WorldWideScience

Sample records for virtual reality vr

  1. Integrating Virtual Reality (VR) into traditional instructional design ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-12-01

    Dec 1, 2015 ... on a robot. This model is useful for performing operations in dangerous and risky environments such as control of nuclear plants and celestial exploration. Fig. 1: Example of Telepresence VR system. •. Mixed Reality(Augmented Reality). This model involves the seamless merging of real space and virtual ...

  2. Integrating Virtual Reality (VR) into traditional instructional design ...

    African Journals Online (AJOL)

    Most technical programs in Nigeria's tertiary institutions lack the desired laboratories to impact technical skills to the students. This has led to the production of pseudo-illustrates as graduates and this accounts for reasons why many employers are saying Nigerian graduates are not employable. Virtual Reality (VR) can ...

  3. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    Science.gov (United States)

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  4. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...

  5. Blind persons navigate in virtual reality (VR); hearing and feeling communicates "reality".

    Science.gov (United States)

    Max, M L; Gonzalez, J R

    1997-01-01

    Can Virtual Reality (VR) developments in audio navigation for blind persons support therapies for all? Working with Crystal River Engineering we are developing navigable Virtual Reality worlds for blind users, using spatialized audio [1], [2]. All persons, however, use specialized channels, such as: visual, aural, and kinetic learning senses. Predominantly visual VR worlds and health informatics models from World Wide Webs, may be downloaded, tailored, augmented, and delivered to each of these learning senses using VR. We are also testing a proof of concept system with Boston Dynamics which downloads 3-dimensional, satellite-derived map models from the World Wide Web, and makes them navigable by "feeling" the terrain using haptic (tactual or force feedback to your hand) robotic interfaces. Ultimately, these multi-sensory VR access methods: sight, localization by audio, and "feeling" of data sets could open up the World Wide Web to individuals with sight impairments. This could also, however, benefit government, businesses, universities, and (elementary) education. It could contribute more powerful communications, education, and medical simulation applications on the World Wide Web. This work is part of government technology transfer to telemedicine, (elementary) education, disabilities access to the Web, and new Internet access and productivity efforts under Vice President Gore's National Performance Review.

  6. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    Science.gov (United States)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  7. NeuroVR: an open source virtual reality platform for clinical psychology and behavioral neurosciences.

    Science.gov (United States)

    Riva, Giuseppe; Gaggioli, Andrea; Villani, Daniela; Preziosa, Alessandra; Morganti, Francesca; Corsi, Riccardo; Faletti, Gianluca; Vezzadini, Luca

    2007-01-01

    In the past decade, the use of virtual reality for clinical and research applications has become more widespread. However, the diffusion of this approach is still limited by three main issues: poor usability, lack of technical expertise among clinical professionals, and high costs. To address these challenges, we introduce NeuroVR (http://www.neurovr.org--http://www.neurotiv.org), a cost-free virtual reality platform based on open-source software, that allows non-expert users to adapt the content of a pre-designed virtual environment to meet the specific needs of the clinical or experimental setting. Using the NeuroVR Editor, the user can choose the appropriate psychological stimuli/stressors from a database of objects (both 2D and 3D) and videos, and easily place them into the virtual environment. The edited scene can then be visualized in the NeuroVR Player using either immersive or non-immersive displays. Currently, the NeuroVR library includes different virtual scenes (apartment, office, square, supermarket, park, classroom, etc.), covering two of the most studied clinical applications of VR: specific phobias and eating disorders. The NeuroVR Editor is based on Blender (http://www.blender.org), the open source, cross-platform suite of tools for 3D creation, and is available as a completely free resource. An interesting feature of the NeuroVR Editor is the possibility to add new objects to the database. This feature allows the therapist to enhance the patient's feeling of familiarity and intimacy with the virtual scene, i.e., by using photos or movies of objects/people that are part of the patient's daily life, thereby improving the efficacy of the exposure. The NeuroVR platform runs on standard personal computers with Microsoft Windows; the only requirement for the hardware is related to the graphics card, which must support OpenGL.

  8. The German VR Simulation Realism Scale--psychometric construction for virtual reality applications with virtual humans.

    Science.gov (United States)

    Poeschl, Sandra; Doering, Nicola

    2013-01-01

    Virtual training applications with high levels of immersion or fidelity (for example for social phobia treatment) produce high levels of presence and therefore belong to the most successful Virtual Reality developments. Whereas display and interaction fidelity (as sub-dimensions of immersion) and their influence on presence are well researched, realism of the displayed simulation depends on the specific application and is therefore difficult to measure. We propose to measure simulation realism by using a self-report questionnaire. The German VR Simulation Realism Scale for VR training applications was developed based on a translation of scene realism items from the Witmer-Singer-Presence Questionnaire. Items for realism of virtual humans (for example for social phobia training applications) were supplemented. A sample of N = 151 students rated simulation realism of a Fear of Public Speaking application. Four factors were derived by item- and principle component analysis (Varimax rotation), representing Scene Realism, Audience Behavior, Audience Appearance and Sound Realism. The scale developed can be used as a starting point for future research and measurement of simulation realism for applications including virtual humans.

  9. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    Science.gov (United States)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  10. Differential sensitivity between a virtual reality (VR) balance module and clinically used concussion balance modalities

    Science.gov (United States)

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2015-01-01

    Objective Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Design Retrospective, case-control study Setting Institutional research laboratory Participants Normal controls (n=94) and concussed participants (n=27) Interventions All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours post-injury) and tested in the lab between 7-10 days post-injury. ROC curves were performed in order to establish the VR module’s sensitivity and specificity for detecting lingering balance deficits. Main Outcome Measures Final balance score Results For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. Conclusions The VR balance module has high sensitivity and specificity for detecting sub-acute balance deficits after concussive injury. PMID:26505696

  11. Implementing Virtual Reality Technology as an Effective Web Based Kiosk: Darulaman's Teacher Training College Tour (Ipda Vr Tour)

    Science.gov (United States)

    Fadzil, Azman

    2006-01-01

    At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…

  12. Virtual Reality Training for Public Speaking—A QUEST-VR Framework Validation

    Directory of Open Access Journals (Sweden)

    Sandra Poeschl

    2017-06-01

    Full Text Available Good public speaking skills are essential in many professions as well as everyday life, but speech anxiety is a common problem. While it is established that public speaking training in virtual reality (VR is effective, comprehensive studies on the underlying factors that contribute to this success are rare. The “quality evaluation of user-system interaction in virtual reality” framework for evaluation of VR applications is presented that includes system features, user factors, and moderating variables. Based on this framework, variables that are postulated to influence the quality of a public speaking training application were selected for a first validation study. In a cross-sectional, repeated measures laboratory study [N = 36 undergraduate students; 36% men, 64% women, mean age = 26.42 years (SD = 3.42], the effects of task difficulty (independent variable, ability to concentrate, fear of public speaking, and social presence (covariates on public speaking performance (dependent variable in a virtual training scenario were analyzed, using stereoscopic visualization on a screen. The results indicate that the covariates moderate the effect of task difficulty on speech performance, turning it into a non-significant effect. Further interrelations are explored. The presenter’s reaction to the virtual agents in the audience shows a tendency of overlap of explained variance with task difficulty. This underlines the need for more studies dedicated to the interaction of contributing factors for determining the quality of VR public speaking applications.

  13. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  14. The application of diffraction grating in the design of virtual reality (VR) system

    Science.gov (United States)

    Chen, Jiekang; Huang, Qitai; Guan, Min

    2017-10-01

    Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.

  15. Development and Feasibility of a Virtual Reality Task for the Cognitive Assessment of Older Adults: The ECO-VR.

    Science.gov (United States)

    Oliveira, Camila R; Lopes Filho, Brandel José P; Sugarman, Michael A; Esteves, Cristiane S; Lima, Margarida Maria B M P; Moret-Tatay, Carmen; Irigaray, Tatiana Q; Argimon, Irani Iracema L

    2016-12-13

    Cognitive assessment with virtual reality (VR) may have superior ecological validity for older adults compared to traditional pencil-and-paper cognitive assessment. However, few studies have reported the development of VR tasks. The aim of this study was to present the development, feasibility, content validity, and preliminary evidence of construct validity of an ecological task of cognitive assessment for older adults in VR (ECO-VR). The tasks were prepared based on theoretical and clinical backgrounds. We had 29 non-expert judges identify virtual visual stimuli and three-dimensional scenarios, and five expert judges assisted with content analysis and developing instructions. Finally, six older persons participated in three pilot studies and thirty older persons participated in the preliminary study to identify construct validity evidence. Data were analyzed by descriptive statistics and partial correlation. Target stimuli and three-dimensional scenarios were judged adequate and the content analysis demonstrated that ECO-VR evaluates temporo-spatial orientation, memory, language and executive functioning. We made significant changes to the instructions after the pilot studies to increase comprehensibility and reduce the completion time. The total score of ECO-VR was positively correlated mainly with performance in executive function (r = .172, p ECO-VR demonstrated feasibility for cognitive assessment in older adults, as well as content and construct validity evidences.

  16. The use of the virtual reality Helmet Samsung gear VR as interaction interface of a radioactive waste repository simulator

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Julio A. dos; Mól, Antônio C. de A.; Santo, André C. Do E., E-mail: julio_andrade11@hotmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Centro Universitário Carioca (UniCarioca), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Radioactive waste is all material resulting from human activity that contains elements that emit radiation that can generate risks to health and the environment. In this sense, they are very toxic also for those who perform the storage of radioactive waste in nuclear facilities. On the other hand, the virtual reality (VR) has been destined to the most diverse purposes, like simulations for educational systems, for military purposes as for diverse training. VR can be considered as the junction of three basic principles: immersion, interaction and involvement. Bases on these principles of VR, this work aimed to develop a simulator of a repository of nuclear tailings, for mobile computing, whose interaction interface will be through the Samsung Gear VR helmet. The simulator of the nuclear waste repository was developed in the unity 3D tool and the elements that make up the scenario in the 3D MAX program. In this work we tried to put virtual reality under scrutiny in conjunction with Gear VR, to help in the sensation of immersion, as well as, the possibility of interaction with joysticks. The purpose was to provide greater insight into the operating environment. (author)

  17. a Methodology to Adapt Photogrammetric Models to Virtual Reality for Oculus Gear VR

    Science.gov (United States)

    Colmenero Fdez, A.

    2017-11-01

    In this paper, we will expose the process of adapting a high resolution model (laser and photogrammetry) into a virtual reality application for mobile phones. It is a virtual archeology project carried out on the site of Lugo's Mitreo, Spain.

  18. Design of a Virtual Reality System for Affect Analysis in Facial Expressions (VR-SAAFE); Application to Schizophrenia.

    Science.gov (United States)

    Bekele, E; Bian, D; Peterman, J; Park, S; Sarkar, N

    2017-06-01

    Schizophrenia is a life-long, debilitating psychotic disorder with poor outcome that affects about 1% of the population. Although pharmacotherapy can alleviate some of the acute psychotic symptoms, residual social impairments present a significant barrier that prevents successful rehabilitation. With limited resources and access to social skills training opportunities, innovative technology has emerged as a potentially powerful tool for intervention. In this paper, we present a novel virtual reality (VR)-based system for understanding facial emotion processing impairments that may lead to poor social outcome in schizophrenia. We henceforth call it a VR System for Affect Analysis in Facial Expressions (VR-SAAFE). This system integrates a VR-based task presentation platform that can minutely control facial expressions of an avatar with or without accompanying verbal interaction, with an eye-tracker to quantitatively measure a participants real-time gaze and a set of physiological sensors to infer his/her affective states to allow in-depth understanding of the emotion recognition mechanism of patients with schizophrenia based on quantitative metrics. A usability study with 12 patients with schizophrenia and 12 healthy controls was conducted to examine processing of the emotional faces. Preliminary results indicated that there were significant differences in the way patients with schizophrenia processed and responded towards the emotional faces presented in the VR environment compared with healthy control participants. The preliminary results underscore the utility of such a VR-based system that enables precise and quantitative assessment of social skill deficits in patients with schizophrenia.

  19. Virtual reality (VR)-based community living skills training for people with acquired brain injury: A pilot study.

    Science.gov (United States)

    Yip, Ben C B; Man, David W K

    2009-12-01

    The purpose of the present study was to test the usability and effectiveness of a newly-developed virtual reality (VR)-based community living skills training program for people with acquired brain injury (ABI). A small-sample, pre- and post-quasi experimental design was adopted to initially study the efficacy of the VR-based training program. Its usability was also investigated through interviewing subjects. Outcomes were documented in terms of subjects' skills acquisition, self-efficacy in applying the learnt skills and the transfer ratio of the learnt skills to the real environment. Global cognitive ability and the functional independence level were also assessed. Four subjects with ABI (one traumatic brain injury and three stroke subjects) were successfully recruited and received 10 sessions of VR-based community living skills training. All four subjects showed improvement in skills acquisition and memory performance, while three out of four also showed improvement in self-efficacy and demonstrated transfer of skills to the real environment. Usability was initially supported. Preliminary results suggested positive changes in ABI subjects. The proposed virtual reality (VR) community living skills training software will be further investigated in a randomized controlled trial.

  20. Review of Virtual Reality Technology Application in Fire and Medical Exercise for Development of VR based Radiological Emergency Exercise System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee; Lee, Byung Il; Park, Seong Jun; Lee, Dewhey; Park, Younwon [BEES Inc., Daejeon (Korea, Republic of)

    2016-10-15

    The article of Act on Physical Protection and Radiological Emergency (APPRE) was amended as a nuclear licensee shall formulate a radiological emergency exercise plan as prescribed by the Ordinance of the Prime minister and execute such plan with the approval of the Nuclear Safety and Security Commission (NSSC). Current radiological emergency exercise is basically conducting in the field. The field exercise essentially requires participation of mass population. Due to lack of time, cost, communication and participation, the field exercise necessarily causes several limitations in an aspect of effectiveness. The public participants often misunderstood the situation as real though it is just an exercise so several conflicts are occurring. Furthermore, the exercise program is too ideal to reflect the real accident situation. In this point of view, application of virtual reality (VR) technology is highlighted with its many advantages. VR technology is expected to resolve those existing problems. Our research team is currently developing VR based radiological emergency exercise system. In this paper, the advantages and actual application of VR based training were introduced. With those advantages and improvement of existing disadvantages, our VR based radiological emergency exercise system will be developed. Not only physical interactive features, but also interactive fail-considered real-like scenarios will be adopted in the system. The ultimate goal of the system is safe and perfect evacuation of residents in case of radioactive accident.

  1. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  2. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  3. NeuroVR 2--a free virtual reality platform for the assessment and treatment in behavioral health care.

    Science.gov (United States)

    Riva, Giuseppe; Gaggioli, Andrea; Grassi, Alessandra; Raspelli, Simona; Cipresso, Pietro; Pallavicini, Federica; Vigna, Cinzia; Gagliati, Andrea; Gasco, Stefano; Donvito, Giuseppe

    2011-01-01

    At MMVR 2007 we presented NeuroVR (http://www.neurovr.org) a free virtual reality platform based on open-source software. The software allows non-expert users to adapt the content of 14 pre-designed virtual environments to the specific needs of the clinical or experimental setting. Following the feedbacks of the 2000 users who downloaded the first versions (1 and 1.5), we developed a new version--NeuroVR 2 (http://www.neurovr2.org)--that improves the possibility for the therapist to enhance the patient's feeling of familiarity and intimacy with the virtual scene, by using external sounds, photos or videos. More, when running a simulation, the system offers a set of standard features that contribute to increase the realism of the simulated scene. These include collision detection to control movements in the environment, realistic walk-style motion, advanced lighting techniques for enhanced image quality, and streaming of video textures using alpha channel for transparency.

  4. Virtual Reality Pain Control During Burn Wound Debridement of Combat-Related Burn Injuries Using Robot-Like Arm Mounted VR Goggles

    Science.gov (United States)

    2011-07-01

    arm mounted VR goggle system. Key Words: Combat, Analgesia , Burn pain , Wound care, Virtual reality. (J Trauma. 2011;71: S125–S130) As the result of...excru- ciating pain during medical procedures such as wound clean- ing and physical therapy .4 Although opioids are the cornerstone analgesic for patients...reductions in pain ratings when VR is used adjunctively with opioids during civilian severe burn wound care14,16 and physical therapy .17 In addition

  5. Virtual reality pain control during burn wound debridement of combat-related burn injuries using robot-like arm mounted VR goggles.

    Science.gov (United States)

    Maani, Christopher V; Hoffman, Hunter G; Morrow, Michelle; Maiers, Alan; Gaylord, Kathryn; McGhee, Laura L; DeSocio, Peter A

    2011-07-01

    This is the first controlled study to explore whether adjunctive immersive virtual reality (VR) can reduce excessive pain of soldiers with combat-related burn injuries during wound debridement. Patients were US soldiers burned in combat attacks involving explosive devices in Iraq or Afghanistan. During the same wound care session using a within-subject experimental design, 12 patients received half of their severe burn wound cleaning procedure (~6 minutes) with standard of care pharmacologies and half while in VR (treatment order randomized). Three 0 to 10 Graphic Rating Scale pain scores for each of the treatment conditions served as the primary variables. Patients reported significantly less pain when distracted with VR. "Worst pain" (pain intensity) dropped from 6.25 of 10 to 4.50 of 10. "Pain unpleasantness" ratings dropped from "moderate" (6.25 of 10) to "mild" (2.83 of 10). "Time spent thinking about pain" dropped from 76% during no VR to 22% during VR. Patients rated "no VR" as "no fun at all" (first evidence from a controlled study that adjunctive immersive VR reduced pain of patients with combat-related burn injuries during severe burn wound debridement. Pain reduction during VR was greatest in patients with the highest pain during no VR. These patients were the first to use a unique custom robot-like arm mounted VR goggle system.

  6. Virtual-reality-based attention assessment of ADHD: ClinicaVR: Classroom-CPT versus a traditional continuous performance test.

    Science.gov (United States)

    Neguț, Alexandra; Jurma, Anda Maria; David, Daniel

    2017-08-01

    Virtual-reality-based assessment may be a good alternative to classical or computerized neuropsychological assessment due to increased ecological validity. ClinicaVR: Classroom-CPT (VC) is a neuropsychological test embedded in virtual reality that is designed to assess attention deficits in children with attention deficit hyperactivity disorder (ADHD) or other conditions associated with impaired attention. The present study aimed to (1) investigate the diagnostic validity of VC in comparison to a traditional continuous performance test (CPT), (2) explore the task difficulty of VC, (3) address the effect of distractors on the performance of ADHD participants and typically-developing (TD) controls, and (4) compare the two measures on cognitive absorption. A total of 33 children diagnosed with ADHD and 42 TD children, aged between 7 and 13 years, participated in the study and were tested with a traditional CPT or with VC, along with several cognitive measures and an adapted version of the Cognitive Absorption Scale. A mixed multivariate analysis of covariance (MANCOVA) revealed that the children with ADHD performed worse on correct responses had more commissions and omissions errors than the TD children, as well as slower target reaction times . The results showed significant differences between performance in the virtual environment and the traditional computerized one, with longer reaction times in virtual reality. The data analysis highlighted the negative influence of auditory distractors on attention performance in the case of the children with ADHD, but not for the TD children. Finally, the two measures did not differ on the cognitive absorption perceived by the children.

  7. Virtual Reality (VR) as a Source for Self-Efficacy in Teacher Training

    Science.gov (United States)

    Nissim, Yonit; Weissblueth, Eyal

    2017-01-01

    The current study sought to explore the experiences of pre-service student teachers in a teaching unit in VR within a special course framework which was intended to enhance student-teacher's 21st century skills and growth processes. In particular, how their experiences working with VR affected their self-efficacy. The research population comprised…

  8. NeuroVR 1.5 - a free virtual reality platform for the assessment and treatment in clinical psychology and neuroscience.

    Science.gov (United States)

    Riva, Giuseppe; Carelli, Laura; Gaggioli, Andrea; Gorini, Alessandra; Vigna, Cinzia; Corsi, Riccardo; Faletti, Gianluca; Vezzadini, Luca

    2009-01-01

    At MMVR 2007 we presented NeuroVR (http://www.neurovr.org) a free virtual reality platform based on open-source software. The software allows non-expert users to adapt the content of 14 pre-designed virtual environments to the specific needs of the clinical or experimental setting. Following the feedbacks of the 700 users who downloaded the first version, we developed a new version - NeuroVR 1.5 - that improves the possibility for the therapist to enhance the patient's feeling of familiarity and intimacy with the virtual scene, by using external sounds, photos or videos. Specifically, the new version now includes full sound support and the ability of triggering external sounds and videos using the keyboard. The outcomes of different trials made using NeuroVR will be presented and discussed.

  9. Virtual Reality: Ready or Not!

    Science.gov (United States)

    Lewis, Joan E.

    1994-01-01

    Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)

  10. Virtual Reality: Bringing the Awe of Our Science into The Classroom with VR

    Science.gov (United States)

    Bell, R. E.; Turrin, M.; Frearson, N.; Boghosian, A.; Ferrini, V. L.; Simpson, F.

    2016-12-01

    The geosciences are rich in imagery, making them compelling material for immersive teaching experiences. We often work in remote locations, places where few others are able to travel. Flat 2 D images from the field have served explorers and scientists well from the lantern slides brought back from Antarctica to the images scientists and educators now use in powerpoint presentations. These images provide a backdrop to introduce the experience for formal classes and informal presentations. Our stories from the field bring the setting alive for the participants. The travelers presented and the audience passively listened. Immersive learning opportunities are much more powerful than lecturing. We have enlisted both VR and drone imagery to bring learners fully into the experience of science. A 360 VR image brings the viewer into the moment of discovery. Both have been shown to create an active learning setting fully under the learner's control; they explore at their own pace and following their own interest. This learning `sticks', becoming part of the participant's own unique experience in the space. We are building VR images of field experiences and VR data immersion experiences that will transport people into new locations, building a field experience that they can not only see but fully explore. Through VR we introduce new experiences that showcase our science, our careers and our collaborations. Users can spin the view up to see the helicopter landing in a remote field location by the ice. Spin to the right and see a colleague collecting a reading from instruments that have been pulled from the LC130 aircraft. Turn the view to the left and see the harsh windswept environment along the edge of an ice shelf. Look down and note that you feet are encased in snow boots to keep them warm and stable on the ice. The viewer is in the field as part of the science team. Learning in the classroom and through social media is now fully 360 and fully immersive.

  11. Using QuickTime virtual reality objects in computer-assisted instruction of gross anatomy: Yorick--the VR Skull.

    Science.gov (United States)

    Nieder, G L; Scott, J N; Anderson, M D

    2000-01-01

    QuickTime virtual reality (QTVR) is a software technology that creates, on a normal computer screen, the illusion of holding and turning a three-dimensional object. QTVR is a practical photo-realistic virtual reality technology that is easily implemented on any current personal computer or via the Internet with no special hardware requirements. Because of its ability to present dynamic photo-quality images, we reasoned that QTVR can provide a more realistic presentation of anatomic structure than two-dimensional atlas pictures and facilitate study of specimens outside the dissection lab. We created QTVR objects, using portions of the skull, and incorporated them into an instructional program for first-year medical students. To obtain images, the bones of the skull were mounted on a rotating table, and a digital camera was positioned on a swinging arm so that the focal point remained coincident with the rotational center of the object as the camera was panned through a vertical arc. Digital images were captured at intervals of 10 degrees rotation of the object (horizontal pan). The camera was then swung through an arc with additional horizontal pan sequences taken at 10 degrees intervals of vertical pan. The images were edited to place the object on a solid black background, then assembled into a linear QuickTime movie. The linear movie was processed to yield a QTVR object movie that can be manipulated on vertical and horizontal axes using the mouse. QTVR movies were incorporated into an interactive environment that provided labeling, links to text-based information and self-testing capabilities. This program, Yorick-the VR Skull, has been used in our first-year medical and graduate gross anatomy courses for the past two years. Results of student evaluation of the program indicate that this QTVR-based program is an effective learning tool that is well received by students. Copyright 2000 Wiley-Liss, Inc.

  12. Handbook for evaluation studies in virtual reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore; Koeffel, Christina

    2006-01-01

    Virtual reality (VR) applications are spreading and attract industries since VR technologies are becoming more affordable, powerful and robust. VR applications inherently call for human-computer interaction, which in turn calls for system and usability evaluations, typically through measurement...

  13. Virtual reality for engineering

    CERN Document Server

    De Gennaro, Silvano; CERN. Geneva

    1996-01-01

    Virtual Reality for Engineers. Virtual Reality is a very powerful visualization technique for 3D data, which can bring enormous benefits to engineering design. CAD models can be exported to a VR application and used as "Virtual Prototypes". Virtual Prototypes are an ideal replacement for wooden models as they can be generated automatically from most CAD products. They are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, on a one-to-one scale and using a 3D-stereo vision. Navigation can be performed using a number of instinctive tools, such as joysticks, spaceballs, VR helmets and 3D mice. The lectures will cover today's Virtual Reality products and methods, and describe how to transform CAD models into Virtual Prototypes. A "hands on" VR experience featuring the LHC detectors models can be organized for people interested.

  14. Virtual Reality in Neurorehabilitation

    OpenAIRE

    Stasieńko Agnieszka; Sarzyńska-Długosz Iwona

    2016-01-01

    This article includes current information on the use of modern IT solutions and virtual-reality (VR)-based technologies in medical rehabilitation. A review of current literature on VR-based interventions and their indications, benefits and limitations in patients with nervous system diseases was conducted. The popularity of VR-based training as a tool used for rehabilitation of patients with acute and chronic deficits in both sensory-motor and cognitive disorders is increasing. Still, there i...

  15. Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery.

    Science.gov (United States)

    Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E; Magee, J Harvey; Enquobahrie, Andinet; Lin, Ming C; Aggarwal, Rajesh; Brunt, L Michael; Schwaitzberg, Steven D; Cao, Caroline G L; De, Suvranu; Jones, Daniel B

    2015-10-01

    To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. © The Author(s) 2015.

  16. Virtual Reality in Neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Stasieńko Agnieszka

    2016-12-01

    Full Text Available This article includes current information on the use of modern IT solutions and virtual-reality (VR-based technologies in medical rehabilitation. A review of current literature on VR-based interventions and their indications, benefits and limitations in patients with nervous system diseases was conducted. The popularity of VR-based training as a tool used for rehabilitation of patients with acute and chronic deficits in both sensory-motor and cognitive disorders is increasing. Still, there is a need for large randomized trials to evaluate the efficacy and safety of VR-based rehabilitation techniques in different disease entities. .

  17. Virtual Reality based Learning Systems

    OpenAIRE

    Cheng, Yang

    2016-01-01

    This article is based on studies of the existing literature, focusing on the states-of-the-arts on virtual reality (VR) and its potential uses in learning. Different platforms have been used to improve the learning effects of VR that offers exciting opportunities in various fields. As more and more students want in a distance, part-time, or want to continue their education, VR has attracted considerable attention in learning, training, and traditional education. VR based learning enables oper...

  18. Introduction to Virtual Reality in Education

    Science.gov (United States)

    Dede, Chris

    2009-01-01

    As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…

  19. Virtual Reality: A Definition History - A Personal Essay

    OpenAIRE

    Bryson, Steve

    2013-01-01

    This essay, written in 1998 by an active participant in both virtual reality development and the virtual reality definition debate, discusses the definition of the phrase "Virtual Reality" (VR). I start with history from a personal perspective, concentrating on the debate between the "Virtual Reality" and "Virtual Environment" labels in the late 1980's and early 1990's. Definitions of VR based on specific technologies are shown to be unsatisfactory. I propose the following definition of VR, b...

  20. Virtual Reality for Sport Training

    OpenAIRE

    Stinson, Cheryl Ann

    2013-01-01

    Virtual reality (VR) has been successfully applied to a broad range of training domains; however, to date there is little research investigating its benefits for sport training. In this work we investigated the feasibility and usefulness of using VR for two sport subdomains: sport psychology and sport biomechanics. In terms of sport psychology training, high-fidelity VR systems could be used to display realistic 3D environments to induce anxiety, allowing resilience-training systems to prepar...

  1. Virtual Reality

    Directory of Open Access Journals (Sweden)

    Dan L. Lacrãmã

    2007-01-01

    Full Text Available This paper is focused on the presentation of Virtual Reality principles together with the main implementation methods and techniques. An overview of the main development directions is included.

  2. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    Science.gov (United States)

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  3. Norms and validity of the DriVR: a virtual reality driving assessment for persons with head injuries.

    Science.gov (United States)

    Liu, L; Miyazaki, M; Watson, B

    1999-01-01

    This article presents the results of two studies of a new driving simulator called "DriVR." The first, normative study examined the performance of an uninjured driving population on the simulator. The driving ability of 148 participants in eight age categories was assessed using DriVR. The second, discriminative validity study examined DriVR's ability to discriminate between the performance of head-injured and uninjured adults. We administered the DriVR assessment to 17 head-injured adults. The performance of this group was compared to that of a subgroup of uninjured participants that matched the brain-injured participants in age, gender, and years of education. In general, DriVR's measures showed age-related changes in participant performance and were able to discriminate between head-injured and uninjured participants. These results suggested that age norms would be useful for analyzing the performance of head-injured clients who are being assessed with DriVR. It should be noted, however, that these studies did not examine DriVR's ability to predict performance in real, on-the-road tests.

  4. Computer Vision Assisted Virtual Reality Calibration

    Science.gov (United States)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  5. Virtual Reality for Training and Lifelong Learning

    Science.gov (United States)

    Mellet-d'Huart, Daniel

    2009-01-01

    This article covers the application of virtual reality (VR) to training and lifelong learning. A number of considerations concerning the design of VR applications are included. The introduction is dedicated to the more general aspects of applying VR to training. From multiple perspectives, we will provide an overview of existing applications with…

  6. Virtual Reality: theoretical basis, practical applications

    Directory of Open Access Journals (Sweden)

    Philip Barker

    1993-12-01

    Full Text Available Virtual reality (VR is a powerful multimedia visualization technique offering a range of mechanisms by which many new experiences can be made available. This paper deals with the basic nature of VR, the technologies needed to create it, and its potential, especially for helping disabled people. It also offers an overview of some examples of existing VR systems.

  7. Virtual Reality Training Environments: Contexts and Concerns.

    Science.gov (United States)

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  8. Are Learning Styles Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan

    2005-01-01

    This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…

  9. Virtual reality and psychotherapy.

    Science.gov (United States)

    Botella, Cristina; Quero, Soledad; Baños, Rosa M; Perpiñá, Conxa; García Palacios, Azucena; Riva, Giuseppe

    2004-01-01

    Virtual Reality (VR) is a new technology consisting on a graphic environment in which the user, not only has the feeling of being physically present in a virtual world, but he/she can interact with it. The first VR workstations were designed for big companies in order to create environments that simulate certain situations to train professionals. However, at this moment a great expansion of this technology is taking place in several fields, including the area of health. Especially interesting for us is the use of VR as a therapeutic tool in the treatment of psychological disorders. Compared to the traditional treatments, VR has many advantages (e.g., it is a protected environment for the patient, he/she can re-experience many times the feared situation, etc.). There are already data on the effectiveness of this technology in the treatment of different psychological disorders; here anxiety disorders, eating disorders and sexual disorders are reviewed. Finally, this chapter ends with some words about the limitations of VR and future perspectives.

  10. Virtual reality in telemedicine.

    Science.gov (United States)

    Riva, G; Gamberini, L

    2000-01-01

    Virtual reality (VR) can be considered as the leading edge of a general evolution of present communication interfaces involving the television, computer, and telephone. The main characteristic of this evolution is the full immersion of the human sensorimotor channels into a vivid and global communication experience. Because telemedicine principally focuses on transmitting medical information, VR has the potential to enhance this function. Particularly, VR can be used in telemedicine as an advanced communication interface, which enables a more intuitive mode of interacting with information, and as a flexible environment that enhances the feeling of physical presence during the interaction. In this article, the state of the art in VR-based telemedicine applications is described. This technology is now used in remote or augmented surgery as well as surgical training, which are critically dependent on eye-hand coordination. Recently, however, different researchers have tried to use virtual environments in medical visualization and for assessment and rehabilitation in neuropsychology. This article also discusses technological, ergonomical, and human factor issues, and specific guidelines are presented for expanding the use of VR in telemedicine.

  11. Virtual reality and hallucination: a technoetic perspective

    Science.gov (United States)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  12. Virtual reality concepts and technologies

    CERN Document Server

    Fuchs, Philippe

    2011-01-01

    A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the user's needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providin

  13. Leveraging Virtual Reality for the Benefit of Lunar Exploration

    Science.gov (United States)

    McCandless, R. S.; Burke, E. D.; McGinley, V. T.

    2017-10-01

    Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.

  14. Virtual Reality: A Dream Come True or a Nightmare.

    Science.gov (United States)

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  15. Sensorimotor Training in Virtual Reality: A Review

    OpenAIRE

    Adamovich, Sergei V.; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targete...

  16. Evaluation of Virtual Reality Training Using Affect

    Science.gov (United States)

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  17. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study...

  18. Virtual reality in neuroscience research and therapy.

    Science.gov (United States)

    Bohil, Corey J; Alicea, Bradly; Biocca, Frank A

    2011-11-03

    Virtual reality (VR) environments are increasingly being used by neuroscientists to simulate natural events and social interactions. VR creates interactive, multimodal sensory stimuli that offer unique advantages over other approaches to neuroscientific research and applications. VR's compatibility with imaging technologies such as functional MRI allows researchers to present multimodal stimuli with a high degree of ecological validity and control while recording changes in brain activity. Therapists, too, stand to gain from progress in VR technology, which provides a high degree of control over the therapeutic experience. Here we review the latest advances in VR technology and its applications in neuroscience research.

  19. Virtual reality for physical and motor rehabilitation

    CERN Document Server

    Weiss, Patrice L (Tamar); Levin, Mindy F

    2014-01-01

    While virtual reality (VR) has influenced fields as varied as gaming, archaeology, and the visual arts, some of its most promising applications come from the health sector. Particularly encouraging are the many uses of VR in supporting the recovery of motor skills following accident or illness. Virtual Reality for Physical and Motor Rehabilitation reviews two decades of progress and anticipates advances to come. It offers current research on the capacity of VR to evaluate, address, and reduce motor skill limitations, and the use of VR to support motor and sensorimotor function, from the most basic to the most sophisticated skill levels. Expert scientists and clinicians explain how the brain organizes motor behavior, relate therapeutic objectives to client goals, and differentiate among VR platforms in engaging the production of movement and balance. On the practical side, contributors demonstrate that VR complements existing therapies across various conditions such as neurodegenerative diseases, traumatic bra...

  20. Virtual reality for freely moving animals.

    Science.gov (United States)

    Stowers, John R; Hofbauer, Maximilian; Bastien, Renaud; Griessner, Johannes; Higgins, Peter; Farooqui, Sarfarazhussain; Fischer, Ruth M; Nowikovsky, Karin; Haubensak, Wulf; Couzin, Iain D; Tessmar-Raible, Kristin; Straw, Andrew D

    2017-10-01

    Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.

  1. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    Directory of Open Access Journals (Sweden)

    Youngjun Kim

    2017-05-01

    Full Text Available Recently, virtual reality (VR and augmented reality (AR have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  2. Augmented versus virtual reality laparoscopic simulation: what is the difference? A comparison of the ProMIS augmented reality laparoscopic simulator versus LapSim virtual reality laparoscopic simulator

    NARCIS (Netherlands)

    Botden, Sanne M. B. I.; Buzink, Sonja N.; Schijven, Marlies P.; Jakimowicz, Jack J.

    2007-01-01

    BACKGROUND: Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic

  3. Health Education capabilities Based on Virtual Reality

    OpenAIRE

    Paiva, Paulo Vinícius de Farias; Machado, Liliane dos Santos; Santos,Sérgio Ribeiro dos; Romero, Renata Olívia Gadelha

    2013-01-01

    The main goal of virtual reality is to create three-dimensional environments that users can explore and manipulate with the feeling of being immersed in realistic simulations. VR systems are mainly characterized by a high degree of realism in their simulation of real world experiences or even fictitious situations. Medicine and healthcare are benefiting from VR, especially the collaborative virtual environments for teaching various procedures that enable distance education as well as collabor...

  4. Motor rehabilitation using virtual reality

    Directory of Open Access Journals (Sweden)

    Sveistrup Heidi

    2004-12-01

    Full Text Available Abstract Virtual Reality (VR provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs, haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.

  5. Motor rehabilitation using virtual reality.

    Science.gov (United States)

    Sveistrup, Heidi

    2004-12-10

    Virtual Reality (VR) provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs), haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.

  6. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    Science.gov (United States)

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  7. Virtual Reality Augmentation for Functional Assessment and Treatment of Stuttering

    Science.gov (United States)

    Brundage, Shelley B.

    2007-01-01

    Stuttering characteristics, assessment, and treatment principles present challenges to assessment and treatment that can be addressed with virtual reality (VR) technology. This article describes how VR can be used to assist clinicians in meeting some of these challenges with adults who stutter. A review of current VR research at the Stuttering…

  8. Utilising Virtual Reality in Alcohol Studies: A Systematic Review

    Science.gov (United States)

    Durl, James; Dietrich, Timo; Pang, Bo; Potter, Leigh-Ellen; Carter, Lewis

    2018-01-01

    Background: The resurgence of interest in virtual reality (VR) in recent years has been exciting for health educators and researchers, yet little is known about VR's effectiveness. This systematic literature review aims to provide an overview of the prevalence of VR in alcohol studies and assess its effectiveness. Methods: Peer-reviewed articles…

  9. Virtual Reality: An Experiential Tool for Clinical Psychology

    Science.gov (United States)

    Riva, Giuseppe

    2009-01-01

    Several Virtual Reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 15 years. Typically, in VR the patient learns to manipulate problematic situations related to his/her problem. In fact, VR can be described as an advanced form of human-computer interface that is able…

  10. Improving Weight Maintenance Using Virtual Reality (Second Life)

    Science.gov (United States)

    Sullivan, Debra K.; Goetz, Jeannine R.; Gibson, Cheryl A.; Washburn, Richard A.; Smith, Bryan K.; Lee, Jaehoon; Gerald, Stephanie; Fincham, Tennille; Donnelly, Joseph E.

    2013-01-01

    Objective: Compare weight loss and maintenance between a face-to-face (FTF) weight management clinic and a clinic delivered via virtual reality (VR). Methods: Participants were randomized to 3 months of weight loss with a weekly clinic delivered via FTF or VR and then 6 months' weight maintenance delivered with VR. Data were collected at baseline…

  11. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2013-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  12. Concept and design of a virtual reality work environment for industrial designers; Konzeption und Entwurf eines VR Arbeitsplatzes im Bereich des Industrial Design

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, T.; Bruder, R. [Universitaet Essen (Germany). Institut fuer Ergonomie und Designforschung

    2002-07-01

    This concept of a working environment for industrial designers is based on the use of Virtual Reality. The project aims at making the design process using new technologies just as intuitive as the work involving traditional tools. Basis of the development is a human centered principle, not the concentration on available technologies. The project was developed in cooperation with the Fraunhofer Gesellschaft (Institute for media communication) in Sankt Augustin, Germany. (orig.)

  13. Virtual reality, augmented reality?I call it i-Reality

    OpenAIRE

    Grossmann, Rafael J.

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  14. International workshop on multimodal virtual and augmented reality (workshop summary)

    NARCIS (Netherlands)

    Hürst, W.O.; Iwai, Daisuke; Balakrishnan, Prabhakaran

    2016-01-01

    Virtual reality (VR) and augmented reality (AR) are expected by many to become the next wave of computing with significant impacts on our daily lives. Motivated by this, we organized a workshop on “Multimodal Virtual and Augmented Reality (MVAR)” at the 18th ACM International Conference on

  15. The efficacy of virtual reality simulation training in laparoscopy

    DEFF Research Database (Denmark)

    Larsen, Christian Rifbjerg; Oestergaard, Jeanett; Ottesen, Bent S

    2012-01-01

    Background. Virtual reality (VR) simulators for surgical training might possess the properties needed for basic training in laparoscopy. Evidence for training efficacy of VR has been investigated by research of varying quality over the past decade. Objective. To review randomized controlled trials....... Skills in laparoscopic surgery can be increased by proficiency-based procedural VR simulator training. There is substantial evidence (grade IA - IIB) to support the use of VR simulators in laparoscopic training....

  16. Human factors involved in perception and action in a natural stereoscopic world: an up-to-date review with guidelines for stereoscopic displays and stereoscopic virtual reality (VR)

    Science.gov (United States)

    Perez-Bayas, Luis

    2001-06-01

    In stereoscopic perception of a three-dimensional world, binocular disparity might be thought of as the most important cue to 3D depth perception. Nevertheless, in reality there are many other factors involved before the 'final' conscious and subconscious stereoscopic perception, such as luminance, contrast, orientation, color, motion, and figure-ground extraction (pop-out phenomenon). In addition, more complex perceptual factors exist, such as attention and its duration (an equivalent of 'brain zooming') in relation to physiological central vision, In opposition to attention to peripheral vision and the brain 'top-down' information in relation to psychological factors like memory of previous experiences and present emotions. The brain's internal mapping of a pure perceptual world might be different from the internal mapping of a visual-motor space, which represents an 'action-directed perceptual world.' In addition, psychological factors (emotions and fine adjustments) are much more involved in a stereoscopic world than in a flat 2D-world, as well as in a world using peripheral vision (like VR, using a curved perspective representation, and displays, as natural vision does) as opposed to presenting only central vision (bi-macular stereoscopic vision) as in the majority of typical stereoscopic displays. Here is presented the most recent and precise information available about the psycho-neuro- physiological factors involved in the perception of stereoscopic three-dimensional world, with an attempt to give practical, functional, and pertinent guidelines for building more 'natural' stereoscopic displays.

  17. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    Science.gov (United States)

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  18. Augmented Reality versus Virtual Reality for 3D Object Manipulation.

    Science.gov (United States)

    Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu

    2018-02-01

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  19. Virtual reality applications to automated rendezvous and capture

    Science.gov (United States)

    Hale, Joseph; Oneil, Daniel

    Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.

  20. [Application of virtual reality technique in forensic pathology].

    Science.gov (United States)

    Xiao, Jian; Zhang, Hui-xia; Liu, Liang

    2005-05-01

    This article reviewed general information, application and progress of the virtual reality (VR) technique. Lectures showed that the VR technique would impact and prompt the teaching, experiment, research and application of forensic pathology with the development of operation guiding system, virtual autopsy, micro-imaging technique. Because of the limitation of software, hardware and the expense, the VR technique needed to be improved and perfected.

  1. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  2. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  3. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study...... procedures, each on a VR bronchoscopy simulator. They performed 3 diagnostic bronchoscopies, 2 bronchoalveolar lavages, and 3 procedures in which they used all the available biopsy tools (needle, brush, and forceps) that could be used for tumors of increasing procedural difficulty. After the procedures...

  4. Visualizing Cumulus Clouds in Virtual Reality

    NARCIS (Netherlands)

    Griffith, E.J.

    2010-01-01

    This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in question are found in data sets generated by Large-Eddy Simulations (LES), which are used to simulate a small section

  5. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  6. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    2017-01-01

    virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  7. Stencil cutouts for virtual reality inputs

    CSIR Research Space (South Africa)

    Ausmeier, Natalie J

    2017-02-01

    Full Text Available Virtual Reality (VR) is widely used in training simulators of dangerous or expensive vehicles such as aircraft or heavy mining machinery. The vehicles often have very complicated controls that users need to master before attempting to operate a real...

  8. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  9. Physics Education in Virtual Reality: An Example

    Science.gov (United States)

    Kaufmann, Hannes; Meyer, Bernd

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…

  10. Revolutionizing Education: The Promise of Virtual Reality

    Science.gov (United States)

    Gadelha, Rene

    2018-01-01

    Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…

  11. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  12. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... and quantitative methods at two different occasions and setups after the exhibition, both showing a high degree of immersion and experience of reality....

  13. Virtual realities and education

    OpenAIRE

    Curcio Igor D.D.; Dipace Anna; Norlund Anita

    2016-01-01

    The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are...

  14. Laparoscopic baseline ability assessment by virtual reality.

    Science.gov (United States)

    Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M

    2005-02-01

    Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.

  15. Manually locating physical and virtual reality objects.

    Science.gov (United States)

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  16. The ethics of representation and action in virtual reality

    NARCIS (Netherlands)

    Brey, Philip A.E.

    1999-01-01

    This essay addresses ethical aspects of the design and use of virtual reality (VR) systems, focusing on the behavioral options made available in such systems and the manner in which reality is represented or simulated in them. An assessment is made of the morality of immoral behavior in virtual

  17. The Dark Shadow of Virtual Reality

    Directory of Open Access Journals (Sweden)

    Claire Su-Yeon Park

    2018-01-01

    Full Text Available Virtual Reality (VR technology are entering nursing education at a rapid speed (Foronda et al., 2017. VR has been reported in the nursing literature to significantly improve students’ performance (Jenson & Forsyth, 2012; Park, 2016; Foronda et al., 2017 even though the body of evidence in terms of the number and research quality of peer reviewed research papers is not yet substantial enough to identify VR technology’s effectiveness. However, VR is not actually reality. VR may not actually reflect reality. Young people (and even adults may not perceive the different between reality and VR. They may not yet be mature enough to distinguish the difference. However, VR technology are going much further than traditional educational methods by allowing humans to experience a much higher level of immersion through a virtual image. Even the gap between advances in VR technology and its application to education science is widening, causing serious concern. The advance in VR technology is value-neutral. As with all things, whether something is good or bad depends on how humans use it. VR can be useful, for example, when it enables scholars to attend an international conference without traveling to the physical convention center. VR provides the ability to speak, listen, and discuss in real time. Those using VR can choose to view a featured or real-time image of the other participants as if they were actually at the conference. Further, remote participants can feel touch through electronic sensors attached to their body. How amazing! The problem with VR lies in the fact that we are not ready to cope with any possible harmful influences caused by advances in VR technology. But what is the “Dark Shadow of VR,” and why does it cause concern, particularly in pedagogy? Luc Besson’s 2017 film Valerian and the City of a Thousand Plants showed an exceptional VR world, “Big Market,” a shopping-focused VR platform. But such a world is no longer strictly

  18. Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder

    Science.gov (United States)

    Smith, Matthew J.; Ginger, Emily J.; Wright, Katherine; Wright, Michael A.; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E.; Bell, Morris D.; Fleming, Michael F.

    2014-01-01

    The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic…

  19. Brave New Worlds-Review and Update on Virtual Reality Assessment and Treatment in Psychosis

    NARCIS (Netherlands)

    Veling, Wim; Moritz, Steffen; van der Gaag, Mark

    2014-01-01

    In recent years, virtual reality (VR) research on psychotic disorders has been initiated. Several studies showed that VR can elicit paranoid thoughts about virtual characters (avatars), both in patients with psychotic disorders and healthy individuals. Real life symptoms and VR experiences were

  20. Brave new worlds-review and update on virtual reality assessment and treatment in psychosis

    NARCIS (Netherlands)

    Veling, W.; Moritz, S.; van der Gaag, M.

    2014-01-01

    In recent years, virtual reality (VR) research on psychotic disorders has been initiated. Several studies showed that VR can elicit paranoid thoughts about virtual characters (avatars), both in patients with psychotic disorders and healthy individuals. Real life symptoms and VR experiences were

  1. New Desktop Virtual Reality Technology in Technical Education

    Science.gov (United States)

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…

  2. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    Science.gov (United States)

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  3. Virtual Reality and Cyberspace: From Science Fiction to Science Fact.

    Science.gov (United States)

    Stone, Robert J.

    1991-01-01

    Traces the history of virtual reality (VR), or cyberspace, and describes some of the research and development efforts currently being carried out in the United Kingdom, Europe, and the United States. Applications of VR in interactive computer-aided design (CAD), the military, leisure activities, spaceflight, teleconferencing, and medicine are…

  4. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  5. Conveying Architectural Form and Space with Virtual Reality

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2015-01-01

    The purpose of this study was to explore the user experience of non-specialists viewing and navigating in an architectural native (Revit) BIM model in Virtual Reality (VR) with a head mounted display (HMD). The perceived sense of presence as well as the quality of vision and total VR experience...

  6. Virtual reality-based medical training and assessment

    DEFF Research Database (Denmark)

    Aboulafia, Annette Løw T.; Lövquist, Erik; Shorten, George Declan

    2012-01-01

    The current focus on patient safety and evidence-based medical education has led to an increased interest in utilising virtual reality (VR) for medical training. The development of VR-based systems require experts from different disciplines to collaborate with shared and agreed objectives through...

  7. Designing a Virtual Reality Game for the CAVE

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    Virtual Reality has for many years been a technology which has stagnated in application and software development for games. What was possible and created ten years ago for games in VR environments is still being developed. The applications available for VR environments have increased...

  8. Virtual reality simulators for rock engineering related training.

    CSIR Research Space (South Africa)

    Squelch, A

    1997-12-01

    Full Text Available Virtual reality (VR) has been investigated by SIMRAC and CSIR Miningtek as a means of providing an enhancement to current training methods that will lead to more effective hazard awareness training programmes. A VR training simulator developed under...

  9. Using virtual reality to assess user experience.

    Science.gov (United States)

    Rebelo, Francisco; Noriega, Paulo; Duarte, Emília; Soares, Marcelo

    2012-12-01

    The aim of this article is to discuss how user experience (UX) evaluation can benefit from the use of virtual reality (VR). UX is usually evaluated in laboratory settings. However, considering that UX occurs as a consequence of the interaction between the product, the user, and the context of use, the assessment of UX can benefit from a more ecological test setting. VR provides the means to develop realistic-looking virtual environments with the advantage of allowing greater control of the experimental conditions while granting good ecological validity. The methods used to evaluate UX, as well as their main limitations, are identified.The currentVR equipment and its potential applications (as well as its limitations and drawbacks) to overcome some of the limitations in the assessment of UX are highlighted. The relevance of VR for UX studies is discussed, and a VR-based framework for evaluating UX is presented. UX research may benefit from a VR-based methodology in the scopes of user research (e.g., assessment of users' expectations derived from their lifestyles) and human-product interaction (e.g., assessment of users' emotions since the first moment of contact with the product and then during the interaction). This article provides knowledge to researchers and professionals engaged in the design of technological interfaces about the usefulness of VR in the evaluation of UX.

  10. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  11. ATLASrift - a Virtual Reality application

    CERN Document Server

    INSPIRE-00225336; Moyse, Edward; Bianchi, Riccardo Maria

    2015-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists - for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice - OculusRift VR system, the development environment - UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/virtual p...

  12. Methamphetamine Craving Induced in an Online Virtual Reality Environment

    OpenAIRE

    Culbertson, Christopher; Nicolas, Sam; Zaharovits, Itay; London, Edythe D.; De La Garza, Richard; Brody, Arthur L.; Newton, Thomas F.

    2010-01-01

    The main aim of this study was to assess self-reported craving and physiological reactivity in a methamphetamine virtual reality (METH-VR) cue model created using Second Life, a freely available online gaming platform. Seventeen, non-treatment seeking, individuals that abuse methamphetamine (METH) completed this one-day, outpatient, within-subjects study. Participants completed four test sessions: 1) METH-VR 2) neutral-VR 3) METH-video 4) neutral-video in a counterbalanced (latin square) fash...

  13. VR/IS Lab Virtual Actor research overview

    Energy Technology Data Exchange (ETDEWEB)

    Shawver, D.M.; Stansfield, S.

    1995-06-22

    This overview presents current research at Sandia National Laboratories in the Virtual Reality and Intelligent Simulation Lab. Into an existing distributed VR environment which we have been developing, and which provides shared immersion for multiple users, we are adding virtual actor support. The virtual actor support we are adding to this environment is intended to provide semi-autonomous actors, with oversight and high-level guiding control by a director/user, and to allow the overall action to be driven by a scenario. We present an overview of the environment into which our virtual actors will be added in Section 3, and discuss the direction of the Virtual Actor research itself in Section 4. We will briefly review related work in Section 2. First however we need to place the research in the context of what motivates it. The motivation for our construction of this environment, and the line of research associated with it, is based on a long-term program of providing support, through simulation, for situational training, by which we mean a type of training in which students learn to handle multiple situations or scenarios. In these situations, the student may encounter events ranging from the routine occurance to the rare emergency. Indeed, the appeal of such training systems is that they could allow the student to experience and develop effective responses for situations they would otherwise have no opportunity to practice, until they happened to encounter an actual occurance. Examples of the type of students for this kind of training would be security forces or emergency response forces. An example of the type of training scenario we would like to support is given in Section 4.2.

  14. The Virtual Tablet: Virtual Reality as a Control System

    Science.gov (United States)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  15. Mapping the plateau of novices in virtual reality simulation training of mastoidectomy

    DEFF Research Database (Denmark)

    A.W. Andersen, Steven; Konge, Lars; Mikkelsen, Peter Trier

    2016-01-01

    To explore why novices' performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.......To explore why novices' performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved....

  16. Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia

    Science.gov (United States)

    Tichon, Jennifer; Loh, Jennifer; King, Robert

    2004-01-01

    Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…

  17. Virtual realities and education

    Directory of Open Access Journals (Sweden)

    Curcio Igor D.D.

    2016-12-01

    Full Text Available The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are strongly related to a well-designed theoretical framework.

  18. Virtual reality, augmented reality…I call it i-Reality.

    Science.gov (United States)

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  19. Virtual and augmented reality technologies in Human Performance: a review

    OpenAIRE

    Crocetta,Tânia Brusque; Oliveira, Sandra Rogéria de; Liz, Carla Maria de; Andrade, Alexandro

    2015-01-01

    Abstract Introduction : Today's society is influenced by Information and Communication Technologies. Toys that were once built by hand have been reinterpreted and have become highly commercialized products. In this context, games using Augmented Reality (AR) and Virtual Reality (VR) technologies are present in the everyday lives of children, youth and adults. Objective : To investigate how Physical Education professionals in Brazil have been making use of AR and VR games to benefit their wo...

  20. Using virtual reality to analyze sports performance.

    Science.gov (United States)

    Bideau, Benoit; Kulpa, Richard; Vignais, Nicolas; Brault, Sébastien; Multon, Franck; Craig, Cathy

    2010-01-01

    Improving performance in sports can be difficult because many biomechanical, physiological, and psychological factors come into play during competition. A better understanding of the perception-action loop employed by athletes is necessary. This requires isolating contributing factors to determine their role in player performance. Because of its inherent limitations, video playback doesn't permit such in-depth analysis. Interactive, immersive virtual reality (VR) can overcome these limitations and foster a better understanding of sports performance from a behavioral-neuroscience perspective. Two case studies using VR technology and a sophisticated animation engine demonstrate how to use information from visual displays to inform a player's future course of action.

  1. Communication in the age of virtual reality

    CERN Document Server

    Biocca, Frank

    2013-01-01

    This volume addresses virtual reality (VR) -- a tantalizing communication medium whose essence challenges our most deeply held notions of what communication is or can be. The editors have gathered an expert team of engineers, social scientists, and cultural theorists for the first extensive treatment of human communication in this exciting medium. The first part introduces the reader to VR's state-of-the-art as well as future trends. In the next section, leading research scientists discuss how knowledge of communication can be used to build more effective and exciting communication applicati

  2. Sensorimotor training in virtual reality: a review.

    Science.gov (United States)

    Adamovich, Sergei V; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization.Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait,upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer to real-world functional improvements.

  3. Reducing latency when using Virtual Reality for teaching in sport

    OpenAIRE

    P Iskandar, Yulita Hanum; Gilbert, Lester; Wills, Gary

    2008-01-01

    Latency is a frequently cited shortcoming of Virtual Reality (VR) applications. To compensate for excessive latency, prediction mechanisms may use sophisticated mathematical algorithms, which may not be appropriate for complex virtual teaching applications. This paper suggests that heuristic prediction algorithms could be used to develop more effective and general systems for VR educational applications. A fast synchronization squash simulation illustrates where heuristic prediction can be us...

  4. Physics Education in Virtual Reality: An Example

    OpenAIRE

    Hannes Kaufmann; Bernd Meyer

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths and other properties of objects before, during and after experiments. Innovative teaching content is presented thatexploits the strengths of the 3D...

  5. ATLASrift - a Virtual Reality application

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2016-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists – for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice – OculusRift VR system, the development environment – UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/vir...

  6. Designing a Virtual Reality Game for the CAVE

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    Virtual Reality has for many years been a technology which has stagnated in application and software development for games. What was possible and created ten years ago for games in VR environments is still being developed. The applications available for VR environments have increased...... but they mostly remain related to scientific purposes while computer games in VR only show a part of their actual potential. The game industry has begun to see the possibilities of VR games in a near future with the implementation of some popular games to a CAVE system. However, a full immersion VR solution still...... remains uncommon and expensive. This paper aims to demonstrate the potential of VR games, and in particular games for the CAVE, now that affordable solutions are close to reach as more powerful hardware is available at low price. The focus is also on the methodology to be pursued while designing a VR game...

  7. The Impact of Virtual Reality on Chronic Pain.

    Science.gov (United States)

    Jones, Ted; Moore, Todd; Choo, James

    2016-01-01

    The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.

  8. Immersive realities: articulating the shift from VR to mobile AR through artistic practice

    Science.gov (United States)

    Margolis, Todd; Cornish, Tracy; Berry, Rodney; DeFanti, Thomas A.

    2012-03-01

    Our contemporary imaginings of technological engagement with digital environments has transitioned from flying through Virtual Reality to mobile interactions with the physical world through personal media devices. Experiences technologically mediated through social interactivity within physical environments are now being preferenced over isolated environments such as CAVEs or HMDs. Examples of this trend can be seen in early tele-collaborative artworks which strove to use advanced networking to join multiple participants in shared virtual environments. Recent developments in mobile AR allow untethered access to such shared realities in places far removed from labs and home entertainment environments, and without the bulky and expensive technologies attached to our bodies that accompany most VR. This paper addresses the emerging trend favoring socially immersive artworks via mobile Augmented Reality rather than sensorially immersive Virtual Reality installations. With particular focus on AR as a mobile, locative technology, we will discuss how concepts of immersion and interactivity are evolving with this new medium. Immersion in context of mobile AR can be redefined to describe socially interactive experiences. Having distinctly different sensory, spatial and situational properties, mobile AR offers a new form for remixing elements from traditional virtual reality with physically based social experiences. This type of immersion offers a wide array of potential for mobile AR art forms. We are beginning to see examples of how artists can use mobile AR to create social immersive and interactive experiences.

  9. Use of virtual reality for treating burned children: case reports

    OpenAIRE

    Scapin, Soliane Quitolina; Echevarría-Guanilo, Maria Elena; Fuculo Junior, Paulo Roberto Boeira; Martins, Jerusa Celi; Barbosa, Mayara da Ventura; Pereima, Maurício José Lopes

    2017-01-01

    ABSTRACT Objective: To report the use of virtual reality (VR) in pain intensity during dressing change of two burned children hospitalized in a Burn Treatment Center (BTC) in Southern Brazil. Method: Case report on the use of VR during dressing change of two burned children hospitalized in a BTC, from May to July 2016. For assessing pain, a facial pain rating scale was applied at four times: just before the dressing, during the dressing without the use of VR, during the dressing with the VR...

  10. Application of virtual reality technology in clinical medicine

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-01-01

    The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed. PMID:28979666

  11. Reactivity to Cannabis Cues in Virtual Reality Environments†

    Science.gov (United States)

    Bordnick, Patrick S.; Copp, Hilary L.; Traylor, Amy; Graap, Ken M.; Carter, Brian L.; Walton, Alicia; Ferrer, Mirtha

    2014-01-01

    Virtual reality (VR) cue environments have been developed and successfully tested in nicotine, cocaine, and alcohol abusers. Aims in the current article include the development and testing of a novel VR cannabis cue reactivity assessment system. It was hypothesized that subjective craving levels and attention to cannabis cues would be higher in VR environments merits with cannabis cues compared to VR neutral environments. Twenty nontreatment-seeking current cannabis smokers participated in the VR cue trial. During the VR cue trial, participants were exposed to four virtual environments that contained audio, visual, olfactory, and vibrotactile sensory stimuli. Two VR environments contained cannabis cues that consisted of a party room in which people were smoking cannabis and a room containing cannabis paraphernalia without people. Two VR neutral rooms without cannabis cues consisted of a digital art gallery with nature videos. Subjective craving and attention to cues were significantly higher in the VR cannabis environments compared to the VR neutral environments. These findings indicate that VR cannabis cue reactivity may offer a new technology-based method to advance addiction research and treatment. PMID:19705672

  12. Reactivity to cannabis cues in virtual reality environments.

    Science.gov (United States)

    Bordnick, Patrick S; Copp, Hilary L; Traylor, Amy; Graap, Ken M; Carter, Brian L; Walton, Alicia; Ferrer, Mirtha

    2009-06-01

    Virtual reality (VR) cue environments have been developed and successfully tested in nicotine, cocaine, and alcohol abusers. Aims in the current article include the development and testing of a novel VR cannabis cue reactivity assessment system. It was hypothesized that subjective craving levels and attention to cannabis cues would be higher in VR environments with cannabis cues compared to VR neutral environments. Twenty nontreatment-seeking current cannabis smokers participated in the VR cue trial. During the VR cue trial, participants were exposed to four virtual environments that contained audio, visual, olfactory, and vibrotactile sensory stimuli. Two VR environments contained cannabis cues that consisted of a party room in which people were smoking cannabis and a room containing cannabis paraphernalia without people. Two VR neutral rooms without cannabis cues consisted of a digital art gallery with nature videos. Subjective craving and attention to cues were significantly higher in the VR cannabis environments compared to the VR neutral environments. These findings indicate that VR cannabis cue reactivity may offer a new technology-based method to advance addiction research and treatment.

  13. Selected Applications of Virtual Reality in Manufacturing

    Science.gov (United States)

    Novak-Marcincin, Jozef

    2011-01-01

    Virtual reality (VR) has become an important and useful tool in science and engineering. VR applications cover a wide range of industrial areas from product design to analysis, from product prototyping to manufacturing. The design and manufacturing of a product can be viewed, evaluated and improved in a virtual environment before its prototype is made, which is an enormous cost saving. Virtual Manufacturing (VM) is the use of computer models and simulations of manufacturing processes to aid in the design and production of manufactured products. VM is the use of manufacturing-based simulations to optimize the design of product and processes for a specific manufacturing goal such as: design for assembly; quality; lean operations; and/or flexibility.

  14. The distortion of reality perception in schizophrenia patients, as measured in Virtual Reality.

    Science.gov (United States)

    Sorkin, Anna; Weinshall, Daphna; Peled, Avi

    2008-01-01

    Virtual Reality is an interactive three-dimensional computer generated environment. Providing a complex and multi-modal environment, VR can be particularly useful for the study of complex cognitive functions and brain disorders. Here we used a VR world to measure the distortion in reality perception in schizophrenia patients. 43 schizophrenia patients and 29 healthy controls navigated in a VR environment and were asked to detect incoherencies, such as a cat barking or a tree with red leaves. Whereas the healthy participants reliably detected incoherencies in the virtual experience, 88% of the patients failed in this task. The patients group had specific difficulty in the detection of audio-visual incoherencies; this was significantly correlated with the hallucinations score of the PANSS. By measuring the distortion in reality perception in schizophrenia patients, we demonstrated that Virtual Reality can serve as a powerful experimental tool to study complex cognitive processes.

  15. Design and Development of Virtual Reality: Analysis of Challenges Faced by Educators

    Science.gov (United States)

    Hanson, Kami; Shelton, Brett E.

    2008-01-01

    There exists an increasingly attractive lure of using virtual reality applications for teaching in all areas of education, but perhaps the largest detriment to its use is the intimidating nature of VR technology for non-technical instructors. What are the challenges to using VR technology for the design and development of VR-based instructional…

  16. Assessing Google Cardboard Virtual Reality as a Content Delivery System in Business Classrooms

    Science.gov (United States)

    Lee, Seung Hwan; Sergueeva, Ksenia; Catangui, Mathew; Kandaurova, Maria

    2017-01-01

    In the past, researchers have explored virtual reality (VR) as an educational tool primarily for training or therapeutic purposes. In this research, the authors examine the potential for using Google Cardboard VR in business classrooms as a content delivery platform. They specifically investigate how VR (viewing a 3-dimensional, 360° video)…

  17. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects

    NARCIS (Netherlands)

    Heemskerk, C. J. M.; M.R. de Baar,; Boessenkool, H.; Graafland, B.; Haye, M. J.; Koning, J. F.; Vahedi, M.; Visser, M.

    2011-01-01

    Virtual Reality (VR) simulation can be used to study, improve and verify ITER maintenance operations during preparation. VR can also improve the situational awareness of human operators during actual Remote Handling (RH) operations. Until now. VR systems use geometric models of the environment and

  18. Enhancing an Instructional Design Model for Virtual Reality-Based Learning

    Science.gov (United States)

    Chen, Chwen Jen; Teh, Chee Siong

    2013-01-01

    In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…

  19. Immersive Virtual Reality for Pediatric Pain

    Science.gov (United States)

    Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A.; Golianu, Brenda

    2017-01-01

    Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice. PMID:28644422

  20. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Science.gov (United States)

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  1. Virtual reality systems

    Science.gov (United States)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  2. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  3. Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.

    Science.gov (United States)

    Bashir, Gareth

    2010-01-01

    Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.

  4. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...... overview of VRMIs from the viewpoint of the performer. We propose nine design guidelines, describe evaluation methods, analyze case studies, and consider future challenges....

  5. Virtual Tour by AMFI - VR app

    NARCIS (Netherlands)

    van Vliet, Harry; Riester, Jochen

    2014-01-01

    By using Google Cardboard we have developed world’s first virtual tour on your smartphone of a fashion retail space: the byAMFI Statement Store, located in the city centre of Amsterdam. byAMFI is the Statement Store of the Amsterdam Fashion Institute that is a part of the Amsterdam University of

  6. Use of virtual reality for treating burned children: case reports

    Directory of Open Access Journals (Sweden)

    Soliane Quitolina Scapin

    Full Text Available ABSTRACT Objective: To report the use of virtual reality (VR in pain intensity during dressing change of two burned children hospitalized in a Burn Treatment Center (BTC in Southern Brazil. Method: Case report on the use of VR during dressing change of two burned children hospitalized in a BTC, from May to July 2016. For assessing pain, a facial pain rating scale was applied at four times: just before the dressing, during the dressing without the use of VR, during the dressing with the VR, and after the use of VR. Results: The use of goggles was easy to apply and well-accepted by the children, and also had a relevant effect reducing pain. Conclusion: VR can become an important nonpharmacological method for treating pain in burned children.

  7. Virtual reality simulators: valuable surgical skills trainers or video games?

    Science.gov (United States)

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  8. Adding immersive virtual reality to a science lab simulation causes more presence but less learning

    DEFF Research Database (Denmark)

    Makransky, Guido; Terkildsen, Thomas S.; Mayer, Richard E.

    2017-01-01

    Virtual reality (VR) is predicted to create a paradigm shift in education and training, but there is little empirical evidence of its educational value. The main objectives of this study were to determine the consequences of adding immersive VR to virtual learning simulations, and to investigate...

  9. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    Science.gov (United States)

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  10. Virtual Reality (VR) as a Disruptive Technology

    Science.gov (United States)

    2011-07-01

    d’interagir avec un environnement virtuel et de ressentir les choses qui s’y passent. Les systèmes de RV peuvent être composés d’éléments réels ou...vitesse a permis tant aux forces alliées qu’ennemies de mener des entraînements individuels et collectifs dans un environnement virtuel réparti. Bien...l’intérieur d’un environnement virtuel). Il existe de nombreux facteurs qui font obstacles à l’application de la RV à l’instruction militaire comme : un

  11. Utilization of Virtual Reality Content in Grade 6 Social Studies Using Affordable Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Lee Steven O. Zantua

    2017-05-01

    Full Text Available Virtual Reality is fast becoming a breakthrough in education technology and is headed towards a path where learning has become immersive. Virtual reality (VR offers both learners and educators a great opportunity to bridge gaps in the pedagogical sense. With the emergence of the Google Cardboard (GCB platform, a low-cost, virtual reality gadget comes a wide range of opportunities for educators and institutions to bring about an immersive type of learning environment for the 21st-century learner. Using Grade 6 Middle school students, this research explores the learning outcomes and student reactions using the GCB and Google Expeditions application. The study showed no significant difference in pre-test scores of the control and experimental group. There is however, a significant difference in the scores of the experimental group compared to the control group after post-test. Utilizing t-test in comparing the two groups, it was found that the mean of the post-test scores for Group A (experimental was significantly higher than Group B(control. The result of the independent samples t-test was significant, t(18 = 2.33, p = .032, suggesting that the mean of posttest score was significantly different between Groups A and B. This difference in score performance gives light to how VR can be used as a tool that enhances the learning experience. By using VR technology that is low cost and effective, more institutions will be able to help students learn better.

  12. Virtual reality in neurologic rehabilitation of spatial disorientation.

    Science.gov (United States)

    Kober, Silvia Erika; Wood, Guilherme; Hofer, Daniela; Kreuzig, Walter; Kiefer, Manfred; Neuper, Christa

    2013-02-08

    Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD.

  13. Virtual reality in neurologic rehabilitation of spatial disorientation

    Directory of Open Access Journals (Sweden)

    Kober Silvia

    2013-02-01

    Full Text Available Abstract Background Topographical disorientation (TD is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active. Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD.

  14. Possible Application of Virtual Reality in Geography Teaching

    Directory of Open Access Journals (Sweden)

    Ivan Stojšić

    2017-03-01

    Full Text Available Virtual reality represents simulated three-dimensional environment created by hardware and software, which providing realistic experience and possibility of interaction to the end-user. Benefits provided by immersive virtual reality in educational setting were recognised in the past decades, however mass application was left out due to the lack of development and high price. Intensive development of new platforms and virtual reality devices in the last few years started up with Oculus Rift, and subsequently accelerated in the year 2014 by occurrence of Google Cardboard. Nowadays, for the first time in history, immersive virtual reality is available to millions of people. In the mid 2015 Google commenced developing Expeditions Pioneer Program aiming to massively utilise the Google Cardboard platform in education. Expeditions and other VR apps can enhance geography teaching and learning. Realistic experience acquired by utilisation of virtual reality in teaching process significantly overcome possibilities provided by images and illustrations in the textbook. Besides literature review on usage of virtual reality in education this paper presents suggestion of VR mobile apps that can be used together with the Google Cardboard head mounted displays (HMDs in geography classes, thereby emphasising advantages and disadvantages as well as possible obstacles which may occur in introducing the immersive virtual reality in the educational process.

  15. Virtual Reality: When “Real” Becomes Real

    OpenAIRE

    Whittinghill, David

    2016-01-01

    Virtual reality has moved out of the lab and into our living rooms. With it comes an entire new medium for entertainment, simulation, and social interaction. Its potential impact on humanity, however, is actually far more profound. VR provides not just a new digital content delivery platform. It creates, in literal fact, an entire new class of human experience. A virtual experience is only virtual according to our intellects, but to every other fiber of our perceptual system, the experience i...

  16. Feedback from video for virtual reality Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and a robust skin-color segmentation for accounting illumination variations.

  17. Reality in Virtual Learning

    DEFF Research Database (Denmark)

    Lindberg, Frank; Pettersson, Michael

    The development of ITC has increased focus onto distance learning programs worldwide. Most universities today offer distance learning programs that are based on the Internet. This development represents a fundamental change in the very logic of being a university. It is no longer enough to rely...... characteristics of the program, however, it is particularly interesting to investigate the role that virtual studying serves in the construction of reality and meaning. Furthermore, as it is assumed that experiences cannot be separated from who one is (being-in-the world), the process of human change during...

  18. Virtual Reality for Anxiety Disorders

    Directory of Open Access Journals (Sweden)

    Elif Uzumcu

    2018-03-01

    Full Text Available Virtual reality is a relatively new exposure tool that uses three-dimensional computer-graphics-based technologies which allow the individual to feel as if they are physically inside the virtual environment by misleading their senses. As virtual reality studies have become popular in the field of clinical psychology in recent years, it has been observed that virtual-reality-based therapies have a wide range of application areas, especially on anxiety disorders. Studies indicate that virtual reality can be more realistic than mental imagery and can create a stronger feeling of ԰resenceԻ that it is a safer starting point compared to in vivo exposure; and that it can be applied in a more practical and controlled manner. The aim of this review is to investigate exposure studies based on virtual reality in anxiety disorders (specific phobias, panic disorder and agoraphobias, generalized anxiety disorder, social phobia, posttraumatic stress disorder and obsessive compulsive disorder.

  19. Breaking Bad Behaviours: A New Tool for Learning Classroom Management using Virtual Reality

    National Research Council Canada - National Science Library

    Jean-Luc Lugrin; Marc Erich Latoschik; Michael Habel; Daniel Roth; Christian Seufert; Silke Grafe

    2016-01-01

    This article presents an immersive Virtual Reality (VR) system for training classroommanagement skills, with a specific focus on learning to manage disruptive student behaviourin face-to-face, one-to-many teaching scenarios...

  20. Virtual reality negotiation training increases negotiation knowledge and skill

    NARCIS (Netherlands)

    Broekens, J.; Harbers, M.; Brinkman W.; Jonker, C.; Bosch, K. van den; Meyer, J.J.C.

    2012-01-01

    In this paper we experimentally investigate learning effects of a rigourously set up virtual reality (VR) negotiation training. We discuss the design of the system in detail. Further, we present results of an experiment (between subject; three experimental conditions: control, training once,

  1. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per

    2016-01-01

    IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simul...

  2. Issues Surrounding the Use of Virtual Reality in Geographic Education

    Science.gov (United States)

    Lisichenko, Richard

    2015-01-01

    As with all classroom innovations intended to improve geographic education, the adoption of virtual reality (VR) poses issues for consideration prior to endorsing its use. Of these, effectiveness, implementation, and safe use need to be addressed. Traditionally, sense of place, geographic knowledge, and firsthand experiences provided by field…

  3. Innovative virtual reality measurements for embryonic growth and development

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2010-01-01

    textabstractBackground Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. Methods In a longitudinal study, three-dimensional

  4. Virtual Reality Hypermedia Design Frameworks for Science Instruction.

    Science.gov (United States)

    Maule, R. William; Oh, Byron; Check, Rosa

    This paper reports on a study that conceptualizes a research framework to aid software design and development for virtual reality (VR) computer applications for instruction in the sciences. The framework provides methodologies for the processing, collection, examination, classification, and presentation of multimedia information within hyperlinked…

  5. Application of Virtual Reality for Visual Presentation in the Mineral ...

    African Journals Online (AJOL)

    Computer Graphics (CG) and Virtual Reality (VR) are becoming very useful in the mineral industry as tools by which engineers, managers and planners can communicate complex engineering designs to the relevant end users in 3- dimensional (3D) presentations. Although 2-dimensional (2D) presentations of technical ...

  6. A Virtual Reality Dance Training System Using Motion Capture Technology

    Science.gov (United States)

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  7. Feasibility of Virtual Reality Environments for Adolescent Social Anxiety Disorder

    Science.gov (United States)

    Parrish, Danielle E.; Oxhandler, Holly K.; Duron, Jacuelynn F.; Swank, Paul; Bordnick, Patrick

    2016-01-01

    Purpose: This study assessed the feasibility of virtual reality (VR) exposure as an assessment and treatment modality for youth with social anxiety disorder (SAD). Methods: Forty-one adolescents, 20 of which were identified as having SAD, were recruited from a community sample. Youth with and without SAD were exposed to two social virtual…

  8. Virtual reality training versus blended learning of laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Nickel, Felix; Brzoska, Julia Anja; Gondan, Matthias

    2015-01-01

    Objective: This study compared virtual reality (VR) training with low cost blended learning (BL) in a structured training program. Background: Training of laparoscopic skills outside the operating room is mandatory to reduce operative times and risks. Methods: Laparoscopy-naïve medical students...

  9. Visual Realism and Presence in a Virtual Reality Game

    DEFF Research Database (Denmark)

    Hvass, Jonatan Salling; Larsen, Oliver Stevns; Vendelbo, Kasper Bøgelund

    2017-01-01

    Virtual Reality (VR) has finally entered the homes of consumers, and a large number of the available applications are games. This paper presents a between-subjects study (n=50) exploring if vi-sual realism (polygon count and texture resolution) affects pres-ence during a scenario involving gameplay...

  10. Visualization and labeling of point clouds in virtual reality

    DEFF Research Database (Denmark)

    Stets, Jonathan Dyssel; Sun, Yongbin; Greenwald, Scott W.

    2017-01-01

    We present a Virtual Reality (VR) application for labeling and handling point cloud data sets. A series of room-scale point clouds are recorded as a video sequence using a Microsoft Kinect. The data can be played and paused, and frames can be skipped just like in a video player. The user can walk...

  11. Virtual Reality Training for Upper Extremity in Subacute Stroke (VIRTUES)

    DEFF Research Database (Denmark)

    Brunner, Iris; Skouen, Jan Sture; Hofstad, Håkon

    2017-01-01

    Objective: To compare the effectiveness of upper extremity virtual reality rehabilitation training (VR) to time-matched conventional training (CT) in the subacute phase after stroke. Methods: In this randomized, controlled, single-blind phase III multicenter trial, 120 participants with upper...

  12. Virtual reality training for endoscopic surgery: voluntary or obligatory?

    NARCIS (Netherlands)

    van Dongen, K. W.; van der Wal, W. A.; Borel Rinkes, I. H. M.; Schijven, M. P.; Broeders, I. A. M. J.

    2008-01-01

    INTRODUCTION: Virtual reality (VR) simulators have been developed to train basic endoscopic surgical skills outside of the operating room. An important issue is how to create optimal conditions for integration of these types of simulators into the surgical training curriculum. The willingness of

  13. The Future of Virtual Reality in the Classroom

    Science.gov (United States)

    Vance, Amelia

    2016-01-01

    As state boards of education and other state policymakers consider the future of schools, sorting fad technology from technology that accelerates learning is key. Virtual reality (VR) is one such technology with promise that seems unlikely to fizzle. Hailed as potentially transformative for education and still in the early stages of application,…

  14. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    2017-01-01

    Many user studies are now conducted outside laboratories to increase the number and heterogeneity of participants. These studies are conducted in diverse settings, with the potential to give research greater external validity and statistical power at a lower cost. The feasibility of conducting...... virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  15. What Virtual Reality Research in Addictions Can Tell Us about the Future of Obesity Assessment and Treatment

    National Research Council Canada - National Science Library

    Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C

    2011-01-01

    Virtual reality (VR), a system of human-computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool...

  16. Virtual reality exposure on nicotine craving.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Baptista, André; Pereira, Edgar; Morais, Diogo; Saraiva, Tomaz; Santos, Nuno; Soares, Fábio

    2011-01-01

    Several forms of treatment for nicotine dependence that combine the classical smoking cessation strategies with new Virtual Reality (VR) exposure techniques to smoking-related cues are in development. In this line, the main goal of our study was to develop a virtual platform in order to induce cravings in smokers. Sixty undergraduate students were randomly assigned to two different virtual environments (high-arousal cues and low-arousal cues). Both environments were based on a three-room apartment with commercial music playing and virtual characters interacting in a social event. The assessment was carried out before and after exposure through psychophysiological activation and self-report data for craving and nicotine dependence levels. No statistical differences were observed between smokers and non-smokers in psychophysiological activation. As far as self-report data is concerned, smokers revealed a significant increase in craving after the VR exposure to high arousal environments. Overall results were in line with previous studies suggesting the use of virtual environments as a tool for the existing smoking cessation programs.

  17. An Objective Measure for the Visual Fidelity of Virtual Reality and the Risks of Falls in a Virtual Environment

    NARCIS (Netherlands)

    Menzies, R.J.; Rogers, S.J.; Phillips, A. M.; Chiarovano, E.; Waele de, C.; Verstraten, F.A.J.; MacDougall, H.

    Despite decades of development of virtual reality (VR) devices and VR’s recent renaissance, it has been difficult to measure these devices’ effectiveness in immersing the observer. Previously, VR devices have been evaluated using subjective measures of presence, but in this paper, we suggest that

  18. Virtual Reality, Combat, and Communication.

    Science.gov (United States)

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  19. Technologies of Virtual Reality in Psychology of Sports of Great Advance: Theory, Practice and Perspectives

    Directory of Open Access Journals (Sweden)

    Aleksander E. Voyskunskiy

    2011-01-01

    Full Text Available The article is devoted to the problem of using a new experimental technology of "virtual reality" (VR in psychological research. Methods of virtual reality actively become embedded in tooling of up-to-date experimental psychology. Next in turn there is a task of embedding of VR technologies in various areas of applied psychology like sport psychology. Application of modern computer methods dis¬covers new perspectives for sport psychology.

  20. Technologies of virtual reality in psychology of sport of great advance: theory, practice and perspectives

    OpenAIRE

    Zinchenko, Yuri; Menshikova, Galina; Chernorizov, Aleksander; Voyskunskiy, Aleksander

    2011-01-01

    The article is devoted to the problem of using a new experimental technology of "virtual reality" (VR) in psychological research. Methods of virtual reality actively become embedded in tooling of up-to-date experimental psychology. Next in turn there is a task of embedding of VR technologies in various areas of applied psychology like sport psychology. Application of modern computer methods dis¬covers new perspectives for sport psychology.

  1. Virtual reality in assessment and treatment of schizophrenia: a systematic review

    OpenAIRE

    Mônica Macedo; António Marques; Cristina Queirós

    2015-01-01

    Objective To conduct a systematic review about the use of virtual reality (VR) for evaluation, treatment and/or rehabilitation of patients with schizophrenia, focused on: areas, fields and objectives; methodological issues; features of the VR used; viability and efficiency of this resource. Methods Searches were performed about schizophrenia and virtual reality in PsycINFO, Academic Search Complete, MEDLINE Complete, CINAHL with Full Text, Web of Science and Business Source Premier databases,...

  2. Virtual reality as a new imaginative tool in psychotherapy.

    Science.gov (United States)

    Vincelli, F; Riva, G

    2000-01-01

    Imagination, experience and memory play a central role in psychotherapy. These elements are fundamental in the life of everyone but also in the etiology of many psychological disturbance. Thanks to Virtual Reality (VR) it is possible to transcend the absolute and relative limits linked to individual potential. The imagines re-created through VR may be more vivid and real than the one that most subjects are able to describe through their own imagination and their own memory. In this chapter we focus the attention on imaginative techniques to find new ways of applications in psychotherapy. We will explore the way VR can be used to improve the efficacy of traditional techniques. VR produces a change with respect to the traditional relationship between client and therapist. Virtual experiences is a third way between "in imagination" and "in vivo" techniques in psychotherapy.

  3. Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: describing and classifying virtual reality systems.

    Science.gov (United States)

    Galvin, Jane; Levac, Danielle

    2011-01-01

    The use of virtual reality (VR) as a therapeutic intervention to improve motor function is an emerging area of rehabilitation practice and research. This paper describes VR systems reported in research literature and proposes a classification framework that categorizes VR systems according to characteristics relevant to motor rehabilitation. A comprehensive database search was undertaken to explore VR systems used in motor rehabilitation for children. Description of these systems, motor learning literature and expert opinion informed development of a classification framework. Six VR systems are included. The descriptive analysis describes each system according to 12 user, system and context variables. The classification framework identifies three features common to all VR systems. Seven categories are proposed to differentiate between systems. This paper organizes available information to facilitate clinical decision-making about VR systems and identifies areas of research to support the use of VR as a therapeutic intervention.

  4. Subjects taught in VR

    NARCIS (Netherlands)

    van der Sluis, Frans; van den Broek, Egon; Stam, Liesbeth M.; Abrahamse, E.L.; Luursema, J.M.

    2007-01-01

    This deliverable serves to reinstate a broad view on Virtual Reality (VR), capturing all its constituting disciplines. The core target of this report is to establish a foundation for an educational program where all disciplines subordinate to VR technology will converge. Over the past decade(s) the

  5. Phenomenological classification of cultural heritage: role of virtual reality

    Directory of Open Access Journals (Sweden)

    Hyuk-Jin Lee

    2017-05-01

    Full Text Available Human consciousness is always the consciousness toward some thing and our perception of cultural heritage is no exception. Thus, understanding human cognition is closely related to understanding how the perceptible objects are classified in human mind. The perceptible objects include both physical and virtual experiences and thoughts, and it is important and necessary to analyze the types and the effective levels of those objects. With the emergence of Virtual Reality (VR technologies in cultural heritage field, it is necessary to understand how and why different cognitive media such as realor visual reality including VR, are differently recognized by people. This study suggests the philosophical and theoretical frame for the usage of phenomenological classfication and analysis. By using this new classification with the case of Korean built heritage, the role of VR is explained in cultural discourse of the community.

  6. Effects of Desktop Virtual Reality on Learner Performance and Confidence in Environment Mastery: Opening a Line of Inquiry

    Science.gov (United States)

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) has demonstrated effectiveness as an instructional technology in many technical fields. However, VR research has generally lacked a sound theory base to provide explanatory or predictive strength. Further, research into the effectiveness of "new desktop technologies" that place VR within the reach of schools and teachers is…

  7. Personality traits and virtual reality performance.

    Science.gov (United States)

    Rosenthal, Rachel; Schäfer, Juliane; Hoffmann, Henry; Vitz, Martina; Oertli, Daniel; Hahnloser, Dieter

    2013-01-01

    Surgeons' personalities have been described as different from those of the general population, but this was based on small descriptive studies limited by the choice of evaluation instrument. Furthermore, although the importance of the human factor in team performance has been recognized, the effect of personality traits on technical performance is unknown. This study aimed to compare surgical residents' personality traits with those of the general population and to evaluate whether an association exists between their personality traits and technical performance using a virtual reality (VR) laparoscopy simulator. In this study, 95 participants (54 residents with basic, 29 with intermediate laparoscopic experience, and 12 students) underwent personality assessment using the NEO-Five Factor Inventory and performed five VR tasks of the Lap Mentor™ basic tasks module. The residents' personality traits were compared with those of the general population, and the association between VR performance and personality traits was investigated. Surgical residents showed personality traits different from those of the general population, demonstrating lower neuroticism, higher extraversion and conscientiousness, and male residents showed greater openness. In the multivariable analysis, adjusted for gender and surgical experience, none of the personality traits was found to be an independent predictor of technical performance. Surgical residents present distinct personality traits that differ from those of the general population. These traits were not found to be associated with technical performance in a virtual environment. The traits may, however, play an important role in team performance, which in turn is highly relevant for optimal surgical performance.

  8. Cognitive Components Predict Virtual Reality-Induced Analgesia: Repeated Measures in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Naor Demeter

    2018-01-01

    Full Text Available Virtual reality (VR is an advanced and useful technology in the distraction from pain. The efficacy of VR for reducing pain is well established. Yet, the literature analyzing the unique attributes of VR which impact pain reduction is scarce. The present study evaluated the effect of two VR environments on experimental pain levels. Both VR environments are games used with an EyeToy application which is part of the video capture VR family. The VR environments were analyzed by expert occupational therapists using a method of activity analysis, allowing for a thorough evaluation of the VR activity performance requirements. The VR environments were found to differ in the cognitive load (CL demands they apply upon subjects. Sixty-two healthy students underwent psychophysical thermal pain tests, followed by exposure to tonic heat stimulation under one of three conditions: Low CL (LCL VR, high CL (HCL VR, and control. In addition, following participation in VR, the subjects completed a self-feedback inventory evaluating their experience in VR. The results showed significantly greater pain reduction during both VR conditions compared to the control condition (p = 0.001. Hierarchical regression revealed cognitive components which were evaluated in the self-feedback inventory to be predictive factors for pain reduction only during the high cognitive load (HCL VR environment (20.2%. CL involved in VR may predict the extent of pain decrease, a finding that should be considered in future clinical and laboratory research.

  9. VIRTUAL REALITY HYPNOSIS.

    Science.gov (United States)

    Askay, Shelley Wiechman; Patterson, David R; Sharar, Sam R

    2009-03-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis.The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research.In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  10. Virtual reality in posturography.

    Science.gov (United States)

    Tossavainen, Timo; Toppila, Esko; Pyykkö, Ilmari; Forsman, Pia M; Juhola, Martti; Starck, Jukka

    2006-04-01

    Balance dysfunctions are common, especially among elderly people. Present methods for the diagnosis and evaluation of severity of dysfuntion have limited value. We present a system that makes it easy to implement different visual and mechanical perturbations for clinical investigations of balance and visual-vestibular interaction. The system combines virtual reality visual stimulation with force platform posturography on a moving platform. We evaluate our contruction's utility in a classification task between 33 healthy controls and 77 patients with Ménière's disease, using a series of tests with different visual and mechanical stimuli. Responses of patients and controls differ significantly in parameters computed from stabilograms. We also show that the series of tests achieves a classification accuracy slightly over 80% between controls and patients.

  11. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  12. Synthetic design and the art of virtual reality in theatre and film ...

    African Journals Online (AJOL)

    Synthetic design and the art of virtual reality in theatre and film productions. ... EJOTMAS: Ekpoma Journal of Theatre and Media Arts ... This article delves into the field of Virtual Reality (VR), a current trend in audiovisual design for the entertainment industry and is therefore designed to examine the synergetic relationships ...

  13. Phenomenological classification of cultural heritage: role of virtual reality

    OpenAIRE

    Hyuk-Jin Lee

    2017-01-01

    [EN] Human consciousness is always the consciousness toward some thing and our perception of cultural heritage is no exception. Thus, understanding human cognition is closely related to understanding how the perceptible objects are classified in human mind. The perceptible objects include both physical and virtual experiences and thoughts, and it is important and necessary to analyze the types and the effective levels of those objects. With the emergence of Virtual Reality (VR) technologies ...

  14. 3D Flow visualization in virtual reality

    Science.gov (United States)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  15. Virtual reality exposure and neuro-bio feedback to help coping with traumatic events

    NARCIS (Netherlands)

    Neerincx, M.A.; Kallen, V.L.; Brouwer, A.-M.; Leer, L. van der; Brinke, M. ten

    2010-01-01

    Recent research shows that Virtual Reality (VR) exposure or bio-neuro feedback can help professionals to cope with possibly traumatic events. This paper presents a neuro-bio VR system that combines both methods in order to further improve the prevention and therapy of trauma-related disorders. This

  16. The use of virtual reality for the functional simulation of hepatic tumors (case control study)

    National Research Council Canada - National Science Library

    Chen, Gang; Li, Xue-cheng; Wu, Guo-qing; Wang, Yi; Fang, Bin; Xiong, Xiao-feng; Yang, Ri-gao; Tan, Li-wen; Zhang, Shao-xiang; Dong, Jia-hong

    2010-01-01

    ... hepatic mass in a virtual reality (VR) environment may facilitate preoperative planning and successful surgical removal of a hepatic tumor. 9,10 Our aim was to design a system that can seamlessly convert a patient's cross-sectional imaging data (computed tomography [CT] or magnetic resonance imaging [MRI]) into a three-dimensional (3D) VR ...

  17. Virtual Reality in de geneeskunde : De joy-stick als scalpel beleven

    OpenAIRE

    Dumay, A.C.M.

    1995-01-01

    De wereld beleven met computertechnieken. Dat is Virtual Reality (VR). Zien, horen, voelen en ingrijpen zonder de werkelijke wereld te veranderen. Een mijlpaal op weg naar VR was medio jaren vijftig de demonstratie van het Experience Theatre Sensorama van de Amerikaan Morton Heilig. Heilig, in Hollywood fotograaf en ontwerper van camera's en projectoren, ontwierp en demonstreerde een machine waarmee alle zintuigen konden worden aangestuurd.

  18. Virtual Reality in de geneeskunde : De joy-stick als scalpel beleven

    NARCIS (Netherlands)

    Dumay, A.C.M.

    1995-01-01

    De wereld beleven met computertechnieken. Dat is Virtual Reality (VR). Zien, horen, voelen en ingrijpen zonder de werkelijke wereld te veranderen. Een mijlpaal op weg naar VR was medio jaren vijftig de demonstratie van het Experience Theatre Sensorama van de Amerikaan Morton Heilig. Heilig, in

  19. A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence

    Science.gov (United States)

    Bordnick, Patrick S.; Traylor, Amy C.; Carter, Brian L.; Graap, Ken M.

    2012-01-01

    Objective: Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. Method: In a randomized experiment, 10-week treatment feasibility trial, 46…

  20. An Evolution of Virtual Reality Training Designs for Children with Autism and Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Strickland, Dorothy C.; McAllister, David; Coles, Claire D.; Osborne, Susan

    2007-01-01

    This article describes an evolution of training programs to use first-person interaction in virtual reality (VR) situations to teach safety skills to children with autism spectrum disorder (ASD) and fetal alcohol spectrum disorder (FASD). Multiple VR programs for children aged 2 to 9 were built and tested between 1992 and 2007. Based on these…

  1. State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum

    Science.gov (United States)

    Parsons, Sarah; Cobb, Sue

    2011-01-01

    In the past decade there has been a rapid advance in the use of virtual reality (VR) technologies for leisure, training and education. VR is argued to offer particular benefits for children on the autism spectrum, chiefly because it can offer simulations of authentic real-world situations in a carefully controlled and safe environment. Given the…

  2. The Future of Virtual Reality in Education: A Future Oriented Meta Analysis of the Literature

    Science.gov (United States)

    Passig, David

    2009-01-01

    Many have elaborated on the potential of virtual reality (VR) in learning. This article attempts at organizing the literature in this issue in order to better identify indicators that can account for future valid trends, and seeks to bring to attention how authors who wrote about the future of VR in education confused futures' terms and produced…

  3. Incorporating Kansei Engineering in Instructional Design: Designing Virtual Reality Based Learning Environments from a Novel Perspective

    Science.gov (United States)

    Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong

    2008-01-01

    In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…

  4. Use of Virtual Reality Technology to Enhance Undergraduate Learning in Abnormal Psychology

    Science.gov (United States)

    Stark-Wroblewski, Kim; Kreiner, David S.; Boeding, Christopher M.; Lopata, Ashley N.; Ryan, Joseph J.; Church, Tina M.

    2008-01-01

    We examined whether using virtual reality (VR) technology to provide students with direct exposure to evidence-based psychological treatment approaches would enhance their understanding of and appreciation for such treatments. Students enrolled in an abnormal psychology course participated in a VR session designed to help clients overcome the fear…

  5. A structural equation modeling investigation of the emotional value of immersive virtual reality in education

    DEFF Research Database (Denmark)

    Makransky, Guido; Lilleholt, Lau

    2018-01-01

    Virtual reality (VR) is projected to play an important role in education by increasing student engagement and motivation. However, little is known about the impact and utility of immersive VR for administering e-learning tools, or the underlying mechanisms that impact learners’ emotional processes...

  6. Virtual reality for spherical images

    Science.gov (United States)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  7. Virtual reality job interview training for individuals with psychiatric disabilities.

    Science.gov (United States)

    Smith, Matthew J; Ginger, Emily J; Wright, Michael; Wright, Katherine; Boteler Humm, Laura; Olsen, Dale; Bell, Morris D; Fleming, Michael F

    2014-09-01

    Services are available to help support existing employment for individuals with psychiatric disabilities; however, there is a gap in services targeting job interview skills that can help obtain employment. We assessed the feasibility and efficacy of Virtual Reality Job Interview Training (VR-JIT) in a randomized controlled trial. Participants were randomized to VR-JIT (n = 25) or treatment-as-usual (TAU) (n = 12) groups. VR-JIT consisted of 10 hours of simulated job interviews with a virtual character and didactic online training. The participants attended 95% of laboratory-based training sessions and found VR-JIT easy to use and felt prepared for future interviews. The VR-JIT group improved their job interview role-play performance (p ≤ 0.05) and self-confidence (p ≤ 0.05) between baseline and follow-up as compared with the TAU group. VR-JIT performance scores increased over time (R = 0.65). VR-JIT demonstrated initial feasibility and efficacy at improving job interview skills and self-confidence. Future research may help clarify whether this intervention is efficacious in community-based settings.

  8. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  9. A Virtual Reality Game to Assess Obsessive-Compulsive Disorder.

    Science.gov (United States)

    van Bennekom, Martine J; Kasanmoentalib, M Soemiati; de Koning, Pelle P; Denys, Damiaan

    2017-11-01

    The retrospective and subjective nature of clinical interviews is an important shortcoming of current psychiatric diagnosis. Consequently, there is a clear need for objective and standardized tools. Virtual reality (VR) can be used to achieve controlled symptom provocation, which allows direct assessment for the clinician. We developed a video VR game to provoke and assess obsessive-compulsive disorder (OCD) symptoms in a standardized and controlled environment. The first objective was to evaluate if the VR game is capable of provoking symptoms in OCD patients as opposed to healthy controls. The second objective was to evaluate the tolerability of the VR game in OCD patients. The VR game was created using a first-person perspective and confronted patients with 15 OCD-specific items, while simultaneously measuring OCD symptoms, including the number of compulsions, anxiety, tension, uncertainty, and urge to control. In this pilot study, eight patients and eight healthy controls performed the VR game. OCD patients performed significantly more compulsions (U = 5, p = 0.003) during the VR game. The anxiety, tension, uncertainty, and urge to control in response to the specific items were also higher for OCD patients, although significance was not yet reached because of the small sample. There were no substantial adverse effects. The results of this pilot study indicate that the VR game is capable of provoking a variety of OCD symptoms in OCD patients, as opposed to healthy controls, and is a potential valuable tool to objectify and standardize an OCD diagnosis.

  10. Effects of immersion in virtual reality on postural control.

    Science.gov (United States)

    Akizuki, Hironori; Uno, Atsuhiko; Arai, Kouichi; Morioka, Soukichi; Ohyama, Seizo; Nishiike, Suetaka; Tamura, Koichi; Takeda, Noriaki

    2005-04-29

    In the present study, we examined the effects of the time lag between visual scene and the head movement in the virtual reality (VR) world on motion sickness and postural control in healthy volunteers. After immersion in VR with additional time lags (from 0 to 0.8 s) to the inherent delay (about 250 ms), the visual-vestibular conflict induced a slight motion sickness in experimental subjects, but no change was noticed in the body sway path with eyes open and closed. However, Romberg ratio of body sway path with eyes closed divided by that with eyes open after immersion in VR was significantly decreased in comparison with that before immersion in VR. Since Romberg ratio is an index of visual dependency on postural control, this finding indicates that the immersion in VR decreases the visual dependency on postural control. It is suggested that adaptation to visual-vestibular conflict in VR immersion increases the contribution of vestibular and somatosensory inputs to postural control by ignoring the conflicting delayed visual input in the VR world. VR may be a promising treatment for visual vertigo in vestibular patients with unsuccessful compensation by its ability to induce vestibular and somatosensory reweighing for postural control.

  11. Virtual Burglary: Exploring the Potential of Virtual Reality to Study Burglary in Action

    NARCIS (Netherlands)

    van Sintemaartensdijk, I.; van Prooijen, J-W.; van Gelder, J-L.; Otte, M.; Nee, Claire; Demetriou, Andrew

    2016-01-01

    Objectives: This article explores the potential of virtual reality (VR) to study burglary by measuring user responses on the subjective, physiological, and behavioral levels. Furthermore, it examines the influence of individual dispositions, such as sensation seeking and self-control, on behavior

  12. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    Science.gov (United States)

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  13. A 3D virtual reality ophthalmoscopy trainer.

    Science.gov (United States)

    Wilson, Andrew S; O'Connor, Jake; Taylor, Lewis; Carruthers, David

    2017-04-12

    Performing eye examinations is an important clinical skill that medical students often find difficult to become proficient in. This paper describes the development and evaluation of an innovative 3D virtual reality (VR) training application to support learning these skills. The VR ophthalmoscope was developed by a clinical team and technologist using the unity game engine, smartphone and virtual reality headset. It has a series of tasks that include performing systematic eye examinations, identifying common eye pathologies and a knowledge quiz. As part of their clinical training, 15 fourth-year medical students were surveyed for their views on this teaching approach. The Technology Acceptance Model was used to evaluate perceived usefulness and ease of use. Data were also collected on the usability of the app, together with the students' written comments about it. Users agreed that the teaching approach improved their understanding of ophthalmoscopy (n = 14), their ability to identify landmarks in the eye (n = 14) and their ability to recognise abnormalities (n = 15). They found the app easy to use (n = 15), the teaching approach informative (n = 13) and that it would increase students' confidence when performing these tasks in future (n = 15). Performing eye examinations is an important clinical skill DISCUSSION: The evaluation showed that a VR app can successfully simulate the processes involved in performing eye examinations. The app was highly rated for all elements of perceived usefulness, ease of use and usability. Medical students stated that they would like to be taught other medical skills in this way in future. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  14. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    Science.gov (United States)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  15. Virtual Reality for Sensorimotor Rehabilitation Post-Stroke: The Promise and Current State of the Field.

    Science.gov (United States)

    Fluet, Gerard G; Deutsch, Judith E

    2013-03-01

    Developments over the past 2 years in virtual reality (VR) augmented sensorimotor rehabilitation of upper limb use and gait post-stroke were reviewed. Studies were included if they evaluated comparative efficacy between VR and standard of care, and or differences in VR delivery methods; and were CEBM (center for evidence based medicine) level 2 or higher. Eight upper limb and two gait studies were included and described using the following categories hardware (input and output), software (virtual task and feedback and presentation) intervention (progression and dose), and outcomes. Trends in the field were commented on, gaps in knowledge identified, and areas of future research and translation of VR to practice were suggested.

  16. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    OpenAIRE

    Randell, R; Ruddle, RA; Mello-Thoms, C; Thomas, RG; Quirke, P; Treanor, D

    2013-01-01

    Aims:  To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice. Methods and results:  A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables a...

  17. Development and Application of the Stereo Vision Tracking System with Virtual Reality

    OpenAIRE

    Chia-Sui Wang; Ko-Chun Chen; Tsung Han Lee; Kuei-Shu Hsu

    2015-01-01

    A virtual reality (VR) driver tracking verification system is created, of which the application to stereo image tracking and positioning accuracy is researched in depth. In the research, the feature that the stereo vision system has image depth is utilized to improve the error rate of image tracking and image measurement. In a VR scenario, the function collecting behavioral data of driver was tested. By means of VR, racing operation is simulated and environmental (special weathers such as rai...

  18. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    Science.gov (United States)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  19. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    Full Text Available Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR technology has therefore being paid great attention in emulating expensive small and/or huge and heavy equipment. Virtual reality can be characterized as 3D extension with Immersion, Interaction and Imagination. This paper was then be focused on the study of virtual reality in the assistance of CNC machine tool demonstration and exhibition. A commercial CNC machine tool was used in this study to illustrate the effectiveness and usability of using virtual reality for an exhibition. The adopted CNC machine tool is a large and heavy mill-turn machine with the width up to eleven meters and weighted about 35 tons. A head-mounted display (HMD was attached to the developed VR CNC machine tool for the immersion viewing. A user can see around the 3D scene of the large mill-turn machine and the operation of the virtual CNC machine can be actuated by bare hand. Coolant was added to demonstrate more realistic operation while collision detection function was also added to remind the operator. The developed VR demonstration system has been presented in the 2017 Taipei International Machine Tool Show (TIMTOS 2017. This case study has shown that young engineers and/or students are very impressed by the VR-based demonstration while elder persons could not adapt themselves easily to the VR-based scene because of eyesight issues. However, virtual reality has successfully being adopted and integrated with the CNC machine tool in an international show. Another machine tool on

  20. Virtual Reality and Public Administration

    Directory of Open Access Journals (Sweden)

    István TÓZSA

    2013-02-01

    Full Text Available This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected breakthrough of usage has not ensued. The virtual reality form of public administration services recommended in this study has the most attractive outlay and the simplest navigation tools if compared to ‘traditional’ Internet based e-government. Thus, in accordance with the worldwide amazingly quick spread of the virtual reality systems of Second Life and 3 D types of entertainment, virtual reality applications in public administration could rely on a wide range of acceptance as well.

  1. The use of virtual reality in acrophobia research and treatment.

    Science.gov (United States)

    Coelho, Carlos M; Waters, Allison M; Hine, Trevor J; Wallis, Guy

    2009-06-01

    Acrophobia, or fear of heights, is a widespread and debilitating anxiety disorder affecting perhaps 1 in 20 adults. Virtual reality (VR) technology has been used in the psychological treatment of acrophobia since 1995, and has come to dominate the treatment of numerous anxiety disorders. It is now known that virtual reality exposure therapy (VRET) regimens are highly effective for acrophobia treatment. This paper reviews current theoretical understanding of acrophobia as well as the evolution of its common treatments from the traditional exposure therapies to the most recent virtually guided ones. In particular, the review focuses on recent innovations in the use of VR technology and discusses the benefits it may offer for examining the underlying causes of the disorder, allowing for the systematic assessment of interrelated factors such as the visual, vestibular and postural control systems.

  2. Characteristics of social perception assessed in schizophrenia using virtual reality.

    Science.gov (United States)

    Kim, Kwanguk; Kim, Jae-Jin; Kim, Jaehun; Park, Da-Eun; Jang, Hee Jeong; Ku, Jeonghun; Kim, Chan-Hyung; Kim, In Young; Kim, Sun I

    2007-04-01

    Impairment in social skills is one of the few criteria that all individuals diagnosed with schizophrenia must meet. Successful social skills require the coordination of many abilities, including social perception, which involves the decoding and interpretation of social cues from others. In this study, we examined the potential for virtual reality (VR) in social skill training. We attempted to determine if VR can be used to measure social skills and social perception, and to determine which VR parameters are related to schizophrenic symptoms. Some of these results have clear clinical relevance, while other observations need further study. The VR system appears to be useful in assessing the social perception of schizophrenics and normal people, and could be more widely used in the future for social training and in the assessment of social problem-solving abilities, assertiveness skills, and general social skills.

  3. Enabling scientific workflows in virtual reality

    Science.gov (United States)

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  4. The Ethics of Virtual Reality Technology: Social Hazards and Public Policy Recommendations.

    Science.gov (United States)

    Spiegel, James S

    2017-09-23

    This article explores four major areas of moral concern regarding virtual reality (VR) technologies. First, VR poses potential mental health risks, including Depersonalization/Derealization Disorder. Second, VR technology raises serious concerns related to personal neglect of users' own actual bodies and real physical environments. Third, VR technologies may be used to record personal data which could be deployed in ways that threaten personal privacy and present a danger related to manipulation of users' beliefs, emotions, and behaviors. Finally, there are other moral and social risks associated with the way VR blurs the distinction between the real and illusory. These concerns regarding VR naturally raise questions about public policy. The article makes several recommendations for legal regulations of VR that together address each of the above concerns. It is argued that these regulations would not seriously threaten personal liberty but rather would protect and enhance the autonomy of VR consumers.

  5. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets.

    Science.gov (United States)

    Wang, Ching-Yi; Hwang, Wen-Juh; Fang, Jing-Jing; Sheu, Ching-Fan; Leong, Iat-Fai; Ma, Hui-Ing

    2011-08-01

    To compare the performance of reaching for stationary and moving targets in virtual reality (VR) and physical reality in persons with Parkinson's disease (PD). A repeated-measures design in which all participants reached in physical reality and VR under 5 conditions: 1 stationary ball condition and 4 conditions with the ball moving at different speeds. University research laboratory. Persons with idiopathic PD (n=29) and age-matched controls (n=25). Not applicable. Success rates and kinematics of arm movement (movement time, amplitude of peak velocity, and percentage of movement time for acceleration phase). In both VR and physical reality, the PD group had longer movement time (Preality, most cueing conditions in VR elicited performance generally similar to those in physical reality. Although slower than the controls when reaching for stationary balls, persons with PD increased movement speed in response to fast moving balls in both VR and physical reality. This suggests that with an appropriate choice of cueing speed, VR is a promising tool for providing visual motion stimuli to improve movement speed in persons with PD. More research on the long-term effect of this type of VR training program is needed. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Comparing acceptance and refusal rates of virtual reality exposure vs. in vivo exposure by patients with specific phobias.

    Science.gov (United States)

    Garcia-Palacios, A; Botella, C; Hoffman, H; Fabregat, S

    2007-10-01

    The present survey explored the acceptability of virtual reality (VR) exposure and in vivo exposure in 150 participants suffering from specific phobias. Seventy-six percent chose VR over in vivo exposure, and the refusal rate for in vivo exposure (27%) was higher than the refusal rate for VR exposure (3%). Results suggest that VR exposure could help increase the number of people who seek exposure therapy for phobias.

  7. Virtual reality to study responses to social environmental stressors in individuals with and without psychosis

    NARCIS (Netherlands)

    Brinkman, Willem-Paul; Veling, Wim; Dorrestijn, Emily; Sandino, Guntur; Vakili, Vanessa; van der Gaag, Mark

    2011-01-01

    A Virtual Reality (VR) environment was created to study psychotic symptoms in patients and non-patients. Participants' task was to find five virtual characters that each had a small number label on his or her chest. The density and ethnic appearance of the virtual characters in the bar was

  8. Seeing Is Believing: Using Virtual Reality to Connect the Dots Between Climate Data and Reality

    Science.gov (United States)

    Skolnik, S.

    2016-12-01

    Companies like Sony, Samsung, Google, and Facebook are heavily investing in virtual reality (VR) for gaming and entertainment, and 2016 marks an important year as many affordable VR headsets are now commercially available. As VR becomes more widely adopted, one question for the science and research community is how VR can be leveraged for practical use. One answer is found in the use of VR for science storytelling and communication. VR has the potential to allow people to experience scientific content in new and engaging ways, including interacting with GIS data. By adapting data sets to create stunning, immersive visualizations and combining them with 360 video, voiceover, music and other video production techniques, we are creating a new paradigm for science communication. 360 VR content is very compelling when viewed in a VR headset and can also be accessed and viewed in a panoramic manner on the internet via websites and social media. We will discuss the proof of concept use case of a short VR 360 video which combines climate data from NASA with 360 video filmed during an extreme weather event (a blizzard). By connecting GIS data with real video footage, the viewer can gain deeper understanding of climate patterns and better comprehend the correlation between data and reality. The positive reaction this VR climate story garnered at events and conferences, such as ESIP, demonstrates the potential for scientists and researchers to communicate results, findings, and data in an engaging format. By combining GIS data and 360 video, this is a significant new approach to enhance the way that science stories are told.

  9. An Affordable Virtual Reality System for Treatment of Phantom Limb Pain

    DEFF Research Database (Denmark)

    Henriksen, Bartal; Nielsen, Ronni Nedergaard; Szabo, Laszlo

    2016-01-01

    This paper describes the implementation of an affordable phantom limb pain (PLP) home treatment system using virtual reality (VR) and a motion sensor to immerse the users in a virtual environment (VE). The work is inspired by mirror therapy (MT) which is used to treat patients with PLP. This proj......This paper describes the implementation of an affordable phantom limb pain (PLP) home treatment system using virtual reality (VR) and a motion sensor to immerse the users in a virtual environment (VE). The work is inspired by mirror therapy (MT) which is used to treat patients with PLP...

  10. Virtual reality and claustrophobia: multiple components therapy involving game editor virtual environments exposure.

    Science.gov (United States)

    Malbos, E; Mestre, D R; Note, I D; Gellato, C

    2008-12-01

    The effectiveness of a multiple components therapy regarding claustrophobia and involving virtual reality (VR) will be demonstrated through a trial which immersed six claustrophobic patients in multiple context-graded enclosed virtual environments (VE) using affordable VR apparatus and software. The results of the questionnaires and behavior tests exhibited a significant reduction in fear towards the enclosed space and quality of life improvement. Such gains were maintained at 6-month follow-up. Presence score indicated the patients felt immersed and present inside the game editor VE.

  11. The Potential of Virtual Reality for the Investigation of Awe.

    Science.gov (United States)

    Chirico, Alice; Yaden, David B; Riva, Giuseppe; Gaggioli, Andrea

    2016-01-01

    The emotion of awe is characterized by the perception of vastness and a need for accommodation, which can include a positive and/or negative valence. While a number of studies have successfully manipulated this emotion, the issue of how to elicit particularly intense awe experiences in laboratory settings remains. We suggest that virtual reality (VR) is a particularly effective mood induction tool for eliciting awe. VR provides three key assets for improving awe. First, VR provides users with immersive and ecological yet controlled environments that can elicit a sense of "presence," the subjective experience of "being there" in a simulated reality. Further, VR can be used to generate complex, vast stimuli, which can target specific theoretical facets of awe. Finally, VR allows for convenient tracking of participants' behavior and physiological responses, allowing for more integrated assessment of emotional experience. We discussed the potential and challenges of the proposed approach with an emphasis on VR's capacity to raise the signal of reactions to emotions such as awe in laboratory settings.

  12. ViRPET--combination of virtual reality and PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  13. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  14. An innovative virtual reality training tool for orthognathic surgery.

    Science.gov (United States)

    Pulijala, Y; Ma, M; Pears, M; Peebles, D; Ayoub, A

    2018-02-01

    Virtual reality (VR) surgery using Oculus Rift and Leap Motion devices is a multi-sensory, holistic surgical training experience. A multimedia combination including 360° videos, three-dimensional interaction, and stereoscopic videos in VR has been developed to enable trainees to experience a realistic surgery environment. The innovation allows trainees to interact with the individual components of the maxillofacial anatomy and apply surgical instruments while watching close-up stereoscopic three-dimensional videos of the surgery. In this study, a novel training tool for Le Fort I osteotomy based on immersive virtual reality (iVR) was developed and validated. Seven consultant oral and maxillofacial surgeons evaluated the application for face and content validity. Using a structured assessment process, the surgeons commented on the content of the developed training tool, its realism and usability, and the applicability of VR surgery for orthognathic surgical training. The results confirmed the clinical applicability of VR for delivering training in orthognathic surgery. Modifications were suggested to improve the user experience and interactions with the surgical instruments. This training tool is ready for testing with surgical trainees. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.

    Science.gov (United States)

    Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac

    2017-01-01

    Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Virtual Reality environment assisting post stroke hand rehabilitation: case report.

    Science.gov (United States)

    Tsoupikova, Daria; Stoykov, Nikolay; Kamper, Derek; Vick, Randy

    2013-01-01

    We describe a novel art-empowered Virtual Reality (VR) system designed for hand rehabilitation therapy following stroke. The system was developed by an interdisciplinary team of engineers, art therapists, occupational therapists, and VR artist to improve patient's motivation and engagement. We describe system design, development, and user testing for efficiency, subject's satisfaction and clinical feasibility. We report initial results following use of the system on the first four subjects from the ongoing clinical efficacy trials as measured by standard clinical tests for upper extremity function. These cases demonstrate that the system is operational and can facilitate therapy for post stroke patients with upper extremity impairment.

  17. Immersive Virtual Reality in a University Setting: Creating an Authentic Learning Environment Through the Virtual Golden Foods Corporation

    Directory of Open Access Journals (Sweden)

    Ros A. Yahaya

    2009-12-01

    Full Text Available An authentic learning environment is learning that involves real world problems that are relevant to the learners and relate to their real life experience. Research indicates that Information and Communication Technology (ICT tools can facilitate in creating authentic learning environment, thus improving student learning, interaction and satisfaction. Previous research has focused on using various forms of ICT such as online learning and web-based learning into the classroom. However, little attempt has been made to investigate the effectiveness of incorporating immersive Virtual Reality (VR technology into the university classroom. Virtual Golden Foods Corporation (VGFC is a simulated Virtual Reality (VR organization being developed for use in teaching and learning at a large technology based university in Australia. This study focuses on authentic learning environment where students learn about decision making in complex business contexts throughout the semester which culminates in immersive VR exposure. The findings report that immersive VR environment helps to increase students’ understanding of decision making concepts.

  18. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  19. Virtual Reality in Denmark

    Science.gov (United States)

    2005-12-01

    the European Regional Development Fund (ERDF), Aalborg University, the National Survey and Cadastre – Denmark, Kampsax A/S, and Informi GIS A/S...National Survey and Cadastre Department. Everybody can go into the North Jutland County homepage, www.3d.nja.dk, and fly around in the county or you can...Fund (ERDF), Aalborg University, the National Survey and Cadastre – Denmark, Kampsax A/S, and Informi GIS A/S VR Media Lab = Military

  20. A Preliminary Study of Users' Experiences of Meditation in Virtual Reality

    DEFF Research Database (Denmark)

    Andersen, Thea Louise Strange; Anisimovaite, Gintare; Christiansen, Anders Schultz

    2017-01-01

    This poster describes a between-groups study (n=24) exploring the use of virtual reality (VR) for facilitating focused meditation. Half of the participants were exposed to a meditation session combing the sound of a guiding voice and a visual environment including virtual objects...... differences were found between the two conditions. This finding may be revealing in regards to the usefulness of VR-based meditation....

  1. Application of Virtual, Augmented, and Mixed Reality to Urology.

    Science.gov (United States)

    Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun

    2016-09-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.

  2. Application of Virtual, Augmented, and Mixed Reality to Urology

    Science.gov (United States)

    2016-01-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017

  3. "They’re Just Tixel Pits, Man": Disputing the 'Reality' of Virtual Reality Pornography through the Story Completion Method

    OpenAIRE

    Wood, Matt; Wood, Gavin; Balaam, Madeline

    2017-01-01

    Pornography is a substantial part of humans' everyday interaction with computers, yet to date the topic has been underconsidered by HCI. Here, we examine some of the common cultural ideals non-experts constructed of a 'new' pornographic experience - Virtual Reality (VR) Porn - through use of the 'Story Completion Method'. Forty five participants completed a story stem about a male character who was about to have his "very first virtual reality porn experience". Through our analysis, we demons...

  4. Contrasting the effectiveness and efficiency of virtual reality and real environments in the treatment of acrophobia

    OpenAIRE

    Coelho, Carlos M.; Silva, Carlos F.; Santos, Jorge A.; Tichon, Jennifer; Wallis, Guy

    2008-01-01

    Previous studies reported good results in using virtual reality for the treatment of acrophobia. Similarly this paper reports the use of a virtual environment for the treatment of acrophobia. In the study, 10 subjects were exposed to three sessions of simulated heights in a virtual reality (VR) system, and 5 others were exposed to a real environment. Both groups revealed significant progress in a range of anxiety, avoidance and behaviour measurements when confronted with virtua...

  5. Validity of assessing child feeding with virtual reality.

    Science.gov (United States)

    Persky, Susan; Goldring, Megan R; Turner, Sara A; Cohen, Rachel W; Kistler, William D

    2018-04-01

    Assessment of parents' child feeding behavior is challenging, and there is need for additional methodological approaches. Virtual reality technology allows for the creation of behavioral measures, and its implementation overcomes several limitations of existing methods. This report evaluates the validity and usability of the Virtual Reality (VR) Buffet among a sample of 52 parents of children aged 3-7. Participants served a meal of pasta and apple juice in both a virtual setting and real-world setting (counterbalanced and separated by a distractor task). They then created another meal for their child, this time choosing from the full set of food options in the VR Buffet. Finally, participants completed a food estimation task followed by a questionnaire, which assessed their perceptions of the VR Buffet. Results revealed that the amount of virtual pasta served by parents correlated significantly with the amount of real pasta they served, r s  = 0.613, p virtual and real apple juice, r s  = 0.822, p < .0001. Furthermore, parents' perception of the calorie content of chosen foods was significantly correlated with observed calorie content (r s  = 0.438, p = .002), and parents agreed that they would feed the meal they created to their child (M = 4.43, SD = 0.82 on a 1-5 scale). The data presented here demonstrate that parent behavior in the VR Buffet is highly related to real-world behavior, and that the tool is well-rated by parents. Given the data presented and the potential benefits of the abundant behavioral data the VR Buffet can provide, we conclude that it is a valid and needed addition to the array of tools for assessing feeding behavior. Published by Elsevier Ltd.

  6. Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study

    National Research Council Canada - National Science Library

    Skulmowski, Alexander; Bunge, Andreas; Kaspar, Kai; Pipa, Gordon

    2014-01-01

    .... In a virtual reality (VR) setting we performed an experiment investigating the progression from fast, automatic decisions towards more controlled decisions over multiple trials in the context of a sacrificing scenario...

  7. Case study of virtual reality in CNC machine tool exhibition

    OpenAIRE

    Kao Yung-Chou; Lee Chung-Shuo; Liu Zhi-Ren; Lin Yu-Fu

    2017-01-01

    Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR) t...

  8. Effect of Virtual Reality on Cognition in Stroke Patients

    Science.gov (United States)

    Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159

  9. Try Before You Buy: Using Virtual Reality for Travel Planning

    OpenAIRE

    Nunez San Juan, Ricardo

    2017-01-01

    Master's thesis in International Hotel and Tourism Management Technological innovations have been transforming the way we handle tourism. Virtual reality (VR), one of the most recent commercially available technologies, is an underexplored marketing opportunity for destination marketing organizations (DMOs) and for companies within the tourism industry. This emerging technology can help to build a closer relationship between DMOs and the traveler. Within this context, it is predicted that ...

  10. Virtual reality for obsessive-compulsive disorder: past and the future.

    Science.gov (United States)

    Kim, Kwanguk; Kim, Chan-Hyung; Kim, So-Yeon; Roh, Daeyoung; Kim, Sun I

    2009-09-01

    The use of computers, especially for virtual reality (VR), to understand, assess, and treat various mental health problems has been developed for the last decade, including application for phobia, post-traumatic stress disorder, attention deficits, and schizophrenia. However, the number of VR tools addressing obsessive-compulsive disorder (OCD) is still lacking due to the heterogeneous symptoms of OCD and poor understanding of the relationship between VR and OCD. This article reviews the empirical literatures for VR tools in the future, which involve applications for both clinical work and experimental research in this area, including examining symptoms using VR according to OCD patients' individual symptoms, extending OCD research in the VR setting to also study behavioral and physiological correlations of the symptoms, and expanding the use of VR for OCD to cognitive-behavioral intervention.

  11. Review of Virtual Reality Treatment in Psychiatry: Evidence Versus Current Diffusion and Use.

    Science.gov (United States)

    Mishkind, Matthew C; Norr, Aaron M; Katz, Andrea C; Reger, Greg M

    2017-09-18

    This review provides an overview of the current evidence base for and clinical applications of the use of virtual reality (VR) in psychiatric practice, in context of recent technological developments. The use of VR in psychiatric practice shows promise with much of the research demonstrating clinical effectiveness for conditions including post-traumatic stress disorder, anxiety and phobias, chronic pain, rehabilitation, and addictions. However, more research is needed before the use of VR is considered a clinical standard of practice in some areas. The recent release of first generation consumer VR products signals a change in the viability of further developing VR systems and applications. As applications increase so will the need for good quality research to best understand what makes VR effective, and when VR is not appropriate for clinical services. As the field progresses, it is hopeful that the flexibility afforded by this technology will yield superior outcomes and a better understanding of the underlying mechanisms impacting those outcomes.

  12. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  13. Can You Cut It? An Exploration of Editing in Cinematic Virtual Reality

    DEFF Research Database (Denmark)

    Kjær, Tina; Lillelund, Christoffer Bredo; Lillelund, Christoffer Bredo

    2017-01-01

    The advent of affordable virtual reality (VR) displays and 360◦ video cameras has sparked an interest in bringing cinematic experiences from the screen and into VR. However, it remains uncertain whether traditional approaches to filmmaking can be directly applied to cinematic VR. Historically......’ sense of disorientation and their ability to follow the story, during exposure to fictional 360◦ films experienced using a head-mounted display. The results revealed no effects of increased cut frequency which leads us to conclude that editing need not pose a problem in relation to cinematic VR, as long...

  14. Virtual Reality in Psychology

    Science.gov (United States)

    Foreman, Nigel

    2009-01-01

    The benefits of using virtual environments (VEs) in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include…

  15. The Potential of Virtual Reality for the Investigation of Awe

    Directory of Open Access Journals (Sweden)

    Alice Chirico

    2016-11-01

    Full Text Available The emotion of awe is characterized by the perception of vastness and a need for accommodation, which can include a positive and/or negative valence. While a number of studies have successfully manipulated this emotion, the issue of how to elicit particularly intense awe experiences in laboratory settings remains. We suggest that virtual reality (VR is a particularly effective mood induction tool for eliciting awe. VR provides three key assets for improving awe. First, VR provides users with immersive and ecological yet controlled environments that can elicit a sense of presence, the subjective experience of being there in a simulated reality. Further, VR can be used to generate complex, vast stimuli, which can target specific theoretical facets of awe. Finally, VR allows for convenient tracking of participants’ behaviour and physiological responses, allowing for more integrated assessment of emotional experience. We discussed the potential and challenges of the proposed approach with an emphasis on VR’s capacity to raise the signal of reactions to emotions such as awe in laboratory settings.

  16. Brave New Worlds—Review and Update on Virtual Reality Assessment and Treatment in Psychosis

    Science.gov (United States)

    Veling, Wim; Moritz, Steffen; van der Gaag, Mark

    2014-01-01

    In recent years, virtual reality (VR) research on psychotic disorders has been initiated. Several studies showed that VR can elicit paranoid thoughts about virtual characters (avatars), both in patients with psychotic disorders and healthy individuals. Real life symptoms and VR experiences were correlated, lending further support to its validity. Neurocognitive deficits and difficulties in social behavior were found in schizophrenia patients, not only in abstract tasks but also using naturalistic virtual environments that are more relevant to daily life, such as a city or encounters with avatars. VR treatments are conceivable for most dimensions of psychotic disorders. There is a small but expanding literature on interventions for delusions, hallucinations, neurocognition, social cognition, and social skills; preliminary results are promising. VR applications for assessment and treatment of psychotic disorders are in their infancy, but appear to have a great potential for increasing our understanding of psychosis and expanding the therapeutic toolbox. PMID:25193975

  17. Applied virtual reality at the Research Triangle Institute

    Science.gov (United States)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  18. Effectiveness of Virtual Reality Training in Orthopaedic Surgery.

    Science.gov (United States)

    Aïm, Florence; Lonjon, Guillaume; Hannouche, Didier; Nizard, Rémy

    2016-01-01

    The purpose of this study was to conduct a systematic review to determine the effectiveness of virtual reality (VR) training in orthopaedic surgery. A comprehensive systematic review was performed of articles of VR training in orthopaedic surgery published up to November 2014 from MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials databases. We included 10 relevant trials of 91 identified articles, which all reported on training in arthroscopic surgery (shoulder, n = 5; knee, n = 4; undefined, n = 1). A total of 303 participants were involved. Assessment after training was made on a simulator in 9 of the 10 studies, and in one study it took place in the operating room (OR) on a real patient. A total of 32 different outcomes were extracted; 29 of them were about skills assessment. None involved a patient-related outcome. One study focused on anatomic learning, and the other evaluated technical task performance before and after training on a VR simulator. Five studies established construct validity. Three studies reported a statistically significant improvement in technical skills after training on a VR simulator. VR training leads to an improvement of technical skills in orthopaedic surgery. Before its widespread use, additional trials are needed to clarify the transfer of VR training to the OR. Systematic review of Level I through Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Autonomic responses during motion sickness induced by virtual reality.

    Science.gov (United States)

    Ohyama, Seizo; Nishiike, Suetaka; Watanabe, Hiroshi; Matsuoka, Katsunori; Akizuki, Hironori; Takeda, Noriaki; Harada, Tamotsu

    2007-09-01

    To examine the development of subjective symptoms and heart rate variability (HRV) during motion sickness induced by virtual reality (VR). Subjects were 10 healthy young volunteers. During VR immersion, subjects were immersed in a visual-vestibular conflict produced by VR. The levels of the subjective symptoms were assessed by Graybiel's and Hamilton's criteria. HRV was determined by measuring microvascular blood flow or electrocardiogram. Subjective symptoms evaluated by Graybiel's and Hamilton's criteria were gradually worsened during VR. Power spectrum analysis of HRV demonstrated a gradual increase in the low frequency but no change in the high frequency during VR. In this study, individual subjective symptoms were not correlated with the individual result of power spectrum analysis. These findings indicate that there was an increase in sympathetic nervous activity, but no change in parasympathetic nervous activity during motion sickness induced by VR. Given the large inter-individual variability and the reliability of subjective measures, it is not surprising that there is scarcely a relation between the subjective symptoms and the results of power spectrum analysis.

  20. Sound can enhance the analgesic effect of virtual reality.

    Science.gov (United States)

    Johnson, Sarah; Coxon, Matthew

    2016-03-01

    Virtual reality (VR) technology may serve as an effective non-pharmacological analgesic to aid pain management. During VR distraction, the individual is immersed in a game presented through a head-mounted display (HMD). The technological level of the HMD can vary, as can the use of different input devices and the inclusion of sound. While more technologically advanced designs may lead to more effective pain management the specific roles of individual components within such systems are not yet fully understood. Here, the role of supplementary auditory information was explored owing to its particular ecological relevance. Healthy adult participants took part in a series of cold-pressor trials submerging their hand in cold water for as long as possible. Individual pain tolerances were measured according to the time (in seconds) before the participant withdrew their hand. The concurrent use of a VR game and the inclusion of sound was varied systematically within participants. In keeping with previous literature, the use of a VR game increased pain tolerance across conditions. Highest pain tolerance was recorded when participants were simultaneously exposed to both the VR game and supplementary sound. The simultaneous inclusion of sound may therefore play an important role when designing VR to manage pain.

  1. Virtual Reality in Education and Training.

    Science.gov (United States)

    Andolsek, Diane L.

    1995-01-01

    Provides an overview of virtual reality from an education perspective. Defines the technology in terms of equipment and participatory experience, examines the potential applications of virtual reality in education and training, and considers the concerns and limitations of the technology. Overall, research indicates that virtual reality offers…

  2. Acceptability of Virtual Reality Interoceptive Exposure for the Treatment of Panic Disorder with Agoraphobia

    Science.gov (United States)

    Quero, Soledad; Pérez-Ara, M. Ángeles; Bretón-López, Juana; García-Palacios, Azucena; Baños, Rosa M.; Botella, Cristina

    2014-01-01

    Interoceptive exposure (IE) is a standard component of cognitive-behavioural therapy (CBT) for panic disorder and agoraphobia. The virtual reality (VR) program "Panic-Agoraphobia" has several virtual scenarios designed for applying exposure to agoraphobic situations; it can also simulate physical sensations. This work examines patients'…

  3. A Virtual Reality System for Treatment of Phantom Limb Pain using Game Training and Motion Tracking

    DEFF Research Database (Denmark)

    Henriksen, Bartal; Nielsen, Ronni Nedergaard; Szabo, Laszlo

    2016-01-01

    This paper describes the implementation of a phantom limb pain (PLP) home-based system using virtual reality (VR) and a motion sensor to immerse the users in a virtual environment (VE). The work is inspired by mirror therapy (MT), which has been used to relieve PLP. The target patient group focuses...

  4. Virtual and augmented reality technologies in Human Performance: a review

    Directory of Open Access Journals (Sweden)

    Tânia Brusque Crocetta

    Full Text Available Abstract Introduction : Today's society is influenced by Information and Communication Technologies. Toys that were once built by hand have been reinterpreted and have become highly commercialized products. In this context, games using Augmented Reality (AR and Virtual Reality (VR technologies are present in the everyday lives of children, youth and adults. Objective : To investigate how Physical Education professionals in Brazil have been making use of AR and VR games to benefit their work. Materials and methods : We only included studies that addressed exercise or physical activity using AR or VR games. We searched the databases of Virtual Health Library (VHL and Scientific Electronic Library Online (SciELO, using the words augmented reality, virtual reality, exergames, Wii and serious games. Results : Nineteen articles were included in the systematic review. The most frequently used device was the Nintendo(r Wii, with over 25 different kinds of games. With regard to the subjects of the studies, four studies were conducted with healthy individuals (mean = 65.7, three with patients with Parkinson's disease (mean = 18.0, three with elderly women (mean = 7.7 and two with patients with stroke injury (mean = 6.0. Conclusion : Many physical therapists and occupational therapists use serious games with AR or VR technologies as another work tool, especially for rehabilitation practices. The fact that these technologies are also used in Physical Education classes in Brazil indicates that electronic games are available and can be a tool that can contribute to the widespread adoption of exercise as an enjoyable form of recreation.

  5. Is Virtual Reality a Memorable Experience in an Educational Context?

    Directory of Open Access Journals (Sweden)

    Teeroumanee Nadan

    2011-03-01

    Full Text Available Learning science concepts are very often challenging, especially when complex concepts are involved. Teachers have recourse to many different types of teaching methods which are however limited when it comes to explaining students about three dimensionality concepts. With these limitations, the teaching methods fall short in increasing the interest of students. It is therefore important to understand how the new generation learns and hence to teach them accordingly. Virtual Reality (VR is an emerging technology which can be used for teaching science concepts. VR is innovative and hence easily captures students’ interest. This paper presents the results of some preliminary studies conducted with a view to showing the extent to which VR is a memorable experience for students, in order to support its use for teaching Science, Technology, Engineering and Mathematics (STEM concepts.

  6. Real Virtuality: A Code of Ethical ConductRecommendations for Good Scientific Practice and the Consumers of VR-Technology

    Directory of Open Access Journals (Sweden)

    Michael eMadary

    2016-02-01

    Full Text Available The goal of this article is to present a first list of ethical concerns that may arise from research and personal use of virtual reality (VR and related technology, and to offer concrete recommendations for minimizing those risks. Many of the recommendations call for focused research initiatives. In the first part of the article, we discuss the relevant evidence from psychology that motivates our concerns. In section 1.1, we cover some of the main results suggesting that one’s environment can influence one’s psychological states, as well as recent work on inducing illusions of embodiment. Then, in section 1.2, we go on to discuss recent evidence indicating that immersion in VR can have psychological effects that last after leaving the virtual environment. In the second part of the article we turn to the risks and recommendations. We begin, in section 2.1, with the research ethics of VR, covering six main topics: the limits of experimental environments, informed consent, clinical risks, dual-use, online research, and a general point about the limitations of a code of conduct for research. Then, in section 2.2, we turn to the risks of VR for the general public, covering four main topics: long-term immersion, neglect of the social and physical environment, risky content, and privacy. We offer concrete recommendations for each of these ten topics, summarized in Table 1.

  7. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  8. Virtual reality applied to teletesting

    NARCIS (Netherlands)

    Berg, T.W. van den; Smeenk, R.J.M.; Mazy, A.; Jacques, P.; Argüello, L.; Mills, S.

    2003-01-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company

  9. The future of patient safety: Surgical trainees accept virtual reality as a new training tool

    Science.gov (United States)

    Rosenthal, Rachel; Gantert, Walter A; Hamel, Christian; Metzger, Jürg; Kocher, Thomas; Vogelbach, Peter; Demartines, Nicolas; Hahnloser, Dieter

    2008-01-01

    Background The use of virtual reality (VR) has gained increasing interest to acquire laparoscopic skills outside the operating theatre and thus increasing patients' safety. The aim of this study was to evaluate trainees' acceptance of VR for assessment and training during a skills course and at their institution. Methods All 735 surgical trainees of the International Gastrointestinal Surgery Workshop 2006–2008, held in Davos, Switzerland, were given a minimum of 45 minutes for VR training during the course. Participants' opinion on VR was analyzed with a standardized questionnaire. Results Fivehundred-twenty-seven participants (72%) from 28 countries attended the VR sessions and answered the questionnaires. The possibility of using VR at the course was estimated as excellent or good in 68%, useful in 21%, reasonable in 9% and unsuitable or useless in 2%. If such VR simulators were available at their institution, most course participants would train at least one hour per week (46%), two or more hours (42%) and only 12% wouldn't use VR. Similarly, 63% of the participants would accept to operate on patients only after VR training and 55% to have VR as part of their assessment. Conclusion Residents accept and appreciate VR simulation for surgical assessment and training. The majority of the trainees are motivated to regularly spend time for VR training if accessible. PMID:18544173

  10. The future of patient safety: Surgical trainees accept virtual reality as a new training tool

    Directory of Open Access Journals (Sweden)

    Vogelbach Peter

    2008-06-01

    Full Text Available Abstract Background The use of virtual reality (VR has gained increasing interest to acquire laparoscopic skills outside the operating theatre and thus increasing patients' safety. The aim of this study was to evaluate trainees' acceptance of VR for assessment and training during a skills course and at their institution. Methods All 735 surgical trainees of the International Gastrointestinal Surgery Workshop 2006–2008, held in Davos, Switzerland, were given a minimum of 45 minutes for VR training during the course. Participants' opinion on VR was analyzed with a standardized questionnaire. Results Fivehundred-twenty-seven participants (72% from 28 countries attended the VR sessions and answered the questionnaires. The possibility of using VR at the course was estimated as excellent or good in 68%, useful in 21%, reasonable in 9% and unsuitable or useless in 2%. If such VR simulators were available at their institution, most course participants would train at least one hour per week (46%, two or more hours (42% and only 12% wouldn't use VR. Similarly, 63% of the participants would accept to operate on patients only after VR training and 55% to have VR as part of their assessment. Conclusion Residents accept and appreciate VR simulation for surgical assessment and training. The majority of the trainees are motivated to regularly spend time for VR training if accessible.

  11. Cognitive training on stroke patients via virtual reality-based serious games.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  12. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.

    Science.gov (United States)

    Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall

    2014-10-01

    Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and

  13. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large

  14. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  15. A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline

    Science.gov (United States)

    Summers, Frank

    2018-01-01

    Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.

  16. Research of the Remote Experiment System Based on Virtual Reality

    Science.gov (United States)

    Lei, Liangyu; Liu, Jianjun; Yang, Xiufang

    The remote education based on Virtual Reality technology is one of the leading developmental ways in modern education. The present researching status of VR technology's application in the remote experiment is analyzed and the characteristics are summarized in this paper. Then the remote experiment system is designed and the learning mode of the 3-D virtual experiment, the virtual experiment model based on Internet, the functional modules of virtual experiment system are studied. The network-based system of remote virtual experiment is built with the programming languages VRML and JavaScript. Furthermore, the remote experiment system on fatigue test of the drive axle is developed and some key problems in the remote virtual experiment are realized.

  17. WebVR meets WebRTC: Towards 360-degree social VR experiences

    NARCIS (Netherlands)

    Gunkel, S.; Prins, M.J.; Stokking, H.M.; Niamut, O.A.

    2017-01-01

    Virtual Reality (VR) and 360-degree video are reshaping the media landscape, creating a fertile business environment. During 2016 new 360-degree cameras and VR headsets entered the consumer market, distribution platforms are being established and new production studios are emerging. VR is evermore

  18. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  19. Virtual Libraries: Service Realities.

    Science.gov (United States)

    Novak, Jan

    This paper discusses client service issues to be considered when transitioning to a virtual library situation. Themes related to the transitional nature of society in the knowledge era are presented, including: paradox and a contradictory nature; blurring of boundaries; networks, systems, and holistic thinking; process/not product, becoming/not…

  20. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  1. Meditation experts try Virtual Reality Mindfulness: A pilot study evaluation of the feasibility and acceptability of Virtual Reality to facilitate mindfulness practice in people attending a Mindfulness conference.

    Science.gov (United States)

    Navarro-Haro, María V; López-Del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M; Hoffman, Hunter G; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier

    2017-01-01

    Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants' attention and gives users the illusion of "being there" in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high "presence" in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to

  2. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  3. Immersive virtual reality as a teaching tool for neuroanatomy.

    Science.gov (United States)

    Stepan, Katelyn; Zeiger, Joshua; Hanchuk, Stephanie; Del Signore, Anthony; Shrivastava, Raj; Govindaraj, Satish; Iloreta, Alfred

    2017-10-01

    Three-dimensional (3D) computer modeling and interactive virtual reality (VR) simulation are validated teaching techniques used throughout medical disciplines. Little objective data exists supporting its use in teaching clinical anatomy. Learner motivation is thought to limit the rate of utilization of such novel technologies. The purpose of this study is to evaluate the effectiveness, satisfaction, and motivation associated with immersive VR simulation in teaching medical students neuroanatomy. Images of normal cerebral anatomy were reconstructed from human Digital Imaging and Communications in Medicine (DICOM) computed tomography (CT) imaging and magnetic resonance imaging (MRI) into 3D VR formats compatible with the Oculus Rift VR System, a head-mounted display with tracking capabilities allowing for an immersive VR experience. The ventricular system and cerebral vasculature were highlighted and labeled to create a focused interactive model. We conducted a randomized controlled study with 66 medical students (33 in both the control and experimental groups). Pertinent neuroanatomical structures were studied using either online textbooks or the VR interactive model, respectively. We then evaluated the students' anatomy knowledge, educational experience, and motivation (using the Instructional Materials Motivation Survey [IMMS], a previously validated assessment). There was no significant difference in anatomy knowledge between the 2 groups on preintervention, postintervention, or retention quizzes. The VR group found the learning experience to be significantly more engaging, enjoyable, and useful (all p VR educational tools awarded a more positive learner experience and enhanced student motivation. However, the technology was equally as effective as the traditional text books in teaching neuroanatomy. © 2017 ARS-AAOA, LLC.

  4. Comparing "pick and place" task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting.

    Science.gov (United States)

    Khademi, Maryam; Hondori, Hossein Mousavi; Dodakian, Lucy; Cramer, Steve; Lopes, Cristina V

    2013-01-01

    Introducing computer games to the rehabilitation market led to development of numerous Virtual Reality (VR) training applications. Although VR has provided tremendous benefit to the patients and caregivers, it has inherent limitations, some of which might be solved by replacing it with Augmented Reality (AR). The task of pick-and-place, which is part of many activities of daily living (ADL's), is one of the major affected functions stroke patients mainly expect to recover. We developed an exercise consisting of moving an object between various points, following a flash light that indicates the next target. The results show superior performance of subjects in spatial AR versus non-immersive VR setting. This could be due to the extraneous hand-eye coordination which exists in VR whereas it is eliminated in spatial AR.

  5. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  6. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    OpenAIRE

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realti...

  7. Application progress of virtual reality rehabilitation technology in upper limb dysfunction after stroke

    Directory of Open Access Journals (Sweden)

    Bing-jie LI

    2017-07-01

    Full Text Available  Virtual reality (VR rehabilitation technology is a kind of integrated technology which simulates the real world via computer. It has three characteristics: immersion, interaction and imagination. It is widely used in the field of stroke rehabilitation. This review briefly describes the application of virtual reality rehabilitation technology in upper limb dysfunction after stroke. DOI: 10.3969/j.issn.1672-6731.2017.04.002

  8. Application progress of virtual reality rehabilitation technology in upper limb dysfunction after stroke

    OpenAIRE

    Bing-jie LI; Li, Fang

    2017-01-01

     Virtual reality (VR) rehabilitation technology is a kind of integrated technology which simulates the real world via computer. It has three characteristics: immersion, interaction and imagination. It is widely used in the field of stroke rehabilitation. This review briefly describes the application of virtual reality rehabilitation technology in upper limb dysfunction after stroke. DOI: 10.3969/j.issn.1672-6731.2017.04.002

  9. Using FMRI to study the neural correlates of virtual reality analgesia.

    Science.gov (United States)

    Hoffman, Hunter G; Richards, Todd L; Bills, Aric R; Van Oostrom, Trevor; Magula, Jeff; Seibel, Eric J; Sharar, Sam R

    2006-01-01

    Excessive pain during medical procedures, such as burn wound dressing changes, is a widespread medical problem and is especially challenging for children. This article describes the rationale behind virtual reality (VR) pain distraction, a new non-pharmacologic adjunctive analgesia, and gives a brief summary of empirical studies exploring whether VR reduces clinical procedural pain. Results indicate that patients using VR during painful medical procedures report large reductions in subjective pain. A neuroimaging study measuring the neural correlates of VR analgesia is described in detail. This functional magnetic resonance imaging pain study in healthy volunteers shows that the large drops in subjective pain ratings during VR are accompanied by large drops in pain-related brain activity. Together the clinical and laboratory studies provide converging evidence that VR distraction is a promising new non-pharmacologic pain control technique.

  10. The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars

    2016-01-01

    OBJECTIVES/HYPOTHESIS: To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. STUDY DESIGN....... RESULTS: The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase...... in performance was statistically significantly (P increase VR simulation performance (P = 0.22). CONCLUSIONS: Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests...

  11. Energy management using virtual reality improves 2000-m rowing performance.

    Science.gov (United States)

    Hoffmann, Charles P; Filippeschi, Alessandro; Ruffaldi, Emanuele; Bardy, Benoit G

    2014-01-01

    Elite-standard rowers tend to use a fast-start strategy followed by an inverted parabolic-shaped speed profile in 2000-m races. This strategy is probably the best to manage energy resources during the race and maximise performance. This study investigated the use of virtual reality (VR) with novice rowers as a means to learn about energy management. Participants from an avatar group (n = 7) were instructed to track a virtual boat on a screen, whose speed was set individually to follow the appropriate to-be-learned speed profile. A control group (n = 8) followed an indoor training programme. In spite of similar physiological characteristics in the groups, the avatar group learned and maintained the required profile, resulting in an improved performance (i.e. a decrease in race duration), whereas the control group did not. These results suggest that VR is a means to learn an energy-related skill and improve performance.

  12. Virtual reality cues for binge drinking in college students.

    Science.gov (United States)

    Ryan, Joseph J; Kreiner, David S; Chapman, Marla D; Stark-Wroblewski, Kim

    2010-04-01

    We investigated the ability of virtual reality (VR) cue exposure to trigger a desire for alcohol among binge-drinking students. Fifteen binge-drinking college students and eight students who were nonbingers were immersed into a neutral-cue environment or room (underwater scenes), followed by four alcohol-cue rooms (bar, party, kitchen, argument), followed by a repeat of the neutral room. The virtual rooms were computer generated via head-mounted visual displays with associated auditory and olfactory stimuli. In each room, participants reported their subjective cravings for alcohol, the amount of attention given to the sight and smell of alcohol, and how much they were thinking of drinking. A 2 x 6 (type of drinker by VR room) repeated measures ANOVA was conducted on the responses to each question. After alcohol exposure, binge drinkers reported significantly higher cravings for and thoughts of alcohol than nonbinge drinkers, whereas differences between the groups following the neutral rooms were not significant.

  13. Virtual reality in the treatment of fibromyalgia: a pilot study.

    Science.gov (United States)

    Botella, Cristina; Garcia-Palacios, Azucena; Vizcaíno, Yolanda; Herrero, Rocio; Baños, Rosa Maria; Belmonte, Miguel Angel

    2013-03-01

    The aim of this article is to present preliminary data on the effectiveness of virtual reality (VR) as an adjunct to cognitive behavioral therapy (CBT) in the treatment of fibromyalgia (FM). The sample comprised six women diagnosed with FM according to the American College of Rheumatology guidelines (1990). The treatment program consisted of 10 sessions of group CBT with the support of an adaptive virtual environment containing a specific content for developing relaxation and mindfulness skills. Patients were assessed at pretreatment, post-treatment, and at a 6-month follow-up for the following outcome variables: functional status related to pain, depression, a negative and positive affect, and coping skills. The results showed the long-term benefits of significantly reduced pain and depression and an increased positive affect and use of healthy coping strategies. This is the first study showing a preliminary utility of VR in treating FM.

  14. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    Science.gov (United States)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  15. An evaluation of virtual reality technology as an occupational therapy treatment tool in spinal cord injury rehabilitation

    LENUS (Irish Health Repository)

    McNamara, Angela Dr.

    2006-01-01

    The introduction of virtual reality (VR) games as an occupational therapy (OT) treatment tool is an attempt to use technology as purposeful activity that is more relevant to a modern patient population than traditional art and craft based activities. It is unclear however if VR games are suitable for clinical applications and the current project examines the usability of video-capture VR games in spinal cord injury (SCI) rehabilitation.\\r\

  16. Requirements Elicitation and Prototyping of a Fully Immersive Virtual Reality Gaming System for Upper Limb Stroke Rehabilitation in Saudi Arabia

    OpenAIRE

    Maram AlMousa; Al-Khalifa, Hend S.; Hana AlSobayel

    2017-01-01

    Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of nonimmersive virtual reality- (VR-) based rehabilitation systems, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the elicited requirements of a fully immersive VR-based rehabilitation system that will be designed for domestic upper limb stroke patien...

  17. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress.

    Science.gov (United States)

    Maples-Keller, Jessica L; Yasinski, Carly; Manjin, Nicole; Rothbaum, Barbara Olasov

    2017-07-01

    Virtual reality (VR) refers to an advanced technological communication interface in which the user is actively participating in a computer-generated 3-dimensional virtual world that includes computer sensory input devices used to simulate real-world interactive experiences. VR has been used within psychiatric treatment for anxiety disorders, particularly specific phobias and post-traumatic stress disorder, given several advantages that VR provides for use within treatment for these disorders. Exposure therapy for anxiety disorder is grounded in fear-conditioning models, in which extinction learning involves the process through which conditioned fear responses decrease or are inhibited. The present review will provide an overview of extinction training and anxiety disorder treatment, advantages for using VR within extinction training, a review of the literature regarding the effectiveness of VR within exposure therapy for specific phobias and post-traumatic stress disorder, and limitations and future directions of the extant empirical literature.

  18. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2015-02-12

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions

  19. Development of a low-cost virtual reality workstation for training and education

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.

  20. A hitchhiker's guide to virtual reality

    CERN Document Server

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  1. Virtual Reality Rehabilitation from Social Cognitive and Motor Learning Theoretical Perspectives in Stroke Population

    OpenAIRE

    Bita Imam; Tal Jarus

    2014-01-01

    Objectives. To identify the virtual reality (VR) interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT) and Motor Learning (MLT) theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiothera...

  2. Applications and a Three-dimensional Desktop Environment for an Immersive Virtual Reality System

    OpenAIRE

    Kageyama, Akira; Masada, Youhei

    2013-01-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, th...

  3. Improving Balance in TBI Using a Low Cost Customized Virtual Reality Rehabilitation Tool

    Science.gov (United States)

    2015-10-01

    The proposed study will implement and evaluate a novel, low-cost, Virtual Reality ( VR ) rehabilitation tool (Mystic Isle; MI) targeting somatosensory... vestibular , and vision systems through a double-blind RCT. Given the importance of dual-task skills for real-world functioning, we will also...evaluate the relative effectiveness of dual task (balance and cognitive) VR training to improve balance. A total of 180 participants (Service Members

  4. Balance in Virtual reality: effect of age and Bilateral Vestibular loss

    OpenAIRE

    Chiarovano, Elodie,; Wang, Wei; Rogers, Stephen J.; MacDougall, Hamish G; Curthoys, Ian S.; de Waele, Catherine

    2017-01-01

    International audience; Background: Quantitative balance measurement is used in clinical practice to prevent falls. The conditions of the test were limited to eyes open, eyes closed, and sway-referenced vision. We developed a new visual perturbation to challenge balance using virtual reality (VR), measuring postural stability by a Wii Balance Board (WBB).Methods: In this study, we recorded balance performance of 116 healthy subjects and of 10 bilateral vestibular loss patients using VR to ass...

  5. The Use of Virtual Reality in Psychology: A Case Study in Visual Perception

    OpenAIRE

    Christopher J. Wilson; Alessandro Soranzo

    2015-01-01

    Recent proliferation of available virtual reality (VR) tools has seen increased use in psychological research. This is due to a number of advantages afforded over traditional experimental apparatus such as tighter control of the environment and the possibility of creating more ecologically valid stimulus presentation and response protocols. At the same time, higher levels of immersion and visual fidelity afforded by VR do not necessarily evoke presence or elicit a “realistic” psychological r...

  6. The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-08-01

    To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. Prospective study. Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters. The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment. NA. Laryngoscope, 126:1883-1888, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Virtual reality and anthropology

    Energy Technology Data Exchange (ETDEWEB)

    Recheis, Wolfgang E-mail: wolfgang.recheis@uibk.ac.at; Weber, Gerhard W.; Schaefer, Katrin; Knapp, Rudolf; Seidler, Horst; Zur Nedden, Dieter

    1999-08-01

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimens were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology.

  8. Progress in virtual reality simulators for surgical training and certification.

    Science.gov (United States)

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  9. Impact of tasks and users' characteristics on virtual reality performance.

    Science.gov (United States)

    Tyndiuk, F; Lespinet-Najib, V; Thomas, G; Schlick, C

    2007-06-01

    A better understanding of how users perform virtual reality (VR) tasks may help build better VR interfaces. In this study, we concentrated on the compensatory behavior in VR depending on the tasks and users' characteristics. The tasks characteristics considered were display size (large display vs. desktop monitor) and tasks types (manipulation and travel). The users' characteristics studied were the visual attention abilities and users' satisfaction. Ninety-five subjects participated in the experimentation composed of two parts: the first one consisted in cognitive tests used to evaluate visual attention abilities, and the second one was based on a set of VR tasks. Our result showed that large displays positively affect on performance for some kinds of VR tasks. Moreover, this impact was linked to users' satisfaction and visual attention abilities. Indeed, users with low-level attention abilities and users who preferred the large display took more advantage of large displays. We concluded that large displays can be considered cognitive aids depending on the tasks and users' characteristics.

  10. Medical students learn over distance using virtual reality simulation.

    Science.gov (United States)

    Alverson, Dale C; Saiki, Stanley M; Kalishman, Summers; Lindberg, Marlene; Mennin, Stewart; Mines, Jan; Serna, Lisa; Summers, Kenneth; Jacobs, Joshua; Lozanoff, Scott; Lozanoff, Beth; Saland, Linda; Mitchell, Steven; Umland, Berthold; Greene, Gordon; Buchanan, Holly S; Keep, Marcus; Wilks, David; Wax, Diane S; Coulter, Robert; Goldsmith, Timothy E; Caudell, Thomas P

    2008-01-01

    This article presents the results of a demonstration project that was designed with the goal to determine the feasibility and acceptability of medical students in using distance technology and virtual reality (VR) simulation within a problem-based learning (PBL). This pilot project involved students from the Universities of New Mexico and Hawaii and compared (1) control groups consisting of medical students in a tutor-guided PBL session using a text-based case, (2) distance groups using the same text-based case but interacting over distance from multiple sites, (3) groups using a VR simulation scenario integrated into the case without interaction over distance, and (4) combination groups interacting over distance from multiple sites with integration of a VR simulation scenario. The study results suggest that it is possible to successfully conduct a PBL tutorial with medical students from two institutions with the integration VR and distributed distance interaction in combination or independently. The addition of these modalities did not interfere with learning dynamics when compared with traditional tutorial sessions. These findings suggest the feasibility and acceptability by students in the use of VR simulation integrated into a PBL learning session, as well as multipoint distance technologies that allowed interaction between students and tutors in different locations. The authors believe that these modalities can be applied where students and tutors from different institutions are in separate locations and can be used to support interactive experiential learning in a distributed network or on site and suggest areas for additional research.

  11. Can Virtual Reality Increase the Realism of Role Plays Used to Teach College Women Sexual Coercion and Rape-Resistance Skills?

    Science.gov (United States)

    Jouriles, Ernest N.; McDonald, Renee; Kullowatz, Antje; Rosenfield, David; Gomez, Gabriella S.; Cuevas, Anthony

    2009-01-01

    The present study evaluated whether virtual reality (VR) can enhance the realism of role plays designed to help college women resist sexual attacks. Sixty-two female undergraduate students were randomly assigned to either the Role Play (RP) or Virtual Role Play (VRP) conditions, which were differentiated only by the use of VR technology in the VRP…

  12. Going virtual with quicktime VR: new methods and standardized tools for interactive dynamic visualization of anatomical structures.

    Science.gov (United States)

    Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S

    2000-04-15

    Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.

  13. A study of Generation Z’s involvement in virtual reality

    Directory of Open Access Journals (Sweden)

    Puchkova E.B.

    2017-12-01

    Full Text Available Background. This study analyzes the characteristics of modern teenagers’ involvement in virtual reality (VR. It also examines various approaches to VR in Russian science. In the current study the concept of virtual reality is defined as a particular informational environment in which a person can exist and develop. It is created by a special class of technical systems, formed on the basis of computer hypertext technology, and has a number of social and psychological characteristics. We pay special attention to the significance of virtual space for generation Z (according to the William Strauss and Neil Howe generational theory. The main factor determining the unique psychological features of the generation Z is its active involvement in virtual reality from the moment of birth. Involvement in a virtual reality is measurable by a teenager’s activity on the Internet. Objective. Our study set out to determine the level of Russian generation Z’s involvement in virtual reality. Design. We analyzed the results of a survey conducted among Moscow adolescents using multivariate profiles. Two hundred fifty-four teenagers 12-14 years old were interviewed during the study. Results and conclusion. Analysis of the data revealed the following: Modern teenagers are involved in VR with varying degrees of depth; their main type of activity on the Internet is searching for educational information and news; and no significant differences by gender in the purposes of using the Internet were found. However, it was also determined that girls’ activity in VR is more related to communication and interpersonal interaction, even though it’s indirect via the Internet, while boys prefer the “gaming” possibilities of VR; that teenagers are rather critical of the information they obtain by the Internet, and that their level of trust in the online information is low. The same trend is evident in the fact that students prefer not to make new friends in virtual

  14. Implicit and Explicit Information Mediation in a Virtual Reality Museum Installation and its Effects on Retention and Learning Outcomes

    DEFF Research Database (Denmark)

    Moesgaard, Tomas Gislason; Witt, Mass; Fiss, Jonathan

    2015-01-01

    Much research is currently being done in the area of Virtual Reality. This is due to the imminent release of several new pieces of gaming hardware that promises to bring the Virtual Reality (VR) experience into the homes and public spaces of ordinary people. This study attempts to build on the es......Much research is currently being done in the area of Virtual Reality. This is due to the imminent release of several new pieces of gaming hardware that promises to bring the Virtual Reality (VR) experience into the homes and public spaces of ordinary people. This study attempts to build...... on the established literature to create a new form of game-technology based museum learning experience which uses VR to give the user a chance to visit the past. Greve Museum has been looking for a new way to visualize historical places like Mosede Fort, an old World War I battery south of Copenhagen in Denmark...

  15. Cue reactivity in virtual reality: the role of context.

    Science.gov (United States)

    Paris, Megan M; Carter, Brian L; Traylor, Amy C; Bordnick, Patrick S; Day, Susan X; Armsworth, Mary W; Cinciripini, Paul M

    2011-07-01

    Cigarette smokers in laboratory experiments readily respond to smoking stimuli with increased craving. An alternative to traditional cue-reactivity methods (e.g., exposure to cigarette photos), virtual reality (VR) has been shown to be a viable cue presentation method to elicit and assess cigarette craving within complex virtual environments. However, it remains poorly understood whether contextual cues from the environment contribute to craving increases in addition to specific cues, like cigarettes. This study examined the role of contextual cues in a VR environment to evoke craving. Smokers were exposed to a virtual convenience store devoid of any specific cigarette cues followed by exposure to the same convenience store with specific cigarette cues added. Smokers reported increased craving following exposure to the virtual convenience store without specific cues, and significantly greater craving following the convenience store with cigarette cues added. However, increased craving recorded after the second convenience store may have been due to the pre-exposure to the first convenience store. This study offers evidence that an environmental context where cigarette cues are normally present (but are not), elicits significant craving in the absence of specific cigarette cues. This finding suggests that VR may have stronger ecological validity over traditional cue reactivity exposure methods by exposing smokers to the full range of cigarette-related environmental stimuli, in addition to specific cigarette cues, that smokers typically experience in their daily lives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality.

    Science.gov (United States)

    Borrel, Alexandre; Fourches, Denis

    2017-12-01

    There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online.

  17. Is Virtual Reality Ready for Prime Time in the Medical Space? A Randomized Control Trial of Pediatric Virtual Reality for Acute Procedural Pain Management.

    Science.gov (United States)

    Gold, Jeffrey I; Mahrer, Nicole E

    2017-10-19

    To conduct a randomized control trial to evaluate the feasibility and efficacy of virtual reality (VR) compared with standard of care (SOC) for reducing pain, anxiety, and improving satisfaction associated with blood draw in children ages 10-21 years. In total, 143 triads (patients, their caregiver, and the phlebotomist) were recruited in outpatient phlebotomy at a pediatric hospital and randomized to receive either VR or SOC when undergoing routine blood draw. Patients and caregivers completed preprocedural and postprocedural standardized measures of pain, anxiety, and satisfaction, and phlebotomists reported about the patient's experience during the procedure. Findings showed that VR significantly reduced acute procedural pain and anxiety compared with SOC. A significant interaction between patient-reported anxiety sensitivity and treatment condition indicated that patients undergoing routine blood draw benefit more from VR intervention when they are more fearful of physiological sensations related to anxiety. Patients and caregivers in the VR condition reported high levels of satisfaction with the procedure. VR is feasible, tolerated, and well-liked by patients, caregivers, and phlebotomists alike for routine blood draw. Given the immersive and engaging nature of the VR experience, VR has the capacity to act as a preventive intervention transforming the blood draw experience into a less distressing, potentially pain-free routine medical procedure, particularly for pediatric patients with high anxiety sensitivity. VR holds promise to reduce negative health outcomes for children and reduce distress in caregivers, while facilitating increased satisfaction and throughput in hectic outpatient phlebotomy clinics.

  18. VR-Cluster: Dynamic Migration for Resource Fragmentation Problem in Virtual Router Platform

    Directory of Open Access Journals (Sweden)

    Xianming Gao

    2016-01-01

    Full Text Available Network virtualization technology is regarded as one of gradual schemes to network architecture evolution. With the development of network functions virtualization, operators make lots of effort to achieve router virtualization by using general servers. In order to ensure high performance, virtual router platform usually adopts a cluster of general servers, which can be also regarded as a special cloud computing environment. However, due to frequent creation and deletion of router instances, it may generate lots of resource fragmentation to prevent platform from establishing new router instances. In order to solve “resource fragmentation problem,” we firstly propose VR-Cluster, which introduces two extra function planes including switching plane and resource management plane. Switching plane is mainly used to support seamless migration of router instances without packet loss; resource management plane can dynamically move router instances from one server to another server by using VR-mapping algorithms. Besides, three VR-mapping algorithms including first-fit mapping algorithm, best-fit mapping algorithm, and worst-fit mapping algorithm are proposed based on VR-Cluster. At last, we establish VR-Cluster protosystem by using general X86 servers, evaluate its migration time, and further analyze advantages and disadvantages of our proposed VR-mapping algorithms to solve resource fragmentation problem.

  19. Ocular effects of virtual reality headset wear in young adults.

    Science.gov (United States)

    Turnbull, Philip R K; Phillips, John R

    2017-11-23

    Virtual Reality (VR) headsets create immersion by displaying images on screens placed very close to the eyes, which are viewed through high powered lenses. Here we investigate whether this viewing arrangement alters the binocular status of the eyes, and whether it is likely to provide a stimulus for myopia development. We compared binocular status after 40-minute trials in indoor and outdoor environments, in both real and virtual worlds. We also measured the change in thickness of the ocular choroid, to assess the likely presence of signals for ocular growth and myopia development. We found that changes in binocular posture at distance and near, gaze stability, amplitude of accommodation and stereopsis were not different after exposure to each of the 4 environments. Thus, we found no evidence that the VR optical arrangement had an adverse effect on the binocular status of the eyes in the short term. Choroidal thickness did not change after either real world trial, but there was a significant thickening (≈10 microns) after each VR trial (p < 0.001). The choroidal thickening which we observed suggest that a VR headset may not be a myopiagenic stimulus, despite the very close viewing distances involved.

  20. Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder

    Science.gov (United States)

    Stoker, C.; Zbinden, E.; Blackmon, T.; Nguyen, L.

    1999-01-01

    We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.

  1. Virtual Reality: Emerging Applications and Future Directions

    Science.gov (United States)

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  2. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    Science.gov (United States)

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  3. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality.

    Science.gov (United States)

    Anderson, Allison P; Mayer, Michael D; Fellows, Abigail M; Cowan, Devin R; Hegel, Mark T; Buckey, Jay C

    2017-06-01

    Virtual reality (VR) can provide exposure to nature for those living in isolated confined environments. We evaluated VR-presented natural settings for reducing stress and improving mood. There were 18 participants (9 men, 9 women), ages 32 ± 12 yr, who viewed three 15-min 360° scenes (an indoor control, rural Ireland, and remote beaches). Subjects were mentally stressed with arithmetic before scenes. Electrodermal activity (EDA) and heart rate variability measured psycho-physiological arousal. The Positive and Negative Affect Schedule and the 15-question Modified Reality Judgment and Presence Questionnaire (MRJPQ) measured mood and scene quality. Reductions in EDA from baseline were greater at the end of the natural scenes compared to the control scene (-0.59, -0.52, and 0.32 μS, respectively). The natural scenes reduced negative affect from baseline ( 1.2 and 1.1 points), but the control scene did not ( 0.4 points). MRJPQ scores for the control scene were lower than both natural scenes (4.9, 6.7, and 6.5 points, respectively). Within the two natural scenes, the preferred scene reduced negative affect ( 2.4 points) more than the second choice scene ( 1.8 points) and scored higher on the MRJPQ (6.8 vs. 6.4 points). Natural scene VR provided relaxation both objectively and subjectively, and scene preference had a significant effect on mood and perception of scene quality. VR may enable relaxation for people living in isolated confined environments, particularly when matched to personal preferences.Anderson AP, Mayer MD, Fellows AM, Cowan DR, Hegel MT, Buckey JC. Relaxation with immersive natural scenes presented using virtual reality. Aerosp Med Hum Perform. 2017; 88(6):520526.

  4. Virtual Reality in Education The next challenge

    National Research Council Canada - National Science Library

    Jonathan Carlos Samaniego Villarroel

    2016-01-01

    Virtual reality is a very interesting topic, but quite far from us apparently the Latin American reality is too far to technological advances and therefore costs us understand how they serve educational purposes...

  5. Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review.

    Science.gov (United States)

    Botella, Cristina; Fernández-Álvarez, Javier; Guillén, Verónica; García-Palacios, Azucena; Baños, Rosa

    2017-07-01

    This review is designed to systematically examine the available evidence about virtual reality exposure therapy's (VRET) efficacy for phobias, critically describe some of the most important challenges in the field and discuss possible directions. Evidence reveals that virtual reality (VR) is an effective treatment for phobias and useful for studying specific issues, such as pharmacological compounds and behavioral manipulations, that can enhance treatment outcomes. In addition, some variables, such as sense of presence in virtual environments, have a significant influence on outcomes, but further research is needed to better understand their role in therapeutic outcomes. We conclude that VR is a useful tool to improve exposure therapy and it can be a good option to analyze the processes and mechanisms involved in exposure therapy and the ways this strategy can be enhanced. In the coming years, there will be a significant expansion of VR in routine practice in clinical contexts.

  6. Using Portable EEG Devices to Evaluate Emotional Regulation Strategies during Virtual Reality Exposure

    OpenAIRE

    Rey, Beatriz; Rodriguez Ortega, Alejandro; Alcañiz Raya, Mariano Luis

    2012-01-01

    [EN] As Virtual Reality (VR) is starting to be used to train emotional regulation strategies, it would be interesting to propose objective techniques to monitor the emotional reactions of participants during the virtual experience. In this work, the main goal is to analyze if portable EEG systems are adequate to monitor brain activity changes caused by the emotional regulation strategies applied by the participants. The EEG signals captured from subjects that navigate through a virtual enviro...

  7. The Selimiye Mosque of Edirne, Turkey - AN Immersive and Interactive Virtual Reality Experience Using Htc Vive

    Science.gov (United States)

    Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.

    2017-05-01

    Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.

  8. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  9. Virtual Reality for Materials Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to research and develop materials through applied virtual reality to enable interactive "materials-by-design." Extensive theoretical and computational...

  10. Skin Conductance Reactivity to Standardized Virtual Reality Combat Scenes in Veterans with PTSD.

    Science.gov (United States)

    van 't Wout, Mascha; Spofford, Christopher M; Unger, William S; Sevin, Elizabeth B; Shea, M Tracie

    2017-09-01

    Interest in virtual reality (VR) as a clinical tool to augment posttraumatic stress (PTSD) treatment has grown substantially in recent years due to advances in VR technology. Moreover, its potential assisted use in the PTSD diagnostic process has been recognized. In this study we examined physiological responding, skin conductance, to a standardized presentation of non-personalized combat-related VR events (e.g. encountering enemy fire; explosions) as compared to non-combat classroom VR events in 19 Veterans with and 24 Veterans without combat-related PTSD who had been deployed to Iraq and Afghanistan. Veterans watched a total of 12 VR scenarios-six combat-related and six non-combat-related-with each scenario gradually increasing in emotional intensity by adding more VR events in addition to repeating prior VR events. Results show that Veterans with PTSD displayed larger skin conductance reactivity across VR combat events, but not for non-combat VR events, as compared to combat Veterans without PTSD. Nevertheless, Veterans with and without PTSD showed a similar reduction of emotional arousal to repeated presentation of the same VR combat events. Within the PTSD sample, the elevated level of VR combat-related arousal correlated marginally with severity of hyperarousal symptoms. This study confirms that the use of a non-personalized and standardized VR presentation successfully distinguishes Veterans with PTSD from those without on a measure of psychophysiological arousal to combat-related VR stimuli. The assessment of physiological reactivity during the repeated presentation of standardized, trauma-related VR events highlights its use for PTSD assessment as well as treatment.

  11. Applications and a Three-dimensional Desktop Environment for an Immersive Virtual Reality System

    CERN Document Server

    Kageyama, Akira

    2013-01-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, the user can jump back into Multiverse's VR desktop environment in the CAVE.

  12. Applications and a three-dimensional desktop environment for an immersive virtual reality system

    Science.gov (United States)

    Kageyama, Akira; Masada, Youhei

    2013-08-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, the user can jump back into Multiverse's VR desktop environment in the CAVE.

  13. Data Visualization Using Immersive Virtual Reality Tools

    Science.gov (United States)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this

  14. Studying and treating schizophrenia using virtual reality: a new paradigm.

    Science.gov (United States)

    Freeman, Daniel

    2008-07-01

    Understanding schizophrenia requires consideration of patients' interactions in the social world. Misinterpretation of other peoples' behavior is a key feature of persecutory ideation. The occurrence and intensity of hallucinations is affected by the social context. Negative symptoms such as anhedonia, asociality, and blunted affect reflect difficulties in social interactions. Withdrawal and avoidance of other people is frequent in schizophrenia, leading to isolation and rumination. The use of virtual reality (VR)--interactive immersive computer environments--allows one of the key variables in understanding psychosis, social environments, to be controlled, providing exciting applications to research and treatment. Seven applications of virtual social environments to schizophrenia are set out: symptom assessment, identification of symptom markers, establishment of predictive factors, tests of putative causal factors, investigation of the differential prediction of symptoms, determination of toxic elements in the environment, and development of treatment. The initial VR studies of persecutory ideation, which illustrate the ascription of personalities and mental states to virtual people, are highlighted. VR, suitably applied, holds great promise in furthering the understanding and treatment of psychosis.

  15. Designing Awe in Virtual Reality: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Alice Chirico

    2018-01-01

    Full Text Available Awe is a little-studied emotion with a great transformative potential. Therefore, the interest toward the study of awe’s underlying mechanisms has been increased. Specifically, researchers have been interested in how to reproduce intense feelings of awe within laboratory conditions. It has been proposed that the use of virtual reality (VR could be an effective way to induce awe in controlled experimental settings, thanks to its ability of providing participants with a sense of “presence,” that is, the subjective feeling of being displaced in another physical or imaginary place. However, the potential of VR as awe-inducing medium has not been fully tested yet. In the present study, we provided an evidence-based design and a validation of four immersive virtual environments (VEs involving 36 participants in a within-subject design. Of these, three VEs were designed to induce awe, whereas the fourth VE was targeted as an emotionally neutral stimulus. Participants self-reported the extent to which they felt awe, general affect and sense of presence related to each environment. As expected, results showed that awe-VEs could induce significantly higher levels of awe and presence as compared to the neutral VE. Furthermore, these VEs induced significantly more positive than negative affect. These findings supported the potential of immersive VR for inducing awe and provide useful indications for the design of awe-inspiring virtual environments.

  16. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  17. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    Science.gov (United States)

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  18. Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson's Disease Patients

    OpenAIRE

    Pablo Arias; Verónica Robles-García; Gabriel Sanmartín; Julian Flores; Javier Cudeiro

    2012-01-01

    This work presents an immersive Virtual Reality (VR) system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD) and the elderly (EC), by comparison with healthy young controls (YC). The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1(st) person perspect...

  19. Is upper limb virtual reality training more intensive than conventional training for patients in the subacute phase after stroke?

    DEFF Research Database (Denmark)

    Brunner, Iris; Skouen, Jan Sture; Hofstad, Håkon

    2016-01-01

    Background: Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task-oriented interve......Background: Virtual reality (VR) training is thought to improve upper limb (UL) motor function after stroke when utilizing intensive training with many repetitions. The purpose of this study was to compare intensity and content of a VR training intervention to a conventional task...... training, which may influence recovery. The upcoming results of the VIRTUES trial will show whether this is correlated with an increased effect of VR compared to CT. Trial registration: ClinicalTrials.gov NCT02079103, February 27, 2014....

  20. Differential Sensitivity Between a Virtual Reality Balance Module and Clinically Used Concussion Balance Modalities.

    Science.gov (United States)

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2016-03-01

    Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.

  1. Dawn of the new everything a journey through virtual reality

    CERN Document Server

    Lanier, Jaron

    2017-01-01

    Virtual Reality has long been one of the dominant clichés of science fiction. Now Virtual Reality is a reality: those big headsets that make people look ridiculous, even while radiating startled delight; the place where war veterans overcome PTSD, surgeries are trialled, aircraft and cities are designed. But VR is far more interesting than any single technology, however spectacular. It is, in fact, the most effective device ever invented for researching what a human being actually is – and how we think and feel. More than thirty years ago, legendary computer scientist, visionary and artist Jaron Lanier pioneered its invention. Here, in what is likely to be one of the most unusual books you ever read, he blends scientific investigation, philosophical thought experiment and his memoir of a life lived at the centre of digital innovation to explain what VR really is: the science of comprehensive illusion; the extension of the intimate magic of earliest childhood into adulthood; a hint of what life would be li...

  2. The effect of virtual reality on pain and range of motion in adults with burn injuries.

    Science.gov (United States)

    Carrougher, Gretchen J; Hoffman, Hunter G; Nakamura, Dana; Lezotte, Dennis; Soltani, Maryam; Leahy, Laura; Engrav, Loren H; Patterson, David R

    2009-01-01

    Few studies have empirically investigated the effects of immersive virtual reality (VR) on postburn physical therapy pain control and range of motion (ROM). We performed a prospective, randomized controlled study of the effects of adding VR to standard therapy in adults receiving active-assisted ROM physical therapy, by assessing pain scores and maximal joint ROM immediately before and after therapy on two consecutive days. Thirty-nine inpatients, aged 21 to 57 years (mean 35 years), with a mean TBSA burn of 18% (range, 3-60%) were studied using a within-subject, crossover design. All patients received their regular pretherapy pharmacologic analgesia regimen. During physical therapy sessions on two consecutive days (VR one day and no VR the other day; order randomized), each patient participated in active-assisted ROM exercises with an occupational or physical therapist. At the conclusion of each session, patients provided 0 to 100 Graphic Rating Scale measurements of pain after each 10-minute treatment condition. On the day with VR, patients wore a head-position-tracked, medical care environment-excluding VR helmet with stereophonic sound and interacted in a virtual environment conducive to burn care. ROM measurements for each joint exercised were recorded before and after each therapy session. Because of nonsignificant carryover and order effects, the data were analyzed using simple paired t-tests. VR reduced all Graphic Rating Scale pain scores (worst pain, time spent thinking about the pain, and pain unpleasantness by 27, 37, and 31% respectively), relative to the no VR condition. Average ROM improvement was slightly greater with the VR condition; however, this difference failed to reach clinical or statistical significance (P = .243). Ninety-seven percent of patients reported zero to mild nausea after the VR session. Immersive VR effectively reduced pain and did not impair ROM during postburn physical therapy. VR is easily used in the hospital setting and

  3. Determination of face validity for the Simbionix LAP mentor virtual reality training module

    NARCIS (Netherlands)

    Ayodeji, I. D.; Schijven, M. P.; Jakimowicz, J. J.

    2006-01-01

    This study determines the expert and referent face validity of LAP Mentor, the first procedural virtual-reality (VR) trainer. After a hands-on introduction to the simulator a questionnaire was administered to 49 participants (21 expert laparoscopists and 28 novices). There was a consensus on LAP

  4. A review of the use of virtual reality head-mounted displays in education and training

    DEFF Research Database (Denmark)

    Jensen, Lasse; Konradsen, Flemming

    2017-01-01

    In the light of substantial improvements to the quality and availability of virtual reality (VR) hardware seen since 2013, this review seeks to update our knowledge about the use of head-mounted displays (HMDs) in education and training. Following a comprehensive search 21 documents reporting...

  5. Students' Expectations of the Learning Process in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2012-01-01

    Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…

  6. Virtual reality balance training for elderly : Similar skiing games elicit different challenges in balance training

    NARCIS (Netherlands)

    de Vries, Aijse W.; Faber, Gert; Jonkers, Ilse; Van Dieen, Jaap H.; Verschueren, Sabine M.P.

    2018-01-01

    Background Virtual Reality (VR) balance training may have advantages over regular exercise training in older adults. However, results so far are conflicting potentially due to the lack of challenge imposed by the movements in those games. Therefore, the aim of this study was to assess to which

  7. Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator

    DEFF Research Database (Denmark)

    Larsen, C R; Grantcharov, Teodor; Aggarwal, R

    2006-01-01

    Safe realistic training and unbiased quantitative assessment of technical skills are required for laparoscopy. Virtual reality (VR) simulators may be useful tools for training and assessing basic and advanced surgical skills and procedures. This study aimed to investigate the construct validity...

  8. From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy

    Science.gov (United States)

    Jang, Susan

    2010-01-01

    This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…

  9. A Cross-Case Analysis of Gender Issues in Desktop Virtual Reality Learning Environments

    Science.gov (United States)

    Ausburn, Lynna J.; Martens, Jon; Washington, Andre; Steele, Debra; Washburn, Earlene

    2009-01-01

    This study examined gender-related issues in using new desktop virtual reality (VR) technology as a learning tool in career and technical education (CTE). Using relevant literature, theory, and cross-case analysis of data and findings, the study compared and analyzed the outcomes of two recent studies conducted by a research team at Oklahoma State…

  10. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    Science.gov (United States)

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  11. Visuospatial Orientation Learning through Virtual Reality for People with Severe Disability

    Science.gov (United States)

    de la Torre-Luque, Alejandro; Valero-Aguayo, Luis; de la Rubia-Cuestas, Ernesto J.

    2017-01-01

    This study aims to test how an intervention based on virtual reality (VR) may enhance visuospatial skills amongst people with disability. A quasi-experimental intra-group study was therefore conducted. Participants were 20 people with severe disability (65% males; 34.35 years, on average, and 84.95% of disability rate according to the Andalusian…

  12. Virtual Reality and Social Skills Training for Students with Behavioral Disorders: Applications, Challenges and Promising Practices.

    Science.gov (United States)

    Muscott, Howard S.; Gifford, Timothy

    1994-01-01

    This article describes virtual reality (VR) technology and discusses its potential application to the teaching of social skills to children and youth with behavior disorders through the use of interactive role plays. Limitations of the current technology and difficulties inherent in modeling simulations of human behavior are noted, as are…

  13. Virtual Reality Cue Reactivity Assessment: A Comparison of Treatment- vs. Nontreatment-Seeking Smokers

    Science.gov (United States)

    Bordnick, Patrick S.; Yoon, Jin H.; Kaganoff, Eili; Carter, Brian

    2013-01-01

    Objectives: The cue-reactivity paradigm has been widely used to assess craving among cigarette smokers. Seeking to replicate and expand on previous virtual reality (VR) nicotine cue-reactivity research on nontreatment-seeking smokers, the current study compared subjective reports of craving for cigarettes when exposed to smoking (proximal and…

  14. Virtual Reality as a Leisure Activity for Young Adults with Physical and Intellectual Disabilities

    Science.gov (United States)

    Yalon-Chamovitz, Shira; Weiss, Patrice L.

    2008-01-01

    Participation in leisure activities is a fundamental human right and an important factor of quality of life. Adults with intellectual disabilities (ID) and physical disabilities often experience limited opportunities to participate in leisure activities, virtual reality (VR) technologies may serve to broaden their repertoire of accessible leisure…

  15. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  16. Effective Design of Educational Virtual Reality Applications for Medicine Using Knowledge-Engineering Techniques

    Science.gov (United States)

    Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…

  17. Virtual Reality Exposure and Imaginal Exposure in the Treatment of Fear of Flying: A Pilot Study

    Science.gov (United States)

    Rus-Calafell, Mar; Gutierrez-Maldonado, Jose; Botella, Cristina; Banos, Rosa M.

    2013-01-01

    Fear of flying (FF) is an impairing psychological disorder that is extremely common in developed countries. The most effective treatment for this particular type of phobia is exposure therapy. However, there are few studies comparing imaginal exposure (IE) and virtual reality (VR) exposure for the treatment of FF. The present study compared the…

  18. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  19. Robotics and Virtual Reality for Cultural Heritage Digitization and Fruition

    Science.gov (United States)

    Calisi, D.; Cottefoglie, F.; D'Agostini, L.; Giannone, F.; Nenci, F.; Salonia, P.; Zaratti, M.; Ziparo, V. A.

    2017-05-01

    In this paper we present our novel approach for acquiring and managing digital models of archaeological sites, and the visualization techniques used to showcase them. In particular, we will demonstrate two technologies: our robotic system for digitization of archaeological sites (DigiRo) result of over three years of efforts by a group of cultural heritage experts, computer scientists and roboticists, and our cloud-based archaeological information system (ARIS). Finally we describe the viewers we developed to inspect and navigate the 3D models: a viewer for the web (ROVINA Web Viewer) and an immersive viewer for Virtual Reality (ROVINA VR Viewer).

  20. Virtual reality for the treatment of posttraumatic disorders

    Directory of Open Access Journals (Sweden)

    Moraes TM

    2016-04-01

    Full Text Available Thiago Mazzoli Moraes,1 Almir Ferreira de Andrade,2 Wellingson Silva Paiva2,3 1Division of Psychology, 2Division of Neurosurgery, University of São Paulo Medical School, São Paulo, SP, Brazil; 3Neurology Center, Samaritano Hospital, São Paulo, SP, BrazilWe read with great interest the recent study by Botella et al1 published in the journal Neuropsychiatric Disease and Treatment. Virtual reality (VR technology has allowed for the neuropsychological rehabilitation in patients with many neurological diseases including stroke and traumatic brain injury.2,3Read the original paper by Botella et al 

  1. Virtual reality assessment of medication compliance in patients with schizophrenia.

    Science.gov (United States)

    Baker, Elizabeth K; Kurtz, Matthew M; Astur, Robert S

    2006-04-01

    Medication compliance is essential to treating the symptoms of schizophrenia effectively. This study utilized a virtual reality (VR) apartment paradigm to assess medication compliance behaviors in 25 patients with schizophrenia and in 16 healthy control subjects. Participants were assigned a prescription consisting of three medications and were asked to self-administer this regimen in 15 min. Results demonstrate that patients had considerably more difficulty in complying with the medication regimen than did controls. They manifested significantly more quantitative errors, and were much less accurate in consuming the medications at the assigned time. Significant differences in performance between these groups were also evidenced by a variety of validated neuropsychological measures. Correlations between the data may suggest a convergent validity for this new VR task. Future research will investigate the validity of this task in predicting additional measures of psychosocial functioning.

  2. Development of virtual reality proprioceptive rehabilitation system for stroke patients.

    Science.gov (United States)

    Cho, Sangwoo; Ku, Jeonghun; Cho, Yun Kyung; Kim, In Young; Kang, Youn Joo; Jang, Dong Pyo; Kim, Sun I

    2014-01-01

    In this study, the virtual reality (VR) proprioception rehabilitation system was developed for stroke patients to use proprioception feedback in upper limb rehabilitation by blocking visual feedback. To evaluate its therapeutic effect, 10 stroke patients (onset>3 month) trained proprioception feedback rehabilitation for one week and visual feedback rehabilitation for another week in random order. Proprioception functions were checked before, a week after, and at the end of training. The results show the click count, error distance and total error distance among proprioception evaluation factors were significantly reduced after proprioception feedback training compared to visual feedback training (respectively, p=0.005, p=0.001, and p=0.007). In addition, subjects were significantly improved in conventional behavioral tests after training. In conclusion, we showed the effectiveness and possible use of the VR to recover the proprioception of stroke patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  4. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation.

    Science.gov (United States)

    Deutsch, Judith E; Westcott McCoy, Sarah

    2017-07-01

    Use of virtual reality (VR) and serious games (SGs) interventions within rehabilitation as motivating tools for task specific training for individuals with neurological conditions are fast-developing. Within this perspective paper we use the framework of the IV STEP conference to summarize the literature on VR and SG for children and adults by three topics: Prevention; Outcomes: Body-Function-Structure, Activity and Participation; and Plasticity. Overall the literature in this area offers support for use of VR and SGs to improve body functions and to some extent activity domain outcomes. Critical analysis of clients' goals and selective evaluation of VR and SGs are necessary to appropriately take advantage of these tools within intervention. Further research on prevention, participation, and plasticity is warranted. We offer suggestions for bridging the gap between research and practice integrating VR and SGs into physical therapist education and practice.

  5. Patients’ and Health Professionals’ Experiences of Using Virtual Reality Technology for Upper Limb Training after Stroke:

    DEFF Research Database (Denmark)

    Pallesen, Hanne; Andersen, Mette Brændstrup; Hansen, Gunhild Mo

    2018-01-01

    Background. In recent years, virtual reality (VR) therapy systems for upper limb training after stroke have been increasingly used in clinical practice.Therapy systems employing VR technology can enhance the intensity of training and can also boost patients’ motivation by adding a playful element...... to therapy. However, reports on user experiences are still scarce. Methods. A qualitative investigation of patients’ and therapists’ perspectives on VR upper limb training. Semistructured face-to-face interviews were conducted with six patients in the final week of the VR intervention.Therapists participated...... character of VR training. The playful nature of the training appeared to have a significant influence on the patients’ moods and engagement and seemed to promote a “gung-ho” spirit, so they felt that they could perform more repetitions....

  6. Establishing a curriculum for the acquisition of laparoscopic psychomotor skills in the virtual reality environment.

    Science.gov (United States)

    Sinitsky, Daniel M; Fernando, Bimbi; Berlingieri, Pasquale

    2012-09-01

    The unique psychomotor skills required in laparoscopy result in reduced patient safety during the early part of the learning curve. Evidence suggests that these may be safely acquired in the virtual reality (VR) environment. Several VR simulators are available, each preloaded with several psychomotor skills tasks that provide users with computer-generated performance metrics. This review aimed to evaluate the usefulness of specific psychomotor skills tasks and metrics, and how trainers might build an effective training curriculum. We performed a comprehensive literature search. The vast majority of VR psychomotor skills tasks show construct validity for one or more metrics. These are commonly for time and motion parameters. Regarding training schedules, distributed practice is preferred over massed practice. However, a degree of supervision may be needed to counter the limitations of VR training. In the future, standardized proficiency scores should facilitate local institutions in establishing VR laparoscopic psychomotor skills curricula. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Virtual reality rehabilitation for stroke patients: Recent review and research issues

    Science.gov (United States)

    Arip, Eza Surya Mohd; Ismail, Waidah; Nordin, Md Jan; Radman, Abduljalil

    2017-11-01

    Stroke is one of the main causes of disability in the world. In order for stroke survivors to reduce their disability, they need to go through a rehabilitation process to regain back their independence and improve their quality of life. To guide patients in their rehabilitation process and improve their receptiveness in performing repetitive exercises, a new rehabilitation training program using Virtual Reality (VR) technology has been introduced. This has attracted many researchers to explore more on VR technology as a new tool for stroke patient's rehabilitation. This paper presents a review on existing VR systems that have been developed for stroke rehabilitation. First, recent VR systems utilized for rehabilitation after stroke are delineated and categorized. Each of these categories concludes with a discussion on limitations and any issues that arise from it. Finally, a concise summary with significant findings and future possibilities in VR rehabilitation research is presented in table format.

  8. Virtual Reality and Its Potential Application in Education and Training.

    Science.gov (United States)

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  9. The VEPSY updated project: virtual reality in clinical psychology.

    Science.gov (United States)

    Riva, G; Alcañiz, M; Anolli, L; Bacchetta, M; Baños, R; Beltrame, F; Botella, C; Galimberti, C; Gamberini, L; Gaggioli, A; Molinari, E; Mantovani, G; Nugues, P; Optale, G; Orsi, G; Perpina, C; Troiañi, R

    2001-08-01

    Many of us grew up with the naive assumption that couches are the best used therapeutic tools in psychotherapy. But tools for psychotherapy are evolving in a much more complex environment than a designer's chaise lounge. In particular, virtual reality (VR) devices have the potential for appearing soon in many consulting rooms. The use of VR in medicine is not a novelty. Applications of virtual environments for health care have been developed in the following areas: surgical procedures (remote surgery or telepresence, augmented or enhanced surgery, and planning and simulation of procedures before surgery); preventive medicine and patient education; medical education and training; visualization of massive medical databases; and architectural design for health care facilities. However, there is a growing recognition that VR can play an important role in clinical psychology, too. To exploit and understand this potential is the main goal of the Telemedicine and Portable Virtual Environment in Clinical Psychology--VEPSY Updated--a European Community-funded research project (IST-2000-25323, http://www.vepsy.com). The project will provide innovative tools-telemedicine and portable-for the treatment of patients, clinical trials to verify their viability, and action plans for dissemination of its results to an extended audience-potential users and influential groups. The project will also develop different personal computer (PC)-based virtual reality modules to be used in clinical assessment and treatment. In particular, the developed modules will address the following pathologies: anxiety disorders; male impotence and premature ejaculation; and obesity, bulimia, and binge-eating disorders.

  10. Virtual Reality Training Versus Blended Learning of Laparoscopic Cholecystectomy

    Science.gov (United States)

    Nickel, Felix; Brzoska, Julia A.; Gondan, Matthias; Rangnick, Henriette M.; Chu, Jackson; Kenngott, Hannes G.; Linke, Georg R.; Kadmon, Martina; Fischer, Lars; Müller-Stich, Beat P.

    2015-01-01

    Abstract This study compared virtual reality (VR) training with low cost-blended learning (BL) in a structured training program. Training of laparoscopic skills outside the operating room is mandatory to reduce operative times and risks. Laparoscopy-naïve medical students were randomized in 2 groups stratified for sex. The BL group (n = 42) used E-learning for laparoscopic cholecystectomy (LC) and practiced basic skills with box trainers. The VR group (n = 42) trained basic skills and LC on the LAP Mentor II (Simbionix, Cleveland, OH). Each group trained 3 × 4 hours followed by a knowledge test concerning LC. Blinded raters assessed the operative performance of cadaveric porcine LC using the Objective Structured Assessment of Technical Skills (OSATS). The LC was discontinued when it was not completed within 80 min. Students evaluated their training modality with questionnaires. The VR group completed the LC significantly faster and more often within 80 min than BL (45% v 21%, P = .02). The BL group scored higher than the VR group in the knowledge test (13.3 ± 1.3 vs 11.0 ± 1.7, P training and felt well prepared for assisting in laparoscopic surgery. The efficiency of the training was judged higher by the VR group than by the BL group. VR and BL can both be applied for training the basics of LC. Multimodality training programs should be developed that combine the advantages of both approaches. PMID:25997044

  11. Physical and cognitive effects of virtual reality integrated training.

    Science.gov (United States)

    Stone, Richard T; Watts, Kristopher P; Zhong, Peihan; Wei, Chen-Shuang

    2011-10-01

    The objective of this study was to evaluate the cognitive and physical impact of virtual reality (VR) integrated training versus traditional training methods in the domain of weld training. Weld training is very important in various industries and represents a complex skill set appropriate for advanced training intervention. As such, there has been a long search for the most successful and most cost-effective method for training new welders. Participants in this study were randomly assigned to one of two separate training courses taught by sanctioned American Welding Society certified welding instructors; the duration of each course was 2 weeks. After completing the training for a specific weld type, participants were given the opportunity to test for the corresponding certification. Participants were evaluated in terms of their cognitive and physical parameters, total training time exposure, and welding certification awards earned. Each of the four weld types taught in this study represented distinct levels of difficulty and required the development of specialized knowledge and skills. This study demonstrated that participants in the VR integrated training group (VR50) performed as well as, and in some cases, significantly outperformed, the traditional welding (TW) training group.The VR50 group was found to have a 41.6% increase in overall certifications earned compared with the TW group. VR technology is a valuable tool for the production of skilled welders in a shorter time and often with more highly developed skills than their traditionally trained counterparts. These findings strongly support the use ofVR integrated training in the welding industry.

  12. The Usability of Online Geographic Virtual Reality for Urban Planning

    Science.gov (United States)

    Zhang, S.; Moore, A. B.

    2013-08-01

    Virtual reality (VR) technology is starting to become widely and freely available (for example the online OpenSimulator tool), with potential for use in 3D urban planning and design tasks but still needing rigorous assessment to establish this. A previous study consulted with a small group of urban professionals, who concluded in a satisfaction usability test that online VR had potential value as a usable 3D communication and remote marketing tool but acknowledged that visual quality and geographic accuracy were obstacles to overcome. This research takes the investigation a significant step further to also examine the usability aspects of efficiency (how quickly tasks are completed) and effectiveness (how successfully tasks are completed), relating to OpenSimulator in an urban planning situation. The comparative study pits a three-dimensional VR model (with increased graphic fidelity and geographic content to address the feedback of the previous study) of a subdivision design (in a Dunedin suburb) against 3D models built with GIS (ArcGIS) and CAD (BricsCAD) tools, two types of software environment well established in urban professional practice. Urban professionals participated in the study by attempting to perform timed tasks correctly in each of the environments before being asked questions about the technologies involved and their perceived importance to their professional work. The results reinforce the positive feedback for VR of the previous study, with the graphical and geographic data issues being somewhat addressed (though participants stressed the need for accurate and precise object and terrain modification capabilities in VR). Ease-ofuse and associated fastest task completion speed were significant positive outcomes to emerge from the comparison with GIS and CAD, pointing to a strong future for VR in an urban planning context.

  13. Using voice input and audio feedback to enhance the reality of a virtual experience

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1994-04-01

    Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantages and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.

  14. Virtual reality simulator training of laparoscopic cholecystectomies - a systematic review.

    Science.gov (United States)

    Ikonen, T S; Antikainen, T; Silvennoinen, M; Isojärvi, J; Mäkinen, E; Scheinin, T M

    2012-01-01

    Simulators are widely used in occupations where practice in authentic environments would involve high human or economic risks. Surgical procedures can be simulated by increasingly complex and expensive techniques. This review gives an update on computer-based virtual reality (VR) simulators in training for laparoscopic cholecystectomies. From leading databases (Medline, Cochrane, Embase), randomised or controlled trials and the latest systematic reviews were systematically searched and reviewed. Twelve randomised trials involving simulators were identified and analysed, as well as four controlled studies. Furthermore, seven studies comparing black boxes and simulators were included. The results indicated any kind of simulator training (black box, VR) to be beneficial at novice level. After VR training, novice surgeons seemed to be able to perform their first live cholecystectomies with fewer errors, and in one trial the positive effect remained during the first ten cholecystectomies. No clinical follow-up data were found. Optimal learning requires skills training to be conducted as part of a systematic training program. No data on the cost-benefit of simulators were found, the price of a VR simulator begins at EUR 60 000. Theoretical background to learning and limited research data support the use of simulators in the early phases of surgical training. The cost of buying and using simulators is justified if the risk of injuries and complications to patients can be reduced. Developing surgical skills requires repeated training. In order to achieve optimal learning a validated training program is needed.

  15. [Virtual reality for therapeutic purposes in stroke: A systematic review].

    Science.gov (United States)

    Viñas-Diz, S; Sobrido-Prieto, M

    2016-05-01

    Virtual reality (VR) is used in the field of rehabilitation/physical therapy to improve patients' functional abilities. The last 5 years have yielded numerous publications on the use of VR in patients with neurological disease which aim to establish whether this therapeutic resource contributes to the recovery of motor function. The following databases were reviewed: Cochrane Original, Joanna Briggs Connect, Medline/Pubmed, Cinahl, Scopus, Isi Web of Science, and Sport-Discus. We included articles published in the last 5 years in English and/or Spanish, focusing on using RV to improve motor function in patients with stroke. From this pool, we selected 4 systematic reviews and 21 controlled and/or randomised trials. Most studies focused on increasing motor function in the upper limbs, and/or improving performance of activities of daily living. An additional article examines use of the same technique to increase motor function in the lower limb and/or improve walking and static-dynamic balance. Strong scientific evidence supports the beneficial effects of VR on upper limb motor recovery in stroke patients. Further studies are needed to fully determine which changes are generated in cortical reorganisation, what type of VR system is the most appropriate, whether benefits are maintained in the long term, and which frequencies and intensities of treatment are the most suitable. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Role of virtual reality in congenital heart disease.

    Science.gov (United States)

    Ong, Chin Siang; Krishnan, Aravind; Huang, Chen Yu; Spevak, Philip; Vricella, Luca; Hibino, Narutoshi; Garcia, Juan R; Gaur, Lasya

    2018-02-05

    New platforms for patient imaging present opportunities for improved surgical planning in complex congenital heart disease (CHD). Virtual reality (VR) allows for interactive manipulation of high-resolution representations of patient-specific imaging data, as a supplement to traditional 2D visualizations and 3D printed heart models. We present the novel use of VR for the presurgical planning of cardiac surgery in two infants with complex CHD to demonstrate interactive real-time views of complex intra and extracardiac anatomy. The use of VR for cardiac presurgical planning is feasible using existing imaging data. The software was evaluated by both pediatric cardiac surgeons and pediatric cardiologists, and felt to be reliable and operated with a very short learning curve. VR with controller-based interactive capability allows for interactive viewing of 3D models with complex intra and extracardiac anatomy. This serves as a useful complement to traditional preoperative planning methods in terms of its potential for group based collaborative discussion, user defined illustrative views, cost-effectiveness, and facility of use. © 2018 Wiley Periodicals, Inc.

  17. Virtual Reality for Architectural or Territorial Representations: Usability Perceptions

    Directory of Open Access Journals (Sweden)

    Atta Idrawani Zaini

    2017-05-01

    Full Text Available Virtual reality (VR is widely being researched within various aspects of real-world applications. As architecture and urban design are very much adhered to evaluating and designing space, physical representations are deemed as incompetent to deliver a full-scale depiction of a space. Similarly, digital models are very much also limited in that sense. VR can deliver a full-scale virtual environment (VE, tricking users to be immersed in the replicated environment. This is an advantage for the aforementioned design disciplines, as more relatable and realistic depiction of a space can be modelled. The notion of its usability has become important to be understood from the perspective of architecture and urban design. This paper measured the respondents’ perceptions of VR’s usability through measuring its quality of use based on several criteria. The criteria established were the ease of use, usefulness, and satisfaction. Different levels of architectural details were decided as a form of control. A total of N=96 randomly selected respondents from various backgrounds participated in the survey as they were divided into four different group of treatments. Each group experienced a different VE with different level of architectural details. The first section of analysis is a one-sample analysis and the second is a group difference analysis. From the first analysis, it was found that the respondents perceived VR as a usable tool for architectural or territorial representation. Using Kruskal-Wallis test, it was found that there was no statistically significant difference between groups, suggesting that the respondents perceived VR as usable regardless of the level of architectural details. As this paper used perception data based on the quality of use alone, the efficiency of VR system was not measured. Thus, this paper recommends further studies to be conducted on the system’s efficiency to reflect its usability in full extent.

  18. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies.

    Science.gov (United States)

    Tieri, Gaetano; Morone, Giovanni; Paolucci, Stefano; Iosa, Marco

    2018-01-10

    Over recent decades many researchers and clinicians have started to use Virtual Reality (VR) as a new technology for implementing innovative rehabilitation treatments in cognitive and motor domains. However, the expression 'VR' has often also been improperly used to refer to video games. Further, VR efficacy, often confused with that of video-game exercises, is still debated. Areas covered: In this review, we provide the scientific rationale for the advantages of using VR systems in rehabilitation and investigate whether the VR could really be a promising technique for the future of rehabilitation of patients, or if it is just an entertainment for scientists. In addition, we describe some of the most used devices in VR with their potential advantages for research and provide an overview of the recent evidence and meta-analyses in rehabilitation. Expert commentary: We highlight the efficacy and fallacies of VR in neurorehabilitation and discuss the important factors emerging from the use of VR, including the sense of presence and the embodiment over a virtual avatar, in developing future applications in cognitive and motor rehabilitation.

  19. When VR really hits the streets

    Science.gov (United States)

    Morie, Jacquelyn F.

    2014-02-01

    Immersive Virtual Reality (VR) technology, while popular in the late part of the 20th Century, seemed to disappear from public view as social media took its place and captured the attention of millions. Now that a new generation of entrepreneurs and crowd-sourced funding campaigns have arrived, perhaps virtual reality is poised for a resurgence.

  20. The virtual reality framework for engineering objects

    OpenAIRE

    Ivankov, Petr R.; Ivankov, Nikolay P.

    2006-01-01

    A framework for virtual reality of engineering objects has been developed. This framework may simulate different equipment related to virtual reality. Framework supports 6D dynamics, ordinary differential equations, finite formulas, vector and matrix operations. The framework also supports embedding of external software.

  1. Rationalizing virtual reality based on manufacturing paradigms

    NARCIS (Netherlands)

    Damgrave, Roy Gerhardus Johannes; Lutters, Diederick; Drukker, J. W.

    2014-01-01

    Comparing the evolvement of the manufacturing industry of the last century to the way virtual reality is used nowadays some remarkable similarities come to light. Current virtual reality equipment requires a high level of craftsmanship to achieve the maximum results, and often equipment is specially

  2. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  3. Nonsurgical skills do not predict baseline scores in inanimate box or virtual-reality trainers.

    Science.gov (United States)

    Madan, Atul K; Harper, Jason L; Frantzides, Constantine T; Tichansky, David S

    2008-07-01

    Laparoscopic basic skills are best trained in the nonclinical setting. Box trainers and virtual-reality trainers have been shown to be useful in training laparoscopic skills. Certain nonsurgical skills may predict baseline skills in these trainers. This study tested the hypothesis that baseline scores could be predicted in inanimate box trainers and virtual-reality trainers by nonsurgical skills. Only preclinical medical students were included in the study. All students were given a survey ascertaining if they played computer games, typed, sew, played a musical instrument, and utilized chopsticks. Students utilized a box trainer (BT) and/or virtual-reality trainer (VR). Nonparametric two-tailed Mann-Whitney tests were utilized to compare students that possessed certain nonsurgical skills versus those who did not. There were 18 students in the VR group and 33 students in the BT group. In the VR group, students who played computer games, typed, utilized chopsticks, or played a musical instrument had better scores and fewer errors than those who did not but this did not reach statistical significance in any comparison (p = NS). In the BT group, none of the nonsurgical skills predicted times or errors. Males performed better than females in the VR group (p < 0.001); but this gender discrepancy was not seen in the BT group. Nonsurgical skills do not predict baseline scores in either trainer. The gender differences in VR training need to be further explored.

  4. Virtual reality simulation training of mastoidectomy - studies on novice performance.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts

    2016-08-01

    Virtual reality (VR) simulation-based training is increasingly used in surgical technical skills training including in temporal bone surgery. The potential of VR simulation in enabling high-quality surgical training is great and VR simulation allows high-stakes and complex procedures such as mastoidectomy to be trained repeatedly, independent of patients and surgical tutors, outside traditional learning environments such as the OR or the temporal bone lab, and with fewer of the constraints of traditional training. This thesis aims to increase the evidence-base of VR simulation training of mastoidectomy and, by studying the final-product performances of novices, investigates the transfer of skills to the current gold-standard training modality of cadaveric dissection, the effect of different practice conditions and simulator-integrated tutoring on performance and retention of skills, and the role of directed, self-regulated learning. Technical skills in mastoidectomy were transferable from the VR simulation environment to cadaveric dissection with significant improvement in performance after directed, self-regulated training in the VR temporal bone simulator. Distributed practice led to a better learning outcome and more consolidated skills than massed practice and also resulted in a more consistent performance after three months of non-practice. Simulator-integrated tutoring accelerated the initial learning curve but also caused over-reliance on tutoring, which resulted in a drop in performance when the simulator-integrated tutor-function was discontinued. The learning curves were highly individual but often plateaued early and at an inadequate level, which related to issues concerning both the procedure and the VR simulator, over-reliance on the tutor function and poor self-assessment skills. Future simulator-integrated automated assessment could potentially resolve some of these issues and provide trainees with both feedback during the procedure and immediate

  5. Supporting Optimal Aging through the Innovative Use of Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Sally Hughes

    2017-09-01

    Full Text Available Although virtual reality (VR technology has been implemented as a tool to address the health issues of older adults, its applicability to social connectedness is underrepresented in the literature, and less is known about its efficacy in this area in contributing to overall wellness and well-being in later life. Expanding the VR possibilities beyond traditional entertainment purposes holds considerable potential for the older adult market. Technological tools have been employed in the elder health care field for many years, and cutting-edge developments such as virtual and augmented reality have begun to be used to facilitate optimal wellness in aging. Such technological advances have the potential to significantly impact one of the most important issues that older people face: social isolation and loneliness. This paper will serve as an introductory exploration of what is currently known about the use of virtual reality technology with an older cohort.

  6. Fall-Prone Older People's Attitudes towards the Use of Virtual Reality Technology for Fall Prevention.

    Science.gov (United States)

    Dockx, Kim; Alcock, Lisa; Bekkers, Esther; Ginis, Pieter; Reelick, Miriam; Pelosin, Elisa; Lagravinese, Giovanna; Hausdorff, Jeffrey M; Mirelman, Anat; Rochester, Lynn; Nieuwboer, Alice

    2017-01-01

    Virtual reality (VR) technology is a relatively new rehabilitation tool that can deliver a combination of cognitive and motor training for fall prevention. The attitudes of older people to such training are currently unclear. This study aimed to investigate: (1) the attitudes of fall-prone older people towards fall prevention exercise with and without VR; (2) attitudinal changes after intervention with and without VR; and (3) user satisfaction following fall prevention exercise with and without VR. A total of 281 fall-prone older people were randomly assigned to an experimental group receiving treadmill training augmented by VR (TT+VR, n = 144) or a control group receiving treadmill training alone (TT, n = 137). Two questionnaires were used to measure (1) attitudes towards fall prevention exercise with and without VR (AQ); and (2) user satisfaction (USQ). AQ was evaluated at baseline and after intervention. USQ was measured after intervention only. The AQ revealed that most participants had positive attitudes towards fall prevention exercise at baseline (82.2%) and after intervention (80.6%; p = 0.144). In contrast, only 53.6% were enthusiastic about fall prevention exercise with VR at baseline. These attitudes positively changed after intervention (83.1%; p experience. From the perspective of the user, VR is an attractive training mode, and thus improving service provision for older people is important. © 2017 S. Karger AG, Basel.

  7. Virtual reality training improves operating room performance: results of a randomized, double-blinded study.

    Science.gov (United States)

    Seymour, Neal E; Gallagher, Anthony G; Roman, Sanziana A; O'Brien, Michael K; Bansal, Vipin K; Andersen, Dana K; Satava, Richard M

    2002-10-01

    To demonstrate that virtual reality (VR) training transfers technical skills to the operating room (OR) environment. The use of VR surgical simulation to train skills and reduce error risk in the OR has never been demonstrated in a prospective, randomized, blinded study. Sixteen surgical residents (PGY 1-4) had baseline psychomotor abilities assessed, then were randomized to either VR training (MIST VR simulator diathermy task) until expert criterion levels established by experienced laparoscopists were achieved (n = 8), or control non-VR-trained (n = 8). All subjects performed laparoscopic cholecystectomy with an attending surgeon blinded to training status. Videotapes of gallbladder dissection were reviewed independently by two investigators blinded to subject identity and training, and scored for eight predefined errors for each procedure minute (interrater reliability of error assessment r > 0.80). No differences in baseline assessments were found between groups. Gallbladder dissection was 29% faster for VR-trained residents. Non-VR-trained residents were nine times more likely to transiently fail to make progress (P trained group (1.19 vs. 7.38 errors per case; P training skills from VR to OR sets the stage for more sophisticated uses of VR in assessment, training, error reduction, and certification of surgeons.

  8. Virtual reality treatment and assessments for post-stroke unilateral spatial neglect: A systematic literature review.

    Science.gov (United States)

    Ogourtsova, Tatiana; Souza Silva, Wagner; Archambault, Philippe S; Lamontagne, Anouk

    2017-04-01

    Unilateral spatial neglect (USN) is a highly prevalent post-stroke deficit. Currently, there is no gold standard USN assessment which encompasses the heterogeneity of this disorder and that is sensitive to detect mild deficits. Similarly, there is a limited number of high quality studies suggesting that conventional USN treatments are effective in improving functional outcomes and reducing disability. Virtual reality (VR) provides enhanced methods for USN assessment and treatment. To establish best-practice recommendations with respect to its use, it is necessary to appraise the existing evidence. This systematic review aimed to identify and appraise existing VR-based USN assessments; and to determine whether VR is more effective than conventional therapy. Assessment tools were critically appraised using standard criteria. The methodological quality of the treatment trials was rated by two authors. The level of evidence according to stage of recovery was determined. Findings were compiled into a VR-based USN Assessment and Treatment Toolkit (VR-ATT). Twenty-three studies were identified. The proposed VR tools augmented the conventional assessment strategies. However, most studies lacked analysis of psychometric properties. There is limited evidence that VR is more effective than conventional therapy in improving USN symptoms in patients with stroke. It was concluded that VR-ATT could facilitate identification and decision-making as to the appropriateness of VR-based USN assessments and treatments across the continuum of stroke care, but more evidence is required on treatment effectiveness.

  9. Retention of laparoscopic procedural skills acquired on a virtual-reality surgical trainer

    DEFF Research Database (Denmark)

    Nielsen, Mathilde Maagaard; Sørensen, J L; Oestergaard, Jeanett

    2011-01-01

    BACKGROUND: Virtual-reality (VR) simulator training has been shown to improve surgical performance in laparoscopic procedures in the operating room. We have, in a randomised controlled trial, demonstrated transferability to real operations. The validity of the LapSim virtual-reality simulator...... as an assessment tool has been demonstrated in several reports. However, an unanswered question regarding simulator training is the durability, or retention, of skills acquired during simulator training. The aim of the present study is to assess the retention of skills acquired using the LapSim VR simulator, 6...... and 18 months after an initial training course. METHODS AND MATERIALS: The investigation was designed as a 6- and 18-month follow-up on a cohort of participants who earlier participated in a skills training programme on the LapSim VR. The follow-up cohort consisted of trainees and senior consultants...

  10. Virtual reality excursions with programs in C

    CERN Document Server

    Watkins, Christopher D

    1994-01-01

    Virtual Reality Excursions with Programs in C provides the history, theory, principles and an account of the milestones in the development of virtual reality technology.The book is organized into five chapters. The first chapter explores the applications in the vast field of virtual reality. The second chapter presents a brief history of the field and its founders. Chapter 3 discusses human perception and how it works. Some interesting notes and much of the hot debate in the field are covered in Chapter 4. The fifth chapter describes many of the complexities involved in implementing virtual en

  11. Therapeutic Media: Treating PTSD with Virtual Reality Exposure Therapy

    Directory of Open Access Journals (Sweden)

    Kathrin Friedrich

    2016-09-01

    Full Text Available Applying head-mounted displays (HMDs and virtual reality scenarios in virtual reality exposure therapy (VRET promises to alleviate combat-related post-traumatic stress disorders (among others. Its basic premise is that, through virtual scenarios, patients may re-engage immersively with situations that provoke anxiety, thereby reducing fear and psychosomatic stress. In this context, HMDs and visualizations should be considered not merely as devices for entertainment purposes or tools for achieving pragmatic objectives but also as a means to instruct and guide patients’ imagination and visual perception in triggering traumatic experiences. Under what perceptual and therapeutic conditions is virtual therapy to be considered effective? Who is the “ideal” patient for such therapy regimes, both in terms of his/her therapeutic indications and his/her perceptual readiness to engage with VR scenarios? In short, how are “treatable” patients conceptualized by and within virtual therapy? From a media-theory perspective, this essay critically explores various aspects of the VRET application Bravemind in order to shed light on conditions of virtual exposure therapy and conceptions of subjectivity and traumatic experience that are embodied and replicated by such HMD-based technology.

  12. From imagination to virtual reality: the future of clinical psychology.

    Science.gov (United States)

    Vincelli, F

    1999-01-01

    The possible role of virtual reality (VR) in clinical psychology derives prevalently from the central role occupied by the imagination and by memory in psychotherapy. These two elements, which are fundamental in the life of everyone, present absolute and relative limits to individual potential. Thanks to virtual experiences, it is possible to transcend these limits. The re-created world may be more vivid and real at times than the one that most subjects are able to describe through their own imagination and through their own memory. This article focuses on imaginative techniques to find new ways of applications in therapy. In particular, the way VR can be used to improve the efficacy of current techniques is explored. VR produces a change with respect to the traditional relationship between client and therapist. The new configuration of this relationship is based on the awareness of being more skilled in the difficult operations of recovery of past experiences through the memory and of foreseeing future experiences through the imagination. At the same time, subjects undergoing treatment perceive the advantage of being able to recreate and use a real experiential world within the confines of their therapists's clinical offices.

  13. Virtual reality and imaginative techniques in clinical psychology.

    Science.gov (United States)

    Vincelli, F; Molinari, E

    1998-01-01

    The great potential offered by Virtual Reality (VR) derives prevalently from the central role, in psychotherapy, occupied by the imagination and by memory. These two elements, which are fundamental in the life of every one of us, present absolute and relative limits to individual potential. Thanks to virtual experiences, it is possible to transcend these limits. The re-created world may at times be more vivid and real than the one that most subjects are able to describe through their own imagination and through their own memory. This chapter focuses on imaginative techniques to find new ways of applications in therapy. In particular the chapter analyses in which way VR can be used to improve the efficacy of current techniques. VR produces a change with respect to the traditional relationship between client and therapist. The new configuration of this relationship is based on the awareness of being more skilled in the difficult operations of recovery of past experiences, through the memory, and of foreseeing of future experiences, through the imagination. At the same time, the subject undergoing treatment perceives the advantage of being able to re-create and use a real experiential world within the walls of the clinical office of his own therapist.

  14. A knowledge translation intervention to enhance clinical application of a virtual reality system in stroke rehabilitation.

    Science.gov (United States)

    Levac, Danielle; Glegg, Stephanie M N; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia A; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E; Velikonja, Diana

    2016-10-06

    Despite increasing evidence for the effectiveness of virtual reality (VR)-based therapy in stroke rehabilitation, few knowledge translation (KT) resources exist to support clinical integration. KT interventions addressing known barriers and facilitators to VR use are required. When environmental barriers to VR integration are less amenable to change, KT interventions can target modifiable barriers related to therapist knowledge and skills. A multi-faceted KT intervention was designed and implemented to support physical and occupational therapists in two stroke rehabilitation units in acquiring proficiency with use of the Interactive Exercise Rehabilitation System (IREX; GestureTek). The KT intervention consisted of interactive e-learning modules, hands-on workshops and experiential practice. Evaluation included the Assessing Determinants of Prospective Take Up of Virtual Reality (ADOPT-VR) Instrument and self-report confidence ratings of knowledge and skills pre- and post-study. Usability of the IREX was measured with the System Usability Scale (SUS). A focus group gathered therapist experiences. Frequency of IREX use was recorded for 6 months post-study. Eleven therapists delivered a total of 107 sessions of VR-based therapy to 34 clients with stroke. On the ADOPT-VR, significant pre-post improvements in therapist perceived behavioral control (p = 0.003), self-efficacy (p = 0.005) and facilitating conditions (p =0.019) related to VR use were observed. Therapist intention to use VR did not change. Knowledge and skills improved significantly following e-learning completion (p = 0.001) and was sustained 6 months post-study. Below average perceived usability of the IREX (19(th) percentile) was reported. Lack of time was the most frequently reported barrier to VR use. A decrease in frequency of perceived barriers to VR use was not significant (p = 0.159). Two therapists used the IREX sparingly in the 6 months following the study. Therapists reported

  15. Virtual reality applications to the training; Aplicaciones de la realidad virtual en el entrenamiento

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Arguello, B.; Gonzalez, F.; Salve, R.

    2003-07-01

    The application of Virtual Reality for training in radiological environments allows the planning analysis and training in tasks which will be performed later in a real environment, saving doses to the real workers. There are many advantages of using VR in the training field comparing with a traditional training based on entries to the radiological areas and 2D studies: The application of the VR to the nuclear industry will provide in a middle period a more efficient training in radiological environments, giving more fidelity to the real world, enforcing the spatial skills and the active learning and allowing the visualization of the radiation field and the more suitable routes. TECNATOM has been working in VR field through several to test the adequacy of this methodology. Specifically, the SIMU2 project has been developed. This is a Virtual Reality highly flexible based software tool which allows for the simulation of human tasks in radiological environments, providing dosimetric information in all the points of the environment as well as the doses received by the workers during the simulated tasks performance. This application can be used as a support tool in training courses, to train the operators who will perform the real operation. Besides, the system allows the trainer to enter comments and explanations for each selected action or for the complete task. (Author) 8 refs.

  16. Developing Modularized Virtual Reality Simulators for Natural Orifice Translumenal Endoscopic Surgery (NOTES).

    Science.gov (United States)

    Ahn, Woojin; Dorozhkin, Denis; Schwaitzberg, Steven; Jones, Daniel B; De, Suvranu

    2016-01-01

    Natural orifice translumenal endoscopic surgery (NOTES) procedures are rapidly being developed in diverse surgical fields. We are developing a Virtual Translumenal Endoscopic Surgery Trainer (VTEST™) built on a modularized platform that facilitates rapid development of virtual reality (VR) NOTES simulators. Both the hardware interface and software components consist of independent reusable and customizable modules. The developed modules are integrated to build a VR-NOTES simulator for training in the hybrid transvaginal NOTES cholecystectomy. The simulator was demonstrated and evaluated by expert NOTES surgeons at the 2015 Natural Orifice Surgery Consortium for Assessment and Research (NOSCAR) summit.

  17. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2017-09-01

    Full Text Available The latest technical and interaction advancements that took place in the Virtual Reality (VR field have marked a new era, not only for VR, but also for VR locomotion. Although the latest advancements in VR locomotion have raised the interest of both researchers and users in analyzing and experiencing current VR locomotion techniques, the field of research on VR locomotion, in its new era, is still uncharted. In this work, VR locomotion is explored through a systematic literature review investigating empirical studies of VR locomotion techniques from 2014–2017. The review analyzes the VR locomotion techniques that have been studied, their interaction-related characteristics and the research topics that were addressed in these studies. Thirty-six articles were identified as relevant to the literature review, and the analysis of the articles resulted in 73 instances of 11 VR locomotion techniques, such as real-walking, walking-in-place, point and teleport, joystick-based locomotion, and more. Results showed that since the VR revival, the focus of VR locomotion research has been on VR technology and various technological aspects, overshadowing the investigation of user experience. From an interaction perspective, the majority of the utilized and studied VR locomotion techniques were found to be based on physical interaction, exploiting physical motion cues for navigation in VR environments. A significant contribution of the literature review lies in the proposed typology for VR locomotion, introducing four distinct VR locomotion types: motion-based, room scale-based, controller-based and teleportation-based locomotion.

  18. Applications of virtual reality in individuals with alcohol misuse: A systematic review.

    Science.gov (United States)

    Ghiţă, Alexandra; Gutiérrez-Maldonado, José

    2018-02-01

    Alcohol use and misuse have been intensively studied, due to their negative consequences in the general population. Evidence-based literature emphasizes that alcohol craving plays a crucial role in the development and maintenance of alcohol-drinking patterns. Many individuals develop Alcohol Use Disorders (AUD); significantly, after treatment many also experience relapses, in which alcohol craving has been repeatedly implicated. Cue-exposure therapy (CET) has been widely used in the treatment of alcohol misuse, but the results are inconsistent. Virtual reality (VR) can add effectiveness to cue-exposure techniques by providing multiple variables and inputs that enable personalized alcohol use assessment and treatment. The aim of this review was to examine the applications of virtual reality in individuals who misuse alcohol. We conducted an exhaustive literature search of the Web of Science, Scopus, Embase, Google Scholar, and PsycInfo databases, using as search items terms such as "alcohol" and its derivates, and virtual reality. We identified 13 studies on alcohol craving that implemented virtual reality as an assessment or treatment tool. The studies that incorporate VR present clear limitations. First, no clinical trials were conducted to explore the efficacy of the VR as a treatment tool; nor were there any studies of the generalization of craving responses in the real world, or of the long-term effects of VR treatment. Despite these limitations, the studies included showed consistent results as regards eliciting and reducing alcohol craving. We suggest that VR shows promise as a tool for the assessment and treatment of craving among individuals with alcohol misuse. Further studies implementing VR in the field of alcohol consumption are now required. Copyright © 2018. Published by Elsevier Ltd.

  19. Virtual reality technologies for research and education in obesity and diabetes: research needs and opportunities.

    Science.gov (United States)

    Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert Skip; Wansink, Brian

    2011-03-01

    The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health - Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR's capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National

  20. Virtual reality in the operating room of the future.

    Science.gov (United States)

    Müller, W; Grosskopf, S; Hildebrand, A; Malkewitz, R; Ziegler, R

    1997-01-01

    In cooperation with the Max-Delbrück-Centrum/Robert-Rössle-Klinik (MDC/RRK) in Berlin, the Fraunhofer Institute for Computer Graphics is currently designing and developing a scenario for the operating room of the future. The goal of this project is to integrate new analysis, visualization and interaction tools in order to optimize and refine tumor diagnostics and therapy in combination with laser technology and remote stereoscopic video transfer. Hence, a human 3-D reference model is reconstructed using CT, MR, and anatomical cryosection images from the National Library of Medicine's Visible Human Project. Applying segmentation algorithms and surface-polygonization methods a 3-D representation is obtained. In addition, a "fly-through" the virtual patient is realized using 3-D input devices (data glove, tracking system, 6-DOF mouse). In this way, the surgeon can experience really new perspectives of the human anatomy. Moreover, using a virtual cutting plane any cut of the CT volume can be interactively placed and visualized in realtime. In conclusion, this project delivers visions for the application of effective visualization and VR systems. Commonly known as Virtual Prototyping and applied by the automotive industry long ago, this project shows, that the use of VR techniques can also prototype an operating room. After evaluating design and functionality of the virtual operating room, MDC plans to build real ORs in the near future. The use of VR techniques provides a more natural interface for the surgeon in the OR (e.g., controlling interactions by voice input). Besides preoperative planning future work will focus on supporting the surgeon in performing surgical interventions. An optimal synthesis of real and synthetic data, and the inclusion of visual, aural, and tactile senses in virtual environments can meet these requirements. This Augmented Reality could represent the environment for the surgeons of tomorrow.

  1. The Minnesota pelvic trainer: a hybrid VR/physical pelvis for providing virtual mentorship.

    Science.gov (United States)

    Konchada, Vamsi; Shen, Yunhe; Burke, Dan; Argun, Omer B; Weinhaus, Anthony; Erdman, Arthur G; Sweet, Robert M

    2011-01-01

    Obtaining accurate understanding of three dimensional structures and their relationships is important in learning human anatomy. To leverage the learning advantages of using both physical and virtual models, we built a hybrid platform consisting of virtual and mannequin pelvis, motion tracking interface, anatomy and pathology knowledge base. The virtual mentorship concept is to allow learners to conveniently manipulate and explore the virtual pelvic structures through the mannequin model and VR interface, and practice on anatomy identification tasks and pathology quizzes more intuitively and interactively than in a traditional self-study classroom, and to reduce the demands of access to dissection lab or wet lab.

  2. VIRTUAL WOLVERHAMPTON: RECREATING THE HISTORIC CITY IN VIRTUAL REALITY

    Directory of Open Access Journals (Sweden)

    Eleanor Ramsey

    2017-11-01

    Full Text Available While many towns and cities have historic origins, the modern urban landscape is often unrecognisable from the past. Over the last two thousand years innumerable changes have occurred, from the Roman period to the Industrial Revolution, culminating in wide scale development and redevelopment of towns and cities during the 19th and 20th centuries. Fragments of the past survive as extant buildings, monuments, and areas, and are offered protection through mechanisms such as the National Heritage List for England. However, these buildings are part of a dynamic and changing environment, and their place within their original landscape not always visible. Meanwhile, the advent of mainstream and accessible immersive virtual reality offers opportunities to recreate and explore the past, and to disseminate a deeper understanding of the history and historic context of our heritage assets to a broader audience via new technologies. This paper discusses a project based on Wolverhampton that aims to create immersive and 360° experiences of the historic city that allows the user or viewer to explore how the city might have been in the past from a ‘first person’ perspective. It uses multiple approaches to gather, verify and validate archival data, records, maps and building style information. The project itself is a work-in-progress, with various approaches being explored. It looks at sources of information used to inform the virtual world; software and methodologies used to create the model; different forms of VR output; potential forms of funding for wider dissemination; and problems encountered so far.

  3. Virtual reality and language work

    OpenAIRE

    Gallet-Blanchard, Liliane

    2014-01-01

    Pour la raison évidente, mais non rédhibitoire que la réalité virtuelle a la réputation d’être inabordable pour des universités peu argentées, pratiquement aucune investigation n’a été faite dans ce domaine. Après avoir pris part à diverses conférences au Centre Pompidou à Paris et lu Virtual Reality de Howard Rheingold, je pense que nous ne devons plus nous poser le problème de ce que nous pouvons faire, mais de ce que nous voulons faire désormais. De plus, au lieu de nous plaindre de la mau...

  4. Computer Based Training: Field Deployable Trainer and Shared Virtual Reality

    Science.gov (United States)

    Mullen, Terence J.

    1997-01-01

    Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share

  5. Exploring Moral Action Using lmmersive Virtual Reality

    Science.gov (United States)

    2016-10-01

    Award Number: N62909-14-l-Nl 19 Exploring Moral Actions Using lmmersive Virtual Reality event LAB Entorns virtuals en neurociencias i tecnologia...Entornos virtua/es en neurociencias y tecnologfa Experimental virtual environments for neuroscience University of Barcelona, Barcelona, Spain

  6. Circumplex Model of Affect: A Measure of Pleasure and Arousal During Virtual Reality Distraction Analgesia.

    Science.gov (United States)

    Sharar, Sam R; Alamdari, Ava; Hoffer, Christine; Hoffman, Hunter G; Jensen, Mark P; Patterson, David R

    2016-06-01

    Immersive virtual reality (VR) distraction provides clinically effective pain relief and increases subjective reports of "fun" in medical settings of procedural pain. The goal of this study was to better describe the variable of "fun" associated with VR distraction analgesia using the circumplex model (pleasure/arousal) of affect. Seventy-four healthy volunteers (mean age, 29 years; 37 females) received a standardized, 18-minute, multimodal pain sequence (alternating thermal heat and electrical stimulation to distal extremities) while receiving immersive, interactive VR distraction. Subjects rated both their subjective pain intensity and fun using 0-10 Graphic Rating Scales, as well as the pleasantness of their emotional valence and their state of arousal on 9-point scales. Compared with pain stimulation in the control (baseline, no VR) condition, immersive VR distraction significantly reduced subjective pain intensity (P < 0.001). During VR distraction, compared with those reporting negative affect, subjects reporting positive affect did so more frequently (41 percent versus 9 percent), as well as reporting both greater pain reduction (22 percent versus 1 percent) and fun scores (7.0 ± 1.9 versus 2.4 ± 1.4). Several factors-lower anxiety, greater fun, greater presence in the VR environment, and positive emotional valence-were associated with subjective analgesia during VR distraction. Immersive VR distraction reduces subjective pain intensity induced by multimodal experimental nociception. Subjects who report less anxiety, more fun, more VR presence, and more positive emotional valence during VR distraction are more likely to report subjective pain reduction. These findings indicate VR distraction analgesia may be mediated through anxiolytic, attentional, and/or affective mechanisms.

  7. Effect of viewing mode on pathfinding in immersive Virtual Reality.

    Science.gov (United States)

    White, Paul J; Byagowi, Ahmad; Moussavi, Zahra

    2015-08-01

    The use of Head Mounted Displays (HMDs) to view Virtual Reality Environments (VREs) has received much attention recently. This paper reports on the difference between actual humans' navigation in a VRE viewed through an HMD compared to that in the same VRE viewed on a laptop PC display. A novel Virtual Reality (VR) Navigation input device (VRNChair), designed by our team, was paired with an Oculus Rift DK2 Head-Mounted Display (HMD). People used the VRNChair to navigate a VRE, and we analyzed their navigational trajectories with and without the HMD to investigate plausible differences in performance due to the display device. It was found that people's navigational trajectories were more accurate while wearing the HMD compared to viewing an LCD monitor; however, the duration to complete a navigation task remained the same. This implies that increased immersion in VR results in an improvement in pathfinding. In addition, motion sickness caused by using an HMD can be reduced if one uses an input device such as our VRNChair. The VRNChair paired with an HMD provides vestibular stimulation as one moves in the VRE, because movements in the VRE are synchronized with movements in the real environment.

  8. Validation of a virtual reality balance module for use in clinical concussion assessment and management.

    Science.gov (United States)

    Teel, Elizabeth F; Slobounov, Semyon M

    2015-03-01

    To determine the criterion and content validity of a virtual reality (VR) balance module for use in clinical practice. Retrospective, VR balance module completed by participants during concussion baseline or assessment testing session. A Pennsylvania State University research laboratory. A total of 60 control and 28 concussed students and athletes from the Pennsylvania State University. None. This study examined: (1) the relationship between VR composite balance scores (final, stationary, yaw, pitch, and roll) and area of the center-of-pressure (eyes open and closed) scores and (2) group differences (normal volunteers and concussed student-athletes) on VR composite balance scores. With the exception of the stationary composite score, all other VR balance composite scores were significantly correlated with the center of pressure data obtained from a force platform. Significant correlations ranged from r = -0.273 to -0.704 for the eyes open conditions and from r = -0.353 to -0.876 for the eyes closed condition. When examining group differences on the VR balance composite modules, the concussed group did significantly (P Virtual reality balance module is a valid tool for concussion assessment in clinical settings. This novel type of balance assessment may be more sensitive to concussion diagnoses, especially later (7-10 days) in the recovery phase than current clinical balance tools.

  9. Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair

    Directory of Open Access Journals (Sweden)

    Ahmad Byagowi

    2014-01-01

    Full Text Available This paper presents a novel virtual reality navigation (VRN input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair. The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.

  10. [Subjective sensations indicating simulator sickness and fatigue after exposure to virtual reality].

    Science.gov (United States)

    Malińska, Marzena; Zuzewicz, Krystyna; Bugajska, Joanna; Grabowski, Andrzej

    2014-01-01

    The study assessed the incidence and intensity of subjective symptoms indicating simulator sickness among the persons with no inclination to motion sickness, immersed in virtual reality (VR) by watching an hour long movie in the stereoscopic (three-dimensional - 3D) and non-stereoscopic (two-dimensional - 2D) versions and after an hour long training using virtual reality, called sVR. The sample comprised 20 healthy young men with no inclination to motion sickness. The participants' subjective sensations, indicating symptoms of simulator sickness were assessed using the questionnaire completed by the participants immediately, 20 min and 24 h following the test. Grandjean's scale was used to assess fatigue and mood. The symptoms were observed immediately after the exposure to sVR. Their intensity was higher than after watching the 2D and 3D movies. A significant relationship was found between the eye pain and the type of exposure (2D, 3D and sVR) (Chi2)(2) = 6.225, p movie and sVR was also noted (Chi2(1) = 9.173, p movie, the differences were significant only for the "tired-fatigued" subscale (Z = 2.501, p movies it is impossible to predict symptoms of simulator sickness after training using sVR.

  11. Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair).

    Science.gov (United States)

    Byagowi, Ahmad; Mohaddes, Danyal; Moussavi, Zahra

    2014-01-01

    This paper presents a novel virtual reality navigation (VRN) input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR) environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness) as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair). The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years) performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.

  12. The effectiveness of virtual and augmented reality in health sciences and medical anatomy.

    Science.gov (United States)

    Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan

    2017-11-01

    Although cadavers constitute the gold standard for teaching anatomy to medical and health science students, there are substantial financial, ethical, and supervisory constraints on their use. In addition, although anatomy remains one of the fundamental areas of medical education, universities have decreased the hours allocated to teaching gross anatomy in favor of applied clinical work. The release of virtual (VR) and augmented reality (AR) devices allows learning to occur through hands-on immersive experiences. The aim of this research was to assess whether learning structural anatomy utilizing VR or AR is as effective as tablet-based (TB) applications, and whether these modes allowed enhanced student learning, engagement and performance. Participants (n = 59) were randomly allocated to one of the three learning modes: VR, AR, or TB and completed a lesson on skull anatomy, after which they completed an anatomical knowledge assessment. Student perceptions of each learning mode and any adverse effects experienced were recorded. No significant differences were found between mean assessment scores in VR, AR, or TB. During the lessons however, VR participants were more likely to exhibit adverse effects such as headaches (25% in VR P increased learner immersion and engagement. These outcomes show great promise for the effective use of virtual and augmented reality as means to supplement lesson content in anatomical education. Anat Sci Educ 10: 549-559. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  13. Trauma and Self-Narrative in Virtual Reality: Toward Recreating a Healthier Mind

    Directory of Open Access Journals (Sweden)

    Iva Georgieva

    2017-12-01

    Full Text Available This study discusses the concept of virtual selves created in the virtual spaces [e.g. social network services or virtual reality (VR]. It analyzes the activities in the different virtual spaces and claims that experience gained there can be transferred to real life. In respect to that, the effects of the VR treatment on the self as well as the concept of creating a life story are analyzed as interconnected. The research question which arises from these considerations is how to look at psychological trauma in order to explain the effectiveness of the usage of VR for treatment of traumatic disorders. The proposal in the study is to see trauma as a shift in the normal storyline of the narrative people create. With this concept in mind, it might be possible to support the claim that reliving traumatic events, regaining control over one’s life narrative, and creating new stories in the VR aids the treatment process in the search for meaning and resolution in life events. Considering the findings of researchers who argue in the field of self-narrative and traumatic treatment, as well as researchers on virtual selves, virtual spaces and VR, this study discusses the virtual as a possible medium to experience narratives and utilize those narratives as better explanatory stories to facilitate the therapeutic process of recovery and self-recreation. This study supports the idea that VR can be used to visualize patients’ narratives and help them perceive themselves as active authors of their life’s story by retelling traumatic episodes with additional explanation. This experience in the VR is utilized to form healthier narratives and coping techniques for robust therapeutic results that are transferred to real life.

  14. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Directory of Open Access Journals (Sweden)

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  15. Virtual reality applications in remote handling development for tokamaks in India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Pramit, E-mail: pramitd@ipr.res.in; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-05-15

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  16. Transcranial Doppler: a non-invasive tool for monitoring brain activity in virtual reality therapy.

    Science.gov (United States)

    Rey, Beatriz; Parkhutik, Vera; Alcañiz, Mario; Tembl, Jose; Naranjo, Valery

    2009-01-01

    In this work, we propose the use of Transcranial Doppler Monitoring (TCD) as a tool to measure brain activity during the exposure to Virtual Environments (VE) used in clinical therapy sessions. The technique is non-invasive, and can be easily integrated with Virtual Reality (VR) settings. Moreover, it provides a high temporal resolution, which grants the possibility to analyze changes in brain activity during the evolution of a clinical session and to correlate them with specific events that may occur in the VE. We have performed two studies combining TCD with VR. Results of these studies show that it is feasible to use this technique in combination with VR settings designed for virtual therapy. It was observed that immersion and navigation modifications in the VE generated changes in brain activity that can be detected using TCD.

  17. Presence and rehabilitation: toward second-generation virtual reality applications in neuropsychology

    Directory of Open Access Journals (Sweden)

    Mantovani Fabrizia

    2004-12-01

    Full Text Available Abstract Virtual Reality (VR offers a blend of attractive attributes for rehabilitation. The most exploited is its ability to create a 3D simulation of reality that can be explored by patients under the supervision of a therapist. In fact, VR can be defined as an advanced communication interface based on interactive 3D visualization, able to collect and integrate different inputs and data sets in a single real-like experience. However, "treatment is not just fixing what is broken; it is nurturing what is best" (Seligman & Csikszentmihalyi. For rehabilitators, this statement supports the growing interest in the influence of positive psychological state on objective health care outcomes. This paper introduces a bio-cultural theory of presence linking the state of optimal experience defined as "flow" to a virtual reality experience. This suggests the possibility of using VR for a new breed of rehabilitative applications focused on a strategy defined as transformation of flow. In this view, VR can be used to trigger a broad empowerment process within the flow experience induced by a high sense of presence. The link between its experiential and simulative capabilities may transform VR into the ultimate rehabilitative device. Nevertheless, further research is required to explore more in depth the link between cognitive processes, motor activities, presence and flow.

  18. Presence and rehabilitation: toward second-generation virtual reality applications in neuropsychology.

    Science.gov (United States)

    Riva, Giuseppe; Mantovani, Fabrizia; Gaggioli, Andrea

    2004-12-08

    Virtual Reality (VR) offers a blend of attractive attributes for rehabilitation. The most exploited is its ability to create a 3D simulation of reality that can be explored by patients under the supervision of a therapist. In fact, VR can be defined as an advanced communication interface based on interactive 3D visualization, able to collect and integrate different inputs and data sets in a single real-like experience.However, "treatment is not just fixing what is broken; it is nurturing what is best" (Seligman & Csikszentmihalyi). For rehabilitators, this statement supports the growing interest in the influence of positive psychological state on objective health care outcomes.This paper introduces a bio-cultural theory of presence linking the state of optimal experience defined as "flow" to a virtual reality experience. This suggests the possibility of using VR for a new breed of rehabilitative applications focused on a strategy defined as transformation of flow. In this view, VR can be used to trigger a broad empowerment process within the flow experience induced by a high sense of presence.The link between its experiential and simulative capabilities may transform VR into the ultimate rehabilitative device. Nevertheless, further research is required to explore more in depth the link between cognitive processes, motor activities, presence and flow.

  19. Virtual reality in the assessment, understanding, and treatment of mental health disorders.

    Science.gov (United States)

    Freeman, D; Reeve, S; Robinson, A; Ehlers, A; Clark, D; Spanlang, B; Slater, M

    2017-10-01

    Mental health problems are inseparable from the environment. With virtual reality (VR), computer-generated interactive environments, individuals can repeatedly experience their problematic situations and be taught, via evidence-based psychological treatments, how to overcome difficulties. VR is moving out of specialist laboratories. Our central aim was to describe the potential of VR in mental health, including a consideration of the first 20 years of applications. A systematic review of empirical studies was conducted. In all, 285 studies were identified, with 86 concerning assessment, 45 theory development, and 154 treatment. The main disorders researched were anxiety (n = 192), schizophrenia (n = 44), substance-related disorders (n = 22) and eating disorders (n = 18). There are pioneering early studies, but the methodological quality of studies was generally low. The gaps in meaningful applications to mental health are extensive. The most established finding is that VR exposure-based treatments can reduce anxiety disorders, but there are numerous research and treatment avenues of promise. VR was found to be a much-misused term, often applied to non-interactive and non-immersive technologies. We conclude that VR has the potential to transform the assessment, understanding and treatment of mental health problems. The treatment possibilities will only be realized if - with the user experience at the heart of design - the best immersive VR technology is combined with targeted translational interventions. The capability of VR to simulate reality could greatly increase access to psychological therapies, while treatment outcomes could be enhanced by the technology's ability to create new realities. VR may merit the level of attention given to neuroimaging.

  20. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Schijven, M. P.

    2009-01-01

    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic

  1. Pilot Study of the Effects of Supraliminal Bipolar Primes on Occupational Educators' Viewing Time and Perceived Confidence with Desktop Virtual Reality

    Science.gov (United States)

    Williams, M. Scott

    2008-01-01

    Virtual reality (VR) has been demonstrated to offer learning benefits over traditional instructional methods in many technical and occupational areas. However, in the framework of Rogers' innovation diffusion theory, adoption of VR in Career and Technical Education and occupational programs appears to be lagging. This study used experimental…

  2. A One-Year Case Study: Understanding the Rich Potential of Project-Based Learning in a Virtual Reality Class for High School Students

    Science.gov (United States)

    Morales, Teresa M.; Bang, EunJin; Andre, Thomas

    2013-01-01

    This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…

  3. Virtual reality by mobile smartphone: improving child pedestrian safety.

    Science.gov (United States)

    Schwebel, David C; Severson, Joan; He, Yefei; McClure, Leslie A

    2017-10-01

    Pedestrian injuries are a leading cause of paediatric injury. Effective, practical and cost-efficient behavioural interventions to teach young children street crossing skills are needed. They must be empirically supported and theoretically based. Virtual reality (VR) offers promise to fill this need and teach child pedestrian safety skills for several reasons, including: (A) repeated unsupervised practice without risk of injury, (B) automated feedback on crossing success or failure, (C) tailoring to child skill levels: (D) appealing and fun training environment, and (E) most recently given technological advances, potential for broad dissemination using mobile smartphone technology. Extending previous work, we will evaluate delivery of an immersive pedestrian VR using mobile smartphones and the Google Cardboard platform, technology enabling standard smartphones to function as immersive VR delivery systems. We will overcome limitations of previous research suggesting children learnt some pedestrian skills after six VR training sessions but did not master adult-level pedestrian skills by implementing a randomised non-inferiority trial with two equal-sized groups of children ages 7-8 years (total N=498). All children will complete baseline, postintervention and 6-month follow-up assessments of pedestrian safety and up to 25 30-min pedestrian safety training trials until they reach adult levels of functioning. Half the children will be randomly assigned to train in Google Cardboard and the other half in a semi-immersive kiosk VR. Analysis of Covariance (ANCOVA) models will assess primary outcomes. If results are as hypothesised, mobile smartphones offer substantial potential to overcome barriers of dissemination and implementation and deliver pedestrian safety training to children worldwide. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Limited value of haptics in virtual reality laparoscopic cholecystectomy training.

    Science.gov (United States)

    Thompson, Jonathan R; Leonard, Anthony C; Doarn, Charles R; Roesch, Matt J; Broderick, Timothy J

    2011-04-01

    Haptics is an expensive addition to virtual reality (VR) simulators, and the added value to training has not been proven. This study evaluated the benefit of haptics in VR laparoscopic surgery training for novices. The Simbionix LapMentor II haptic VR simulator was used in the study. Randomly, 33 laparoscopic novice students were placed in one of three groups: control, haptics-trained, or nonhaptics-trained group. The control group performed nine basic laparoscopy tasks and four cholecystectomy procedural tasks one time with haptics engaged at the default setting. The haptics group was trained to proficiency in the basic tasks and then performed each of the procedural tasks one time with haptics engaged. The nonhaptics group used the same training protocol except that haptics was disengaged. The proficiency values used were previously published expert values. Each group was assessed in the performance of 10 laparoscopic cholecystectomies (alternating with and without haptics). Performance was measured via automatically collected simulator data. The three groups exhibited no differences in terms of sex, education level, hand dominance, video game experience, surgical experience, and nonsurgical simulator experience. The number of attempts required to reach proficiency did not differ between the haptics- and nonhaptics-training groups. The haptics and nonhaptics groups exhibited no difference in performance. Both training groups outperformed the control group in number of movements as well as path length of the left instrument. In addition, the nonhaptics group outperformed the control group in total time. Haptics does not improve the efficiency or effectiveness of LapMentor II VR laparoscopic surgery training. The limited benefit and the significant cost of haptics suggest that haptics should not be included routinely in VR laparoscopic surgery training.

  5. Virtual reality representations in contemporary media

    CERN Document Server

    Chan, Melanie

    2014-01-01

    The idea of virtual realities has a long and complex historical trajectory, spanning from Plato's concept of the cave and the simulacrum, to artistic styles such as Trompe L'oeil, and more recently developments in 3D film, television and gaming. However, this book will pay particular attention to the time between the 1980s to the 1990s when virtual reality and cyberspace were represented, particularly in fiction, as a wondrous technology that enabled transcendence from the limitations of physical embodiment. The purpose of this critical historical analysis of representations of virtual reality

  6. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  7. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change

    Directory of Open Access Journals (Sweden)

    Giuseppe Riva

    2016-09-01

    Full Text Available During our life we undergo many personal changes: we change our house, our school, our work and even our friends and partners. However, our daily experience shows clearly that in some situations subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: a the focus of personal change is reducing the distance between self and reality (conflict; b this reduction is achieved through (1 an intense focus on the particular experience creating the conflict or (2 an internal or external reorganization of this experience; c personal change requires a progression through a series of different stages; d clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper will focus on the two leading virtual technologies – Augmented Reality (AR and Virtual Reality (VR – exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience, by focusing on the high level of self-reflectiveness and personal efficacy induced by their emotional engagement and sense of presence. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual’s worldview.

  8. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change

    Science.gov (United States)

    Riva, Giuseppe; Baños, Rosa M.; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies – augmented reality (AR) and virtual reality (VR) – exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual’s worldview. PMID:27746747

  9. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change.

    Science.gov (United States)

    Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies - augmented reality (AR) and virtual reality (VR) - exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual's worldview.

  10. Virtual reality laparoscopic simulator as an aid in surgical resident education: two years' experience.

    Science.gov (United States)

    Kössi, J; Luostarinen, M

    2009-01-01

    Virtual reality (VR) laparoscopic simulator training has been shown to augment the learning of skills needed in real laparoscopic operations. We report here our two-year experience of using a VR simulator in the training of surgical residents. A VR laparoscopic simulator was purchased for Päijät-Häme Central Hospital at the end of November 2005. From 1 December 2005 onwards surgical residents in our hospital were encouraged to voluntarily practise with the VR simulator. After the VR simulator had been in use for two years all the data stored in the simulator's computer memory was collected and analysed. In this two-year period a total of 79 persons practised with the simulator. The total number of performed tasks stored in the computer was 2,090. The training activity varied greatly between residents (6-171 tasks). The performance in simulator tasks differentiated between residents and GI surgeons. The learning curve of the residents in basic tasks was steep but their performance failed to reach the level of experienced laparoscopic surgeons in most tasks. The VR simulator was well used. Practising with a VR simulator on a voluntary basis can result in inadequate training. The VR laparoscopic simulator differentiates between subjects with different laparoscopic skills and shows good construct validity.

  11. Treatment efficacy of virtual reality distraction in the reduction of pain and anxiety during cystoscopy.

    Science.gov (United States)

    Walker, Marc R; Kallingal, George J S; Musser, John E; Folen, Raymond; Stetz, Melba C; Clark, Joseph Y

    2014-08-01

    Assessment of virtual reality (VR) distraction for alleviating pain and anxiety during flexible cystoscopy. Cystoscopy is a common ambulatory procedure performed in Urology and can be associated with moderate pain and anxiety. Sophisticated distraction techniques are not used with cystoscopy and VR has not been studied for this procedure. We designed a prospective, randomized, controlled trial assessing the efficacy of VR for alleviating pain and anxiety during flexible cystoscopy. Adult men referred for cystoscopy were randomized into a control or VR group. Subjects were given preprocedure and postprocedure questionnaires addressing anxiety, pain, and time spent thinking about pain. Vitals signs and galvanic skin monitors were used as objective measures. The control group underwent routine cystoscopy and the VR group underwent cystoscopy with VR. Physicians answered a postprocedure questionnaire assessing the difficulty of the exam. All questionnaires used a visual analog score for assessment. 23 patients enrolled in the control group and 22 in the VR group. Mean scores and Student's t-test were employed to analyze the data. No data endpoints showed a statistically significant difference between the 2 groups. We concluded no benefit to VR distraction mitigating pain in male patients during cystoscopy. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  12. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  13. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  14. Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training

    Science.gov (United States)

    Hale, Joseph P.

    1997-01-01

    Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.

  15. Virtual reality exposure therapy: 150-degree screen to desktop PC.

    Science.gov (United States)

    Tichon, Jennifer; Banks, Jasmine

    2006-08-01

    Virtual reality exposure therapy (VRET) developed using immersive or semi-immersive virtual environments present a usability problem for practitioners. To meet practitioner requirements for lower cost and portability VRET programs must often be ported onto desktop environments such as the personal computer (PC). However, success of VRET has been shown to be linked to presence, and the environment's ability to evoke the same reactions and emotions as a real experience. It is generally accepted that high-end virtual environments (VEs) are more immersive than desktop PCs, but level of immersion does not always predict level of presence. This paper reports on the impact on presence of porting a therapeutic VR application for schizophrenia from the initial research environment of a semi-immersive curved screen to PC. Presence in these two environments is measured both introspectively and across a number of causal factors thought to underlie the experience of presence. Results show that the VR exposure program successfully made users feel they were "present" in both platforms. While the desktop PC achieved higher scores on presence across causal factors participants reported they felt more present in the curved screen environment. While comparison of the two groups was statistically significant for the PQ but not for the IPQ, subjective reports of experiences in the environments should be considered in future research as the success of VRET relies heavily on the emotional response of patients to the therapeutic program.

  16. The Effects of Virtual Reality-based Balance Training on Balance of the Elderly.

    Science.gov (United States)

    Cho, Gyeong Hee; Hwangbo, Gak; Shin, Hyung Soo

    2014-04-01

    [Purpose] The objective of this study was to determine the effects of virtual reality-based balance training on balance of the elderly. [Methods] The subjects were 32 healthy elderly people aged between 65 and 80, who were divided into a VR (virtual reality) training group (n=17) and a control group (n=15). The VR training group engaged in a 30-minute exercise session using Wii Fit three times a week for eight weeks, while the control group received no intervention. The balance of the two groups was measured before and after the intervention. [Results] According to the Romberg Test conducted to examine the effects of the training on balance, both the area covered by the body's center of pressure movement, and movement distances per unit area of the body's center of pressure envelope significantly decreased in the VR training group. Moreover, the two groups showed significant differences in balance. [Conclusion] Virtual reality training is effective at improving the balance of the healthy elderly. Thus, virtual reality training can be proposed as a form of fall prevention exercise for the elderly.

  17. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    OpenAIRE

    van der Meijden, O.A.J.; Schijven, M.P.

    2009-01-01

    Background Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current stat...

  18. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments

    OpenAIRE

    Shin, Joon-Ho; Ryu, Hokyoung; Jang, Seong Ho

    2014-01-01

    Background Virtual reality (VR) is not commonly used in clinical rehabilitation, and commercial VR gaming systems may have mixed effects in patients with stroke. Therefore, we developed RehabMaster™, a task-specific interactive game-based VR system for post-stroke rehabilitation of the upper extremities, and assessed its usability and clinical efficacy. Methods A participatory design and usability tests were carried out for development of RehabMaster with representative user groups. Two clini...

  19. Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? – A Narrative Review of the Literature

    OpenAIRE

    Teo, Wei-Peng; Muthalib, Makii; Yamin, Sami; Hendy, Ashlee M.; Bramstedt, Kelly; Kotsopoulos, Eleftheria; Perrey, Stephane; Ayaz, Hasan

    2016-01-01

    In the last decade, virtual reality (VR) training has been used extensively in video games and military training to provide a sense of realism and environmental interaction to its users. More recently, VR training has been explored as a possible adjunct therapy for people with motor and mental health dysfunctions. The concept underlying VR therapy as a treatment for motor and cognitive dysfunction is to improve neuroplasticity of the brain by engaging users in multisensory training. In this r...

  20. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    Science.gov (United States)

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  1. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Virtual reality therapy in anxiety disorders].

    Science.gov (United States)

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he

  3. Recovering space in unilateral neglect: a neurological dissociation revealed by virtual reality.

    Science.gov (United States)

    Glover, Scott; Castiello, Umberto

    2006-05-01

    Neglect patients often show deficits in responding to targets in the contra-lesional side of space. Past studies were able to ameliorate these deficits through manipulation of visual input. Here, the neural bases of the recovery of space following virtual reality (VR) training in neglect patients were investigated. Neglect patients were trained to respond to targets in the left side of space that appeared in the central or in the right side of space in a VR system. It was found that only patients with lesions that spared the inferior parietal/superior temporal regions were able to benefit from the VR training. It was concluded that these regions play a crucial role in the recovery of space that underlies the improvement of neglect patients when trained with VR. The implications of these results for determining the neural bases of a higher order attentional and/or spatial representation and for treating patients with unilateral neglect are discussed.

  4. Assessment and rehabilitation of neglect using virtual reality: a systematic review

    Science.gov (United States)

    Pedroli, Elisa; Serino, Silvia; Cipresso, Pietro; Pallavicini, Federica; Riva, Giuseppe

    2015-01-01

    After experiencing a stroke in the right hemisphere, almost 50% of patients showed Unilateral Spatial Neglect (USN). In recent decades, Virtual Reality (VR) has been used as an effective tool both for the assessment and rehabilitation of USN. Indeed, this advanced technology allows post-stroke patients to interact with ecological and engaging environments similar to real ones, but in a safe and controlled way. To provide an overview of the most recent VR applications for the assessment and rehabilitation of USN, a systematic review has been carried out. Since 2010, 13 studies have proposed and tested innovative VR tools for USN. After a wide description of the selected studies, we discuss the main features of these VR tools in order to provide crucial indications for future studies, neurorehabilitation interventions, and clinical practice. PMID:26379519

  5. Assessment and rehabilitation of neglect using virtual reality: A systematic review

    Directory of Open Access Journals (Sweden)

    Elisa ePedroli

    2015-08-01

    Full Text Available After experiencing a stroke in the right hemisphere, almost 50% of patients showed Unilateral Spatial Neglect (USN. In recent decades, Virtual Reality (VR has been used as an effective tool both for the assessment and rehabilitation of USN. Indeed, this advanced technology allows post-stroke patients to interact with ecological and engaging environments similar to real ones, but in a safe and controlled way. To provide an overview of the most recent VR applications for the assessment and rehabilitation of USN, a systematic review has been carried out. Since 2010, thirteen studies have proposed and tested innovative VR tools for USN. After a wide description of the selected studies, we discuss the main features of these VR tools in order to provide crucial indications for future studies, neurorehabilitation interventions and clinical practice.

  6. Context conditioning in humans using commercially available immersive Virtual Reality.

    Science.gov (United States)

    Kroes, Marijn C W; Dunsmoor, Joseph E; Mackey, Wayne E; McClay, Mason; Phelps, Elizabeth A

    2017-08-17

    Despite a wealth of knowledge on how humans and nonhuman animals learn to associate meaningful events with cues in the environment, far less is known about how humans learn to associate these events with the environment itself. Progress on understanding spatiotemporal contextual processes in humans has been slow in large measure by the methodological constraint of generating and manipulating immersive spatial environments in well-controlled laboratory settings. Fortunately, immersive Virtual Reality (iVR) technology has improved appreciably and affords a relatively straightforward methodology to investigate the role of context on learning, memory, and emotion while maintaining experimental control. Here, we review context conditioning literature in humans and describe challenges to study contextual learning in humans. We then provide details for a novel context threat (fear) conditioning paradigm in humans using a commercially available VR headset and a cross-platform game engine. This paradigm resulted in the acquisition of subjective threat, threat-conditioned defensive responses, and explicit threat memory. We make the paradigm publicly available and describe obstacles and solutions to optimize future studies of context conditioning using iVR. As computer technology advances to replicate the sensation of realistic environments, there are increasing opportunities to bridge the translational gap between rodent and human research on how context modulates cognition, which may ultimately lead to more optimal treatment strategies for anxiety- and stress-related disorders.

  7. Efficacy of virtual reality in pedestrian safety research.

    Science.gov (United States)

    Deb, Shuchisnigdha; Carruth, Daniel W; Sween, Richard; Strawderman, Lesley; Garrison, Teena M

    2017-11-01

    Advances in virtual reality technology present new opportunities for human factors research in areas that are dangerous, difficult, or expensive to study in the real world. The authors developed a new pedestrian simulator using the HTC Vive head mounted display and Unity software. Pedestrian head position and orientation were tracked as participants attempted to safely cross a virtual signalized intersection (5.5 m). In 10% of 60 trials, a vehicle violated the traffic signal and in 10.84% of these trials, a collision between the vehicle and the pedestrian was observed. Approximately 11% of the participants experienced simulator sickness and withdrew from the study. Objective measures, including the average walking speed, indicate that participant behavior in VR matches published real world norms. Subjective responses indicate that the virtual environment was realistic and engaging. Overall, the study results confirm the effectiveness of the new virtual reality technology for research on full motion tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of virtual reality on visual vertigo symptoms in patients with peripheral vestibular dysfunction: a pilot study

    OpenAIRE

    Pavlou, M.; Kanegaonkar, R. G.; Swapp, D.; Bamiou, D. E.; Slater, Mel; Luxon. L. M.

    2012-01-01

    Individuals with vestibular dysfunction may experience visual vertigo (VV), in which symptoms are provoked or exacerbated by excessive or disorientating visual stimuli (e.g. supermarkets). VV can significantly improve when customized vestibular rehabilitation exercises are combined with exposure to optokinetic stimuli. Virtual reality (VR), which immerses patients in realistic, visually challenging environments, has also been suggested as an adjunct to VR to improve VV symptoms. This pilot st...

  9. Evaluating change in virtual reality adoption for brain injury rehabilitation following knowledge translation.

    Science.gov (United States)

    Glegg, Stephanie M N; Holsti, Liisa; Stanton, Sue; Hanna, Steven; Velikonja, Diana; Ansley, Barbara; Sartor, Denise; Brum, Christine

    2017-04-01

    To evaluate the impact of knowledge translation (KT) on factors influencing virtual reality (VR) adoption and to identify support needs of therapists. Intervention will be associated with improvements in therapists' perceived ease of use and self-efficacy, and an associated increase in intentions to use VR. Single group mixed-methods pre-test-post-test evaluation of convenience sample of physical, occupational and rehabilitation therapists (n=37) from two brain injury rehabilitation centres. ADOPT-VR administered pre/post KT intervention, consisting of interactive education, clinical manual, technical and clinical support. Increases in perceived ease of use (p=0.000) and self-efficacy (p=0.001), but not behavioural intention to use VR (p=0.158) were found following KT, along with decreases in the frequency of perceived barriers. Post-test changes in the frequency and nature of perceived facilitators and barriers were evident, with increased emphasis on peer influence, organisational-level supports and client factors. Additional support needs were related to clinical reasoning, treatment programme development, technology selection and troubleshooting. KT strategies hold potential for targeting therapists' perceptions of low self-efficacy and ease of use of this technology. Changes in perceived barriers, facilitators and support needs at post-test demonstrated support for repeated evaluation and multi-phased training initiatives to address therapists' needs over time. Implications for Rehabilitation Therapists' learning and support needs in integrating virtual reality extend beyond technical proficiency to include clinical decision-making and application competencies spanning the entire rehabilitation process. Phased, multi-faceted strategies may be valuable in addressing therapists' changing needs as they progress from novice to experienced virtual reality users. The ADOPT-VR is a sensitive measure to re-evaluate the personal, social, environmental, technology

  10. Cochrane review: virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  11. The Application of Virtual Reality on Distance Education

    Science.gov (United States)

    Zhan, Zehui

    The features and classifications of Virtual Reality Techniques have been summarized and recommendation of applying Virtual Reality on distance education has been made. Future research is needed on the design and implementation of virtual classroom and courseware.

  12. Virtual reality triage training provides a viable solution for disaster-preparedness.

    Science.gov (United States)

    Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen

    2010-08-01

    The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.

  13. Virtual reality as a comprehensive learning tool; Realidad virtual como una herramienta de aprendizaje integral

    Energy Technology Data Exchange (ETDEWEB)

    Perez Ramirez, Miguel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ontiveros Hernandez, Norma Josefina [Instituto Tecnologico de Zacatepec, Zacatepec, Morelos (Mexico)

    2011-07-01

    This article presents some of the experiences with developing systems based on non-immersive virtual reality (VR). It discusses the factors that make VR a tool for creating content and learning contexts so that instruction is more efficient. VR systems enable risk-free training even when activities involve high risks, such as procedures for maintenance of medium voltage power lines. In addition, these systems have been designed to record student progress, among other things. [Spanish] Se presentan aqui algunas experiencias en el desarrollo de sistemas basados en realidad virtual (RV) no inmersiva. Se discute acerca de los factores que hacen de la RV una herramienta para crear contenido y con textos de aprendizaje, de tal modo que la instruccion pueda ser mas eficiente. Los sistemas de RV permiten el entrenamiento sin riesgos, aun cuando las actividades involucradas sean de alto riesgo, como es el caso de los procedimientos de mantenimiento a lineas energizadas de media tension. Por otro lado, estos sistemas tambien han sido habilitados para registrar el progreso de los estudiantes, entre otras cosas.

  14. Application of Virtual and Augmented reality to geoscientific teaching and research.

    Science.gov (United States)

    Hodgetts, David

    2017-04-01

    The geological sciences are the ideal candidate for the application of Virtual Reality (VR) and Augmented Reality (AR). Digital data collection techniques such as laser scanning, digital photogrammetry and the increasing use of Unmanned Aerial Vehicles (UAV) or Small Unmanned Aircraft (SUA) technology allow us to collect large datasets efficiently and evermore affordably. This linked with the recent resurgence in VR and AR technologies make these 3D digital datasets even more valuable. These advances in VR and AR have been further supported by rapid improvements in graphics card technologies, and by development of high performance software applications to support them. Visualising data in VR is more complex than normal 3D rendering, consideration needs to be given to latency, frame-rate and the comfort of the viewer to enable reasonably long immersion time. Each frame has to be rendered from 2 viewpoints (one for each eye) requiring twice the rendering than for normal monoscopic views. Any unnatural effects (e.g. incorrect lighting) can lead to an uncomfortable VR experience so these have to be minimised. With large digital outcrop datasets comprising 10's-100's of millions of triangles this is challenging but achievable. Apart from the obvious "wow factor" of VR there are some serious applications. It is often the case that users of digital outcrop data do not appreciate the size of features they are dealing with. This is not the case when using correctly scaled VR, and a true sense of scale can be achieved. In addition VR provides an excellent way of performing quality control on 3D models and interpretations and errors are much more easily visible. VR models can then be used to create content that can then be used in AR applications closing the loop and taking interpretations back into the field.

  15. Presence in Virtual Reality Exposure Therapy Systems

    NARCIS (Netherlands)

    Ling, Y.

    2014-01-01

    Experiencing anxiety is essential for virtual reality exposure therapy (VRET) to be effective in curing patients suffering from anxiety disorders. However, some patients drop out in VRET due to the lack of feeling anxiety. Presence - which refers to the feeling of being in the virtual environment -

  16. 3D Character Modeling in Virtual Reality

    NARCIS (Netherlands)

    Kiss, S.; Williams, A.

    2002-01-01

    The paper presents a virtual reality modeling system based on interactive web technologies. The system's goal is to provide a user-friendly virtual environment for the development of 3D characters with an articulated structure. The interface allows the modeling of both the character's joint

  17. Smart communities in virtual reality. A comparison of design approaches for academic education

    Directory of Open Access Journals (Sweden)

    Thomas Köhler

    2014-11-01

    Full Text Available Smart communities adopt „virtual reality” (VR for many purposes, amongst others for educational purposes. However the development of educational technologies under the concept of „„VR is neither a core issue in academic education nor in applied research publications, although potential exists. With the goal of closing this gap, the authors investigate possibilities of VR in teaching and training. Whether we can speak of a new didactic technique and if certain smart communities adopt such is investigated through three cases. Our focus is on who the target audience is, what requirements need to be considered, and how this manifests in the teachers’ activity. Subsequently, a starting point for a target group-oriented design of virtual reality in higher education is provided.

  18. Virtual reality for the induction of positive emotions in the treatment of fibromyalgia: a pilot study over acceptability, satisfaction, and the effect of virtual reality on mood.

    Science.gov (United States)

    Herrero, Rocio; García-Palacios, Azucena; Castilla, Diana; Molinari, Guadalupe; Botella, Cristina

    2014-06-01

    One of the most important aspects of fibromyalgia syndrome (FMS) is its impact on quality of life, increasing negative emotions and dysfunctional coping strategies. One of these strategies is to avoid activities, especially meaningful activities, which reduces positive reinforcement. Commencing significant daily activities could enable chronic patients to experience a more fulfilling life. However, the main difficulty found in FMS patients is their willingness to start those activities. Promoting positive emotions could enhance activity management. The aim of this paper is to present a description of a system along with data regarding the acceptability, satisfaction, and preliminary efficacy of a virtual reality (VR) environment for the promotion of positive emotions. The VR environment was especially designed for chronic pain patients. Results showed significant increases in general mood state, positive emotions, motivation, and self-efficacy. These preliminary findings show the potential of VR as an adjunct to the psychological treatment of such an important health problem as chronic pain.

  19. Application of head-mounted devices with eye-tracking in virtual reality therapy

    Directory of Open Access Journals (Sweden)

    Lutz Otto Hans-Martin

    2017-03-01

    Full Text Available Using eye-tracking to assess visual attention in head-mounted devices (HMD opens up many possibilities for virtual reality (VR-based therapy. Existing therapy concepts where attention plays a major role can be transferred to VR. Furthermore, they can be expanded to a precise real-time attention assessment, which can serve as a foundation for new therapy approaches. Utilizing HMDs and eye-tracking in a clinical environment is challenging because of hygiene issues and requirements of patients with heterogeneous cognitive and motor impairments. In this paper, we provide an overview of those challenges, discuss possible solutions and present preliminary results of a study with patients.

  20. Virtual reality in assessment and treatment of schizophrenia: a systematic review

    Directory of Open Access Journals (Sweden)

    Mônica Macedo

    2015-03-01

    Full Text Available Objective To conduct a systematic review about the use of virtual reality (VR for evaluation, treatment and/or rehabilitation of patients with schizophrenia, focused on: areas, fields and objectives; methodological issues; features of the VR used; viability and efficiency of this resource. Methods Searches were performed about schizophrenia and virtual reality in PsycINFO, Academic Search Complete, MEDLINE Complete, CINAHL with Full Text, Web of Science and Business Source Premier databases, using the following keywords: [“schizophrenia”] AND [“virtual reality” OR “serious game”] AND [“treatment” OR “therapy” OR “rehabilitation”]. The search was carried out between November 2013 and June 2014 without using any search limiters. Results A total of 101 papers were identified, and after the application of exclusion criteria, 33 papers remained. The studies analysed focused on the use of VR for the evaluation of cognitive, social, perceptual and sensory skills, and the vast majority were experimental studies, with virtual reality specifically created for them. All the reviewed papers point towards a reliable and safe use of VR for evaluating and treating cognitive and social deficits in patients with schizophrenia, with different results in terms of generalisation, motivation, assertiveness and task participation rate. Some problems were highlighted, such as its high cost and a constant need for software maintenance. Conclusion The studies show that using the virtual reality may streamline traditional evaluation/rehabilitation programmes, allowing to enhance the results achieved, both in the cognitive and in the social field, helping for the legitimisation of this population’s psycho-social inclusion.

  1. THE SELIMIYE MOSQUE OF EDIRNE, TURKEY – AN IMMERSIVE AND INTERACTIVE VIRTUAL REALITY EXPERIENCE USING HTC VIVE

    Directory of Open Access Journals (Sweden)

    T. P. Kersten

    2017-05-01

    Full Text Available Recent advances in contemporary Virtual Reality (VR technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments of such a VR visualisation for a CH monument is discussed in this contribution.

  2. Using virtual reality technology for aircraft visual inspection training: presence and comparison studies.

    Science.gov (United States)

    Vora, Jeenal; Nair, Santosh; Gramopadhye, Anand K; Duchowski, Andrew T; Melloy, Brian J; Kanki, Barbara

    2002-11-01

    The aircraft maintenance industry is a complex system consisting of several interrelated human and machine components. Recognizing this, the Federal Aviation Administration (FAA) has pursued human factors related research. In the maintenance arena the research has focused on the aircraft inspection process and the aircraft inspector. Training has been identified as the primary intervention strategy to improve the quality and reliability of aircraft inspection. If training is to be successful, it is critical that we provide aircraft inspectors with appropriate training tools and environment. In response to this need, the paper outlines the development of a virtual reality (VR) system for aircraft inspection training. VR has generated much excitement but little formal proof that it is useful. However, since VR interfaces are difficult and expensive to build, the computer graphics community needs to be able to predict which applications will benefit from VR. To address this important issue, this research measured the degree of immersion and presence felt by subjects in a virtual environment simulator. Specifically, it conducted two controlled studies using the VR system developed for visual inspection task of an aft-cargo bay at the VR Lab of Clemson University. Beyond assembling the visual inspection virtual environment, a significant goal of this project was to explore subjective presence as it affects task performance. The results of this study indicated that the system scored high on the issues related to the degree of presence felt by the subjects. As a next logical step, this study, then, compared VR to an existing PC-based aircraft inspection simulator. The results showed that the VR system was better and preferred over the PC-based training tool.

  3. Virtual reality training and assessment in laparoscopic rectum surgery.

    Science.gov (United States)

    Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas

    2015-06-01

    Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Deconstructing laparoscopic competence in a virtual reality simulation environment.

    Science.gov (United States)

    Loukas, Constantinos; Nikiteas, Nikolaos; Kanakis, Meletios; Georgiou, Evangelos

    2011-06-01

    Virtual reality (VR) simulators play a substantial role in modern medical education and have generated several performance parameters that are not always standardized and open to clear and easy interpretation. Consequently, our study objective was to investigate how these parameters contribute to the enhancement of key competencies in laparoscopic surgical skills. We recruited 20 residents and 8 experienced surgeons to participate in this study. The residents were trained on 5 basic tasks (4 of them at two difficulty levels) using a commercially available VR simulator. Study participants also performed an additional 3 complex tasks before and after training for assessment purposes. The experienced surgeons served as controls and so only performed the assessment tasks. Performance parameters were grouped to reflect errors in dexterity, safety, and technical skill. These errors, as well as the parameters of time and instrument velocity, were analyzed during training and assessment. Performance for training tasks demonstrated notable learning curves for most of the parameters that were measured (ie, plateaus varied between the second and seventh VR training session). Velocity was influenced least by the training (3 of the 5 tasks), while time and dexterity were influenced most (all 5 tasks and for both difficulty levels). In the assessment tasks, technical skill was improved (P trained residents in terms of time (all tasks; P training contributed markedly to the enhancement of key surgical competencies of residents. The proposed mapping of the simulator parameters may help program directors and trainees evaluate important competency domains during VR-based surgical training. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. Feasibility of training athletes for high-pressure situations using virtual reality.

    Science.gov (United States)

    Stinson, Cheryl; Bowman, Doug A

    2014-04-01

    Virtual reality (VR) has been successfully applied to a broad range of training domains; however, to date there is little research investigating its benefits for sport psychology training. We hypothesized that using high-fidelity VR systems to display realistic 3D sport environments could trigger anxiety, allowing resilience-training systems to prepare athletes for real-world, highpressure situations. In this work we investigated the feasibility and usefulness of using VR for sport psychology training. We developed a virtual soccer goalkeeping application for the Virginia Tech Visionarium VisCube (a CAVE-like display system), in which users defend against simulated penalty kicks using their own bodies. Using the application, we ran a controlled, within-subjects experiment with three independent variables: known anxiety triggers, field of regard, and simulation fidelity. The results demonstrate that a VR sport-oriented system can induce increased anxiety (physiological and subjective measures) compared to a baseline condition. There were a number of main effects and interaction effects for all three independent variables in terms of the subjective measures of anxiety. Both known anxiety triggers and simulation fidelity had a direct relationship to anxiety, while field of regard had an inverse relationship. Overall, the results demonstrate great potential for VR sport psychology training systems; however, further research is needed to determine if training in a VR environment can lead to long-term reduction in sport-induced anxiety.

  6. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    Science.gov (United States)

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  7. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    Science.gov (United States)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  8. Moving from Virtual Reality Exposure-Based Therapy (VRET to Augmented Reality Exposure-Based Therapy (ARET: A review.

    Directory of Open Access Journals (Sweden)

    Oliver eBaus

    2014-03-01

    Full Text Available This paper reviews the move from virtual reality exposure-based therapy (VRET to augmented reality exposure-based therapy (ARET. Unlike virtual reality (VR, which entails a complete virtual environment (VE, augmented reality (AR limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the 20th century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed safely to the object(s of their fear, without the costs associated with programming complete virtual environments. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper also raises some ARET related issues, and proposes potential avenues to be followed. These include the definition of an AR related term, the type of measures to be used to qualify the user’s experience in an augmented reality environment (ARE, the development of alternative geospatial referencing systems, as well as the potential use of ARET to treat social phobia. Overall, it may be said that the use of ARET, although promising, is still in its infancy but that, given a continued cooperation between clinical and technical teams, ARET has the potential of going well beyond the treatment of small animal phobia.

  9. Virtual reality for the assessment of frontotemporal dementia, a feasibility study.

    Science.gov (United States)

    Mendez, Mario F; Joshi, Aditi; Jimenez, Elvira

    2015-03-01

    Behavioral variant frontotemporal dementia (bvFTD) is a non-Alzheimer dementia characterized by difficulty in documenting social-emotional changes. Few investigations have used virtual reality (VR) for documentation and rehabilitation of non-Alzheimer dementias. Five bvFTD patients underwent insight interviews while immersed in a virtual environment. They were interviewed by avatars, their answers were recorded, and their heart rates were monitored. They were asked to give ratings of their stress immediately at the beginning and at the end of the session. The patients tolerated the head-mounted display and VR without nausea or disorientation, heart rate changes, or worsening stress ratings. Their insight responses were comparable to real world interviews. All bvFTD patients showed their presence in the VR environment as they moved their heads to face and respond to each avatar's questions. The bvFTD patients tended to greater verbal elaboration of answers with larger mean length of utterances compared to their real world interviews. VR is feasible and well-tolerated in bvFTD. These patients may have VR responses comparable to real world performance and they may display a presence in the virtual environment which could even facilitate assessment. Further research can explore the promise of VR for the evaluation and rehabilitation of dementias beyond Alzheimer's disease. Implications for Rehabilitation Clinicians need effective evaluation and rehabilitation strategies for dementia, a neurological syndrome of epidemic proportions and a leading cause of disability. Memory and cognitive deficits are the major disabilities and targets for rehabilitation in Alzheimer's disease, the most common dementia. In contrast, social and emotional disturbances are the major disabilities and targets for rehabilitation in behavioral variant frontotemporal dementia (bvFTD), an incompletely understood non-Alzheimer dementia. Virtual reality is a technology that holds great promise for

  10. Identification of skills common to renal and iliac endovascular procedures performed on a virtual reality simulator.

    Science.gov (United States)

    Neequaye, S K; Aggarwal, R; Brightwell, R; Van Herzeele, I; Darzi, A; Cheshire, N J W

    2007-05-01

    There is a learning curve in the acquisition of endovascular skills for the treatment of vascular disease. Integration of Virtual reality (VR) simulator based training into the educational training curriculum offers a potential solution to overcome this learning curve. However evidence-based training curricula that define which tasks, how often and in which order they should be performed have yet to be developed. The aim of this study was to determine the nature of skills acquisition on the renal and iliac modules of a commercially-available VR simulator. 20 surgical trainees without endovascular experience were randomised to complete eight sessions on a VR iliac (group A) or renal (group B) training module. To determine skills transferability across the two procedures, all subjects performed two further VR cases of the other procedure. Performance was recorded by the simulator for parameters such as time taken, contrast fluid usage and stent placement accuracy. During training, both groups demonstrated statistically significant VR learning curves: group A for procedure time (pfirst simulated renal task than for group B. Novice endovascular surgeons can significantly improve their performance of simulated procedures through repeated practice on VR simulators. Skills transfer between tasks was demonstrated but complex task training, such as selective arterial cannulation in simulators and possibly in the real world appears to involve a separate skill. It is thus suggested that a stepwise and hierarchical training curriculum is developed for acquisition of endovascular skill using VR simulation to supplement training on patients.

  11. Virtual reality distraction for pain control during periodontal scaling and root planing procedures.

    Science.gov (United States)

    Furman, Elena; Jasinevicius, T Roma; Bissada, Nabil F; Victoroff, Kristin Z; Skillicorn, Robert; Buchner, Marc

    2009-12-01

    Although pain management during periodontal treatment usually is achieved with anesthesia, alternative methods are available. The authors conducted a study to evaluate the analgesic effect of immersive virtual reality (VR) during periodontal scaling and root planing (SRP) procedures. The authors recruited 38 patients. They used a within-patient/split-mouth design. Patients received SRP under three treatment conditions in three quadrants. The three conditions were control, watching a movie and VR. After each SRP procedure, patients responded to questions about their discomfort and/or pain by using a visual analog scale (VAS) (range, 0 to 10 in which lower numbers indicate less pain or discomfort). The authors also recorded patients' blood pressure (BP) and pulse rate (PR). Patients were asked which of the three treatment modalities they preferred. The mean (+/- standard deviation) VAS scores for five questions pertaining to control, movie and VR were 3.95 +/- 2.1, 2.57 +/- 1.8 and 1.76 +/- 1.4, respectively. Paired t tests revealed that VAS scores were significantly lower during VR compared with the movie (P movie and control conditions. Patients reported that they preferred the VR condition. The results of this study suggest that use of immersive VR distraction may be an effective method of pain control during SRP procedures. Practitioners can use immersive VR distraction for pain control during SRP procedures.

  12. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Directory of Open Access Journals (Sweden)

    Danielle E Levac

    Full Text Available Therapists use motor learning strategies (MLSs to structure practice conditions within stroke rehabilitation. Virtual reality (VR-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use.A pre-post design evaluated a knowledge translation (KT intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision.The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p <0.001. Chart-Stimulated Recall indicated a moderate level of competency in therapists' clinical reasoning about MLSs following the intervention, with no changes following additional opportunities to use VR (p = .944. On the Motor Learning Strategy Rating Instrument, no behaviour change with respect to MLS use was noted (p = 0.092. Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach.The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  13. Virtual Reality Rehabilitation from Social Cognitive and Motor Learning Theoretical Perspectives in Stroke Population

    Directory of Open Access Journals (Sweden)

    Bita Imam

    2014-01-01

    Full Text Available Objectives. To identify the virtual reality (VR interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT and Motor Learning (MLT theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiotherapy Evidence Database (PEDro scale was used to assess the quality of the included studies. The underlying training mechanisms involved in each VR intervention were explained according to the principles of SCT (vicarious learning, performance accomplishment, and verbal persuasion and MLT (focus of attention, order and predictability of practice, augmented feedback, and feedback fading. Results. Eleven studies were included. PEDro scores varied from 3 to 7/10. All studies but one showed significant improvement in outcomes in favour of the VR group (P<0.05. Ten VR interventions followed the principle of performance accomplishment. All the eleven VR interventions directed subject’s attention externally, whereas nine provided training in an unpredictable and variable fashion. Conclusions. The results of this review suggest that VR applications used for lower extremity rehabilitation in stroke population predominantly mediate learning through providing a task-oriented and graduated learning under a variable and unpredictable practice.

  14. Design and development of a virtual reality simulator for advanced cardiac life support training.

    Science.gov (United States)

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  15. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study.

    Science.gov (United States)

    Levin, Mindy F; Snir, Osnat; Liebermann, Dario G; Weingarden, Harold; Weiss, Patrice L

    2012-12-01

    The objective of this study was to evaluate the potential of exercises performed in a 2D video-capture virtual reality (VR) training environment to improve upper limb motor ability in stroke patients compared to those performed in conventional therapy. A small sample randomized control trial, in an outpatient rehabilitation center with 12 patients with chronic stroke, aged 33-80 years, who were randomly allocated to video-capture VR therapy and conventional therapy groups. All patients participated in four clinical evaluation sessions (pre-test 1, pre-test 2, post-test, follow-up) and nine 45-minute intervention sessions over a 3-week period. Main outcomes assessed were Body Structure and Function (impairment: Fugl-Meyer Assessment [FMA]; Composite Spasticity Index [CSI]; Reaching Performance Scale for Stroke), Activity (Box and Blocks; Wolf Motor Function Test [WMFT]), and Participation (Motor Activity Log) levels of the International Classification of Functioning. Improvements occurred in both groups, but more patients in the VR group improved upper limb clinical impairment (FMA, CSI) and activity scores (WMFT) and improvements occurred earlier. Patients in the VR group also reported satisfaction with the novel treatment. The modest advantage of VR over conventional training supports further investigation of the effect of video-capture VR or VR combined with conventional therapy in larger-scale randomized, more intense controlled studies.

  16. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Science.gov (United States)

    Levac, Danielle E; Glegg, Stephanie M N; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E; Velikonja, Diana

    2016-01-01

    Therapists use motor learning strategies (MLSs) to structure practice conditions within stroke rehabilitation. Virtual reality (VR)-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use. A pre-post design evaluated a knowledge translation (KT) intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision. The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p <0.001). Chart-Stimulated Recall indicated a moderate level of competency in therapists' clinical reasoning about MLSs following the intervention, with no changes following additional opportunities to use VR (p = .944). On the Motor Learning Strategy Rating Instrument, no behaviour change with respect to MLS use was noted (p = 0.092). Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach. The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  17. Promoting Therapists’ Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation

    Science.gov (United States)

    Levac, Danielle E.; Glegg, Stephanie M. N.; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E.; Velikonja, Diana

    2016-01-01

    Purpose Therapists use motor learning strategies (MLSs) to structure practice conditions within stroke rehabilitation. Virtual reality (VR)-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use. Method A pre-post design evaluated a knowledge translation (KT) intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists’ confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists’ perspectives on MLS use during VR-based therapy provision. Results The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p <0.001). Chart-Stimulated Recall indicated a moderate level of competency in therapists’ clinical reasoning about MLSs following the intervention, with no changes following additional opportunities to use VR (p = .944). On the Motor Learning Strategy Rating Instrument, no behaviour change with respect to MLS use was noted (p = 0.092). Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach. Conclusion The KT intervention improved therapists’ confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy. PMID:27992492

  18. Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Therapists’ Perspective on Virtual Reality Training in Patients after Stroke: A Qualitative Study Reporting Focus Group Results from Three Hospitals

    Directory of Open Access Journals (Sweden)

    Ludwig Schmid

    2016-01-01

    Full Text Available Background. During the past decade, virtual reality (VR has become a new component in the treatment of patients after stroke. Therefore aims of the study were (a to get an insight into experiences and expectations of physiotherapists and occupational therapists in using a VR training system and (b to investigate relevant facilitators, barriers, and risks for implementing VR training in clinical practice. Methods. Three focus groups were conducted with occupational therapists and physiotherapists, specialised in rehabilitation of patients after stroke. All data were audio-recorded and transcribed verbatim. The study was analysed based on a phenomenological approach using qualitative content analysis. Results. After code refinements, a total number of 1289 codes emerged out of 1626 statements. Intercoder reliability increased from 53% to 91% until the last focus group. The final coding scheme included categories on a four-level hierarchy: first-level categories are (a therapists and VR, (b VR device, (c patients and VR, and (d future prospects and potential of VR developments. Conclusions. Results indicate that interprofessional collaboration is needed to develop future VR technology and to devise VR implementation strategies in clinical practice. In principal, VR technology devices were seen as supportive for a general health service model.

  20. Implementation of laparoscopic virtual-reality simulation training in gynaecology: a mixed-methods design.

    Science.gov (United States)

    Burden, Christy; Appleyard, Tracy-Louise; Angouri, Jo; Draycott, Timothy J; McDermott, Leanne; Fox, Robert

    2013-10-01

    Virtual-reality (VR) training has been demonstrated to improve laparoscopic surgical skills in the operating theatre. The incorporation of laparoscopic VR simulation into surgical training in gynaecology remains a significant educational challenge. We undertook a pilot study to assess the feasibility of the implementation of a laparoscopic VR simulation programme into a single unit. An observational study with qualitative analysis of semi-structured group interviews. Trainees in gynaecology (n=9) were scheduled to undertake a pre-validated structured training programme on a laparoscopic VR simulator (LapSim(®)) over six months. The main outcome measure was the trainees' progress through the training modules in six months. Trainees' perceptions of the feasibility and barriers to the implementation of laparoscopic VR training were assessed in focus groups after training. Sixty-six percent of participants completed six of ten modules. Overall, feedback from the focus groups was positive; trainees felt training improved their dexterity, hand-eye co-ordination and confidence in theatre. Negative aspects included lack of haptic feedback, and facility for laparoscopic port placement training. Time restriction emerged as the main barrier to training. Despite positive perceptions of training, no trainee completed more than two-thirds of the modules of a self-directed laparoscopic VR training programme. Suggested improvements to the integration of future laparoscopic VR training include an additional theoretical component with a fuller understanding of benefits of VR training, and scheduled supervision. Ultimately, the success of a laparoscopic VR simulation training programme might only be improved if it is a mandatory component of the curriculum, together with dedicated time for training. Future multi-centred implementation studies of validated laparoscopic VR curricula are required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Virtual Reality Objectifies the Diagnosis of Psychiatric Disorders: A Literature Review.

    Science.gov (United States)

    van Bennekom, Martine J; de Koning, Pelle P; Denys, Damiaan

    2017-01-01

    To date, a diagnosis in psychiatry is largely based on a clinical interview and questionnaires. The retrospective and subjective nature of these methods leads to recall and interviewer biases. Therefore, there is a clear need for more objective and standardized assessment methods to support the diagnostic process. The introduction of virtual reality (VR) creates the possibility to simultaneously provoke and measure psychiatric symptoms. Therefore, VR could contribute to the objectivity and reliability in the assessment of psychiatric disorders. In this literature review, we will evaluate the assessment of psychiatric disorders by means of VR environments. First, we investigate if these VR environments are capable of simultaneously provoking and measuring psychiatric symptoms. Next, we compare these measures with traditional diagnostic measures. We performed a systematic search using PubMed, Embase, and Psycinfo; references of selected articles were checked for eligibility. We identified studies from 1990 to 2016 on VR used in the assessment of psychiatric disorders. Studies were excluded if VR was used for therapeutic purposes, if a different technique was used, or in case of limitation to a non-clinical sample. A total of 39 studies were included for further analysis. The disorders most frequently studied included schizophrenia ( n  = 15), developmental disorders ( n  = 12), eating disorders ( n  = 3), and anxiety disorders ( n  = 6). In attention-deficit hyperactivity disorder, the most comprehensive measurement was used including several key symptoms of the disorder. Most of the studies, however, concerned the use of VR to assess a single aspect of a psychiatric disorder. In general, nearly all VR environments studied were able to simultaneously provoke and measure psychiatric symptoms. Furthermore, in 14 studies, significant correlations were found between VR measures and traditional diagnostic measures. Relatively small clinical sample sizes

  2. Design Guidelines for the Development of Virtual Reality and Augmented Reality Training Systems for Maintenance and Assembly Tasks

    Directory of Open Access Journals (Sweden)

    Tecchia Franco

    2011-12-01

    Full Text Available The current work describes design guidelines for the development of Virtual Reality (VR and Augmented Reality (AR platforms to train technicians on maintenance and assembly tasks of industrial machineries. The main skill involved in this kind of tasks is the procedural skill. Based on past literature and studies conducted within the SKILLS project, several main design guidelines were formulated. First, observational learning integrated properly within the training protocol increases training efficiency. Second, training protocols combining physical and cognitive fidelity enhances procedural skills acquisition. Third, guidance aids should be provided in a proper and controlled way. And last, enriched information about the task helps trainees to develop a useful mental model of the task. These recommendations were implemented in both VR and AR training platforms.

  3. Requirements Elicitation and Prototyping of a Fully Immersive Virtual Reality Gaming System for Upper Limb Stroke Rehabilitation in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Maram AlMousa

    2017-01-01

    Full Text Available Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of nonimmersive virtual reality- (VR- based rehabilitation systems, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the elicited requirements of a fully immersive VR-based rehabilitation system that will be designed for domestic upper limb stroke patients; we will also provide an initial conceptual prototype of the proposed system.

  4. Brave new worlds--review and update on virtual reality assessment and treatment in psychosis.

    Science.gov (United States)

    Veling, Wim; Moritz, Steffen; van der Gaag, Mark

    2014-11-01

    In recent years, virtual reality (VR) research on psychotic disorders has been initiated. Several studies showed that VR can elicit paranoid thoughts about virtual characters (avatars), both in patients with psychotic disorders and healthy individuals. Real life symptoms and VR experiences were correlated, lending further support to its validity. Neurocognitive deficits and difficulties in social behavior were found in schizophrenia patients, not only in abstract tasks but also using naturalistic virtual environments that are more relevant to daily life, such as a city or encounters with avatars. VR treatments are conceivable for most dimensions of psychotic disorders. There is a small but expanding literature on interventions for delusions, hallucinations, neurocognition, social cognition, and social skills; preliminary results are promising. VR applications for assessment and treatment of psychotic disorders are in their infancy, but appear to have a great potential for increasing our understanding of psychosis and expanding the therapeutic toolbox. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. A Feasibility Study of Virtual Reality-Based Coping Skills Training for Nicotine Dependence.

    Science.gov (United States)

    Bordnick, Patrick S; Traylor, Amy C; Carter, Brian L; Graap, Ken M

    2012-05-01

    Virtual reality (VR)-based cue reactivity has been successfully used for the assessment of drug craving. Going beyond assessment of cue reactivity, a novel VR-based treatment approach for smoking cessation was developed and tested for feasibility. In a randomized experiment, 10-week treatment feasibility trial, 46 nicotine-dependent adults, completed the10-week program. Virtual reality skills training (VRST) combined with nicotine replacement therapy (NRT) was compared to NRT alone. Participants were assessed for smoking behavior and coping skills during, at end of treatment, and at posttreatment follow-up. Smoking rates and craving for nicotine were significantly lower for the VRST group compared to NRT-only group at the end of treatment. Self-confidence and coping skills were also significantly higher for the VRST group, and number of cigarettes smoked was significantly lower, compared to the control group at follow-up. Feasibility of VRST was supported in the current study.

  6. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.

    Science.gov (United States)

    Grewe, P; Lahr, D; Kohsik, A; Dyck, E; Markowitsch, H J; Bien, C G; Botsch, M; Piefke, M

    2014-02-01

    Ecological assessment and training of real-life cognitive functions such as visual-spatial abilities in patients with epilepsy remain challenging. Some studies have applied virtual reality (VR) paradigms, but external validity of VR programs has not sufficiently been proven. Patients with focal epilepsy (EG, n=14) accomplished an 8-day program in a VR supermarket, which consisted of learning and buying items on a shopping list. Performance of the EG was compared with that of healthy controls (HCG, n=19). A comprehensive neuropsychological examination was administered. Real-life performance was investigated in a real supermarket. Learning in the VR supermarket was significantly impaired in the EG on different VR measures. Delayed free recall of products did not differ between the EG and the HCG. Virtual reality scores were correlated with neuropsychological measures of visual-spatial cognition, subjective estimates of memory, and performance in the real supermarket. The data indicate that our VR approach allows for the assessment of real-life visual-spatial memory and cognition in patients with focal epilepsy. The multimodal, active, and complex VR paradigm may particularly enhance visual-spatial cognitive resources. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Virtual reality-based simulators for spine surgery: a systematic review.

    Science.gov (United States)

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with

  8. Current state of virtual reality simulation in robotic surgery training: a review.

    Science.gov (United States)

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  9. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians.

    Science.gov (United States)

    Saposnik, Gustavo; Levin, Mindy

    2011-05-01

    Approximately two thirds of stroke survivors continue to experience motor deficits of the arm resulting in diminished quality of life. Conventional rehabilitation provides modest and sometimes delayed effects. Virtual reality (VR) technology is a novel adjunctive therapy that could be applied in neurorehabilitation. We performed a meta-analysis to determine the added benefit of VR technology on arm motor recovery after stroke. We searched Medline, EMBASE, and Cochrane literature from 1966 to July 2010 with the terms "stroke," "virtual reality," and "upper arm/extremity." We evaluated the effect of VR on motor function improvement after stroke. From the 35 studies identified, 12 met the inclusion/exclusion criteria totaling 195 participants. Among them, there were 5 randomized clinical trials and 7 observational studies with a pre-/postintervention design. Interventions were delivered within 4 to 6 weeks in 9 of the studies and within 2 to 3 weeks in the remaining 3. Eleven of 12 studies showed a significant benefit toward VR for the selected outcomes. In the pooled analysis of all 5 randomized controlled trials, the effect of VR on motor impairment (Fugl-Meyer) was OR=4.89 (95% CI, 1.31 to 18.3). No significant difference was observed for Box and Block Test or motor function. Among observational studies, there was a 14.7% (95% CI, 8.7%-23.6%) improvement in motor impairment and a 20.1% (95% CI, 11.0%-33.8%) improvement in motor function after VR. VR and video game applications are novel and potentially useful technologies that can be combined with conventional rehabilitation for upper arm improvement after stroke.

  10. Do soft skills predict surgical performance?: a single-center randomized controlled trial evaluating predictors of skill acquisition in virtual reality laparoscopy.

    Science.gov (United States)

    Maschuw, K; Schlosser, K; Kupietz, E; Slater, E P; Weyers, P; Hassan, I

    2011-03-01

    Virtual reality (VR) training in minimal invasive surgery (MIS) is feasible in surgical residency and beneficial for the performance of MIS by surgical trainees. Research on stress-coping of surgical trainees indicates the additional impact of soft skills on VR performance in the surgical curriculum. The aim of this study was to evaluate the impact of structured VR training and soft skills on VR performance of trainees. The study was designed as a single-center randomized controlled trial. Fifty first-year surgical residents with limited experience in MIS ("camera navigation" in laparoscopic cholecystectomy only) were randomized for either 3 months of VR training or no training. Basic VR performance and defined soft skills (self-efficacy, stress-coping, and motivation) were assessed prior to randomization using basic modules of the VR simulator LapSim(®) and standardized psychological questionnaires. Three months after randomization VR performance was reassessed. Outcome measurement was based on the results derived from the most complex of the basic VR modules ("diathermy cutting") as the primary end point. A correlation analysis of the VR end-point performance and the psychological scores was done in both groups. Structured VR training enhanced VR performance of surgical trainees. An additional correlation to high motivational states (P 0.05). Low self-efficacy and negative stress-coping strategies seem to predict poor VR performance. However, structured training along with high motivational states is likely to balance out this impairment.

  11. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-07-01

    The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants' cognitive load during retention procedures. A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice. Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed). Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task. Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean

  12. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  13. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  14. What Virtual Reality Research in Addictions Can Tell Us about the Future of Obesity Assessment and Treatment

    Science.gov (United States)

    Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C

    2011-01-01

    Virtual reality (VR), a system of human–computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life–like situations. PMID:21527092

  15. What virtual reality research in addictions can tell us about the future of obesity assessment and treatment.

    Science.gov (United States)

    Bordnick, Patrick S; Carter, Brian L; Traylor, Amy C

    2011-03-01

    Virtual reality (VR), a system of human-computer interaction that allows researchers and clinicians to immerse people in virtual worlds, is gaining considerable traction as a research, education, and treatment tool. Virtual reality has been used successfully to treat anxiety disorders such as fear of flying and post-traumatic stress disorder, as an aid in stroke rehabilitation, and as a behavior modification aid in the treatment of attention deficit disorder. Virtual reality has also been employed in research on addictive disorders. Given the strong evidence that drug-dependent people are highly prone to use and relapse in the presence of environmental stimuli associated with drug use, VR is an ideal platform from which to study this relationship. Research using VR has shown that drug-dependent people react with strong craving to specific cues (e.g., cigarette packs, liquor bottles) as well as environments or settings (e.g., bar, party) associated with drug use. Virtual reality has also been used to enhance learning and generalization of relapse prevention skills in smokers by reinforcing these skills in lifelike environments. Obesity researchers and treatment professionals, building on the lessons learned from VR research in substance abuse, have the opportunity to adapt these methods for investigating their own research and treatment questions. Virtual reality is ideally suited to investigate the link between food cues and environmental settings with eating behaviors and self-report of hunger. In addition, VR can be used as a treatment tool for enhancing behavior modification goals to support healthy eating habits by reinforcing these goals in life-like situations. © 2011 Diabetes Technology Society.

  16. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Science.gov (United States)

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  17. Brief Report: Vocational Outcomes for Young Adults with Autism Spectrum Disorders at Six Months after Virtual Reality Job Interview Training

    Science.gov (United States)

    Smith, Matthew J.; Fleming, Michael F.; Wright, Michael A.; Losh, Molly; Humm, Laura Boteler; Olsen, Dale; Bell, Morris D.

    2015-01-01

    Young adults with high-functioning autism spectrum disorder (ASD) have low employment rates and job interviewing presents a critical barrier to employment for them. Results from a prior randomized controlled efficacy trial suggested virtual reality job interview training (VR-JIT) improved interviewing skills among trainees with ASD, but not…

  18. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills

    NARCIS (Netherlands)

    van Dongen, Koen W.; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J.; Grantcharov, Teodor P.; Hyltander, Anders; Schijven, Marlies P.; Stefani, Alessandro; van der Zee, David C.; Broeders, Ivo A. M. J.

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was

  19. The therapist user interface of a virtual reality exposure therapy system in the treatment of fear of flying

    NARCIS (Netherlands)

    Brinkman, W.P.; van der Mast, C.; Sandino, G.; Gunawan, L.T.; Emmelkamp, P.M.G.

    2010-01-01

    The use of virtual reality (VR) technology to support the treatment of patients with phobia, such as the fear of flying, is getting considerable research attention. Research mainly focuses on the patient experience and the effect of the treatment. In this paper, however, the focus is on the

  20. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    Science.gov (United States)

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...