0.07) and cough (p=0.18) than that of those who had no symptoms, although their differences were not significant. The SIgA level was significantly lower 1 day before the EBV-DNA expression (p<0.05). The number of URS increased along with the EBV-DNA expression and decrease of SIgA levels. These results suggest that the appearance of URS is associated with reactivation of EBV and reduction of SIgA during training. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    Science.gov (United States)

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen.

  19. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    Directory of Open Access Journals (Sweden)

    Jana L McCaskill

    Full Text Available Hendra virus (HeV is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen.

  20. Myxoma virus expressing a fusion protein of interleukin-15 (IL15 and IL15 receptor alpha has enhanced antitumor activity.

    Directory of Open Access Journals (Sweden)

    Vesna Tosic

    Full Text Available Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15 is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr, which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13 cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr. Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.

  1. Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity.

    Science.gov (United States)

    Tosic, Vesna; Thomas, Diana L; Kranz, David M; Liu, Jia; McFadden, Grant; Shisler, Joanna L; MacNeill, Amy L; Roy, Edward J

    2014-01-01

    Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15) is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα) greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr), which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13) cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY) cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr). Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.

  2. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  3. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency?

    Science.gov (United States)

    Kimura, Hiroshi

    2006-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is characterised by chronic or recurrent infectious mononucleosis-like symptoms, such as fever, hepatosplenomegaly, persistent hepatitis and extensive lymphadenopathy. Patients with CAEBV have high viral loads in their peripheral blood and/or an unusual pattern of EBV-related antibodies. This disease is rare but severe with high morbidity and mortality. Nearly three decades have passed since this disease was first identified, and recent advances in technology have increased our understanding of CAEBV pathophysiology. There is accumulating evidence that the clonal expansion of EBV-infected T or natural killer (NK) cells plays a central role in the pathogenesis of CAEBV. However, it remains unclear whether CAEBV is truly a monoclonal lymphoproliferative disorder. EBV-infected T or NK cells are able to evade the host cellular immune system due to the limited expression of viral proteins of reduced antigenicity. Recent studies suggest that infection of T or NK cells is a common event during primary EBV infection. A defect or single nucleotide polymorphism in host immune-modulating genes may allow for the expansion of virus infected cells giving rise to CAEBV. In this review, I summarise our current understanding of the pathogenesis of CAEBV and propose a model of CAEBV pathogenicity.

  4. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Jessica Jenkins Broglie

    Full Text Available Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk virus-like particles (VLPs as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1 by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  5. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry.

    Science.gov (United States)

    Lin, Liang-Tzung; Chen, Ting-Ying; Lin, Song-Chow; Chung, Chueh-Yao; Lin, Ta-Chen; Wang, Guey-Horng; Anderson, Robert; Lin, Chun-Ching; Richardson, Christopher D

    2013-08-07

    We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Extensive analysis of the tannins' mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified.

  6. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  7. Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes.

    Science.gov (United States)

    Maqbool, Muhammad Ahmad; Imache, Mohamed R; Higgs, Martin R; Carmouse, Sophie; Pawlotsky, Jean-Michel; Lerat, Hervé

    2013-05-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.

  8. Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives.

    Science.gov (United States)

    Sun, Changsheng; Liang, Jiongqiu; Shi, Rui; Gao, Xuna; Zhang, Ruijuan; Hong, Fulin; Yuan, Qihang; Wang, Shengbin

    2012-03-01

    Tobacco etch virus (TEV) protease is widely used to remove tags from recombinant fusion proteins because of its stringent sequence specificity. It is generally accepted that the high concentrations of salts or other special agents in most protein affinity chromatography buffers can affect enzyme activity, including that of TEV protease. Consequently, tedious desalination or the substitution of standard TEV reaction buffer for elution buffer are often needed to ensure TEV protease activity when removing fusion tags after purifying target proteins using affinity chromatography. To address this issue, we used SOE PCR technology to synthesize a TEV protease gene with a codon pattern adapted to the codon usage bias of Escherichia coli, recovered the purified recombinant TEV protease, and examined its activity in various elution buffers commonly used in affinity chromatography as well as the effects of selected additives on its activity. Our results showed that the rTEV protease maintained high activity in all affinity chromatography elution buffers tested and tolerated high concentrations of additives commonly used in protein purification procedures, such as ethylene glycol, EGTA, Triton X-100, Tween-20, NP-40, CHAPS, urea, SDS, guanidine hydrochloride and β-mercaptoethanol. These results will facilitate the use of rTEV protease in removing tags from fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Sarisky Robert T

    2007-07-01

    Full Text Available Abstract To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19, level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.

  10. Machine learning models identify molecules active against the Ebola virus in vitro [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2017-01-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  11. Machine learning models identify molecules active against the Ebola virus in vitro [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2016-01-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  12. Machine learning models identify molecules active against the Ebola virus in vitro [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2015-10-01

    Full Text Available The search for small molecule inhibitors of Ebola virus (EBOV has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in

  13. Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza A virus in vitro and in vivo.

    Science.gov (United States)

    Haasbach, Emanuel; Hartmayer, Carmen; Hettler, Alice; Sarnecka, Alicja; Wulle, Ulrich; Ehrhardt, Christina; Ludwig, Stephan; Planz, Oliver

    2014-01-01

    Influenza, a respiratory disease caused by influenza viruses, still represents a major threat to humans and several animal species. Besides vaccination, only two classes of drugs are available for antiviral treatment against this pathogen. Thus, there is a strong need for new effective antivirals against influenza viruses. Here, we tested Ladania067, an extract from the leaves of the wild black currant (Ribes nigrum folium) for potential antiviral activity against influenza A virus in vitro and in vivo. In the range of 0-1 mg/ml the extract showed no cytotoxic effect on three cell lines and a CC50 of 0.5 ± 0.3 mg/ml, on peripheral blood mononuclear cells. Furthermore, the extract did not influence the proliferative status of human lymphocytes. In contrast, Ladania067 was highly effective (EC50 value: 49.3 ± 1.1 ng/ml) against the human pandemic influenza virus strain A/Regensburg/D6/09 (H1N1). The extract exhibited an antiviral effect when the virus was pre-incubated prior to infection or when added directly after infection. No antiviral effect was found when infected cells were treated 2, 4, or 8 h after infection, indicating that Ladania067 blocks a very early step in the virus infection cycle. In the mouse infection model we were able to demonstrate that an intranasal application of 500 μg Ladania067 inhibits progeny virus titers in the lung up to 85% after 24 h. We conclude that the extract from the leaves of the wild black currant may be a promising source for the identification of new molecules with antiviral functions against influenza virus.

  14. A plant extract of Ribes nigrum folium possesses anti-influenza virus activity in vitro and in vivo by preventing virus entry to host cells.

    Science.gov (United States)

    Ehrhardt, Christina; Dudek, Sabine Eva; Holzberg, Magdalena; Urban, Sabine; Hrincius, Eike Roman; Haasbach, Emanuel; Seyer, Roman; Lapuse, Julia; Planz, Oliver; Ludwig, Stephan

    2013-01-01

    Infections with influenza A viruses (IAV) are still amongst the major causes of highly contagious severe respiratory diseases not only bearing a devastating effect to human health, but also significantly impact the economy. Besides vaccination that represents the best option to protect from IAV infections, only two classes of anti-influenza drugs, inhibitors of the M2 ion channel and the neuraminidase, often causing resistant IAV variants have been approved. That is why the need for effective and amply available antivirals against IAV is of high priority. Here we introduce LADANIA067 from the leaves of the wild black currant (Ribes nigrum folium) as a potent compound against IAV infections in vitro and in vivo. LADANIA067 treatment resulted in a reduction of progeny virus titers in cell cultures infected with prototype avian and human influenza virus strains of different subtypes. At the effective dose of 100 µg/ml the extract did not exhibit apparent harming effects on cell viability, metabolism or proliferation. Further, viruses showed no tendency to develop resistance to LADANIA067 when compared to amantadine that resulted in the generation of resistant variants after only a few passages. On a molecular basis the protective effect of LADANIA067 appears to be mainly due to interference with virus internalisation. In the mouse infection model LADANIA067 treatment reduces progeny virus titers in the lung upon intranasal application. In conclusion, an extract from the leaves of the wild black currant might be a promising source for the development of new antiviral compounds to fight IAV infections.

  15. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  16. Differential activation of NK cells by influenza A pseudotype H5N1 and 1918 and 2009 pandemic H1N1 viruses.

    Science.gov (United States)

    Du, Ning; Zhou, Jianfang; Lin, Xiaojing; Zhang, Yonghui; Yang, Xiaoxing; Wang, Yue; Shu, Yuelong

    2010-08-01

    Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-gamma] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56(dim) subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-gamma production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity.

  17. In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1

    Science.gov (United States)

    Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2014-09-01

    In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.

  18. Production of immunologically active surface antigens of hepatitis B virus by Escherichia coli.

    Science.gov (United States)

    MacKay, P; Pasek, M; Magazin, M; Kovacic, R T; Allet, B; Stahl, S; Gilbert, W; Schaller, H; Bruce, S A; Murray, K

    1981-01-01

    Several plasmids have been constructed which direct the synthesis of hepatitis B virus surface antigens in Escherichia coli either as the native polypeptide or fused to other plasmid encoded polypeptides. When injected into rabbits, extracts from bacteria carrying some of these plasmids induced the synthesis of antibodies to the antigens even though the extracts did not give satisfactory positive results in radioimmunoassay for them. Either the NH2-terminal segment or the COOH-terminal segment of the surface antigens alone was sufficient to elicit the immune response, but antibodies against the two segments showed different specificities. The results emphasize the value of an in vivo assay for the presence of antigens in crude cell extracts and illustrate the feasibility of this type of screening with laboratory animals. PMID:6170067

  19. Field-deployable, quantitative, rapid identification of active Ebola virus infection in unprocessed blood.

    Science.gov (United States)

    Shah, Kavit; Bentley, Emma; Tyler, Adam; Richards, Kevin S R; Wright, Edward; Easterbrook, Linda; Lee, Diane; Cleaver, Claire; Usher, Louise; Burton, Jane E; Pitman, James K; Bruce, Christine B; Edge, David; Lee, Martin; Nazareth, Nelson; Norwood, David A; Moschos, Sterghios A

    2017-11-01

    The West African Ebola virus outbreak underlined the importance of delivering mass diagnostic capability outside the clinical or primary care setting in effectively containing public health emergencies caused by infectious disease. Yet, to date, there is no solution for reliably deploying at the point of need the gold standard diagnostic method, real time quantitative reverse transcription polymerase chain reaction (RT-qPCR), in a laboratory infrastructure-free manner. In this proof of principle work, we demonstrate direct performance of RT-qPCR on fresh blood using far-red fluorophores to resolve fluorogenic signal inhibition and controlled, rapid freeze/thawing to achieve viral genome extraction in a single reaction chamber assay. The resulting process is entirely free of manual or automated sample pre-processing, requires no microfluidics or magnetic/mechanical sample handling and thus utilizes low cost consumables. This enables a fast, laboratory infrastructure-free, minimal risk and simple standard operating procedure suited to frontline, field use. Developing this novel approach on recombinant bacteriophage and recombinant human immunodeficiency virus (HIV; Lentivirus), we demonstrate clinical utility in symptomatic EBOV patient screening using live, infectious Filoviruses and surrogate patient samples. Moreover, we evidence assay co-linearity independent of viral particle structure that may enable viral load quantification through pre-calibration, with no loss of specificity across an 8 log-linear maximum dynamic range. The resulting quantitative rapid identification (QuRapID) molecular diagnostic platform, openly accessible for assay development, meets the requirements of resource-limited countries and provides a fast response solution for mass public health screening against emerging biosecurity threats.

  20. Immunization against active ghrelin using virus-like particles for obesity treatment.

    Science.gov (United States)

    Andrade, Sara; Pinho, Filipa; Ribeiro, Andreia M; Carreira, Marcos; Casanueva, Felipe F; Roy, Polly; Monteiro, Mariana P

    2013-01-01

    Ghrelin is a gut hormone that stimulates food intake. In physiological conditions, ghrelin plasma levels rise with fasting and decrease after meals. Obese individuals have low fasting ghrelin levels that rise after food restriction, which is pointed out as a reason for the difficulty in maintaining weight loss. Some bariatric surgery procedures prevent rise in ghrelin levels with weight loss and this has been hypothesised to contribute to the long-term success of the treatment. The main goal of this study was to develop a safe and effective anti-ghrelin vaccine for obesity, through the chemical conjugation of ghrelin with a virus like particle, namely NS1 protein tubules from the Bluetongue Virus (BTV) using a hetero-bifunctional cross linker. Male adult C57BL/6 mice, with a normal weight and with diet-induced obesity (DIO), were randomized into six weight matched groups (n=6/group) and each group of mice received three intra-peritoneal injections with two weeks intervals, containing either 75 μg of ghrelin- NS1 immunoconjugate, 75 μg of NS1 or PBS. Our data show that immunized animals present increasing titres of anti-ghrelin antibodies, while their cumulative food intake significantly decreased and energy expenditure was significantly enhanced, although there were no significative changes in body weight.Vaccinated DIO mice also displayed significant decrease of NPY gene expression in the basal hypothalamus reflecting a decrease in central orexigenic signals. This study suggests that this anti-ghrelin vaccine has a positive impact on energy homeostasis and may be an additional therapeutical tool to be used with diet and exercise for obesity treatment.

  1. Mutation of the protein kinase C site in borna disease virus phosphoprotein abrogates viral interference with neuronal signaling and restores normal synaptic activity.

    Directory of Open Access Journals (Sweden)

    Christine M A Prat

    2009-05-01

    Full Text Available Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC-dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons.

  2. Mutation of the protein kinase C site in borna disease virus phosphoprotein abrogates viral interference with neuronal signaling and restores normal synaptic activity.

    Science.gov (United States)

    Prat, Christine M A; Schmid, Sonja; Farrugia, Fanny; Cenac, Nicolas; Le Masson, Gwendal; Schwemmle, Martin; Gonzalez-Dunia, Daniel

    2009-05-01

    Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)-dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons.

  3. [A case of chronic active Epstein-Barr virus infection associated with recurrent cerebellar ataxia and skin eruptions].

    Science.gov (United States)

    Araki, Katsuya; Okuno, Tatsusada; Honorat, Josephe Archie; Kinoshita, Makoto; Takahashi, Masanori P; Mizuki, Masao; Kitagawa, Kazuo; Mochizuki, Hideki

    2013-01-01

    A 62-year-old woman presented with subacute cerebellar ataxia, lymph node swelling and skin eruption. Laboratory tests revealed elevated titers of anti-VCA-IgG antibody and anti-EADR-IgG antibody, with Epstein-Barr virus (EBV) DNA detected from the blood and CSF by PCR. Since these data were highlighted with the diagnosis of chronic active EBV infection (CAEBV) and her ataxia improved concomitantly with the remission of other infectious mononucleosis-like symptoms, we supposed her ataxia is associated with CAEBV. Five years later, at the age of 67, her ataxia relapsed concurrently with skin eruptions, whereas MRI demonstrated progression of cerebellar atrophy. After high-dose intravenous methylprednisolone treatment, the clinical symptoms resolved. Initial infection of EBV in childhood often causes autoimmune acute cerebellitis but cerebellar ataxia has rarely been described in CAEBV. Furthermore, immunohistochemical analysis revealed a reactivity of the patient's serum and CSF on rat cerebellum, suggesting an autoimmune pathomechanism for the ataxia.

  4. Successful Cord Blood Stem Cell Transplantation for an Adult Case of Chronic Active Epstein-Barr Virus Infection.

    Science.gov (United States)

    Saburi, Masuho; Ogata, Masao; Satou, Takako; Yoshida, Natsumi; Nagamatsu, Kentaro; Nashimoto, Yuko; Moroga, Yui; Takano, Kuniko; Kohno, Kazuhiro; Shirao, Kuniaki

    A 41-year-old man was referred to our hospital for treatment of anaplastic lymphoma kinase (ALK)-negative anaplastic large cell lymphoma. Chronic active Epstein-Barr virus (CAEBV) was diagnosed based on the findings of elevated EBV antibody titers and positive EBV-DNA in the peripheral blood, and cord blood stem cell transplantation (CBT) was performed. The EBV-DNA levels in the blood fell below the limit of detection. His lymphoma relapsed on Day 165 with the appearance of eruptions, which disappeared after the withdrawal of tacrolimus. One year after transplantation, there were no signs of recurrence. This encouraging result suggests that CBT should be considered for adult cases of CAEBV with aggressive clinical manifestations.

  5. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  6. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine

    Science.gov (United States)

    Decorte, Inge; Steensels, Mieke; Lambrecht, Bénédicte

    2015-01-01

    Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs. PMID:26431039

  7. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Kenney, S.C.; Kamine, J.; Pagano, J.S.; Huang, E.S.

    1987-12-01

    Almost all homosexual patients with acquired immunodeficiency syndrome are also actively infected with human cytomegalovirus (HCMV). The authors have hypothesized that an interaction between HCMV and human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome, may exist at a molecular level and contribute to the manifestations of HIV infection. In this report, they demonstrate that the immediate-early gene region of HCMV, in particular immediate-early region 2, trans-activates the expression of the bacterial gene chloramphenicol acetyltransferase that is fused to the HIV long terminal repeat and carried by plasmid pHIV-CAT. The HCMV immediate-early trans-activator increases the level of mRNA from the plamid pHIV-CAT. The sequences of HIV that are responsive to trans-activation by the HDMV immediate-early region are distinct from HIV sequences that are required for response to the HIV tat. The stimulation of HIV gene expression by HDMV gene functions could enhance the consequences of HIV infection in persons with previous or concurrent HCMV infection.

  8. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain; Saeed, Mohammad F., E-mail: saeed@southernresearch.org

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc. The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.

  9. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  10. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  11. DNA Virus Replication Compartments

    Science.gov (United States)

    Schmid, Melanie; Speiseder, Thomas; Dobner, Thomas

    2014-01-01

    Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication. PMID:24257611

  12. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2012-12-01

    Full Text Available The role of B cells in the pathogenesis of hepatitis B virus (HBV infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20 and patients with acute hepatitis B (AHB, N = 15 or chronic hepatitis B (CHB, N = 30 was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26% compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05, which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05. Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%, lowest in healthy donors (36.32 ± 9.98%, P < 0.05 and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05. The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  13. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  14. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Directory of Open Access Journals (Sweden)

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results