WorldWideScience

Sample records for virulence gene regulation

  1. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  2. A compendium of antibiotic-induced transcription profiles reveals broad regulation of Pasteurella multocida virulence genes.

    Science.gov (United States)

    Melnikow, E; Schoenfeld, C; Spehr, V; Warrass, R; Gunkel, N; Duszenko, M; Selzer, P M; Ullrich, H J

    2008-10-15

    The transcriptional responses of Pasteurella multocida to eight antibiotics with known mode of actions (MoAs) and one novel antibiotic compound with an unknown MoA were collected to create a compendium of transcriptional profiles for MoA studies. At minimal inhibitory concentration the three bactericidal compounds enrofloxacin, cefquinome and the novel compound had a minor impact on gene regulation with approximately 1% of the P. multocida genome affected, whilst the bacteriostatic compounds florfenicol, tilmicosin, rifampin, trimethoprim and brodimoprim regulated 20% of the genome. Novobiocin was special in that it regulated 40% of all P. multocida genes. Regulation of target genes was observed for novobiocin, rifampin, florfenicol and tilmicosin and signature genes were identified for most antibiotics. The transcriptional profile induced by the novel compound was unrelated to the compendium profiles suggesting a new MoA. The transcription of many P. multocida virulence factors, particularly genes involved in capsule synthesis and export, LPS synthesis, competence, adherence and iron transport were altered in the presence of antibiotics. Virulence gene transcription was mainly negatively affected, however the opposite effect was also observed in the case of rifampin where the up-regulation of the tad locus involved in tight adherence was seen. Novobiocin and trimethoprim caused a marked reduction in the transcription of capsule genes, which correlated with a concomitant reduction of the capsular layer on the surface of P. multocida. The broad negative impact on virulence gene transcription supports the notion that the therapeutic effect of some antibiotics could be a combination of growth and virulence inhibition.

  3. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Njoroge, Jacqueline W; Nguyen, Y; Curtis, Meredith M; Moreira, Cristiano G; Sperandio, Vanessa

    2012-10-16

    Gastrointestinal (GI) bacteria sense diverse environmental signals as cues for differential gene regulation and niche adaptation. Pathogens such as enterohemorrhagic Escherichia coli (EHEC), which causes bloody diarrhea, use these signals for the temporal and energy-efficient regulation of their virulence factors. One of the main virulence strategies employed by EHEC is the formation of attaching and effacing (AE) lesions on enterocytes. Most of the genes necessary for the formation of these lesions are grouped within a pathogenicity island, the locus of enterocyte effacement (LEE), whose expression requires the LEE-encoded regulator Ler. Here we show that growth of EHEC in glycolytic environments inhibits the expression of ler and consequently all other LEE genes. Conversely, growth within a gluconeogenic environment activates expression of these genes. This sugar-dependent regulation is achieved through two transcription factors: KdpE and Cra. Both Cra and KdpE directly bind to the ler promoter, and Cra's affinity to this promoter is catabolite dependent. Moreover, we show that the Cra and KdpE proteins interact in vitro and that KdpE's ability to bind DNA is enhanced by the presence of Cra. Cra is important for AE lesion formation, and KdpE contributes to this Cra-dependent regulation. The deletion of cra and kdpE resulted in the ablation of AE lesions. One of the many challenges that bacteria face within the GI tract is to successfully compete for carbon sources. Linking carbon metabolism to the precise coordination of virulence expression is a key step in the adaptation of pathogens to the GI environment. IMPORTANCE An appropriate and prompt response to environmental cues is crucial for bacterial survival. Cra and KdpE are two proteins found in both nonpathogenic and pathogenic bacteria that regulate genes in response to differences in metabolite concentration. In this work, we show that, in the deadly pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7

  4. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  5. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  6. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    Science.gov (United States)

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology.IMPORTANCEStreptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical

  7. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  8. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD.

    Science.gov (United States)

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H

    2016-11-25

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.

  9. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  10. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  11. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Science.gov (United States)

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  12. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.

    Science.gov (United States)

    Malmierca, Mónica G; Izquierdo-Bueno, Inmaculada; McCormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Barua, Javier; Lindo, Laura; Casquero, Pedro A; Collado, Isidro G; Monte, Enrique; Gutiérrez, Santiago

    2016-11-01

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoids harzianum A (HA) and botrydial (BOT), respectively. TaΔTri5, an HA non-producer mutant, produces high levels of the polyketide compounds aspinolides (Asp) B and C. We analyzed the role of HA and Asp in the B. cinerea-T. arundinaceum interaction, including changes in BOT production as well as transcriptomic changes of BcBOT genes involved in BOT biosynthesis, and also of genes associated with virulence and ergosterol biosynthesis. We found that exogenously added HA up-regulated the expression of the BcBOT and all the virulence genes analyzed when B. cinerea was grown alone. However, a decrease in the amount of BOT and a down-regulation of BcBOT gene expression was observed in the interaction zone of B05.10-Ta37 dual cultures, compared to TaΔTri5. Thus, the confrontation with T. arundinaceum results in an up-regulation of most of the B. cinerea genes involved in virulence yet the presence of T. arundinaceum secondary metabolites, HA and AspC, act separately and together to down-regulate the B. cinerea genes analyzed. The present work emphasizes the existence of a chemical cross-regulation between B. cinerea and T. arundinaceum and contributes to understanding how a biocontrol fungus and its prey interact with each other. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Christopher J Tonkin

    2009-04-01

    Full Text Available Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1 molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulator's A and B (PfSir2A and PfSir2B and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.

  14. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    Directory of Open Access Journals (Sweden)

    Charles Darkoh

    2016-08-01

    Full Text Available Clostridium difficile infection (CDI is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease.

  15. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  16. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

    Science.gov (United States)

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  17. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    Science.gov (United States)

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  18. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Lida Sadeghinejad

    Full Text Available Triethylene glycol dimethacrylate (TEGDMA is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG, which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1 and its associated complemented strain (SMΔvicK1C, an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5 and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1 and complemented strains (SMΔvicK1C implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for

  19. Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae

    NARCIS (Netherlands)

    Hendriksen, Wouter T.; Kloosterman, Tomas G.; Bootsma, Hester J.; Estevao, Silvia; de Groot, Ronald; Kuipers, Oscar P.; Hermans, Peter W. M.

    The transcriptional regulator GlnR of Streptococcus pneumoniae is involved in the regulation of glutamine and glutamate metabolism, controlling the expression of the glnRA and glnPQ-zwf operons, as well as the gdhA gene. To assess the contribution of the GlnR regulon to virulence, D39 wild-type and

  20. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis.

    Science.gov (United States)

    Martínez-Soto, Domingo; González-Prieto, Juan Manuel; Ruiz-Herrera, José

    2015-09-01

    Chromatin in the eukaryotic nucleus is highly organized in the form of nucleosomes where histones wrap DNA. This structure may be altered by some chemical modifications of histones, one of them, acetylation by histone acetyltransferases (HATs) that originates relaxation of the nucleosome structure, providing access to different transcription factors and other effectors. In this way, HATs regulate cellular processes including DNA replication, and gene transcription. Previously, we isolated Ustilago maydis mutants deficient in the GCN5 HAT that are avirulent, and grow constitutively as mycelium. In this work, we proceeded to identify the genes differentially regulated by GCN5, comparing the transcriptomes of the mutant and the wild type using microarrays, to analyse the epigenetic control of virulence and morphogenesis. We identified 1203 genes, 574 positively and 629 negatively regulated in the wild type. We found that genes belonging to different categories involved in pathogenesis were downregulated in the mutant, and that genes involved in mycelial growth were negatively regulated in the wild type, offering a working hypothesis on the epigenetic control of virulence and morphogenesis of U. maydis. Interestingly, several differentially regulated genes appeared in clusters, suggesting a common regulation. Some of these belonged to pathogenesis or secondary metabolism. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2015-08-01

    Full Text Available Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  2. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes.

    Science.gov (United States)

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Moreno-Sánchez, Ismael; Helmlinger, Dominique; Ibeas, José I

    2015-08-01

    Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.

  3. Regulation of virulence gene expression resulting from Streptococcus pneumoniae and nontypeable Haemophilus influenzae interactions in chronic disease.

    Directory of Open Access Journals (Sweden)

    Emily K Cope

    Full Text Available Chronic rhinosinusitis (CRS is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and co-culture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS.

  4. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon (Dartmouth)

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  5. Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator.

    Directory of Open Access Journals (Sweden)

    Keith H Turner

    2009-12-01

    Full Text Available Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR (bistable expression regulator, which encodes a LysR-type transcription regulator, controls this switch. In particular, using DNA microarrays, quantitative RT-PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic switch that controls virulence gene expression in P. aeruginosa.

  6. Staphylococcus aureus Quorum Regulator SarA Targeted Compound, 2-[(Methylaminomethyl]phenol Inhibits Biofilm and Down-Regulates Virulence Genes

    Directory of Open Access Journals (Sweden)

    P. Balamurugan

    2017-07-01

    Full Text Available Staphylococcus aureus is a widely acknowledged Gram-positive pathogen for forming biofilm and virulence gene expressions by quorum sensing (QS, a cell to cell communication process. The quorum regulator SarA of S. aureus up-regulates the expression of many virulence factors including biofilm formation to mediate pathogenesis and evasion of the host immune system in the late phases of growth. Thus, inhibiting the production or blocking SarA protein might influence the down-regulation of biofilm and virulence factors. In this context, here we have synthesized 2-[(Methylaminomethyl]phenol, which was specifically targeted toward the quorum regulator SarA through in silico approach in our previous study. The molecule has been evaluated in vitro to validate its antibiofilm activity against clinical S. aureus strains. In addition, antivirulence properties of the inhibitor were confirmed with the observation of a significant reduction in the expression of representative virulence genes like fnbA, hla and hld that are governed under S. aureus QS. Interestingly, the SarA targeted inhibitor showed negligible antimicrobial activity and markedly reduced the minimum inhibitory concentration of conventional antibiotics when used in combination making it a more attractive lead for further clinical tests.

  7. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    Science.gov (United States)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; hide

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  8. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes.

    Science.gov (United States)

    Upadhyay, Abhinav; Johny, Anup Kollanoor; Amalaradjou, Mary Anne Roshni; Ananda Baskaran, Sangeetha; Kim, Kwang Sik; Venkitanarayanan, Kumar

    2012-06-15

    Listeria monocytogenes (LM) is a major foodborne pathogen causing septicemia, meningitis and death in humans. LM infection is preceded by its attachment to and invasion of human intestinal epithelium followed by systemic spread. The major virulence factors in LM include motility, hemolysin and lecithinase production. Reducing LM attachment to and invasion of host tissue and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentrations not inhibiting bacterial growth) of three, generally regarded as safe (GRAS)-status, plant-derived antimicrobial compounds in reducing LM attachment to and invasion of human colon adenocarcinoma (Caco-2) and human brain microvascular endothelial cells (HBMEC). Additionally, the effect of these compounds on the aforementioned LM virulence factors was studied. The compounds and their respective SICs used relative to their MICs were trans-cinnamaldehyde (TC 0.50mM, 0.75mM with the MIC of 0.90mM), carvacrol (CR 0.50mM, 0.65mM with the MIC of 0.75mM), and thymol (TY 0.33mM, 0.50mM with the MIC of 0.60mM). All three-plant antimicrobials reduced LM adhesion to and invasion of Caco-2 and HBMEC (p3.0 folds compared to controls (p<0.05). Results suggest that TC, CR, and TY could potentially be used to control LM infection; however, in vivo studies are necessary to validate these results. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Directory of Open Access Journals (Sweden)

    Tadayoshi Ikebe

    2010-04-01

    Full Text Available Streptococcal toxic shock syndrome (STSS is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates and non-invasive infections (59 isolates, 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%. The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors.

  10. Virulence and immunity orchestrated by the global gene regulator sigL in Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Ghosh, Pallab; Steinberg, Howard; Talaat, Adel M

    2014-07-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, a chronic enteric disease responsible for severe economic losses in the dairy industry. Global gene regulators, including sigma factors are important in regulating mycobacterial virulence. However, the biological significance of such regulators in M. avium subsp. paratuberculosis rremains elusive. To better decipher the role of sigma factors in M. avium subsp. paratuberculosis pathogenesis, we targeted a key sigma factor gene, sigL, activated in mycobacterium-infected macrophages. We interrogated an M. avium subsp. paratuberculosis ΔsigL mutant against a selected list of stressors that mimic the host microenvironments. Our data showed that sigL was important in maintaining bacterial survival under such stress conditions. Survival levels further reflected the inability of the ΔsigL mutant to persist inside the macrophage microenvironments. Additionally, mouse infection studies suggested a substantial role for sigL in M. avium subsp. paratuberculosis virulence, as indicated by the significant attenuation of the ΔsigL-deficient mutant compared to the parental strain. More importantly, when the sigL mutant was tested for its vaccine potential, protective immunity was generated in a vaccine/challenge model of murine paratuberculosis. Overall, our study highlights critical role of sigL in the pathogenesis and immunity of M. avium subsp. paratuberculosis infection, a potential role that could be shared by similar proteins in other intracellular pathogens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Virulence and Immunity Orchestrated by the Global Gene Regulator sigL in Mycobacterium avium subsp. paratuberculosis

    Science.gov (United States)

    Ghosh, Pallab; Steinberg, Howard

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, a chronic enteric disease responsible for severe economic losses in the dairy industry. Global gene regulators, including sigma factors are important in regulating mycobacterial virulence. However, the biological significance of such regulators in M. avium subsp. paratuberculosis rremains elusive. To better decipher the role of sigma factors in M. avium subsp. paratuberculosis pathogenesis, we targeted a key sigma factor gene, sigL, activated in mycobacterium-infected macrophages. We interrogated an M. avium subsp. paratuberculosis ΔsigL mutant against a selected list of stressors that mimic the host microenvironments. Our data showed that sigL was important in maintaining bacterial survival under such stress conditions. Survival levels further reflected the inability of the ΔsigL mutant to persist inside the macrophage microenvironments. Additionally, mouse infection studies suggested a substantial role for sigL in M. avium subsp. paratuberculosis virulence, as indicated by the significant attenuation of the ΔsigL-deficient mutant compared to the parental strain. More importantly, when the sigL mutant was tested for its vaccine potential, protective immunity was generated in a vaccine/challenge model of murine paratuberculosis. Overall, our study highlights critical role of sigL in the pathogenesis and immunity of M. avium subsp. paratuberculosis infection, a potential role that could be shared by similar proteins in other intracellular pathogens. PMID:24799632

  12. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicola Horstmann

    2014-05-01

    Full Text Available Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR protein from the major human pathogen group A Streptococcus (GAS influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53 in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65 as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk. Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A or had functional constitutive phosphorylation at T65 (CovR-T65E had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data

  13. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  14. Deletion of the small RNA chaperone protein Hfq down regulates genes related to virulence and confers protection against wild-type Brucella challenge in mice

    Directory of Open Access Journals (Sweden)

    Shuangshuang eLei

    2016-01-01

    Full Text Available Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella.

  15. Skin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence

    Science.gov (United States)

    N’Diaye, Awa R.; Leclerc, Camille; Kentache, Takfarinas; Hardouin, Julie; Poc, Cecile Duclairoir; Konto-Ghiorghi, Yoan; Chevalier, Sylvie; Lesouhaitier, Olivier; Feuilloley, Marc G. J.

    2016-01-01

    Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (Staphylococcus aureus was insensitive to CGRP. We observed that CGRP-treated S. epidermidis induced interleukin 8 release by keratinocytes. This effect was associated with an increase in cathelicidin LL37 secretion. S. epidermidis displayed no change in virulence factors secretion but showed marked differences in surface properties. After exposure to CGRP, the adherence of S. epidermidis to keratinocytes increased, whereas its internalization and biofilm formation activity were reduced. These effects were correlated with an increase in surface hydrophobicity. The DnaK chaperone was identified as the S. epidermidis CGRP-binding protein. We further showed that the effects of CGRP were blocked by gadolinium chloride (GdCl3), an inhibitor of MscL mechanosensitive channels. In addition, GdCl3 inhibited the membrane translocation of EfTu, the Substance P sensor. This work reveals that through interaction with specific sensors S. epidermidis integrates different skin signals and consequently adapts its virulence. PMID:27739485

  16. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5α, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  17. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization.

  18. Antisense transcription regulates the expression of the enterohemorrhagic Escherichia coli virulence regulatory gene ler in response to the intracellular iron concentration.

    Directory of Open Access Journals (Sweden)

    Toru Tobe

    Full Text Available Enteric pathogens, such as enterohemorrhagic E. coli (EHEC O157:H7, encounter varying concentrations of iron during their life cycle. In the gastrointestinal tract, the amount of available free iron is limited because of absorption by host factors. EHEC and other enteric pathogens have developed sophisticated iron-responsive systems to utilize limited iron resources, and these systems are primarily regulated by the Fur repressor protein. The iron concentration could be a signal that controls gene expression in the intestines. In this study, we explored the role of iron in LEE (locus for enterocyte effacement virulence gene expression in EHEC. In contrast to the expression of Fur-regulated genes, the expression of LEE genes was greatly reduced in fur mutants irrespective of the iron concentration. The expression of the ler gene, the LEE-encoded master regulator, was affected at a post-transcription step by fur mutation. Further analysis showed that the loss of Fur affected the translation of the ler gene by increasing the intracellular concentration of free iron, and the transcription of the antisense strand was necessary for regulation. The results indicate that LEE gene expression is closely linked to the control of intracellular free iron homeostasis.

  19. Temperature Regulation of Shigella Virulence: Identification of Temperature-Regulated Shigella Invasion Genes by the Isolation of inv::lacZ Operon Fusions and the Characterization of the Virulence Gene Regulator virR

    Science.gov (United States)

    1991-04-10

    iron chelating hydroxamate compound or j% siderophore , has been implicated in the increased virulence of E. coli ColV strains (Williams, 1979). In...and ipaC) of Shigella flexneri. Microbial Pathogen. 4:345-357. 7. Baudry, B. , A. T. Maurelli. P. Clerc. J. C. Sadoff, and P. J. Sansonetti. 1987...serotype 5. Microbial Pathogen. 8:197-211. 146 17. Buysse, J. M., C. K, Stover. E. V. Oaks, M, Venkatesan. and D. J. Kopecko. 1987. Cloning of Invasion

  20. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein.

    Science.gov (United States)

    Belas, Robert; Suvanasuthi, Rooge

    2005-10-01

    Proteus mirabilis is a urinary tract pathogen that differentiates from a short swimmer cell to an elongated, highly flagellated swarmer cell. Swarmer cell differentiation parallels an increased expression of several virulence factors, suggesting that both processes are controlled by the same signal. The molecular nature of this signal is not known but is hypothesized to involve the inhibition of flagellar rotation. In this study, data are presented supporting the idea that conditions inhibiting flagellar rotation induce swarmer cell differentiation and implicating a rotating flagellar filament as critical to the sensing mechanism. Mutations in three genes, fliL, fliF, and fliG, encoding components of the flagellar basal body, result in the inappropriate development of swarmer cells in noninducing liquid media or hyperelongated swarmer cells on agar media. The fliL mutation was studied in detail. FliL- mutants are nonmotile and fail to synthesize flagellin, while complementation of fliL restores wild-type cell elongation but not motility. Overexpression of fliL+ in wild-type cells prevents swarmer cell differentiation and motility, a result also observed when P. mirabilis fliL+ was expressed in Escherichia coli. These results suggest that FliL plays a role in swarmer cell differentiation and implicate FliL as critical to transduction of the signal inducing swarmer cell differentiation and virulence gene expression. In concert with this idea, defects in fliL up-regulate the expression of two virulence genes, zapA and hpmB. These results support the hypothesis that P. mirabilis ascertains its location in the environment or host by assessing the status of its flagellar motors, which in turn control swarmer cell gene expression.

  1. Whole genome transcriptomics reveals global effects including up-regulation of Francisella pathogenicity island gene expression during active stringent response in the highly virulent Francisella tularensis subsp. tularensis SCHU S4.

    Science.gov (United States)

    Murch, Amber L; Skipp, Paul J; Roach, Peter L; Oyston, Petra C F

    2017-11-01

    During conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely

  2. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence.

    Directory of Open Access Journals (Sweden)

    Chikara Kaito

    Full Text Available The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA contains two bidirectionally overlapping open reading frames (ORFs, the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA strain, or into the MW2 (USA400 and FRP3757 (USA300 strains, which are community-acquired MRSA (CA-MRSA strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus.

  3. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence

    Directory of Open Access Journals (Sweden)

    Antoni N Malachowski

    2016-10-01

    Full Text Available Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, sho1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, sho1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116 of total studied VAFs are soluble proteins, and 22.7% (34 are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.

  4. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence.

    Science.gov (United States)

    Malachowski, Antoni N; Yosri, Mohamed; Park, Goun; Bahn, Yong-Sun; He, Yongqun; Olszewski, Michal A

    2016-01-01

    Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.

  5. Identification of CiaR Regulated Genes That Promote Group B Streptococcal Virulence and Interaction with Brain Endothelial Cells.

    Science.gov (United States)

    Mu, Rong; Cutting, Andrew S; Del Rosario, Yvette; Villarino, Nicholas; Stewart, Lara; Weston, Thomas A; Patras, Kathryn A; Doran, Kelly S

    2016-01-01

    Group B Streptococcus (GBS) is a major causative agent of neonatal meningitis due to its ability to efficiently cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). It has been demonstrated that GBS can invade human brain microvascular endothelial cells (hBMEC), a primary component of the BBB; however, the mechanism of intracellular survival and trafficking is unclear. We previously identified a two component regulatory system, CiaR/H, which promotes GBS intracellular survival in hBMEC. Here we show that a GBS strain deficient in the response regulator, CiaR, localized more frequently with Rab5, Rab7 and LAMP1 positive vesicles. Further, lysosomes isolated from hBMEC contained fewer viable bacteria following initial infection with the ΔciaR mutant compared to the WT strain. To characterize the contribution of CiaR-regulated genes, we constructed isogenic mutant strains lacking the two most down-regulated genes in the CiaR-deficient mutant, SAN_2180 and SAN_0039. These genes contributed to bacterial uptake and intracellular survival. Furthermore, competition experiments in mice showed that WT GBS had a significant survival advantage over the Δ2180 and Δ0039 mutants in the bloodstream and brain.

  6. Involvement ofTrichoderma harzianumEpl-1 Protein in the Regulation ofBotrytisVirulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  7. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii

    Science.gov (United States)

    Kröger, Carsten; Kary, Stefani C.; Schauer, Kristina; Cameron, Andrew D. S.

    2016-01-01

    Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance. PMID:28036056

  8. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule

    National Research Council Canada - National Science Library

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-01-01

    .... multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated...

  9. ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the Brucella virulence gene expression network.

    Science.gov (United States)

    Kleinman, Claudia L; Sycz, Gabriela; Bonomi, Hernán R; Rodríguez, Romina M; Zorreguieta, Angeles; Sieira, Rodrigo

    2017-06-02

    LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the Brucella virulence gene expression network

    Science.gov (United States)

    Sycz, Gabriela; Bonomi, Hernán R.; Rodríguez, Romina M.; Zorreguieta, Angeles

    2017-01-01

    Abstract LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks. PMID:28334833

  11. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS.

    Directory of Open Access Journals (Sweden)

    Abdelali Daddaoua

    Full Text Available Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad and P(kgu for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu and P(gad promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu and P(gad promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.

  12. Inducible Expression of Agrobacterium Virulence Gene VirE2 for Stringent Regulation of T-DNA Transfer in Plant Transient Expression Systems.

    Science.gov (United States)

    Denkovskienė, Erna; Paškevičius, Šarūnas; Werner, Stefan; Gleba, Yuri; Ražanskienė, Aušra

    2015-11-01

    Agrotransfection with viral vectors is an effective solution for the transient production of valuable proteins in plants grown in contained facilities. Transfection methods suitable for field applications are desirable for the production of high-volume products and for the transient molecular reprogramming of plants. The use of genetically modified (GM) Agrobacterium strains for plant transfections faces substantial biosafety issues. The environmental biosafety of GM Agrobacterium strains could be improved by regulating their T-DNA transfer via chemically inducible expression of virE2, one of the essential Agrobacterium virulence genes. In order to identify strong and stringently regulated promoters in Agrobacterium strains, we evaluated isopropyl-β-d-thiogalactoside-inducible promoters Plac, Ptac, PT7/lacO, and PT5/lacOlacO and cumic acid-inducible promoters PlacUV5/CuO, Ptac/CuO, PT5/CuO, and PvirE/CuO. Nicotiana benthamiana plants were transfected with a virE2-deficient A. tumefaciens strain containing transient expression vectors harboring inducible virE2 expression cassettes and containing a marker green fluorescent protein (GFP) gene in their T-DNA region. Evaluation of T-DNA transfer was achieved by counting GFP expression foci on plant leaves. The virE2 expression from cumic acid-induced promoters resulted in 47 to 72% of wild-type T-DNA transfer. Here, we present efficient and tightly regulated promoters for gene expression in A. tumefaciens and a novel approach to address environmental biosafety concerns in agrobiotechnology.

  13. Regulator of the mucoid phenotype A gene increases the virulent ability of extended-spectrum beta-lactamase-producing serotype non-K1/K2 Klebsiella pneumonia.

    Science.gov (United States)

    Lin, Hsin-An; Huang, Ya-Li; Yeh, Kao-Ming; Siu, L K; Lin, Jung-Chung; Chang, Feng-Yee

    2016-08-01

    To determine whether the presence of a capsule regulator gene [i.e., regulator of mucoid phenotype A (rmpA) gene] contributes to virulence on extended-spectrum β-lactamase-producing Klebsiella pneumoniae (ESBL-KP) with serotype non-K1/K2 strains. Twenty-eight ESBL-KP and non-ESBL-KP isolates were collected from the Tri-Service General Hospital (Taipei, Taiwan). The impact of the virulent rmpA gene in different capsular polysaccharide serotypes on ESBL-KP and non-ESBL-KP isolates was studied by a neutrophil phagocytosis reaction, a serum bactericidal assay, and an animal survival model. Resistance to broad spectrum antibiotics was more prevalent in ESBL-KP strains than in non-ESBL-KP strains (p < 0.01). The ESBL-KP strains had different molecular patterns from non-ESBL-KP strains, based on pulsed-field gel electrophoresis. The frequency of serum-resistant isolates was the highest among ESBL-KP strains with rmpA (i.e., rmpA(+)) [71.4% (5/7)] than among of non-ESBL-KP rmpA(+) strains [42.8% (6/14)], ESBL-KP strains without rmpA (rmpA(-)) [33.3% (7/21)], and non-ESBL-KP rmpA(-) strains [14.2% (2/14)]. The most significant increase in neutrophil resistance occurred in the ESBL-KP rmpA(+) strains in comparison to the non-ESBL-KP rmpA(+), ESBL-KP rmpA(-), and non-ESBL-KP rmpA(-) strains (p < 0.01). The results of the animal survival model were compatible with the neutrophil phagocytosis reaction and serum bactericidal assay. We conclude that the pathogenic potential is greater in rmpA(+) ESBL-KP strains than in rmpA(-) ESBL-KP and non-ESBL-KP strains. Copyright © 2014. Published by Elsevier B.V.

  14. ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Olsen, John E.; Aabo, Søren

    2013-01-01

    the proteolytic component ClpP, the stationary phase regulator RpoS and the carbon-storage regulator CsrA. However, the mechanism behind the ClpP regulation is not fully understood. To elucidate this we examined differentially expressed genes in a ΔclpP mutant compared with WT using global transcriptomic analysis......, suggesting the repression of invasion was directed through RpoS. The expression of the csrA virulence regulator was increased in the ΔclpP mutant and decreased in the rpoS : : amp and ΔclpP/rpoS : : amp mutants, indicating that ClpP affects the csrA expression level as well. Thus, this study suggests...... that ClpP affects SPI1 expression and thereby virulence indirectly through its regulation of both RpoS and CsrA....

  15. Catabolite repression and virulence gene expression in Listeria monocytogenes.

    Science.gov (United States)

    Gilbreth, Stefanie Evans; Benson, Andrew K; Hutkins, Robert W

    2004-08-01

    Previous studies have suggested that carbohydrates may affect expression of virulence genes in Listeria monocytogenes. Which carbohydrates influence virulence gene expression and how carbohydrates mediate expression, however, is not clear. The goal of this work was to examine how carbohydrates affect virulence gene expression in L. monocytogenes 10403S. Growth studies were conducted in medium containing glucose and various sugars. Metabolism of arbutin, arabitol, cellobiose, mannose, maltose, trehalose, and salicin were repressed in the presence of glucose. Only when glucose was consumed were these sugars fermented, indicating that catabolite repression by glucose had occurred. To determine whether virulence gene expression was also influenced by catabolite repression, we performed primer extension experiments, using primers for hly and prfA, which encode for a hemolysin and the regulator protein PrfA, respectively. In the presence of cellobiose and arbutin, transcription of hemolysin was reduced. However, none of the sugars affected transcription of prfA. The results demonstrate that catabolite repression occurs in L. monocytogenes and suggests that, at least in strain 10403S, cellobiose and arbutin repress expression of hemolysin.

  16. In vivo influence of in vitro up-regulated genes in the virulence of an APEC strain associated with swollen head syndrome.

    Science.gov (United States)

    de Paiva, Jacqueline Boldrin; da Silva, Livia Pilatti Mendes; Casas, Monique Ribeiro Tiba; Conceição, Rogério Arcuri; Nakazato, Gerson; de Pace, Fernanda; Sperandio, Vanessa; da Silveira, Wanderley Dias

    2016-01-01

    Avian Pathogenic Escherichia coli is responsible for significant economic losses in the poultry industry by causing a range of systemic or localized diseases collectively termed colibacillosis. The virulence mechanisms of these strains that are pathogenic in poultry and possibly pathogenic in humans have not yet been fully elucidated. This work was developed to study if over-expressed genes in a microarray assay could be potentially involved in the pathogenicity of an Avian Pathogenic Escherichia coli strain isolated from a swollen head syndrome case. For this study, five over-expressed genes were selected for the construction of null mutants [flgE (flagellar hook), tyrR (transcriptional regulator), potF (putrescine transporter), yehD (putative adhesin) and bfr (bacterioferritin)]. The constructed mutants were evaluated for their capacity for the adhesion and invasion of in vitro cultured cells, their motility capacity, and their pathogenic potential in one-day-old chickens compared with the wild-type strain (WT). The Δbfr strain showed a decreased adhesion capacity on avian fibroblasts compared with WT, in the presence and absence of alpha-D-mannopyranoside, and the ΔpotF strain showed decreased adhesion only in the absence of alpha-D-mannopyranoside. The ΔtyrR mutant had a reduced ability to invade Hep-2 cells. No mutant showed changes in invading CEC-32 cells. The mutants ΔflgE and ΔtyrR showed a decreased ability to survive in HD-11 cells. The motility of the mutant strains Δbfr, ΔyehD and ΔpotF was increased, while the ΔtyrR mutant showed reduction, and the ΔflgE became non-motile. No mutant strain caused the same mortality of the WT in one-day-old chickens, showing attenuation to different degrees.

  17. Transcriptional Analysis of the MrpJ Network: Modulation of Diverse Virulence-Associated Genes and Direct Regulation of mrp Fimbrial and flhDC Flagellar Operons in Proteus mirabilis

    Science.gov (United States)

    Bode, Nadine J.; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen

    2015-01-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. PMID:25847961

  18. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence

    Directory of Open Access Journals (Sweden)

    Kimberly M. Carlson-Banning

    2016-11-01

    Full Text Available The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose.

  19. Regulation of bacterial virulence by Csr (Rsm) systems.

    Science.gov (United States)

    Vakulskas, Christopher A; Potts, Anastasia H; Babitzke, Paul; Ahmer, Brian M M; Romeo, Tony

    2015-06-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    Science.gov (United States)

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence.

    Science.gov (United States)

    Murphy, Erin R; Payne, Shelley M

    2007-07-01

    Regulation of bacterial gene expression by small RNA (sRNA) molecules is an increasingly recognized phenomenon but one that is not yet fully understood. We show that the sRNA RyhB suppresses several virulence-associated phenotypes of Shigella dysenteriae, a causative agent of bacillary dysentery in humans. The virulence genes repressed by S. dysenteriae RyhB include those encoding the type III secretion apparatus, its secreted effectors, and specific chaperones. Suppression of Shigella virulence occurs via RyhB-dependent repression of the transcriptional activator VirB, leading to reduced expression of genes within the VirB regulon. Efficient repression of virB is mediated by a single-stranded region of RyhB that is distinct from the region required for repression of Shigella sodB. Regulation of virB by RyhB implicates iron as an environmental factor contributing to the complex regulation of Shigella virulence determinants.

  2. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence.

    Science.gov (United States)

    Carlson-Banning, Kimberly M; Sperandio, Vanessa

    2016-11-22

    The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC) uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS) when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose. Enteric pathogens have to be crafty when interpreting multiple environmental cues to successfully establish themselves within complex and diverse gut microenvironments. Differences in oxygen tension and nutrient composition

  3. An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Heather Pearl McLaughlin

    Full Text Available The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572.

  4. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes.

    Science.gov (United States)

    Alpuche Aranda, C M; Swanson, J A; Loomis, W P; Miller, S I

    1992-01-01

    Survival of Salmonella typhimurium within macrophage phagosomes requires the coordinate expression of bacterial gene products. This report examines the contribution of phagosomal pH as a signal for expression of genes positively regulated by the S. typhimurium virulence regulators PhoP and PhoQ. Several hours after bacterial phagocytosis by murine bone marrow-derived macrophages, PhoP-activated gene transcription increased 50- to 77-fold. In contrast, no difference in PhoP-activated gene expression was observed after infection of cultured epithelial cells, suggesting that the membrane sensor PhoQ recognized signals unique to macrophage phagosomes. The increase in PhoP-regulated gene expression was abolished when macrophage culture medium contained NH4Cl or chloroquine, weak bases that raise the pH of acidic compartments. Measurements of pH documented that S. typhimurium delayed and attenuated acidification of its intracellular compartment. Phagosomes containing S. typhimurium required 4-5 hr to reach pH < 5.0. In contrast, within 1 hr vacuoles containing heat-killed bacteria were measured at pH < 4.5. The eventual acidification of phagosomes to pH < 5.0 correlated with the period of maximal PhoP-dependent gene expression. These observations implicate phagosome acidification as an intracellular inducer of PhoP-regulated gene expression and suggest that Salmonella survival is dependent on its ability to attenuate phagosome acidification. Images PMID:1438196

  5. Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis.

    Science.gov (United States)

    Bode, Nadine J; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen; Pearson, Melanie M

    2015-06-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. A novel sterol regulatory element-binding protein gene (sreA identified in penicillium digitatum is required for prochloraz resistance, full virulence and erg11 (cyp51 regulation.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014 at its carboxyl terminus and a helix-loop-helix (HLH leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA in a prochloraz-resistant strain (PdHS-F6 by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA. A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression.

  7. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Larsen, M. H.; Gram, Lone

    2010-01-01

    Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants used...... perspective, the study underlines that disinfectants should be used at the lethal concentrations recommended by the manufacturers. Further studies are needed to elucidate whether the changes in virulence gene expression induced by the disinfectants have impact on virulence or other biological properties...

  8. Transcriptional Activation of Virulence Genes of Rhizobium etli.

    Science.gov (United States)

    Wang, Luyao; Lacroix, Benoît; Guo, Jianhua; Citovsky, Vitaly

    2017-03-15

    regulation and induction of virulence genes in R. etli and show similarities to and differences from those of their A. tumefaciens counterparts, contributing to an understanding and a comparison of these two systems. Whereas most vir genes in R. etli follow an induction pattern similar to that of A. tumefaciens vir genes, a few significant differences may at least in part explain the variations in T-DNA transfer efficiency. Copyright © 2017 American Society for Microbiology.

  9. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Hyunjin Yoon

    2009-02-01

    Full Text Available To cause a systemic infection, Salmonella must respond to many environmental cues during mouse infection and express specific subsets of genes in a temporal and spatial manner, but the regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 83 regulators inferred to play a role in Salmonella enteriditis Typhimurium (STM virulence and tested them in three virulence assays (intraperitoneal [i.p.], and intragastric [i.g.] infection in BALB/c mice, and persistence in 129X1/SvJ mice. Overall, 35 regulators were identified whose absence attenuated virulence in at least one assay, and of those, 14 regulators were required for systemic mouse infection, the most stringent virulence assay. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint, we focused on these 14 genes. Transcriptional profiles were obtained for deletions of each of these 14 regulators grown under four different environmental conditions. These results, as well as publicly available transcriptional profiles, were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 14 regulators control the same set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2. These experiments validated the regulatory model and showed that the response regulator SsrB and the MarR type regulator, SlyA, are the terminal regulators in a cascade that integrates multiple signals. Furthermore, experiments to demonstrate epistatic relationships showed that SsrB can replace SlyA and, in some cases, SlyA can replace SsrB for expression of SPI-2 encoded

  10. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence.

    Directory of Open Access Journals (Sweden)

    Lior Lobel

    2012-09-01

    Full Text Available Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs, as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence.

  11. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes.

    Science.gov (United States)

    Marincola, Gabriella; Schäfer, Tina; Behler, Juliane; Bernhardt, Jörg; Ohlsen, Knut; Goerke, Christiane; Wolz, Christiane

    2012-09-01

    RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilization of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes. © 2012 Blackwell Publishing Ltd.

  12. Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria

    OpenAIRE

    Declerck, Nathalie; Bouillaut, Laurent; Chaix, Denis; Rugani, Nathalie; Slamti, Leyla; Hoh, François; Lereclus, Didier; Arold, Stefan T.

    2007-01-01

    Gram-positive bacteria use a wealth of extracellular signaling peptides, so-called autoinducers, to regulate gene expression according to population densities. These “quorum sensing” systems control vital processes such as virulence, sporulation, and gene transfer. Using x-ray analysis, we determined the structure of PlcR, the major virulence regulator of the Bacillus cereus group, and obtained mechanistic insights into the effects of autoinducer binding. Our structural and phylogenetic analy...

  13. Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Mayfield

    Full Text Available The cluster of virulence sensor (CovS/responder (CovR two-component operon (CovRS regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448, containing wild-type (WT CovRS (5448/CovR+S+, or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS- was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection.

  14. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor.

    Science.gov (United States)

    Ahuja, Umesh; Shokeen, Bhumika; Cheng, Ning; Cho, Yeonjoo; Blum, Charles; Coppola, Giovanni; Miller, Jeff F

    2016-03-01

    The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.

  15. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-02-12

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.

  16. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M. C.; Harrison, Odile B.; Srikhanta, Yogitha N.; Jennings, Michael P.; Maiden, Martin C. J.; Seib, Kate L.

    2016-01-01

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the ‘hyperinvasive lineages’ are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains. PMID:26867950

  17. EutR is a direct regulator of genes that contribute to metabolism and virulence in enterohemorrhagic Escherichia coli O157:H7.

    Science.gov (United States)

    Luzader, Deborah H; Clark, David E; Gonyar, Laura A; Kendall, Melissa M

    2013-11-01

    Ethanolamine (EA) metabolism is a trait associated with enteric pathogens, including enterohemorrhagic Escherichia coli O157:H7 (EHEC). EHEC causes severe bloody diarrhea and hemolytic uremic syndrome. EHEC encodes the ethanolamine utilization (eut) operon that allows EHEC to metabolize EA and gain a competitive advantage when colonizing the gastrointestinal tract. The eut operon encodes the transcriptional regulator EutR. Genetic studies indicated that EutR expression is induced by EA and vitamin B12 and that EutR promotes expression of the eut operon; however, biochemical evidence for these interactions has been lacking. We performed EA-binding assays and electrophoretic mobility shift assays (EMSAs) to elucidate a mechanism for EutR gene regulation. These studies confirmed EutR interaction with EA, as well as direct binding to the eutS promoter. EutR also contributes to expression of the locus of enterocyte effacement (LEE) in an EA-dependent manner. We performed EMSAs to examine EutR activation of the LEE. The results demonstrated that EutR directly binds the regulatory region of the ler promoter. These results present the first mechanistic description of EutR gene regulation and reveal a novel role for EutR in EHEC pathogenesis.

  18. Natural Selection in Virulence Genes of Francisella tularensis.

    Science.gov (United States)

    Gunnell, Mark K; Robison, Richard A; Adams, Byron J

    2016-06-01

    A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution

  19. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule

    OpenAIRE

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D.

    2016-01-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molec...

  20. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  1. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  2. Virulence regulation of phytopathogenic fungi by pH.

    Science.gov (United States)

    Alkan, Noam; Espeso, Eduardo A; Prusky, Dov

    2013-09-20

    Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.

  3. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    The proposed research was motivated by an interest in understanding Y. pestis virulence mechanisms and bacteria cell-cell communication. It is expected that a greater understanding of virulence mechanisms will ultimately lead to biothreat countermeasures and novel therapeutics. Y. pestis is the etiological agent of plague, the most devastating disease in human history. Y. pestis infection has a high mortality rate and a short incubation before mortality. There is no widely available and effective vaccine for Y. pestis and multi-drug resistant strains are emerging. Y. pestis is a recognized biothreat agent based on the wide distribution of the bacteria in research laboratories around the world and on the knowledge that methods exist to produce and aerosolize large amounts of bacteria. We hypothesized that cell-cell communication via signaling molecules, or quorum sensing, by Y. pestis is important for the regulation of virulence factor gene expression during host invasion, though a causative link had never been established. Quorum sensing is a mode of intercellular communication which enables orchestration of gene expression for many bacteria as a function of population density and available evidence suggests there may be a link between quorum sensing and regulation of Y. pesits virulence. Several pathogenic bacteria have been shown to regulate expression of virulence factor genes, including genes encoding type III secretion, via quorum sensing. The Y. pestis genome encodes several cell-cell signaling pathways and the interaction of at least three of these are thought to be involved in one or more modes of host invasion. Furthermore, Y. pestis gene expression array studies carried out at LLNL have established a correlation between expression of known virulence factors and genes involved in processing of the AI-2 quorum sensing signal. This was a basic research project that was intended to provide new insights into bacterial intercellular communication and how it is

  4. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes.

    Directory of Open Access Journals (Sweden)

    Adi Haber

    2017-01-01

    Full Text Available The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature and chemical (e.g., metabolite concentrations factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism.

  5. Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains.

    Science.gov (United States)

    de Barros, Patrícia Pimentel; Rossoni, Rodnei Dennis; De Camargo Ribeiro, Felipe; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-04-01

    The characterization of Candida albicans strains with different degrees of virulence became very useful to understand the mechanisms of fungal virulence. Then, the objective of this study was to assess and compare the temporal profiles of biofilms formation, gene expression of ALS1, ALS3, HWP1, BCR1, EFG1, TEC1, SAP5, PLB2 and LIP9 and virulence in Galleria mellonella of C. albicans ATCC18804 and a clinical sample isolated from an HIV-positive patient (CA60). Although the CFU/mL counting was higher in biofilms formed in vitro by ATCC strain, the temporal profile of the analysis of the transcripts of the C. albicans strains was elevated to Ca60 compared to strain ATCC, especially in the genes HWP1, ALS3, SAP5, PLB2 and LIP9 (up regulation). Ca60 was more pathogenic for G. mellonella in the survival assay (p = 0.0394) and hemocytes density (p = 0.0349), agreeing with upregulated genes that encode the expression of hyphae and hydrolase genes of Ca60. In conclusion, the C. albicans strains used in this study differ in the amount of biofilm formation, virulence in vivo and transcriptional profiles of genes analyzed that can change factors associated with colonization, proliferation and survival of C. albicans at different niches. SAP5 and HWP1 were the genes more expressed in the formation of biofilm in vitro.

  6. Prevalence of Escherichia coli virulence genes in patients with ...

    African Journals Online (AJOL)

    In this study, we investigated the prevalence of the virulence genes specific for five major pathogroups of diarrheagenic Escherichia coli (DEC) in primary cultures from diarrhoeagenic patients in Burkina Faso. Methodology: From September 2016 to Mars 2017, a total of 211 faecal samples from diarrhoeagenic patients from ...

  7. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Abstract. Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli. O157:H7 in raw beef meat sold in Abeokuta, South ...

  8. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is an important food-borne pathogen that can cause diarrhea, haemorrhagic colitis and haemolytic uremic syndrome. This study was conducted to investigate the prevalence, virulence genes and antibiotic resistance patterns of E. coli O157:H7 in raw beef meat sold in Abeokuta, South west Nigeria ...

  9. Gene encoding virulence markers among Escherichia coli isolates ...

    African Journals Online (AJOL)

    River water sources and diarrhoeic stools of residents in the Venda Region, Limpopo Province of South Africa were analysed for the prevalence of Escherichia coli (E. coli) and the presence of virulence genes among the isolates. A control group of 100 nondiarrhoeic stool samples was included. Escherichia coli was ...

  10. Cryptococcus neoformans mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence.

    Directory of Open Access Journals (Sweden)

    Lin-Ing Wang

    Full Text Available Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans.

  11. Cryptococcus neoformans mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence.

    Science.gov (United States)

    Wang, Lin-Ing; Lin, Yu-Sheng; Liu, Kung-Hung; Jong, Ambrose Y; Shen, Wei-Chiang

    2011-04-29

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans.

  12. Inactivation of the Rgg2 transcriptional regulator ablates the virulence of Streptococcus pyogenes.

    Directory of Open Access Journals (Sweden)

    Anastasia A Zutkis

    Full Text Available Streptococcus pyogenes adapts to different niches encountered in the human host via the activity of numerous regulatory proteins including the Rgg family of transcriptional regulators. The S. pyogenes chromosome encodes four Rgg paralogues designated Rgg1 (RopB, Rgg2 (MutR, Rgg3, and Rgg4 (ComR. In order to understand the role of the Rgg2 protein in the regulation of metabolic and virulence-associated properties of S. pyogenes, the rgg2 gene was inactivated in the M1 serotype strain SF370. Inactivation of rgg2 increased the growth yield of S. pyogenes in THY broth, increased biofilm formation, and increased production of SIC, which is an important virulence factor that inhibits complement mediated lysis. To identify Rgg2-regulated genes, the transcriptomes of SF370 and the rgg2 mutant strains were compared in the middle-exponential and post-exponential phases of growth. Rgg2 was found to control the expression of dozens of genes primarily in the exponential phase of growth, including genes associated with virulence (sse, scpA, slo, nga, mf-3, DNA transformation, and nucleotide metabolism. Inactivation of rgg2 decreased the ability of S. pyogenes to adhere to epithelial cells. In addition, the mutant strain was more sensitive to killing when incubated with human blood and avirulent in a murine bacteremia model. Finally, inoculation of mice with the avirulent rgg2 mutant of S. pyogenes SF370 conferred complete protection to mice subsequently challenged with the wild-type strain. Restoration of an intact rgg2 gene in mutant strain restored the wild-type phenotypes. Overall, the results demonstrate that Rgg2 is an important regulatory protein in S. pyogenes involved in controlling genes associated with both metabolism and virulence.

  13. Inactivation of the Rgg2 transcriptional regulator ablates the virulence of Streptococcus pyogenes.

    Science.gov (United States)

    Zutkis, Anastasia A; Anbalagan, Srivishnupriya; Chaussee, Michael S; Dmitriev, Alexander V

    2014-01-01

    Streptococcus pyogenes adapts to different niches encountered in the human host via the activity of numerous regulatory proteins including the Rgg family of transcriptional regulators. The S. pyogenes chromosome encodes four Rgg paralogues designated Rgg1 (RopB), Rgg2 (MutR), Rgg3, and Rgg4 (ComR). In order to understand the role of the Rgg2 protein in the regulation of metabolic and virulence-associated properties of S. pyogenes, the rgg2 gene was inactivated in the M1 serotype strain SF370. Inactivation of rgg2 increased the growth yield of S. pyogenes in THY broth, increased biofilm formation, and increased production of SIC, which is an important virulence factor that inhibits complement mediated lysis. To identify Rgg2-regulated genes, the transcriptomes of SF370 and the rgg2 mutant strains were compared in the middle-exponential and post-exponential phases of growth. Rgg2 was found to control the expression of dozens of genes primarily in the exponential phase of growth, including genes associated with virulence (sse, scpA, slo, nga, mf-3), DNA transformation, and nucleotide metabolism. Inactivation of rgg2 decreased the ability of S. pyogenes to adhere to epithelial cells. In addition, the mutant strain was more sensitive to killing when incubated with human blood and avirulent in a murine bacteremia model. Finally, inoculation of mice with the avirulent rgg2 mutant of S. pyogenes SF370 conferred complete protection to mice subsequently challenged with the wild-type strain. Restoration of an intact rgg2 gene in mutant strain restored the wild-type phenotypes. Overall, the results demonstrate that Rgg2 is an important regulatory protein in S. pyogenes involved in controlling genes associated with both metabolism and virulence.

  14. Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae.

    Science.gov (United States)

    Lv, Mingfa; Chen, Yufan; Liao, Lisheng; Liang, Zhibin; Shi, Zurong; Tang, Yingxin; Ye, Sixuan; Zhou, Jianuan; Zhang, Lianhui

    2018-01-10

    Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.

  15. Detection of virulence associated genes, haemolysin and protease amongst Vibrio cholerae isolated in Malaysia.

    Science.gov (United States)

    Iyer, L; Vadivelu, J; Puthucheary, S D

    2000-08-01

    Eighty-four strains of Vibrio cholerae O1, O139 and non-O1/non-O139 from clinical and environmental sources were investigated for the presence of the toxin co-regulated pilus gene, tcpA, the virulence cassette genes ctxA, zot, ace and cep and also for their ability to elaborate haemolysin and protease. The ctxA and zot genes were detected using DNA-DNA hybridization while the ace, cep and tcpA genes were detected using PCR. Production of haemolysin and protease was detected using mammalian erythrocytes and an agar diffusion assay respectively. Analysis of their virulence profiles showed six different groups designated Type I to Type VI and the major distinguishing factor among these profiles was in the in vitro production of haemolysin and/or protease. Clinical O1, O139 and environmental O1 strains were similar with regard to presence of the virulence cassette genes. All environmental O1 strains with the exception of one were found to possess ctxA, zot and ace giving rise to the probability that these strains may actually be of clinical origin. One strain which had only cep but none of the toxin genes may be a true environmental isolate. The virulence cassette and colonization factor genes were absent in all non-O1/non-O139 environmental strains but production of both the haemolysin and protease was present, indicating that these may be putative virulence factors. These findings suggest that with regard to its pathogenic potential, only strains of the O1 and O139 serogroup that possess the tcpA gene which encodes the phage receptor, have the potential to acquire the CTX genetic element and become choleragenic.

  16. Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    OpenAIRE

    Lin-Ing Wang; Yu-Sheng Lin; Kung-Hung Liu; Jong, Ambrose Y.; Wei-Chiang Shen

    2011-01-01

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed t...

  17. A functional gene array for detection of bacterial virulence elements

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  18. Virulence genes of Escherichia coli strains isolated from mastitic milk.

    Science.gov (United States)

    Bean, A; Williamson, J; Cursons, R T

    2004-08-01

    Escherichia coli, a Gram-negative environmental pathogen associated with bovine mastitis was isolated from the milk of 34 symptomatic cows that had been diagnosed with clinical mastitis. Eighty isolates were obtained over a 17-month period and these isolates were screened by DNA amplification for the following E. coli virulence genes: cnf1, cnf2, eaeA, eagg, einv, ltx1, stx1, stx2 and vt2e. Thirty of the bacterial isolates, obtained from 23 different cows, had toxin genes identified in their DNA. The most common virulence gene detected was stx1, with a prevalence of 31%, followed by cnf2 (7.5%), vt2e (6.25%) and eaeA (4%). The possession of different virulence genes by the bacterial isolates had no discernable impact on the health status of the cows as there was no correlation between the potential for toxin production by the E. coli isolates and the systemic clinical condition of the respective infected cows.

  19. Down-regulation of MHC Class I by the Marek's Disease Virus (MDV) UL49.5 Gene Product Mildly Affects Virulence in a Haplotype-specific Fashion

    Science.gov (United States)

    Marek’s disease is a devastating neoplastic disease of chickens caused by gallid herpesvirus 2 or Marek’s disease virus (MDV), which is characterized by massive visceral tumors, immune suppression, neurologic syndromes, and peracute deaths. It has been reported that MDV down-regulates surface expre...

  20. Detection of attaching and effacing virulence gene of E. coli

    Directory of Open Access Journals (Sweden)

    Maratu Soleha

    2013-07-01

    Full Text Available AbstrakLatar belakang: Bakteri Escherichia coli (E. coli ada yang telah bermutasi menjadi patogen yang menimbulkan berbagai penyakit seperti hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pnemonia, neonatal meningitis, dan infeksi saluran kemih. Mutasi terjadi karena bakteri ini menerima transfer gen yang virulen dari bakteri lain yang hidup di sekitarnya. E. coli yang biasanya hidup normal di dalam usus manusia telah beradaptasi sehingga bisa hidup di tanah, makanan, dan saluran kemih. Penelitian ini mendeteksi gene yang virulen pada DNA isolat E. coli. Metode: Untuk deteksi E. coli yang virulen pada penelitian ini digunakan metode Real-time PCR dengan mencocokkan hasil sekuensing dengan sekuens E. coli virulen yang telah di publikasikan sebagai rujukan. Hasil: Sekuens RT PCR menggambarkan DNA gen eae pada BLAST mempunyai kesesuaian dengan rujukan segmen E. coli yang virulen. Dari sampel yang berasal dari E. coli di sekitar perairan lingkungan didapatkan gen Eae sebagai gen yang menyebabkan E. coli menjadi virulen sebesar 7,3%. Kesimpulan: E. coli yang virulen ditemukan pada sampel E. coli yang berasal dari perairan lingkungan dengan metode realtime PCR. (Health Science Indones 2013;1:41-6 Kata kunci: gen virulen E. coli, real-time PCR, perairan lingkunganAbstractBackground: Escherichia coli(E. coli bacteria have developed into pathogenic bacteria that caused diseases such as hemorrhagic colitis (HC, hemolytic uremic syndrome (HUS, sepsis, pneumonia, neonatal meningitis, and urinary tract infections. Pathogenic E. coli have acquired pathogenic/virulence genes from other bacteria in their environment. E. coli that normally lived in the human gut had adapted to other niches such as soil, food and the urinary tract. This study investigated the presence of pathogenic E. coli from water samples by examining E. coli virulence genes present in E. coli genomes of water sourced isolates. Methods:This study used Real-time PCR to detect

  1. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Directory of Open Access Journals (Sweden)

    Oswald R Crasta

    Full Text Available The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.

  2. The Central Metabolism Regulator EIIAGlc Switches Salmonella from Growth Arrest to Acute Virulence through Activation of Virulence Factor Secretion

    Directory of Open Access Journals (Sweden)

    Alain Mazé

    2014-06-01

    Full Text Available The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2 involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.

  3. Expression of virulence genes by Listeria monocytogenes J0161 in natural environment

    Directory of Open Access Journals (Sweden)

    Prem Saran Tirumalai

    2012-06-01

    Full Text Available Majority of studies concerning the gene expression of Listeria monocytogenes have been done on pure culture states. Our objective was to study L.monocytogenes in a co-cultured state and to understand if microbes in their natural state of existence are different in their expression than that of the purely cultured lab grown forms. For a long period discussions have been on the expression of prfA, (which is a virulence gene regulator in a mammalian host and its role in causing the switch from a saprophytic to pathogenic form of L.monocytogenes. We, in this paper for the first time report the expression of prfA and other virulence genes by L.monocytogenes under different extracellular conditions, and also as a pure culture biofilms, that is different from the previous reports. We also report that the expression of prfA seems to vary considerably when co-cultured with Bacillus subtilis.

  4. Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model

    Science.gov (United States)

    Feinbaum, Rhonda L.; Urbach, Jonathan M.; Liberati, Nicole T.; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M.

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes. PMID:22911607

  5. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Science.gov (United States)

    Feinbaum, Rhonda L; Urbach, Jonathan M; Liberati, Nicole T; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  6. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.

    Directory of Open Access Journals (Sweden)

    Rhonda L Feinbaum

    Full Text Available Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700 were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.

  7. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes blaTEM, blaSHV, ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Pimonsri Rattanama

    Full Text Available Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei. Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σ(E, was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030 to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN and an upregulated protease (DegQ which have been associated with σ(E in other organisms. Our study is the first report linking hemolytic activity to the σ(E regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.

  9. Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes

    Science.gov (United States)

    2013-01-01

    Background Small RNA mediated gene silencing is a well-conserved regulatory pathway. In the parasite Entamoeba histolytica an endogenous RNAi pathway exists, however, the depth and diversity of the small RNA population remains unknown. Results To characterize the small RNA population that associates with E. histolytica Argonaute-2 (EhAGO2-2), we immunoprecipitated small RNAs that associate with it and performed one full pyrosequencing run. Data analysis revealed new features of the 27nt small RNAs including the 5′-G predominance, distinct small RNA distribution patterns on protein coding genes, small RNAs mapping to both introns and exon-exon junctions, and small RNA targeted genes that are clustered particularly in sections of genome duplication. Characterization of genomic loci to which both sense and antisense small RNAs mapped showed that both sets of small RNAs have 5′-polyphosphate termini; strand-specific RT-PCR detected transcripts in both directions at these loci suggesting that both transcripts may serve as template for small RNA generation. In order to determine whether small RNA abundance patterns account for strain-specific gene expression profiles of E. histolytica virulent and non-virulent strains, we sequenced small RNAs from a non-virulent strain and found that small RNAs mapped to genes in a manner consistent with their regulation of strain-specific virulence genes. Conclusions We provided a full spectrum analysis for E. histolytica AGO2-2 associated 27nt small RNAs. Additionally, comparative analysis of small RNA populations from virulent and non-virulent amebic strains indicates that small RNA populations may regulate virulence genes. PMID:23347563

  10. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1.

    Science.gov (United States)

    Zhou, Jia-Nuan; Zhang, Hai-Bao; Lv, Ming-Fa; Chen, Yu-Fan; Liao, Li-Sheng; Cheng, Ying-Ying; Liu, Shi-Yin; Chen, Shao-Hua; He, Fei; Cui, Zi-Ning; Jiang, Zi-De; Chang, Chang-Qing; Zhang, Lian-Hui

    2016-12-01

    Dickeya zeae is a causal agent of rice root rot disease. The pathogen is known to produce a range of virulence factors, including phytotoxic zeamines and extracellular enzymes, but the mechanisms of virulence regulation remain vague. In this study, we identified a SlyA/MarR family transcription factor SlyA in D. zeae strain EC1. Disruption of slyA significantly decreased zeamine production, enhanced swimming and swarming motility, reduced biofilm formation and significantly decreased pathogenicity on rice. Quantitative polymerase chain reaction (qPCR) analysis confirmed the role of SlyA in transcriptional modulation of a range of genes associated with bacterial virulence. In trans expression of slyA in expI mutants recovered the phenotypes of motility and biofilm formation, suggesting that SlyA is downstream of the acylhomoserine lactone-mediated quorum sensing pathway. Taken together, the findings from this study unveil a key transcriptional regulatory factor involved in the modulation of virulence factor production and overall pathogenicity of D. zeae EC1. © 2016 BSPP and John Wiley & Sons Ltd.

  11. [Main virulence factors of Listeria monocytogenes and its regulation].

    Science.gov (United States)

    Vera, Alejandra; González, Gerardo; Domínguez, Mariana; Bello, Helia

    2013-08-01

    Listeria monocytogenesis a facultative intracellular pathogen, ubiquitous and aetiological agent of listeriosis. The main way of acquisition is the consumption of contaminated food and can cause serious medical conditions such as septicemia, meningitis and gastroenteritis, especially in children, immunocompromised individuals and seniors and abortions in pregnant women. An increase in cases of listeriosis worldwide has been reported and it is estimated that its prevalence in developed countries is in the range of 2 to 15 cases per one million population. This microorganism is characterized for the transition from the environment into the eukaryotic cell. Several virulence factors have been involved in the intracellular cycle that are regulated, primarily, by the PrfA protein, which in turn is regulated by different mechanisms operating at the transcriptional, translational and post-translational levels. Additionally, other regulatory mechanisms have been described as sigma factor, system VirR/S and antisense RNA, but PrfA is the most important control mechanism and is required for the expression of essential virulence factors for the intracellular cycle.

  12. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    Directory of Open Access Journals (Sweden)

    Stephanie Pitman

    2015-12-01

    Full Text Available The discovery of small noncoding regulatory RNAs (sRNAs in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.

  13. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    Directory of Open Access Journals (Sweden)

    Jung-Hee Cho

    2013-12-01

    Full Text Available It has been known that most regulation of pathogenicity factor (rpf genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production.

  14. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine.

    Directory of Open Access Journals (Sweden)

    Alex T Nielsen

    2010-09-01

    Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a

  15. Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins.

    Science.gov (United States)

    Byrne, B A; Prescott, J F; Palmer, G H; Takai, S; Nicholson, V M; Alperin, D C; Hines, S A

    2001-02-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37 degrees C but not at 30 degrees C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins.

  16. Sialic acid mediated transcriptional modulation of a highly conserved sialometabolism gene cluster in Haemophilus influenzae and its effect on virulence

    Directory of Open Access Journals (Sweden)

    Moxon Richard

    2010-02-01

    Full Text Available Abstract Background Sialic acid has been shown to be a major virulence determinant in the pathogenesis of otitis media caused by the bacterium Haemophilus influenzae. This study aimed to characterise the expression of genes required for the metabolism of sialic acid and to investigate the role of these genes in virulence. Results Using qRT-PCR, we observed decreased transcriptional activity of genes within a cluster that are required for uptake and catabolism of 5-acetyl neuraminic acid (Neu5Ac, when bacteria were cultured in the presence of the sugar. We show that these uptake and catabolic genes, including a sialic acid regulatory gene (siaR, are highly conserved in the H. influenzae natural population. Mutant strains were constructed for seven of the nine genes and their influence upon LPS sialylation and resistance of the bacteria to the killing effect of normal human serum were assessed. Mutations in the Neu5Ac uptake (TRAP transporter genes decreased virulence in the chinchilla model of otitis media, but the attenuation was strain dependent. In contrast, mutations in catabolism genes and genes regulating sialic acid metabolism (siaR and crp did not attenuate virulence. Conclusion The commensal and pathogenic behaviour of H. influenzae involves LPS sialylation that can be influenced by a complex regulatory interplay of sialometabolism genes.

  17. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Marc Valls

    2006-08-01

    Full Text Available In many plant and animal bacterial pathogens, the Type III secretion system (TTSS that directly translocates effector proteins into the eukaryotic host cells is essential for the development of disease. In all species studied, the transcription of the TTSS and most of its effector substrates is tightly regulated by a succession of consecutively activated regulators. However, the whole genetic programme driven by these regulatory cascades is still unknown, especially in bacterial plant pathogens. Here, we have characterised the programme triggered by HrpG, a host-responsive regulator of the TTSS activation cascade in the plant pathogen Ralstonia solanacearum. We show through genome-wide expression analysis that, in addition to the TTSS, HrpG controls the expression of a previously undescribed TTSS-independent pathway that includes a number of other virulence determinants and genes likely involved in adaptation to life in the host. Functional studies revealed that this second pathway co-ordinates the bacterial production of plant cell wall-degrading enzymes, exopolysaccharide, and the phytohormones ethylene and auxin. We provide experimental evidence that these activities contribute to pathogenicity. We also show that the ethylene produced by R. solanacearum is able to modulate the expression of host genes and can therefore interfere with the signalling of plant defence responses. These results provide a new, integrated view of plant bacterial pathogenicity, where a common regulator activates synchronously upon infection the TTSS, other virulence determinants and a number of adaptive functions, which act co-operatively to cause disease.

  18. Method for Screening Compounds That Influence Virulence Gene Expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nielsen, A.; Nielsen, Kristian Fog; Frees, D.

    2010-01-01

    We present a simple assay to examine effects of compounds on virulence gene expression in the human pathogen Staphylococcus aureus. The assay employs transcriptional reporter strains carrying lacZ fused to central virulence genes. Compounds affecting virulence gene expression and activity of the ...... of the agr locus are scored based on color change in the presence of a chromogenic beta-galactosidase substrate. The assay can be used to screen for novel antivirulence compounds from many different sources, such as fungi, as demonstrated here.......We present a simple assay to examine effects of compounds on virulence gene expression in the human pathogen Staphylococcus aureus. The assay employs transcriptional reporter strains carrying lacZ fused to central virulence genes. Compounds affecting virulence gene expression and activity...

  19. Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes

    Science.gov (United States)

    Zhang, Fan; Du, Zhenglin; Huang, Liyu; Cruz, Casiana Vera; Zhou, Yongli; Li, Zhikang

    2013-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight, which is a major rice disease in tropical Asian countries. An attempt has been made to investigate gene expression patterns of three Xoo strains on the minimal medium XOM2, PXO99 (P6) and PXO86 (P2) from the Philippines, and GD1358 (C5) from China, which exhibited different virulence in 30 rice varieties, with putative virulence factors using deep sequencing. In total, 4,781 transcripts were identified in this study, and 1,151 and 3,076 genes were differentially expressed when P6 was compared with P2 and with C5, respectively. Our results indicated that Xoo strains from different regions exhibited distinctly different expression patterns of putative virulence-relevant genes. Interestingly, 40 and 44 genes involved in chemotaxis and motility exhibited higher transcript alterations in C5 compared with P6 and P2, respectively. Most other genes associated with virulence, including exopolysaccharide (EPS) synthesis, Hrp genes and type III effectors, including Xanthomonas outer protein (Xop) effectors and transcription activator-like (TAL) effectors, were down-regulated in C5 compared with P6 and P2. The data were confirmed by real-time quantitative RT-PCR, tests of bacterial motility, and enzyme activity analysis of EPS and xylanase. These results highlight the complexity of Xoo and offer new avenues for improving our understanding of Xoo-rice interactions and the evolution of Xoo virulence. PMID:23734193

  20. Global transcriptional regulation by H-NS and its biological influence on the virulence of Enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Wan, Baoshan; Zhang, Qiufen; Tao, Jing; Zhou, Aiping; Yao, Yu-Feng; Ni, Jinjing

    2016-08-22

    As a global transcriptional regulator, H-NS, the histone-like nucleoid-associated DNA-binding and bridging protein, plays a wide range of biological roles in bacteria. In order to determine the role of H-NS in regulating gene transcription and further find out the biological significance of this protein in Enterohemorrhagic Escherichia coli (EHEC), we conducted transcriptome analysis of hns mutant by RNA sequencing. A total of 983 genes were identified to be regulated by H-NS in EHEC. 213 and 770 genes were down-regulated and up-regulated in the deletion mutant of hns, respectively. Interestingly, 34 of 97 genes on virulence plasmid pO157 were down-regulated by H-NS. Although the deletion mutant of hns showed a decreased survival rate in macrophage compared with the wild type strain, it exhibited the higher ability to colonize mice gut and became more virulent to BALB/c mice. The BALB/c mice infected with the deletion mutant of hns showed a lower survival rate, and a higher bacterial burden in the gut, compared with those infected with wild type strain, especially when the gut microbiota was not disturbed by antibiotic administration. These findings suggest that H-NS plays an important role in virulence of EHEC by interacting with host gut microbiota. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence.

    Science.gov (United States)

    Rodríguez-Andrade, E; Hernández-Ramírez, K C; Díaz-Peréz, S P; Díaz-Magaña, A; Chávez-Moctezuma, M P; Meza-Carmen, V; Ortíz-Alvarado, R; Cervantes, C; Ramírez-Díaz, M I

    2016-03-01

    The pUM505 plasmid was isolated from a clinical strain of Pseudomonas aeruginosa. This plasmid contains a genomic island with sequence similar to islands found in chromosomes of virulent P. aeruginosa clinical isolates. The objective of this work was to determine whether pUM505 increases the virulence of P. aeruginosa and to identify the genes responsible for this property. First, using the lettuce-leaf model, we found that pUM505 significantly increases the virulence of P. aeruginosa reference strain PAO1. pUM505 also increased the PAO1 virulence in a murine model and increased cytotoxicity of this strain toward HeLa cells. Thus, we generated a pUM505 gene library of 103 clones in the pUCP20 binary vector. The library was transferred to Escherichia coli TOP10 and P. aeruginosa PAO1 to identify genes. The lettuce-leaf model allowed us to identify three recombinant plasmids that increased the virulence of both E. coli and P. aeruginosa strains. These recombinant plasmids also increased the virulence of the PAO1 strain in mice and induced a cytotoxic effect in HeLa cells. Eleven genes were identified in the virulent transformants. Of these genes, only the pUM505 ORF 2 has homology with a gene previously implicated in virulence. These results indicate that pUM505 contains several genes that encode virulence factors, suggesting that the plasmid may contribute directly to bacterial virulence.

  2. Streptococcus pyogenes Malate Degradation Pathway Links pH Regulation and Virulence

    Science.gov (United States)

    Paluscio, Elyse

    2015-01-01

    The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI– mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP–, MaeK–, and MaeR– mutants were attenuated for virulence, whereas a MaeE– mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection. PMID:25583521

  3. A trans-acting leader RNA from a Salmonella virulence gene.

    Science.gov (United States)

    Choi, Eunna; Han, Yoontak; Cho, Yong-Joon; Nam, Daesil; Lee, Eun-Jin

    2017-09-19

    Bacteria use flagella to move toward nutrients, find its host, or retract from toxic substances. Because bacterial flagellum is one of the ligands that activate the host innate immune system, its synthesis should be tightly regulated during host infection, which is largely unknown. Here, we report that a bacterial leader mRNA from the mgtCBR virulence operon in the intracellular pathogen Salmonella enterica serovar Typhimurium binds to the fljB coding region of mRNAs in the fljBA operon encoding the FljB phase 2 flagellin, a main component of bacterial flagella and the FljA repressor for the FliC phase 1 flagellin, and degrades fljBA mRNAs in an RNase E-dependent fashion during infection. A nucleotide substitution of the fljB flagellin gene that prevents the mgtC leader RNA-mediated down-regulation increases the fljB-encoded flagellin synthesis, leading to a hypermotile phenotype inside macrophages. Moreover, the fljB nucleotide substitution renders Salmonella hypervirulent, indicating that FljB-based motility must be compromised in the phagosomal compartment where Salmonella resides. This suggests that this pathogen promotes pathogenicity by producing a virulence protein and limits locomotion by a trans-acting leader RNA from the same virulence gene during infection.

  4. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073.

    Science.gov (United States)

    Palaniyandi, Senthilkumar; Mitra, Arindam; Herren, Christopher D; Lockatell, C Virginia; Johnson, David E; Zhu, Xiaoping; Mukhopadhyay, Suman

    2012-01-01

    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.

  5. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073.

    Directory of Open Access Journals (Sweden)

    Senthilkumar Palaniyandi

    Full Text Available Uropathogenic Escherichia coli (UPEC, a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS, proinflammatory cytokines (TNF-α and IL-6 and chemokine (IL-8. The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.

  6. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR.

    Science.gov (United States)

    He, Ya-Wen; Boon, Calvin; Zhou, Lian; Zhang, Lian-Hui

    2009-03-01

    Xanthomonas campestris pv. campestris (Xcc) is known to regulate virulence through a quorum-sensing mechanism. Detection of the quorum-sensing signal DSF by sensor RpfC leads to activation of the response regulator RpfG, which influences virulence by degrading cyclic-di-GMP and by subsequent increasing expression of the global regulator Clp. In this study, we show that mutation of a response regulator RavR containing the GGDEF-EAL domains decreases Xcc virulence factor production. The functionality of RavR is dependent on its EAL domain-associated cyclic-di-GMP phosphodiesterase activity. Deletion of a multidomain sensor gene ravS, which shares the same operon with ravR, results in similar phenotype changes as the ravR mutant. In addition, the sensor mutant phenotypes can be rescued by in trans expression of the response regulator, supporting the notion that RavS and RavR constitute a two-component regulatory system. Significantly, mutation of either the PAS domain or key residues of RavS implicated in sensing low-oxygen tension abrogates the sensor activity in virulence regulation. Moreover, similar to the DSF signalling system, RavS/RavR regulates virulence gene expression through the global regulator Clp. These results outline a co-regulation mechanism that allows Xcc to integrate population density and environmental cues to modulate virulence factor production and adaptation.

  7. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2008-12-01

    Full Text Available Abstract Background In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. Results To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow" in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively; the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. Conclusion Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.

  8. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke

    2017-01-01

    of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression......The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator...

  9. Quorum sensing transcriptional regulator QseA is essential for the expression of multiple virulence regulons of enterohemorrhagic Escherichia coli O157:H7

    Science.gov (United States)

    Introduction and Objectives: QseA is one of several transcriptional regulators that regulates the virulence gene expression in enterohemorrhagic Escherichia coli (EHEC) O157:H7 through quorum sensing. QseA has been shown to regulate the expression of the locus of enterocyte effacement (LEE), non-LEE...

  10. Role of feedback and network architecture in controlling virulence gene expression in Bordetella.

    Science.gov (United States)

    Prajapat, Mahendra Kumar; Saini, Supreet

    2013-11-01

    Bordetella is a Gram-negative bacterium responsible for causing whooping cough in a broad range of host organisms. For successful infection, Bordetella controls expression of four distinct classes of genes (referred to as class 1, 2, 3, and 4 genes) at distinct times in the infection cycle. This control is executed by a single two-component system, BvgAS. Interestingly, the transmembrane component of the two-component system, BvgS, consists of three phospho-transfer domains leading to phosphorylation of the response regulator, BvgA. Phosphorylated BvgA then controls expression of virulence genes and also controls bvgAS transcription. In this work, we perform simulations to characterize the role of the network architecture in governing gene expression in Bordetella. Our results show that the wild-type network is locally optimal for controlling the timing of expression of the different classes of genes involved in infection. In addition, the interplay between environmental signals and positive feedback aids the bacterium identify precise conditions for and control expression of virulence genes.

  11. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription.

    Science.gov (United States)

    Morgan, Jason K; Ortiz, Jose A; Riordan, James T

    2014-12-01

    Loss of the periplasm spanning protein TolA in Escherichia coli leads to activation of the Rcs phosphorelay, and is required for full virulence in Gram-negative pathogens such as Salmonella enterica and Dickeya dadantii. This study explores the role for TolA in the pathogenesis of enterohemorrhagic E. coli (EHEC) and the effect of its mutation on the transcription of key EHEC virulence genes controlled by Rcs phosphorelay, including the type III secretion system (T3SS) (espA and tir), the E. coli common pilus (ecpA), and motility (fliC). Promoter activity for T3SS regulator ler was substantially higher following inactivation of tolA, and corresponded with a similar elevation in espA and tir transcription. Likewise, ecpA transcription was increased in EHECΔtolA. Conversely, and in-line with previous studies, inactivation of tolA resulted in complete loss of motility and decreased fliC transcription. For all genes examined, altered transcription observed for EHECΔtolA was dependent on the outer-membrane lipoprotein RcsF. Despite elevated virulence gene transcription, in tolA deleted strains virulence of EHEC in the Galleria mellonella wax worm model was substantially attenuated in a manner at least partly dependent on RcsF, and adherence to cultured HT-29 colonic epithelial cells was markedly reduced. The results of this study broaden the role for TolA in EHEC pathogenesis, and suggest that significant outer-membrane perturbations are able to promote transcription of important EHEC adherence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High and low-virulent bovine Pasteurella multocida capsular type A isolates exhibit different virulence gene expression patterns in vitro and in vivo.

    Science.gov (United States)

    Li, Nengzhang; Long, Qingshan; Du, Huihui; Zhang, Jixin; Pan, Tingting; Wu, Chenlu; Lei, Guihua; Peng, Yuanyi; Hardwidge, Philip R

    2016-11-30

    Pasteurella multocida capsular type A causes respiratory disease in cattle. P. multocida virulence gene expression patterns, especially among different virulent isolates, during in vitro and in vivo growth are poorly understood. Here we show that the highly virulent bovine P. multocida capsular type A isolate PmCQ2 exhibits a significantly higher growth rate in mice, as compared with a strain of lower virulence, P. multocida capsular type A isolate PmCQ6. Among the six known and potential virulence genes (ompA, ompH, pfhB2, hasR, pm0979, and pm0442) investigated, most genes were expressed more highly in both isolates when grown in vivo as compared with in vitro, with ompH and pm0442 having the highest magnitude of expression. Virulence gene expression was higher in PmCQ6 than in PmCQ2 during in vitro growth. However, in mice, most virulence genes were expressed more highly in PmCQ2 as compared with PmCQ6. Virulence gene expression was highest in the liver and lowest in the lung, but was uncorrelated to bacterial loads. This study indicates that individual pathogenic capacity of P. multocida isolates is associated with the virulence gene expression patterns in vivo growth but not in vitro, and the investigation of virulence gene expression in pathogen should be performed in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ

    Directory of Open Access Journals (Sweden)

    Zhiwei Lin

    2018-01-01

    Full Text Available The two-component signal transduction system PhoP/PhoQ is an important regulator for stress responses and virulence in most Gram-negative bacteria, but characterization of PhoP/PhoQ in Shigella has not been thoroughly investigated. In the present study, we found that deletion of phoPQ (ΔphoPQ from Shigella flexneri 2a 301 (Sf301 resulted in a significant decline (reduced by more than 15-fold in invasion of HeLa cells and Caco-2 cells, and less inflammation (− or + compared to Sf301 (+++ in the guinea pig Sereny test. In low Mg2+ (10 μM medium or pH 5 medium, the ΔphoPQ strain exhibited a growth deficiency compared to Sf301. The ΔphoPQ strain was more sensitive than Sf301 to polymyxin B, an important antimicrobial agent for treating multi-resistant Gram-negative infections. By comparing the transcriptional profiles of ΔphoPQ and Sf301 using DNA microarrays, 117 differentially expressed genes (DEGs were identified, which were involved in Mg2+ transport, lipopolysaccharide modification, acid resistance, bacterial virulence, respiratory, and energy metabolism. Based on the reported PhoP box motif [(T/G GTTTA-5nt-(T/G GTTTA], we screened 38 suspected PhoP target operons in S. flexneri, and 11 of them (phoPQ, mgtA, slyB, yoaE, yrbL, icsA, yhiWX, rstA, hdeAB, pagP, and shf–rfbU-virK-msbB2 were demonstrated to be PhoP-regulated genes based on electrophoretic mobility shift assays and β-galactosidase assays. One of these PhoP-regulated genes, icsA, is a well-known virulence factor in S. flexneri. In conclusion, our data suggest that the PhoP/PhoQ system modulates S. flexneri virulence (in an icsA-dependent manner and stress responses of Mg2+, pH and antibacterial peptides.

  14. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  15. A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    DEFF Research Database (Denmark)

    Nielsen, Alex Toftgaard; Dolganov, N. A.; Rasmussen, Thomas

    2010-01-01

    master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit...... controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted...

  16. Two-component system response regulators involved in virulence of Streptococcus pneumoniae TIGR4 in infective endocarditis.

    Directory of Open Access Journals (Sweden)

    My Trihn

    Full Text Available Streptococci resident in the oral cavity have been linked to infective endocarditis (IE. While other viridans streptococci are commonly studied in relation to IE, less research has been focused on Streptococcus pneumoniae. We established for the first time an animal model of S. pneumoniae IE, and examined the virulence of the TIGR4 strain in this model. We hypothesized that two-component systems (TCS may mediate S. pneumoniae TIGR4 strain virulence in IE and examined TCS response regulator (RR mutants of TIGR4 in vivo with the IE model. Thirteen of the 14 RR protein genes were mutagenized, excluding only the essential gene SP_1227. The requirement of the 13 RRs for S. pneumoniae competitiveness in the IE model was assessed in vivo through use of quantitative real-time PCR (qPCR and competitive index assays. Using real-time PCR, several RR mutants were detected at significantly lower levels in infected heart valves compared with a control strain suggesting the respective RRs are candidate virulence factors for IE. The virulence reduction of the ΔciaR mutant was further confirmed by competitive index assay. Our data suggest that CiaR is a virulence factor of S. pneumoniae strain TIGR4 for IE.

  17. [Research on the relevance between the virulent genes differential expression and pathogenecity of Leptospira with microarray].

    Science.gov (United States)

    Yu, De-li; Bao, Lang

    2015-01-01

    To find the change of virulent gene expression and to analyze the relevance between the virulent change and the gene expression. Grouped guinea pigs were inoculated with 1 mL Leptospira cultured in vivo, Leptospira cultured in vitro and the Leptospira culture medium through abdominal subcutaneous respectively. The survival rate, body mass and temperature change of guinea pigs in different groups were measured within 15 d after the inoculation, then the survived guinea pigs were scarified, and the organ coefficient was also measured to know the virulence of Leptospira cultured in different environment. The amplified gene segments from Leptospira were used as probes and wrote the microarray. The total RNA was extracted from Leptospira standard strain cultured in culture medium and guinea pigs. After reverse transcription to cDNA, they were labeled with Cy3 and Cy5 respectively. Labeled cDNA was mixed and hybridized with the microarray. The hybridized mircroarray was scanned and analysed. The survival rate of inoculated guinea pig was different from group to group (in vivo group: 0%; in vitro group: 88.9%; culture medium group: 100%). The guinea pigs in vivo group had a higher temperature (PLeptospira: LA1027, LA1029, LA4004, LA3050, LA3540, LA0327, LA0378, LA1650, LA3937, LA2089, LA2144, LA3576, LA0011 and gene of Loa22 were up regulation after continuously cultured in guinea pigs. The pathogenic ability of Leptospira cultured in different environment is different and the gene expression of Leptospira is different between in vivo and in vitro as well. The understanding of the meaning of this change might help to know the pathogenecity of Leptospira.

  18. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression.

    Science.gov (United States)

    Heckel, Brynn C; Tomlinson, Amelia D; Morton, Elise R; Choi, Jeong-Hyeon; Fuqua, Clay

    2014-09-01

    Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-11-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  20. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor.

    Science.gov (United States)

    Ramsey, Kathryn M; Dove, Simon L

    2016-08-01

    The orphan response regulator PmrA is essential for the intramacrophage growth and survival of Francisella tularensis. PmrA was thought to promote intramacrophage growth by binding directly to promoters on the Francisella Pathogenicity Island (FPI) and positively regulating the expression of FPI genes, which encode a Type VI secretion system required for intramacrophage growth. Using both ChIP-Seq and RNA-Seq we identify those regions of the F. tularensis chromosome occupied by PmrA and those genes that are regulated by PmrA. We find that PmrA associates with 252 distinct regions of the F. tularensis chromosome, but exerts regulatory effects at only a few of these locations. Rather than by functioning directly as an activator of FPI gene expression we present evidence that PmrA promotes intramacrophage growth by repressing the expression of a single target gene we refer to as priM (PmrA-repressed inhibitor of intramacrophage growth). Our findings thus indicate that the role of PmrA in facilitating intracellular growth is to repress a previously unknown anti-virulence factor. PriM is the first bacterially encoded factor to be described that can interfere with the intramacrophage growth and survival of F. tularensis. © 2016 John Wiley & Sons Ltd.

  1. Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308

    Science.gov (United States)

    Caswell, Clayton C.; Elhassanny, Ahmed E. M.; Planchin, Emilie E.; Roux, Christelle M.; Weeks-Gorospe, Jenni N.; Ficht, Thomas A.; Dunman, Paul M.

    2013-01-01

    The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants. PMID:23319565

  2. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.

    Directory of Open Access Journals (Sweden)

    Dawoon Chung

    2014-11-01

    Full Text Available The Aspergillus fumigatus sterol regulatory element binding protein (SREBP SrbA belongs to the basic Helix-Loop-Helix (bHLH family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA. How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.

  3. Main functions and taxonomic distribution of virulence genes in Brucella melitensis 16 M.

    Directory of Open Access Journals (Sweden)

    Aniel Jessica Leticia Brambila-Tapia

    Full Text Available Many virulence genes have been detected in attenuated mutants of Brucella melitensis 16 M; nevertheless, a complete report of these genes, including the main Cluster of Orthologous Groups (COG represented as well as the taxonomical distribution among all complete bacterial and archaeal genomes, has not been analyzed. In this work a total of 160 virulence genes that have been reported in attenuated mutants in B. melitensis were included and analyzed. Additionally, we obtained 250 B. melitensis randomly selected genes as a reference group for the taxonomical comparisons. The COGs and the taxonomical distribution profile for 789 nonredundant bacterial and archaeal genomes were obtained and compared with the whole-genome COG distribution and with the 250 randomly selected genes, respectively. The main COGs associated with virulence genes corresponded to the following: intracellular trafficking, secretion and vesicular transport (U; cell motility (N; nucleotide transport and metabolism (F; transcription (K; and cell wall/membrane/envelope biogenesis (M. In addition, we found that virulence genes presented a higher proportion of orthologs in the Euryarchaeota and Proteobacteria phyla, with a significant decrease in Chlamydiae, Bacteroidetes, Tenericutes, Firmicutes and Thermotogae. In conclusion, we found that genes related to specific functions are more relevant to B. melitensis virulence, with the COG U the most significant. Additionally, the taxonomical distribution of virulence genes highlights the importance of these genes in the related Proteobacteria, being less relevant in distant groups of organisms with the exception of Euryarchaeota.

  4. Effective genes for resistance to stripe rust and virulence of Puccinia ...

    African Journals Online (AJOL)

    Effective genes for resistance to stripe rust and virulence of Puccinia striiformis f. sp. tritici in Pakistan. H Bux, M Ashraf, X Chen, S Mumtaz. Abstract. Virulence patterns of wheat stripe rust were studied under the field conditions across four environmentally different locations: Quaid-i-Azam University (Islamabad), Pirsabak ...

  5. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Jorge Amich

    Full Text Available Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  6. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-04-01

    Full Text Available Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI, a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL, and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC. Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.

  7. Plant Growth-Promoting Genes can Switch to be Virulence Factors via Horizontal Gene Transfer.

    Science.gov (United States)

    Stritzler, Margarita; Soto, Gabriela; Ayub, Nicolás

    2018-02-23

    There are increasing evidences that horizontal gene transfer (HGT) is a critical mechanism of bacterial evolution, while its complete impact remains unclear. A main constraint of HGT effects on microbial evolution seems to be the conservation of the function of the horizontally transferred genes. From this perspective, inflexible nomenclature and functionality criteria have been established for some mobile genetic elements such as pathogenic and symbiotic islands. Adhesion is a universal prerequisite for both beneficial and pathogenic plant-microbe interactions, and thus, adhesion systems (e.g., the Lap cluster) are candidates to have a dual function depending on the genomic background. In this study, we showed that the virulent factor Lap of the phytopathogen Erwinia carotovora SCRI1043, which is located within a genomic island, was acquired by HGT and probably derived from Pseudomonas. The transformation of the phytopathogen Erwinia pyrifoliae Ep1/96 with the beneficial factor Lap from the plant growth-promoting bacterium Pseudomonas fluorescens Pf-5 significantly increased its natural virulence, experimentally recapitulating the beneficial-to-virulence functional switch of the Lap cluster via HGT. To our knowledge, this is the first report of a functional switch of an individual gene or a cluster of genes mediated by HGT.

  8. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Science.gov (United States)

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3-1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7) CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (10(4) CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.

  9. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  10. Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA.

    Directory of Open Access Journals (Sweden)

    Katharina Herbst

    2009-05-01

    Full Text Available Pathogens, which alternate between environmental reservoirs and a mammalian host, frequently use thermal sensing devices to adjust virulence gene expression. Here, we identify the Yersinia virulence regulator RovA as a protein thermometer. Thermal shifts encountered upon host entry lead to a reversible conformational change of the autoactivator, which reduces its DNA-binding functions and renders it more susceptible for proteolysis. Cooperative binding of RovA to its target promoters is significantly reduced at 37 degrees C, indicating that temperature control of rovA transcription is primarily based on the autoregulatory loop. Thermally induced reduction of DNA-binding is accompanied by an enhanced degradation of RovA, primarily by the Lon protease. This process is also subject to growth phase control. Studies with modified/chimeric RovA proteins indicate that amino acid residues in the vicinity of the central DNA-binding domain are important for proteolytic susceptibility. Our results establish RovA as an intrinsic temperature-sensing protein in which thermally induced conformational changes interfere with DNA-binding capacity, and secondarily render RovA susceptible to proteolytic degradation.

  11. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    2006-11-01

    Full Text Available Iron overload is known to exacerbate many infectious diseases, and conversely, iron withholding is an important defense strategy for mammalian hosts. Iron is a critical cue for Cryptococcus neoformans because the fungus senses iron to regulate elaboration of the polysaccharide capsule that is the major virulence factor during infection. Excess iron exacerbates experimental cryptococcosis and the prevalence of this disease in Sub-Saharan Africa has been associated with nutritional and genetic aspects of iron loading in the background of the HIV/AIDS epidemic. We demonstrate that the iron-responsive transcription factor Cir1 in Cr. neoformans controls the regulon of genes for iron acquisition such that cir1 mutants are "blind" to changes in external iron levels. Cir1 also controls the known major virulence factors of the pathogen including the capsule, the formation of the anti-oxidant melanin in the cell wall, and the ability to grow at host body temperature. Thus, the fungus is remarkably tuned to perceive iron as part of the disease process, as confirmed by the avirulence of the cir1 mutant; this characteristic of the pathogen may provide opportunities for antifungal treatment.

  12. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  13. Protocols for screening antimicrobial peptides that influence virulence gene expression in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Baldry, Mara; Ingmer, Hanne

    2017-01-01

    Compounds that inhibit virulence gene expression in bacterial pathogens have received increasing interest as possible alternatives to the traditional antibiotic treatment of infections. For the human pathogen Staphylococcus aureus, we have developed two simple assays based on reporter gene fusions...... is quantitative and can be employed to address whether a compound is acting on the central quorum sensing regulatory system, agr, that controls a large number of virulence genes in S. aureus....... to central virulence genes that are easily applicable for screening various sources of natural and synthetic peptides for anti-virulence effects. The plate assay is qualitative but simultaneously assesses the effect of gradient concentrations of the investigated compound, whereas the liquid assay...

  14. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    2014-01-01

    Full Text Available Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1 with characterized homologues in Aspergillus nidulans (NsdD and Neurospora crassa (SUB-1. By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS, and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66% are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX, suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress--even in the absence of light--and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by

  15. The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea

    Science.gov (United States)

    Schumacher, Julia; Simon, Adeline; Cohrs, Kim Christopher; Viaud, Muriel; Tudzynski, Paul

    2014-01-01

    Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light

  16. Differential Secretomics of Streptococcus pyogenes Reveals a Novel Peroxide Regulator (PerR)-regulated Extracellular Virulence Factor Mitogen Factor3 (MF3)*

    Science.gov (United States)

    Wen, Yao-Tseng; Tsou, Chih-Cheng; Kuo, Hsin-Tzu; Wang, Jie-Siou; Wu, Jiunn-Jong; Liao, Pao-Chi

    2011-01-01

    Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided

  17. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Karasartova, Djursun; Cavusoglu, Zeynep Burcin; Turegun, Buse; Ozsan, Murat T; Şahin, Fikret

    2016-12-01

    Bacteriophages play an important role in the pathogenicity of Staphylococcus aureus (S. aureus) either by carrying accessory virulence factors or several superantigens. Despite their importance, there are not many studies showing the actual distribution of the virulence genes carried by the prophages obtained from the clinically isolated Staphylococcus. In this study, we investigated prophages obtained from methicillin-resistant S. aureus (MRSA) strains isolated from hospital- and community-associated (HA-CA) infections for the virulence factors. In the study, 43 phages isolated from 48 MRSA were investigated for carrying toxin genes including the sak, eta, lukF-PV, sea, selp, sek, seg, seq chp, and scn virulence genes using polymerase chain reaction (PCR) and Southern blot. Restriction fragment length polymorphism was used to analyze phage genomes to investigate the relationship between the phage profiles and the toxin genes' presence. MRSA strains isolated from HA infections tended to have higher prophage presence than the MRSA strains obtained from the CA infections (97% and 67%, respectively). The study showed that all the phages with the exception of one phage contained one or more virulence genes in their genomes with different combinations. The most common toxin genes found were sea (83%) followed by sek (77%) and seq (64%). The study indicates that prophages encode a significant proportion of MRSA virulence factors.

  18. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans.

    Science.gov (United States)

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans.

  19. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Eun-Hee Kim

    2016-01-01

    Full Text Available Chamaecyparis obtusa (C. obtusa is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%, bornyl acetate (12.45%, α-pinene (11.38%, β-pinene (7.22%, β-phellandrene (3.45%, and α-terpinolene (3.40%. These results show that C. obtusa essential oil has anticariogenic effect on S. mutans.

  20. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages.

    Science.gov (United States)

    Mikheecheva, Natalya E; Zaychikova, Marina V; Melerzanov, Alexander V; Danilenko, Valery N

    2017-04-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin-antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    -free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  2. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes.

    Science.gov (United States)

    Ullah, Waheed; Qasim, Muhammad; Rahman, Hazir; Jie, Yan; Muhammad, Noor

    2017-03-01

    Pseudomonas aeruginosa causes common infections in immunocompromised and cystic fibrosis patients. However, drug resistance capability and release of virulence factors play a key role in bacterial pathogenicity. Beta-lactamase-producing clinical isolates of P. aeruginosa were screened for biofilm formation and pigment production. Subsequently, all the isolates were subjected to the detection of six virulence genes (OprI, OprL, LasB, PlcH, ExoS, and ToxA). Among beta-lactamase-producing isolates (n=54), about 85.18% (n=46) were biofilm producers. Pigment production was observed in 92.59% (n=50) isolates. Clinical samples were subsequently screened for detection of virulence factors. Among them, 40.74% (n=22) isolates were found to be OprI positive, while 29.62% (n=16) were OprL producers. In the case of LasB and PlcH, 24% (n=13) and 18.5% (n=10) isolates produced these virulence genes, respectively. Among the isolates, 37.03% (n=20) and 33.33% (n=18) expressed virulence factors ExoS and ToxA, respectively. Furthermore, 42.59% (n=23) isolates coproduced more than one type of virulence factors. In the current study, pigment display, biofilm formation, and virulence genes were detected in P. aeruginosa clinical isolates. Such factors could be crucial in the development of drug resistance. Copyright © 2016. Published by Elsevier Taiwan LLC.

  3. Role and regulation of the Flp/Tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193.

    Directory of Open Access Journals (Sweden)

    Johanna Nykyri

    Full Text Available In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.

  4. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus

    Directory of Open Access Journals (Sweden)

    Lifeng Zhou

    2016-09-01

    Full Text Available Bursaphelenchus mucronatus (B. mucronatus isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus’ pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.

  5. Structure-Based Identification of a Potent Inhibitor Targeting Stp1-Mediated Virulence Regulation in Staphylococcus aureus.

    Science.gov (United States)

    Zheng, Weihao; Cai, Xiaodan; Xie, Mingsheng; Liang, Yujie; Wang, Tao; Li, Zigang

    2016-08-18

    The increasing threats of antibiotic resistance urge the need for developing new strategies against bacterial infections. Targeting eukaryotic-like Ser/Thr phosphatase Stp1-mediated virulence regulation represents a promising approach for combating staphylococcal infection yet to be explored. Here, we report the 2.32-Å resolution crystal structure of Stp1. Stp1 binds an unexpected fourth metal ion, which is important for Stp1's enzymatic activity as demonstrated by amino acid substitution studies. Inspired by the structural details of Stp1, we identified a potent and selective Stp1 inhibitor, aurintricarboxylic acid (ATA). Transcriptome analysis and biochemical studies supported Stp1 as the target of ATA inhibition within the pathogen, preventing upregulation of virulence genes. Notably, ATA did not affect in vitro growth of Staphylococcus aureus, while simultaneously attenuating staphylococcal virulence in mice. Our findings demonstrate that ATA is a potent anti-virulence compound against staphylococcal infection, laying the foundation for further developing new scaffolds for Stp1-targeted small molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than...... characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response......-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive...

  7. Small Molecule Disruption of Quorum Sensing Cross-Regulation in Pseudomonas aeruginosa Causes Major and Unexpected Alterations to Virulence Phenotypes

    Science.gov (United States)

    Welsh, Michael A.; Eibergen, Nora R.; Moore, Joseph D.; Blackwell, Helen E.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits—Las, Rhl, and Pqs—to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen. PMID:25574853

  8. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    Science.gov (United States)

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  9. Bacterial human virulence genes across diverse habitats as assessed by In silico analysis of environmental metagenomes

    DEFF Research Database (Denmark)

    Søborg, Ditte Andreasen; Hendriksen, Niels B.; Kilian, Mogens

    2016-01-01

    and glacial ice. Homologs to 16 bacterial human virulence genes, involved in urinary tract infections, gastrointestinal diseases, skin diseases, and wound and systemic infections, showed global ubiquity. A principal component analysis did not demonstrate clear trends across the metagenomes with respect......The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role...... in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins....

  10. Bicarbonate Increases Binding Affinity of Vibrio cholerae ToxT to Virulence Gene Promoters

    Science.gov (United States)

    Thomson, Joshua J.

    2014-01-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. PMID:25182489

  11. Transcriptional upregulation of genes related to virulence activation in Entamoeba histolytica.

    Science.gov (United States)

    Balderas-Renteria, Isaias; García-Lázaro, J Francisco; Carranza-Rosales, Pilar; Morales-Ramos, Lilia H; Galan-Wong, Luis J; Muñoz-Espinosa, Linda E

    2007-05-01

    To understand the molecular basis of virulence variability in Entamoeba histolytica, this study presents results about differential gene expression induced by E. histolytica trophozoites in liver of hamsters in order to produce experimental amebic liver abscess (ALA) and consequently reactivate its virulence. Amebic cultures were studied before (BALA) and after (AALA) inoculation in hamster peritoneal cavity. Markers of pathogenicity such as the rate of erythrophagocytosis, hemolytic activity, and cytotoxic effects on MDCK cell monolayers were evaluated in order to correlate these phenotypic characteristics to differential gene expression between virulent and non-virulent strains. Genotypic variability was determined by genetic polymorphism using the random-amplified polymorphic DNA (RAPD) technique, which defines the parasite genomic plasticity. mRNA differential display was used in order to identify variable transcripts levels. The rate of erythrophagocytosis and hemolytic activity were notably increased in AALA in comparison with BALA E. histolytica cultures, as well as the cytotoxic effect on MDCK cells. An increment in the transcription level of several mRNA was shown. The RAPD technique allowed us to confirm differences in number and size of polymorphic markers bands between virulent and non-virulent stages, suggesting genomic adaptability in E. histolytica. Eight different genes (membrane-bound acid phosphatase, cysteine proteinase, two different ribosomal proteins, heat shock transcription factor, ribosomal RNA, aldehyde dehydrogenase-1 and patatin-like phospholipase) were sequenced and may be associated with a biological function related to the virulence of E. histolytica. Together these findings show genomic variability between virulent and non-virulent cultures of E. histolytica.

  12. Xanthomonas oryzae pv. oryzae requires H-NS-family protein XrvC to regulate virulence during rice infection.

    Science.gov (United States)

    Liu, Yongting; Long, Juying; Shen, Dan; Song, Congfeng

    2016-05-01

    Histone-like nucleoid-structuring (H-NS) proteins, which are conserved in Gram-negative bacteria, bind DNA and act as the global transcriptional repressors. In this study, we identified and characterized the xrvC gene encoding a H-NS protein in Xathomonas oryzae pv. oryzae (Xoo) Philippines strain PXO99(A) Compared with the wild type, the xrvC-deficient mutant of PXO99(A) (named PXO99ΔxrvC) showed a reduced growth rate in both nutrient-rich and nutrient-limited media. Interestingly, PXO99ΔxrvC exhibited significantly reduced virulence on rice cultivar IRBB214, but its virulence on 31 other rice cultivars was not affected. Transcriptional analysis revealed that the expression of hrpG, hrpX and hpa1 and of 15 out of 18 tested non-TAL (transcription activator-like) effector genes was decreased significantly in the xrvC mutant compared with that in the wild type. In addition, loss of xrvC also impaired the induction of the rice susceptibility gene Os8N3 in IRBB214 by PXO99(A) Our results suggest that the xrvC gene is involved in bacterial growth, and it plays a vital role in virulence by positively regulating the expression of hrp genes and non-TAL effector genes in PXO99(A) and the susceptibility gene Os8N3 in rice. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants.

    Science.gov (United States)

    Bao, Yun-Juan; Liang, Zhong; Mayfield, Jeffrey A; Lee, Shaun W; Ploplis, Victoria A; Castellino, Francis J

    2015-10-01

    The two-component control of virulence (Cov) regulator (R)-sensor (S) (CovRS) regulates the virulence of Streptococcus pyogenes (group A Streptococcus [GAS]). Inactivation of CovS during infection switches the pathogenicity of GAS to a more invasive form by regulating transcription of diverse virulence genes via CovR. However, the manner in which CovRS controls virulence through expression of extended gene families has not been fully determined. In the current study, the CovS-regulated gene expression profiles of a hypervirulent emm23 GAS strain (M23ND/CovS negative [M23ND/CovS(-)]) and a noninvasive isogenic strain (M23ND/CovS(+)), under different growth conditions, were investigated. RNA sequencing identified altered expression of ∼ 349 genes (18% of the chromosome). The data demonstrated that M23ND/CovS(-) achieved hypervirulence by allowing enhanced expression of genes responsible for antiphagocytosis (e.g., hasABC), by abrogating expression of toxin genes (e.g., speB), and by compromising gene products with dispensable functions (e.g., sfb1). Among these genes, several (e.g., parE and parC) were not previously reported to be regulated by CovRS. Furthermore, the study revealed that CovS also modulated the expression of a broad spectrum of metabolic genes that maximized nutrient utilization and energy metabolism during growth and dissemination, where the bacteria encounter large variations in available nutrients, thus restructuring metabolism of GAS for adaption to diverse growth environments. From constructing a genome-scale metabolic model, we identified 16 nonredundant metabolic gene modules that constitute unique nutrient sources. These genes were proposed to be essential for pathogen growth and are likely associated with GAS virulence. The genome-wide prediction of genes associated with virulence identifies new candidate genes that potentially contribute to GAS virulence. The CovRS system modulates transcription of ∼ 18% of the genes in the

  14. cis-Acting Elements That Control Expression of the Master Virulence Regulatory Gene atxA in Bacillus anthracis

    OpenAIRE

    Dale, Jennifer L.; Raynor, Malik J.; Dwivedi, Prabhat; Koehler, Theresa M.

    2012-01-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin a...

  15. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Directory of Open Access Journals (Sweden)

    Kellie Burnside

    2010-06-01

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  16. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Science.gov (United States)

    Burnside, Kellie; Lembo, Annalisa; de Los Reyes, Melissa; Iliuk, Anton; Binhtran, Nguyen-Thao; Connelly, James E; Lin, Wan-Jung; Schmidt, Byron Z; Richardson, Anthony R; Fang, Ferric C; Tao, Weiguo Andy; Rajagopal, Lakshmi

    2010-06-11

    Exotoxins, including the hemolysins known as the alpha (alpha) and beta (beta) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  17. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation.

    Directory of Open Access Journals (Sweden)

    Xiaoyue Yu

    Full Text Available Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo. The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae.

  18. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation.

    Science.gov (United States)

    Yu, Xiaoyue; Liang, Xiaoyu; Liu, Kexue; Dong, Wenxia; Wang, Jianxin; Zhou, Ming-Guo

    2015-01-01

    Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae.

  19. Profiling of virulence associated genes of Pasteurella multocida isolated from cattle.

    Science.gov (United States)

    Verma, Subhash; Sharma, Mandeep; Katoch, Shailja; Verma, Lovit; Kumar, Sandeep; Dogra, Vishal; Chahota, Rajesh; Dhar, Prasenjit; Singh, Geetanjali

    2013-03-01

    Pasteurella multocida is a causative agent of many major diseases of which haemorrhagic septiciemia (HS) in cattle & a buffalo is responsible for significant losses to livestock sector in India and south Asia. The disease outcome is affected by various host- and pathogen-specific determinants. Several bacterial species-specific putative virulence factors including the capsular and virulence associated genes have been proposed to play a key role in this interaction. A total of 23 isolates of P. multocida were obtained from 335 cases of various clinically healthy and diseased cattle. These isolates were examined for capsule synthesis genes (capA, B, D, E and F) and eleven virulence associated genes (tbpA, pfhA, toxA, hgbB, hgbA, nanH, nanB, sodA, sodC, oma87 and ptfA) by PCR. A total of 19 P. multocida isolates belonging to capsular type B and 4 of capsular type A were isolated. All isolates of capsular type B harboured the virulence associated genes: tbpA, pfhA, hgbA, sodC and nanH, coding for transferrin binding protein, filamentous hemagglutinin, haemoglobin binding protein, superoxide dismutase and neuraminidases, respectively; while isolates belonging to capsular type A also carried tbpA, pfhA, hgbA and nanH genes. Only 50 % of capsular type A isolates contained sodC gene while 100 % of capsular type B isolates had sodC gene. The gene nanB and toxA were absent in all the 23 isolates. In capsular type A isolates, either sodA or sodC gene was present & these genes did not occur concurrently. The presence of virulence associated gene ptfA revealed a positive association with the disease outcome in cattle and could therefore be an important epidemiological marker gene for characterizing P. multocida isolates.

  20. PSM-Mec - A Virulence Determinant that Connects TranscriptionalRegulation, Virulence, and Antibiotic Resistance in Staphylococci

    Directory of Open Access Journals (Sweden)

    Li Qin

    2016-08-01

    Full Text Available PSM-mec is a secreted virulence factor that belongs to the phenol-soluble modulin (PSM family of amphipathic, alpha-helical peptide toxins produced by Staphylococcus species. All known PSMs are core genome-encoded with the exception of PSM-mec, whose gene is found in specific sub-types of SCCmec methicillin resistance mobile genetic elements present in methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. In addition to the cytolytic translational product, PSM-mec, the psm-mec locus encodes a regulatory RNA. In S. aureus, the psm-mec locus influences cytolytic capacity, methicillin resistance, biofilm formation, cell spreading and the expression of other virulence factors, such as other PSMs, which results in a significant impact on immune evasion and disease. However, these effects are highly strain-dependent, which is possibly due to differences in PSM-mec peptide versus psm-mec RNA-controlled effects. Here, we summarize the functional properties of PSM-mec and the psm-mec RNA molecule and their roles in staphylococcal pathogenesis and physiology.

  1. AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Qian, Guoliang; Liu, Chunhui; Wu, Guichun; Yin, Fangqun; Zhao, Yancun; Zhou, Yijing; Zhang, Yanbing; Song, Zhiwei; Fan, Jiaqin; Hu, Baishi; Liu, Fengquan

    2013-02-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak in rice, which is a destructive disease worldwide. Xoc virulence factors are regulated by diffusible signal factor (DSF) and the global regulator Clp. In this study, we have demonstrated that asnB (XOC_3054), encoding an asparagine synthetase, is a novel virulence-related gene regulated by both DSF and Clp in Xoc. A sequence analysis revealed that AsnB is highly conserved in Xanthomonas. An asnB mutation in Xoc dramatically impaired pathogen virulence and growth rate in host rice, but did not affect the ability to trigger the hypersensitive response in nonhost (plant) tobacco. Compared with the wild-type strain, the asnB deletion mutant was unable to grow in basic MMX (-) medium (a minimal medium without ammonium sulphate as the nitrogen source) with or without 10 tested nitrogen sources, except asparagine. The disruption of asnB impaired pathogen resistance to oxidative stress and reduced the transcriptional expression of oxyR, katA and katG, which encode three important proteins responsible for hydrogen peroxide (H(2)O(2)) sensing and detoxification in Xanthomonas in the presence of H(2)O(2), and nine important known Xoc virulence-related genes in plant cell-mimicking medium. Furthermore, the asnB mutation did not affect extracellular protease activity, extracellular polysaccharide production, motility or chemotaxis. Taken together, our results demonstrate the role of asnB in Xanthomonas for the first time. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  2. Subinhibitory concentrations of antibiotics affect stress and virulence gene expression in Listeria monocytogenes and cause enhanced stress sensitivity but do not affect Caco‐2 cell invasion

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Holch, Anne; Gram, Lone

    2012-01-01

    with promoter fusions, 14 of 16 antibiotics induced or repressed expression of one or more stress and/or virulence genes. Despite ampicillin‐induced up‐regulation of PinlA‐lacZ expression, Caco‐2 cell invasion was not affected. Subinhibitory concentrations of ampicillin and tetracycline caused up‐ and down...

  3. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  4. The galE Gene of Campylobacter jejuni Is Involved in Lipopolysaccharide Synthesis and Virulence

    OpenAIRE

    Fry, Benjamin N.; Feng, Shi; Chen, Yuen-Yuen; Newell, Diane G.; Coloe, Peter J.; Korolik, Victoria

    2000-01-01

    Lipopolysaccharide (LPS) is one of the main virulence factors of gram-negative bacteria. The LPS from Campylobacter spp. has endotoxic properties and has been shown to play a role in adhesion. We previously cloned a gene cluster (wla) which is involved in the synthesis of the Campylobacter jejuni 81116 LPS molecule. Sequence alignment of the first gene in this cluster indicated similarity with galE genes. These genes encode a UDP-glucose 4-epimerase, which catalyzes the interconversion of UDP...

  5. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator

    Directory of Open Access Journals (Sweden)

    Zhao Cai

    2015-11-01

    Full Text Available The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa. P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  6. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    Science.gov (United States)

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  7. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    Directory of Open Access Journals (Sweden)

    Yasufumi Hikichi

    2011-12-01

    Full Text Available Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat is located between hrpL and an aldehyde dehydrogenase gene (aldH in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH and a pat-deleted mutant (Δpat lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species.

  8. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Mara Baldry

    Full Text Available Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation.

  9. Virulence of Klebsiella pneumoniae isolates harboring bla KPC-2 carbapenemase gene in a Caenorhabditis elegans model.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lavigne

    Full Text Available Klebsiella pneumoniae carbapenemase (KPC is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla KPC-2 gene into reference strains K. pneumoniae ATCC10031/CIP53153; and (iii five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days than K. pneumoniae reference strain (LT50: 4.3 days (p<0.01. However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01. The increased virulence observed in cured strains confirmed this trend. The bla KPC-2 gene itself was not associated to increased virulence.

  10. Use of Metarhizium anisopliae Chitinase Genes for Genotyping and Virulence Characterization

    Directory of Open Access Journals (Sweden)

    Saliou Niassy

    2013-01-01

    Full Text Available Virulence is the primary factor used for selection of entomopathogenic fungi (EPF for development as biopesticides. To understand the genetic mechanisms underlying differences in virulence of fungal isolates on various arthropod pests, we compared the chitinase genes, chi2 and chi4, of 8 isolates of Metarhizium anisopliae. The clustering of the isolates showed various groups depending on their virulence. However, the analysis of their chitinase DNA sequences chi2 and chi4 did not reveal major divergences. Although their protein translates have been implicated in fungal virulence, the predicted protein structure of chi2 was identical for all isolates. Despite the critical role of chitin digestion in fungal infection, we conclude that chi2 and chi4 genes cannot serve as molecular markers to characterize observed variations in virulence among M. anisopliae isolates as previously suggested. Nevertheless, processes controlling the efficient upregulation of chitinase expression might be responsible for different virulence characteristics. Further studies using comparative “in vitro” chitin digestion techniques would be more appropriate to compare the quality and the quantity of chitinase production between fungal isolates.

  11. LaeA regulation of secondary metabolism modulates virulence in Penicillium expansum and is mediated by sucrose.

    Science.gov (United States)

    Kumar, Dilip; Barad, Shiri; Chen, Yong; Luo, Xingyu; Tannous, Joanna; Dubey, Amit; Glam Matana, Nofar; Tian, Shiping; Li, Boqiang; Keller, Nancy; Prusky, Dov

    2017-10-01

    Penicillium expansum, the causal agent of blue mould rot, is a critical health concern because of the production of the mycotoxin patulin in colonized apple fruit tissue. Although patulin is produced by many Penicillium species, the factor(s) activating its biosynthesis are not clear. Sucrose, a key sugar component of apple fruit, was found to modulate patulin accumulation in a dose-responsive pattern. An increase in sucrose culture amendment from 15 to 175 mm decreased both patulin accumulation and expression of the global regulator laeA by 175- and five-fold, respectively, whilst increasing expression of the carbon catabolite repressor creA. LaeA was found to regulate several secondary metabolite genes, including the patulin gene cluster and concomitant patulin synthesis in vitro. Virulence studies of ΔlaeA mutants of two geographically distant P. expansum isolates (Pe-21 from Israel and Pe-T01 from China) showed differential reduction in disease severity in freshly harvested fruit, ranging from no reduction for Ch-Pe-T01 strains to 15%-25% reduction for both strains in mature fruit, with the ΔlaeA strains of Is-Pe-21 always showing a greater loss in virulence. The results suggest the importance of abiotic factors in LaeA regulation of patulin and other secondary metabolites that contribute to pathogenicity. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. DETECTION OF VIRULENCE GENES IN ENVIRONMENTAL STRAINS OF Vibrio cholerae FROM ESTUARIES IN NORTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Francisca Gleire Rodrigues de Menezes

    2014-09-01

    Full Text Available The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS, and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes.

  13. Detection of virulence genes in environmental strains of Vibrio cholerae from estuaries in northeastern Brazil.

    Science.gov (United States)

    Menezes, Francisca Gleire Rodrigues de; Neves, Soraya da Silva; Sousa, Oscarina Viana de; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes.

  14. DETECTION OF VIRULENCE GENES IN ENVIRONMENTAL STRAINS OF Vibrio cholerae FROM ESTUARIES IN NORTHEASTERN BRAZIL

    Science.gov (United States)

    de Menezes, Francisca Gleire Rodrigues; Neves, Soraya da Silva; de Sousa, Oscarina Viana; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes. PMID:25229224

  15. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression.

    Science.gov (United States)

    Mouslim, Chakib; Hughes, Kelly T

    2014-03-01

    The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.

  16. Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi.

    Science.gov (United States)

    Yang, X; Goldberg, M S; Popova, T G; Schoeler, G B; Wikel, S K; Hagman, K E; Norgard, M V

    2000-09-01

    The paradigm for differential antigen expression in Borrelia burgdorferi, the agent of Lyme disease, is the reciprocal expression of its outer surface (lipo)proteins (Osp) A and C; as B. burgdorferi transitions from its arthropod vector into mammalian tissue, ospC is upregulated, and ospA is downregulated. In the current study, using B. burgdorferi cultivated under varying conditions in BSK-H medium, we found that a decrease in pH, in conjunction with increases in temperature (e.g. 34 degrees C or 37 degrees C) and cell density, acted interdependently for the reciprocal expression of ospC and ospA. The lower pH (6.8), which induced the reciprocal expression of ospC and ospA in BSK-H medium, correlated with a drop in pH from 7.4 to 6.8 of tick midgut contents during tick feeding. In addition to ospC and ospA, other genes were found to be regulated in reciprocal fashion. Such genes were either ospC-like (e.g. ospF, mlp-8 and rpoS) (group I) or ospA-like (lp6.6 and p22) (group II); changes in expression occurred at the mRNA level. That the expression of rpoS, encoding a putative stress-related alternative sigma factor (sigma(s)), was ospC-like suggested that the expression of some of the group I genes may be controlled through sigma(s). The combined results prompt a model that allows for predicting the regulation of other B. burgdorferi genes that may be involved in spirochaete transmission, virulence or mammalian host immune responses.

  17. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes

    Directory of Open Access Journals (Sweden)

    Suat Moi Puah

    2016-02-01

    Full Text Available Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52 of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5% and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.

  18. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine

    OpenAIRE

    Furian, Thales Quedi; Borges,Karen Apellanis; Laviniki,Vanessa; da Silveira Rocha, Silvio Luis; Almeida,Camila Neves de; do Nascimento, Vladimir Pinheiro; Salle, Carlos Tadeu Pippi; de Souza Moraes, Hamilton Luiz

    2016-01-01

    Abstract Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC,...

  19. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Morcatti Coura

    2018-02-01

    Full Text Available ABSTRACT: This study identified the virulence genes, pathovars, and phylogenetic groups of Escherichia coli strains obtained from the feces of dogs with and without diarrhea. Virulence genes and phylogenetic group identification were studied using polymerase chain reaction. Thirty-seven E. coli isolates were positive for at least one virulence factor gene. Twenty-one (57.8% of the positive isolates were isolated from diarrheal feces and sixteen (43.2% were from the feces of non-diarrheic dogs. Enteropathogenic E. coli (EPEC were the most frequently (62.2% detected pathovar in dog feces and were mainly from phylogroup B1 and E. Necrotoxigenic E. coli were detected in 16.2% of the virulence-positive isolates and these contained the cytotoxic necrotizing factor 1 (cnf1 gene and were classified into phylogroups B2 and D. All E. coli strains were negative for the presence of enterotoxigenic E. coli (ETEC enterotoxin genes, but four strains were positive for ETEC-related fimbriae 987P and F18. Two isolates were Shiga toxin-producing E. coli strains and contained the toxin genesStx2 or Stx2e, both from phylogroup B1. Our data showed that EPEC was the most frequent pathovar and B1 and E were the most common phylogroups detected in E. coli isolated from the feces of diarrheic and non-diarrheic dogs.

  20. Detection of virulence genes in Uropathogenic E. coli (UPEC strains by Multiplex-PCR method

    Directory of Open Access Journals (Sweden)

    Javad Mohammadi

    2017-06-01

    Full Text Available Background & Objectives: Urinary tract infection caused by E. coli is one of the most common illnesses in all age groups worldwide. Presence of virulence genes is a key factor in bacterial pathogens in uroepithelial cells. The present study was performed to detect iha, iroN, ompT genes in the Uropathogenic E.coli isolates from clinical samples using multiplex-PCR method in Kerman. Materials & Methods: In this descriptive cross-sectional study, 200 samples of patients with urinary tract infections in Kerman hospitals were collected. After biochemical and microbiological tests, all strains were tested with regard to the presence of iha, iroN, and ompT genes using multiplex-PCR method. Results: The results of Multiplex-PCR showed that all specimens had one, two, or three virulence genes simultaneously. The highest and lowest frequency distribution of genes was related to iha (56.7% and iroN (20% respectively. Conclusion: According to the prevalence of urinary tract infection in the community and distribution of resistance and virulence factors, the fast and accurate detection of the strains and virulence genes is necessary

  1. Fis Is Essential for Capsule Production in Pasteurella multocida and Regulates Expression of Other Important Virulence Factors

    Science.gov (United States)

    Steen, Jason A.; Steen, Jennifer A.; Harrison, Paul; Seemann, Torsten; Wilkie, Ian; Harper, Marina; Adler, Ben; Boyce, John D.

    2010-01-01

    P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors. PMID:20140235

  2. Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors.

    Directory of Open Access Journals (Sweden)

    Jason A Steen

    2010-02-01

    Full Text Available P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.

  3. Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors.

    Science.gov (United States)

    Steen, Jason A; Steen, Jennifer A; Harrison, Paul; Seemann, Torsten; Wilkie, Ian; Harper, Marina; Adler, Ben; Boyce, John D

    2010-02-05

    P. multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.

  4. Identification of the crp gene in avian Pasteurella multocida and evaluation of the effects of crp deletion on its phenotype, virulence and immunogenicity.

    Science.gov (United States)

    Zhao, Xinxin; Liu, Qing; Xiao, Kangpeng; Hu, Yunlong; Liu, Xueyan; Li, Yanyan; Kong, Qingke

    2016-06-24

    Pasteurella multocida (P. multocida) is an important veterinary pathogen that can cause severe diseases in a wide range of mammals and birds. The global regulator crp gene has been found to regulate the virulence of some bacteria, and crp mutants have been demonstrated to be effective attenuated vaccines against Salmonella enterica and Yersinia enterocolitica. Here, we first characterized the crp gene in P. multocida, and we report the effects of a crp deletion. The P. multocida crp mutant exhibited a similar lipopolysaccharide and outer membrane protein profile but displayed defective growth and serum complement resistance in vitro compared with the parent strain. Furthermore, crp deletion decreased virulence but did not result in full attenuation. The 50 % lethal dose (LD50) of the Δcrp mutant was 85-fold higher than that of the parent strain for intranasal infection. Transcriptome sequencing analysis showed that 92 genes were up-regulated and 94 genes were down-regulated in the absence of the crp gene. Finally, we found that intranasal immunization with the Δcrp mutant triggered both systematic and mucosal antibody responses and conferred 60 % protection against virulent P. multocida challenge in ducks. The deletion of the crp gene has an inhibitory effect on bacterial growth and bacterial resistance to serum complement in vitro. The P. multocida crp mutant was attenuated and conferred moderate protection in ducks. This work affords a platform for analyzing the function of crp and aiding the formulation of a novel vaccine against P. multocida.

  5. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Directory of Open Access Journals (Sweden)

    Xiaojian Yang

    Full Text Available BACKGROUND: Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0 and high bile salt (0.3-1.5% and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7 CFU/chick or phosphate-buffered saline (PBS at 1 day of age followed by Salmonella challenge (10(4 CFU/chick next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1. These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10 in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. CONCLUSIONS/SIGNIFICANCE: The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in

  6. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation

    Science.gov (United States)

    Fàbrega, Anna

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success. PMID:23554419

  7. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L. by highly virulent and weakly virulent strains of Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Jonathan eNiño-Sánchez

    2015-04-01

    Full Text Available The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two F. oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was cuantitatively similar although the highly virulent strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the highly virulent strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The weakly virulent strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the highly virulent strain preferentially induced the early expression of the ethylene responsive factor ERF2.

  8. PrhN, a putative marR family transcriptional regulator, is involved in positive regulation of type III secretion system and full virulence of Ralstonia solanacearum.

    Science.gov (United States)

    Zhang, Yong; Luo, Feng; Wu, Dousheng; Hikichi, Yasufumi; Kiba, Akinori; Igarashi, Yasuo; Ding, Wei; Ohnishi, Kouhei

    2015-01-01

    The MarR-family of transcriptional regulators are involved in various cellular processes, including resistance to multiple antibiotics and other toxic chemicals, adaptation to different environments and pathogenesis in many plant and animal pathogens. Here, we reported a new MarR regulator PrhN, which was involved in the pathogenesis of Ralstonia solanacearum. prhN mutant exhibited significantly reduced virulence and stem colonization compared to that of wild type in tomato plants. prhN mutant caused identical hypersensitive response (HR) on resistant plants to the wild type. Deletion of prhN gene substantially reduced the expression of type III secretion system (T3SS) in vitro and in planta (mainly in tomato plants), which is essential for pathogenicity of R. solanacearum, and the complemented PrhN could restore its virulence and T3SS expression to that of wild type. T3SS is directly controlled by AraC-type transcriptional regulator HrpB, and the transcription of hrpB is activated by HrpG and PrhG. HrpG and PrhG are homologs but are regulated by the PhcA positively and negatively, respectively. Deletion of prhN gene also abolished the expression of hrpB and prhG, but didn't change the expression of hrpG and phcA. Together, these results indicated that PrhN positively regulates T3SS expression through PrhG and HrpB. PrhN and PhcA should regulate prhG expression in a parallel way. This is the first report on the pathogenesis of MarR regulator in R. solanacearum, and this new finding will improve our understanding on the various biological functions of MarR regulator and the complex regulatory network on hrp regulon in R. solanacearum.

  9. PrhN, a putative marR family transcriptional regulator, is involved in positive regulation of type III secretion system and full virulence of Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Zhang eYong

    2015-04-01

    Full Text Available The MarR-family of transcriptional regulators are involved in various cellular processes, including resistance to multiple antibiotics and other toxic chemicals, adaptation to different environments and pathogenesis in many plant and animal pathogens. Here, we reported a new MarR regulator PrhN, which was involved in the pathogenesis of Ralstonia solanacearum. prhN mutant exhibited significantly reduced virulence and stem colonization compared to that of wild type in tomato plants. prhN mutant caused identical hypersensitive response (HR on resistant plants to the wild type. Deletion of prhN gene substantially reduced the expression of type III secretion system (T3SS in vitro and in planta (mainly in tomato plants, which is essential for pathogenicity of R. solanacearum, and the complemented PrhN could restore its virulence and T3SS expression to that of wild type. T3SS is directly controlled by AraC-type transcriptional regulator HrpB, and the transcription of hrpB is activated by HrpG and PrhG. HrpG and PrhG are homologues but are regulated by the PhcA positively and negatively respectively. Deletion of prhN gene also abolished the expression of hrpB and prhG, but didn't change the expression of hrpG and phcA. Together, these results indicated that PrhN positively regulates T3SS expression through PrhG and HrpB. PrhN and PhcA should regulate prhG expression in a parallel way. This is the first report on the pathogenesis of MarR regulator in R. solanacearum, and this new finding will improve our understanding on the various biological functions of MarR regulator and the complex regulatory network on hrp regulon in R. solanacearum.

  10. Detection of influent virulence and resistance genes in microarray data through quasi likelihood modeling.

    Science.gov (United States)

    Romeo, José S; Torres-Avilés, Francisco; López-Kleine, Liliana

    2013-02-01

    Publicly available genomic data are a great source of biological knowledge that can be extracted when appropriate data analysis is used. Predicting the biological function of genes is of interest to understand molecular mechanisms of virulence and resistance in pathogens and hosts and is important for drug discovery and disease control. This is commonly done by searching for similar gene expression behavior. Here, we used publicly available Streptococcus pyogenes microarray data obtained during primate infection to identify genes that have a potential influence on virulence and Phytophtora infestance inoculated tomato microarray data to identify genes potentially implicated in resistance processes. This approach goes beyond co-expression analysis. We employed a quasi-likelihood model separated by primate gender/inoculation condition to model median gene expression of known virulence/resistance factors. Based on this model, an influence analysis considering time course measurement was performed to detect genes with atypical expression. This procedure allowed for the detection of genes potentially implicated in the infection process. Finally, we discuss the biological meaning of these results, showing that influence analysis is an efficient and useful alternative for functional gene prediction.

  11. Virulence genes in bla(CTX-M) Escherichia coli isolates from chickens and humans.

    Science.gov (United States)

    Randall, Luke; Wu, Guanghui; Phillips, Neil; Coldham, Nick; Mevius, Dik; Teale, Chris

    2012-08-01

    The aim of this study was to determine the presence of virulence genes in isolates of CTX-M Escherichia coli from diseased chickens, from healthy chickens and from urinary tract infections in people. Three CTX-M E. coli strains from three different instances of disease in poultry (two of which were E. coli related) were tested for bla(CTX-M) sequence type and replicon type. Additionally, they were tested for the presence of 56 virulence genes (encoding fimbriae, adhesins, toxins, microcins and iron acquisition genes) using a micro-array. Results were compared to the virulence genes present in isolates from 26 healthy chickens and from 10 people with urinary tract infections. All genes found in isolates from diseased birds, including the astA (heat stable toxin) and tsh (temperature sensitive haemagglutinin) genes which have previously been associated with colibacillosis in chickens, were also present in isolates from healthy birds. However, 6/10 of the virulence genes found were exclusive to isolates from humans. Genes exclusive to chicken isolates included ireA (sidephore receptor), lpfA (long polar fimbriae), mchF (microcin transporter protein) and tsh whilst genes exclusive to human isolates included ctdB (cytolethal distending toxin), nfaE (non-fimbrial adhesion), senB (plasmid encoded enterotoxin) and toxB (toxin B). The results support previous findings that CTX-M E. coli strains in chickens are generally different from those causing disease in humans, but genes such as astA and tsh in isolates from diseased birds with colisepticaemia were also present in isolates from healthy birds. Crown Copyright © 2011. Published by Elsevier India Pvt Ltd. All rights reserved.

  12. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2012-11-01

    Full Text Available Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp. influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract was a Vibrio nigripulchritudo. Extraction, purification and structural elucidation revealed a novel siderophore, designated nigribactin, which induces spa transcription. The effect of nigribactin on spa expression is likely to be independent from its siderophore activity, as another potent siderophore, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens.

  13. Virulence Genes Profile of Multidrug Resistant Pseudomonas aeruginosa Isolated from Iranian Children with UTIs

    Directory of Open Access Journals (Sweden)

    Zohreh Heidary

    2016-04-01

    Full Text Available Virulent and resistant strains Pseudomonas aeruginosa (P. aeruginosa is one of the most important cause of UTIs in pediatrics. The present study was carried to investigate the frequency of virulence factors in the multi-drug resistant strains of P. aeruginosa isolated from pediatrics hospitalized due to the UTIs. One - hundred and forty three urine samples were collected from pediatric patients suffered from UTIs. Samples were cultured and those that were P. aeruginosa positive were analyzed for the presence of putative virulence genes. Seventy one out of 143 samples (49.65% were positive for P. aeruginosa. Monthly, sex and age-dependent prevalence were seen for P. aeruginosa. Bacterial strains had the highest levels of resistance against ampicillin (95.77%, gentamicin (92.95% and ciprofloxacin (81.69%. Of 71 P. aeruginosa isolates, 12 strains were resistant to more than 9 antibiotics (16.90%. The most commonly detected virulence factors in the cases of urethral infections were exoU and plcH while those of pyelonephritis and cystitis were were exoS and lasB. Our findings should raise awareness about antibiotic resistance in hospitalized pediatrics with UTIs in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of UTIs. Such information can help in identifying these virulence genes as useful diagnostic markers for clinical P. aeruginosa strains isolated from UTIs.

  14. RsbV of Listeria monocytogenes contributes to regulation of environmental stress and virulence.

    Science.gov (United States)

    Zhang, Zaichao; Meng, Qingling; Qiao, Jun; Yang, Lihong; Cai, Xuepeng; Wang, Guanglei; Chen, Chuangfu; Zhang, Lijuan

    2013-02-01

    SigmaB factor is an important regulatory factor for stress response in Gram-positive bacteria such as Listeria monocytogenes (L. monocytogenes), Staphylococcus aureus and Bacillus subtilis. However, the activity of SigmaB factor is regulated by RsbV factor. Currently, the functional studies of RsbV factor are mostly focused on non-pathogenic B. subtilis, but the roles of RsbV factor in pathogenic L. monocytogenes during the regulation of environmental stress and virulence are still unclear. In the study, a ∆RsbV mutant of L. monocytogenes was constructed to explore the regulatory role of RsbV in environmental stress and virulence. The environmental stress experiments indicated that the growth and survival capability of ∆RsbV mutant obviously decreased in stress of low temperature, osmotic pressure, alcohol and acid, compared with EGD strain. The macrophage infection experiment indicated that ∆RsbV mutant had weaker survival capability than EGD strain, and the expression of PrfA, actA, PlcA and LLO was down-regulated in infected cells. Animal inoculation experiments indicated that RsbV deletion significantly reduced the pathogenicity of L. monocytogenes. Our data demonstrate that, in addition to regulating tolerance under environmental stress conditions, RsbV also contributes to regulation of L. monocytogenes virulence.

  15. Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network.

    Science.gov (United States)

    Ciuraszkiewicz, J; Smiga, M; Mackiewicz, P; Gmiterek, A; Bielecki, M; Olczak, M; Olczak, T

    2014-12-01

    Porphyromonas gingivalis is a key pathogen responsible for initiation and progression of chronic periodontitis. Little is known about the regulatory mechanisms of iron and heme uptake that allow P. gingivalis to express virulence factors and survive in the hostile environment of the oral cavity, so we initiated characterization of a P. gingivalis Fur homolog (PgFur). Many Fur paralogs found in microbial genomes, including Bacteroidetes, confirm that Fur proteins have a tendency to be subjected to a sub- or even neofunctionalization process. PgFur revealed extremely high sequence divergence, which could be associated with its functional dissimilarity in comparison with other Fur homologs. A fur mutant strain constructed by insertional inactivation exhibited retarded growth during the early growth phase and a significantly lower tendency to form a homotypic biofilm on abiotic surfaces. The mutant also showed significantly weaker adherence and invasion to epithelial cells and macrophages. Transcripts of many differentially regulated genes identified in the fur mutant strain were annotated as hypothetical proteins, suggesting that PgFur can play a novel role in the regulation of gene expression. Inactivation of the fur gene resulted in decreased hmuY gene expression, increased expression of other hmu components and changes in the expression of genes encoding hemagglutinins and proteases (mainly gingipains), HtrA, some extracytoplasmic sigma factors and two-component systems. Our data suggest that PgFur can influence in vivo growth and virulence, at least in part by affecting iron/heme acquisition, allowing efficient infection through a complex regulatory network. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation.

    Science.gov (United States)

    Rossi Gonçalves, Iara; Dantas, Raquel Cristina Cavalcanti; Ferreira, Melina Lorraine; Batistão, Deivid William da Fonseca; Gontijo-Filho, Paulo Pinto; Ribas, Rosineide Marques

    Pseudomonas aeruginosa is an opportunistic pathogen that causes frequently nosocomial infections, currently becoming more difficult to treat due to the various resistance mechanisms and different virulence factors. The purpose of this study was to determine the risk factors independently associated with the development of bacteremia by carbapenem-resistant P. aeruginosa, the frequency of virulence genes in metallo-β-lactamases producers and to evaluate their ability to produce biofilm. We conducted a case-control study in the Uberlândia Federal University - Hospital Clinic, Brazil. Polymerase Chain Reaction was performed for metallo-β-lactamases and virulence genes. Adhesion and biofilm assays were done by quantitative tests. Among the 157 strains analyzed, 73.9% were multidrug-resistant, 43.9% were resistant to carbapenems, 16.1% were phenotypically positive for metallo-β-lactamases, and of these, 10.7% were positive for blaSPM gene and 5.3% positive for blaVIM. The multivariable analysis showed that mechanical ventilation, enteral/nasogastric tubes, primary bacteremia with unknown focus, and inappropriate therapy were independent risk factors associated with bacteremia. All tested strains were characterized as strongly biofilm producers. A higher mortality was found among patients with bacteremia by carbapenem-resistant P. aeruginosa strains, associated independently with extrinsic risk factors, however it was not evident the association with the presence of virulence and metallo-β-lactamases genes. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation

    Directory of Open Access Journals (Sweden)

    Iara Rossi Gonçalves

    Full Text Available Abstract Pseudomonas aeruginosa is an opportunistic pathogen that causes frequently nosocomial infections, currently becoming more difficult to treat due to the various resistance mechanisms and different virulence factors. The purpose of this study was to determine the risk factors independently associated with the development of bacteremia by carbapenem-resistant P. aeruginosa, the frequency of virulence genes in metallo-β-lactamases producers and to evaluate their ability to produce biofilm. We conducted a case–control study in the Uberlândia Federal University – Hospital Clinic, Brazil. Polymerase Chain Reaction was performed for metallo-β-lactamases and virulence genes. Adhesion and biofilm assays were done by quantitative tests. Among the 157 strains analyzed, 73.9% were multidrug-resistant, 43.9% were resistant to carbapenems, 16.1% were phenotypically positive for metallo-β-lactamases, and of these, 10.7% were positive for blaSPM gene and 5.3% positive for blaVIM. The multivariable analysis showed that mechanical ventilation, enteral/nasogastric tubes, primary bacteremia with unknown focus, and inappropriate therapy were independent risk factors associated with bacteremia. All tested strains were characterized as strongly biofilm producers. A higher mortality was found among patients with bacteremia by carbapenem-resistant P. aeruginosa strains, associated independently with extrinsic risk factors, however it was not evident the association with the presence of virulence and metallo-β-lactamases genes.

  18. Serogroups and virulence genes of Escherichia coli isolated from psittacine birds

    Directory of Open Access Journals (Sweden)

    Terezinha Knöbl

    2011-10-01

    Full Text Available Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae, enteropathogenic E. coli EAF plasmid (EAF, pili associated with pyelonephritis (pap, S fimbriae (sfa, afimbrial adhesin (afa, capsule K1 (neu, curli (crl, csgA, temperature-sensitive hemagglutinin (tsh, enteroaggregative heat-stable enterotoxin-1 (astA, heat-stable enterotoxin -1 heat labile (LT and heat stable (STa and STb enterotoxins, Shiga-like toxins (stx1 and stx2, cytotoxic necrotizing factor 1 (cnf1, haemolysin (hly, aerobactin production (iuc and serum resistance (iss. The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC, uropathogenic E. coli (UPEC and Enteropathogenic E. coli (EPEC pathotypes.

  19. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis.

    Science.gov (United States)

    Rodríguez-Kessler, Margarita; Baeza-Montañez, Lourdes; García-Pedrajas, María D; Tapia-Moreno, Alejandro; Gold, Scott; Jiménez-Bremont, Juan F; Ruiz-Herrera, José

    2012-05-20

    Ustilago maydis displays dimorphic growth, alternating between a saprophytic haploid yeast form and a filamentous dikaryon, generated by mating of haploid cells and which is an obligate parasite. Induction of the dimorphic transition of haploid strains in vitro by change in ambient pH has been used to understand the mechanisms governing this differentiation process. In this study we used suppression subtractive hybridization to generate a cDNA library of U. maydis genes up-regulated in the filamentous form induced in vitro at acid pH. Expression analysis using quantitative RT-PCR showed that the induction of two unigenes identified in this library coincided with the establishment of filamentous growth in the acid pH medium. This expression pattern suggested that they were specifically associated to hyphal development rather than merely acid pH-induced genes. One of these genes, UmRrm75, encodes a protein containing three RNA recognition motifs and glycine-rich repeats and was selected for further study. The UmRrm75 gene contains 4 introns, and produces a splicing variant by a 3'-alternative splicing site within the third exon. Mutants deleted for UmRrm75 showed a slower growth rate than wild type strains in liquid and solid media, and their colonies showed a donut-like morphology on solid medium. Interestingly, although ΔUmRrm75 strains were not affected in filamentous growth induced by acid pH and oleic acid, they exhibited reduced mating, post-mating filamentous growth and virulence. Our data suggest that UmRrm75 is probably involved in cell growth, morphogenesis, and pathogenicity in U. maydis. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Combinatorial Gene Regulation Using Auto-Regulation

    Science.gov (United States)

    Hermsen, Rutger; Ursem, Bas; ten Wolde, Pieter Rein

    2010-01-01

    As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the expression of the auto-regulator responds to changes in the concentrations of the “input” regulators (the response function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations, auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response function only. PMID:20548950

  1. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  2. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  3. Trypanosoma cruzi: attenuation of virulence and protective immunogenicity after monoallelic disruption of the cub gene.

    Science.gov (United States)

    Barrio, Alejandra B; Van Voorhis, Wesley C; Basombrío, Miguel A

    2007-12-01

    Calmodulin-ubiquitin (cub) is a single-copy gene of Trypanosoma cruzi, which encodes a 208 aminoacid polypeptide of unknown function, containing putative calcium-binding domains. After targeted deletion, a clone (TulCub8) was derived where one of the two alleles was disrupted. This clone displayed a sharp and stable loss of virulence for mice. Parasitemias after inoculation of 10(6) trypomastigotes of the mutant, as compared to wild-type parasites were 68-fold lower (p=0.018) in adult Swiss mice and 27-fold lower (p=0.002) in newborn Balb/c mice. Epimastigote inocula of the mutant were strongly protective against infection by wild-type parasites. Virulence was not restored by serial passage in mice, showing that the attenuated phenotype is stable and gene-conversion from the intact cub allele does not occur at an appreciable rate. Retransfection of the missing cub allele restored virulence. Complementation experiments showed that the intact cub gene is necessary for full expression of virulence.

  4. Transcription of candidate virulence genes of Haemophilus ducreyi during infection of human volunteers.

    Science.gov (United States)

    Throm, R E; Spinola, S M

    2001-03-01

    Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyi were subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, and lspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.

  5. Virulence genes and antimicrobial susceptibility in Pasteurella multocida isolates from calves.

    Science.gov (United States)

    Katsuda, K; Hoshinoo, K; Ueno, Y; Kohmoto, M; Mikami, O

    2013-12-27

    A total of 378 isolates of Pasteurella multocida from clinically healthy and diseased calves were characterised for their susceptibility to 9 antimicrobial agents and screened by PCR for the presence of antimicrobial resistance genes and 22 genes virulence-associated, including capsule biosynthesis genes. Of the 378 isolates, 102 (27.0%) were resistant to at least one of the 9 tested antimicrobial agents. Resistance to oxytetracycline (21.7%) was the most frequently observed phenotype among the isolates. The tet(H) gene were the primary determinant detected. The resistance rates for thiamphenicol, ampicillin, kanamycin and florfenicol were 13.2%, 5.8%, 9.0% and 0.5%, respectively. Cefazolin, ceftiofur, cefquinome and enrofloxacin were effective antimicrobial agents, with no resistant isolates emerging over the course of the investigation. Most isolates were identified as capsular type A, only 6.3% belonged to capsular type D and no other capsular type was identified. Four of the virulence-associated genes (pfhA, tadD, tbpA and HAS) exhibited associations to the capsular type, and three (pfhA, tbpA and hgbB) were associated with the disease status of the animals. These virulence genes have been considered as epidemiological markers and are hypothesised to have a strong positive association with the outcome of disease in cattle. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea.

    Science.gov (United States)

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-02-01

    Small GTPases of the Rho family play an important role in regulating biological processes in fungi. In this study, we mainly investigated the biological functions of Rho3 in Botrytis cinerea, and found that deletion of the rho3 from B. cinerea significantly suppressed vegetative growth and conidiation, reduced appressorium formation and decreased virulence. Microscopy analysis revealed that the distance between septa was increased in the Δrho3 mutant. In addition, mitochondria were suggested to be the main sources of intracellular reactive oxygen species (ROS) in B. cinerea based on dual staining with 2',7'-dichlorodihydrofluorescein diacetate and MitoTracker orange. The Δrho3 mutant showed less accumulation of ROS in the hyphae tips compared to the WT strain of B. cinerea. These results provide the novel evidence to ascertain the function of small GTPase Rho3 in regulating growth, conidiation and virulence of B. cinerea. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    DEFF Research Database (Denmark)

    Nielsen, Anita; Månsson, Maria; Wietz, Matthias

    2012-01-01

    Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea...... 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing...... that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp.) influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract...

  8. Altered virulence potential of Salmonella Enteritidis cultured in different foods: A cumulative effect of differential gene expression and immunomodulation.

    Science.gov (United States)

    Jaiswal, Sangeeta; Sahoo, Prakash Kumar; Ryan, Daniel; Das, Jugal Kishore; Chakraborty, Eesha; Mohakud, Nirmal Kumar; Suar, Mrutyunjay

    2016-08-02

    Salmonella enterica serovars Enteritidis (S. Enteritidis) is one of the most common causes of food borne illness. Bacterial growth environment plays an important role in regulating gene expression thereby affecting the virulence profile of the bacteria. Different foods present diverse growth conditions which may affect the pathogenic potential of the bacteria. In the present study, the effect of food environments on the pathogenic potential of S. Enteritidis has been evaluated. S. Enteritidis was grown in different foods e.g. egg white, peanut butter and milk, and virulent phenotypes were compared to those grown in Luria Bertani broth. In-vivo experiments in C57BL/6 mice revealed S. Enteritidis grown in egg white did not induce significant (panalysis revealed SPI-1 effectors were downregulated in bacteria grown in egg white. Interestingly, bacteria grown in egg white showed reversal of phenotype upon change in growth media to LB. Additionally, bacteria grown in milk and peanut butter showed different degrees of virulence in mice as compared to those grown in LB media. Thus, the present study demonstrates that, S. Enteritidis grown in egg white colonizes systemic sites without causing colitis in a mouse model, while bacteria grown in milk and peanut butter show different pathogenicity profiles suggesting that food environments significantly affect the pathogenicity of S. Enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  10. Genetic diversity and virulence genes in Streptococcus uberis strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Rafael Ambrósio Loures

    2017-08-01

    Full Text Available Mastitis is one of the most common and costly infectious diseases in dairy cattle worldwide. This is a multifactorial illness caused by different microorganisms, including virus, yeasts, algae, parasites, and several species of bacteria. Among these bacteria, Streptococcus uberis is an important environmental pathogen that is responsible for a large range of clinical and subclinical mammary infections, especially in intensively managed herds. Despite the increasing importance of this pathogen in the etiology of bovine mastitis, data on its virulence and diversity in Brazilian dairy herds are scarce. The aims of the present study were to investigate the virulence characteristics of S. uberis isolated from bovine mastitis and to assess the molecular epidemiology of the Brazilian isolates using pulsed-field gel electrophoresis (PFGE. In this work, 46 strains of S. uberis isolated from bovine mastitis from 26 Brazilian dairy herds were evaluated regarding their genetic diversity by PFGE using with the SmaI enzyme. Additionally, the presence of the virulence genes skc and pauA, which encode plasminogen activators, and the gene sua, which encodes an adhesion molecule in mammary epithelial cells, were assessed by PCR. Our results showed a high genetic diversity in the population, displaying many different patterns in the PFGE analysis. A high proportion of strains was positive for virulence genes in the sampled population (sua [100%], pauA [91%], and skc [91%]. The high frequency of skc, pauA, and sua genes among the studied strains suggests the importance of these virulence factors, possibly helping S. uberis in the colonization of the bovine mammary gland. Surveys of the genetic and molecular characteristics of this pathogen can improve our knowledge of bacterial activity and identify molecules that have roles in the establishment of the infection. This might help in the development of more effective measures to control and prevent bovine mastitis.

  11. Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri.

    Science.gov (United States)

    Zhou, Xiaofeng; Yan, Qing; Wang, Nian

    2017-02-01

    Xanthomonas contains a large group of plant-associated species, many of which cause severe diseases on important crops worldwide. Six gluconate-operon repressor (GntR) family transcriptional regulators are predicted in Xanthomonas, one of which, belonging to the YtrA subfamily, plays a prominent role in bacterial virulence. However, the direct targets and comprehensive regulatory profile of YtrA remain unknown. Here, we performed microarray and high-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) experiments to identify YtrA direct targets and its DNA binding motif in X. citri ssp. citri (Xac), the causal agent of citrus canker. Integrative microarray and ChIP-exo data analysis revealed that YtrA directly regulates three operons by binding to a palindromic motif GGTG-N16 -CACC at the promoter region. A similar palindromic motif and YtrA homologues were also identified in many other bacteria, including Stenotrophomonas, Pseudoxanthomonas and Frateuria, indicating a widespread phenomenon. Deletion of ytrA in Xac abolishes bacterial virulence and induction of the hypersensitive response (HR). We found that YtrA regulates the expression of hrp/hrc genes encoding the bacterial type III secretion system (T3SS) and controls multiple biological processes, including motility and adhesion, oxidative stress, extracellular enzyme production and iron uptake. YtrA represses the expression of its direct targets in artificial medium or in planta. Importantly, over-expression of yro3, one of the YtrA directly regulated operons which contains trmL and XAC0231, induced weaker canker symptoms and down-regulation of hrp/hrc gene expression, suggesting a negative regulation in Xac virulence and T3SS. Our study has significantly advanced the mechanistic understanding of YtrA regulation and its contribution to bacterial virulence. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  12. FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli.

    Science.gov (United States)

    Barbieri, Nicolle L; Vande Vorde, Jessica A; Baker, Alison R; Horn, Fabiana; Li, Ganwu; Logue, Catherine M; Nolan, Lisa K

    2017-01-01

    Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr- mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence.

  13. Differences in virulence genes and genome patterns of mastitis-associated Staphylococcus aureus among goat, cow, and human isolates in Taiwan.

    Science.gov (United States)

    Chu, Chishih; Wei, Yajiun; Chuang, Shih-Te; Yu, Changyou; Changchien, Chih-Hsuan; Su, Yaochi

    2013-03-01

    A total of 117 mastitis-associated Staphylococcus aureus isolates from cow, goat, and human patients were analyzed for differences in antibiotic susceptibility, virulence genes, and genotypes using accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Multidrug-resistant (MDR) S. aureus were commonly found in all sources, though they were predominantly found in human and goat isolates. Almost 70% of the isolates were resistant to ampicillin and penicillin. Host-associated virulence genes were identified as follows: tst, a gene encoding toxic shock syndrome toxin, was found in goat isolates; lukED and lukM, genes encoding leukocidin, found in cow isolates; lukPV, a gene encoding leukocidin, found in human isolates; and eta, a gene encoding for exfoliative toxin, found in both human and cow isolates. All four types of hemolysin, α, β, γ, and δ, were identified in human isolates, three types (α, γ, and δ), were identified in cow isolates, and two types (α and δ) were identified in goat isolates. Agr-typing determined agr1 to be the main subtype in human and cow isolates. PFGE and MLST analysis revealed the presence of diverse genotypes among the three sources. In conclusion, mastitis-associated, genetically diverse strains of MDR S. aureus differed in virulence genes among human, cow, and goat isolates.

  14. cj0371: a novel virulence-associated gene of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Xueqing Du

    2016-07-01

    Full Text Available Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity.

  15. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-04-01

    Full Text Available Quorum sensing (QS is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC and gas chromatography–mass spectrometry (GC-MS analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%, total protease (56%, pyocyanin (89%, chitinase (55%, exopolysaccharide production (58% and swarming motility (74% in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82% over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy.

  16. CodY of Streptococcus pneumoniae : Link between nutritional gene regulation and colonization

    NARCIS (Netherlands)

    Hendriksen, Wouter T.; Bootsma, Hester J.; Estevao, Silvia; Hoogenboezem, Theo; de Jong, Anne; de Groot, Ronald; Kuipers, Oscar P.; Hermans, Peter W. M.

    CodY is a nutritional regulator mainly involved in amino acid metabolism. It has been extensively studied in Bacillus subtilis and Lactococcus lactis. We investigated the role of CodY in gene regulation and virulence of the human pathogen Streptococcus pneumoniae. We constructed a codY mutant and

  17. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk

    Directory of Open Access Journals (Sweden)

    Giada Magro

    2017-06-01

    Full Text Available Staphylococcus aureus (S. aureus is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP, medium–low (MLP, medium–high (MHP and high (HP. We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs, immune evasion and serine proteases; and (2 a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  18. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk.

    Science.gov (United States)

    Magro, Giada; Biffani, Stefano; Minozzi, Giulietta; Ehricht, Ralf; Monecke, Stefan; Luini, Mario; Piccinini, Renata

    2017-06-21

    Staphylococcus aureus (S. aureus) is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP), medium-low (MLP), medium-high (MHP) and high (HP). We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1) 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), immune evasion and serine proteases; and (2) a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  19. Virulence, resistance genes, and transformation amongst environmental isolates of Escherichia coli and Acinetobacter spp.

    Science.gov (United States)

    Doughari, Hamuel James; Ndakidemi, Patrick Alois; Human, Izanne Susan; Benade, Spinney

    2012-01-01

    The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: 13.3 × 10(-7) -53.4(-7)), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 microgram) and intragenetic transfer of multidrugresistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

  20. Virulence gene profiles in Staphylococcus aureus isolated from cows with subclinical mastitis in eastern Poland.

    Science.gov (United States)

    Kot, Barbara; Szweda, Piotr; Frankowska-Maciejewska, Aneta; Piechota, Małgorzata; Wolska, Katarzyna

    2016-05-01

    Staphylococcus aureus is arguably the most important pathogen involved in bovine mastitis. The aim of this study was to determine the virulence gene profiles of 124 Staph. aureus isolates from subclinical mastitis in cows in eastern Poland. The presence of 30 virulence genes encoding adhesins, proteases and superantigenic toxins was investigated by PCR. The 17 different combinations of adhesin genes were identified. Occurrence of eno (91·1%) and fib (82·3%) genes was found to be common. The frequency of other adhesion genes fnbA, fnbB, ebps were 14·5, 50, 25%, respectively, and for cna and bbp were 1·6%. The etA and etD genes, encoding exfoliative toxins, were present in genomes of 5·6 and 8·9% isolates, respectively. The splA and sspA, encoding serine protease, were detected in above 90% isolates. The most frequent enterotoxin genes were sei (21%), sem (19·4%), sen (19·4%), seg (18·5%) and seo (13·7%). The tst gene was harboured by 2·4% isolates. The 19 combinations of the superantigenic toxin genes were obtained and found in 35·5% of isolates. Three of them (seg, sei, sem, sen, seo; sec, seg, sei, sem, sen, seo and seg, sei, sem, sen) were the most frequent and found in 16·1% of the isolates. The most common virulotype, present in 17·7% of the isolates, was fib, eno, fnbB, splA, splE, sspA. The results indicate the variation in the presence of virulence genes in Staph. aureus isolates and considerable diversity of isolates that are able to cause mastitis in cows.

  1. Regulated expression of cyclic AMP-dependent protein kinase A reveals an influence on cell size and the secretion of virulence factors in Cryptococcus neoformans.

    Science.gov (United States)

    Choi, Jaehyuk; Vogl, A Wayne; Kronstad, James W

    2012-08-01

    Cyclic AMP-dependent protein kinase A (PKA) regulates elaboration of the virulence factors melanin and polysaccharide capsule in Cryptococcus neoformans. A mutation in PKA1 encoding the catalytic subunit is known to reduce virulence in mice while a defect in PKR1 encoding the regulatory subunit enhances disease. Here, we constructed strains with galactose-inducible and glucose-repressible versions of PKA1 and PKR1 by inserting the GAL7 promoter upstream of the genes. As expected, no capsule was found in dextrose-containing media for the P(GAL7):PKA1 strain, whereas a large capsule was formed on cells grown in galactose. Along with capsule thickness, high PKA activity also influenced cell size, ploidy and vacuole enlargement, as observed in previous reports of giant/titan cell formation. We employed the regulated strains to test the hypothesis that PKA influences secretion and found that elevated PKA expression positively regulates extracellular protease activity and negatively regulates urease secretion. Furthermore, proper PKA regulation and activity were required for wild-type levels of melanization and laccase activity, as well as correct localization of the enzyme. The latter phenotype is consistent with the discovery that PKA regulates the organization of intracellular membrane compartments. Overall, these results indicate that PKA influences secretion pathways directly related to virulence factor elaboration. © 2012 Blackwell Publishing Ltd.

  2. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium

    OpenAIRE

    Rui Figueiredo; Roderick Card; Carla Nunes; Manal AbuOun; Bagnall, Mary C.; Javier Nunez; Nuno Mendonça; Anjum, Muna F.; Gabriela Jorge da Silva

    2015-01-01

    Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI) and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. T...

  3. Genotypic variations of virulent genes in Enterococcus faecium and Enterococcus faecalis isolated from three hospitals in Malaysia.

    Science.gov (United States)

    Al-Talib, Hassanain; Zuraina, Nik; Kamarudin, Balqis; Yean, Chan Y

    2015-01-01

    The genus Enterococcus is of increasing significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance. The aim of the present study was to estimate the potential virulence factors in enterococci and to ascertain their prevalence in Malaysian hospitals. The study comprised 222 enterococcal strains isolated from blood, urine, exudates, sputum, stool and body fluid. These strains were collected from patients staying in three referral hospitals in Malaysia. All isolates were identified to the species level, and their MIC of vancomycin was determined using E test strips. Specific primers were designed for detection of the five potential virulence genes (gelE, PAI, esp, ace, and sprE) by PCR assay. Different patterns and frequency of virulence determinants were found for the E. faecalis and E. faecium isolates. E. faecalis isolates had more virulence determinants than E. faecium isolates. Clinical enterococcal isolates were found to possess more virulence determinants than enterococci isolated from faecal samples. The esp gene is significantly more common (p = 0.049) in vancomycin-resistant strains (85.7%) than in vancomycin-sensitive strains (44.2%). All of the vancomycin-resistant isolates were isolated from faecal samples. None of the classical virulence factors were found in 11% of enterococcal isolates, while all five virulence genes were found in 21% of enterococcal isolates. All the virulence genes considered in this study were important in the pathogenesis of enterococcal infections and further studies including more virulence genes and epidemiological data will be necessary in order to analyze the association and role of virulence genes in the pathogencity of enterococci.

  4. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.

    Directory of Open Access Journals (Sweden)

    Heidi A Crosby

    2016-05-01

    Full Text Available Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD. EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.

  5. Type VI Secretion is a Major Virulence Determinant in Burkholderia Mallei

    National Research Council Canada - National Science Library

    Schell, Mark A; Ulrich, Ricky L; Ribot, Wilson J; Brueggemann, Ernst E; Hines, Harry B; Chen, Dan; Lipscomb, Lyla; Kim, H. S; Mrazek, Jan; Nierman, William C; DeShazer, David

    2007-01-01

    Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown...

  6. CvfA Protein and Polynucleotide Phosphorylase Act in an Opposing Manner to Regulate Staphylococcus aureus Virulence*

    Science.gov (United States)

    Numata, Shunsuke; Nagata, Makiko; Mao, Han; Sekimizu, Kazuhisa; Kaito, Chikara

    2014-01-01

    We previously identified CvfA (SA1129) as a Staphylococcus aureus virulence factor using a silkworm infection model. S. aureus cvfA-deleted mutants exhibit decreased expression of the agr locus encoding a positive regulator of hemolysin genes and decreased hemolysin production. CvfA protein hydrolyzes a 2′,3′-cyclic phosphodiester bond at the RNA 3′ terminus, producing RNA with a 3′-phosphate (3′-phosphorylated RNA, RNA with a 3′-phosphate). Here, we report that the cvfA-deleted mutant phenotype (decreased agr expression and hemolysin production) was suppressed by disrupting pnpA-encoding polynucleotide phosphorylase (PNPase) with 3′- to 5′-exonuclease activity. The suppression was blocked by introducing a pnpA-encoding PNPase with exonuclease activity but not by a pnpA-encoding mutant PNPase without exonuclease activity. Therefore, loss of PNPase exonuclease activity suppressed the cvfA-deleted mutant phenotype. Purified PNPase efficiently degraded RNA with 2′,3′-cyclic phosphate at the 3′ terminus (2′,3′-cyclic RNA), but it inefficiently degraded 3′-phosphorylated RNA. These findings indicate that 3′-phosphorylated RNA production from 2′,3′-cyclic RNA by CvfA prevents RNA degradation by PNPase and contributes to the expression of agr and hemolysin genes. We speculate that in the cvfA-deleted mutant, 2′,3′-cyclic RNA is not converted to the 3′-phosphorylated form and is efficiently degraded by PNPase, resulting in the loss of RNA essential for expressing agr and hemolysin genes, whereas in the cvfA/pnpA double-disrupted mutant, 2′,3′-cyclic RNA is not degraded by PNPase, leading to hemolysin production. These findings suggest that CvfA and PNPase competitively regulate RNA degradation essential for S. aureus virulence. PMID:24492613

  7. CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence.

    Science.gov (United States)

    Numata, Shunsuke; Nagata, Makiko; Mao, Han; Sekimizu, Kazuhisa; Kaito, Chikara

    2014-03-21

    We previously identified CvfA (SA1129) as a Staphylococcus aureus virulence factor using a silkworm infection model. S. aureus cvfA-deleted mutants exhibit decreased expression of the agr locus encoding a positive regulator of hemolysin genes and decreased hemolysin production. CvfA protein hydrolyzes a 2',3'-cyclic phosphodiester bond at the RNA 3' terminus, producing RNA with a 3'-phosphate (3'-phosphorylated RNA, RNA with a 3'-phosphate). Here, we report that the cvfA-deleted mutant phenotype (decreased agr expression and hemolysin production) was suppressed by disrupting pnpA-encoding polynucleotide phosphorylase (PNPase) with 3'- to 5'-exonuclease activity. The suppression was blocked by introducing a pnpA-encoding PNPase with exonuclease activity but not by a pnpA-encoding mutant PNPase without exonuclease activity. Therefore, loss of PNPase exonuclease activity suppressed the cvfA-deleted mutant phenotype. Purified PNPase efficiently degraded RNA with 2',3'-cyclic phosphate at the 3' terminus (2',3'-cyclic RNA), but it inefficiently degraded 3'-phosphorylated RNA. These findings indicate that 3'-phosphorylated RNA production from 2',3'-cyclic RNA by CvfA prevents RNA degradation by PNPase and contributes to the expression of agr and hemolysin genes. We speculate that in the cvfA-deleted mutant, 2',3'-cyclic RNA is not converted to the 3'-phosphorylated form and is efficiently degraded by PNPase, resulting in the loss of RNA essential for expressing agr and hemolysin genes, whereas in the cvfA/pnpA double-disrupted mutant, 2',3'-cyclic RNA is not degraded by PNPase, leading to hemolysin production. These findings suggest that CvfA and PNPase competitively regulate RNA degradation essential for S. aureus virulence.

  8. The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms.

    Science.gov (United States)

    Kovacikova, Gabriela; Lin, Wei; Taylor, Ronald K; Skorupski, Karen

    2017-04-01

    FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms.IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor

  9. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus.

    Science.gov (United States)

    Nakano, Masayuki; Takahashi, Akira; Su, Zehong; Harada, Nagakatsu; Mawatari, Kazuaki; Nakaya, Yutaka

    2008-09-21

    The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH), which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant. The production of TDH in the hfq deletion mutant was much higher than in the parental strain. Quantification of tdh promoter activity and mRNA demonstrated that transcription of the tdh gene was up-regulated in the mutant strain. The hfq-complemented strain had a normal (parental) amount of tdh expression. The transcriptional activity of tdhA was particularly increased in the mutant strain. These results indicate that Hfq is closely associated with the expression level of the tdh gene. Interestingly, other genes involved in the pathogenicity of V. parahaemolyticus, such as VP1680, vopC, and vopT, were also up-regulated in the mutant strain. Hfq regulates the expression of virulence-associated factors such as TDH and may be involved in the pathogenicity of V. parahaemolyticus.

  10. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Mawatari Kazuaki

    2008-09-01

    Full Text Available Abstract Background The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH, which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant. Results The production of TDH in the hfq deletion mutant was much higher than in the parental strain. Quantification of tdh promoter activity and mRNA demonstrated that transcription of the tdh gene was up-regulated in the mutant strain. The hfq-complemented strain had a normal (parental amount of tdh expression. The transcriptional activity of tdhA was particularly increased in the mutant strain. These results indicate that Hfq is closely associated with the expression level of the tdh gene. Interestingly, other genes involved in the pathogenicity of V. parahaemolyticus, such as VP1680, vopC, and vopT, were also up-regulated in the mutant strain. Conclusion Hfq regulates the expression of virulence-associated factors such as TDH and may be involved in the pathogenicity of V. parahaemolyticus.

  11. Lipooligosaccharide locus classes and putative virulence genes among chicken and human Campylobacter jejuni isolates.

    Science.gov (United States)

    Ellström, Patrik; Hansson, Ingrid; Nilsson, Anna; Rautelin, Hilpi; Olsson Engvall, Eva

    2016-11-21

    Campylobacter cause morbidity and considerable economic loss due to hospitalization and post infectious sequelae such as reactive arthritis, Guillain Barré- and Miller Fischer syndromes. Such sequelae have been linked to C. jejuni harboring sialic acid structures in their lipooligosaccharide (LOS) layer of the cell wall. Poultry is an important source of human Campylobacter infections but little is known about the prevalence of sialylated C. jejuni isolates and the extent of transmission of such isolates to humans. Genotypes of C. jejuni isolates from enteritis patients were compared with those of broiler chicken with pulsed-field gel electrophoresis (PFGE), to study the patterns of LOS biosynthesis genes and other virulence associated genes and to what extent these occur among Campylobacter genotypes found both in humans and chickens. Chicken and human isolates generally had similar distributions of the putative virulence genes and LOS locus classes studied. However, there were significant differences regarding LOS locus class of PFGE types that were overlapping between chicken and human isolates and those that were distinct to each source. The study highlights the prevalence of virulence associated genes among Campylobacter isolates from humans and chickens and suggests possible patterns of transmission between the two species.

  12. In silico phylogenetic and virulence gene profile analyses of avian pathogenic Escherichia coli genome sequences

    Directory of Open Access Journals (Sweden)

    Thaís C.G. Rojas

    2014-02-01

    Full Text Available Avian pathogenic Escherichia coli (APEC infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.

  13. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees.

    Directory of Open Access Journals (Sweden)

    Doris Pester

    Full Text Available BACKGROUND: Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi. This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4 in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7. CONCLUSION/SIGNIFICANCE: The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight

  14. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates.

    Science.gov (United States)

    Schneeberger, M; Brodard, I; Overesch, G

    2015-04-02

    Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4

  15. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...... parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var...

  16. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.

    Science.gov (United States)

    Liu, Cheng-Qian; Hu, Kang-Di; Li, Ting-Ting; Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan; Zhang, Hua

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.

  17. P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation

    Science.gov (United States)

    Menino, João Filipe; Saraiva, Margarida; Gomes-Rezende, Jéssica; Sturme, Mark; Pedrosa, Jorge; Castro, António Gil; Ludovico, Paula; Goldman, Gustavo H.; Rodrigues, Fernando

    2013-01-01

    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis. PMID:24066151

  18. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    2016-12-01

    Full Text Available Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS and glucosamine-6-phosphate deaminase (NagB have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.

  19. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans.

    Science.gov (United States)

    Kawada-Matsuo, Miki; Oogai, Yuichi; Komatsuzawa, Hitoshi

    2016-12-28

    Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.

  20. Inhibition of Virulence Gene Expression in Staphylococcus aureus by Novel Depsipeptides from a Marine Photobacterium

    DEFF Research Database (Denmark)

    Månsson, Maria; Nielsen, Anita; Kjærulff, Louise

    2011-01-01

    sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII......, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering...... activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium....

  1. Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation.

    Directory of Open Access Journals (Sweden)

    Markus Arnoldini

    2014-08-01

    Full Text Available Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.

  2. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  3. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Science.gov (United States)

    Fraser, Tricia; Brown, Paul D

    2017-01-01

    Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration

  4. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children

    Science.gov (United States)

    Sánchez, Ester; Nadal, Inmaculada; Donat, Ester; Ribes-Koninckx, Carmen; Calabuig, Miguel; Sanz, Yolanda

    2008-01-01

    Background Coeliac disease is an immune-mediated enteropathology triggered by the ingestion of cereal gluten proteins. This disorder is associated with imbalances in the composition of the gut microbiota that could be involved in its pathogenesis. The aim of the present study was to determine whether intestinal Enterobacteriaceae populations of active and non-active coeliac patients and healthy children differ in diversity and virulence-gene carriage, so as to establish a possible link between the pathogenic potential of enterobacteria and the disease. Methods Enterobacteriaceae clones were isolated on VRBD agar from faecal samples of 31 subjects (10 active coeliac patients, 10 symptom-free coeliac patients and 11 healthy controls) and identified at species level by the API 20E system. Escherichia coli clones were classified into four phylogenetic groups A, B1, B2 and D and the prevalence of eight virulence-associated genes (type-1 fimbriae [fimA], P fimbriae [papC], S fimbriae [sfaD/E], Dr haemagglutinin [draA], haemolysin [hlyA], capsule K1 [neuB], capsule K5 [KfiC] and aerobactin [iutA]) was determined by multiplex PCR. Results A total of 155 Enterobacteriaceae clones were isolated. Non-E. coli clones were more commonly isolated in healthy children than in coeliac patients. The four phylogenetic E. coli groups were equally distributed in healthy children, while in both coeliac patients most commensal isolates belonged to group A. Within the virulent groups, B2 was the most prevalent in active coeliac disease children, while D was the most prevalent in non-active coeliac patients. E coli clones of the virulent phylogenetic groups (B2+D) from active and non-active coeliac patients carried a higher number of virulence genes than those from healthy individuals. Prevalence of P fimbriae (papC), capsule K5 (sfaD/E) and haemolysin (hlyA) genes was higher in E. coli isolated from active and non-active coeliac children than in those from control subjects. Conclusion This

  5. Dissection of the contributions of cyclophilin genes to development and virulence in a fungal insect pathogen.

    Science.gov (United States)

    Zhou, Yonghong; Keyhani, Nemat O; Zhang, Yongjun; Luo, Zhibing; Fan, Yanhua; Li, Yujie; Zhou, Qiaosheng; Chen, Jianjun; Pei, Yan

    2016-11-01

    Cyclophilins are ubiquitous proteins found in all domains of life, catalyzing peptidyl-prolyl cis-trans isomerization (PPIase activity) and functioning in diverse cellular processes. The filamentous insect pathogenic fungus, Beauveria bassiana, contains 11 cyclophilin genes whose roles were probed via individual gene knockouts, construction of over-expression strains, and a simultaneous gene knockdown strategy using tandem SiRNA. Mutants were examined for effects on conidiation, hyphal growth, cyclosporine and stress resistance, and insect virulence. BbCypA was found to be the most highly expressed cyclophilin during growth and purified recombinant BbCypA displayed cyclosporine sensitive PPIase activity. Except for ΔBbCypA, targeted gene knockouts or overexpression of any cyclophilin resulted in temperature sensitivity (TS). Specific cyclophilin mutants showed impaired hyphal growth and differential effects on conidiation and cyclosporine resistance. Insect bioassays revealed decreased virulence for two cyclophilins (ΔBbCypE and ΔBbCyp6) and the simultaneous gene knockdown mutant constructs (SiRNA30). The BbSiRNA30 strains were unaffected in growth, conidiation, or under osmotic or cell wall perturbing stress, but did show increased resistance to cyclosporine and a TS phenotype. These results revealed common and unique roles for cyclophilins in B. bassiana and validate a method for examining the effects of multi-gene families via simultaneous gene knockdown. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Science.gov (United States)

    Meena, Mukesh; Gupta, Sanjay K.; Swapnil, Prashant; Zehra, Andleeb; Dubey, Manish K.; Upadhyay, Ram S.

    2017-01-01

    Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future. PMID:28848500

  7. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  8. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Science.gov (United States)

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  9. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    Directory of Open Access Journals (Sweden)

    Elisabetta Di Giannatale

    2014-02-01

    Full Text Available Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis and detection of virulence genes (sequencing and DNA microarray analysis. The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%, tetracycline (55.86% and nalidixic acid (55.17%. Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.

  10. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine

    Directory of Open Access Journals (Sweden)

    Thales Quedi Furian

    2016-03-01

    Full Text Available Abstract Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC, ptfA were detected in more than 90% of the strains of both hosts. 91% and 92% of avian and swine strains, respectively, were classified in serogroup A. toxA and hsf-1 showed a significant association to serogroup D; pmHAS and pfhA to serogroup A. Gentamicin and amoxicillin were the most effective drugs with susceptibility higher than 97%; however, 76.79% of poultry strains and 85% of swine strains were resistant to sulphonamides. Furthermore, 19.64% and 36.58% of avian and swine strains, respectively, were multi-resistant. Virulence genes studied were not specific to a host and may be the result of horizontal transmission throughout evolution. High multidrug resistance demonstrates the need for responsible use of antimicrobials in animals intended for human consumption, in addition to antimicrobial susceptibility testing to P. multocida.

  11. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine

    Science.gov (United States)

    Furian, Thales Quedi; Borges, Karen Apellanis; Laviniki, Vanessa; da Silveira Rocha, Silvio Luis; de Almeida, Camila Neves; do Nascimento, Vladimir Pinheiro; Salle, Carlos Tadeu Pippi; de Souza Moraes, Hamilton Luiz

    2016-01-01

    Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC, ptfA were detected in more than 90% of the strains of both hosts. 91% and 92% of avian and swine strains, respectively, were classified in serogroup A. toxA and hsf-1 showed a significant association to serogroup D; pmHAS and pfhA to serogroup A. Gentamicin and amoxicillin were the most effective drugs with susceptibility higher than 97%; however, 76.79% of poultry strains and 85% of swine strains were resistant to sulphonamides. Furthermore, 19.64% and 36.58% of avian and swine strains, respectively, were multi-resistant. Virulence genes studied were not specific to a host and may be the result of horizontal transmission throughout evolution. High multidrug resistance demonstrates the need for responsible use of antimicrobials in animals intended for human consumption, in addition to antimicrobial susceptibility testing to P. multocida. PMID:26887247

  12. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine.

    Science.gov (United States)

    Furian, Thales Quedi; Borges, Karen Apellanis; Laviniki, Vanessa; Rocha, Silvio Luis da Silveira; de Almeida, Camila Neves; do Nascimento, Vladimir Pinheiro; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz de Souza

    2016-01-01

    Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC, ptfA were detected in more than 90% of the strains of both hosts. 91% and 92% of avian and swine strains, respectively, were classified in serogroup A. toxA and hsf-1 showed a significant association to serogroup D; pmHAS and pfhA to serogroup A. Gentamicin and amoxicillin were the most effective drugs with susceptibility higher than 97%; however, 76.79% of poultry strains and 85% of swine strains were resistant to sulphonamides. Furthermore, 19.64% and 36.58% of avian and swine strains, respectively, were multi-resistant. Virulence genes studied were not specific to a host and may be the result of horizontal transmission throughout evolution. High multidrug resistance demonstrates the need for responsible use of antimicrobials in animals intended for human consumption, in addition to antimicrobial susceptibility testing to P. multocida. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense.

    Science.gov (United States)

    Ding, Zhaojian; Li, Minhui; Sun, Fei; Xi, Pinggen; Sun, Longhua; Zhang, Lianhui; Jiang, Zide

    2015-01-01

    Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence.

  14. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    Directory of Open Access Journals (Sweden)

    Fattahi, Sargol

    2015-07-01

    Full Text Available Background and objectives: The ( bacterium is one of the main causative agents of urinary tract infections (UTI worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of isolates responsible for urinary tract infection.Materials and methods: A total of 100 isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of , , and virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software.Results: From 100 isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes , , and were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed , , and genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the gene and biofilm formation in isolates isolated from UTI (<0.01, but there was no statistically significant correlation between presence of and genes with biofilm formation (<0.072, <0.104. Conclusion: Results showed that and genes do not seem to be necessary or sufficient for the production of biofilm in , but the presence of correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of , , and virulence genes coincides with in vitro biofilm formation in uropathogenic

  15. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    OpenAIRE

    Hube, B; Sanglard, D.; Odds, F C; Hess, D.; Monod, M; Schäfer, W; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null muta...

  16. Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity

    Directory of Open Access Journals (Sweden)

    Kangpeng Xiao

    2015-12-01

    Full Text Available Pasteurella multocida (P. multocida is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.

  17. Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity.

    Science.gov (United States)

    Xiao, Kangpeng; Liu, Qing; Liu, Xueyan; Hu, Yunlong; Zhao, Xinxin; Kong, Qingke

    2015-12-23

    Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.

  18. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.

    Science.gov (United States)

    Duval, Valérie; Lister, Ida M

    2013-01-01

    Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.

  19. A Comprehensive Functional Portrait of Two Heat Shock Factor-Type Transcriptional Regulators Involved in Candida albicans Morphogenesis and Virulence

    Science.gov (United States)

    Znaidi, Sadri; Nesseir, Audrey; Chauvel, Murielle; Rossignol, Tristan; d'Enfert, Christophe

    2013-01-01

    Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as

  20. A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence.

    Science.gov (United States)

    Znaidi, Sadri; Nesseir, Audrey; Chauvel, Murielle; Rossignol, Tristan; d'Enfert, Christophe

    2013-08-01

    Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as

  1. Orthopoxvirus genes that mediate disease virulence and host tropism.

    Science.gov (United States)

    Shchelkunov, Sergei N

    2012-01-01

    In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.

  2. Orthopoxvirus Genes That Mediate Disease Virulence and Host Tropism

    Directory of Open Access Journals (Sweden)

    Sergei N. Shchelkunov

    2012-01-01

    Full Text Available In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox, monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.

  3. Variant surface antigens, virulence genes and the pathogenesis of malaria

    DEFF Research Database (Denmark)

    Deitsch, Kirk W; Hviid, Lars

    2004-01-01

    The first Molecular Approaches to Malaria meeting was held 2-5 February 2000 in Lorne, Australia. Following the meeting, Brian Cooke, Mats Wahlgren and Ross Coppel predicted that research into the molecular details of the mechanisms behind sequestration of parasitized erythrocytes would "become...... increasingly more complicated, with further interactions, receptors, ligands and functional domains". Furthermore, they cautioned that "the challenge will be not to lose ourselves in the molecular detail, but remain focused on the role of [the var genes and other multigene families] in pathogenesis of malaria......". We contemplate on these statements, following the recent second Molecular Approaches to Malaria meeting, which was held at the same venue on 2-5 February 2004....

  4. Prevalence of diarrheagenic Escherichia coli virulence genes in the feces of slaughtered cattle, chickens, and pigs in Burkina Faso

    OpenAIRE

    Kagambèga, Assèta; Martikainen, Outi; Siitonen, Anja; Traoré, Alfred S; Barro, Nicolas; Haukka, Kaisa

    2012-01-01

    We investigated the prevalence of the virulence genes specific for five major pathogroups of diarrheagenic Escherichia coli (DEC) in primary cultures from feces of animals slaughtered for human consumption in Burkina Faso. For the study, 704 feces samples were collected from cattle (n = 304), chickens (n = 350), and pigs (n = 50) during carcass processing. The presence of the virulence-associated genes in the mixed bacterial cultures was assessed using 16-plex polymerase chain reaction (PCR)....

  5. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM.

    Science.gov (United States)

    Heroven, Ann Kathrin; Böhme, Katja; Rohde, Manfred; Dersch, Petra

    2008-06-01

    The MarR-type regulator RovA controls expression of virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic strategy to discover components that influence rovA expression, we identified new regulatory factors with homology to components of the carbon storage regulator system (Csr). We showed that overexpression of a CsrB- or a CsrC-type RNA activates rovA, whereas a CsrA-like protein represses RovA synthesis. We further demonstrate that influence of the Csr system on rovA is indirect and occurs through control of the LysR regulator RovM, which inhibits rovA transcription. The CsrA protein had also a major influence on the motility of Yersinia, which was independent of RovM. The CsrB and CsrC RNAs are differentially expressed in Yersinia. CsrC is highly induced in complex but not in minimal media, indicating that medium-dependent rovM expression is mediated through CsrC. CsrB synthesis is generally very low. However, overexpression of the response regulator UvrY was found to activate CsrB production, which in turn represses CsrC synthesis independent of the growth medium. In summary, the post-transcriptional Csr-type components were shown to be key regulators in the co-ordinated environmental control of physiological processes and virulence factors, which are crucial for the initiation of Yersinia infections.

  7. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  8. Prevalence of diarrheagenic Escherichia coli virulence genes in the feces of slaughtered cattle, chickens, and pigs in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Martikainen, Outi; Siitonen, Anja; Traoré, Alfred S; Barro, Nicolas; Haukka, Kaisa

    2012-09-01

    We investigated the prevalence of the virulence genes specific for five major pathogroups of diarrheagenic Escherichia coli (DEC) in primary cultures from feces of animals slaughtered for human consumption in Burkina Faso. For the study, 704 feces samples were collected from cattle (n = 304), chickens (n = 350), and pigs (n = 50) during carcass processing. The presence of the virulence-associated genes in the mixed bacterial cultures was assessed using 16-plex polymerase chain reaction (PCR). Virulence genes indicating presence of DEC were detected in 48% of the cattle, 48% of the chicken, and 68% of the pig feces samples. Virulence genes specific for different DECs were detected in the following percentages of the cattle, chicken, and pig feces samples: Shiga toxin-producing E. coli (STEC) in 37%, 6%, and 30%; enteropathogenic E. coli (EPEC) in 8%, 37%, and 32%; enterotoxigenic E. coli (ETEC) in 4%, 5%, and 18%; and enteroaggregative E. coli (EAEC) in 7%, 6%, and 32%. Enteroinvasive E. coli (EIEC) virulence genes were detected in 1% of chicken feces samples only. The study was the first of its kind in Burkina Faso and revealed the common occurrence of the diarrheal virulence genes in feces of food animals. This indicates that food animals are reservoirs of DEC that may contaminate meat because of the defective slaughter and storage conditions and pose a health risk to the consumers in Burkina Faso.

  9. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis.

    Science.gov (United States)

    Liu, Liping; Zhao, Dian; Zheng, Lu; Hsiang, Tom; Wei, Yangdou; Fu, Yanping; Huang, Junbin

    2013-11-01

    To investigate the molecular and genetic mechanisms underlying virulence of Colletotrichum higginsianum on Arabidopsis thaliana, a T-DNA insertion mutant library of C. higginsianum, the causal agent of crucifer anthracnose, was established using Agrobacterium tumefaciens-mediated transformation. Among 875 transformants tested for virulence on Arabidopsis, six mutants with altered virulence, including an appressorial melanin-deficient mutant T734, two mutants defective in penetration, T45 and B30, and three mutants, T679, T732 and T801, that cause hypersensitive reactions on host Arabidopsis, were obtained. Southern blot analysis indicated that the mutants T732 and T734 harbored single-site T-DNA integrations, while B30 harbored two T-DNA insertions. Border flanking sequences of T-DNAs from these mutants were recovered by inverse polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR. Sequence analyses revealed that single T-DNA insertions in mutant T734 targeted the coding region of a gene with unknown function, and in mutant T732 targeted a gene encoding a copper amine oxidase. The two T-DNA insertion sites in mutant B30 were found in the coding region of a gene encoding an exosome component and in the upstream region of a DUF221-domain gene. None of these genes have previously been implicated in virulence of the phytopathogenic fungi. Among these avirulent mutants, T734 showed altered color in colony growth and produced melanin-deficient, albino appressoria. The T-DNA insert in T734 was detected in the coding region of a gene named C. higginsianum melanin-deficiency gene (Ch-MEL1), which is highly similar to a gene encoding a hypothetical protein in Colletotrichum gloeosporioides (GenBank ELA33048). To validate whether the Ch-MEL1 gene was associated with virulence of the mutant T734, a targeted gene disruption and complementation approach was used. The appressoria of ▵Ch-mel1 null mutants were defective in melanization and failed to penetrate

  10. [Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces].

    Science.gov (United States)

    Sudağidan, Mert; Cavuşoğlu, Cengiz; Bacakoğlu, Feza

    2008-01-01

    Staphylococci are the most important agents of nosocomial infections originating from biomaterials. The aim of this study was to investigate the presence of virulence genes and their phenotypic expressions in 11 methicillin-resistant Staphylococcus aureus strains isolated from the surfaces of clinically used biomaterials of 48 thorasic intensive-care unit patients. By the use of specific primers, the presence of genes encoding the attachment and biofilm production (icaA, icaC, bap), methicillin resistance (mecA), enterotoxins A-E (sea, seb, sec, sed, see), toxic shock syndrome toxin (tst), exfoliative toxins A and B (eta and etb), alpha- and beta-hemolysins (hla and hlb), staphylococcal exotoxin-like protein-1 (set1), proteases (sspA, sspB, aur, serine proteaz gene), lipase (geh) and the regulatory genes (sarA and agrCA) were investigated by polymerase chain reaction (PCR). The phenotypic properties of the isolates such as biofilm formation, antibiotic susceptibility, extracellular protease and lipase production were also evaluated. None of the isolates were found to be biofilm and/or slime producers, however, all strains were found to have icaA gene which is responsible for biofilm formation. Nevertheless the presence of icaC and bap genes that are also responsible for biofilm formation were not detected. All the strains have had mecA gene and were resistant to oxacillin, penicilin G and gentamicin, while 10 were also resistant to erythromycin and nine were also resistant to ofloxacin. The isolates were susceptible to vancomycin, teicoplanin and co-trimoxazole. Screening of toxin and regulatory genes revealed that all the strains harboured sea, set1, hla, hlb and sarA genes. The phenotypic tests for the determination of extracellular protease production revealed that all the strains formed very weak zones on skim milk and milk agar plates, and yielded negative results on casein agar plates. Furthermore, all strains were found to harbour sspA, sspB, aur and serine

  11. Prophage Rs551 and Its Repressor Gene orf14 Reduce Virulence and Increase Competitive Fitness of Its Ralstonia solanacearum Carrier Strain UW551

    Directory of Open Access Journals (Sweden)

    Abdelmonim Ali Ahmad

    2017-12-01

    Full Text Available We previously characterized a filamentous lysogenic bacteriophage, ϕRs551, isolated directly from the race 3 biovar 2 phylotype IIB sequevar 1 strain UW551 of Ralstonia solanacearum grown under normal culture conditions. The genome of ϕRs551 was identified with 100% identity in the deposited genomes of 11 race 3 biovar 2 phylotype IIB sequevar 1 strains of R. solanacearum, indicating evolutionary and biological importance, and ORF14 of ϕRs551 was annotated as a putative type-2 repressor. In this study, we determined the effect of the prophage and its ORF14 on the virulence and competitive fitness of its carrier strain UW551 by deleting the orf14 gene only (the UW551 orf14 mutant, and nine of the prophage’s 14 genes including orf14 and six out of seven structural genes (the UW551 prophage mutant, respectively, from the genome of UW551. The two mutants were increased in extracellular polysaccharide production, twitching motility, expression of targeted virulence and virulence regulatory genes (pilT, egl, pehC, hrPB, and phcA, and virulence, suggesting that the virulence of UW551 was negatively regulated by ϕRs551, at least partially through ORF14. Interestingly, we found that the wt ϕRs551-carrying strain UW551 of R. solanacearum significantly outcompeted the wt strain RUN302 which lacks the prophage in tomato plants co-inoculated with the two strains. When each of the two mutant strains was co-inoculated with RUN302, however, the mutants were significantly out-competed by RUN302 for the same colonization site. Our results suggest that ecologically, ϕRs551 may play an important role by regulating the virulence of and offering a competitive fitness advantage to its carrier bacterial strain for persistence of the bacterium in the environment, which in turn prolongs the symbiotic relationship between the phage ϕRs551 and the R. solanacearum strain UW551. Our study is the first toward a better understanding of the co-existence between a

  12. Distribution of environmentally regulated genes of Streptococcus suis serotype 2 among S-suis serotypes and other organisms

    NARCIS (Netherlands)

    Greeff, de A.; Buijs, H.; Verhaar, R.; Alphen, van L.; Smith, H.E.

    2002-01-01

    The occurrence of 36 environmentally regulated genes of Streptococcus suis strain 10 among all 35 S. suis serotypes was determined by using hybridization with the amplified genes as probes. In addition, the distribution of these genes among the virulence phenotypes of serotypes 1 and 2 was assessed.

  13. Nongenomic regulation of gene expression.

    Science.gov (United States)

    Iglesias-Platas, Isabel; Monk, David

    2016-08-01

    The purpose of this review is to highlight the recent advances in epigenetic regulation and chromatin biology for a better understanding of gene regulation related to human disease. Alterations to chromatin influence genomic function, including gene transcription. At its most simple level, this involves DNA methylation and posttranscriptional histone modifications. However, recent developments in biochemical and molecular techniques have revealed that transcriptional regulation is far more complex, involving combinations of histone modifications and discriminating transcription factor binding, and long-range chromatin loops with enhancers, to generate a multifaceted code. Here, we describe the most recent advances, culminating in the example of genomic imprinting, the parent-of-origin monoallelic expression that utilizes the majority of these mechanisms to attain one active and one repressed allele. It is becoming increasingly evident that epigenetic mechanisms work in unison to maintain tight control of gene expression and genome function. With the wealth of knowledge gained from recent molecular studies, future goals should focus on the application of this information in deciphering their role in developmental diseases.

  14. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice.

    Science.gov (United States)

    Pan, Po-Chang; Chen, Hui-Wen; Wu, Po-Kuan; Wu, Yu-Yang; Lin, Chun-Hung; Wu, June H

    2011-02-01

    The emerging pathogenicity of Klebsiella pneumoniae (KP) is evident by the increasing number of clinical cases of liver abscess (LA) due to KP infection. A unique property of KP is its thick mucoid capsule. The bacterial capsule has been found to contain fucose in KP strains causing LA but not in those causing urinary tract infections. The products of the gmd and wcaG genes are responsible for converting mannose to fucose in KP. A KP strain, KpL1, which is known to have a high death rate in infected mice, was mutated by inserting an apramycin-resistance gene into the gmd. The mutant expressed genes upstream and downstream of gmd, but not gmd itself, as determined by reverse transcriptase polymerase chain reaction. The DNA mapping confirmed the disruption of the gmd gene. This mutant decreased its ability to kill infected mice and showed decreased virulence in infected HepG2 cells. Compared with wild-type KpL1, the gmd mutant lost fucose in capsular polysaccharides, increased biofilm formation and interacted more readily with macrophages. The mutant displayed morphological changes with long filament forms and less uniform sizes. The mutation also converted the serotype from K1 of wild-type to K2 and weak K3. The results indicate that disruption of the fucose synthesis gene affected the pathophysiology of this bacterium and may be related to the virulence of this KpL1 strain.

  15. Enhanced Virulence Gene Activity of Agrobacterium in Muskmelon (Cucumis melo L. cv. ‘Birdie’

    Directory of Open Access Journals (Sweden)

    Abul K.M. MOHIUDDIN

    2011-05-01

    Full Text Available Muskmelon (Cucumis melo L. cultivar ‘Birdie’, was evaluated for its response to the tumorigenic Agrobacterium tumefaciens and the oncogenic A. rhizogenes strains. Stem and petiole of three week-old in vitro-grown muskmelon plants were inoculated with five strains of A. tumefaciens and A. rhizogenes each and observed phenotypic expressions i.e. induction of crown galls and hairy roots. This phenotypic expression was efficaciously increased when virulence gene activity of different strains of two Agrobacterium species was enhanced. Intensive studies on enhancement of virulence gene activity of Agrobacterium found to be correlated to the appropriate light intensity (39.3 μmol m-2 s-1 with a specific concentration of monocyclic phenolic compound, acetosyringone (20 μM. The gene activity was also influenced by several other physical factors e.g. plant tissue type, Agrobacterium species and their strains, and plant tissue-Agrobacterium interaction. Among the different A. tumefaciens strains, LBA4404 showed the best virulence gene activity in both stem and petiole through the formation of higher rate of crown galls. On the other hand, strain 15834 of A. rhizogenes showed better gene activity in stem and 8196 in petiole through the formation of higher rate of hairy roots as well as higher average number of hairy roots. Among the two different types of explants, petiole was more susceptible to both Agrobacterium species. Thus it was concluded that future muskmelon transformation study can efficiently be carried out with LBA4404, 15834 and 8196 strains using petiole explants by adding 20 μM of acetosyringone in the medium.

  16. Low distribution of genes encoding virulence factors in Shigella flexneri serotypes 1b clinical isolates from eastern Chinese populations.

    Science.gov (United States)

    Fan, Wenting; Qian, Huimin; Shang, Wenkang; Ying, Chen; Zhang, Xuedi; Cheng, Song; Gu, Bing; Ma, Ping

    2017-01-01

    The ability of Shigella to invade, colonize, and eventually kill host cells is influenced by many virulence factors. However, there is no analysis of related genes in Jiangsu Province of China so far. Shigella flexneri was collected from 13 cities of Jiangsu Province through the provincial Centers for Disease Control (CDC) for analysis of distribution of major virulence genes (ipaH, ipaBCD, ial, virF, virB, sigA, set1A, sepA, sat, pic, set1B and sen) detected by PCR technology. A total of 545 isolates received were confirmed as S. flexneri which belongs to 11 serotypes of S. flexneri, among which serotype 2a was the most predominant (n = 223, 40.9%). All isolates were positive for ipaH gene, followed by sat (94.1%), sigA (78.9%), set1B (78.0%), pic (77.6%), set1A (74.5%), virF (64.8%), sepA (63.5%), sen (56.9%), ipaBCD (50.5%), ial (47.0%) and virB (47.0%). The presence of virulence genes in different serotypes was distinct. The existence of virulence genes of serotype 1b was generally lower than other serotype-the positive rate for virulence genes was between 0.0 and 14.1% except for ipaH and sat. In addition, virulence genes also fluctuated in different regions and at different times in Jiangsu province. The result of analysis on the relationship between virulence genes of S. flexneri showed that the existence of virulence genes of Shigella could be well represented by multiplex PCR combination ipaH + ial + set1A, which had a high clinical value. The present study was designed to explore the prevalence of 12 S. flexneri-associated virulence genes. The data showed high diversity of virulence genes with regard to periods, regions and serotypes in Jiangsu Province of China.

  17. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    Science.gov (United States)

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  18. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  19. The Influences of Bacillus subtilis on the Virulence of Aeromonas hydrophila and Expression of luxS Gene of Both Bacteria Under Co-cultivation.

    Science.gov (United States)

    Ren, Yuwei; Li, Sisi; Wu, Zhixin; Zhou, Chengchong; Zhang, Ding; Chen, Xiaoxuan

    2017-06-01

    The aim of this study was to explore the influence of Bacillus subtilis CH9 on Aeromonas hydrophila SC2005. The transcription level of virulence genes of A. hydrophila SC2005 and its hemolysin activity as well as its cytotoxicity were analyzed when B. subtilis CH9 and A. hydrophila SC2005 were co-cultured. The results indicated that the transcription levels of four virulence genes of A. hydrophila, including aer, ahyB, hcp, and emp, decreased when A. hydrophila was cultured with B. subtilis CH9. Furthermore, the extracellular products of A. hydrophila showed attenuated hemolysin activity as well as cytotoxicity when A. hydrophila was cultured with B. subtilis CH9. Finally, the transcriptional levels of luxS genes of B. subtilis CH9 and A. hydrophila SC2005 were determined when these two species were co-cultured. RT-qPCR results suggested that the transcription level of A. hydrophila was down-regulated significantly. On the contrary, the transcription level of B. subtilis CH9 was up-regulated significantly. These results suggested that the probiotic role of B. subtilis CH9 is related to the inhibition of growth and virulence of A. hydrophila SC2005, and quorum sensing may be involved.

  20. Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean

    Science.gov (United States)

    Varenhorst, Adam J.; McCarville, Michael T.; O’Neal, Matthew E.

    2015-01-01

    Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America. PMID:26372106

  1. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    Science.gov (United States)

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Virulence-associated gene profiling of Streptococcus suis isolates by PCR

    NARCIS (Netherlands)

    Silva, L.M.G.; Baums, C.G.; Rehm, T.; Wisselink, H.J.; Goethe, R.; Valentin-Weigand, P.

    2006-01-01

    Definition of virulent Streptococcus suis strains is controversial. One successful approach for identification of virulent European strains is differentiation of capsular serotypes (or the corresponding cps types) and subsequent detection of virulence-associated factors, namely the extracellular

  3. Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P.

    Science.gov (United States)

    Ko, Jae-hyeong; Izadjoo, Mina; Altman, Sidney

    2008-08-01

    External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes were expressed in E. coli.

  4. Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P

    OpenAIRE

    Ko, Jae-hyeong; Izadjoo, Mina; Altman, Sidney

    2008-01-01

    External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes ...

  5. Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates.

    Science.gov (United States)

    Salgueiro, Vivian Carolina; Iorio, Natalia Lopes Pontes; Ferreira, Marcelle Cristina; Chamon, Raiane Cardoso; Dos Santos, Kátia Regina Netto

    2017-01-13

    Staphylococcus epidermidis is an opportunistic pathogen involved in hospital-acquired infections, particularly in those related to medical devices. This study characterized 50 genetically unrelated S. epidermidis isolates from bloodstream infections (BSIs, n = 31) and nares (n = 19) of neonates in relation to staphylococcal chromosomal cassette mec (SCCmec) type, biofilm production and associated genes, and the arginine catabolic mobile elements (ACME), in order to detect virulence factors that could discriminate a potential invasiveness isolate or predict an increasing pathogenicity. Isolates from both groups showed no difference for biofilm production and ACME genes detection. However, BSI isolates harbored more frequently the sdrF and sesI genes (p epidermidis isolates from neonates, BSI isolates harbored more frequently the sdrF and sesI adhesin genes, while nasal isolates were very variable in SCCmec composition. These aspects could be advantageous to improve colonization in the host increasing its pathogenicity.

  6. Yersinia enterocolitica of porcine origin: carriage of virulence genes and genotypic diversity.

    Science.gov (United States)

    Tadesse, Daniel A; Bahnson, Peter B; Funk, Julie A; Morrow, W E Morgan; Abley, Melanie J; Ponte, Valeria A; Thakur, Siddhartha; Wittum, Thomas; DeGraves, Fred J; Rajala-Schultz, Paivi J; Gebreyes, Wondwossen A

    2013-01-01

    Yersinia enterocolitica is an important foodborne pathogen, and pigs are recognized as a major reservoir and potential source of pathogenic strains to humans. A total of 172 Y. enterocolitica recovered from conventional and antimicrobial-free pig production systems from different geographic regions (North Carolina, Ohio, Michigan, Wisconsin, and Iowa) were investigated to determine their pathogenic significance to humans. Phenotypic and genotypic diversity of the isolates was assessed using antibiogram, serogrouping, and amplified fragment length polymorphism (AFLP). Carriage of chromosomal and plasmid-borne virulence genes were investigated using polymerase chain reaction. A total of 12 antimicrobial resistance patterns were identified. More than two-thirds (67.4%) of Y. enterocolitica were pan-susceptible, and 27.9% were resistant against β-lactams. The most predominant serogroup was O:3 (43%), followed by O:5 (25.6%) and O:9 (4.1%). Twenty-two of 172 (12.8%) isolates were found to carry Yersinia adhesion A (yadA), a virulence gene encoded on the Yersinia virulence plasmid. Sixty-nine (40.1%) isolates were found to carry ail gene. The ystA and ystB genes were detected in 77% and 26.2% of the strains, respectively. AFLP genotyping of isolates showed wide genotypic diversity and were grouped into nine clades with an overall genotypic similarity of 66.8-99.3%. AFLP analysis revealed that isolates from the same production system showed clonal relatedness, while more than one genotype of Y. enterocolitica circulates within a farm.

  7. The Virulence Regulator Rns Activates the Expression of CS14 Pili

    Directory of Open Access Journals (Sweden)

    Maria Del Rocio Bodero

    2016-12-01

    Full Text Available Although many viral and bacterial pathogens cause diarrhea, enterotoxigenic E. coli (ETEC is one of the most frequently encountered in impoverished regions where it is estimated to kill between 300,000 and 700,000 children and infants annually. Critical ETEC virulence factors include pili which mediate the attachment of the pathogen to receptors in the intestinal lumen. In this study we show that the ETEC virulence regulator Rns positively regulates the expression of CS14 pili. Three Rns binding sites were identified upstream of the CS14 pilus promoter centered at −34.5, −80.5, and −155.5 relative to the Rns-dependent transcription start site. Mutagenesis of the promoter proximal site significantly decreased expression from the CS14 promoter. In contrast, the contribution of Rns bound at the promoter distal site was negligible and largely masked by occupancy of the promoter proximal site. Unexpectedly, Rns bound at the site centered at −80.5 had a slight but statistically significant inhibitory effect upon the pilin promoter. Nevertheless, this weak inhibitory effect was not sufficient to overcome the substantial promoter activation from Rns bound to the promoter proximal site. Thus, CS14 pili belong to a group of pili that depend upon Rns for their expression.

  8. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    Science.gov (United States)

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  9. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence.

    Science.gov (United States)

    Balinsky, C A; Delhon, G; Afonso, C L; Risatti, G R; Borca, M V; French, R A; Tulman, E R; Geary, S J; Rock, D L

    2007-10-01

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, DeltaKLP, was derived from the pathogenic strain SPPV-SA. DeltaKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). DeltaKLP-infected cells exhibited a reduction in Ca(2+)-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, DeltaKLP was markedly attenuated, since all DeltaKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with DeltaKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep.

  10. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    Science.gov (United States)

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Observed and predicted changes in virulence gene frequencies at 11 loci in a local barley powdery mildew population

    DEFF Research Database (Denmark)

    Hovmøller, M.S.; Munk, L.; Østergård, H.

    1993-01-01

    The aim of the present study was to investigate observed and predicted changes in virulence gene frequencies in a local aerial powdery mildew population subject to selection by different host cultivars in a local barley area. Observed changes were based on genotypic frequencies obtained through...... a survey comprising 11 virulence loc. Predictions were based on a model where selection forces were estimated through detailed mapping in the local area of host cultivars and their resistance genes, and taking into account the changes in distribution of host cultivars during the year caused by growth...... with a constant distribution of host cultivars. Significant changes in gene frequencies were observed for virulence genes subject to strong direct selection as well as for genes subject mainly to indirect selection (hitchhiking). These patterns of changes were generally as predicted from the model. The influence...

  12. miRNA regulation of cytokine genes

    OpenAIRE

    Asirvatham, Ananthi J.; Magner, William J.; Tomasi, Thomas B.

    2009-01-01

    In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.

  13. Helicobacter pylori virulence genes and microevolution in host and the clinical outcome: review article

    Directory of Open Access Journals (Sweden)

    Seyedeh Zahra Bakhti

    2014-12-01

    Full Text Available Helicobacter pylori (H. pylori is the causative agent in development of gastroduode-nal diseases, such as chronic atrophic gastritis, peptic ulcers, mucosa associated lym-phoid tissue (MALT lymphoma, and gastric cancer. H. pylori has been associated with inflammation in cardia, showing the fact that infection with this bacterium could also be a risk factor for gastric cardia cancer. Gastric cancer is the fourth most common cancer worldwide. This is the second leading cause of cancer-related deaths, and ap-proximately 700,000 people succumb each year to gastric adenocarcinoma. It has been estimated that 69% of the Iranian population currently harbor H. pylori infection. The prevalence of duodenal ulcer and gastric cancer is high in Iranian populations. However, this has been largely influenced by geographic and/or ethnic origin. Epidemi-ology studies have shown that host, environmental, and bacterial factors determine the outcome of H. pylori infection. The bacterium contains allelic diversity and high genet-ic variability into core- and virulence-genes and that this diversity is geographically and ethnically structured. The genetic diversity within H. pylori is greater than within most other bacteria, and its diversity is more than 50-fold higher than that of human DNA. The maintenance of high diversification makes this bacterium to cope with particular challenges in individual hosts. It has been reported that the recombination contributed to the creation of new genes and gene family. Furthermore, the microevolution in cagA and vacA genes is a common event, leading to a change in the virulence phenotype. These factors contribute to the bacterial survival in acidic conditions in stomach and protect it from host immune system, causing tissue damage and clinical disease. In this review article, we discussed the correlation between H. pylori virulence factors and clin-ical outcomes, microevolution of H. pylori virulence genes in a single host

  14. Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF

    Science.gov (United States)

    Koppolu, Veerendra; Osaka, Ichie; Skredenske, Jeff M.; Kettle, Bria; Hefty, P. Scott; Li, Jiaqin

    2013-01-01

    VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genes icsA, virB, icsB, and ipaB in Shigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion by Shigella. The effect of SE-1 on invasion required preincubation of Shigella with SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent. PMID:24002059

  15. Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung.

    Science.gov (United States)

    Naughton, Sharna; Parker, Dane; Seemann, Torsten; Thomas, Torsten; Turnbull, Lynne; Rose, Barbara; Bye, Peter; Cordwell, Stuart; Whitchurch, Cynthia; Manos, Jim

    2011-01-01

    Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients.

  16. Gene Regulation in Streptococcus pneumoniae: interplay between nutrition and virulence

    NARCIS (Netherlands)

    W.T. Hendriksen (Wouter)

    2010-01-01

    textabstractStreptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium, which belongs to the species of streptococci. Other pathogenic bacteria belonging to this class include Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus suis, Streptococcus uberis, Streptococcus

  17. Evidence of cross gene regulation of some virulence factors of ...

    African Journals Online (AJOL)

    David Mtz

    2013-07-10

    Jul 10, 2013 ... Streptococcus intermedius is a bacteria of this group that can promote the development of deep- seated infections in the brain and liver and has been associated with periodontal disease and implantitis. (Tomoyasu et al., 2010; Pecharki et al., 2008). S. intermedius also contributes to the formation of biofilms.

  18. Evidence of cross gene regulation of some virulence factors of ...

    African Journals Online (AJOL)

    David Mtz

    2013-07-10

    Jul 10, 2013 ... 2Facultad de Odontología/Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de ..... App. Environ. Microbiol. 69:769-778. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ (2012) Preva- lence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res.

  19. Evidence of cross gene regulation of some virulence factors of ...

    African Journals Online (AJOL)

    Periodontal disease has been associated with poor dental care, which promotes the accumulation of bacteria and the development of diseases of the mouth. Porphyromonas gingivalis are anaerobic Gramnegative bacteria found in the subgingival plaque. They are largely responsible for chronic periodontal disease.

  20. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    Science.gov (United States)

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Akhil [Univ. of Hawaii, Manoa, HI (United States); Ohm, Robin A. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Oxiles, Lindsay [Univ. of Hawaii, Manoa, HI (United States); Brooks, Fred [Univ. of Hawaii, Manoa, HI (United States); Lawrence, Christopher B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Grigoriev, Igor V. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Cho, Yangrae [Univ. of Hawaii, Manoa, HI (United States)

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.

  2. Gene regulation by mechanical forces

    Science.gov (United States)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.

    1997-01-01

    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  3. Mathematical Models of Gene Regulation

    Science.gov (United States)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  4. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  5. Detection of Salmonella spp. survival and virulence in poultry feed by targeting the hilA gene.

    Science.gov (United States)

    Park, S H; Jarquin, R; Hanning, I; Almeida, G; Ricke, S C

    2011-08-01

    The objectives of this work were to evaluate immunomagnetic beads and a reverse transcriptase (RT)-PCR method for the detection of Salmonella inoculated into feed. In addition, a reverse transcriptase (RT)-PCR method was evaluated for quantifying virulence gene hilA expression of Salmonella ssp. in poultry feed matrices and utilized to determine the influence of poultry feed environmental factors on Salmonella hilA expression. An immunomagnetic separation technique was evaluated for increased recovery of Salmonella from feed. Salmonella cultures were inoculated into feed samples and exposed to heat treatments of 70°C and sampled periodically. From these samples, RNA was collected and hilA gene expression was measured relative to the housekeeping 16S rRNA gene. The immunomagnetic bead protocol increased recovery by 1 log. The up-regulation of hilA was demonstrated after 5 and 10 min of inoculated feed samples being exposed to heat treatment. From this work, the data indicate that the ability to detect live Salmonella cells in feed samples may be increased by targeting the hilA gene. Foodborne salmonellosis originating from poultry is a major problem, and feed is a leading source of contamination in poultry, but detection in feed is complicated by low concentrations. The assays and experiments in this study examine possible improvements to recovery and detection of Salmonella in feed. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Aeromonas hydrophila from marketed mullet (Mugil cephalus) in Egypt: PCR characterization of β-lactam resistance and virulence genes.

    Science.gov (United States)

    Ramadan, Hazem; Ibrahim, Nermin; Samir, Mohamed; Abd El-Moaty, Amany; Gad, Tamer

    2018-02-17

    Aeromonas hydrophila (A. hydrophila) has been isolated from various fish species in Egypt and is known to carry virulence and antimicrobial resistance genes, which pose risk for public health. The aim of the present study is to report, for the first time, the infection of mullet (Mugil cephalus) with A. hydrophila and to clarify the potential association between antimicrobial resistance and virulence traits encoded in A. hydrophila. In this study, the occurrence of A. hydrophila in marketed mullet and the antimicrobial resistance phenotypes of these isolates were determined. A. hydrophila isolates were screened for the presence of virulence and β-lactam resistance genes; the correlation between both gene groups was also investigated. The infection rate of examined mullet with A. hydrophila was 37% (50/135). The highest antimicrobial resistance was detected to cefoxitin (100%), followed by ampicillin (84%), ceftazidime (56%) and cefotaxime (40%). Only, 4% of the isolates were resistant to erythromycin; 6% were resistant to both gentamicin and kanamycin with no resistance to ciprofloxacin. Variable frequencies of virulence and β-lactam resistance genes were evident by PCR, where aerA and bla TEM predominated. The study also indicated a general weak positive correlation (R=0.3) between both virulence and β-lactam resistance genes. Some of the studied virulence genes (e.g. aerA:hlyA and hlyA:ast) were found to correlate positively. Presence of virulence and resistance genes in A. hydrophila from food sources poses a serious threat to public health. To our knowledge, this is the first report describing the occurrence of A. hydrophila in mullet and highlighting the coexistence of virulence and β-lactam resistance genes encoded by these bacteria. This data provides insights into the potential association of antimicrobial resistance and virulence genes in A. hydrophila from marketed mullet in Egypt, which could pose threats to humans even if a weak positive correlation

  7. Molecular screening of virulence genes in extraintestinal pathogenic Escherichia coli isolated from human blood culture in Brazil.

    Science.gov (United States)

    Koga, Vanessa L; Tomazetto, Geizecler; Cyoia, Paula S; Neves, Meiriele S; Vidotto, Marilda C; Nakazato, Gerson; Kobayashi, Renata K T

    2014-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the main etiological agents of bloodstream infections caused by Gram-negative bacilli. In the present study, 20 E. coli isolates from human hemocultures were characterized to identify genetic features associated with virulence (pathogenicity islands markers, phylogenetic group, virulence genes, plasmid profiles, and conjugative plasmids) and these results were compared with commensal isolates. The most prevalent pathogenicity island, in strains from hemoculture, were PAI IV536, described by many researchers as a stable island in enterobacteria. Among virulence genes, iutA gene was found more frequently and this gene enconding the aerobactin siderophore receptor. According to the phylogenetic classification, group B2 was the most commonly found. Additionally, through plasmid analysis, 14 isolates showed plasmids and 3 of these were shown to be conjugative. Although in stool samples of healthy people the presence of commensal strains is common, human intestinal tract may serve as a reservoir for ExPEC.

  8. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide

    Science.gov (United States)

    Ares, Miguel A.; Fernández-Vázquez, José L.; Rosales-Reyes, Roberto; Jarillo-Quijada, Ma. Dolores; von Bargen, Kristine; Torres, Javier; González-y-Merchand, Jorge A.; Alcántar-Curiel, María D.; De la Cruz, Miguel A.

    2016-01-01

    Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae. PMID:26904512

  9. Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation.

    Science.gov (United States)

    Odermatt, Nina T; Sala, Claudia; Benjak, Andrej; Kolly, Gaëlle S; Vocat, Anthony; Lupien, Andréanne; Cole, Stewart T

    2017-08-15

    A handful of nucleoid-associated proteins (NAPs) regulate the vast majority of genes in a bacterial cell. H-NS, the histone-like nucleoid-structuring protein, is one of these NAPs and protects Escherichia coli from foreign gene expression. Though lacking any sequence similarity with E. coli H-NS, Rv3852 was annotated as the H-NS ortholog in Mycobacterium tuberculosis, as it resembles human histone H1. The role of Rv3852 was thoroughly investigated by immunoblotting, subcellular localization, construction of an unmarked rv3852 deletion in the M. tuberculosis genome, and subsequent analysis of the resulting Δrv3852 strain. We found that Rv3852 was predominantly present in the logarithmic growth phase with a decrease in protein abundance in stationary phase. Furthermore, it was strongly associated with the cell membrane and not detected in the cytosolic fraction, nor was it secreted. The Δrv3852 strain displayed no growth defect or morphological abnormalities. Quantitative measurement of nucleoid localization in the Δrv3852 mutant strain compared to that in the parental H37Rv strain showed no difference in nucleoid position or spread. Infection of macrophages as well as severe combined immunodeficient (SCID) mice demonstrated that loss of Rv3852 had no detected influence on the virulence of M. tuberculosis We thus conclude that M. tuberculosis Rv3852 is not involved in pathogenesis and is not a typical NAP. The existence of an as yet undiscovered Rv3852 ortholog cannot be excluded, although this role is likely played by the well-characterized Lsr2 protein.IMPORTANCEMycobacterium tuberculosis is the causative agent of the lung infection tuberculosis, claiming more than 1.5 million lives each year. To understand the mechanisms of latent infection, where M. tuberculosis can stay dormant inside the human host, we require deeper knowledge of the basic biology and of the regulatory networks. In our work, we show that Rv3852, previously annotated as H-NS, is not a typical

  10. Bacterial pathogenesis and interleukin-17: interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection.

    Science.gov (United States)

    Chamoun, Michelle N; Blumenthal, Antje; Sullivan, Matthew J; Schembri, Mark A; Ulett, Glen C

    2018-01-18

    Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.

  11. Prevalence of Putative Virulence Genes in Campylobacter and Arcobacter Species Isolated from Poultry and Poultry By-Products in Tunisia.

    Science.gov (United States)

    Jribi, Hela; Sellami, Hanen; Hassena, Amal Ben; Gdoura, Radhouane

    2017-10-01

    Campylobacter and Arcobacter spp. are common causes of gastroenteritis in humans; these infections are commonly due to undercooked poultry. However, their virulence mechanism is still poorly understood. The aim of this study was to evaluate the presence of genotypic virulence markers in Campylobacter and Arcobacter species using PCR. The prevalence of virulence and cytolethal distending toxin (CDT) genes was estimated in 71 Campylobacteraceae isolates. PCR was used to detect the presence of virulence genes (iam, cadF, virB1, flaA, cdtA, cdtB, and cdtC) using specific primers for a total of 45 Campylobacter isolates, including 37 C. jejuni and 8 C. coli. All the Campylobacter isolates were positive for the cadF gene. The plasmid gene virB11 was not detected in any strain. The invasion associated marker was not detected in C. jejuni. Lower detection rates were observed for flaA, cdtA, cdtB, and cdtC. The presence of nine putative Arcobacter virulence genes (cadF, ciaB, cj1349, mviN, pldA, tlyA, irgA, hecA, and hecB) was checked in a set of 22 Arcobacter butzleri and 4 Arcobacter cryaerophilus isolates. The pldA and mviN genes were predominant (88.64%). Lower detection rates were observed for tlyA (84.76%), ciaB (84.61%), cadF and cj1349 (76.92%), IrgA and hecA (61.53%), and hecB (57.69%). The findings revealed that a majority of the Campylobacteraceae strains have these putative virulence genes that may lead to pathogenic effects in humans.

  12. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis.

    Science.gov (United States)

    Fuller, T E; Kennedy, M J; Lowery, D E

    2000-07-01

    P. multocida is the causative agent of several economically significant veterinary diseases occurring in numerous species worldwide. Signature-tagged mutagenesis (STM) is a powerful genetic technique used to simultaneously screen multiple transposon mutants of a pathogen for their inability to survive in vivo. We have designed an STM system based on a mini-Tn10 transposon, chemiluminescent detection and semi-quantitative analysis and have identified transposon insertions into genes of Pasteurella multocida that attenuate virulence in a septicemic mouse model. A bank of 96 transposons containing strongly-hybridizing tags was used to create 19 pools of P. multocida transposon mutants containing approximately 70-90 mutants/pool. A total of 62 mutants were attenuated when checked individually, and 25 unique single transposon insertion mutations were identified from this group. The sequence of the disrupted ORF for each attenuated mutant was determined by either cloning or PCR-amplifying and sequencing the flanking regions. The attenuated mutants contained transposon insertions in genes encoding biosynthetic enzymes, virulence factors, regulatory components and unknown functions. This study should contribute to an understanding of the pathogenic mechanisms by which P. multocida and other pathogens in the Pasteurellaceae family cause disease and identify novel live vaccine candidates and new potential antibiotic targets. Copyright 2000 Academic Press.

  13. Prevalence of Virulence/Stress Genes in Campylobacter jejuni from Chicken Meat Sold in Qatari Retail Outlets.

    Directory of Open Access Journals (Sweden)

    Marawan Abu-Madi

    Full Text Available Chicken meat from the shelves of supermarkets in Qatar was tested for the presence of Campylobacter spp. and the presence of five virulence genes (htrB, cdtB, clpP, cadF and ciaB was assessed in isolates. Forty eight percent of the chickens provided for supermarkets by Saudi (53% and Qatari (45.9% producers were found to be contaminated and the most important factor affecting the overall prevalence of contaminated chickens was the store from which chicken samples originated. Variation in prevalence of Campylobacter in chicken meat from different stores was evident even when the same producer supplied the three stores in our survey. Differences in the prevalence and in the combinations of virulence genes in isolates that can and cannot grow in a classic maintenance medium (Karmali were identified, providing a starting point for linking presence/absence of particular virulence genes with actual in vivo virulence and pathogenicity. Because of the relatively low infective doses of Campylobacter that are required to initiate infection in humans, it will be important to explore further the relationships we identified between certain Campylobacter virulence genes and their capacity for survival in poultry meat, and hence their contribution to the incidence of campylobacteriosis.

  14. Prevalence of Virulence/Stress Genes in Campylobacter jejuni from Chicken Meat Sold in Qatari Retail Outlets.

    Science.gov (United States)

    Abu-Madi, Marawan; Behnke, Jerzy M; Sharma, Aarti; Bearden, Rebecca; Al-Banna, Nadia

    2016-01-01

    Chicken meat from the shelves of supermarkets in Qatar was tested for the presence of Campylobacter spp. and the presence of five virulence genes (htrB, cdtB, clpP, cadF and ciaB) was assessed in isolates. Forty eight percent of the chickens provided for supermarkets by Saudi (53%) and Qatari (45.9%) producers were found to be contaminated and the most important factor affecting the overall prevalence of contaminated chickens was the store from which chicken samples originated. Variation in prevalence of Campylobacter in chicken meat from different stores was evident even when the same producer supplied the three stores in our survey. Differences in the prevalence and in the combinations of virulence genes in isolates that can and cannot grow in a classic maintenance medium (Karmali) were identified, providing a starting point for linking presence/absence of particular virulence genes with actual in vivo virulence and pathogenicity. Because of the relatively low infective doses of Campylobacter that are required to initiate infection in humans, it will be important to explore further the relationships we identified between certain Campylobacter virulence genes and their capacity for survival in poultry meat, and hence their contribution to the incidence of campylobacteriosis.

  15. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.

    Science.gov (United States)

    DeDiego, Marta L; Nieto-Torres, Jose L; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-12-19

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  16. CORONAVIRUS VIRULENCE GENES WITH MAIN FOCUS ON SARS-CoV ENVELOPE GENE

    Science.gov (United States)

    DeDiego, Marta L.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-01-01

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and 7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  17. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana.

    Science.gov (United States)

    Hevia, Montserrat A; Canessa, Paulo; Müller-Esparza, Hanna; Larrondo, Luis F

    2015-07-14

    The circadian clock of the plant model Arabidopsis thaliana modulates defense mechanisms impacting plant-pathogen interactions. Nevertheless, the effect of clock regulation on pathogenic traits has not been explored in detail. Moreover, molecular description of clocks in pathogenic fungi--or fungi in general other than the model ascomycete Neurospora crassa--has been neglected, leaving this type of question largely unaddressed. We sought to characterize, therefore, the circadian system of the plant pathogen Botrytis cinerea to assess if such oscillatory machinery can modulate its virulence potential. Herein, we show the existence of a functional clock in B. cinerea, which shares similar components and circuitry with the Neurospora circadian system, although we found that its core negative clock element FREQUENCY (BcFRQ1) serves additional roles, suggesting extracircadian functions for this protein. We observe that the lesions produced by this necrotrophic fungus on Arabidopsis leaves are smaller when the interaction between these two organisms occurs at dawn. Remarkably, this effect does not depend solely on the plant clock, but instead largely relies on the pathogen circadian system. Genetic disruption of the B. cinerea oscillator by mutation, overexpression of BcFRQ1, or by suppression of its rhythmicity by constant light, abrogates circadian regulation of fungal virulence. By conducting experiments with out-of-phase light:dark cycles, we confirm that indeed, it is the fungal clock that plays the main role in defining the outcome of the Arabidopsis-Botrytis interaction, providing to our knowledge the first evidence of a microbial clock modulating pathogenic traits at specific times of the day.

  18. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  19. Inactivation and Gene Expression of a Virulent WastewaterEscherichia coliStrain and the Nonvirulent CommensalEscherichia coliDSM1103 Strain upon Solar Irradiation

    KAUST Repository

    Aljassim, Nada I.

    2017-03-06

    This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.

  20. Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts.

    Science.gov (United States)

    Shirzad Aski, Hesamaddin; Tabatabaei, Mohammad

    2016-07-01

    Pasteurella multocida infects a wide range of animals and the infection may spread to human through animal bites and scratches. Pasteurella multocida isolates, obtained from several clinically healthy and diseased animals (bovine, sheep, goat, poultry, dog and cat), were investigated for capsule biosynthesis (capA, B, D, E and F) and expression of 22 virulence-associated genes using Polymerase Chain Reaction (PCR). Multiplex PCR results revealed expression of capA, capD and capB genes in 81 (61.83%), 30 (22.90%) and 10 isolates (7.29%), respectively. However, neither of the isolates harbored capE or capF genes and ten isolates (7.29%) were negative for all cap genes. The expression of the capB gene was observed in small ruminant isolates. The occurrence of the ompA, ompH, oma87, sodA and sodC genes was noticed in all of the samples. More than 90% of the isolates harbored hgbA (96.18%), ptfA (95.41%), exbBD-tonB (93.12%), nanB (93.12%) and plbB genes (90.83%). The transferrin binding protein encoding gene tbpA was exclusively detected in the ruminant isolates. The limited number of isolates (25.95%) harbored dermonecrotoxin gene (toxA) and the highest occurrence was noted in the small ruminants, and the capsular type D isolates. This study highlights that the toxA, tbpA, and pfhA genes can be considered as important epidemiological markers for the characterization of P. multocida isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content.

    Science.gov (United States)

    Vandroemme, Joachim; Cottyn, Bart; Baeyen, Steve; De Vos, Paul; Maes, Martine

    2013-11-25

    Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.

  2. Catecholamines promote the expression of virulence and oxidative stress genes in Porphyromonas gingivalis.

    Science.gov (United States)

    Graziano, T S; Closs, P; Poppi, T; Franco, G C; Cortelli, J R; Groppo, F C; Cogo, K

    2014-10-01

    Stress has been identified as an important risk factor in the development of many infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, is considered an important pathogen in chronic periodontitis. Microorganisms, including P. gingivalis, that participate in infectious diseases have been shown to respond to catecholamines released during stress processes by modifying their growth and virulence. Therefore, the purpose of this study was to evaluate the effects of adrenaline and noradrenaline on the growth, antimicrobial susceptibility and gene expression in P. gingivalis. P. gingivalis was incubated in the presence of adrenaline and noradrenaline (100 μm) for different time-periods in rich (Tryptic soy broth supplemented with 0.2% yeast extract, 5 μg/mL of hemin and 1 μg/mL of menadione) and poor (serum-SAPI minimal medium and serum-SAPI minimal medium supplemented with 5 μg/mL of hemin and 1 μg/mL of menadione) media, and growth was evaluated based on absorbance at 660 nm. Bacterial susceptibility to metronidazole was examined after exposure to adrenaline and noradrenaline. The expression of genes involved in iron acquisition, stress oxidative protection and virulence were also evaluated using RT-quantitative PCR. Catecholamines did not interfere with the growth of P. gingivalis, regardless of nutritional or hemin conditions. In addition, bacterial susceptibility to metronidazole was not modified by exposure to adrenaline or noradrenaline. However, the expression of genes related to iron acquisition (hmuR), oxidative stress (tpx, oxyR, dps, sodB and aphC) and pathogenesis (hem, hagA and ragA) were stimulated upon exposure to adrenaline and/or noradrenaline. Adrenaline and noradrenaline can induce changes in gene expression related to oxidative stress and virulence factors in P. gingivalis. The present study is, in part, a step toward understanding the stress-pathogen interactions that may

  3. Virulence gene profiles of Arcobacter species isolated from animals, foods of animal origin, and humans in Andhra Pradesh, India.

    Science.gov (United States)

    Sekhar, M Soma; Tumati, S R; Chinnam, B K; Kothapalli, V S; Sharif, N Mohammad

    2017-06-01

    This study aimed to detect putative virulence genes in Arcobacter species of animal and human origin. A total of 41 Arcobacter isolates (16 Arcobacter butzleri, 13 Arcobacter cryaerophilus, and 12 Arcobacter skirrowii) isolated from diverse sources such as fecal swabs of livestock (21), raw foods of animal origin (13), and human stool samples (7) were subjected to a set of six uniplex polymerase chain reaction assays targeting Arcobacter putative virulence genes (ciaB, pldA, tlyA, mviN, cadF, and cj1349). All the six virulence genes were detected among all the 16 A. butzleri isolates. Among the 13 A. cryaerophilus isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 61.5, 84.6, 76.9, 76.9, 61.5, and 61.5% of isolates, respectively. Among the 12 A. skirrowii isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 50.0, 91.6, 83.3, 66.6, 50, and 50% of isolates, respectively. Putative virulence genes were detected in majority of the Arcobacter isolates examined. The results signify the potential of Arcobacter species as an emerging foodborne pathogen.

  4. Virulence gene profiles of Arcobacter species isolated from animals, foods of animal origin, and humans in Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    M. Soma Sekhar

    2017-06-01

    Full Text Available Aim: This study aimed to detect putative virulence genes in Arcobacter species of animal and human origin. Materials and Methods: A total of 41 Arcobacter isolates (16 Arcobacter butzleri, 13 Arcobacter cryaerophilus, and 12 Arcobacter skirrowii isolated from diverse sources such as fecal swabs of livestock (21, raw foods of animal origin (13, and human stool samples (7 were subjected to a set of six uniplex polymerase chain reaction assays targeting Arcobacter putative virulence genes (ciaB, pldA, tlyA, mviN, cadF, and cj1349. Results: All the six virulence genes were detected among all the 16 A. butzleri isolates. Among the 13 A. cryaerophilus isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 61.5, 84.6, 76.9, 76.9, 61.5, and 61.5% of isolates, respectively. Among the 12 A. skirrowii isolates, cadF, ciaB, cj1349, mviN, pldA, and tlyA genes were detected in 50.0, 91.6, 83.3, 66.6, 50, and 50% of isolates, respectively. Conclusion: Putative virulence genes were detected in majority of the Arcobacter isolates examined. The results signify the potential of Arcobacter species as an emerging foodborne pathogen.

  5. High Prevalence of Virulence Genes in Specific Genotypes of Atypical Enteropathogenic Escherichia coli.

    Science.gov (United States)

    Xu, Yanmei; Bai, Xiangning; Jin, Yujuan; Hu, Bin; Wang, Hong; Sun, Hui; Fan, Ruyue; Fu, Shanshan; Xiong, Yanwen

    2017-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are emerging enteropathogens that have been detected worldwide. A collection of 228 aEPEC strains (121 from diarrheal patients, 27 from healthy carriers, 47 from animals and 33 from raw meats) were investigated for serotypes, virulence gene profiles and phylogenetic relationships. Sixty-six O serogroups were identified. Serogroup O51 was the most prevalent, followed by O119, O26 and O76. For the 20 virulence genes detected, statistically significant differences were observed in the overall prevalence of efa1 (lifA), nleB, nleE, set/ent, paa, and ehxA genes among strains from diarrheal patients, healthy carriers, animals and raw meats, respectively. Strains from diarrheal patients had significantly higher levels of efa1 (lifA) (29.8 vs. 0%, P = 0.0002), nleB (41.3 vs. 7.4%, P = 0.0004), nleE (43.8 vs. 7.4%, P = 0.0002) and set/ent (41.3 vs. 7.4%, P = 0.0004) genes than strains obtained from healthy carriers. The paa gene was identified more often in isolates from raw meats (63.6 vs. 14.8%, P < 0.0001), animals (42.6 vs. 14.8%, P < 0.0122), and diarrheal patients (36.4 vs. 14.8%, P < 0.0225) than in strains obtained from healthy carriers. The ehxA gene was detected more frequently in strains from raw meats than in strains from diarrheal patients (27.3 vs. 2.5%, P = 0.0000) and healthy carriers (27.3 vs. 7.4%, P = 0.0474). The phylogenetic marker, yjaA, was more frequently observed in strains among healthy carriers than in diarrheal patient strains. Among the 228 aEPEC strains, 79 sequence types (STs) were identified. The prominent STs, which comprised strains carrying the four OI-122 genes and lpfA, were ST40, ST328, and ST29. Overall, the results indicate that aEPEC strains isolated in China are highly heterogeneous. aEPEC strains that are potentially more pathogenic appear to be related to specific STs or clonal complexes and serotypes. The high prevalence of diarrhea-associated genes in animal or raw meat

  6. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization.

    Directory of Open Access Journals (Sweden)

    Misha I Kazi

    2016-04-01

    Full Text Available The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR's genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae's major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.

  7. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus.

    Directory of Open Access Journals (Sweden)

    Dongliang Wu

    2012-02-01

    Full Text Available LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms. T-toxin production is significantly increased in the dark in wild type (WT, whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1 is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H(2O(2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and

  8. Comparative Genomic Analysis of Lactococcus garvieae Strains Isolated from Different Sources Reveals Candidate Virulence Genes

    Directory of Open Access Journals (Sweden)

    Eiji Miyauchi

    2012-01-01

    Full Text Available Lactococcus garvieae is a major pathogen for fish. Two complete (ATCC 49156 and Lg2 and three draft (UNIUD074, 8831, and 21881 genome sequences of L. garvieae have recently been released. We here present the results of a comparative genomic analysis of these fish and human isolates of L. garvieae. The pangenome comprised 1,542 core and 1,378 dispensable genes. The sequenced L. garvieae strains shared most of the possible virulence genes, but the capsule gene cluster was found only in fish-pathogenic strain Lg2. The absence of the capsule gene cluster in other nonpathogenic strains isolated from mastitis and vegetable was also confirmed by PCR. The fish and human isolates of L. garvieae contained the specific two and four adhesin genes, respectively, indicating that these adhesion proteins may be involved in the host specificity differences of L. garvieae. The discoveries revealed by the pangenomic analysis may provide significant insights into the biology of L. garvieae.

  9. Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains.

    Science.gov (United States)

    Setoh, Yin Xiang; Prow, Natalie A; Rawle, Daniel J; Tan, Cindy Si En; Edmonds, Judith H; Hall, Roy A; Khromykh, Alexander A

    2015-06-01

    A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent. © 2015 The Authors.

  10. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways.

    Directory of Open Access Journals (Sweden)

    Michael Tscherner

    2015-10-01

    Full Text Available Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host.

  11. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Steven E Fiester

    Full Text Available Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen

  12. Virulence genes and cytokine profile in systemic murine Campylobacter coli infection.

    Science.gov (United States)

    Klančnik, Anja; Pogačar, Maja Šikić; Raspor, Peter; Abram, Maja; Možina, Sonja Smole; Vučković, Darinka

    2015-01-01

    Campylobacter coli are one of the most common bacteria in bacterial gastroenteritis and acute enterocolitis in humans. However, relatively little is known regarding the mechanisms of pathogenesis and host response to C. coli infections. To investigate the influence of genetic changes, we first used PCR to demonstrate the presence of the known virulence genes cadF, virB11, cdtB, cdtC and ceuE in the clinical isolate C. coli 26536, which was isolated from the liver of infected BALB/c mice. Sequence analyses of the cadF, virB11, cdtB and ceuE genes in C. coli 26536 confirmed the stability in these virulence genes during their transmission through the host. We further investigated C. coli infection for the bacterial clearance from the liver and spleen of infected mice, and for their immune response. C. coli persisted well in both organs, with better survival in the liver. We also determined the levels of several pro-inflammatory cytokines (i.e., interleukin [IL]-6, IL-12, interferon-γ, tumor necrosis factor-α) and the anti-inflammatory cytokine IL-10 in plasma and in liver homogenates from the infected mice, using enzyme-linked immunosorbent assays. The lowest levels among these cytokines were for tumor necrosis factor-α in the plasma and IL-6 in the liver on days 1, 3 and 8 post-infection. The most pronounced production was for IL-10, in both plasma (days 1 and 8 post-infection) and liver (day 8 post-infection), which suggests that it has a role in healing of the organ inflammation. Our findings showed dynamic relationships between pro- and anti-inflammatory cytokines and thus contribute toward clarification of the healing processes involved in the resolution of C. coli infections.

  13. Relationship between oviposition, virulence gene expression and parasitism success in Cotesia typhae nov. sp. parasitoid strains.

    Science.gov (United States)

    Benoist, R; Chantre, C; Capdevielle-Dulac, C; Bodet, M; Mougel, F; Calatayud, P A; Dupas, S; Huguet, E; Jeannette, R; Obonyo, J; Odorico, C; Silvain, J F; Le Ru, B; Kaiser, L

    2017-12-01

    Studying mechanisms that drive host adaptation in parasitoids is crucial for the efficient use of parasitoids in biocontrol programs. Cotesia typhae nov. sp. (Fernández-Triana) (Hymenoptera: Braconidae) is a newly described parasitoid of the Mediterranean corn borer Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Braconidae are known for their domesticated bracovirus, which is injected with eggs in the host larva to overcome its resistance. In this context, we compared reproductive success traits of four Kenyan strains of C. typhae on a French and a Kenyan populations of its host. Differences were found between the four strains and the two most contrasted ones were studied more thoroughly on the French host population. Parasitoid offspring size was correlated with parasitism success and the expression of bracovirus virulence genes (CrV1 and Cystatin) in the host larva after parasitism. Hybrids between these two parasitoid strains showed phenotype and gene expression profiles similar to the most successful parental strain, suggesting the involvement of dominant alleles in the reproductive traits. Ovary dissections revealed that the most successful strain injected more eggs in a single host larva than the less successful one, despite an equal initial ovocyte number in ovaries. It can be expected that the amount of viral particles increase with the number of eggs injected. The ability to bypass the resistance of the allopatric host may in consequence be related to the oviposition behaviour (eggs allocation). The influence of the number of injected eggs on parasitism success and on virulence gene expression was evaluated by oviposition interruption experiments.

  14. Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae

    OpenAIRE

    Lv, Mingfa; Chen, Yufan; Liao, Lisheng; Liang, Zhibin; Shi, Zurong; Tang, Yingxin; Ye, Sixuan; Zhou, Jianuan; Zhang, Lianhui

    2018-01-01

    Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. ...

  15. The importance of virulence prediction and gene networks in microbial risk assessment

    DEFF Research Database (Denmark)

    Wassenaar, Gertrude Maria; Gamieldien, Junaid; Shatkin, JoAnne

    2007-01-01

    For microbial risk assessment, it is necessary to recognize and predict Virulence of bacterial pathogens, including their ability to contaminate foods. Hazard characterization requires data on strain variability regarding virulence and survival during food processing. Moreover, information on vir...

  16. Mechanisms of biotin-regulated gene expression in microbes

    Directory of Open Access Journals (Sweden)

    J. Satiaputra

    2016-03-01

    Full Text Available Biotin is an essential micronutrient that acts as a co-factor for biotin-dependent metabolic enzymes. In bacteria, the supply of biotin can be achieved by de novo synthesis or import from exogenous sources. Certain bacteria are able to obtain biotin through both mechanisms while others can only fulfill their biotin requirement through de novo synthesis. Inability to fulfill their cellular demand for biotin can have detrimental consequences on cell viability and virulence. Therefore understanding the transcriptional mechanisms that regulate biotin biosynthesis and transport will extend our knowledge about bacterial survival and metabolic adaptation during pathogenesis when the supply of biotin is limited. The most extensively characterized protein that regulates biotin synthesis and uptake is BirA. In certain bacteria, such as Escherichia coli and Staphylococcus aureus, BirA is a bi-functional protein that serves as a transcriptional repressor to regulate biotin biosynthesis genes, as well as acting as a ligase to catalyze the biotinylation of biotin-dependent enzymes. Recent studies have identified two other proteins that also regulate biotin synthesis and transport, namely BioQ and BioR. This review summarizes the different transcriptional repressors and their mechanism of action. Moreover, the ability to regulate the expression of target genes through the activity of a vitamin, such as biotin, may have biotechnological applications in synthetic biology.

  17. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a caco-2 assay

    DEFF Research Database (Denmark)

    Poli, Vanessa Fadanelli Schoenardie; Thorsen, Line; Olesen, Inger

    2012-01-01

    Campylobacter jejuni is the leading cause of bacterial diarrheal disease in humans, and contaminated poultry and poultry products are recognized as the main vehicle of infection. Despite the significance of C. jejuni as a foodborne pathogen, little is known about its response to stress, and......, especially, how its virulence is modulated under such conditions. The aim of this study was to assess the effect of temperature shift in a broth model system on virulence expression and cell survival of three different Campylobacter jejuni strains: two clinical (TB1048 and NCTC11168) and one chicken isolate...... properties were evaluated by analyzing transcriptions of the virulence genes cdtB, ciaB, cadF and the stress associated genes clpP, htrB using reverse transcription quantitative PCR (RT-qPCR) and by the ability of the C. jejuni strains to adhere to and invade Caco-2 cells. Similar cell survival and no growth...

  18. Biosynthesis and Regulation of Sulfomenaquinone, a Metabolite Associated with Virulence in Mycobacterium tuberculosis.

    Science.gov (United States)

    Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R

    2016-11-11

    Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.

  19. UmTco1, a Hybrid Histidine Kinase Gene, Is Essential for the Sexual Development and Virulence of Ustilago maydis.

    Science.gov (United States)

    Yun, Yeo Hong; Oh, Man Hwan; Kim, Jun Young; Kim, Seong Hwan

    2017-05-28

    Hybrid histidine kinase is part of a two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. The Tco1 gene in human pathogen Cryptococcus neoformans encodes a hybrid histidine kinase and is important for pathogenesis. In this study, we identified a Tco1 homolog, UmTco1, in the maize pathogen Ustilago maydis by bioinformatics analysis. To explore the role of UmTco1 in the survival of U. maydis under environmental stresses and its pathogenesis, Δumtco1 mutants were constructed by allelic exchange. The growth of Δumtco1 mutants was significantly impaired when they were cultured under hyperosmotic stress. The Δumtco1 mutants exhibited increased resistance to antifungal agent fludioxonil. In particular, the Δumtco1 mutants were unable to produce cytokinesis or conjugation tubes, and to develop fuzzy filaments, resulting in impaired mating between compatible strains. The expression levels of Prf1, Pra1, and Mfa1, which are involved in the pheromone pathway, were significantly decreased in the Δumtco1 mutants. In inoculation tests to the host plant, the Δumtco1 mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that UmTco1 plays important roles in the survival under hyperosmotic stress, and contributes to cytokinesis, sexual development, and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.

  20. MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Qu, Xiaoyan; Yu, Baodong; Liu, Jinliang; Zhang, Xianghui; Li, Guihua; Zhang, Dongjing; Li, Le; Wang, Xueliang; Wang, Lu; Chen, Jingyuan; Mu, Wenhui; Pan, Hongyu; Zhang, Yanhua

    2014-05-08

    MADS-box proteins, a well-conserved family of transcription factors in eukaryotic organisms, specifically regulate a wide range of cellular functions, including primary metabolism, cell cycle, and cell identity. However, little is known about roles of the MADS-box protein family in the fungal pathogen Sclerotinia sclerotiorum. In this research, the S. sclerotiorum MADS-box gene SsMADS was cloned; it encodes a protein that is highly similar to Mcm1 orthologs from Saccharomyces cerevisiae and other fungi, and includes a highly conserved DNA-binding domain. MADS is a member of the MADS box protein SRF (serum response factor) lineage. SsMADS function was investigated using RNA interference. Silenced strains were obtained using genetic transformation of the RNA interference vectors pS1-SsMADS and pSD-SsMADS. SsMADS expression levels in silenced strains were analyzed using RT-PCR. The results showed that SsMADS mRNA expression in these silenced strains was reduced to different degrees, and growth rate in these silenced strains was significantly decreased. Infecting tomato leaflets with silenced strains indicated that SsMADS was required for leaf pathogenesis in a susceptible host. Our results suggest that the MADS-box transcription factor SsMADS is involved in S. sclerotiorum growth and virulence.

  1. GigA and GigB are Master Regulators of Antibiotic Resistance, Stress Responses, and Virulence in Acinetobacter baumannii.

    Science.gov (United States)

    Gebhardt, Michael J; Shuman, Howard A

    2017-05-15

    A critical component of bacterial pathogenesis is the ability of an invading organism to sense and adapt to the harsh environment imposed by the host's immune system. This is especially important for opportunistic pathogens, such as Acinetobacter baumannii, a nutritionally versatile environmental organism that has recently gained attention as a life-threatening human pathogen. The emergence of A. baumannii is closely linked to antibiotic resistance, and many contemporary isolates are multidrug resistant (MDR). Unlike many other MDR pathogens, the molecular mechanisms underlying A. baumannii pathogenesis remain largely unknown. We report here the characterization of two recently identified virulence determinants, GigA and GigB, which comprise a signal transduction pathway required for surviving environmental stresses, causing infection and antibiotic resistance. Through transcriptome analysis, we show that GigA and GigB coordinately regulate the expression of many genes and are required for generating an appropriate transcriptional response during antibiotic exposure. Genetic and biochemical data demonstrate a direct link between GigA and GigB and the nitrogen phosphotransferase system (PTS(Ntr)), establishing a novel connection between a novel stress response module and a well-conserved metabolic-sensing pathway. Based on the results presented here, we propose that GigA and GigB are master regulators of a global stress response in A. baumannii, and coupling this pathway with the PTS(Ntr) allows A. baumannii to integrate cellular metabolic status with external environmental cues.IMPORTANCE Opportunistic pathogens, including Acinetobacter baumannii, encounter many harsh environments during the infection cycle, including antibiotic exposure and the hostile environment within a host. While the development of antibiotic resistance in A. baumannii has been well studied, how this organism senses and responds to environmental cues remain largely unknown. Herein, we

  2. Virulence gene profiling and antibiotic resistance pattern of Indian isolates of Pasteurella multocida of small ruminant origin.

    Science.gov (United States)

    Sarangi, Laxmi N; Thomas, P; Gupta, S K; Priyadarshini, A; Kumar, S; Nagaleekar, Viswas Konasagara; Kumar, A; Singh, Vijendra P

    2015-02-01

    Pasteurellosis in small ruminants affects the livelihood of small and marginal farmers of India. The present study was undertaken to understand the trends in gene carriage and antibiotic resistance pattern of Pasteurella multocida isolates recovered from small ruminants over a period of 10 years in India. A total of 88 P. multocida isolates of small ruminant origin were subjected to virulence gene profiling for 19 genes by PCR and antibiogram study employing 17 different antibiotics. Virulence genes like exbB, exbD, tonB, oma87, sodA, sodC, nanB and plpB (100% prevalence) and ptfA and hsf-2 (>90% prevalence) were found to be uniformly distributed among isolates. Unexpectedly, a very high prevalence (95.45%) of pfhA gene was observed in the present study. Dermonecrotoxin gene (toxA) was observed in 48.9% of isolates with highest occurrence among serotype A isolates and interestingly, one of each isolate of serotype B and F were found to carry this gene. Antimicrobial susceptibility testing revealed 17.04% isolates to be multidrug resistant. Amongst all the antibiotics tested, most of the P. multocida isolates were found to be susceptible to enrofloxacin and chloramphenicol. This study highlights novel epidemiological information on frequency and occurrence of virulence genes among Indian isolates from small ruminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Frequency, virulence genes and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis.

    Science.gov (United States)

    Jamali, Hossein; Radmehr, Behrad

    2013-11-01

    The aims of this study were to determine the prevalence, characteristics and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis in Iran. Listeria spp. were detected in 21/207 bovine mastitic milk samples from dairy farms in Iran, comprising L. monocytogenes (n=17), L. innocua (n=3) and L. ivanovii (n=1). L. monocytogenes isolates were grouped into serogroups '4b, 4d, 4e', '1/2a, 3a', '1/2b, 3b, 7' and '1/2c, 3c'; all harboured inlA, inlC and inlJ virulence genes. Listeria spp. were most frequently resistant to penicillin G (14/21 isolates, 66.7%) and tetracyclines (11/21 isolates, 52.4%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Seafood a potential source of some zoonotic bacteria in Zagazig, Egypt, with the molecular detection of Listeria monocytogenes virulence genes

    Directory of Open Access Journals (Sweden)

    Heba A. Ahmed

    2013-09-01

    Full Text Available This article describes the results of a study conducted on 71 fresh seafood samples (fish and shellfish marketed in Zagazig city, Sharkia province, Egypt, as well as on 50 human stool samples collected at the Zagazig University Hospital. The samples were examined for the presence of Listeria monocytogenes and Escherichia coli. The investigation of L. monocytogenes virulence genes was performed using Polymerase Chain Reaction (PCR, while the microbiological quality of the seafood samples was evaluated using the coliform count and aerobic plate count (APC as indicators. Out of the examined 71 seafood samples, 20 (28.2% were identified as L. monocytogenes, 15 (75% of which were confirmed as virulent strains. Also, out of 50 human stool samples, only 1 (2% was identified as virulent L. monocytogenes. E. coli serotypes were isolated from only 11.3% of seafood and 30% of human stool samples. In shellfish, the APC and most probable number of coliforms (MPC were higher than those obtained from other fish samples. Multiplex PCR targeting internalin genes allowed simultaneous identification of L. monocytogenes and differentiation of virulent strains, thus enabling more timely detection of cases and sources of food borne listeriosis. The article concludes by stressing that the isolation of potentially virulent L. monocytogenes and E. coli from both seafood samples and humans emphasises the potential public health hazard caused by eating raw or undercooked shellfish.

  5. Seafood a potential source of some zoonotic bacteria in Zagazig, Egypt, with the molecular detection of Listeria monocytogenes virulence genes.

    Science.gov (United States)

    Ahmed, Heba A; Hussein, Mohamed A; El-Ashram, Ahmed M

    2013-01-01

    This article describes the results of a study conducted on 71 fresh seafood samples (fish and shellfish) marketed in Zagazig city, Sharkia province, Egypt, as well as on 50 human stool samples collected at the Zagazig University Hospital. The samples were examined for the presence of Listeria monocytogenes and Escherichia coli. The investigation of L. monocytogenes virulence genes was performed using Polymerase Chain Reaction (PCR), while the microbiological quality of the seafood samples was evaluated using the coliform count and aerobic plate count (APC) as indicators. Out of the examined 71 seafood samples, 20 (28.2%) were identified as L. monocytogenes, 15 (75%) of which were confirmed as virulent strains. Also, out of 50 human stool samples, only 1 (2%) was identified as virulent L. monocytogenes. E. coli serotypes were isolated from only 11.3% of seafood and 30% of human stool samples. In shellfish, the APC and most probable number of coliforms (MPC) were higher than those obtained from other fish samples. Multiplex PCR targeting internalin genes allowed simultaneous identification of L. monocytogenes and differentiation of virulent strains, thus enabling more timely detection of cases and sources of food borne listeriosis. The article concludes by stressing that the isolation of potentially virulent L. monocytogenes and E. coli from both seafood samples and humans emphasises the potential public health hazard caused by eating raw or undercooked shellfish.

  6. The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis.

    Science.gov (United States)

    Azelmat, Jabrane; Larente, Jade Fournier; Grenier, Daniel

    2015-02-01

    Rhein is a major anthraquinone found in rhubarb root. As a continuation of our ongoing studies aimed to identify beneficial properties of this anthraquinone for periodontal disease, in this study, we investigated the ability of rhein to (i) exhibit antibacterial synergy towards the periodontopathogen Porphyromonas gingivalis when used in combination with metronidazole or polyphenols belonging to different families, and (ii) attenuate virulence factor gene expression in P. gingivalis. The minimal inhibitory concentrations (MIC) of compounds under investigation were determined by a broth microdilution assay. The synergistic effects of rhein in association with either metronidazole or polyphenols of various families were evaluated using the chequerboard technique to determine the fractional inhibitory concentration index (FICI). The effect of rhein on virulence factor gene expression in P. gingivalis was determined by quantitative RT-PCR. Rhein showed a MIC of 2.5 μg/mL, which was similar to that of metronidazole. Except for the association with epigallocatechin-3-gallate that gave an additive effect, all the other combinations (licochalcone A, glabridin, myricetin, and metronidazole) resulted in synergistic effects. The strongest synergy was observed when rhein was used in association with myricetin (FICI=0.12) and licochalcone A (FICI=0.19). At a sub-MIC of rhein (0.5 μg/mL), a significant decrease in the expression of fimA, hagA, and hagB genes, which are involved in host colonization, was observed. Moreover, the expression of rgpA and kgp, two protease genes related to inactivation of host defense mechanisms, tissue destruction, and nutrient acquisition, was also down-regulated. The data presented in our study indicate that rhein possessed antibacterial activity, which can be potentiated in combination with metronidazole or other polyphenols. In addition, rhein can impair the pathogenicity of P. gingivalis by reducing transcription of genes coding for important

  7. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus.

    Directory of Open Access Journals (Sweden)

    Fabienne Ripoll

    Full Text Available Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS, an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a "mycobacterial" gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors. However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+ transporter appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp. and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation not present in the M. smegmatis genome. Many of the "non mycobacterial" factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients.

  8. Molecular detection of six virulence genes in Pseudomonas aeruginosa isolates detected in children with urinary tract infection.

    Science.gov (United States)

    Badamchi, Ali; Masoumi, Hossein; Javadinia, Shima; Asgarian, Ramin; Tabatabaee, Azardokht

    2017-06-01

    Although a vast majority of Urinary tract infections (UTIs) are caused by E. coli, epidemiological reports have indicated an increasing rate of such infections caused by some other opportunistic organisms including Pseudomonas aeruginosa. Antimicrobial susceptibility and pathogenesis mechanisms of P. aeruginosa are poorly understood. The aim of this study was to detect some virulence factor genes and antimicrobial susceptibility patterns of P. aeruginosa isolates detected in patients with UTI, in children hospital of Tehran, Tehran, Iran. Eighty-four Pseudomonas aeruginosa were isolated. Then, the presence of six virulence genes, in the genome of the isolates was evaluated using PCR amplifications techniques. Finally, antimicrobial susceptibility pattern of the isolates was determined by disk diffusion method. According to the results, lasB was the most prevalent virulence gene that could be detected in the P. aeruginosa isolates (92.9%) used in this study. This was followed by aprA (81.2%), toxA (69.4%), and algD (60%) genes. Two genes, plcH and plcN, were detected in about 38.8% of the isolates. Additionally, Imipenem was found as the most active agent against the P. aeruginosa isolates used in this research. However, Cefotaxime resistance was observed in most of the isolates. Our P. aeruginosa isolates exhibited a great degree of heterogeneity not only in their virulence genes but also in their antimicrobial susceptibility profiles. Imipenem therapies tend to be among the best choices in the management of UTI caused by P. aeruginosa. As a conclusion, assessment of antimicrobial susceptibility pattern and also analyzing the virulence factors can be highly helpful to develop effective treatment strategies against P. aeruginosa urinary infections. Copyright © 2017. Published by Elsevier Ltd.

  9. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products

    DEFF Research Database (Denmark)

    Owusu-Kwarteng, James; Wuni, Alhassan; Akabanda, Fortune

    2017-01-01

    Background: B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile...

  10. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Cédric Romilly

    2014-03-01

    Full Text Available Staphylococcus aureus produces a high number of RNAs for which the functions are poorly understood. Several non-coding RNAs carry a C-rich sequence suggesting that they regulate mRNAs at the post-transcriptional level. We demonstrate that the Sigma B-dependent RsaA RNA represses the synthesis of the global transcriptional regulator MgrA by forming an imperfect duplex with the Shine and Dalgarno sequence and a loop-loop interaction within the coding region of the target mRNA. These two recognition sites are required for translation repression. Consequently, RsaA causes enhanced production of biofilm and a decreased synthesis of capsule formation in several strain backgrounds. These phenotypes led to a decreased protection of S. aureus against opsonophagocytic killing by polymorphonuclear leukocytes compared to the mutant strains lacking RsaA. Mice animal models showed that RsaA attenuates the severity of acute systemic infections and enhances chronic catheter infection. RsaA takes part in a regulatory network that contributes to the complex interactions of S. aureus with the host immune system to moderate invasiveness and favour chronic infections. It is the first example of a conserved small RNA in S. aureus functioning as a virulence suppressor of acute infections. Because S. aureus is essentially a human commensal, we propose that RsaA has been positively selected through evolution to support commensalism and saprophytic interactions with the host.

  11. Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE.

    Science.gov (United States)

    Morgan, Jason K; Carroll, Ronan K; Harro, Carly M; Vendura, Khoury W; Shaw, Lindsey N; Riordan, James T

    2015-11-02

    Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR

  12. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

    Directory of Open Access Journals (Sweden)

    Marcin J Skwark

    2017-02-01

    Full Text Available Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus and Streptococcus pyogenes (group A Streptococcus. For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery

  13. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp.

    Science.gov (United States)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-11-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  14. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    Science.gov (United States)

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  15. Effect of co-culture with enterocinogenic E. faecium on L. monocytogenes key virulence gene expression

    Directory of Open Access Journals (Sweden)

    Eleftherios H. Drosinos

    2016-08-01

    Full Text Available The aim of the present study was to assess the expression of key virulence genes during co-culture of L. monocytogenes with a bacteriocinogenic E. faecium strain in liquid growth medium. For that purpose, BHI broth was inoculated with 7 log CFU·mL–1 L. monocytogenes and 4, 5 or 6 log CFU·mL–1 E. faecium. Sampling took place after 8 and 24 h of incubation, corresponding to the maximum and minimum of enterocin production, respectively. The RNA was extracted, stabilized and expression of prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ, was assessed by RT-qPCR. Most of the genes were downregulated during co-culture at 5 °C. Moreover, a statistically significant effect of the inoculum level was evident in most of the cases. On the contrary, no effect on the transcription level of most of the genes was observed during co-culture at 37 °C.

  16. Virulence Genes and Antimicrobial Resistance Profiles of Pasteurella multocida Strains Isolated from Rabbits in Brazil

    Directory of Open Access Journals (Sweden)

    Thais Sebastiana Porfida Ferreira

    2012-01-01

    Full Text Available Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in São Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46 of isolates belonged to capsular type A, and 54.34% (25/46 of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.

  17. Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats

    Directory of Open Access Journals (Sweden)

    Thais Sebastiana Porfida Ferreira

    2015-03-01

    Full Text Available Cats are often described as carriers of Pasteurella multocida in their oral microbiota. This agent is thought to cause pneumonia, conjunctivitis, rhinitis, gingivostomatitis, abscess and osteonecrosis in cats. Human infection with P. multocida has been described in several cases affecting cat owners or after cat bites. In Brazil, the cat population is approximately 21 million animals and is increasing, but there are no studies of the presence of P. multocida in the feline population or of human cases of infection associated with cats. In this study, one hundred and ninety-one healthy cats from owners and shelters in São Paulo State, Brazil, were evaluated for the presence of P. multocida in their oral cavities. Twenty animals were positive for P. multocida, and forty-one strains were selected and characterized by means of biochemical tests and PCR. The P. multocida strains were tested for capsular type, virulence genes and resistance profile. A total of 75.6% (31/41 of isolates belonged to capsular type A, and 24.4% (10/41 of the isolates were untypeable. None of the strains harboured toxA, tbpA or pfhA genes. The frequencies of the other genes tested were variable, and the data generated were used to build a dendrogram showing the relatedness of strains, which were clustered according to origin. The most common resistance profile observed was against sulfizoxazole and trimethoprim-sulphamethoxazole.

  18. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation.

    Directory of Open Access Journals (Sweden)

    Ben Ryall

    Full Text Available The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung.

  19. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners.

    Science.gov (United States)

    Derakhshandeh, Abdollah; Eraghi, Vida; Boroojeni, Azar Motamedi; Niaki, Malihe Akbarzadeh; Zare, Sahar; Naziri, Zahra

    2018-01-30

    Escherichia coli (E. coli) is a normal flora of gastrointestinal tracts of humans and warm-blooded animals including dogs that has close vicinity with humans. Because the inter-species transmission of E. coli between pets and human beings, within a household, obtaining more information about the epidemiology, genetics, virulence factors, and antibiotic resistance of E. coli from dogs and their owners will help to control the inter-species transmission and treatment of E. coli infections. In this study we characterize and compare the antibiotic resistance and virulence profiles of fecal E. coli isolates from dogs and their owners. A total of 149 commensal E. coli isolates comprised 62 isolates from dogs, 56 isolates from their owners and 31 isolates from humans with no pet as control were collected. Extracted DNA was assessed for the presence of antibiotic resistance genes cmlA (chloramphenicol), sulI (sulfamethoxazole), floR (florfenicol) and blaCTX-M1 (cefotaxime) and virulence genes (papA, ompT, hlyD, traT, tsh and cnf1). To determine the extent of genetic relatedness of isolates, RAPD-PCR was performed. sulI and traT genes were the most dominant resistance profile and the most prevalent virulence gene in all groups, respectively, while hlyD had the lowest frequency among investigated virulence genes. Based on RAPD-PCR analysis clonal sharing between dogs and their owners were observed in 2/28 (7.1%) potential within-household clone-sharing pairs. Allowing dog to lick on owner's face, dog sex (female dogs), dog's sexual status (intact dogs) and times of disposing the feces (≥twice a day) were associated with a higher percentage of RAPD profile similarity (P coli from dogs to their owners. But in two households, there were relationship between isolates from dogs and their owners. Copyright © 2018. Published by Elsevier Ltd.

  20. Genotypes, Virulence Factors and Antimicrobial Resistance Genes of Staphylococcus aureus Isolated in Bovine Subclinical Mastitis from Eastern China

    Directory of Open Access Journals (Sweden)

    Javed Memon§, Yongchun Yang§, Jam Kashifa, Muhammad Yaqoob, Rehana Buriroa, Jamila Soomroa, Wang Liping and Fan Hongjie*

    2013-11-01

    Full Text Available This study was carried out to determine the genotypes, virulence factors and antimicrobial resistance traits of 34 Staphylococcus aureus isolated from subclinical mastitis in Eastern China. Minimal inhibitory concentration (MIC results showed resistance to erythromycin in all isolates. A high frequency of Methicillin resistant S. aureus (MRSA; 29% was observed and these isolates were also highly resistant to penicillin, oxacillin, oxytetracycline and chloramphenicol than methicillin sensitive S. aureus (MSSA isolates. Thirteen pathogenic factors and seven resistance genes including mecA and blaZ gene were checked through PCR. The spaX gene was found in all isolates, whereas cna, spaIg, nuc, clfA, fnbpB, hlA, hlB and seA were present in 35, 79, 85, 59, 35, 85, 71 and 38% isolates, respectively. Nine isolates carried a group of 8 different virulence genes. Moreover, macrolide resistance genes ermB and ermC were present in all isolates. High resistance rate against methicillin was found but no isolate was positive for mecA gene, whereas blaZ and tetK were detected in 82 and 56% isolates, respectively. Genes; fnbpA, seB, seC, seD, dfrK and tetM were not found in any isolate. The statistical association between phenotypic resistance and virulence genes showed, clfA, fnbpB, hlB and seA, were potentially associated with penicillin G, ciprofloxacin, methicillin, chloramphenicol, trimethoprim and oxytetracycline resistance (P≤0.05. REP-PCR based genotyping showed seven distinct genotypes (A-G prevalent in this region. This study reports the presence of multidrug resistant S. aureus in sub-clinical mastitis which were also highly virulent that could be a major obstacle in the treatment of mastitis in this region of China.

  1. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam

    2008-01-01

    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  2. Antibiotic resistance and virulence genes in enterococcus strains isolated from different hospitals in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed M. Hassan

    2016-07-01

    Full Text Available The purpose of this study was molecular characterization of the antibiotic resistance profiles of some Enterococcus isolates obtained from different hospitals in Taif governorate in KSA. Out of the 89 bacterial isolates obtained, 12 isolates of Enterococcus spp. were subjected to fingerprinting based on repetitive sequence-based polymerase chain reaction (Rep-PCR, and tested their resistance/susceptibility against some antibiotics which are commonly used in KSA. They were identified using the specific primers for different antibiotic resistance genes of Enterococcus spp. as Tuf, VanC-1, VanC-2-VanC-3 genes and sequencing fragments of 16S rDNA gene. The obtained results indicated that about 58.3% of Enterococcus isolates were Enterococcus faecium, 16.6% were Enterococcus durans and 25.1% were other Enterococcus species. Sixty-seven per cent of the isolates had multi-drug resistance patterns against gentamicin, vancomycin, erythromycin, amoxicillin, cefazolin and tetracycline. Data on the prevalence and types of antibiotic resistance in Enterococcus species may be used to describe baseline antibiotic susceptibility profiles associated with Enterococcus spp. that were isolated from the hospitals’ environment. Some discrepancies were detected among the identification methods used, and the most reliable were the Tuf, VanC-1, VanC-2-VanC-3 genes, and 16S rDNA nucleotide sequencing of 12 Enterococcus isolates were deposited in Gene Bank under the accession numbers from KT366721 to KT366732, respectively. Selected isolates exhibited susceptibility to almost all studied antibiotics, and some virulence factors were detected by PCR. Finally, these Enterococcus isolates were molecularly characterized by Rep-PCR into a diverse genetic background. The data collected may also help to elucidate the role of hospitals in the transmission of antibiotic-resistant strains to human populations.

  3. Characterization of Pathogenic Escherichia coli in River Water by Simultaneous Detection and Sequencing of 14 Virulence Genes.

    Science.gov (United States)

    Gomi, Ryota; Matsuda, Tomonari; Fujimori, Yuji; Harada, Hidenori; Matsui, Yasuto; Yoneda, Minoru

    2015-06-02

    The occurrence of pathogenic Escherichia coli in environmental waters increases the risk of waterborne disease. In this study, 14 virulence genes in 669 E. coli isolates (549 isolates from the Yamato River in Japan, and 30 isolates from each of the following hosts: humans, cows, pigs, and chickens) were simultaneously quantified by multiplex PCR and dual index sequencing to determine the prevalence of potentially pathogenic E. coli. Among the 549 environmental isolates, 64 (12%) were classified as extraintestinal pathogenic E. coli (ExPEC) while eight (1.5%) were classified as intestinal pathogenic E. coli (InPEC). Only ExPEC-associated genes were detected in human isolates and pig isolates, and 11 (37%) and five (17%) isolates were classified as ExPEC, respectively. A high proportion (63%) of cow isolates possessed Shiga-toxin genes (stx1 or stx2) and they were classified as Shiga toxin-producing E. coli (STEC) or enterohemorrhagic E. coli (EHEC). Among the chicken isolates, 14 (47%) possessed iutA, which is an ExPEC-associated gene. This method can determine the sequences as well as the presence/absence of virulence genes. By comparing the sequences of virulence genes, we determined that sequences of iutA were different among sources and may be useful for discriminating isolates, although further studies including larger numbers of isolates are needed. Results indicate that humans are a likely source of ExPEC strains in the river.

  4. Targeted Gene Deletion and In Vivo Analysis of Putative Virulence Gene Function in the Pathogenic Dermatophyte Arthroderma benhamiae▿

    Science.gov (United States)

    Grumbt, Maria; Defaweux, Valérie; Mignon, Bernard; Monod, Michel; Burmester, Anke; Wöstemeyer, Johannes; Staib, Peter

    2011-01-01

    Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes. PMID:21478433

  5. Predicted highly expressed genes in Nocardia farcinica and the implication to its primary metabolism and nocardial virulence

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-02-23

    Nocardia farcinica is a gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top {approx}10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with early analysis in Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ''house-keeping'' functions important for cell growth. However, fifteen genes putatively involved in no cardial virulence were predicted as PHX in N. farcinica, which included genes encoding four Mce virulence proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS was essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first approximates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigation.

  6. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    Lara M. de Almeida

    2013-01-01

    Full Text Available Staphylococcus aureus is one of the most frequent mastitis causative agents in small ruminants. The expression of most virulence genes of S. aureus is controlled by an accessory gene regulator (agrlocus. This study aimed to ascertain the prevalence of the different agr groups and to evaluate the occurrence of encoding genes for cytotoxin, adhesins and toxins with superantigen activity in S. aureus isolates from milk of ewes with clinical and subclinical mastitis in sheep flocks raised for meat production The agr groups I and II were identified in both cases of clinical and subclinical mastitis. Neither the arg groups III and IV nor negative agr were found. The presence of cflA gene was identified in 100% of the isolates. The frequency of hla and lukE-D genes was high -77.3 and 82.8%, respectively and all isolates from clinical mastitis presented these genes. The sec gene, either associated to tst gene or not, was identified only in isolates from subclinical mastitis. None of the following genes were identified: bbp, ebpS, cna, fnbB, icaA, icaD, bap, hlg, lukM-lukF-PV and se-a-b-d-e.

  7. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the Northeast of Brazil.

    Science.gov (United States)

    de Almeida, Lara M; de Almeida, Mayra Zilta P R B; de Mendonça, Carla L; Mamizuka, Elsa M

    2013-01-01

    Staphylococcus aureus is one of the most frequent mastitis causative agents in small ruminants. The expression of most virulence genes of S. aureus is controlled by an accessory gene regulator (agr) locus. This study aimed to ascertain the prevalence of the different agr groups and to evaluate the occurrence of encoding genes for cytotoxin, adhesins and toxins with superantigen activity in S. aureus isolates from milk of ewes with clinical and subclinical mastitis in sheep flocks raised for meat production The agr groups I and II were identified in both cases of clinical and subclinical mastitis. Neither the arg groups III and IV nor negative agr were found. The presence of cflA gene was identified in 100% of the isolates. The frequency of hla and lukE-D genes was high - 77.3 and 82.8%, respectively and all isolates from clinical mastitis presented these genes. The sec gene, either associated to tst gene or not, was identified only in isolates from subclinical mastitis. None of the following genes were identified: bbp, ebpS, cna, fnbB, icaA, icaD, bap, hlg, lukM-lukF-PV and se-a-b-d-e.

  8. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain.

    Science.gov (United States)

    Kawaoka, Y; Nestorowicz, A; Alexander, D J; Webster, R G

    1987-05-01

    Comparative sequence analysis of the hemagglutinin (HA) genes of a highly virulent H5N8 virus isolated from turkeys in Ireland in 1983 and a virus of the same subtype detected simultaneously in healthy ducks showed only four amino acid differences between these strains. Partial sequencing of six of the other genes and antigenic similarity of the neuraminidases established the overall genetic similarity of these two viruses. Comparison of the complete sequence of two H5 gene sequences and partial sequences of other virulent and avirulent H5 viruses provides evidence for at least two different lineages of H5 influenza virus in the world, one in Europe and the other in North America, with virulent and avirulent members in each group. In vivo studies in domestic ducks showed that all of the H5 viruses that are virulent in chickens and turkeys replicate in the internal organs of ducks but did not produce any disease signs. Additionally, both viruses isolated from turkeys and ducks in Ireland were detected in the blood. These studies provide the first conclusive evidence for the possibility that fully virulent influenza viruses in domestic poultry can arise directly from viruses in wild aquatic birds. Studies on the cleavability of the HA of virulent and avirulent H5 viruses showed that the principles established for H7 viruses (F. X. Bosch, M. Orlich, H. D. Klenk, and R. Rott, 1979, Virology 95, 197-207; F. X. Bosch, W. Garten, H. D. Klenk, and R. Rott, 1981, Virology 113, 725-735) also apply to the H5 subtype. These are (1) only the HAs of virulent influenza viruses were cleaved in tissue culture in the absence of trypsin and (2) virulent H5 influenza viruses contain a series of basic amino acids at the cleavage site of the HA, whereas avirulent strains contain only a single arginine with the exception of the avirulent Chicken/Pennsylvania virus. Thus, a series of basic amino acids at the cleavage site probably forms a recognition site for the enzyme(s) responsible for

  9. Regulation of gene expression by retinoids.

    Science.gov (United States)

    Amann, P M; Eichmüller, S B; Schmidt, J; Bazhin, A V

    2011-01-01

    Vitamin A serves as substrate for the biosynthesis of several derivates (retinoids) which are important for cell growth and cell differentiation as well as for vision. Retinoic acid is the major physiologically active form of vitamin A regulating the expression of different genes. At present, hundreds of genes are known to be regulated by retinoic acid. This regulation is very complex and is, in turn, regulated on many levels. To date, two families of retinoid nuclear receptors have been identified: retinoic acid receptors and retinoid X receptors, which are members of the steroid hormone receptor superfamily of ligand-activated transcription factors. In order to regulate gene expression, all-trans retinal needs to be oxidized to retinoic acid. All-trans retinal, in turn, can be produced during oxidation of all-trans retinol or in a retinol-independent metabolic pathway through cleavage of β-carotene with all-trans retinal as an intermediate metabolite. Recently it has been shown that not only retinoic acid is an active form of vitamin A, but also that all-trans retinal can play an important role in gene regulation. In this review we comprehensively summarize recent literature on regulation of gene expression by retinoids, biochemistry of retinoid receptors, and molecular mechanisms of retinoid-mediated effects on gene regulation.

  10. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen

    2009-01-01

    residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded......2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P...

  11. Gene regulation by the VirS/VirR system in Clostridium perfringens.

    Science.gov (United States)

    Ohtani, Kaori

    2016-10-01

    The Gram-positive anaerobic spore-forming rod, Clostridium perfringens, is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens produces many secreted toxins and enzymes that are involved in the pathogenesis of gas gangrane and gastrointestinal disease. One of the most important systems regulating the production of these proteins in C. perfringens is the VirS/VirR-VR-RNA signal transduction cascade. The Agr system also important for the regulation of toxin genes. VirS appears to sense the peptide produced by the Agr (accessory gene regulator) system. The VirS/VirR-VR-RNA cascade controls the pathogenesis of C. perfringens infections by regulating virulence related genes and genes for energy metabolism. These systems are important for the host cell-induced upregulation of toxin production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  13. Virulence genes and genetic relationship of L. monocytogenes isolated from human and food sources in Brazil

    Directory of Open Access Journals (Sweden)

    Rosana Macedo de Almeida

    Full Text Available ABSTRACT The herein presented assay provided a bacteriological and molecular characterization of 100 samples of L. monocytogenes isolated from human (43 and food (57 sources, from several regions of Brazil, and collected between 1975 and 2013. Antigenic characterization defined 49% of serotype 4b samples, followed by 28% of serotype 1/2b, 14% of serotype 1/2c, 8% of serotype 1/2a, and 1% of serotype 3b. Both type of samples from human and food origin express the same serotype distribution. Multiplex PCR analysis showed 13 strains of type 4b with the amplification profile 4b-VI (Variant I. Virulence genes hly, inlA, inlB, inlC, inlJ, actA, plcA, and prfA were detected in all samples, highlighting a deletion of 105pb on the actA gene in 23% of serotype 4b samples. Macrorestriction profile with ApaI at PFGE showed 55 pulsotypes, with the occurrence of the same pulsotype in hospitalized patients in São Paulo in 1992 and 1997, and two other highly related pulsotypes in patients hospitalized in Rio de Janeiro in 2008. Recognized pulsotypes in listeriosis cases have also been detected in food. Thus, the prevalence of a serotype and the persistence of certain pulsotypes herald future problems.

  14. Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    Marjorie Montenegro

    Full Text Available ABSTRACT Trypanosomatid type I nitroreductases (NTRs, i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+ and KP1(- strains, and its corresponding transcript and 5’ untranslated region (5’UTR were determined. Bioinformatics analyses and nitro-drug activation assays were also performed. The results indicated that the type I NTR gene is present in both KP1(- and KP1(+ strains, with 98% identity. However, the predicted subcellular localisation of the protein differed among the strains (predicted as mitochondrial in the KP1(+ strain. Comparisons of the domains and 3D structures of the NTRs with those of orthologs demonstrated that the nitroreductase domain of T. rangeli NTR is conserved across all the strains, including the residues involved in the interaction with the FMN cofactor and in the tertiary structure characteristics of this oxidoreductase protein family. mRNA processing and expression were also observed. In addition, T. rangeli was shown to be sensitive to benznidazole and nifurtimox in a concentration-dependent manner. In summary, T. rangeli appears to have a newly discovered functional type I NTR.

  15. Virulence genes and genetic relationship of L. monocytogenes isolated from human and food sources in Brazil

    Directory of Open Access Journals (Sweden)

    Rosana Macedo de Almeida

    2017-05-01

    Full Text Available The herein presented assay provided a bacteriological and molecular characterization of 100 samples of L. monocytogenes isolated from human (43 and food (57 sources, from several regions of Brazil, and collected between 1975 and 2013. Antigenic characterization defined 49% of serotype 4b samples, followed by 28% of serotype 1/2b, 14% of serotype 1/2c, 8% of serotype 1/2a, and 1% of serotype 3b. Both type of samples from human and food origin express the same serotype distribution. Multiplex PCR analysis showed 13 strains of type 4b with the amplification profile 4b-VI (Variant I. Virulence genes hly, inlA, inlB, inlC, inlJ, actA, plcA, and prfA were detected in all samples, highlighting a deletion of 105pb on the actA gene in 23% of serotype 4b samples. Macrorestriction profile with ApaI at PFGE showed 55 pulsotypes, with the occurrence of the same pulsotype in hospitalized patients in São Paulo in 1992 and 1997, and two other highly related pulsotypes in patients hospitalized in Rio de Janeiro in 2008. Recognized pulsotypes in listeriosis cases have also been detected in food. Thus, the prevalence of a serotype and the persistence of certain pulsotypes herald future problems.

  16. Entamoeba histolytica: effect on virulence, growth and gene expression in response to monoxenic culture with Escherichia coli 055.

    Science.gov (United States)

    Mendoza-Macías, Claudia Leticia; Barrios-Ceballos, Minerva Paola; de la Peña, Lydia Patricia Cárdenas; Rangel-Serrano, Angeles; Anaya-Velázquez, Fernando; Mirelman, David; Padilla-Vaca, Felipe

    2009-02-01

    Monoxenic cultivation of pathogenic Entamoeba histolytica trophozoites with Escherichia coli serotype 055 which binds strongly to the Gal/GalNAc amoebic lectin, markedly improved the growth of E. histolytica and produced a significant decrease in cysteine proteinase activity and a lower cytopathic activity on monolayer cells after 3 months of monoxenic culture. However, after long term monoxenic culture (12 months) the proteolytic and cytopathic activities were recovered and the amoebic growth reached the maximum yield. Employing the GeneFishing(R) technology and DNA macroarrays we detected differentially gene expression related to the amoebic interaction with bacteria. A number of differentially expressed genes encoding metabolic enzymes, ribosomal proteins, virulence factors and proteins related with cytoskeletal and vesicle trafficking were found. These results suggest that E. coli 055 has a nutritional role that strongly supports the amoebic growth, and is also able to modulate some biological activities related with amoebic virulence.

  17. Correlation between Group B Streptococcal Genotypes, Their Antimicrobial Resistance Profiles, and Virulence Genes among Pregnant Women in Lebanon.

    Science.gov (United States)

    Hannoun, Antoine; Shehab, Marwa; Khairallah, Marie-Therese; Sabra, Ahmad; Abi-Rached, Roland; Bazi, Tony; Yunis, Khalid A; Araj, George F; Matar, Ghassan M

    2009-01-01

    The antimicrobial susceptibility profiles of 76 Streptococcus agalactiae (Group B Streptococci [GBS]) isolates from vaginal specimens of pregnant women near term were correlated to their genotypes generated by Random Amplified Polymorphic DNA analysis and their virulence factors encoding genes cylE, lmb, scpB, rib, and bca by PCR. Based on the distribution of the susceptibility patterns, six profiles were generated. RAPD analysis detected 7 clusters of genotypes. The cylE gene was present in 99% of the isolates, the lmb in 96%, scpB in 94.7%, rib in 33%, and bca in 56.5% of isolates. The isolates demonstrated a significant correlation between antimicrobial resistance and genotype clusters denoting the distribution of particular clones with different antimicrobial resistance profiles, entailing the practice of caution in therapeutic options. All virulence factors encoding genes were detected in all seven genotypic clusters with rib and bca not coexisting in the same genome.

  18. Correlation between Group B Streptococcal Genotypes, Their Antimicrobial Resistance Profiles, and Virulence Genes among Pregnant Women in Lebanon

    Directory of Open Access Journals (Sweden)

    Antoine Hannoun

    2009-01-01

    Full Text Available The antimicrobial susceptibility profiles of 76 Streptococcus agalactiae (Group B Streptococci [GBS] isolates from vaginal specimens of pregnant women near term were correlated to their genotypes generated by Random Amplified Polymorphic DNA analysis and their virulence factors encoding genes cylE, lmb, scpB, rib, and bca by PCR. Based on the distribution of the susceptibility patterns, six profiles were generated. RAPD analysis detected 7 clusters of genotypes. The cylE gene was present in 99% of the isolates, the lmb in 96%, scpB in 94.7%, rib in 33%, and bca in 56.5% of isolates. The isolates demonstrated a significant correlation between antimicrobial resistance and genotype clusters denoting the distribution of particular clones with different antimicrobial resistance profiles, entailing the practice of caution in therapeutic options. All virulence factors encoding genes were detected in all seven genotypic clusters with rib and bca not coexisting in the same genome.

  19. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  20. Antibiotic resistance genes and virulence factors in Enterococcus faecium and Enterococcus faecalis from diseased farm animals: pigs, cattle and poultry.

    Science.gov (United States)

    Seputiene, V; Bogdaite, A; Ruzauskas, M; Suziedeliene, E

    2012-01-01

    Eighty enterococcal isolates (E. faecium, n = 38, E. faecalis, n = 42) from diseased farm animals (swine, cattle, poultry) in Lithuania have been studied for the prevalence of antibiotic resistance and for resistance and virulence genetic determinants. 86% of E. faecium and 71% of E. faecalis isolates were multidrug resistant (resistant to three or more unrelated antibiotics). Resistance to aminoglycosides, tetracycline and erythromycin was found most frequently in both species (61%, 69%) and was linked to aph(3')-IIIa, aac(6')-Ie-aph(2")-Ia, ant(6)-Ia (aminoglycoside resistance), tetM, tetL (tetracycline resistance), ermA, ermB (erythromycin resistance) gene combinations, which were supplemented with chloramphenicol resistance genes catA7, catA8 (E. faecalis) and catA9 (E. faecium). All E. faecalis isolates harboured genes coding for virulence factors agg, esp, fsr gelE alone or in combinations with the high prevalence of esp gene in isolates from cattle (63%) and pigs (79%). The origin-dependent incidence of agg gene variants prgB and asp1 was observed. The results indicate the existence of a large pool of potentially virulent and multidrug resistant E. faecalis in diseased farm animals posing risk to humans.

  1. Absence of YbeY RNase compromises the growth and enhances the virulence plasmid gene expression of Yersinia enterocolitica O:3.

    Science.gov (United States)

    Leskinen, Katarzyna; Varjosalo, Markku; Skurnik, Mikael

    2015-02-01

    YbeY was recently recognized as an endoribonuclease playing a role in ribosome biosynthesis. In Escherichia coli it functions as a single-strand-specific RNase that processes the 3' end of the 16S rRNA and is crucial for the late-stage 70S ribosome quality control system. Here we report that YbeY is not essential in Yersinia enterocolitica serotype O:3, yet its absence strongly compromised the bacterium. The lack of YbeY resulted in misprocessing of 16S rRNA and a severe decrease of growth rate with complete growth arrest observed at elevated temperatures. Moreover, a ybeY mutation severely disturbed regulation of the Yersinia virulence plasmid (pYV) genes and affected the expression of regulatory small RNA species. Transcription of the pYV genes was upregulated in the ybeY mutant at 22 °C; the same genes were repressed in the wild-type bacterium. Furthermore, ybeY inactivation impaired many virulence-related features, such as resistance to elevated temperature and acid, and hindered utilization of different carbohydrates. In addition, the ybeY mutant strain showed decreased infectivity in a tissue culture infection model, especially at the stage of cell adhesion. Taken together, this study demonstrates the crucial role of YbeY in Y. enterocolitica O:3 physiology and pathogenicity. © 2015 The Authors.

  2. Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea

    Science.gov (United States)

    Schumacher, Julia; Pradier, Jean-Marc; Simon, Adeline; Traeger, Stefanie; Moraga, Javier; Collado, Isidro González; Viaud, Muriel; Tudzynski, Bettina

    2012-01-01

    Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions. PMID:23118899

  3. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption

    OpenAIRE

    Younis, Gamal A.; Elkenany, Rasha M.; Fouda, Mohamed A.; Mostafa, Noura F.

    2017-01-01

    Aim: This study describes the prevalence of Escherichia coli in frozen chicken meat intended for human consumption with emphasis on their virulence determinants through detection of the virulence genes and recognition of the extended-spectrum β-lactamase (ESBL) encoding genes (bla OXA and bla TEM genes). Materials and Methods: A total of 120 frozen chicken meat samples were investigated for isolation of E. coli. All isolates were subjected to biochemical and serological tests. Eight serotypes...

  4. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV).

    Science.gov (United States)

    Dulwich, Katherine L; Giotis, Efstathios S; Gray, Alice; Nair, Venugopal; Skinner, Michael A; Broadbent, Andrew J

    2017-11-20

    Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.

  5. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production

    Directory of Open Access Journals (Sweden)

    Cha Jae-Soon

    2010-07-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF type quorum sensing (QS system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s produced by Xoo and the factors influencing the signal production. Results Xoo genome harbours an rpf cluster comprising rpfB, rpfF, rpfC and rpfG. The proteins encoded by these genes are highly homologous to their counterparts in X. campestris pv. campestris (Xcc, suggesting that Xcc and Xoo might use similar mechanisms for DSF biosynthesis and autoregulation. Consistent with in silico analysis, the rpfF mutant was DSF-deficient and the rpfC mutant produced about 25 times higher DSF-like activity than the wild type Xoo strain KACC10331. From the supernatants of rpfC mutant, we purified three compounds showing strong DSF-like activity. Mass spectrometry and NMR analysis revealed that two of them were the previously characterized DSF and BDSF; the third one was a novel unsaturated fatty acid with 2 double bonds and was designated as CDSF in this study. Further analysis showed that all the three DSF-family signals were synthesized via the enzyme RpfF encoded by Xoo2868. DSF and BDSF at a final concentration of 3 μM to the rpfF mutant could fully restore its extracellular xylanase activity and EPS production to the wild type level, but CDSF was less active than DSF and BDSF in induction of EPS and xylanase. DSF and CDSF shared a similar cell density-dependent production time course with the maximum production being detected at 42 h after inoculation, whereas the maximum production of BDSF was observed

  6. Gene Regulation Networks for Modeling Drosophila Development

    Science.gov (United States)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  7. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    Science.gov (United States)

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an

  8. Epigenetic control of gene regulation in plants.

    Science.gov (United States)

    Lauria, Massimiliano; Rossi, Vincenzo

    2011-08-01

    In eukaryotes, including plants, the genome is compacted into chromatin, which forms a physical barrier for gene transcription. Therefore, mechanisms that alter chromatin structure play an essential role in gene regulation. When changes in the chromatin states are inherited trough mitotic or meiotic cell division, the mechanisms responsible for these changes are defined as epigenetic. In this paper, we review data arising from genome-wide analysis of the epigenetic landscapes in different plant species to establish the correlation between specific epigenetic marks and transcription. In the subsequent sections, mechanisms of epigenetic control of gene regulation mediated by DNA-binding transcription factors and by transposons located in proximity to genes are illustrated. Finally, plant peculiarities for epigenetic control of gene regulation and future perspectives in this research area are discussed. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene.

    Directory of Open Access Journals (Sweden)

    Mark T Anderson

    Full Text Available Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae

  10. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene.

    Science.gov (United States)

    Anderson, Mark T; Seifert, H Steven

    2013-01-01

    Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating

  11. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Sukhendu Mandal

    Full Text Available Triton X-100 (TX-100, a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA and its derivative (C9W have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.

  12. Virulence of wheat yellow rust races and resistance genes of wheat cultivars in Ecuador

    NARCIS (Netherlands)

    Ochoa, J.B.; Danial, D.L.; Paucar, B.

    2007-01-01

    Virulence factors of the yellow rust, Puccinia striiformis, populations in bread wheat were studied in Ecuador between 1973 and 2004. The number of virulence factors has increased markedly from very few in the early seventies to 16 at the end of the 90s. Isolates belonging to race 0E0 seem to be the

  13. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

    Science.gov (United States)

    Lebreton, Alice; Cossart, Pascale

    2017-01-01

    ABSTRACT The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes. PMID:27217337

  14. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators.

    Directory of Open Access Journals (Sweden)

    Robert P Ryan

    2015-07-01

    Full Text Available Many pathogenic bacteria use cell-cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc, which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.

  15. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  16. Acetylation regulates protein stability and DNA-binding ability of HilD to modulate Salmonella Typhimurium virulence.

    Science.gov (United States)

    Sang, Yu; Ren, Jie; Qin, Ran; Liu, Shuting; Cui, Zhongli; Cheng, Sen; Liu, Xiaoyun; Lu, Jie; Tao, Jing; Yao, Yu-Feng

    2017-02-24

    HilD, a dominant regulator of Salmonella pathogenicity island 1 (SPI-1), can be acetylated by acetyltransferase Pat in Salmonella Typhimurium, and the acetylation is beneficial to its stability. However, the underlying mechanism of HilD stability regulated by acetylation is not clear. We show here that lysine 297 (K297) located in the helix-turn-helix motif, can be acetylated by Pat. Acetylation of K297 increases HilD stability, but reduces its DNA-binding affinity. In turn, the deacetylated K297 enhances the DNA-binding ability, but decreases HilD stability. Under SPI-1 inducing condition, the acetylation level of K297 is down-regulated. The acetylated K297 (mimicked by glutamine substitution) causes attenuated invasion in HeLa cells as well as impaired virulence in mouse model compared with the deacetylated K297 (mimicked by arginine substitution), suggesting that deacetylation of K297 is essential for Salmonella virulence. These findings demonstrate that the acetylation of K297 can regulate both protein stability and DNA-binding ability. This regulation mediated by acetylation not only degrades redundant HilD to keep a moderate protein level to facilitate S. Typhimurium growth but also maintains an appropriate DNA-binding activity of HilD to ensure bacterial pathogenicity. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Directory of Open Access Journals (Sweden)

    Ping Jihui

    2011-01-01

    Full Text Available Abstract Background To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV, A/Hong Kong/1/68(H3N2 (HK-wt, was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans. Results To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth in vitro (mouse and canine cells and in vivo (BALB/c mouse lungs as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung

  18. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches

    DEFF Research Database (Denmark)

    Frydendahl, K.

    2002-01-01

    of virulence factor genes as reference, O-serogrouping employing a selection of antisera representing common pig pathogenic serogroups and detection of hemolysis were evaluated as epidemiological markers for pathogenicity. Both criteria were associated with pathogenicity (P

  19. Occurrence of diarrhoeagenic Escherichia coli virulence genes in water and bed sediments of a river used by communities in Gauteng, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2016-08-01

    Full Text Available In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes...

  20. Detection of virulence-associated genes of Pasteurella multocida isolated from cases of fowl cholera by multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Thales Q. Furian

    2013-02-01

    Full Text Available The current systems of breeding poultry, based on high population density, increase the risk of spreading pathogens, especially those causing respiratory diseases and those that have more than one host. Fowl Cholera (FC is one such pathogen, and even though it represents one of several avian diseases that should be considered in the differential diagnosis of notifiable diseases that present with sudden death, the pathogenesis and virulence factors involved in FC are still poorly understood. The objective of this study was to investigate twelve genes related to virulence in 25 samples of Pasteurella multocida isolated from FC cases in the southern region of Brazil through the development of multiplex PCR protocols. The protocols developed were capable of detecting all of the proposed genes. The ompH, oma87, sodC, hgbA, hgbB, exBD-tonB and nanB genes were present in 100% of the samples (25/25, the sodA and nanH genes were present in 96% (24/25, ptfA was present in 92% (23/25, and pfhA was present in 60% (15/25. Gene toxA was not identified in any of the samples studied (0/25. Five different genetic profiles were obtained, of which P1 (negative to toxA was the most common. We concluded that the multiplex-PCR protocols could be useful tools for rapid and simultaneous detection of virulence genes. Despite the high frequency of the analyzed genes and the fact that all samples belonged to the same subspecies of P. multocida, five genetic profiles were observed, which should be confirmed in a study with a larger number of samples.

  1. Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia.

    Science.gov (United States)

    Tsai, Chia-Ta; Chi, Chih-Yu; Ho, Cheng-Mao; Lin, Po-Chang; Chou, Chia-Hui; Wang, Jen-Hsien; Wang, Jui-Hsing; Lin, Hsiao-Chuan; Tien, Ni; Lin, Kuo-Hsi; Ho, Mao-Wang; Lu, Jang-Jih

    2014-12-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is increasingly recognized as a human pathogen responsible for invasive infection and streptococcal toxic shock syndrome (STSS). The pathogen possesses virulence genes that resemble those found in Streptococcus pyogenes (GAS). We analyzed the association between these specific toxic genes, clinical presentations, and outcome in patients with SDSE infections. Patients (older than 18 years) with community-acquired invasive bacteremia caused by SDSE bacteremia who were undergoing treatment at China Medical University Hospital from June 2007 to December 2010 were included in this study. Multiplex polymerase chain reaction was performed to identify virulence genes of the SDSE isolates. Demographic data, clinical presentations, and outcome in patients with SDSE infections were reviewed and analyzed. Forty patients with 41 episodes of SDSE bacteremia were reviewed. The median age of the patients with SDSE infection was 69.7 years; 55% were female and 78% had underlying diseases. Malignancy (13, 33%) and diabetes mellitus (13, 33%) were the most common comorbidities. The 30-day mortality rate was 12%. Compared with the survivors, the non-survivors had a higher rate of diabetes mellitus (80% vs. 26%), liver cirrhosis (60% vs.11%), shock (60% vs.17%), STSS (60% vs. 8%), and a high Pittsburgh bacteremia score >4 (40% vs. 6%). Most isolates had scpA, ska, saga, and slo genes, whereas speC, speG, speH, speI, speK, smez, and ssa genes were not detected. speA gene was identified only in one patient with STSS (1/6, 17%). All isolates were susceptible to penicillin, cefotaxime, levofloxacin, moxifloxacin, vancomycin, and linezolid. In invasive SDSE infections, most isolates carry putative virulence genes, such as scpA, ska, saga, and slo. Clinical SDSE isolates in Taiwan remain susceptible to penicillin cefotaxime, and levofloxacin. Copyright © 2013. Published by Elsevier B.V.

  2. Phenotypic plasticity regulates Candida albicans interactions and virulence in the vertebrate host

    Directory of Open Access Journals (Sweden)

    Emily M Mallick

    2016-05-01

    Full Text Available Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we addressed the in vivo properties of the two cell states in a zebrafish model of infection. Multiple attributes were compared including the stability of phenotypic states, filamentation, virulence, dissemination, and phagocytosis by immune cells, and phenotypes equated across three different host temperatures. We show that both white and opaque cells can establish a lethal systemic infection. The relative virulence of the two cell types is temperature dependent; virulence is similar at 25°C, but at higher temperatures (30 and 33°C white cells are significantly more virulent than opaque cells. Despite the difference in virulence, fungal burdens and dissemination are similar between cells in the two states. Additionally, both white and opaque cells exhibit robust filamentation during infection, and mutants unable to filament show decreased virulence, establishing that this program is critical for pathogenesis in both cell states. Interactions between C. albicans cells and immune cells were compared both in vitro and in vivo. Macrophages and neutrophils preferentially phagocytosed white cells over opaque cells in vitro, and neutrophils also showed preferential phagocytosis of white cells in vivo. Together, these studies distinguish the properties of white and opaque cells in a vertebrate host, and establish that the two cell types demonstrate both important similarities and key differences during infection.

  3. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    IP-seq and small RNA-seq, we delineated the landscape of the promoters with bidirectional transcriptions that yield steady-state RNA in only one directions (Paper III). A subsequent motif analysis enabled us to uncover specific DNA signals – early polyA sites – that make RNA on the reverse strand sensitive......). Gene enrichment analysis on the detected NMD substrates revealed an unappreciated NMD-based regulatory mechanism of the genes hosting multiple intronic snoRNAs, which can facilitate differential expression of individual snoRNAs from a single host gene locus. Finally, supported by RNA-seq and small RNA...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis...

  4. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response.

    Science.gov (United States)

    Chacko, Nadia; Gold, Scott

    2012-06-01

    Mating of compatible haploid cells of Ustilago maydis is essential for infection and disease development in the host. For mating and subsequent filamentous growth and pathogenicity, the transcription factor, prf1 is necessary. Prf1 is in turn regulated by the cAMP and MAPK pathways and other regulators like rop1 and hap1. Here we describe the identification of another putative Prf1 regulator, med1, the ortholog of the Aspergillus nidulans medusa (medA) transcription factor and show that it is required for mating and full virulence in U. maydis. med1 deletion mutants show both pre- and post-mating defects and are unresponsive to external pheromone. The expression of prf1 is down-regulated in Δmed1 compared to the wild type, suggesting that med1 is upstream of prf1. Additionally, indicative of a role in secondary metabolism regulation, deletion of the med1 gene de-represses the production of glycolipids in U. maydis. Published by Elsevier Inc.

  5. MaSnf1, a sucrose non-fermenting protein kinase gene, is involved in carbon source utilization, stress tolerance, and virulence in Metarhizium acridum.

    Science.gov (United States)

    Ming, Yue; Wei, Qinglv; Jin, Kai; Xia, Yuxian

    2014-12-01

    The protein kinase sucrose non-fermenting-1(Snf1) regulates the derepression of glucose-repressible genes and plays a major role in carbon source utilization. In this study, MaSnf1, a sucrose non-fermenting protein kinase gene, has been identified from the entomopathogenic fungus Metarhizium acridum, which has a great potential as a biocontrol agent. The functions of MaSnf1 were characterized using gene disruption and complementation strategies. Disruption of MaSnf1 reduced the conidial yield and delayed the conidial germination on potato dextrose agar (PDA) medium. MaSnf1 is also important for response to ultraviolet radiation and heat shock stress and carbon source utilization in M. acridum. Bioassays by topical inoculation and intrahemocoel injection showed that the MaSnf1 deletion mutant exhibited greatly reduced pathogenicity. The reduced expression level of chitinase gene (Chi) and protease gene (Pr1A) in MaSnf1-disruption transformant (ΔMaSnf1) most likely affects the initial penetration into its host. Additionally, the reduced expression level of acidic trehalase gene (ATM1) probably causes a decline in growth rate in insect hemolymph. Inactivation of MaSnf1 led to a significant decrease in virulence, probably owing to reduction in conidial germination, and appressorium formation, impairment in penetration, and decrease in growth rate in insect hemolymph.

  6. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H2O2) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H2O2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H2O2. Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H2O2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H2O2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H2O2. CatB functions as an active catalase that is required for the full virulence of Xoo in rice.