WorldWideScience

Sample records for virtual reality based

  1. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  2. Rationalizing virtual reality based on manufacturing paradigms

    NARCIS (Netherlands)

    Damgrave, Roy Gerhardus Johannes; Lutters, Diederick; Drukker, J. W.

    2014-01-01

    Comparing the evolvement of the manufacturing industry of the last century to the way virtual reality is used nowadays some remarkable similarities come to light. Current virtual reality equipment requires a high level of craftsmanship to achieve the maximum results, and often equipment is specially

  3. Virtual Reality

    Science.gov (United States)

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  4. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    Science.gov (United States)

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  5. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    OpenAIRE

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth centur...

  6. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  7. ME science as mobile learning based on virtual reality

    Science.gov (United States)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  8. Vision-based Engagement Detection in Virtual Reality

    OpenAIRE

    Tofighi, Ghassem; Raahemifar, Kaamraan; Frank, Maria; Gu, Haisong

    2016-01-01

    User engagement modeling for manipulating actions in vision-based interfaces is one of the most important case studies of user mental state detection. In a Virtual Reality environment that employs camera sensors to recognize human activities, we have to know when user intends to perform an action and when not. Without a proper algorithm for recognizing engagement status, any kind of activities could be interpreted as manipulating actions, called "Midas Touch" problem. Baseline approach for so...

  9. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.

    Science.gov (United States)

    Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall

    2014-10-01

    Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and

  10. Virtual reality-based medical training and assessment

    DEFF Research Database (Denmark)

    Aboulafia, Annette Løw T.; Lövquist, Erik; Shorten, George Declan

    2012-01-01

    The current focus on patient safety and evidence-based medical education has led to an increased interest in utilising virtual reality (VR) for medical training. The development of VR-based systems require experts from different disciplines to collaborate with shared and agreed objectives...... to develop useful and usable VR-based medical training systems. Methods: This article reports a case study of two research projects that developed and evaluated a VR-based training system for spinal anaesthesia. Results: The case study illustrates how close relationships can be established by champion...

  11. Virtual reality 3D headset based on DMD light modulators

    Science.gov (United States)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  12. Virtual reality 3D headset based on DMD light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  13. Theoretical Bases for Using Virtual Reality in Education

    Science.gov (United States)

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  14. Jacob: a web-based learning environment using virtual reality

    NARCIS (Netherlands)

    Evers, M.J.; Heemskerk, S.; Nijholt, Antinus

    2001-01-01

    This paper gives an overview of the Jacob project. This project involves the construction of a 3D virtual environment where an animated human-like agent called Jacob gives instruction to the user. The project investigates virtual reality techniques and focuses on three issues: the software

  15. Cognitive training on stroke patients via virtual reality-based serious games.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  16. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2014-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  17. Bringing problem based learning to life using virtual reality.

    Science.gov (United States)

    Nelson, Linda; Sadler, Lynne; Surtees, Geoffrey

    2005-03-01

    Recent UK government policy advocates the need for a more flexible approach to nurse education and ;Fitness for Practice' stresses the importance of information technology and computer mediated learning facilities in the future of nursing education [Department of Health, Making a Difference, Strengthening the Nursing, Midwifery and Health Visiting Contribution to Health Care, Department of Health, 1999; The United Kingdom Central Council For Nursing, Fitness for Practice, The UKCC Commission for Nursing and Midwifery Education, 1999]. In response to this recommendation, a virtual reality package has been designed as a learning resource within adult pre-registration nursing education. This learning and teaching strategy is used in conjunction with problem based learning, enabling students to visualise individual/family life in a community setting. Students are encouraged to consider wider issues such as social and environmental factors and their impact upon health. The virtual reality package acts as one of a number of triggers. This paper will discuss the early development and offer an example of its use as a learning and teaching strategy within year two of a three year programme.

  18. Virtual reality based surgery simulation for endoscopic gynaecology.

    Science.gov (United States)

    Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G

    1999-01-01

    Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.

  19. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    Science.gov (United States)

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  20. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  1. Virtual Reality for Anxiety Disorders

    Directory of Open Access Journals (Sweden)

    Elif Uzumcu

    2018-03-01

    Full Text Available Virtual reality is a relatively new exposure tool that uses three-dimensional computer-graphics-based technologies which allow the individual to feel as if they are physically inside the virtual environment by misleading their senses. As virtual reality studies have become popular in the field of clinical psychology in recent years, it has been observed that virtual-reality-based therapies have a wide range of application areas, especially on anxiety disorders. Studies indicate that virtual reality can be more realistic than mental imagery and can create a stronger feeling of ԰resenceԻ that it is a safer starting point compared to in vivo exposure; and that it can be applied in a more practical and controlled manner. The aim of this review is to investigate exposure studies based on virtual reality in anxiety disorders (specific phobias, panic disorder and agoraphobias, generalized anxiety disorder, social phobia, posttraumatic stress disorder and obsessive compulsive disorder.

  2. Towards Robot teaching based on Virtual and Augmented Reality Concepts

    Science.gov (United States)

    Ennakr, Said; Domingues, Christophe; Benchikh, Laredj; Otmane, Samir; Mallem, Malik

    2009-03-01

    A complex system is a system made up of a great number of entities in local and simultaneous interaction. Its design requires the collaboration of engineers of various complementary specialties, so that it is necessary to invent new design methods. Indeed, currently the industry loses much time between the moment when the product model is designed and when the latter is serially produced on the lines of factories. This production is generally ensured by automated and more often robotized means. A deadline is thus necessary for the development of the automatisms and the robots work on a new product model. In this context we launched a study based on the principle of the mechatronics design in Augmented Reality-Virtual Reality. This new approach will bring solutions to problems encountered in many application scopes, but also to problems involved in the distance which separates the offices from design of vehicles and their production sites. This new approach will minimize the differences of errors between the design model and real prototype.

  3. Virtual reality in education

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    In this workshop-presentation, we described the evolution of virtual reality technologies and our research from 3D virtual worlds, 3D virtual environments built in gaming environments such as Unity 3D, 360-degree videos, and mobile virtual reality via Google Expeditions. For each of these four technologies, we discussed the affordances of the technologies and how they contribute towards learning and teaching. We outlined the significance of students being aware of the different virtual realit...

  4. Virtual Reality: An Overview.

    Science.gov (United States)

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  5. A virtual reality based simulator for learning nasogastric tube placement.

    Science.gov (United States)

    Choi, Kup-Sze; He, Xuejian; Chiang, Vico Chung-Lim; Deng, Zhaohong

    2015-02-01

    Nasogastric tube (NGT) placement is a common clinical procedure where a plastic tube is inserted into the stomach through the nostril for feeding or drainage. However, the placement is a blind process in which the tube may be mistakenly inserted into other locations, leading to unexpected complications or fatal incidents. The placement techniques are conventionally acquired by practising on unrealistic rubber mannequins or on humans. In this paper, a virtual reality based training simulation system is proposed to facilitate the training of NGT placement. It focuses on the simulation of tube insertion and the rendering of the feedback forces with a haptic device. A hybrid force model is developed to compute the forces analytically or numerically under different conditions, including the situations when the patient is swallowing or when the tube is buckled at the nostril. To ensure real-time interactive simulations, an offline simulation approach is adopted to obtain the relationship between the insertion depth and insertion force using a non-linear finite element method. The offline dataset is then used to generate real-time feedback forces by interpolation. The virtual training process is logged quantitatively with metrics that can be used for assessing objective performance and tracking progress. The system has been evaluated by nursing professionals. They found that the haptic feeling produced by the simulated forces is similar to their experience during real NGT insertion. The proposed system provides a new educational tool to enhance conventional training in NGT placement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. When Rural Reality Goes Virtual.

    Science.gov (United States)

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  7. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    Science.gov (United States)

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  8. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  9. Computer based virtual reality approach towards its application in an accidental emergency at nuclear power plant

    International Nuclear Information System (INIS)

    Yan Jun; Yao Qingshan

    1999-01-01

    Virtual reality is a computer based system for creating and receiving virtual world. As an emerging branch of computer discipline, this approach is extensively expanding and widely used in variety of industries such as national defence, research, engineering, medicine and air navigation. The author intends to present the fundamentals of virtual reality, in attempt to study some interested aspects for use in nuclear power emergency planning

  10. NeuroVRAC--a comprehensive approach to virtual reality-based neurological assessment and treatment systems.

    Science.gov (United States)

    Valvoda, Jakob T; Assenmacher, Ingo; Dohle, Christian; Kuhlen, Torsten; Bischof, Christian

    2003-01-01

    We describe a comprehensive software-oriented approach to virtual reality-based neuroscientific systems in order to establish an easy to use framework for neuroscientific assessment and treatment. We have defined a process model and implemented the NeuroVRAC authoring tool for design and execution of experiments in virtual environments. Our system enables the modeling of virtual world objects and the definition of events, which are used to control the experimental process. We have included the virtual test person concept to enhance the sense of presence during the execution of virtual reality-based neuroscientific experiments.

  11. Polymer-based actuators for virtual reality devices

    Science.gov (United States)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  12. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    Science.gov (United States)

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  13. Virtual Reality Hospice

    OpenAIRE

    Ejsing, Sebastian Kirkegaard; Vintersborg, Kathrine Mosbæk; Benford-Brown, Cory George; Turner, Daniel Severin Pohl

    2017-01-01

    This paper details the findings of a qualitative reception analysis performed in collaboration with Hospice Sjælland, as to the potentials of Virtual Reality technology in providing entertainment and respite. The analysis was performed utilizing a theoretical analytical model based on Kim Schrøder’s ‘Multidimensional Model of Mass Media Reception’ to discourse gathered from six interviews with four patients from Hospice Sjælland. Supporting this model was supplementary literature on cognitive...

  14. Moving from Virtual Reality Exposure-Based Therapy (VRET to Augmented Reality Exposure-Based Therapy (ARET: A review.

    Directory of Open Access Journals (Sweden)

    Oliver eBaus

    2014-03-01

    Full Text Available This paper reviews the move from virtual reality exposure-based therapy (VRET to augmented reality exposure-based therapy (ARET. Unlike virtual reality (VR, which entails a complete virtual environment (VE, augmented reality (AR limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the 20th century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed safely to the object(s of their fear, without the costs associated with programming complete virtual environments. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper also raises some ARET related issues, and proposes potential avenues to be followed. These include the definition of an AR related term, the type of measures to be used to qualify the user’s experience in an augmented reality environment (ARE, the development of alternative geospatial referencing systems, as well as the potential use of ARET to treat social phobia. Overall, it may be said that the use of ARET, although promising, is still in its infancy but that, given a continued cooperation between clinical and technical teams, ARET has the potential of going well beyond the treatment of small animal phobia.

  15. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  16. Virtual reality-based simulation system for nuclear and radiation safety SuperMC/RVIS

    Energy Technology Data Exchange (ETDEWEB)

    He, T.; Hu, L.; Long, P.; Shang, L.; Zhou, S.; Yang, Q.; Zhao, J.; Song, J.; Yu, S.; Cheng, M.; Hao, L., E-mail: liqin.hu@fds.org.cn [Chinese Academy of Sciences, Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Hefei, Anhu (China)

    2015-07-01

    The suggested work scenarios in radiation environment need to be iterative optimized according to the ALARA principle. Based on Virtual Reality (VR) technology and high-precision whole-body computational voxel phantom, a virtual reality-based simulation system for nuclear and radiation safety named SuperMC/RVIS has been developed for organ dose assessment and ALARA evaluation of work scenarios in radiation environment. The system architecture, ALARA evaluation strategy, advanced visualization methods and virtual reality technology used in SuperMC/RVIS are described. A case is presented to show its dose assessment and interactive simulation capabilities. (author)

  17. Virtual reality-based simulation system for nuclear and radiation safety SuperMC/RVIS

    International Nuclear Information System (INIS)

    He, T.; Hu, L.; Long, P.; Shang, L.; Zhou, S.; Yang, Q.; Zhao, J.; Song, J.; Yu, S.; Cheng, M.; Hao, L.

    2015-01-01

    The suggested work scenarios in radiation environment need to be iterative optimized according to the ALARA principle. Based on Virtual Reality (VR) technology and high-precision whole-body computational voxel phantom, a virtual reality-based simulation system for nuclear and radiation safety named SuperMC/RVIS has been developed for organ dose assessment and ALARA evaluation of work scenarios in radiation environment. The system architecture, ALARA evaluation strategy, advanced visualization methods and virtual reality technology used in SuperMC/RVIS are described. A case is presented to show its dose assessment and interactive simulation capabilities. (author)

  18. [Virtual reality in neurosurgery].

    Science.gov (United States)

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  19. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  20. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    Science.gov (United States)

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  1. Developing Home-Based Virtual Reality Therapy Interventions.

    Science.gov (United States)

    Lin, Janice; Kelleher, Caitlin L; Engsberg, Jack R

    2013-02-01

    Stroke is one of the leading causes of serious long-term disability. However, home exercise programs given at rehabilitation often lack in motivational aspects. The purposes of this pilot study were (1) create individualized virtual reality (VR) games and (2) determine the effectiveness of VR games for improving movement in upper extremities in a 6-week home therapy intervention for persons with stroke. Participants were two individuals with upper extremity hemiparesis following a stroke. VR games were created using the Looking Glass programming language and modified based on personal interests, goals, and abilities. Participants were asked to play 1 hour each day for 6 weeks. Assessments measured upper extremity movement (range of motion and Action Research Arm Test [ARAT]) and performance in functional skills (Canadian Occupational Performance Measure [COPM] and Motor Activity Log [MAL]). Three VR games were created by a supervised occupational therapist student. The participants played approximately four to six times a week and performed over 100 repetitions of movements each day. Participants showed improvement in upper extremity movement and participation in functional tasks based on results from the COPM, ARAT, and MAL. Further development in the programming environment is needed to be plausible in a rehabilitation setting. Suggestions include graded-level support and continuation of creating a natural programming language, which will increase the ability to use the program in a rehabilitation setting. However, the VR games were shown to be effective as a home therapy intervention for persons with stroke. VR has the potential to advance therapy services by creating a more motivating home-based therapy service.

  2. Virtual Reality in Neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Stasieńko Agnieszka

    2016-12-01

    Full Text Available This article includes current information on the use of modern IT solutions and virtual-reality (VR-based technologies in medical rehabilitation. A review of current literature on VR-based interventions and their indications, benefits and limitations in patients with nervous system diseases was conducted. The popularity of VR-based training as a tool used for rehabilitation of patients with acute and chronic deficits in both sensory-motor and cognitive disorders is increasing. Still, there is a need for large randomized trials to evaluate the efficacy and safety of VR-based rehabilitation techniques in different disease entities. .

  3. Virtual reality for spherical images

    Science.gov (United States)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  4. Virtual reality based experiential cognitive treatment of anorexia nervosa.

    Science.gov (United States)

    Riva, G; Bacchetta, M; Baruffi, M; Rinaldi, S; Molinari, E

    1999-09-01

    The treatment of a 22-year old female university student diagnosed with Anorexia Nervosa is described. In the study the Experiential Cognitive Therapy (ECT) was used: a relatively short-term, integrated, patient oriented approach that focuses on individual discovery. Main characteristic of this approach is the use of Virtual Reality, a new technology that allows the user to be immersed in a computer-generated virtual world. At the end of the in-patient treatment, the subject increased her bodily awareness joined to a reduction in her level of body dissatisfaction. Moreover, the patient presented a high degree of motivation to change. The results are discussed with regard to Vitousek, Watson and Wilson (1998, Clinical Psychology Review, 18(4), 391-420) proposal of using the Socratic Method to face denial and resistance of anorectic patients.

  5. Assessment method of digital Chinese dance movements based on virtual reality technology

    Science.gov (United States)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  6. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training

    DEFF Research Database (Denmark)

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi

    2017-01-01

    PURPOSE: To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. DESIGN: Multicenter masked clinical trial. PARTICIPANTS: Eighteen cataract...... surgeons with different levels of experience. METHODS: Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. MAIN OUTCOME MEASURES: Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated...... task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. RESULTS: Novices (non...

  7. Virtual-reality-based educational laboratories in fiber optic engineering

    Science.gov (United States)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  8. Virtual Reality and Public Administration

    Directory of Open Access Journals (Sweden)

    István TÓZSA

    2013-02-01

    Full Text Available This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected breakthrough of usage has not ensued. The virtual reality form of public administration services recommended in this study has the most attractive outlay and the simplest navigation tools if compared to ‘traditional’ Internet based e-government. Thus, in accordance with the worldwide amazingly quick spread of the virtual reality systems of Second Life and 3 D types of entertainment, virtual reality applications in public administration could rely on a wide range of acceptance as well.

  9. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  10. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  11. Virtual Reality and Education.

    Science.gov (United States)

    Helsel, Sandra

    1992-01-01

    Intended to provide a basic understanding of virtual reality (VR) from an educational perspective, this article describes the debate between conceptual and technological orientations to VR; the conceptual orientation to VR; technological definitions of VR, artificial reality, and cyberspace; dimensions of VR; and VR's impact on education. (11…

  12. Interpretations of virtual reality.

    Science.gov (United States)

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  13. Virtual realities and education

    Directory of Open Access Journals (Sweden)

    Curcio Igor D.D.

    2016-12-01

    Full Text Available The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are strongly related to a well-designed theoretical framework.

  14. Virtual-reality-based system for controlled study of cataplexy

    Science.gov (United States)

    Augustine, Kurt E.; Cameron, Bruce M.; Camp, Jon J.; Krahn, Lois E.; Robb, Richard A.

    2002-05-01

    Cataplexy is a sudden loss of voluntary muscle control experienced by narcolepsy patients. It is usually triggered by strong, spontaneous emotions and is more common in times of stress. The Sleep Disorders Unit and the Biomedical Imaging Resource at Mayo Clinic are developing interactive display technology for reliably inducing cataplexy during clinical monitoring. The project is referred to as the Cataplexy/Narcolepsy Activation Program, or CatNAP. We have developed an automobile driving simulation that introduces humorous, surprising, and stress-inducing events and objects as the patient attempts to navigate a vehicle through a virtual town. The patient wears a head-mounted display and controls the vehicle via a driving simulator steering wheel and pedal cluster. As the patient attempts to drive through the town, various objects, sounds or conditions occur that distract, startle, frustrate or amuse. These responses may trigger a cataplectic episode, which can then be clinically evaluated. We believe CatNAP is a novel and innovative example of the effective application of virtual reality technology to study an important clinical problem that has resisted previous approaches. An evaluation phase with volunteer patients previously diagnosed with cataplexy has been completed. The prototype system is being prepared for a full clinical study.

  15. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...

  16. Virtual Reality: Principles and Applications

    OpenAIRE

    MÉRIENNE , Frédéric

    2017-01-01

    Virtual reality aims at immersing a user in a virtual environment. Dedicated virtual reality technologies of human–computer interaction enable to make the link between the user and a virtual environment in capturing the user’s motion, acting on his senses as well as computing the virtual experience in real-time. The immersion in virtual environment is evaluated through the user’s perception and reaction. Virtual reality is used in a large variety of application domains which need multisensory...

  17. [Virtual + 1] * Reality

    Science.gov (United States)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  18. Virtual Reality and the Virtual Library.

    Science.gov (United States)

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  19. Applied virtual reality

    International Nuclear Information System (INIS)

    Yule, I.Y.; Lee, D.J.

    1996-01-01

    To reduce plant down time during irradiated fuel cell dismantling at Torness Power Station, a new visualisation technique has been used for the manipulator. Complex computer graphics packages were used to provide a ''Virtual Reality'' environment which allowed the Irradiated Fuel Dismantling Cell to be simulated. Significant cost savings have been achieved due to reductions in lost output. The virtual reality environment is at present being extended to the design and deployment of a new manipulator for in-vessel inspection of the boiler. (UK)

  20. Virtual reality for employability skills

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    We showed a variety of virtual reality technologies, and through examples, we discussed how virtual reality technology is transforming work styles and workplaces. Virtual reality is becoming pervasive in almost all domains starting from arts, environmental causes to medical education and disaster management training, and to supporting patients with Dementia. Thus, an awareness of the virtual reality technology and its integration in curriculum design will provide and enhance employability ski...

  1. Virtual Reality in the Classroom.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  2. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    Science.gov (United States)

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  3. Target based drug design - a reality in virtual sphere.

    Science.gov (United States)

    Verma, Saroj; Prabhakar, Yenamandra S

    2015-01-01

    The target based drug design approaches are a series of computational procedures, including visualization tools, to support the decision systems of drug design/discovery process. In the essence of biological targets shaping the potential lead/drug molecules, this review presents a comprehensive position of different components of target based drug design which include target identification, protein modeling, molecular dynamics simulations, binding/catalytic sites identification, docking, virtual screening, fragment based strategies, substructure treatment of targets in tackling drug resistance, in silico ADMET, structural vaccinology, etc along with the key issues involved therein and some well investigated case studies. The concepts and working of these procedures are critically discussed to arouse interest and to advance the drug research.

  4. A computer-based training system combining virtual reality and multimedia

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment: The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system

  5. Virtual Reality-Based Technologies in Dental Medicine: Knowledge, Attitudes and Practice among Students and Practitioners

    Science.gov (United States)

    Sabalic, Maja; Schoener, Jason D.

    2017-01-01

    Virtual reality-based technologies have been used in dentistry for almost two decades. Dental simulators, planning software and CAD/CAM (computer-aided design/computer-aided manufacturing) systems have significantly developed over the years and changed both dental education and clinical practice. This study aimed to assess the knowledge, attitudes…

  6. Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism

    Science.gov (United States)

    Ke, Fengfeng; Im, Tami

    2013-01-01

    Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…

  7. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…

  8. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    Science.gov (United States)

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  9. Application of Virtual Reality to Radiation Protection

    International Nuclear Information System (INIS)

    Lamela, B.; Felipe, A.; Sanchez-Mayoral, M. L.; Mreino, A.; Sarti, F.

    2004-01-01

    In order to optimize the operations and procedures in several aspects of a Nuclear Power Plants, Iberdrola Ingenieria y Consultoria (Iberinco) has been developed some projects with Virtual Reality: CIPRES, ACEWO, TILOS and SICOMORO. With the experience acquired in these projects, Iberinco has checked the utility and advantageous of Virtual Reality applications that could have a direct application to Radiation Protection. With Virtual Reality it is possible to optimize the procedures involved in several critical aspects of the Plant Management. A training program bases on Virtual Reality systems could be one of the most important application. In Emergency situations the time of reaction is very important and in order to reduce it and dose, Virtual Reality is a very important tool, that could be used for training and to guide response team actions. Finally, the reduction of dose to workers, in a NPP, and patients, in hospital, is one of the most important application of Virtual Reality. (Author) 5 refs

  10. Virtual Reality Hysteroscopy

    Science.gov (United States)

    Levy

    1996-08-01

    New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.

  11. Research of nuclear power plant in-service maintenance based on virtual reality

    International Nuclear Information System (INIS)

    Wang Yong; Kuang Weijun

    2015-01-01

    This paper presents a method of constructing nuclear power plant in-service maintenance virtual simulation scene and virtual maintenance process. Taking air baffles dismantling process of CAP1400(China Advanced Passive 1400) nuclear power plant as an instance, this paper discusses ergonomics, space analysis, time assessment based on virtual reality in the process of in-service maintenance. It demonstrates the advantage of using VR technology to design and verify in-service maintenance process of nuclear power plant compared to the conventional way. (author)

  12. The Reality of Virtual Reality Product Development

    Science.gov (United States)

    Dever, Clark

    Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.

  13. Simulators and virtual reality in surgical education.

    Science.gov (United States)

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  14. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large

  15. Applied virtual reality

    International Nuclear Information System (INIS)

    Yule, I.Y.; Lee, D.J.

    1996-01-01

    An early experience in deploying a manipulator to the Irradiated Fuel Dismantling Cell at Torness Power Station, quickly highlighted that special visualisation techniques were required to achieve a successful deployment and reduce plant system down time. This visualisation was later realised through the IGRIP software pakcage operating on a Silicon Graphics computing engine, which provides a 'Non-Immersive' Virtual Reality environment. Within this environment, models of the Irradiated Fuel Dismantling cell were generated along with a model of the manipulator, allowing manipulator deployment to the Irradiated Fuel Dismantling Cell be modelled. It is estimated that the first use of this new environment provided a significant saving to Scottish Nuclear in potential lost output. The use of this virtual reality environment is currently being extended into the design and deployment of a new manipulator for Torness in vessel inspection, the Boiler Inspection Manipulator. (author)

  16. Virtual reality in pediatric psychology

    OpenAIRE

    Parsons, T. D.; Riva, G.; Parsons, S. J.; Mantovani, F.; Newbutt, N.; Lin, L.; Venturini, E.; Hall, T.

    2017-01-01

    Virtual reality technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context virtual reality can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disab...

  17. Simulated maintenance a virtual reality

    International Nuclear Information System (INIS)

    Lirvall, P.

    1995-01-01

    The article describes potential applications of personal computer-based virtual reality software. The applications are being investigated by Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories for the Canadian deuterium-uranium (Candu) reactor. Objectives include: (1) reduction of outage duration and improved safety, (2) cost-effective and safe maintenance of equipment, (3) reduction of exposure times and identification of overexposure situations, (4) cost-effective training in a virtual control room simulator, (5) human factors evaluation of design interface, and (6) visualization of conceptual and detailed designs of critical nuclear field environments. A demonstration model of a typical reactor control room, the use of virtual reality in outage planning, and safety issues are outlined

  18. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    Science.gov (United States)

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  19. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  20. Learning Rationales and Virtual Reality Technology in Education.

    Science.gov (United States)

    Chiou, Guey-Fa

    1995-01-01

    Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…

  1. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    Science.gov (United States)

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  2. Promoting Therapists? Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation

    OpenAIRE

    Levac, Danielle E.; Glegg, Stephanie M. N.; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E.; Velikonja, Diana

    2016-01-01

    Purpose Therapists use motor learning strategies (MLSs) to structure practice conditions within stroke rehabilitation. Virtual reality (VR)-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use. Method A pre-post design evaluated a knowledge translation (KT) intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Sel...

  3. Military use of Virtual Reality

    OpenAIRE

    Gullaksen, Rasmus; Nielsen, Kristoffer Merrild; Siegel, Viktor; Labuz, Patrick Ravn

    2017-01-01

    This project is sparked by the contemporary evolvement that has been happening with consumer Virtual Reality technology and an interest for looking into the military industrial complex. The paper describes how Virtual Reality as a concept has evolved historically since the 19th century and how it has since entered the military and consumer market. The implementation of Virtual Reality is described in order to analyse it by using Technology-Oriented Scenario Analysis, as described by Francesco...

  4. Art in virtual reality 2010

    Science.gov (United States)

    Chang, Ben

    2010-01-01

    For decades, virtual reality artwork has existed in a small but highly influential niche in the world of electronic and new media art. Since the early 1990's, virtual reality installations have come to define an extreme boundary point of both aesthetic experience and technological sophistication. Classic virtual reality artworks have an almost mythological stature - powerful, exotic, and often rarely exhibited. Today, art in virtual environments continues to evolve and mature, encompassing everything from fully immersive CAVE experiences to performance art in Second Life to the use of augmented and mixed reality in public space. Art in Virtual Reality 2010 is a public exhibition of new artwork that showcases the diverse ways that contemporary artists use virtual environments to explore new aesthetic ground and investigate the continually evolving relationship between our selves and our virtual worlds.

  5. Preoperative surgical planning and simulation of complex cranial base tumors in virtual reality

    Institute of Scientific and Technical Information of China (English)

    YI Zhi-qiang; LI Liang; MO Da-peng; ZHANG Jia-yong; ZHANG Yang; BAO Sheng-de

    2008-01-01

    @@ The extremely complex anatomic relationships among bone,tumor,blood vessels and cranial nerves remains a big challenge for cranial base tumor surgery.Therefore.a good understanding of the patient specific anatomy and a preoperative planning are helpful and crocial for the neurosurgeons.Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.1 We used the Destroscope Virtual Reality (VR) System (Singapore,Volume Interaction Pte Ltd,software:RadioDexterTM 1.0) to optimize preoperative plan in the complex cranial base tumors.This system uses patient-specific,coregistered,fused radiology data sets that may be viewed stereoscopically and can be manipulated in a virtual reality environment.This article describes our experience with the Destroscope VR system in preoperative surgical planning and simulation for 5 patients with complex cranial base tumors and evaluates the clinical usefulness of this system.

  6. A review of virtual reality based training simulators for orthopaedic surgery.

    Science.gov (United States)

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Virtual reality exposure therapy for social phobia

    OpenAIRE

    Herbelin, Bruno

    2005-01-01

    This thesis presents researches and experiments performed in collaboration with a psychiatrist in order to validate and improve the use of virtual reality in social phobia psychotherapy. Cognitive and behavioral therapies are strongly based on the exposure to anxiety provoking stimuli. Virtual reality seems to be appropriate for such exposures as it allows for on-demand reproduction of reality. The idea has been validated for the treatment of various phobias but is more delicate in the case o...

  8. Virtual reality at work

    Science.gov (United States)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  9. Informing Informal Caregivers About Dementia Through an Experience-Based Virtual Reality Game

    DEFF Research Database (Denmark)

    Møller Jensen, Jette; Hageman, Michelle; Bang Løyche Lausen, Patrick

    2018-01-01

    In 2017 it was believed that nearly 50mio people suffered from dementia. Besides the actual patients, the group that is mostly affected by this disease are informal caregivers. Informal caregivers -- people without a formal education in the field of health care -- can suffer from severe physical-......-based Virtual Reality game and how it can inform informal caregivers about symptoms of dementia. Our initial exploration demonstrates the potential that such a game holds in supporting informal caregivers....

  10. A review of virtual reality based training simulators for orthopaedic surgery

    OpenAIRE

    Vaughan, Neil; Dubey, Venketesh N.; Wainwright, Tom; Middleton, Robert

    2015-01-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 total hip replacement pre-operative planning tools were analysed, plus 9 hip trauma fracture tr...

  11. Teaching Basic Field Skills Using Screen-Based Virtual Reality Landscapes

    Science.gov (United States)

    Houghton, J.; Robinson, A.; Gordon, C.; Lloyd, G. E. E.; Morgan, D. J.

    2016-12-01

    We are using screen-based virtual reality landscapes, created using the Unity 3D game engine, to augment the training geoscience students receive in preparing for fieldwork. Students explore these landscapes as they would real ones, interacting with virtual outcrops to collect data, determine location, and map the geology. Skills for conducting field geological surveys - collecting, plotting and interpreting data; time management and decision making - are introduced interactively and intuitively. As with real landscapes, the virtual landscapes are open-ended terrains with embedded data. This means the game does not structure student interaction with the information as it is through experience the student learns the best methods to work successfully and efficiently. These virtual landscapes are not replacements for geological fieldwork rather virtual spaces between classroom and field in which to train and reinforcement essential skills. Importantly, these virtual landscapes offer accessible parallel provision for students unable to visit, or fully partake in visiting, the field. The project has received positive feedback from both staff and students. Results show students find it easier to focus on learning these basic field skills in a classroom, rather than field setting, and make the same mistakes as when learning in the field, validating the realistic nature of the virtual experience and providing opportunity to learn from these mistakes. The approach also saves time, and therefore resources, in the field as basic skills are already embedded. 70% of students report increased confidence with how to map boundaries and 80% have found the virtual training a useful experience. We are also developing landscapes based on real places with 3D photogrammetric outcrops, and a virtual urban landscape in which Engineering Geology students can conduct a site investigation. This project is a collaboration between the University of Leeds and Leeds College of Art, UK, and all

  12. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    Science.gov (United States)

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  13. [Effectiveness of a programme based on a virtual reality game for cognitive enhancement in schizophrenia].

    Science.gov (United States)

    López-Martín, Olga; Segura Fragoso, Antonio; Rodríguez Hernández, Marta; Dimbwadyo Terrer, Iris; Polonio-López, Begoña

    2016-01-01

    To evaluate the effectiveness of a programme based on a virtual reality game to improve cognitive domains in patients with schizophrenia. A randomized controlled trial was conducted in 40 patients with schizophrenia, 20 in the experimental group and 20 in the control group. The experimental group received 10 sessions with Nintendo Wii(®) for 5 weeks, 50 minutes/session, 2 days/week in addition to conventional treatment. The control group received conventional treatment only. Statistically significant differences in the T-Score were found in 5 of the 6 cognitive domains assessed: processing speed (F=12.04, p=0.001), attention/vigilance (F=12.75, p=0.001), working memory (F=18.86, p virtual reality interventions aimed at cognitive training have great potential for significant gains in different cognitive domains assessed in patients with schizophrenia. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.

  14. Virtual Reality: A Definition History - A Personal Essay

    OpenAIRE

    Bryson, Steve

    2013-01-01

    This essay, written in 1998 by an active participant in both virtual reality development and the virtual reality definition debate, discusses the definition of the phrase "Virtual Reality" (VR). I start with history from a personal perspective, concentrating on the debate between the "Virtual Reality" and "Virtual Environment" labels in the late 1980's and early 1990's. Definitions of VR based on specific technologies are shown to be unsatisfactory. I propose the following definition of VR, b...

  15. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  16. Virtual Reality, Combat, and Communication.

    Science.gov (United States)

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  17. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System

    Directory of Open Access Journals (Sweden)

    Deepesh Kumar

    2018-01-01

    Full Text Available Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM. The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels.

  18. Surgery applications of virtual reality

    Science.gov (United States)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  19. A virtual tour of virtual reality

    Science.gov (United States)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  20. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  1. VIRTUAL REALITY HYPNOSIS.

    Science.gov (United States)

    Askay, Shelley Wiechman; Patterson, David R; Sharar, Sam R

    2009-03-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis.The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research.In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  2. Two Innovative Steps for Training on Maintenance: 'VIRMAN' Spanish Project based on Virtual Reality 'STARMATE' European Project based on Augmented Reality

    International Nuclear Information System (INIS)

    Gonzalez Anez, Francisco

    2002-01-01

    This paper presents two development projects (STARMATE and VIRMAN) focused on supporting training on maintenance. Both projects aim at specifying, designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Augmented and Virtual Reality techniques. VIRMAN is a Spanish development project. The objective is to create a computer tool for maintenance training course elaborations and training delivery based on 3D virtual reality models of complex components. The training delivery includes 3D record displays on maintenance procedures with all complementary information for intervention understanding. Users are requested to perform the maintenance intervention trying to follow up the procedure. Users can be evaluated about the level of knowledge achieved. Instructors can check the evaluation records left during the training sessions. VIRMAN is simple software supported by a regular computer and can be used in an Internet framework. STARMATE is a forward step in the area of virtual reality. STARMATE is a European Commission project in the frame of 'Information Societies Technologies'. A consortium of five companies and one research institute shares their expertise in this new technology. STARMATE provides two main functionalities (1) user assistance for achieving assembly/de-assembly and following maintenance procedures, and (2) workforce training. The project relies on Augmented Reality techniques, which is a growing area in Virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene, generated by a computer, augmenting the reality with additional information. The user interface is see-through goggles, headphones, microphone and an optical tracking system. All these devices are integrated in a helmet connected with two regular computers. The user has his hands free for performing the maintenance intervention and he can navigate in the virtual

  3. Archaeology, museums and virtual reality

    Directory of Open Access Journals (Sweden)

    Laia Pujol

    2004-04-01

    Full Text Available This article looks at the idea that the virtual archaeological reconstructions seen in museums cannot be considered Virtual Reality (VR as they are based on an artistic conception of the discipline. The cause is to be found in the origins of Archaeology, which began in the 18th century and was closely linked to the History of Art. In the era of New Technologies, this concept has become both the cause and the consequence: determining the characteristics of VR from within the discipline, whilst simultaneously reinforcing the virtual reconstructions.To assess the relationship between VR and Archaeology, we must first establish a definition of Virtual Reality. Subsequently, we can take a brief look at the history so as to be able to understand the evolution of Archaeology and museums. This leads us to the analysis of some examples of VR in museums, from which we can gain conclusions on the current use of VR. Finally, we look at the possibilities for VR in terms of publicising Archaeology.

  4. Live-action Virtual Reality Games

    OpenAIRE

    Valente, Luis; Clua, Esteban; Silva, Alexandre Ribeiro; Feijó, Bruno

    2016-01-01

    This paper proposes the concept of "live-action virtual reality games" as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, context-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are "live-action games" because a player physically acts out (using his/her real body and senses) his/her "avatar" (his/her virtual representation) in t...

  5. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  6. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    Science.gov (United States)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  7. Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.

    Science.gov (United States)

    Man, David W K

    2018-05-08

    Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.

  8. Virtual reality via photogrammetry

    Science.gov (United States)

    Zahrt, John D.; Papcun, George; Childers, Randy A.; Rubin, Naama

    1996-03-01

    We wish to walk into a photograph just as Alice walked into the looking glass. From a mathematical perspective, this problem is exceedingly ill-posed (e.g. Is that a large, distant object or a small, nearby object?). A human expert can supply a large amount of a priori information that can function as mathematical constraints. The constrained problem can then be attacked with photogrammetry to obtain a great deal of quantitative information which is otherwise only qualitatively apparent. The user determines whether the object to be analyzed contains two or three vanishing points, then selects an appropriate number of points from the photon to enable the code to compute the locations of the vanishing points. Using this information and the standard photogrammetric geometric algorithms, the location of the camera, relative to the structure, is determined. The user must also enter information regarding an absolute sense of scale. As the vectors from the camera to the various points chosen from the photograph are determined, the vector components (coordinates) are handed to a virtual reality software package. Once the objects are entered, the appropriate surfaces of the 3D object are `wallpapered' with the surface from the photograph. The user is then able to move through the virtual scene. A video will demonstrate our work.

  9. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2011-09-07

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness. To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke. We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers. Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information. We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for arm function (standardised

  10. Virtual reality in surgical training.

    Science.gov (United States)

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  11. Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency.

    Science.gov (United States)

    Hogg, Melissa E; Tam, Vernissia; Zenati, Mazen; Novak, Stephanie; Miller, Jennifer; Zureikat, Amer H; Zeh, Herbert J

    Hepatobiliary surgery is a highly complex, low-volume specialty with long learning curves necessary to achieve optimal outcomes. This creates significant challenges in both training and measuring surgical proficiency. We hypothesize that a virtual reality curriculum with mastery-based simulation is a valid tool to train fellows toward operative proficiency. This study evaluates the content and predictive validity of robotic simulation curriculum as a first step toward developing a comprehensive, proficiency-based pathway. A mastery-based simulation curriculum was performed in a virtual reality environment. A pretest/posttest experimental design used both virtual reality and inanimate environments to evaluate improvement. Participants self-reported previous robotic experience and assessed the curriculum by rating modules based on difficulty and utility. This study was conducted at the University of Pittsburgh Medical Center (Pittsburgh, PA), a tertiary care academic teaching hospital. A total of 17 surgical oncology fellows enrolled in the curriculum, 16 (94%) completed. Of 16 fellows who completed the curriculum, 4 fellows (25%) achieved mastery on all 24 modules; on average, fellows mastered 86% of the modules. Following curriculum completion, individual test scores improved (p < 0.0001). An average of 2.4 attempts was necessary to master each module (range: 1-17). Median time spent completing the curriculum was 4.2 hours (range: 1.1-6.6). Total 8 (50%) fellows continued practicing modules beyond mastery. Survey results show that "needle driving" and "endowrist 2" modules were perceived as most difficult although "needle driving" modules were most useful. Overall, 15 (94%) fellows perceived improvement in robotic skills after completing the curriculum. In a cohort of board-certified general surgeons who are novices in robotic surgery, a mastery-based simulation curriculum demonstrated internal validity with overall score improvement. Time to complete the

  12. A Review on Virtual Reality

    OpenAIRE

    Pallavi Halarnkar; Sahil Shah; Harsh Shah; Hardik Shah; Anuj Shah

    2012-01-01

    Virtual Reality is a major asset and aspect of our future. It is the key to experiencing, feeling and touching the past, present and the future. It is the medium of creating our own world, our own customized reality. It could range from creating a video game to having a virtual stroll around the universe, from walking through our own dream house to experiencing a walk on an alien planet. With virtual reality, we can experience the most intimidating and gruelling situations by playing safe and...

  13. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  14. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  15. Interrater Reliability of the Power Mobility Road Test in the Virtual Reality-Based Simulator-2.

    Science.gov (United States)

    Kamaraj, Deepan C; Dicianno, Brad E; Mahajan, Harshal P; Buhari, Alhaji M; Cooper, Rory A

    2016-07-01

    To assess interrater reliability of the Power Mobility Road Test (PMRT) when administered through the Virtual Reality-based SIMulator-version 2 (VRSIM-2). Within-subjects repeated-measures design. Participants interacted with VRSIM-2 through 2 display options (desktop monitor vs immersive virtual reality screens) using 2 control interfaces (roller system vs conventional movement-sensing joystick), providing 4 different driving scenarios (driving conditions 1-4). Participants performed 3 virtual driving sessions for each of the 2 display screens and 1 session through a real-world driving course (driving condition 5). The virtual PMRT was conducted in a simulated indoor office space, and an equivalent course was charted in an open space for the real-world assessment. After every change in driving condition, participants completed a self-reported workload assessment questionnaire, the Task Load Index, developed by the National Aeronautics and Space Administration. A convenience sample of electric-powered wheelchair (EPW) athletes (N=21) recruited at the 31st National Veterans Wheelchair Games. Not applicable. Total composite PMRT score. The PMRT had high interrater reliability (intraclass correlation coefficient [ICC]>.75) between the 2 raters in all 5 driving conditions. Post hoc analyses revealed that the reliability analyses had >80% power to detect high ICCs in driving conditions 1 and 4. The PMRT has high interrater reliability in conditions 1 and 4 and could be used to assess EPW driving performance virtually in VRSIM-2. However, further psychometric assessment is necessary to assess the feasibility of administering the PMRT using the different interfaces of VRSIM-2. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    Science.gov (United States)

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  17. Cochrane review: virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  18. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    Science.gov (United States)

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  19. Virtuality and Reality in Science

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1995-01-01

    This book compiles eight contributions devoted to the topical question about the relation between virtuality and reality. In the theoretical frame of quantum and relativistic particle physics, the concept of virtuality is used according to its strict and precise meaning. In this context, particles are generally invented before their discovery. Some famous historical experiments which led to the postulation and then the discovery of new particles are mentioned. These examples are used to illustrate and to discuss the concept of virtuality as well as the physical reality of virtual processes. But, how can the concept of virtuality in other scientific fields be applied ? In order to answer this question, the concepts of virtuality and reality are discussed in other branches of physics as well as in other fields such as geophysics, cosmology and biology. Philosophical and sociological implications of virtual realities are also considered. Moreover, in relation to virtuality and reality, the connections between modeling, simulation and experimentation, their respective roles, the advantages and risks of their use are discussed (in relation to nuclear sciences and geophysical problems) (N.T.)

  20. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults

    Science.gov (United States)

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-01-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes. PMID:27004233

  1. Attentional Demand of a Virtual Reality-Based Reaching Task in Nondisabled Older Adults.

    Science.gov (United States)

    Chen, Yi-An; Chung, Yu-Chen; Proffitt, Rachel; Wade, Eric; Winstein, Carolee

    2015-12-01

    Attention during exercise is known to affect performance; however, the attentional demand inherent to virtual reality (VR)-based exercise is not well understood. We used a dual-task paradigm to compare the attentional demands of VR-based and non-VR-based (conventional, real-world) exercise: 22 non-disabled older adults performed a primary reaching task to virtual and real targets in a counterbalanced block order while verbally responding to an unanticipated auditory tone in one third of the trials. The attentional demand of the primary reaching task was inferred from the voice response time (VRT) to the auditory tone. Participants' engagement level and task experience were also obtained using questionnaires. The virtual target condition was more attention demanding (significantly longer VRT) than the real target condition. Secondary analyses revealed a significant interaction between engagement level and target condition on attentional demand. For participants who were highly engaged, attentional demand was high and independent of target condition. However, for those who were less engaged, attentional demand was low and depended on target condition (i.e., virtual > real). These findings add important knowledge to the growing body of research pertaining to the development and application of technology-enhanced exercise for elders and for rehabilitation purposes.

  2. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    OpenAIRE

    Juliana M. Rodrigues-Baroni; Lucas R. Nascimento; Louise Ada; Luci F. Teixeira-Salmela

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of rando...

  3. Virtual reality in surgery and medicine.

    Science.gov (United States)

    Chinnock, C

    1994-01-01

    This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time

  4. Virtual reality-based prospective memory training program for people with acquired brain injury.

    Science.gov (United States)

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  5. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients.

    Science.gov (United States)

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-06-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.

  6. Virtual Realities and the Future of Text.

    Science.gov (United States)

    Marcus, Stephen

    1992-01-01

    Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)

  7. Construction of educational application system for calligraphy master based on virtual reality; Virtual reality wo mochiita shodo shutoku no tame no kyoikuteki oyo system no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Muranaka, N.; Imanishi, S. [Kansai University, Osaka (Japan)

    1997-10-20

    Technique of virtual reality has been becoming popular in various fields including education because of its remarkable technique progress. There are the three useful elements of `presence`, `interaction` and `autonomy` in realizing the virtual reality. Here, we are focusing on the `presence` in constructing a simple supporting system for calligraphy education. We take advantage of the virtual image with reality to use as an educational interface because the virtual image and the real image are overlapped by showing the visual scene in the system. It is general that the unity of the virtual image and the real image has been processed as the stationary pictures by using `See-through HMD` and so on. In this paper, by using half mirror in stead of using the HMD with restraint, we are released from its restrainable sense. The virtual image and the real image are laid to overlap as the mobile pictures. The virtual hand replays the character inputted on the tablet by the excellent calligrapher. A calligraphic trainee is practicing overlapping the virtual hand which is reflected at the half mirror, while the trainee is doing the character on the tablet in the handwriting. The trainee is repeatedly practicing with feedback and is getting better in handwriting the character. It is shown in the good expermental results that the system has a proven effectiveness. 9 refs., 12 figs., 2 tabs.

  8. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    Science.gov (United States)

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  9. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  10. Reality in Virtual Learning

    DEFF Research Database (Denmark)

    Lindberg, Frank; Pettersson, Michael

    professors most often decide what and when one could learn by providing the context and substance. In this perspective, the student has a role which is close to the one of a passive receiver, and s/he is mainly preoccupied with the problem of generating substance in memory most efficiently. Today, technology......-time educational logic. There are fewer attempts to use ICT according to a different pedagogical perspective than the old professor authoritarian model. The purpose of this paper is to illuminate some challenges virtual students experience when facing a new ICT-based learning situation. We will try to explore...... and develop understandings of what it might mean to be a student when learning occurs within a virtual problem based learning landscape. When students are used to the traditional classroom, challenges appear in the twilight zone between two pedagogical practices. How do the students cope with challenges...

  11. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  12. Augmented reality (AR and virtual reality (VR applied in dentistry

    Directory of Open Access Journals (Sweden)

    Ta-Ko Huang

    2018-04-01

    Full Text Available The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR and augmented reality (AR starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Keywords: OSCE, Dental simulator, Augmented reality, Virtual reality, Dentistry

  13. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality (Conference Presentation)

    Science.gov (United States)

    Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.

    2017-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.

  14. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  15. Virtual reality-based simulators for spine surgery: a systematic review.

    Science.gov (United States)

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with

  16. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  17. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.

    Science.gov (United States)

    Baur, C; Guzzoni, D; Georg, O

    1998-01-01

    This paper describes the VIRGY project at the VRAI Group (Virtual Reality and Active Interface), Swiss Federal Institute of Technology (Lausanne, Switzerland). Since 1994, we have been investigating a variety of virtual-reality based methods for simulating laparoscopic surgery procedures. Our goal is to develop an endoscopic surgical training tool which realistically simulates the interactions between one or more surgical instruments and gastrointestinal organs. To support real-time interaction and manipulation between instruments and organs, we have developed several novel graphic simulation techniques. In particular, we are using live video texturing to achieve dynamic effects such as bleeding or vaporization of fatty tissues. Special texture manipulations allows us to generate pulsing objects while minimizing processor load. Additionally, we have created a new surface deformation algorithm which enables real-time deformations under external constraints. Lastly, we have developed a new 3D object definition which allows us to perform operations such as total or partial object cuttings, as well as to selectively render objects with different levels of detail. To provide realistic physical simulation of the forces and torques on surgical instruments encountered during an operation, we have also designed a new haptic device dedicated to endososcopic surgery constraints. We are using special interpolation and extrapolation techniques to integrate our 25 Hz visual simulation with the 300 Hz feedback required for realistic tactile interaction. The fully VIRGY simulator has been tested by surgeons and the quality of both our visual and haptic simulation has been judged sufficient for training basic surgery gestures.

  18. Validation of a virtual reality-based simulator for shoulder arthroscopy.

    Science.gov (United States)

    Rahm, Stefan; Germann, Marco; Hingsammer, Andreas; Wieser, Karl; Gerber, Christian

    2016-05-01

    This study was to determine face and construct validity of a new virtual reality-based shoulder arthroscopy simulator which uses passive haptic feedback. Fifty-one participants including 25 novices (100 shoulder arthroscopies) completed two tests: for assessment of face validity, a questionnaire was filled out concerning quality of simulated reality and training potential using a 7-point Likert scale (range 1-7). Construct validity was tested by comparing simulator metrics (operation time in seconds, camera and grasper pathway in centimetre and grasper openings) between novices and experts test results. Overall simulated reality was rated high with a median value of 5.5 (range 2.8-7) points. Training capacity scored a median value of 5.8 (range 3-7) points. Experts were significantly faster in the diagnostic test with a median of 91 (range 37-208) s than novices with 1177 (range 81-383) s (p < 0.0001) and in the therapeutic test 102 (range 58-283) s versus 229 (range 114-399) s (p < 0.0001). Similar results were seen in the other metric values except in the camera pathway in the therapeutic test. The tested simulator achieved high scores in terms of realism and training capability. It reliably discriminated between novices and experts. Further improvements of the simulator, especially in the field of therapeutic arthroscopy, might improve its value as training and assessment tool for shoulder arthroscopy skills. II.

  19. Evaluating Experiences in Different Virtual Reality Setups

    OpenAIRE

    Settgast , Volker; Pirker , Johanna; Lontschar , Stefan; Maggale , Stefan; Gütl , Christian

    2016-01-01

    Part 2: Use and Evaluation of Digital Entertainment; International audience; This paper describes the evaluation of three different scenarios in the fully immersive room-based virtual environment DAVE (Definitely Affordable Virtual Environment) and a head-mounted display, the Oculus Rift. The evaluation focuses on comparing the two immersive environments and three different scenarios (observation, emotion in a roller coaster, and interaction) in regards to typical virtual-reality characterist...

  20. A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.

    Science.gov (United States)

    Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson

    2017-01-01

    In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.

  1. A physiologically informed virtual reality based social communication system for individuals with autism.

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-04-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.

  2. Design and implementation of home-based virtual reality exposure therapy system with a virtual eCoach

    NARCIS (Netherlands)

    Hartanto, D.; Brinkman, W.P.; Kampmann, I.L.; Morina, N.; Emmelkamp, P.G.; Neerincx, M.A.

    2015-01-01

    Current developments of virtual reality exposure therapy (VRET) system focus mainly on systems that can be used in health clinics under the direct supervision of a therapist. Offering patients however the possibility to do this treatment at home would make VRET more accessible. In this paper we

  3. [Virtual reality in medical education].

    Science.gov (United States)

    Edvardsen, O; Steensrud, T

    1998-02-28

    Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.

  4. The use of virtual reality-based therapy to augment poststroke upper limb recovery

    Science.gov (United States)

    Samuel, Geoffrey S; Choo, Min; Chan, Wai Yin; Kok, Stanley; Ng, Yee Sien

    2015-01-01

    Stroke remains one of the major causes of disability worldwide. This case report illustrates the complementary use of biomechanical and kinematic in-game markers, in addition to standard clinical outcomes, to comprehensively assess and track a patient’s disabilities. A 65-year-old patient was admitted for right-sided weakness and clinically diagnosed with acute ischaemic stroke. She participated in a short trial of standard stroke occupational therapy and physiotherapy with additional daily virtual reality (VR)-based therapy. Outcomes were tracked using kinematic data and conventional clinical assessments. Her Functional Independence Measure score improved from 87 to 113 and Fugl-Meyer motor score improved from 56 to 62, denoting clinically significant improvement. Corresponding kinematic analysis revealed improved hand path ratios and a decrease in velocity peaks. Further research is being undertaken to elucidate the optimal type, timing, setting and duration of VR-based therapy, as well as the use of neuropharmacological adjuncts. PMID:26243983

  5. Investigation of virtual reality concept based on system analysis of conceptual series

    Science.gov (United States)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  6. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    Science.gov (United States)

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  7. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Directory of Open Access Journals (Sweden)

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  8. Virtual Reality Based Support System for Layout Planning and Programming of an Industrial Robotic Work Cell

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663

  9. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  10. Virtual Reality in Psychology

    Science.gov (United States)

    Foreman, Nigel

    2009-01-01

    The benefits of using virtual environments (VEs) in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include…

  11. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients.

    Science.gov (United States)

    Turon, Marc; Fernandez-Gonzalo, Sol; Jodar, Mercè; Gomà, Gemma; Montanya, Jaume; Hernando, David; Bailón, Raquel; de Haro, Candelaria; Gomez-Simon, Victor; Lopez-Aguilar, Josefina; Magrans, Rudys; Martinez-Perez, Melcior; Oliva, Joan Carles; Blanch, Lluís

    2017-12-01

    Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention. Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory. Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing. The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206.

  12. An introduction to virtual reality technology

    International Nuclear Information System (INIS)

    Louka, Michael N.

    1999-02-01

    This paper is a brief introduction to virtual reality technology. It discusses the meaning of the term 'Virtual Reality', introduces common hardware and software technology, and provides a brief overview of applications and research areas (author) (ml)

  13. Virtual reality system for treatment of the fear of public speaking using image-based rendering and moving pictures.

    Science.gov (United States)

    Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I

    2002-06-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.

  14. Implementing Virtual Reality Technology as an Effective Web Based Kiosk: Darulaman's Teacher Training College Tour (Ipda Vr Tour)

    Science.gov (United States)

    Fadzil, Azman

    2006-01-01

    At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…

  15. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills

    NARCIS (Netherlands)

    van Dongen, Koen W.; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J.; Grantcharov, Teodor P.; Hyltander, Anders; Schijven, Marlies P.; Stefani, Alessandro; van der Zee, David C.; Broeders, Ivo A. M. J.

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was

  16. Designing a proficiency-based, content validated virtual reality curriculum for laparoscopic colorectal surgery: A Delphi approach

    NARCIS (Netherlands)

    Palter, Vanessa N.; Graafland, Maurits; Schijven, Marlies P.; Grantcharov, Teodor P.

    2012-01-01

    Background. Although task training on virtual reality (VR) simulators has been shown to transfer to the operating room, to date no VR curricula have been described for advanced laparoscopic procedures. The purpose of this study was to develop a proficiency-based VR technical skills curriculum for

  17. Experience of Adult Facilitators in a Virtual-Reality-Based Social Interaction Program for Children with Autism

    Science.gov (United States)

    Ke, Fengfeng; Im, Tami; Xue, Xinrong; Xu, Xinhao; Kim, Namju; Lee, Sungwoong

    2015-01-01

    This phenomenological study explored and described the experiences and perceptions of adult facilitators who facilitated virtual-reality-based social interaction for children with autism. Extensive data were collected from iterative, in-depth interviews; online activities observation; and video analysis. Four salient themes emerged through the…

  18. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Wen-Chieh Yang

    2016-09-01

    Conclusion: This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD.

  19. Usual and Virtual Reality Video Game-Based Physiotherapy for Children and Youth with Acquired Brain Injuries

    Science.gov (United States)

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-01-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in…

  20. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills

    NARCIS (Netherlands)

    van Dongen, Koen W.; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J.; Grantcharov, Teodor P.; Hyltander, Anders; Schijven, Marlies P.; Stefani, Alessandro; van der Zee, David C.; Broeders, Ivo A. M. J.

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was

  1. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation

    Directory of Open Access Journals (Sweden)

    Verschure Paul FMJ

    2010-09-01

    Full Text Available Abstract Background Stroke is a frequent cause of adult disability that can lead to enduring impairments. However, given the life-long plasticity of the brain one could assume that recovery could be facilitated by the harnessing of mechanisms underlying neuronal reorganization. Currently it is not clear how this reorganization can be mobilized. Novel technology based neurorehabilitation techniques hold promise to address this issue. Here we describe a Virtual Reality (VR based system, the Rehabilitation Gaming System (RGS that is based on a number of hypotheses on the neuronal mechanisms underlying recovery, the structure of training and the role of individualization. We investigate the psychometrics of the RGS in stroke patients and healthy controls. Methods We describe the key components of the RGS and the psychometrics of one rehabilitation scenario called Spheroids. We performed trials with 21 acute/subacute stroke patients and 20 healthy controls to study the effect of the training parameters on task performance. This allowed us to develop a Personalized Training Module (PTM for online adjustment of task difficulty. In addition, we studied task transfer between physical and virtual environments. Finally, we assessed the usability and acceptance of the RGS as a rehabilitation tool. Results We show that the PTM implemented in RGS allows us to effectively adjust the difficulty and the parameters of the task to the user by capturing specific features of the movements of the arms. The results reported here also show a consistent transfer of movement kinematics between physical and virtual tasks. Moreover, our usability assessment shows that the RGS is highly accepted by stroke patients as a rehabilitation tool. Conclusions We introduce a novel VR based paradigm for neurorehabilitation, RGS, which combines specific rehabilitative principles with a psychometric evaluation to provide a personalized and automated training. Our results show that the

  2. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation.

    Science.gov (United States)

    Cameirão, Mónica S; Badia, Sergi Bermúdez I; Oller, Esther Duarte; Verschure, Paul F M J

    2010-09-22

    Stroke is a frequent cause of adult disability that can lead to enduring impairments. However, given the life-long plasticity of the brain one could assume that recovery could be facilitated by the harnessing of mechanisms underlying neuronal reorganization. Currently it is not clear how this reorganization can be mobilized. Novel technology based neurorehabilitation techniques hold promise to address this issue. Here we describe a Virtual Reality (VR) based system, the Rehabilitation Gaming System (RGS) that is based on a number of hypotheses on the neuronal mechanisms underlying recovery, the structure of training and the role of individualization. We investigate the psychometrics of the RGS in stroke patients and healthy controls. We describe the key components of the RGS and the psychometrics of one rehabilitation scenario called Spheroids. We performed trials with 21 acute/subacute stroke patients and 20 healthy controls to study the effect of the training parameters on task performance. This allowed us to develop a Personalized Training Module (PTM) for online adjustment of task difficulty. In addition, we studied task transfer between physical and virtual environments. Finally, we assessed the usability and acceptance of the RGS as a rehabilitation tool. We show that the PTM implemented in RGS allows us to effectively adjust the difficulty and the parameters of the task to the user by capturing specific features of the movements of the arms. The results reported here also show a consistent transfer of movement kinematics between physical and virtual tasks. Moreover, our usability assessment shows that the RGS is highly accepted by stroke patients as a rehabilitation tool. We introduce a novel VR based paradigm for neurorehabilitation, RGS, which combines specific rehabilitative principles with a psychometric evaluation to provide a personalized and automated training. Our results show that the RGS effectively adjusts to the individual features of the user

  3. A virtual reality based time simulator game for children with ADHD

    NARCIS (Netherlands)

    Gongsook, P.; Hu, J.; Bellotti, F.; Rauterberg, G.W.M.

    2012-01-01

    This project aims at investigating how effective virtual reality is in manipulating and eventually training time perception for children with learning and/or behavior disorders. Children with attention deficit hyperactivity disorder (ADHD) appear to have problems in time perception and this affects

  4. The Design, Development and Evaluation of a Virtual Reality Based Learning Environment

    Science.gov (United States)

    Chen, Chwen Jen

    2006-01-01

    Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…

  5. Incorporating Kansei Engineering in Instructional Design: Designing Virtual Reality Based Learning Environments from a Novel Perspective

    Science.gov (United States)

    Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong

    2008-01-01

    In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…

  6. a New ER Fluid Based Haptic Actuator System for Virtual Reality

    Science.gov (United States)

    Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.

    The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.

  7. Using a virtual reality in the inference based treatment of compulsive hoarding

    Directory of Open Access Journals (Sweden)

    Marie-Eve St-Pierre-Delorme

    2016-07-01

    Full Text Available The present study evaluated the efficacy of adding a virtual reality (VR component to the treatment of compulsive hoarding (CH following inference based therapy. Participants were randomly assigned to either an experimental or a control condition. Seven participants received the experimental and seven received the control condition. Five sessions of one hour were administered weekly. A significant difference indicated that the level of clutter in the bedroom tended to diminish more in the experimental group as compared to the control group F(2,24 = 2.28, p = .10. In addition, the results demonstrated that both groups were immersed and present in the environment. The results on post-treatment measures of CH (Saving Inventory revised, Saving Cognition Inventory and Clutter Image Rating scale demonstrate the efficacy of inference based therapy in terms of symptom reduction. Overall, these results suggest that the creation of a virtual environment may be effective in the treatment of CH by helping the compulsive hoarders take action over they're clutter.

  8. STUDY PAPER ON EDUCATION USING VIRTUAL REALITY.

    OpenAIRE

    Anamika Modi*; Ayush Jaiswal; Princy Jain

    2016-01-01

    This report provides a short study of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. In today’s market, virtual reality is playing an crucial role for the humans. If we consider the foreign countries than using virtual reality they try to create the same feelings not only for the school children’s as well as for the upper education. In this paper, we have study the technologies used in virtual reality.

  9. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke.

    Science.gov (United States)

    Lloréns, Roberto; Gil-Gómez, José-Antonio; Alcañiz, Mariano; Colomer, Carolina; Noé, Enrique

    2015-03-01

    To study the clinical effectiveness and the usability of a virtual reality-based intervention compared with conventional physical therapy in the balance recovery of individuals with chronic stroke. Randomized controlled trial. Outpatient neurorehabilitation unit. A total of 20 individuals with chronic stroke. The intervention consisted of 20 one-hour sessions, five sessions per week. The experimental group combined 30 minutes with the virtual reality-based intervention with 30 minutes of conventional training. The control group underwent one hour conventional therapy. Balance performance was assessed at the beginning and at the end of the trial using the Berg Balance Scale, the balance and gait subscales of the Tinetti Performance-Oriented Mobility Assessment, the Brunel Balance Assessment, and the 10-m Walking Test. Subjective data of the virtual reality-based intervention were collected from the experimental group, with a feedback questionnaire at the end of the trial. The results revealed a significant group-by-time interaction in the scores of the Berg Balance Scale (p Virtual reality interventions can be an effective resource to enhance the improvement of balance in individuals with chronic stroke. © The Author(s) 2014.

  10. Extending the features of RBMK refuelling machine simulator with a training tool based on virtual reality

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2004-01-01

    The paper describes a continuation of efforts of an international Russian - Norwegian joint team to improve operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding 1st stage of the project a display-based simulator was extended with VR models of the real Refuelling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly by helping them to develop basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refuelling Machine. During the 2nd stage of the joint project the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by including a training program and simulator model upgrade. The present 3rd stage of the Project is primarily oriented towards the improvement of the training process for maintenance and operational personnel by means of a development of the Training Support Methodology and Courses (TSMC) to be based on Virtual Reality and enlarged functionality of 3D and process modelling. The TMSC development is based on Russian and International Regulatory Bodies requirements and recommendations. Design, development and creation of a specialised VR-based Training System for RM Maintenance Personnel are very important for the Russian RBMK plants. The main goal is to create a powerful, autonomous VR-based simulator for training technical maintenance personnel on the Refuelling Machine. VR based training is expected to improve the effect of training compared to the current training based on traditional methods using printed documentation. The LNPP management and the Regulatory Bodies supported this goal. The VR-based Training System should

  11. Immersive virtual reality simulations in nursing education.

    Science.gov (United States)

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  12. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  13. Virtual Reality and Legal Education

    OpenAIRE

    Kiskinov, Vihar

    2014-01-01

    Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014 The paper examines the impact of virtual reality on legal education. Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Plovdiv University "Paisii Hilendarski"

  14. Virtual reality applied to teletesting

    NARCIS (Netherlands)

    Berg, T.W. van den; Smeenk, R.J.M.; Mazy, A.; Jacques, P.; Argüello, L.; Mills, S.

    2003-01-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company

  15. Virtual reality and planetary exploration

    Science.gov (United States)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  16. Virtual Reality and Engineering Education.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  17. Virtual Reality: Ready or Not!

    Science.gov (United States)

    Lewis, Joan E.

    1994-01-01

    Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)

  18. Virtual reality and stereoscopic telepresence

    International Nuclear Information System (INIS)

    Mertens, E.P.

    1994-12-01

    Virtual reality technology is commonly thought to have few, if any, applications beyond the national research laboratories, the aerospace industry, and the entertainment world. A team at Westinghouse Hanford Company (WHC) is developing applications for virtual reality technology that make it a practical, viable, portable, and cost-effective business and training tool. The technology transfer is particularly applicable to the waste management industry and has become a tool that can serve the entire work force spectrum, from industrial sites to business offices. For three and a half years, a small team of WHC personnel has been developing an effective and practical method of bringing virtual reality technology to the job site. The applications are practical, the results are repeatable, and the equipment costs are within the range of present-day office machines. That combination can evolve into a competitive advantage for commercial business interests. The WHC team has contained system costs by using commercially available equipment and personal computers to create effective virtual reality work stations for less than $20,000

  19. Virtual reality and laparoscopic surgery.

    Science.gov (United States)

    Coleman, J; Nduka, C C; Darzi, A

    1994-12-01

    The nature of laparoscopic surgery makes it likely to benefit from current and future developments in virtual reality and telepresence technology. High-definition screens, three-dimensional sensory feedback and remote dextrous manipulation will be the next major developments in laparoscopic surgery. Simulators may be used in surgical training and in the evaluation of surgical capability.

  20. Recommendations for Integrating a P300-Based Brain Computer Interface in Virtual Reality Environments for Gaming

    Directory of Open Access Journals (Sweden)

    Grégoire Cattan

    2018-05-01

    Full Text Available The integration of a P300-based brain–computer interface (BCI into virtual reality (VR environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and constraints engendered by the stimulation needed by the BCI. The main limitation is still the low transfer rate that can be achieved by current BCI technology. The goal of this paper is to review current limitations and to provide application creators with design recommendations in order to overcome them. We also overview current VR and BCI commercial products in relation to the design of video games. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user appear the best candidates for designing an effective VR game enriched by BCI technology.

  1. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    Science.gov (United States)

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  2. Effects of virtual reality for stroke individuals based on the International Classification of Functioning and Health: a systematic review.

    Science.gov (United States)

    Palma, Gisele Carla Dos Santos; Freitas, Tatiana Beline; Bonuzzi, Giordano Márcio Gatinho; Soares, Marcos Antonio Arlindo; Leite, Paulo Henrique Wong; Mazzini, Natália Araújo; Almeida, Murilo Ruas Groschitz; Pompeu, José Eduardo; Torriani-Pasin, Camila

    2017-05-01

    This review determines the effects of virtual reality interventions for stroke subjects based on the International Classification of Functioning, Disability,and Health (ICF) framework. Virtual reality is a promising tool for therapy for stroke rehabilitation, but the effects of virtual reality interventions on post-stroke patients based on the specific ICF domains (Body Structures, Body Functions, Activity, and Participation) have not been investigated. A systematic review was conducted, including trials with adults with a clinical diagnosis of a chronic, subacute, or acute stroke. Eligible trials had to include studies with an intervention protocol and follow-up, with a focus on upper limbs and/or lower limbs and/or balance. The Physiotherapy Evidence Database (PEDro) was used to assess the methodological quality of randomized controlled trials. Each trial was separated according to methodological quality into a high-quality trial (PEDro ≥ 6) and a low-quality trial (PEDro ≤ 6). Only high-quality trials were analyzed specifically based on the outcome of these trials. In total, 54 trials involving 1811 participants were included. Of the papers included and considered high quality, 14 trials evaluated areas of the Body Structures component, 20 trials of the Body Functions domain, 17 trials of the Activity component, and 8 trials of the Participation domain. In relation to ICF Part 2, four trials evaluated areas of the Personal Factors component and one trial evaluated domains of the Environmental Factors component. The effects of virtual reality on stroke rehabilitation based on the ICF framework are positive in Body Function and Body Structure. However, the results in the domains Activity and Participation are inconclusive. More high-quality clinical trials are needed to confirm the effectiveness of virtual reality in the domains of Activity and Participation.

  3. Virtual reality haptic dissection.

    Science.gov (United States)

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  4. The Virtual Reality Conjecture

    OpenAIRE

    Whitworth, Brian

    2011-01-01

    We take our world to be an objective reality, but is it? The assumption that the physical world exists in and of itself has struggled to assimilate the findings of modern physics for some time now. For example, an objective space and time would just "be", but in relativity, space contracts and time dilates. Likewise objective "things" should just inherently exist, but the entities of quantum theory are probability of existence smears, that spread, tunnel, superpose and entangle in physically ...

  5. Virtual Reality Model of the Three-Dimensional Anatomy of the Cavernous Sinus Based on a Cadaveric Image and Dissection.

    Science.gov (United States)

    Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke

    2018-01-01

    Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.

  6. Virtual Libraries: Service Realities.

    Science.gov (United States)

    Novak, Jan

    This paper discusses client service issues to be considered when transitioning to a virtual library situation. Themes related to the transitional nature of society in the knowledge era are presented, including: paradox and a contradictory nature; blurring of boundaries; networks, systems, and holistic thinking; process/not product, becoming/not…

  7. Virtual Libraries: Service Realities.

    Science.gov (United States)

    Novak, Jan

    2002-01-01

    Discussion of changes in society that have resulted from information and communication technologies focuses on changes in libraries and a new market for library services with new styles of clients. Highlights client service issues to be considered when transitioning to a virtual library situation. (Author/LRW)

  8. Effect of Virtual Reality on Cognition in Stroke Patients

    OpenAIRE

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the cont...

  9. An Interactive Virtual Reality System for On-Orbit Servicing

    OpenAIRE

    Sagardia, Mikel; Hertkorn, Katharina; Hulin, Thomas; Wolff, Robin; Hummel, Johannes; Dodiya, Janki; Gerndt, Andreas

    2013-01-01

    The growth of space debris is becoming a serious problem. There is an urgent need for mitigation measures based on maintenance, repair and de-orbiting technologies. Our video presents a virtual reality framework in which robotic maintenance tasks of satellites can be simulated interactively. The two key components of this framework are a realistic virtual reality simulation and an immersive interaction device. The peculiarity of the virtual reality simulation is the combi...

  10. The concept of strong and weak virtual reality

    OpenAIRE

    Lisewski, A. M.

    2003-01-01

    We approach the virtual reality phenomenon by studying its relationship to set theory, and we investigate the case where this is done using the wellfoundedness property of sets. Our hypothesis is that non-wellfounded sets (hypersets) give rise to a different quality of virtual reality than do familiar wellfounded sets. We initially provide an alternative approach to virtual reality based on Sommerhoff's idea of first and second order self-awareness; both categories of self-awareness are consi...

  11. Virtual reality-based medical training and assessment: The multidisciplinary relationship between clinicians, educators and developers.

    Science.gov (United States)

    Lövquist, Erik; Shorten, George; Aboulafia, Annette

    2012-01-01

    The current focus on patient safety and evidence-based medical education has led to an increased interest in utilising virtual reality (VR) for medical training. The development of VR-based systems require experts from different disciplines to collaborate with shared and agreed objectives throughout a system's development process. Both the development of technology as well as the incorporation and evaluation of relevant training have to be given the appropriate attention. The aim of this article is to illustrate how constructive relationships can be established between stakeholders to develop useful and usable VR-based medical training systems. This article reports a case study of two research projects that developed and evaluated a VR-based training system for spinal anaesthesia. The case study illustrates how close relationships can be established by champion clinicians leading research in this area and by closely engaging clinicians and educators in iterative prototype design throughout a system's development process. Clinicians and educators have to strive to get more involved (ideally as champions of innovation) and actively guide the development of VR-based training and assessment systems. System developers have to strive to ensure that clinicians and educators are participating constructively in the developments of such systems.

  12. Manually locating physical and virtual reality objects.

    Science.gov (United States)

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  13. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.

    Science.gov (United States)

    Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei

    2018-05-01

    To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC

  14. Virtual reality applied to teletesting

    Science.gov (United States)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  15. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  16. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Directory of Open Access Journals (Sweden)

    Danielle E Levac

    Full Text Available Therapists use motor learning strategies (MLSs to structure practice conditions within stroke rehabilitation. Virtual reality (VR-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use.A pre-post design evaluated a knowledge translation (KT intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision.The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p <0.001. Chart-Stimulated Recall indicated a moderate level of competency in therapists' clinical reasoning about MLSs following the intervention, with no changes following additional opportunities to use VR (p = .944. On the Motor Learning Strategy Rating Instrument, no behaviour change with respect to MLS use was noted (p = 0.092. Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach.The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  17. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Science.gov (United States)

    Levac, Danielle E; Glegg, Stephanie M N; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E; Velikonja, Diana

    2016-01-01

    Therapists use motor learning strategies (MLSs) to structure practice conditions within stroke rehabilitation. Virtual reality (VR)-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use. A pre-post design evaluated a knowledge translation (KT) intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision. The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p behaviour change with respect to MLS use was noted (p = 0.092). Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach. The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  18. WebVR——Web Virtual Reality Engine Based on P2P network

    OpenAIRE

    zhihan LV; Tengfei Yin; Yong Han; Yong Chen; Ge Chen

    2011-01-01

    WebVR, a multi-user online virtual reality engine, is introduced. The main contributions are mapping the geographical space and virtual space to the P2P overlay network space, and dividing the three spaces by quad-tree method. The geocoding is identified with Hash value, which is used to index the user list, terrain data, and the model object data. Sharing of data through improved Kademlia network model is designed and implemented. In this model, XOR algorithm is used to calculate the distanc...

  19. Collaboration and Dialogue in Virtual Reality

    Science.gov (United States)

    Jensen, Camilla Gyldendahl

    2017-01-01

    "Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…

  20. Are Learning Styles Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan

    2005-01-01

    This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…

  1. Design of a virtual reality based adaptive response technology for children with autism.

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2013-01-01

    Children with autism spectrum disorder (ASD) demonstrate potent impairments in social communication skills including atypical viewing patterns during social interactions. Recently, several assistive technologies, particularly virtual reality (VR), have been investigated to address specific social deficits in this population. Some studies have coupled eye-gaze monitoring mechanisms to design intervention strategies. However, presently available systems are designed to primarily chain learning via aspects of one's performance only which affords restricted range of individualization. The presented work seeks to bridge this gap by developing a novel VR-based interactive system with Gaze-sensitive adaptive response technology that can seamlessly integrate VR-based tasks with eye-tracking techniques to intelligently facilitate engagement in tasks relevant to advancing social communication skills. Specifically, such a system is capable of objectively identifying and quantifying one's engagement level by measuring real-time viewing patterns, subtle changes in eye physiological responses, as well as performance metrics in order to adaptively respond in an individualized manner to foster improved social communication skills among the participants. The developed system was tested through a usability study with eight adolescents with ASD. The results indicate the potential of the system to promote improved social task performance along with socially-appropriate mechanisms during VR-based social conversation tasks.

  2. Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention

    Science.gov (United States)

    Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2016-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes—feature level fusion, decision level fusion and hybrid level fusion—were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization. PMID:28966730

  3. Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention.

    Science.gov (United States)

    Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan

    2017-01-01

    Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes-feature level fusion, decision level fusion and hybrid level fusion-were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization.

  4. Manipulating Bodily Presence Affects Cross-Modal Spatial Attention: A Virtual-Reality-Based ERP Study

    OpenAIRE

    Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spap?, Michiel M.

    2017-01-01

    Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands...

  5. Developing and Evaluating a Virtual Reality-Based Navigation System for Pre-Sale Housing Sales

    Directory of Open Access Journals (Sweden)

    Yi-Kai Juan

    2018-06-01

    Full Text Available Virtual reality (VR technologies have advanced rapidly in the past few years, and many industries have adopted these cutting-edge technologies for diverse applications to improve their industrial competitiveness. VR has also received considerable recognition in the architecture, engineering, and construction industries, because it can potentially reduce project costs, delivery time, and quality risks, by allowing users to experience unbuilt spaces before breaking ground, resolving construction conflicts virtually, and reviewing complex details in immersive environments. In the real estate market, VR can also play an important role in affecting buyers’ housing purchasing decisions, especially for housing markets in Asia, where the pre-sale system is extremely common. Applying VR to the pre-sale housing system is promising, because the concept of pre-sale refers to a strategy adopted by developers that sell housing through agreements on residential units that have not been constructed yet, and VR at this stage could be a useful tool for visual communication in a true-to-scale environment. However, does VR really benefit sales in the housing market? Can clients accept using VR, instead of using traditional materials (i.e., paper-based images and physical models, to navigate and experience housing projects? The objective of this study is to develop a VR-based navigation system for a pre-sale housing project in Taiwan. We invited 30 potential clients to test the system and explore the implications of using it for project navigation. The results reveal that VR enhances the understandings of a project (perceived usefulness and increases clients’ intention to purchase, while the operation of VR (perceived ease-of-use is still the major challenge to affect clients’ satisfaction and the developer’s acceptance with respect to applying it to future housing sales.

  6. Virtual reality applications to work.

    Science.gov (United States)

    Weiss, P L; Jessel, A S

    1998-01-01

    Virtual reality (VR) entails the use of advanced technologies, including computers and various multimedia peripherals, to produce a simulated (i.e. virtual) environment that users perceive as comparable to real world objects and events. With the aid of specially designed transducers and sensors, users interact with displayed images, moving and manipulating virtual objects, and performing other actions in a way that engenders a feeling of actual presence (immersion) in the simulated environment. The unique features and flexibility of VR give it extraordinary potential for use in work-related applications. It permits users to experience and interact with a life-like model or environment, in safety and at convenient times, while providing a degree of control over the simulation that is usually not possible in the real-life situation. The work-related applications that appear to be most promising are those that employ virtual reality for visualization and representation, distance communication and education, hands-on training, and orientation and navigation. This article presents an overview to the concepts of VR focusing on its applications in a variety of work settings. Issues related to potential difficulties in using VR including side effects and the transfer of skills learned in the virtual environment to the real world are also reviewed.

  7. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.

    Science.gov (United States)

    Yeh, Shih-Ching; Huang, Ming-Chun; Wang, Pa-Chun; Fang, Te-Yung; Su, Mu-Chun; Tsai, Po-Yi; Rizzo, Albert

    2014-10-01

    Dizziness is a major consequence of imbalance and vestibular dysfunction. Compared to surgery and drug treatments, balance training is non-invasive and more desired. However, training exercises are usually tedious and the assessment tool is insufficient to diagnose patient's severity rapidly. An interactive virtual reality (VR) game-based rehabilitation program that adopted Cawthorne-Cooksey exercises, and a sensor-based measuring system were introduced. To verify the therapeutic effect, a clinical experiment with 48 patients and 36 normal subjects was conducted. Quantified balance indices were measured and analyzed by statistical tools and a Support Vector Machine (SVM) classifier. In terms of balance indices, patients who completed the training process are progressed and the difference between normal subjects and patients is obvious. Further analysis by SVM classifier show that the accuracy of recognizing the differences between patients and normal subject is feasible, and these results can be used to evaluate patients' severity and make rapid assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Virtual Reality Based Accurate Radioactive Source Representation and Dosimetry for Training Applications

    International Nuclear Information System (INIS)

    Molto-Caracena, T.; Vendrell Vidal, E.; Goncalves, J.G.M.; Peerani, P.; )

    2015-01-01

    Virtual Reality (VR) technologies have much potential for training applications. Success relies on the capacity to provide a real-time immersive effect to a trainee. For a training application to be an effective/meaningful tool, 3D realistic scenarios are not enough. Indeed, it is paramount having sufficiently accurate models of the behaviour of the instruments to be used by a trainee. This will enable the required level of user's interactivity. Specifically, when dealing with simulation of radioactive sources, a VR model based application must compute the dose rate with equivalent accuracy and in about the same time as a real instrument. A conflicting requirement is the need to provide a smooth visual rendering enabling spatial interactivity and interaction. This paper presents a VR based prototype which accurately computes the dose rate of radioactive and nuclear sources that can be selected from a wide library. Dose measurements reflect local conditions, i.e., presence of (a) shielding materials with any shape and type and (b) sources with any shape and dimension. Due to a novel way of representing radiation sources, the system is fast enough to grant the necessary user interactivity. The paper discusses the application of this new method and its advantages in terms of time setting, cost and logistics. (author)

  9. A Game-Based Virtualized Reality Approach for Simultaneous Rehabilitation of Motor Skill and Confidence

    Directory of Open Access Journals (Sweden)

    Alasdair G. Thin

    2012-01-01

    Full Text Available Virtualized reality games offer highly interactive and engaging user experience and therefore game-based approaches (GBVR may have significant potential to enhance clinical rehabilitation practice as traditional therapeutic exercises are often repetitive and boring, reducing patient compliance. The aim of this study was to investigate if a rehabilitation training programme using GBVR could simultaneously improve both motor skill (MS and confidence (CON, as they are both important determinants of daily living and physical and social functioning. The study was performed using a nondominant hand motor deficit model in nonambidextrous healthy young adults, whereby dominant and nondominant arms acted as control and intervention conditions, respectively. GBVR training was performed using a commercially available tennis-based game. CON and MS were assessed by having each subject perform a comparable real-world motor task (RWMT before and after training. Baseline CON and MS for performing the RWMT were significantly lower for the nondominant hand and improved after GBVR training, whereas there were no changes in the dominant (control arm. These results demonstrate that by using a GBVR approach to address a MS deficit in a real-world task, improvements in both MS and CON can be facilitated and such approaches may help increase patient compliance.

  10. Asymetric Telecollaboration in Virtual Reality

    OpenAIRE

    PORSSUT, Thibault; CHARDONNET, Jean-Rémy

    2017-01-01

    International audience; We present a first study where we combine two asymetric virtual reality systems for telecollaboration purposes: a CAVE system and a head-mounted display (HMD), using a server-client type architecture. Experiments on a puzzle game in limited time, alone and in collaboration, show that combining asymetric systems reduces cognitive load. Moreover, the participants reported preferring working in collaboration and showed to be more efficient in collaboration. These results ...

  11. A hitchhiker's guide to virtual reality

    CERN Document Server

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  12. Virtual reality and anthropology

    International Nuclear Information System (INIS)

    Recheis, Wolfgang; Weber, Gerhard W.; Schaefer, Katrin; Knapp, Rudolf; Seidler, Horst; Zur Nedden, Dieter

    1999-01-01

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimens were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology

  13. Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review.

    Science.gov (United States)

    Mazur, Travis; Mansour, Tarek R; Mugge, Luke; Medhkour, Azedine

    2018-02-01

    Virtual reality (VR) simulators have become useful tools in various fields of medicine. Prominent uses of VR technologies include assessment of physician skills and presurgical planning. VR has shown effectiveness in multiple surgical specialties, yet its use in neurosurgery remains limited. To examine all current literature on VR-based simulation for presurgical planning and training in cranial tumor surgeries and to assess the quality of these studies. PubMed and Embase were systematically searched to identify studies that used VR for presurgical planning and/or studies that investigated the use of VR as a training tool from inception to May 25, 2017. The initial search identified 1662 articles. Thirty-seven full-text articles were assessed for inclusion. Nine studies were included. These studies were subdivided into presurgical planning and training using VR. Prospects for VR are bright when surgical planning and skills training are considered. In terms of surgical planning, VR has noted and documented usefulness in the planning of cranial surgeries. Further, VR has been central to establishing reproducible benchmarks of performance in relation to cranial tumor resection, which are helpful not only in showing face and construct validity but also in enhancing neurosurgical training in a way not previously examined. Although additional studies are needed to better delineate the precise role of VR in each of these capacities, these studies stand to show the usefulness of VR in the neurosurgery and highlight the need for further investigation. Published by Elsevier Inc.

  14. Recent Developments in Game-Based Virtual Reality Educational Laboratories Using the Microsoft Kinect

    Directory of Open Access Journals (Sweden)

    Mingshao Zhang

    2018-01-01

    Full Text Available Virtual Reality (VR is a well-known concept and has been proven to be beneficial in various areas. However, several disadvantages inherent in VR prevent its broad deployment in the educational arena. These limitations include non-realistic representation, lack of customizability and flexibility, financial feasibility, physical and psychological discomforts of the users, simulator sickness, etc. In this paper, an innovative method that uses the Microsoft Kinect as an essential component for developing game-based VR educational laboratories is presented. This technique addresses three different aspects. First, it represents an efficient method for creating the VE using the Kinect as a measuring tool. Second, the Kinect is employed as a substitute DAQ system for acquiring range data and tracking the motion of objects of interest. At last, the Kinect serves as a novel human-computer interface for tracking the users’ entire body motion and recognizing their voices. Using the method described here, three major aspects of educational VR development can be accomplished with an inexpensive and commercially available Kinect.

  15. Communicating Archaeological Risk with Web-Based Virtual Reality: A Case Study

    Directory of Open Access Journals (Sweden)

    Giacomo Landeschi

    2011-12-01

    Full Text Available In the last decade 3D technologies have become very effective and are widely used for managing and interpreting archaeological data. A better way to perceive, understand and communicate Cultural Heritage has been achieved through VR applications, which have enabled archaeologists to make both reconstructions of original landscapes and to put artefacts in their original context. Furthermore, the exponential growth of the Web has led to a massive availability of digital content, even in the field of Cultural Heritage, that can be accessed in an easier and more intuitive manner by a broader audience. The case study presented here is designed to demonstrate the potential importance of Web3D technologies for communicating specific research aspects, such as the ones connected to the GIS-based spatial analysis applied to the archaeological landscape. To this end, a research project was undertaken in order to get a final predictive model for detecting archaeological presence in an area of the Pisa coastal plain, implemented in a Web-orientated Virtual Reality system. The end-user is able to navigate the model in real-time and observe different thematic layers, such as the distribution of the archaeological sites, maps of lithology, land use and, finally, the assessment of the archaeological risk.

  16. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.

    Science.gov (United States)

    Lahanas, Vasileios; Loukas, Constantinos; Georgiou, Konstantinos; Lababidi, Hani; Al-Jaroudi, Dania

    2017-12-01

    The majority of the current surgical simulators employ specialized sensory equipment for instrument tracking. The Leap Motion controller is a new device able to track linear objects with sub-millimeter accuracy. The aim of this study was to investigate the potential of a virtual reality (VR) simulator for assessment of basic laparoscopic skills, based on the low-cost Leap Motion controller. A simple interface was constructed to simulate the insertion point of the instruments into the abdominal cavity. The controller provided information about the position and orientation of the instruments. Custom tools were constructed to simulate the laparoscopic setup. Three basic VR tasks were developed: camera navigation (CN), instrument navigation (IN), and bimanual operation (BO). The experiments were carried out in two simulation centers: MPLSC (Athens, Greece) and CRESENT (Riyadh, Kingdom of Saudi Arabia). Two groups of surgeons (28 experts and 21 novices) participated in the study by performing the VR tasks. Skills assessment metrics included time, pathlength, and two task-specific errors. The face validity of the training scenarios was also investigated via a questionnaire completed by the participants. Expert surgeons significantly outperformed novices in all assessment metrics for IN and BO (p assessment of basic laparoscopic skills. The proposed system allowed the evaluation of dexterity of the hand movements. Future work will involve comparison studies with validated simulators and development of advanced training scenarios on current Leap Motion controller.

  17. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    Science.gov (United States)

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  18. Virtual and augmented reality for training on maintenance

    International Nuclear Information System (INIS)

    Gonzalez, F.

    2001-01-01

    This paper presents two projects focused to support training on maintenance using new technologies. Both projects aims at specifying. designing, developing, and demonstrating prototypes allowing computer guided maintenance of complex mechanical elements using Virtual Reality (VIRMAN) and Augmented Reality (STARMATE) techniques. VIRMAN project is dedicated to training course development on maintenance using Virtual Reality. It based in the animation of three dimension images for component assembly/de-assembly or equipment movements. STARMATE will rely on Augmented Reality techniques which is a growing area in virtual Reality research. The idea of Augmented Reality is to combine a real scene, viewed by the user, with a virtual scene generated by a computer augmenting the reality with additional information. (Author)

  19. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills.

    Science.gov (United States)

    van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.

  20. The Virtual Reality Roving Vehicle Project.

    Science.gov (United States)

    Winn, William

    1995-01-01

    Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…

  1. Virtual Reality: Emerging Applications and Future Directions

    Science.gov (United States)

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  2. A Virtual Tomb for Kelvingrove: Virtual Reality, Archaeology and Education

    Directory of Open Access Journals (Sweden)

    Melissa M. Terras

    1999-11-01

    model can be seen here. However, because of technical problems as well as the educational issues raised, it was felt that the model was not suitable in this format for inclusion in the Kelvingrove Museum. The project has illustrated that although it is technically possible to create an archaeologically based virtual model using VRML, technical issues prevent this format from being a feasible way of displaying 3D worlds in a museum environment at present. Also, the project has shown that the creation of the virtual reality world is only the beginning of developing a virtual reality display for use in education. Both the user interface and the informative aspects of a model have to be carefully designed to ensure the resulting computer display has proven educational worth, and broad issues surrounding the nature of representation and reconstruction have to be addressed before such models will become commonplace in museums.

  3. Virtual Reality Educational Tool for Human Anatomy.

    Science.gov (United States)

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  4. Inducing Fear: Difference Between Virtual Reality and 2D Video

    NARCIS (Netherlands)

    van der Wal, C.N.; Hermans, A.; Bosse, T.

    2017-01-01

    A Virtual Reality based training can be an interesting method to teach crowd managers and emergency responders how to act in emergency situations under pressure. Compared to watching Two-Dimensional Video, Virtual Reality is assumed to induce stronger emotions and a more real-life experience of the

  5. Virtual Reality and Multiple Intelligences: Potentials for Higher Education.

    Science.gov (United States)

    McLellan, Hilary

    1994-01-01

    Discussion of the use of virtual reality in higher education looks at how this emerging computer-based technology can promote learning that engages all seven forms of intelligence proposed in H. Gardner's theory of multiple intelligences. Technical and conceptual issues in implementation of virtual reality in education are also examined.…

  6. VRdose: an exposure dose evaluation system based on virtual reality technology - current status and future possibilities

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Louka, Michael; Johnsen, Terje

    2004-01-01

    The Fugen Nuclear Power Station (NPS) was shut down permanently in March 2003, and preparatory activities are underway to decommission the Fugen NPS. It is necessary to accomplish the decommissioning economically and rationally by optimizing the workload, exposure dose and waste mass. This is important at the planning stage of the decommissioning. Virtual reality (VR) technology may prove beneficial to this process with regard to minimizing the workers' radiation exposure as well as contributing towards achieving efficient use of manpower. It could also be a valuable tool in the actual dismantling phase. In addition to this, VR provides an effective medium in presentations for public acceptance as well as for communication with relevant engineers. The VRdose project conducted by Japan Nuclear Cycle Development Institute (JNC) and Halden Virtual Reality Centre is doing research and development of VR technology for use in the decommissioning process at the Fugen NPS. This is technically an extensive project, touching on many of the present challenges in the VR area such as visual simulation and animation, interaction with objects in a virtual environment and scenario generation and optimisation. This paper describes the present status and future of the system. (Author)

  7. An Analysis of Learners' Intentions toward Virtual Reality Learning Based on Constructivist and Technology Acceptance Approaches

    Science.gov (United States)

    Huang, Hsiu-Mei; Liaw, Shu-Sheng

    2018-01-01

    Within a constructivist paradigm, the virtual reality technology focuses on the learner's actively interactive learning processes and attempts to reduce the gap between the learner's knowledge and a real-life experience. Recently, virtual reality technologies have been developed for a wide range of applications in education, but further research…

  8. Construct and face validity of a virtual reality-based camera navigation curriculum.

    Science.gov (United States)

    Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J

    2012-10-01

    Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P medical students during their surgery rotations. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Development of a proficiency-based virtual reality simulation training curriculum for laparoscopic appendicectomy.

    Science.gov (United States)

    Sirimanna, Pramudith; Gladman, Marc A

    2017-10-01

    Proficiency-based virtual reality (VR) training curricula improve intraoperative performance, but have not been developed for laparoscopic appendicectomy (LA). This study aimed to develop an evidence-based training curriculum for LA. A total of 10 experienced (>50 LAs), eight intermediate (10-30 LAs) and 20 inexperienced (<10 LAs) operators performed guided and unguided LA tasks on a high-fidelity VR simulator using internationally relevant techniques. The ability to differentiate levels of experience (construct validity) was measured using simulator-derived metrics. Learning curves were analysed. Proficiency benchmarks were defined by the performance of the experienced group. Intermediate and experienced participants completed a questionnaire to evaluate the realism (face validity) and relevance (content validity). Of 18 surgeons, 16 (89%) considered the VR model to be visually realistic and 17 (95%) believed that it was representative of actual practice. All 'guided' modules demonstrated construct validity (P < 0.05), with learning curves that plateaued between sessions 6 and 9 (P < 0.01). When comparing inexperienced to intermediates to experienced, the 'unguided' LA module demonstrated construct validity for economy of motion (5.00 versus 7.17 versus 7.84, respectively; P < 0.01) and task time (864.5 s versus 477.2 s versus 352.1 s, respectively, P < 0.01). Construct validity was also confirmed for number of movements, path length and idle time. Validated modules were used for curriculum construction, with proficiency benchmarks used as performance goals. A VR LA model was realistic and representative of actual practice and was validated as a training and assessment tool. Consequently, the first evidence-based internationally applicable training curriculum for LA was constructed, which facilitates skill acquisition to proficiency. © 2017 Royal Australasian College of Surgeons.

  10. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke.

    Science.gov (United States)

    Choi, Yoon-Hee; Ku, Jeonghun; Lim, Hyunmi; Kim, Yeo Hyung; Paik, Nam-Jong

    2016-05-02

    Virtual reality (VR) has the potential to provide intensive, repetitive, and task-oriented training, and game-based therapy can enhance patients' motivation and enjoyment. The objective of the present study was to develop a mobile game-based upper extremity VR program for patients who have experienced stroke, and to evaluate the feasibility and effectiveness of the program. This randomized, double-blind, controlled trial included 24 patients with ischemic stroke. The intervention group (n = 12) received 30 min of conventional occupational therapy (OT) and 30 min of the mobile upper extremity rehabilitation program using a smartphone and a tablet PC (MoU-Rehab). The controls (n = 12) received conventional OT alone for 1 h per day. Rehabilitation consisted of 10 sessions of therapy, 5 days per week, for 2 weeks. The outcome measures (Fugl-Meyer Assessment of the upper extremity [FMA-UE], Brunnström stage [B-stage] for the arm and the hand, manual muscle testing [MMT], modified Barthel index [MBI], EuroQol-5 Dimension [EQ-5D], and Beck Depression Inventory [BDI]) were assessed at the beginning and end of treatment, and at 1 month. User satisfaction was evaluated by a questionnaire. A greater improvement in the FMA-UE, B-stage, and MMT was found after treatment with the MoU-Rehab than with conventional therapy. The extent of improvements in the MBI, EQ-5D, and BDI was not significantly different between the two groups. Patients in the experimental group completed the 2-weeks treatment without adverse effects, and they were generally satisfied with MoU-Rehab. This mobile game-based VR rehabilitation program appears to be feasible and effective for promoting upper limb recovery after ischemic stroke.

  11. Early intervention for preventing posttraumatic stress disorder: an Internet-based virtual reality treatment

    Directory of Open Access Journals (Sweden)

    Sara A. Freedman

    2015-04-01

    Full Text Available Background: Posttraumatic stress disorder (PTSD develops in approximately 20% of people exposed to a traumatic event, and studies have shown that cognitive-behavioral therapy (CBT is effective as a treatment for chronic PTSD. It has also been shown to prevent PTSD when delivered early after a traumatic event. However, studies have shown that uptake of early treatment is generally low, and therefore, the need to provide interventions through other mediums has been identified. The use of technology may overcome barriers to treatment. Objective: This paper describes a randomized controlled trial that will examine an early CBT intervention for PTSD. The treatment incorporates virtual reality (VR as a method for delivering exposure-based elements of the treatment. The intervention is Internet based, such that the therapist and patient will “meet” in a secure online site. This site will also include multi-media components of the treatment (such as videos, audios, VR that can be accessed by the patient between sessions. Method: Two hundred patients arriving to a Level 1 emergency department following a motor vehicle accident will be randomly assigned to either treatment or control groups. Inclusion criteria are age 18–65, PTSD symptoms 2 weeks posttrauma related to current trauma, no suicidality, no psychosis. Patients will be assessed by telephone by a team blind to the study group, on four occasions: before and after treatment, and 6 and 12 months posttreatment. The primary outcome is PTSD symptoms at follow up. Secondary outcomes include depression and cost effectiveness. Analyses will be on an intention-to-treat basis. Discussion: The results will provide more insight into the effects of preventive interventions, in general, and Internet-based early interventions, in particular, on PTSD, in an injured population, during the acute phase after trauma. We will discuss possible strengths and limitations.

  12. An evidence-based virtual reality training program for novice laparoscopic surgeons.

    Science.gov (United States)

    Aggarwal, Rajesh; Grantcharov, Teodor P; Eriksen, Jens R; Blirup, Dorthe; Kristiansen, Viggo B; Funch-Jensen, Peter; Darzi, Ara

    2006-08-01

    To develop an evidence-based virtual reality laparoscopic training curriculum for novice laparoscopic surgeons to achieve a proficient level of skill prior to participating in live cases. Technical skills for laparoscopic surgery must be acquired within a competency-based curriculum that begins in the surgical skills laboratory. Implementation of this program necessitates the definition of the validity, learning curves and proficiency criteria on the training tool. The study recruited 40 surgeons, classified into experienced (performed >100 laparoscopic cholecystectomies) or novice groups (<10 laparoscopic cholecystectomies). Ten novices and 10 experienced surgeons were tested on basic tasks, and 11 novices and 9 experienced surgeons on a procedural module for dissection of Calot triangle. Performance of the 2 groups was assessed using time, error, and economy of movement parameters. All basic tasks demonstrated construct validity (Mann-Whitney U test, P < 0.05), and learning curves for novices plateaued at a median of 7 repetitions (Friedman's test, P < 0.05). Expert surgeons demonstrated a learning rate at a median of 2 repetitions (P < 0.05). Performance on the dissection module demonstrated significant differences between experts and novices (P < 0.002); learning curves for novice subjects plateaued at the fourth repetition (P < 0.05). Expert benchmark criteria were defined for validated parameters on each task. A competency-based training curriculum for novice laparoscopic surgeons has been defined. This can serve to ensure that junior trainees have acquired prerequisite levels of skill prior to entering the operating room, and put them directly into practice.

  13. A haptic floor for interaction and diagnostics with goal based tasks during virtual reality supported balance training

    Directory of Open Access Journals (Sweden)

    Andrej Krpič

    2014-03-01

    Full Text Available Background: Balance training of patients after stroke is one of the primary tasks of physiotherapy after the hospitalization. It is based on the intensive training, which consists of simple, repetitive, goal-based tasks. The tasks are carried out by physiotherapists, who follow predefined protocols. Introduction of a standing frame and a virtual reality decrease the physical load and number of required physiotherapists. The patients benefit in terms of safety and increased motivation. Additional feedback – haptic floor can enhance the virtual reality experience, add additional level of difficulty and could be also used for generating postural perturbations. The purpose of this article is to examine whether haptic information can be used to identify specific anomalies in dynamic posturography.Methods: The performance and stability of closed-loop system of the haptic floor were tested using frequency analysis. A postural response normative was set up from data assessed in four healthy individuals who were exposed to unexpected movements of the haptic floor in eight directions. Postural responses of a patient after stroke participating in virtual reality supported balance training, where collisions resulted in floor movements, were assessed and contrasted to the normative.Results: Haptic floor system was stable and controllable up to the frequency of 1.1 Hz, sufficient for the generation of postural perturbations. Responses obtained after perturbations in two major directions for a patient after stroke demonstrated noticeable deviations from the normative.Conclusions: Haptic floor design, together with a standing frame and a virtual reality used for balance training, enables an assessment of directionally specific postural responses. The system was designed to identify postural disorders during balance training and rehabilitation progress outside specialized clinics, e.g. at patient’s home.

  14. Virtual Reality in education and for employability

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    Virtual reality is becoming pervasive in several domains - in arts and film-making, for environmental causes, in medical education, in disaster management training, in sports broadcasting, in entertainment, and in supporting patients with dementia. An awareness of virtual reality technology and its integration in curriculum design will provide and enhance employability skills for current and future workplaces.\\ud \\ud In this webinar, we will describe the evolution of virtual reality technolog...

  15. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  16. VIRTUAL REALITY AS A SPHERE OF FICTIONS

    OpenAIRE

    V. A. Abramova

    2017-01-01

    In post-nonclassical science in studying of spontaneous systems it is important to consider a narrow orientation of perception in the solution of specific objectives, in this context, perception of symbolical transformations at various levels – subjective and objective. The virtual reality widespread now thanks to enhancement of information and communication technologies consists of hypertrophied effects of virtualization of reality where the virtual image has nothing in common with reality, ...

  17. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    International Nuclear Information System (INIS)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu; Yokata, Masaru

    2004-01-01

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  18. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    Science.gov (United States)

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task

  19. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    Directory of Open Access Journals (Sweden)

    Chun-Chuan Chen

    Full Text Available P300, a positive event-related potential (ERP evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM for ERP and a novel virtual reality (VR-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example

  20. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  1. Virtual Reality for Materials Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to research and develop materials through applied virtual reality to enable interactive "materials-by-design." Extensive theoretical and computational...

  2. Augmented reality (AR) and virtual reality (VR) applied in dentistry.

    Science.gov (United States)

    Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng

    2018-04-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.

  3. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  4. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    Science.gov (United States)

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  5. Virtual reality in laparoscopic surgery.

    Science.gov (United States)

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  6. Virtual reality concepts and technologies

    CERN Document Server

    Fuchs, Philippe

    2011-01-01

    A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the user's needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providin

  7. Spherical subjective refraction with a novel 3D virtual reality based system.

    Science.gov (United States)

    Pujol, Jaume; Ondategui-Parra, Juan Carlos; Badiella, Llorenç; Otero, Carles; Vilaseca, Meritxell; Aldaba, Mikel

    To conduct a clinical validation of a virtual reality-based experimental system that is able to assess the spherical subjective refraction simplifying the methodology of ocular refraction. For the agreement assessment, spherical refraction measurements were obtained from 104 eyes of 52 subjects using three different methods: subjectively with the experimental prototype (Subj.E) and the classical subjective refraction (Subj.C); and objectively with the WAM-5500 autorefractor (WAM). To evaluate precision (intra- and inter-observer variability) of each refractive tool independently, 26 eyes were measured in four occasions. With regard to agreement, the mean difference (±SD) for the spherical equivalent (M) between the new experimental subjective method (Subj.E) and the classical subjective refraction (Subj.C) was -0.034D (±0.454D). The corresponding 95% Limits of Agreement (LoA) were (-0.856D, 0.924D). In relation to precision, intra-observer mean difference for the M component was 0.034±0.195D for the Subj.C, 0.015±0.177D for the WAM and 0.072±0.197D for the Subj.E. Inter-observer variability showed worse precision values, although still clinically valid (below 0.25D) in all instruments. The spherical equivalent obtained with the new experimental system was precise and in good agreement with the classical subjective routine. The algorithm implemented in this new system and its optical configuration has been shown to be a first valid step for spherical error correction in a semiautomated way. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. Applying virtual reality to remote control of mobile robot

    Directory of Open Access Journals (Sweden)

    Chen Chin-Shan

    2017-01-01

    Full Text Available The purpose of this research is based on virtual reality to assisted pick and place tasks. Virtual reality can be utilized to control remote robot for pick and place element. The operator monitored and controlled the situation information of working site by Human Machine Interface. Therefore, we worked in harsh or dangerous environments that thing can be avoided. The procedure to operate mobile robot in virtual reality describes as follow: An experiment site with really experimental equipment is first established. Then, the experimental equipment and scene modeling are input to virtual reality for establishing a environment similar to the reality. Finally, the remote mobile robot is controlled to operate pick and place tasks through wireless communication by the object operation in virtual reality. The robot consists of a movable robot platform and robotic arm. The virtual reality is constructed by EON software; the Human Machine Interface is established by Visual Basic. The wireless connection is equipped the wireless Bluetooth, which is set the PC and PLC controller. With experimental tests to verify the robot in virtual reality and the wireless remote control, the robot could be operated and controlled to successfully complete pick and place tasks in reality by Human Machine Interface.

  9. Virtual Reality in Pediatric Psychology.

    Science.gov (United States)

    Parsons, Thomas D; Riva, Giuseppe; Parsons, Sarah; Mantovani, Fabrizia; Newbutt, Nigel; Lin, Lin; Venturini, Eva; Hall, Trevor

    2017-11-01

    Virtual reality (VR) technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context, VR can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disabilities. Research has also pointed to VR's capacity to reduce children's experience of aversive stimuli and reduce anxiety levels. Although there are a number of purported advantages of VR technologies, challenges have emerged. One challenge for this field of study is the lack of consensus on how to do trials. A related issue is the need for establishing the psychometric properties of VR assessments and interventions. This review investigates the advantages and challenges inherent in the application of VR technologies to pediatric assessments and interventions. Copyright © 2017 by the American Academy of Pediatrics.

  10. ATLASrift - a Virtual Reality application

    CERN Document Server

    INSPIRE-00225336; Moyse, Edward; Bianchi, Riccardo Maria

    2015-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists - for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice - OculusRift VR system, the development environment - UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/virtual p...

  11. Virtual Construction of Social Reality Through New Medium-Internet

    OpenAIRE

    KARASAR, Sahin

    2002-01-01

    This is a study on the creation of social reality in virtual setting such as chat/discussion/list groups, based on a theoretical framework of social and cultural reality. It was tried to be found how closer one can get to and create the reality in relation with others in virtual settings. It is a survey type study. For this, a virtually communicated group (45 persons) was selected and given a questionnaire in their natural virtual settings. The members were questioned on their socializatio...

  12. Virtual Reality and Its Potential Application in Education and Training.

    Science.gov (United States)

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  13. Virtualisation Devices for Student Learning: Comparison between Desktop-Based (Oculus Rift) and Mobile-Based (Gear VR) Virtual Reality in Medical and Health Science Education

    Science.gov (United States)

    Moro, Christian; Stromberga, Zane; Stirling, Allan

    2017-01-01

    Consumer-grade virtual reality has recently become available for both desktop and mobile platforms and may redefine the way that students learn. However, the decision regarding which device to utilise within a curriculum is unclear. Desktop-based VR has considerably higher setup costs involved, whereas mobile-based VR cannot produce the quality of…

  14. Conjoint analysis and virtual reality : a review

    NARCIS (Netherlands)

    Dijkstra, J.; Timmermans, H.J.P.

    1998-01-01

    This paper describes a review of an ongoing research project which aims to develop a conjoint analysis and virtual reality (CA&VR) system as part of a design information system in virtual reality. The research project aims to develop a design system that can be used for interactive design and

  15. Defining Virtual Reality: Dimensions Determining Telepresence.

    Science.gov (United States)

    Steuer, Jonathan

    1992-01-01

    Defines virtual reality as a particular type of experience (in terms of "presence" and "telepresence") rather than as a collection of hardware. Maintains that media technologies can be classified and studied in terms of vividness and interactivity, two attributes on which virtual reality ranks very high. (SR)

  16. The 'mad scientists': psychoanalysis, dream and virtual reality.

    Science.gov (United States)

    Leclaire, Marie

    2003-04-01

    The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.

  17. Virtual-reality-based attention assessment of ADHD: ClinicaVR: Classroom-CPT versus a traditional continuous performance test.

    Science.gov (United States)

    Neguț, Alexandra; Jurma, Anda Maria; David, Daniel

    2017-08-01

    Virtual-reality-based assessment may be a good alternative to classical or computerized neuropsychological assessment due to increased ecological validity. ClinicaVR: Classroom-CPT (VC) is a neuropsychological test embedded in virtual reality that is designed to assess attention deficits in children with attention deficit hyperactivity disorder (ADHD) or other conditions associated with impaired attention. The present study aimed to (1) investigate the diagnostic validity of VC in comparison to a traditional continuous performance test (CPT), (2) explore the task difficulty of VC, (3) address the effect of distractors on the performance of ADHD participants and typically-developing (TD) controls, and (4) compare the two measures on cognitive absorption. A total of 33 children diagnosed with ADHD and 42 TD children, aged between 7 and 13 years, participated in the study and were tested with a traditional CPT or with VC, along with several cognitive measures and an adapted version of the Cognitive Absorption Scale. A mixed multivariate analysis of covariance (MANCOVA) revealed that the children with ADHD performed worse on correct responses had more commissions and omissions errors than the TD children, as well as slower target reaction times . The results showed significant differences between performance in the virtual environment and the traditional computerized one, with longer reaction times in virtual reality. The data analysis highlighted the negative influence of auditory distractors on attention performance in the case of the children with ADHD, but not for the TD children. Finally, the two measures did not differ on the cognitive absorption perceived by the children.

  18. Immersive virtual reality-based training improves response in a simulated operating room fire scenario.

    Science.gov (United States)

    Sankaranarayanan, Ganesh; Wooley, Lizzy; Hogg, Deborah; Dorozhkin, Denis; Olasky, Jaisa; Chauhan, Sanket; Fleshman, James W; De, Suvranu; Scott, Daniel; Jones, Daniel B

    2018-01-25

    SAGES FUSE curriculum provides didactic knowledge on OR fire prevention. The objective of this study is to evaluate the impact of an immersive virtual reality (VR)-based OR fire training simulation system in combination with FUSE didactics. The study compared a control with a simulation group. After a pre-test questionnaire that assessed the baseline knowledge, both groups were given didactic material that consists of a 10-min presentation and reading materials about precautions and stopping an OR fire from the FUSE manual. The simulation group practiced on the OR fire simulation for one session that consisted of five trials within a week from the pre-test. One week later, both groups were reassessed using a questionnaire. A week after the post-test both groups also participated in a simulated OR fire scenario while their performance was videotaped for assessment. A total of 20 subjects (ten per group) participated in this IRB approved study. Median test scores for the control group increased from 5.5 to 9.00 (p = 0.011) and for the simulation group it increased from 5.0 to 8.5 (p = 0.005). Both groups started at the same baseline (pre-test, p = 0.529) and reached similar level in cognitive knowledge (post-test, p = 0.853). However, when tested in the mock OR fire scenario, 70% of the simulation group subjects were able to perform the correct sequence of steps in extinguishing the simulated fire whereas only 20% subjects in the control group were able to do so (p = 0.003). The simulation group was better than control group in correctly identifying the oxidizer (p = 0.03) and ignition source (p = 0.014). Interactive VR-based hands-on training was found to be a relatively inexpensive and effective mode for teaching OR fire prevention and management scenarios.

  19. Development of an evidence-based training program for laparoscopic hysterectomy on a virtual reality simulator.

    Science.gov (United States)

    Crochet, Patrice; Aggarwal, Rajesh; Knight, Sophie; Berdah, Stéphane; Boubli, Léon; Agostini, Aubert

    2017-06-01

    Substantial evidence in the scientific literature supports the use of simulation for surgical education. However, curricula lack for complex laparoscopic procedures in gynecology. The objective was to evaluate the validity of a program that reproduces key specific components of a laparoscopic hysterectomy (LH) procedure until colpotomy on a virtual reality (VR) simulator and to develop an evidence-based and stepwise training curriculum. This prospective cohort study was conducted in a Marseille teaching hospital. Forty participants were enrolled and were divided into experienced (senior surgeons who had performed more than 100 LH; n = 8), intermediate (surgical trainees who had performed 2-10 LH; n = 8) and inexperienced (n = 24) groups. Baselines were assessed on a validated basic task. Participants were tested for the LH procedure on a high-fidelity VR simulator. Validity evidence was proposed as the ability to differentiate between the three levels of experience. Inexperienced subjects performed ten repetitions for learning curve analysis. Proficiency measures were based on experienced surgeons' performances. Outcome measures were simulator-derived metrics and Objective Structured Assessment of Technical Skills (OSATS) scores. Quantitative analysis found significant inter-group differences between experienced intermediate and inexperienced groups for time (1369, 2385 and 3370 s; p < 0.001), number of movements (2033, 3195 and 4056; p = 0.001), path length (3390, 4526 and 5749 cm; p = 0.002), idle time (357, 654 and 747 s; p = 0.001), respect for tissue (24, 40 and 84; p = 0.01) and number of bladder injuries (0.13, 0 and 4.27; p < 0.001). Learning curves plateaued at the 2nd to 6th repetition. Further qualitative analysis found significant inter-group OSATS score differences at first repetition (22, 15 and 8, respectively; p < 0.001) and second repetition (25.5, 19.5 and 14; p < 0.001). The VR program for LH accrued validity evidence and

  20. Virtual reality excursions with programs in C

    CERN Document Server

    Watkins, Christopher D

    1994-01-01

    Virtual Reality Excursions with Programs in C provides the history, theory, principles and an account of the milestones in the development of virtual reality technology.The book is organized into five chapters. The first chapter explores the applications in the vast field of virtual reality. The second chapter presents a brief history of the field and its founders. Chapter 3 discusses human perception and how it works. Some interesting notes and much of the hot debate in the field are covered in Chapter 4. The fifth chapter describes many of the complexities involved in implementing virtual en

  1. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training.

    Science.gov (United States)

    Gallagher, Anthony G; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P; Moses, Gerald; Smith, C Daniel; Satava, Richard M

    2005-02-01

    To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills.

  2. Virtual reality technology and discussion on its application to uranium geology

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhang Baoju

    2004-01-01

    Based on the introduction to the concept, characteristics of virtual reality technology, and its current application situation, the application prospect of virtual reality technology to uranium geology is preliminarily discussed in this paper

  3. Application of virtual reality to simulation in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Yang Yanhua; Yang Yongmu; Duan Dongdong; Luo Jie

    2008-01-01

    Based on detailed analysis of the structure and key techniques of a virtual reality system, the applications of virtual reality to simulation in nuclear power plant (NPP) were developed. In order to meet the requirement of simulation in NPP, motion simulation of control rod drive system, walking system inside the containment and virtual main control room were presented. A simulator of NPP was connected to interchange dynamic data between virtual main control room and the simulator. The simulating results show that the technique of virtual reality can be applied well to the simulation inside containment, which is filled with activity material, and the simulation of virtual main control room, where human factors must be considered. It also can be used well to design virtual education and training system of NPP. (authors)

  4. Virtual-reality displaying of workpiece by reverse modeling

    International Nuclear Information System (INIS)

    Wu Huimin; Zhang Li; Chen Zhiqiang; Zhao Ziran

    2006-01-01

    The authors first propose a suit of CT data processing system: virtual-reality-based testing of workpiece by Reverse Modeling. For reverse modeling module, the authors propose two solutions: integrating Medical CT Modeling software and using VTK library to develop independently. Then, the authors analyze the required functions and characteristics of CT-based Reverse Modeling module, and the key technologies for developing. For virtual-reality module, the authors study characteristics of CT data and the needs of CT users, and describe the required functions and key techniques as for virtual reality displaying module. The authors still analyze the problems and prospective of development. (authors)

  5. Experience with virtual reality-based technology in teaching restorative dental procedures.

    Science.gov (United States)

    Buchanan, Judith A

    2004-12-01

    This article reports on extensive experience with advanced simulation at the University of Pennsylvania, School of Dental Medicine (UPSDM). Virtual reality-based technology (VRBT) or advanced simulation is currently available for the instruction of dental students in preclinical restorative procedures. UPSDM was one of the first schools in the world to have extensive experience with VRBT technology using an advanced simulation unit (DentSim) from DenX, Ltd. UPSDM's experience consists of several years of research using control and experimental groups, employing students to participate in an investigative project, and using the units for remediation and a supplement to the preclinical laboratory. Currently, all first-year students (Class of 2007 and Class of 2008) are receiving most of their preparative operative training on the VRBT units. UPSDM started with one (beta) version unit in 1998, which was later updated and expanded first to four units and recently to fifteen units. This communication is presenting the studies that were of fundamental importance in making the decision to acquire fifteen units in 2003. The areas of main interest to the SDM concerning this technology were its use in teaching, refreshing, and remediating students in restorative procedures and its effectiveness as a teaching methodology in relation to time, efficiency, and faculty. Several studies with varying parameters were performed at various time points. The limited statistical analysis conducted was not conclusive for all measures, and in some cases the data only suggest areas of possible significance. This is due to the low number of students who could access the limited number of available units and the change of protocols in response to student and faculty input. Overall, the results do suggest, however, that students learn faster, arrive at the same level of performance, accomplish more practice procedures per hour, and request more evaluations per procedure or per hour than in our

  6. Virtual Reality in the Medical Field

    OpenAIRE

    Motomatsu, Haruka

    2014-01-01

    The objective is to analyze the use of the emerging 3D computer technology of VirtualReality in the use of relieving pain in physically impaired conditions such as burn victims,amputees, and phantom limb patients, during therapy and medical procedures. Virtualtechnology generates a three dimensional visual virtual world in which enables interaction.Comparison will be made between the emerging technology of the Virtual Reality and methodsusually used, which are the use of medicine. Medicine ha...

  7. Development of Virtual Reality Cycling Simulator

    OpenAIRE

    Schramka, Filip; Arisona, Stefan; Joos, Michael; Erath, Alexander

    2017-01-01

    This paper presents a cycling simulator implemented using consumer virtual reality hardware and additional off-the-shelf sensors. Challenges like real time motion tracking within the performance requirements of state of the art virtual reality are successfully mastered. Retrieved data from digital motion processors is sent over Bluetooth to a render machine running Unity3D. By processing this data a bicycle is mapped into virtual space. Physically correct behaviour is simulated and high quali...

  8. Virtual Reality Based Collaborative Design by Children with High-Functioning Autism: Design-Based Flexibility, Identity, and Norm Construction

    Science.gov (United States)

    Ke, Fengfeng; Lee, Sungwoong

    2016-01-01

    This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…

  9. Virtual reality systems for rodents.

    Science.gov (United States)

    Thurley, Kay; Ayaz, Aslı

    2017-02-01

    Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies.

  10. ATLASrift - a Virtual Reality application

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration

    2016-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists – for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice – OculusRift VR system, the development environment – UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/vir...

  11. Does body shadow improve the efficacy of virtual reality-based training with BTS NIRVANA?

    Science.gov (United States)

    Russo, Margherita; De Luca, Rosaria; Naro, Antonino; Sciarrone, Francesca; Aragona, Bianca; Silvestri, Giuseppe; Manuli, Alfredo; Bramanti, Alessia; Casella, Carmela; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-01-01

    Abstract Background: Aim of the present study was to evaluate whether the presence of body shadows during virtual reality (VR) training with BTS NIRVANA (BTs-N) may lead to a better functional recovery. Methods: We enrolled 20 poststroke rehabilitation inpatients, who underwent a neurocognitive-rehabilitative training consisting of 24 sessions (3 times a week for 8 weeks) of BTs-N. All the patients were randomized into 2 groups: semi-immersive virtual training with (S-IVTS group) or without (S-IVT group) body shadows. Each participant was evaluated before (T0) and immediately (T1) after the end of the training (Trial Registration Number: NCT03095560). Results: The S-IVTS group showed a greater improvement in visuo-constructive skills and sustained attention, as compared with the S-IVT group. The other measures showed nonsignificant within-group and between-group differences. Conclusion: Our results showed that body shadow may represent a high-priority class of stimuli that act by “pushing” attention toward the body itself. Further studies are needed to clarify the role of body shadow in promoting the internal representation construction and thus self-recognition. PMID:28930852

  12. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills.

    Science.gov (United States)

    Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean

    2016-01-01

    Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after

  13. Exploring Urban Environments Using Virtual and Augmented Reality

    OpenAIRE

    Stelios Papakonstantinou; Vesna Brujic-Okretic; Fotis Liarokapis

    2007-01-01

    In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location ...

  14. Educational MOO: Text-Based Virtual Reality for Learning in Community. ERIC Digest.

    Science.gov (United States)

    Turbee, Lonnie

    MOO stands for "Multi-user domain, Object-Oriented." Early multi-user domains, or "MUDs," began as net-based dungeons-and-dragons type games, but MOOs have evolved from these origins to become some of cyberspace's most fascinating and engaging online communities. MOOs are social environments in a text-based virtual reality…

  15. Manipulating Bodily Presence Affects Cross-Modal Spatial Attention: A Virtual-Reality-Based ERP Study

    Science.gov (United States)

    Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M.

    2017-01-01

    Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements. PMID:28275346

  16. Manipulating Bodily Presence Affects Cross-Modal Spatial Attention: A Virtual-Reality-Based ERP Study.

    Science.gov (United States)

    Harjunen, Ville J; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M

    2017-01-01

    Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver's body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements.

  17. Virtual Reality as a Problem of the Electronic Economy.

    OpenAIRE

    Peter Koslowski

    2004-01-01

    Two concepts of virtual reality are competing in the cyber world, virtual reality as total adaptability and virtual reality as the simulation of possible worlds. Virtuality as adaptability in industrial production leads to a closer consideration of individual con-sumer demand and to de-massified production. It implies a stronger reference of pro-duction to the reality of consumer needs. The aesthetic concept of virtual reality as pos-sible words and fictional realities can imply a loss of rea...

  18. ENGEMBANGAN VIRTUAL CLASS UNTUK PEMBELAJARAN AUGMENTED REALITY BERBASIS ANDROID

    Directory of Open Access Journals (Sweden)

    Rifiana Arief

    2015-02-01

    Full Text Available ABSTRACT Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students’ needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning were: a having preparation to arrange learning unit, b analyzing and developing the content of learning materials, c designing storyboard or scenario of the virtual class, d making website of virtual class, e implementing the website as facility of online learning for Augmanted Reality. The available facilities in virtual class were to check learning units, to choose and download the material in the forms of e-book and presentation slides, to open the relevant website link for material enrichment as well as students’ practice with pre-test and post-test for measuring students’ understanding. By implementing virtual class for Augmanted Reality learning based Android, it is expected to provide alternative learning strategies for students that are interesting and easy to understand. The students are expected to be able to utilize this facility optimally in order to achieve the purposes of learning process and graduates’ competence. Keywords: VirtualClass, Augmented Reality (AR

  19. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    Directory of Open Access Journals (Sweden)

    Youngjun Kim

    2017-05-01

    Full Text Available Recently, virtual reality (VR and augmented reality (AR have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  20. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review.

    Science.gov (United States)

    Ravi, D K; Kumar, N; Singhi, P

    2017-09-01

    The use of virtual reality systems in the motor rehabilitation of children with cerebral palsy is new, and thus the scientific evidence for its effectiveness needs to be evaluated through a systematic review. To provide updated evidence-based guidance for virtual reality rehabilitation in sensory and functional motor skills of children and adolescents with cerebral palsy. PubMed, PEDro, Web of Science, OTseeker, PsycINFO and Cochrane Library were searched from their earliest records up to 1 June, 2016. Two reviewers applied the population intervention comparison outcome (PICO) question to screen the studies for this review. Information on study design, subjects, intervention, outcome measures and efficacy results were extracted into a pilot-tested form. Method quality was assessed independently by two reviewers using the Downs and Black checklist. Thirty-one studies included 369 participants in total. Best evidence synthesis was applied to summarize the outcomes, which were grouped according to International Classification of Functioning, Disability and Health. Moderate evidence was found for balance and overall motor development. The evidence is still limited for other motor skills. This review uncovered additional literature showing moderate evidence that virtual reality rehabilitation is a promising intervention to improve balance and motor skills in children and adolescents with cerebral palsy. The technique is growing, so long-term follow-up and further research are required to determine its exact place in the management of cerebral palsy. Systematic review registration number PROSPERO 2015:CRD42015026048. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  1. Experiencing 3D interactions in virtual reality and augmented reality

    NARCIS (Netherlands)

    Martens, J.B.; Qi, W.; Aliakseyeu, D.; Kok, A.J.F.; Liere, van R.; Hoven, van den E.; Ijsselsteijn, W.; Kortuem, G.; Laerhoven, van K.; McClelland, I.; Perik, E.; Romero, N.; Ruyter, de B.

    2004-01-01

    We demonstrate basic 2D and 3D interactions in both a Virtual Reality (VR) system, called the Personal Space Station, and an Augmented Reality (AR) system, called the Visual Interaction Platform. Since both platforms use identical (optical) tracking hardware and software, and can run identical

  2. Augmented reality (AR) and virtual reality (VR) applied in dentistry

    OpenAIRE

    Ta-Ko Huang; Chi-Hsun Yang; Yu-Hsin Hsieh; Jen-Chyan Wang; Chun-Cheng Hung

    2018-01-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of th...

  3. Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury.

    Science.gov (United States)

    Cuthbert, Jeffrey P; Staniszewski, Kristi; Hays, Kaitlin; Gerber, Don; Natale, Audrey; O'Dell, Denise

    2014-01-01

    To evaluate the feasibility and safety of utilizing a commercially available virtual reality gaming system as a treatment intervention for balance training. A randomized controlled trial in which assessment and analysis were blinded. An inpatient rehabilitation facility. Interventions included balance-based physical therapy using a Nintendo Wii, as monitored by a physical therapist, and receipt of one-on-one balance-based physical therapy using standard physical therapy modalities available for use in the therapy gym. Participants in the standard physical therapy group were found to have slightly higher enjoyment at mid-intervention, while those receiving the virtual reality-based balance intervention were found to have higher enjoyment at study completion. Both groups demonstrated improved static and dynamic balance over the course of the study, with no significant differences between groups. Correlational analyses suggest a relationship exists between Wii balance board game scores and BBS scores for measures taken beyond the baseline assessment. This study provides a modest level of evidence to support using commercially available VR gaming systems for the treatment of balance deficits in patients with a primary diagnosis of TBI receiving inpatient rehabilitation. Additional research of these types of interventions for the treatment of balance deficits is warranted.

  4. Virtual reality representations in contemporary media

    CERN Document Server

    Chan, Melanie

    2014-01-01

    The idea of virtual realities has a long and complex historical trajectory, spanning from Plato's concept of the cave and the simulacrum, to artistic styles such as Trompe L'oeil, and more recently developments in 3D film, television and gaming. However, this book will pay particular attention to the time between the 1980s to the 1990s when virtual reality and cyberspace were represented, particularly in fiction, as a wondrous technology that enabled transcendence from the limitations of physical embodiment. The purpose of this critical historical analysis of representations of virtual reality

  5. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke.

    Science.gov (United States)

    Kim, Nara; Park, YuHyung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] We aimed to examine the effectiveness of a community-based virtual reality treadmill training (CVRTT) program on static balance abilities in patients with stroke. [Subjects and Methods] Patients (n = 20) who suffered a stroke at least 6 months prior to the study were recruited. All subjects underwent conventional physical therapy for 60 min/day, 5 days/week, for 4 weeks. Additionally, the CVRTT group underwent community-based virtual reality scene exposure combined with treadmill training for 30 min/day, 3 days/week, for 4 weeks, whereas the control group underwent conventional physical therapy, including muscle strengthening, balance training, and indoor and outdoor gait training, for 30 min/day, 3 days/week, for 4 weeks. Outcome measurements included the anteroposterior, mediolateral, and total postural sway path lengths and speed, which were recorded using the Balancia Software on a Wii Fit(™) balance board. [Results] The postural sway speed and anteroposterior and total postural sway path lengths were significantly decreased in the CVRTT group. Overall, the CVRTT group showed significantly greater improvement than the control group. [Conclusions] The present study results can be used to support the use of CVRTT for effectively improving balance in stroke patients. Moreover, we determined that a CVRTT program for stroke patients is both feasible and suitable.

  6. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  7. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  8. Towards augmented reality: The dialectics of physical and virtual space

    Directory of Open Access Journals (Sweden)

    Guga Jelena

    2015-01-01

    Full Text Available Spaces generated by new media technologies, no matter how abstract they may be, represent a qualitatively new form of the media environment. Moreover, they are integrated into everyday life in a way that they have become the constituents of social reality. Based on dualistic Cartesian understanding of real and virtual space, virtuality still carries a connotation of 'other' world, which is ontologically and phenomenologically different from 'reality'. However, virtuality as a characteristic of new media technologies should neither be equated with illusion, deception or fiction nor set in opposition to reality, given that it embodies real interactions. Instead, we could say that there are different types or levels of reality and that the virtual exists as reality qualitatively different from that of physical reality. Today, when every place on the planet, as well as social, political, and cultural activities, have their digital manifestations, can we still talk about virtual space as an isolated phenomenon? The ubiquitous use of new media technologies such as smartphones or wearables has profoundly transformed the experience of modern man. It is more and more determined by technologically mediated reality, i.e. augmented reality. In this regard, the key issues that will be addressed in this article are the ways technologically mediated spaces redefine not only the social relationships, but also the notions of identity, embodiment, and the self.

  9. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    training of mastoidectomy. Methods Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem......Background Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation....... Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices....

  10. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Directory of Open Access Journals (Sweden)

    Camilo Cortés

    2014-01-01

    Full Text Available New motor rehabilitation therapies include virtual reality (VR and robotic technologies. In limb rehabilitation, limb posture is required to (1 provide a limb realistic representation in VR games and (2 assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a the mathematical formulation and solution to the problem, (b the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c its integration into a rehabilitation VR game platform, and (d the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i animate avatars that represent the patient in VR games and (ii obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

  11. Cerebral Reorganization in Subacute Stroke Survivors after Virtual Reality-Based Training: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Xiang Xiao

    2017-01-01

    Full Text Available Background. Functional magnetic resonance imaging (fMRI is a promising method for quantifying brain recovery and investigating the intervention-induced changes in corticomotor excitability after stroke. This study aimed to evaluate cortical reorganization subsequent to virtual reality-enhanced treadmill (VRET training in subacute stroke survivors. Methods. Eight participants with ischemic stroke underwent VRET for 5 sections per week and for 3 weeks. fMRI was conducted to quantify the activity of selected brain regions when the subject performed ankle dorsiflexion. Gait speed and clinical scales were also measured before and after intervention. Results. Increased activation in the primary sensorimotor cortex of the lesioned hemisphere and supplementary motor areas of both sides for the paretic foot (p<0.01 was observed postintervention. Statistically significant improvements were observed in gait velocity (p<0.05. The change in voxel counts in the primary sensorimotor cortex of the lesioned hemisphere is significantly correlated with improvement of 10 m walk time after VRET (r=−0.719. Conclusions. We observed improved walking and increased activation in cortical regions of stroke survivors after VRET training. Moreover, the cortical recruitment was associated with better walking function. Our study suggests that cortical networks could be a site of plasticity, and their recruitment may be one mechanism of training-induced recovery of gait function in stroke. This trial is registered with ChiCTR-IOC-15006064.

  12. Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation

    Directory of Open Access Journals (Sweden)

    Si-Huei Lee

    2016-01-01

    Full Text Available Objective. This study aims to extract motor ingredients through data mining from wearable sensors in a virtual reality goal-directed shoulder rehabilitation (GDSR system and to examine their effects toward clinical assessment. Design. A single-group before/after comparison. Setting. Outpatient research hospital. Subjects. 16 patients with frozen shoulder. Interventions. The rehabilitation treatment involved GDSR exercises, hot pack, and interferential therapy. All patients first received hot pack and interferential therapy on the shoulder joints before engaging in the exercises. The GDSR exercise sessions were 40 minutes twice a week for 4 weeks. Main Measures. Clinical assessments included Constant and Murley score, range of motion of the shoulder, and muscle strength of upper arm as main measures. Motor indices from sensor data and task performance were measured as secondary measures. Results. The pre- and posttest results for task performance, motor indices, and the clinical assessments indicated significant improvement for the majority of the assessed items. Correlation analysis between the task performance and clinical assessments revealed significant correlations among a number of items. Stepwise regression analysis showed that task performance effectively predicted the results of several clinical assessment items. Conclusions. The motor ingredients derived from the wearable sensor and task performance are applicable and adequate to examine and predict clinical improvement after GDSR training.

  13. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Science.gov (United States)

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  14. Does Virtual Reality-based Kinect Dance Training Paradigm Improve Autonomic Nervous System Modulation in Individuals with Chronic Stroke?

    Science.gov (United States)

    Sampaio, Luciana Maria Malosá; Subramaniam, Savitha; Arena, Ross; Bhatt, Tanvi

    2016-10-01

    Physical inactivity and low resting heart rate variability (HRV) are associated with an increased cardiovascular deconditioning, risk of secondary stroke and mortality. Aerobic dance is a multidimensional physical activity and recent research supports its application as a valid alternative cardiovascular training. Furthermore, technological advances have facilitated the emergence of new approaches for exercise training holding promise, especially those methods that integrate rehabilitation with virtual gaming. The purpose of this study was to evaluate cardiac autonomic modulation in individuals with chronic stroke post-training using a virtual reality - based aerobic dance training paradigm. Eleven community-dwelling individuals with hemiparetic stroke [61.7( ± 4.3) years] received a virtual reality-based dance paradigm for 6 weeks using the commercially available Kinect dance video game "Just Dance 3." The training was delivered in a high-intensity tapering method with the first two weeks consisting of 5 sessions/week, next two weeks of 3 sessions/week and last two weeks of 2 sessions/week, with a total of 20 sessions. Data obtained for HRV analysis pre- and post-intervention consists of HRV for ten minutes in (1) supine resting position; (2) quiet standing. High-frequency (HF) power measures as indicators of cardiac parasympathetic activity, low-frequency (LF) power of parasympathetic-sympathetic balance and LF/HF of sympatho-vagal balance were calculated. YMCA submaximal cycle Ergometer test was used to acquire VO 2 max pre- and post-intervention. Changes in physical activity during dance training were assessed using Omran HJ-321 Tri-Axis Pedometer. After training, participants demonstrated a significant improvement in autonomic modulation in the supine position, indicating an improvement in LF=48.4 ( ± 20.1) to 40.3 ( ± 8.0), p =0.03; HF=51.5 ( ± 19) to 59.7 ( ± 8), p = 0.02 and LF/HF=1.6 ( ± 1.9) to 0.8 ( ± 0.26), p =0.05]. Post-training the

  15. Virtual Reality in Education: Defining Researchable Issues.

    Science.gov (United States)

    Hedburg, John; Alexander, Shirley

    1994-01-01

    Discusses situated learning and virtual reality, focusing on the pedagogical aspects of the technology and its importance in achieving a learning environment which challenges and supports effective learning. (AEF)

  16. Virtual Reality: Is It Real Or Not?

    Directory of Open Access Journals (Sweden)

    S. Serap Kurbanoğlu

    1996-01-01

    Full Text Available In this paper virtual reality technology and how libraries might be affected by this technology are examined. Virtual reality sets out to address a problem. The problem is that of user-friendliness of computer systems. Needless to say, the current generation of computers still involves a barrier between human and machine. This is keyboard or mouse on the human side, and the screen on the computer side. If computers are really going to become a part of everyone’s normal day to day experiences, they, must allow users to visualise information in a way familiar to them, not the way the computers forces them to. Virtual reality provides such a way. With the increasing amounts of information available in electronic form, it is clear that virtual reality technology will have a profound impact on libraries.

  17. Telepresence and remote communication through virtual reality

    OpenAIRE

    Rydenfors, Gabriella

    2017-01-01

    This Master Thesis concerns a telepresence implementation which utilizes state-of-the-art virtual reality combined with live 360 degree video. Navigation interfaces for telepresence with virtual reality headsets were developed and evaluated through a user study. An evaluation of telepresence as a communication media was performed, comparing it to video communication. The result showed that telepresence was a better communication media than video communication.

  18. Virtual Reality: immersed in the structural world

    OpenAIRE

    McCabe, Aimee; McPolin, Daniel

    2015-01-01

    Virtual reality is a rapidly emerging technology, driven by the computer gaming industry. The maturity of the concept, combined with modern hardware, is delivering an experience which offers a useful commercial tool for industry and educators. This article discusses the uses of virtual reality within structural engineering and provides an understanding of how it can be incorporated easily and efficiently for design purposes and beyond.

  19. Extending Science lessons with Virtual Reality

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina; Tilling, Steve; Needham, Richard

    2016-01-01

    The Open University, Field Studies Council and Association for Science Education are conducting research into the use of Google Expeditions and other virtual reality tools to a) augment and extend field work experiences; and b) as an additional tool in the classrooms along with resources such as videos, photographs. \\ud \\ud The following aspects were discussed in this workshop:\\ud \\ud Does the virtual reality technology improve student engagement, and what are the implications for teachers?\\u...

  20. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. [Virtual reality therapy in anxiety disorders].

    Science.gov (United States)

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he

  2. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    Science.gov (United States)

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  3. Tecnatom virtual reality experience in nuclear technology

    International Nuclear Information System (INIS)

    Baeza, Guillermo; Cabrera, Esteban; Salve, Ricardo

    2004-01-01

    TECNATOM is a Spanish company focused in providing support to the energy sector. Training, operation engineering and inspection services in nuclear environments are the main business of the company. Emerging applications based on Virtual Reality (VR) are being demanded by the market as a response to the current cost reduction trend and to the new challenges arising in decommissioning of NPP's, human factors analysis and training of personnel in high risk tasks. On this respect, Tecnatom has launched several initiatives to consolidate its internal capabilities in VR and to acquire consulting skills for the Tecnatom market. The results of theses actions will be shown in this paper. (Author)

  4. Virtual Reality: Real Promises and False Expectations.

    Science.gov (United States)

    Homan, Willem J.

    1994-01-01

    Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)

  5. Using Immersive Virtual Reality for Electrical Substation Training

    Science.gov (United States)

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  6. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    OpenAIRE

    Veronica S. Pantelidis

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. Thisarticle lists examples of such research. Reasons to use virtual reality are discussed.Advantages and disadvantages of using virtual reality are presented, as well as suggestions onwhen to use and when not to use virtual reality. A model that can be used to determine whento use virtual reality in an education or training course is presented.

  7. Presence in Virtual Reality Exposure Therapy Systems

    NARCIS (Netherlands)

    Ling, Y.

    2014-01-01

    Experiencing anxiety is essential for virtual reality exposure therapy (VRET) to be effective in curing patients suffering from anxiety disorders. However, some patients drop out in VRET due to the lack of feeling anxiety. Presence - which refers to the feeling of being in the virtual environment -

  8. Controlling social stress in virtual reality environments

    NARCIS (Netherlands)

    Hartanto, D.; Kampmann, I.L.; Morina, N.; Emmelkamp, P.G.M.; Neerincx, M.A.; Brinkman, W.P.

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study:

  9. Virtual Reality: A New Learning Environment.

    Science.gov (United States)

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  10. Introduction to Virtual Reality in Education

    Science.gov (United States)

    Dede, Chris

    2009-01-01

    As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…

  11. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  12. BALINESE FRUIT SHOOTER GAME WAS CATEGORIZED AS A VIRTUAL REALITY-BASED WHICH WAS APPROPRIATE AS INSTRUCTIONAL MEDIA IN KINDERGARTEN (GAME BALINESE FRUIT SHOOTER BERBASIS VIRTUAL REALITY SEBAGAI MEDIA PEMBELAJARAN DI TAMAN KANAK-KANAK

    Directory of Open Access Journals (Sweden)

    Made Aditya Pranata

    2018-02-01

    Full Text Available Ab stract. Local Balinese fruits competed between imported fruit which existence was not uncommon and some local Balinese fruits that were once very popular in the community, and now that was rarely founded. The present generation is more familiar with various imported fruits than local fruits, especially in Bali (Rai, 2016. Based on these problems required a media used to introduce local Balinese fruit, one of which is imstructional media. The Activities are grouping local Balinese fruit by color by shooting. That activities are conducting to motivate the interest of learning, to increase insights related to local Balinese fruit, to introduce local Balinese fruit to kindergarten children, and to give an overview of the form of local Balinese fruit. Development of Balinese Fruit Shooter game based on Virtual Reality as instructional media in Ceria Asih of Kindergarten Singaraja using ADDIE model. The final result is a Virtual Reality based Balinese Fruit Shooter game about shooting local Balinese fruits by color as an introduction to local Balinese fruit for early childhood that can be played through a computer with HTC VIVE headsets. Results for field trials involving 10 children of Ceria Asih Kindergarten Singaraja reached 92.2% with very appropriate criteria. This application can be used as a media to introduce the local fruit of Bali in learning in kindergarten with sub themes of fruits. Abstrak. Buah lokal Bali bersaing antara buah impor yang keberadaannya tidak jarang ditemukan dan beberapa buah lokal Bali yang dulu sangat populer di masyarakat, saat ini sudah mulai jarang ditemukan. Generasi sekarang lebih mengenal berbagai buah impor daripada buah lokal khususnya di Bali (Rai, 2016. Berdasarkan permasalahan tersebut diperlukan suatu media yang digunakan untuk memperkenalkan buah lokal Bali, salah satunya adalah media pemebelajaran. Kegiatan yang dilakukan adalah mengelompokan buah lokal Bali berdasarkan warna dengan cara menembak

  13. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training...

  14. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Directory of Open Access Journals (Sweden)

    Zun-rong Wang

    2017-01-01

    Full Text Available Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238.

  15. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Science.gov (United States)

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  16. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    Science.gov (United States)

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  17. Effect of virtual reality training on laparoscopic surgery

    DEFF Research Database (Denmark)

    Larsen, Christian R; Soerensen, Jette L; Grantcharov, Teodor P

    2009-01-01

    OBJECTIVE: To assess the effect of virtual reality training on an actual laparoscopic operation. DESIGN: Prospective randomised controlled and blinded trial. SETTING: Seven gynaecological departments in the Zeeland region of Denmark. PARTICIPANTS: 24 first and second year registrars specialising...... in gynaecology and obstetrics. INTERVENTIONS: Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). MAIN OUTCOME MEASURE: The main outcome measure was technical performance assessed by two independent observers blinded to trainee......-14 minutes) and in the control group was 24 (20-29) minutes (Pvirtual reality simulator training. The performance level of novices...

  18. Virtual reality boosts performance at AREVA Projects

    International Nuclear Information System (INIS)

    Bernasconi, F.

    2017-01-01

    AREVA Projects is one of the 6 business units of New AREVA and it is dedicated to engineering works in a vast fan of activities from mining to waste management via uranium chemistry and nuclear fuel recycling. AREVA projects has opted for innovation to improve performance. Since 2012 virtual reality has been used through the creation of a room equipped with a high-definition screen and stereoscopic goggles. At the beginning virtual reality was used to test and validate procedures for handling equipment thanks to a dynamical digital simulation of this equipment. Now virtual reality is massively used to validate the design phase of projects without having to fabricate a physical mock-up which saves time. The next step in the use of virtual reality is the implementation of a new version of devices like helmets, gloves... that will allow a better interaction with the virtual world. The continuously increasing of computer power is always pushing back the limits of what is possible in virtual reality. (A.C.)

  19. Virtual reality and hallucination: a technoetic perspective

    Science.gov (United States)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  20. Virtual reality in surgical education.

    Science.gov (United States)

    Ota, D; Loftin, B; Saito, T; Lea, R; Keller, J

    1995-03-01

    Virtual reality (VR) is an emerging technology that can teach surgeons new procedures and can determine their level of competence before they operate on patients. Also VR allows the trainee to return to the same procedure or task several times later as a refresher course. Laparoscopic surgery is a new operative technique which requires the surgeon to observe the operation on a video-monitor and requires the acquisition of new skills. VR simulation could duplicate the operative field and thereby enhance training and reduce the need for expensive animal training models. Our preliminary experience has shown that we have the technology to model tissues and laparoscopic instruments and to develop in real time a VR learning environment for surgeons. Another basic need is to measure competence. Surgical training is an apprenticeship requiring close supervision and 5-7 years of training. Technical competence is judged by the mentor and has always been subjective. If VR surgical simulators are to play an important role in the future, quantitative measurement of competence would have to be part of the system. Because surgical competence is "vague" and is characterized by such terms as "too long, too short" or "too close, too far," it is possible that the principles of fuzzy logic could be used to measure competence in a VR surgical simulator. Because a surgical procedure consists of a series of tasks and each task is a series of steps, we will plan to create two important tasks in a VR simulator and validate their use. These tasks consist of laparoscopic knot tying and laparoscopic suturing. Our hypothesis is that VR in combination with fuzzy logic can educate surgeons and determine when they are competent to perform these procedures on patients.

  1. Virtual reality applications to the training

    International Nuclear Information System (INIS)

    Gomez-Arguello, B.; Gonzalez, F.; Salve, R.

    2003-01-01

    The application of Virtual Reality for training in radiological environments allows the planning analysis and training in tasks which will be performed later in a real environment, saving doses to the real workers. There are many advantages of using VR in the training field comparing with a traditional training based on entries to the radiological areas and 2D studies: The application of the VR to the nuclear industry will provide in a middle period a more efficient training in radiological environments, giving more fidelity to the real world, enforcing the spatial skills and the active learning and allowing the visualization of the radiation field and the more suitable routes. TECNATOM has been working in VR field through several to test the adequacy of this methodology. Specifically, the SIMU2 project has been developed. This is a Virtual Reality highly flexible based software tool which allows for the simulation of human tasks in radiological environments, providing dosimetric information in all the points of the environment as well as the doses received by the workers during the simulated tasks performance. This application can be used as a support tool in training courses, to train the operators who will perform the real operation. Besides, the system allows the trainer to enter comments and explanations for each selected action or for the complete task. (Author) 8 refs

  2. Teleoperation environment based on virtual reality. Application of two-planes method for position measurement

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Tezuka, Tetsuo; Inoue, Ryuji

    1998-01-01

    A teleoperation system based on virtual environment (VE) is an emergent technology for operating a robot in remote or hazardous environment. We have developed a VE-based teleoperation system for robot-arm manipulation in a simplified real world. The VE for manipulating the robot arm is constructed by measuring the 3D positions of the objects around the robot arm by motion-stereo method. The 3D position is estimated by using two-(calibration) planes method based on images captured by the CCD camera on the robot-arm, since the two-planes method does not need pin-hole-model assumption to the camera system. The precision of this 3D-measurement is evaluated through experiments and then derived is the theoretical model to the error in the measurement. This measurement system is applied to VE-based teleoperation experiment for Peg-in-hole practice by the robot arm. (author)

  3. Neurosurgical tactile discrimination training with haptic-based virtual reality simulation.

    Science.gov (United States)

    Patel, Achal; Koshy, Nick; Ortega-Barnett, Juan; Chan, Hoi C; Kuo, Yong-Fan; Luciano, Cristian; Rizzi, Silvio; Matulyauskas, Martin; Kania, Patrick; Banerjee, Pat; Gasco, Jaime

    2014-12-01

    To determine if a computer-based simulation with haptic technology can help surgical trainees improve tactile discrimination using surgical instruments. Twenty junior medical students participated in the study and were randomized into two groups. Subjects in Group A participated in virtual simulation training using the ImmersiveTouch simulator (ImmersiveTouch, Inc., Chicago, IL, USA) that required differentiating the firmness of virtual spheres using tactile and kinesthetic sensation via haptic technology. Subjects in Group B did not undergo any training. With their visual fields obscured, subjects in both groups were then evaluated on their ability to use the suction and bipolar instruments to find six elastothane objects with areas ranging from 1.5 to 3.5 cm2 embedded in a urethane foam brain cavity model while relying on tactile and kinesthetic sensation only. A total of 73.3% of the subjects in Group A (simulation training) were able to find the brain cavity objects in comparison to 53.3% of the subjects in Group B (no training) (P  =  0.0183). There was a statistically significant difference in the total number of Group A subjects able to find smaller brain cavity objects (size ≤ 2.5 cm2) compared to that in Group B (72.5 vs. 40%, P  =  0.0032). On the other hand, no significant difference in the number of subjects able to detect larger objects (size ≧ 3 cm2) was found between Groups A and B (75 vs. 80%, P  =  0.7747). Virtual computer-based simulators with integrated haptic technology may improve tactile discrimination required for microsurgical technique.

  4. How to design compelling Virtual Reality or Augmented Reality experience?

    OpenAIRE

    Richir , Simon; Fuchs , Philippe; Lourdeaux , Domitile; Millet , Dominique; BUCHE , Cédric; Querrec , Ronan

    2015-01-01

    International audience; The convergence of technologies currently observed in the field of Virtual Reality, Augmented Reality, robotics and consumer electronic reinforces the trend of new applications appearing every day. But when transferring knowledge acquired from research to businesses, research laboratories are often at a loss because of a lack of knowledge of the design and integration processes in creating an industrial scale product. In fact, the innovation approaches that take a good...

  5. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    Science.gov (United States)

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  6. Usual and virtual reality video game-based physiotherapy for children and youth with acquired brain injuries.

    Science.gov (United States)

    Levac, Danielle; Miller, Patricia; Missiuna, Cheryl

    2012-05-01

    Little is known about how therapists promote learning of functional motor skills for children with acquired brain injuries. This study explores physiotherapists' description of these interventions in comparison to virtual reality (VR) video game-based therapy. Six physiotherapists employed at a children's rehabilitation center participated in semi-structured interviews, which were transcribed and analyzed using thematic analysis. Physiotherapists describe using interventions that motivate children to challenge performance quality and optimize real-life functioning. Intervention strategies are influenced by characteristics of the child, parent availability to practice skills outside therapy, and therapist experience. VR use motivates children to participate, but can influence therapist use of verbal strategies and complicate interventions. Physiotherapists consider unique characteristics of this population when providing interventions that promote learning of motor skills. The VR technology has advantageous features but its use with this population can be challenging; further research is recommended.

  7. Virtual-reality-based cognitive behavioural therapy versus waiting list control for paranoid ideation and social avoidance in patients with psychotic disorders:

    NARCIS (Netherlands)

    Pot-Kolder, Roos M.C.A.; Geraets, Chris N.W.; Veling, Wim; van Beilen, Marije; Staring, Anton B.P.; Gijsman, Harm J.; Delespaul, Philippe A.E.G.; van der Gaag, Mark

    Background: Many patients with psychotic disorders have persistent paranoid ideation and avoid social situations because of suspiciousness and anxiety. We investigated the effects of virtual-reality-based cognitive behavioural therapy (VR-CBT) on paranoid thoughts and social participation. Methods:

  8. A One-Year Case Study: Understanding the Rich Potential of Project-Based Learning in a Virtual Reality Class for High School Students

    Science.gov (United States)

    Morales, Teresa M.; Bang, EunJin; Andre, Thomas

    2013-01-01

    This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one…

  9. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1.

    Science.gov (United States)

    Lee, Kyoung-Hee

    2015-06-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.

  10. A functional magnetic resonance imaging study of visuomotor processing in a virtual reality-based paradigm: Rehabilitation Gaming System.

    Science.gov (United States)

    Prochnow, D; Bermúdez i Badia, S; Schmidt, J; Duff, A; Brunheim, S; Kleiser, R; Seitz, R J; Verschure, P F M J

    2013-05-01

    The Rehabilitation Gaming System (RGS) has been designed as a flexible, virtual-reality (VR)-based device for rehabilitation of neurological patients. Recently, training of visuomotor processing with the RGS was shown to effectively improve arm function in acute and chronic stroke patients. It is assumed that the VR-based training protocol related to RGS creates conditions that aid recovery by virtue of the human mirror neuron system. Here, we provide evidence for this assumption by identifying the brain areas involved in controlling the catching of approaching colored balls in the virtual environment of the RGS. We used functional magnetic resonance imaging of 18 right-handed healthy subjects (24 ± 3 years) in both active and imagination conditions. We observed that the imagery of target catching was related to activation of frontal, parietal, temporal, cingulate and cerebellar regions. We interpret these activations in relation to object processing, attention, mirror mechanisms, and motor intention. Active catching followed an anticipatory mode, and resulted in significantly less activity in the motor control areas. Our results provide preliminary support for the hypothesis underlying RGS that this novel neurorehabilitation approach engages human mirror mechanisms that can be employed for visuomotor training. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Virtual Reality for Prototyping Service Journeys

    Directory of Open Access Journals (Sweden)

    Costas Boletsis

    2018-04-01

    Full Text Available The use of virtual elements for developing new service prototyping environments and more realistic simulations has been suggested as a way to optimise the service prototyping process. This work examines the application of virtual reality (VR in prototyping service journeys and it hypothesises that VR can recreate service journeys in a highly immersive, agile, and inexpensive manner, thus allowing users to have a representative service experience and enabling service designers to extract high-quality user feedback. To that end, a new service prototyping method, called VR service walkthrough, is presented and evaluated through an empirical comparative study. A VR service walkthrough is a virtual simulation of a service journey, representing how the service unfolds over space and time. A comparative study between the VR service walkthrough method and an adapted service walkthrough method evaluates the application of both methods using a location-based audio tour guide service as a case study. Two user groups (each with 21 users were used to evaluate both methods based on two factors: the user experience they offered and the subjective meaningfulness and quality of feedback they produced. Results show that the VR service walkthrough method gave a performance similar to that of the service walkthrough method. It was also able to communicate the service concept in an immersive way and foster constructive feedback.

  12. Virtual Reality Platform Based Simulation System of Environmental Noise Abatement Research

    Science.gov (United States)

    Yijun, Liu; Yu, Fang; Xiaoman, He; Yongyou, Wang

    The general mathematic mode of computing noise abatement is commonly used for most project planning and appraisal of environmental noise abatement projects. However, the inconvenient and impracticable mode and algorithm usually cannot meet the real world computation and testing. Therefore, a more practicable abatement mode and algorithm (multiple noise sources with multiband under sound barriers) which had been applied to VR based simulation system. That implemented the function of real-time demonstrating noise scattering condition within 3D virtual space, furthermore, with sound barriers added in 3D scene, the effectiveness of denoise by sound barriers also can be demonstrated within this system. That provides a significant solution for environmental noise abatement projects as a whole.

  13. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients.

    Science.gov (United States)

    Faria, Ana Lúcia; Andrade, Andreia; Soares, Luísa; I Badia, Sergi Bermúdez

    2016-11-02

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. There is substancial evidence on post-stroke cognitive rehabilitation benefits, but its implementation is generally limited by the use of paper-and-pencil methods, insufficient personalization, and suboptimal intensity. Virtual reality tools have shown potential for improving cognitive rehabilitation by supporting carefully personalized, ecologically valid tasks through accessible technologies. Notwithstanding important progress in VR-based cognitive rehabilitation systems, specially with Activities of Daily Living (ADL's) simulations, there is still a need of more clinical trials for its validation. In this work we present a one-month randomized controlled trial with 18 stroke in and outpatients from two rehabilitation units: 9 performing a VR-based intervention and 9 performing conventional rehabilitation. The VR-based intervention involved a virtual simulation of a city - Reh@City - where memory, attention, visuo-spatial abilities and executive functions tasks are integrated in the performance of several daily routines. The intervention had levels of difficulty progression through a method of fading cues. There was a pre and post-intervention assessment in both groups with the Addenbrooke Cognitive Examination (primary outcome) and the Trail Making Test A and B, Picture Arrangement from WAIS III and Stroke Impact Scale 3.0 (secondary outcomes). A within groups analysis revealed significant improvements in global cognitive functioning, attention, memory, visuo-spatial abilities, executive functions, emotion and overall recovery in the VR group. The control group only improved in self-reported memory and social participation. A between groups analysis, showed significantly greater improvements in global cognitive functioning, attention and executive functions when comparing VR to

  14. Virtual reality: Avatars in human spaceflight training

    Science.gov (United States)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  15. Virtual Gravity and the Duality of Reality

    CERN Document Server

    Harokopos, E

    2003-01-01

    It is shown that a hypothesis about gravity having a virtual cause implies there are two primary reference frames, a reality and a functional virtual reality and an equivalence principle relating the two is postulated. A mathematical expression relating the primary reference frames to the state of reality provides an explanation of particle-wave duality and resolves the controversy about the speed of gravity. A model for motion, time and particle formation is briefly discussed, in which the hypothesis about the virtual cause of gravity and supporting postulates are valid. It is further shown that such model provides solutions to unsolved paradoxes and a unification of consistent but contradictory ancient theories of matter and motion. Finally, a reference is made about the basis for devising experiments and testing the predictions of the model.

  16. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  virtual reality surgical simulation training of novices.

  17. Virtual Reality Stroop Task for neurocognitive assessment.

    Science.gov (United States)

    Parsons, Thomas D; Courtney, Christopher G; Arizmendi, Brian; Dawson, Michael

    2011-01-01

    Given the prevalence of traumatic brain injury (TBI), and the fact that many mild TBIs have no external marker of injury, there is a pressing need for innovative assessment technology. The demand for assessment that goes beyond traditional paper-and-pencil testing has resulted in the use of automated cognitive testing for increased precision and efficiency; and the use of virtual environment technology for enhanced ecological validity and increased function-based assessment. To address these issues, a Virtual Reality Stroop Task (VRST) that involves the subject being immersed in a virtual Humvee as Stroop stimuli appear on the windshield was developed. This study is an initial validation of the VRST as an assessment of neurocognitive functioning. When compared to the paper-and-pencil, as well as Automated Neuropsychological Assessment Metrics versions of the Stroop, the VRST appears to have enhanced capacity for providing an indication of a participant's reaction time and ability to inhibit a prepotent response while immersed in a military relevant simulation that presents psychophysiologically arousing high and low threat stimuli.

  18. Virtual reality simulation for construction safety promotion.

    Science.gov (United States)

    Zhao, Dong; Lucas, Jason

    2015-01-01

    Safety is a critical issue for the construction industry. Literature argues that human error contributes to more than half of occupational incidents and could be directly impacted by effective training programs. This paper reviews the current safety training status in the US construction industry. Results from the review evidence the gap between the status and industry expectation on safety. To narrow this gap, this paper demonstrates the development and utilisation of a training program that is based on virtual reality (VR) simulation. The VR-based safety training program can offer a safe working environment where users can effectively rehearse tasks with electrical hazards and ultimately promote their abilities for electrical hazard cognition and intervention. Its visualisation and simulation can also remove the training barriers caused by electricity's features of invisibility and dangerousness.

  19. På rejse med Virtual Reality i billedkunst

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Lyk, Patricia Bianca

    2015-01-01

    , de skulle have. Fokus. I artiklen er der særligt fokus på hvordan læringscentrede designprocesser og Virtual Reality tilsammen kan understøtte erfaringslæring. Konklusion. Eleverne fik en større forståelse af teknologi og kreative designprocesser ved at fungere som informanter og designpartnere i...... designforløbet. Eleverne fik igennem design af de fysiske modeller og besøget i Virtual Reality formidlet to oplevelser af deres modeller, som styrkede grundlaget for erfaringsbaseret læring. Erfaringsbaseret læring kombinerer oplevelse, refleksion, abstraktion og aktiv eksperimenteren i en proces, som...

  20. Virtual reality stimuli for force platform posturography.

    Science.gov (United States)

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  1. Subjective visual vertical assessment with mobile virtual reality system

    Directory of Open Access Journals (Sweden)

    Ingrida Ulozienė

    Full Text Available Background and objective: The subjective visual vertical (SVV is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. Materials and methods: In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions – static, dynamic and an immersive real-world (“boat in the sea” SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. Results: There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two

  2. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.

    Science.gov (United States)

    Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo

    2014-09-01

    The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.

  3. Virtual Reality and Special Needs

    Science.gov (United States)

    Jeffs, Tara L.

    2009-01-01

    The use of virtual environments for special needs is as diverse as the field of Special Education itself and the individuals it serves. Individuals with special needs often face challenges with attention, language, spatial abilities, memory, higher reasoning and knowledge acquisition. Research in the use of Virtual Learning Environments (VLE)…

  4. Measuring user satisfaction for design variations through virtual reality

    NARCIS (Netherlands)

    Orzechowski, M.A.; Timmermans, H.J.P.; Vries, de B.; Timmermans, H.J.P.; Vries, de B.

    2000-01-01

    This paper describes Virtual Reality as an environment to collect information about user satisfaction. Because Virtual Reality (VR) allows visualization with added interactivity, this form of representation bas particular advantages when presenting new designs. The paper reports on the development

  5. Presence in Virtual Reality Exposure Therapy Systems

    OpenAIRE

    Ling, Y.

    2014-01-01

    Experiencing anxiety is essential for virtual reality exposure therapy (VRET) to be effective in curing patients suffering from anxiety disorders. However, some patients drop out in VRET due to the lack of feeling anxiety. Presence - which refers to the feeling of being in the virtual environment - has been considered an important mechanism that leads to the experience of anxiety. Therefore, understanding the relationship between presence and anxiety and finding ways to improve presence in VR...

  6. Visualization framework for CAVE virtual reality systems

    OpenAIRE

    Kageyama, Akira; Tomiyama, Asako

    2016-01-01

    We have developed a software framework for scientific visualization in immersive-type, room-sized virtual reality (VR) systems, or Cave automatic virtual environment (CAVEs). This program, called Multiverse, allows users to select and invoke visualization programs without leaving CAVE’s VR space. Multiverse is a kind of immersive “desktop environment” for users, with a three-dimensional graphical user interface. For application developers, Multiverse is a software framework with useful class ...

  7. Natural Walking in Virtual Reality: A Review

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Steinicke, Franke

    2018-01-01

    Recent technological developments have finally brought virtual reality (VR) out of the laboratory and into the hands of developers and consumers. However, a number of challenges remain. Virtual travel is one of the most common and universal tasks performed inside virtual environments, yet enabling...... users to navigate virtual environments is not a trivial challenge—especially if the user is walking. In this article, we initially provide an overview of the numerous virtual travel techniques that have been proposed prior to the commercialization of VR. Then we turn to the mode of travel...... that is the most difficult to facilitate, that is, walking. The challenge of providing users with natural walking experiences in VR can be divided into two separate, albeit related, challenges: (1) enabling unconstrained walking in virtual worlds that are larger than the tracked physical space and (2) providing...

  8. Exploring Learner Acceptance of the Use of Virtual Reality in Medical Education: A Case Study of Desktop and Projection-Based Display Systems

    Science.gov (United States)

    Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min

    2016-01-01

    Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…

  9. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    Science.gov (United States)

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with 4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills

  10. Comparing Virtual and Location-Based Augmented Reality Mobile Learning: Emotions and Learning Outcomes

    Science.gov (United States)

    Harley, Jason M.; Poitras, Eric G.; Jarrell, Amanda; Duffy, Melissa C.; Lajoie, Susanne P.

    2016-01-01

    Research on the effectiveness of augmented reality (AR) on learning exists, but there is a paucity of empirical work that explores the role that positive emotions play in supporting learning in such settings. To address this gap, this study compared undergraduate students' emotions and learning outcomes during a guided historical tour using mobile…

  11. EEG correlates of virtual reality hypnosis.

    Science.gov (United States)

    White, David; Ciorciari, Joseph; Carbis, Colin; Liley, David

    2009-01-01

    The study investigated hypnosis-related electroencephalographic (EEG) coherence and power spectra changes in high and low hypnotizables (Stanford Hypnotic Clinical Scale) induced by a virtual reality hypnosis (VRH) induction system. In this study, the EEG from 17 participants (Mean age = 21.35, SD = 1.58) were compared based on their hypnotizability score. The EEG recording associated with a 2-minute, eyes-closed baseline state was compared to the EEG during a hypnosis-related state. This novel induction system was able to produce EEG findings consistent with previous hypnosis literature. Interactions of significance were found with EEG beta coherence. The high susceptibility group (n = 7) showed decreased coherence, while the low susceptibility group (n = 10) demonstrated an increase in coherence between medial frontal and lateral left prefrontal sites. Methodological and efficacy issues are discussed.

  12. Role of virtual reality simulation in endoscopy training

    OpenAIRE

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-01-01

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how...

  13. The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer's disease patients in cooking activities: A single case study.

    Science.gov (United States)

    Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe

    2018-07-01

    Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.

  14. Virtual Reality in Schools: The Ultimate Educational Technology.

    Science.gov (United States)

    Reid, Robert D.; Sykes, Wylmarie

    1999-01-01

    Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)

  15. Dynamic Eye gaze and its Potential in Virtual Reality Based Applications for Children with Autism Spectrum Disorders.

    Science.gov (United States)

    Lahiri, Uttama; Trewyn, Adam; Warren, Zachary; Sarkar, Nilanjan

    2011-01-01

    Children with Autism Spectrum Disorder are often characterized by deficits in social communication skills. While evidence suggests that intensive individualized interventions can improve aspects of core deficits in Autism Spectrum Disorder, at present numerous potent barriers exist related to accessing and implementing such interventions. Researchers are increasingly employing technology to develop more accessible, quantifiable, and individualized intervention tools to address core vulnerabilities related to autism. The present study describes the development and preliminary application of a Virtual Reality technology aimed at facilitating improvements in social communication skills for adolescents with autism. We present preliminary data from the usability study of this technological application for six adolescents with autism and discuss potential future development and application of adaptive Virtual Reality technology within an intervention framework.

  16. Virtual Reality: Directions in Research and Development.

    Science.gov (United States)

    Stuart, Rory

    1992-01-01

    Discussion of virtual reality (VR) focuses on research and development being carried out at NYNEX to solve business problems. Component technologies are described; design decisions are considered, including interactivity, connectivity, and locus of control; potential perils of VR are discussed, including user dissociation; and areas of promise are…

  17. Virtual reality as a social phenomenon

    Directory of Open Access Journals (Sweden)

    Markova T. V.

    2018-05-01

    Full Text Available the article is devoted to the study of virtual reality as a social phenomenon. Through an appeal to the past, its genesis is analyzed, as well as its significance in modern realities. The latter is viewed from both a social and a personal point of view. Comparing the number of supporters of virtual communication with the number of people of conservative views, conclusions are drawn about the tendency to depart from the usual communication. It allows to assert that the problem of the termination of live communication is relevant to this day. Inferences allow us to assert that the problem of replacing real communication is different. After looking at the positive consequences, the introduction of the mind into virtual reality, it is affirmed that there are good sides to this action. Through analysis, the causes of entering the World Wide Web are generated. In conclusion, the question is raised about the need for virtual reality in everyday life, its problems, as well as the prospects for development.

  18. Physics Education in Virtual Reality: An Example

    Science.gov (United States)

    Kaufmann, Hannes; Meyer, Bernd

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…

  19. Development of SMATER Virtual Reality Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byoung Ha; Chung, B. H.; You, H. Y.; Kim, Y. M.; Park, J. B.; Choi, I. S.; Won, T. W.; Bae, J. B.; Kang, H. K.; Jang, J. M.; Heo, J. W.; Park, M. Y.; Kyun, H. S.; Lee, C. J. [Post Media Ltd., Taejon (Korea, Republic of)

    1997-11-01

    In this research task, we want to develop the most suitable design of Spent Fuel Management Facility and develop 3D simulator for our illustration by applying method as such as graphics, simulation, kinematics, dynamics, and collision detection in virtual reality. Through this, we set the capability of making verification on modifying existing conceptual design as our final objective. 6 tabs., 35 figs. (author)

  20. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  1. Stencil cutouts for virtual reality inputs

    CSIR Research Space (South Africa)

    Ausmeier, Natalie J

    2017-02-01

    Full Text Available Virtual Reality (VR) is widely used in training simulators of dangerous or expensive vehicles such as aircraft or heavy mining machinery. The vehicles often have very complicated controls that users need to master before attempting to operate a real...

  2. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  3. Acoustic Virtual Reality – Methods and challenges

    DEFF Research Database (Denmark)

    Pind Jörgensson, Finnur Kári; Jeong, Cheol-Ho; Llopis, Hermes Sampedro

    2018-01-01

    and acoustics into the virtual reality sphere adds another dimension to the experience. It both makes the immersion more believable, and in the context of building design, makes it easy and intuitive to try out different acoustic designs and soundscapes. In traditional auralization, although a very powerful...

  4. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study...

  5. Revolutionizing Education: The Promise of Virtual Reality

    Science.gov (United States)

    Gadelha, Rene

    2018-01-01

    Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…

  6. Virtual Reality: Is It for Real?

    Science.gov (United States)

    Dowding, Tim J.

    1994-01-01

    Defines virtual reality and describes its application to psychomotor skills training. A description of a system that could be used to teach a college course in physical therapy, including the use of miniature computer workstation, sensory gloves, a programmable mannequin, and other existing technology, is provided. (Contains 10 references.) (KRN)

  7. Dynamic 3D echocardiography in virtual reality.

    NARCIS (Netherlands)

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. Vletter-McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic

  8. Virtual Reality, Safety and Human Behaviour!

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The use of Virtual Reality (VR) environments opens the door to conduct hazard-free experiments aimed at understanding how people would behave in case of an emergency. The exploration of this systems would help to better design safety systems in complex scenarios to increase its safety robustness in case of unwanted events.

  9. Visualizing Cumulus Clouds in Virtual Reality

    NARCIS (Netherlands)

    Griffith, E.J.

    2010-01-01

    This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in question are found in data sets generated by Large-Eddy Simulations (LES), which are used to simulate a small section

  10. Using Virtual Reality To Teach Disability Awareness.

    Science.gov (United States)

    Pivik, Jayne; McComas, Joan; Macfarlane, Ian; Laflamme, Marc

    2002-01-01

    Describes the design and evaluation of a desktop virtual reality program that was developed to teach children about the accessibility and attitudinal barriers encountered by their peers with mobility impairments. Investigated attitudes, grade levels, familiarity with individuals with a disability, and gender. (Author/LRW)

  11. Evaluation of Virtual Reality Training Using Affect

    Science.gov (United States)

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  12. A manufactured past: virtual reality in archaeology

    Directory of Open Access Journals (Sweden)

    Glyn Goodrick

    2004-01-01

    Full Text Available Virtual reality and visualisation technologies developed over the past thirty years have been readily accessible to the archaeological community since the mid 1990s. Despite the high profile of virtual archaeology (Reilly 1991 both within the media and professional archaeology it has not been taken on board as a generally useful and standard technique by archaeologists. In this article we wish to discuss the technical and other issues which have resulted in a reluctance to adopt virtual archaeology and, more importantly, discuss ways forward that can enable us routinely to benefit from this technology in the diversity of archaeological practice.

  13. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  14. Virtual reality exposure in the treatment of social phobia.

    Science.gov (United States)

    Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre

    2004-01-01

    Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.

  15. Controlling Social Stress in Virtual Reality Environments

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  16. Controlling social stress in virtual reality environments.

    Directory of Open Access Journals (Sweden)

    Dwi Hartanto

    Full Text Available Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6 = 0.91, p = 0.002; r(6 = 0.76, p = 0.028 and r(6 = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  17. Controlling social stress in virtual reality environments.

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  18. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    Science.gov (United States)

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  19. Virtual Reality as Innovative Approach to the Interior Designing

    Science.gov (United States)

    Kaleja, Pavol; Kozlovská, Mária

    2017-06-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  20. Review of Virtual Reality Technology Application in Fire and Medical Exercise for Development of VR based Radiological Emergency Exercise System

    International Nuclear Information System (INIS)

    Song, Sub Lee; Lee, Byung Il; Park, Seong Jun; Lee, Dewhey; Park, Younwon

    2016-01-01

    The article of Act on Physical Protection and Radiological Emergency (APPRE) was amended as a nuclear licensee shall formulate a radiological emergency exercise plan as prescribed by the Ordinance of the Prime minister and execute such plan with the approval of the Nuclear Safety and Security Commission (NSSC). Current radiological emergency exercise is basically conducting in the field. The field exercise essentially requires participation of mass population. Due to lack of time, cost, communication and participation, the field exercise necessarily causes several limitations in an aspect of effectiveness. The public participants often misunderstood the situation as real though it is just an exercise so several conflicts are occurring. Furthermore, the exercise program is too ideal to reflect the real accident situation. In this point of view, application of virtual reality (VR) technology is highlighted with its many advantages. VR technology is expected to resolve those existing problems. Our research team is currently developing VR based radiological emergency exercise system. In this paper, the advantages and actual application of VR based training were introduced. With those advantages and improvement of existing disadvantages, our VR based radiological emergency exercise system will be developed. Not only physical interactive features, but also interactive fail-considered real-like scenarios will be adopted in the system. The ultimate goal of the system is safe and perfect evacuation of residents in case of radioactive accident

  1. Review of Virtual Reality Technology Application in Fire and Medical Exercise for Development of VR based Radiological Emergency Exercise System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sub Lee; Lee, Byung Il; Park, Seong Jun; Lee, Dewhey; Park, Younwon [BEES Inc., Daejeon (Korea, Republic of)

    2016-10-15

    The article of Act on Physical Protection and Radiological Emergency (APPRE) was amended as a nuclear licensee shall formulate a radiological emergency exercise plan as prescribed by the Ordinance of the Prime minister and execute such plan with the approval of the Nuclear Safety and Security Commission (NSSC). Current radiological emergency exercise is basically conducting in the field. The field exercise essentially requires participation of mass population. Due to lack of time, cost, communication and participation, the field exercise necessarily causes several limitations in an aspect of effectiveness. The public participants often misunderstood the situation as real though it is just an exercise so several conflicts are occurring. Furthermore, the exercise program is too ideal to reflect the real accident situation. In this point of view, application of virtual reality (VR) technology is highlighted with its many advantages. VR technology is expected to resolve those existing problems. Our research team is currently developing VR based radiological emergency exercise system. In this paper, the advantages and actual application of VR based training were introduced. With those advantages and improvement of existing disadvantages, our VR based radiological emergency exercise system will be developed. Not only physical interactive features, but also interactive fail-considered real-like scenarios will be adopted in the system. The ultimate goal of the system is safe and perfect evacuation of residents in case of radioactive accident.

  2. Virtual reality training for surgical trainees in laparoscopic surgery.

    Science.gov (United States)

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared

  3. Virtual reality in stroke rehabilitation: still more virtual than real.

    Science.gov (United States)

    Crosbie, J H; Lennon, S; Basford, J R; McDonough, S M

    2007-07-30

    To assess the utility of virtual reality (VR) in stroke rehabilitation. The Medline, Proquest, AMED, CINAHL, EMBASE and PsychInfo databases were electronically searched from inception/1980 to February 2005, using the keywords: Virtual reality, rehabilitation, stroke, physiotherapy/physical therapy and hemiplegia. Articles that met the study's inclusion criteria were required to: (i) be published in an English language peer reviewed journal, (ii) involve the use of VR in a stroke rehabilitation setting; and (iii) report impairment and/or activity oriented outcome measures. Two assessors independently assessed each study's quality using the American Academy for Cerebral Palsy and Developmental Medicine (AACPDM) grading system. Eleven papers met the inclusion criteria: Five addressed upper limb rehabilitation, three gait and balance, two cognitive interventions, and one both upper and lower limb rehabilitation. Three were judged to be AACPDM Level I/Weak, two Level III/Weak, three Level IV/Weak and three Level V quality of evidence. All articles involved before and after interventions; three randomized controlled trials obtained statistical significance, the remaining eight studies found VR-based therapy to be beneficial. None of the studies reported any significant adverse effects. VR is a potentially exciting and safe tool for stroke rehabilitation but its evidence base is too limited by design and power issues to permit a definitive assessment of its value. Thus, while the findings of this review are generally positive, the level of evidence is still weak to moderate, in terms of research quality. Further study in the form of rigorous controlled studies is warranted.

  4. Virtual Reality: Teaching Tool of the Twenty-First Century?

    Science.gov (United States)

    Hoffman, Helene; Vu, Dzung

    1997-01-01

    Virtual reality-based procedural and surgical simulations promise to revolutionize medical training. A wide range of simulations representing diverse content areas and varied implementation strategies are under development or in early use. The new systems will make broad-based training experiences available for students at all levels without risks…

  5. A DBR Framework for Designing Mobile Virtual Reality Learning Environments

    Science.gov (United States)

    Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio

    2017-01-01

    This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…

  6. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial.

    Science.gov (United States)

    Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory

    2015-07-01

    To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance

  7. Poster: Virtual reality interaction using mobile devices

    KAUST Repository

    Aseeri, Sahar A.

    2013-03-01

    In this work we aim to implement and evaluate alternative approaches for interacting with virtual environments on mobile devices for navigation, object selection and manipulation. Interaction with objects in virtual worlds using traditional input such as current state-of-the-art devices is often difficult and could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. We have developed new methods to perform different kinds of interactions using a mobile device (e.g. a smartphone) both as input device, performing selection and manipulation of objects, and as output device, utilizing the screen as an extra view (virtual camera or information display). Our hypothesis is that interaction via mobile devices facilitates simple tasks like the ones described within immersive virtual reality systems. We present here our initial implementation and result. © 2013 IEEE.

  8. Control room design and human factors using a virtual reality based tool for design, test and training

    International Nuclear Information System (INIS)

    Lirvall, Peter

    1998-02-01

    This report describes a user-centred approach to control room design adopted by IFE for the nuclear industry. The novelty of this approach is the development of a Control Room Philosophy, and the use of Virtual Reality (VR) technology as a tool in the design process, integrated with a specially developed Design Documentation System (DDS) and a process display prototyping tool PICASSO-3. The control room philosophy identifies all functional aspects of a control centre, to define the baseline principles and guidelines for the design. The use of VR technology enables end-users of the control room design (e.g. control room operators) to specify their preferred design of the new control room, and to replace the need for a physical mock-up to test and evaluate the proposed design. The DDS, integrated with the VR design tool, guides the control room operators, through a structured approach, to document the proposed design in a complete design specification. The VR tool, specially developed by IFE, is called the VR based Design, Test and Training tool (VR DTandT). It is not only intended to visualise the design, but also to test and evaluate the design. When the design is implemented, the same model is re-used as a VR based training simulator for operators. A special feature in the VR DTandT tool is that the verification and validation (VandV) tests, concerning human factors, are according to the regulative standards for nuclear control rooms

  9. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  10. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  11. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available Virtual Reality (VR has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer's disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment.

  12. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    Science.gov (United States)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  13. Development of Public Training System for Emergency Exercise Using Virtual Reality Technology Based on Radioactive Release Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Il; Park, Seong Jun; Lee, Dewhey; Song, Sub Lee; Park, Younwon [BEES Inc., Daejeon (Korea, Republic of)

    2016-10-15

    An exercise is normally conducted for a day or two days depending on the scale of the exercise. What we have experienced up to date there are several limitations in the radiological emergency exercises such as low public acceptance, poor enthusiasm in the exercise participation, not very attracting exercise scenarios, low efficiency in conducting an exercise, and so on. In order to overcome the limitations of the present exercising system, we would like to develop a radiological emergency exercise system using VR (virtual reality) technology based on a radioactive release accident. In this paper, we just introduce some basic development methods and event tree based scenario as a beginning stage. After the accident in Fukushima Daiichi NPP, the importance of emergency exercise especially for the public is far more emphasized around the world more and more. However, the human labor focused radiological emergency exercise up to now has many limitations. After developing this system properly and by using it, we could even expect to estimate the weak points of the emergency arrangements and strategy we have.

  14. Development of Public Training System for Emergency Exercise Using Virtual Reality Technology Based on Radioactive Release Accident

    International Nuclear Information System (INIS)

    Lee, Byung Il; Park, Seong Jun; Lee, Dewhey; Song, Sub Lee; Park, Younwon

    2016-01-01

    An exercise is normally conducted for a day or two days depending on the scale of the exercise. What we have experienced up to date there are several limitations in the radiological emergency exercises such as low public acceptance, poor enthusiasm in the exercise participation, not very attracting exercise scenarios, low efficiency in conducting an exercise, and so on. In order to overcome the limitations of the present exercising system, we would like to develop a radiological emergency exercise system using VR (virtual reality) technology based on a radioactive release accident. In this paper, we just introduce some basic development methods and event tree based scenario as a beginning stage. After the accident in Fukushima Daiichi NPP, the importance of emergency exercise especially for the public is far more emphasized around the world more and more. However, the human labor focused radiological emergency exercise up to now has many limitations. After developing this system properly and by using it, we could even expect to estimate the weak points of the emergency arrangements and strategy we have

  15. Virtual reality haptic human dissection.

    Science.gov (United States)

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  16. Virtual reality negotiation training system with virtual cognitions

    NARCIS (Netherlands)

    Ding, D.; Burger, F.; Brinkman, W.P.; Neerincx, M.A.

    2017-01-01

    A number of negotiation training systems have been developed to improve people’s performance in negotiation. They mainly focus on the skills development, and less on negotiation understanding and improving self-efficacy. We propose a virtual reality negotiation training system that exposes users to

  17. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    Directory of Open Access Journals (Sweden)

    Jan-Maarten Luursema

    2017-01-01

    Full Text Available A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1=5.63 and p=.02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  18. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    Science.gov (United States)

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  19. Virtual Reality based User Interface for Conceptual Design and Rapid Prototyping

    OpenAIRE

    Jadhav, Saurabh Subhash

    2017-01-01

    Computer Aided Design and Engineering (CAD/ CAE) tools currently available in the market have dramatically improved since their inception. In product development, CAD/ CAE has enabled the user to design, test, analyze and optimize the product virtually even before the first prototype is built. Use of direct modeling for product conceptualization allows the designer to create concept design iterations freely, quickly, flexibly and fast optimization. While modeling geometric databases have been...

  20. The Reality of Virtual Learning.

    Science.gov (United States)

    Berman, Sheldon

    1999-01-01

    Through a $7.5 million U.S. Department of Education grant, students at the Hudson (Massachusetts) Public Schools "attend" Virtual High School--a network of 30 schools in 10 states. Kids attend classes any time, work collaboratively, and choose among innovative, timely, technologically rich course offerings. Other sites are described.…

  1. A synchronous distributed cloud-based virtual reality meeting system for architectural and urban design

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2014-12-01

    Full Text Available In the spatial design fields such as architectural design and urban design, a consensus-building process among a variety of stakeholders like project executors, architects, residents, users, and general citizens is required. New technological developments such as cloud computing and Virtual Design Studios (VDS enable the creation of virtual meeting systems. This paper proposes an approach towards a synchronous distributed design meeting system. In this paper, in addition to sharing a 3D virtual space for a synchronous distributed type design meeting, we developed a prototype system that enables participants to sketch or make annotations and have discussions as well as add viewpoints to them. We applied these functions to evaluate an architectural design and urban landscape examination. In conclusion, the proposed method was evaluated as being effective and feasible. Yet, it shows a few shortcomings including the fact that simultaneous operation is limited to one client, and more arbitrary shapes should be supported in future versions of the application.

  2. Virtual reality solutions for the design of machine tools in practice

    OpenAIRE

    Zickner, H.; Neugebauer, Reimund; Weidlich, D.

    2006-01-01

    At the Virtual Reality Centre Production Engineering (VRCP) the Institute for Machine Tools and Production Processes (IWP) of the Chemnitz University of Technology and the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have developed several practical Virtual Reality (VR) based solutions for the industry. Some practical examples will show the benefits gained by the application of Virtual Reality techniques in the design process of machine tools and assembly lines.

  3. Detection of Stress Levels from Biosignals Measured in Virtual Reality Environments Using a Kernel-Based Extreme Learning Machine.

    Science.gov (United States)

    Cho, Dongrae; Ham, Jinsil; Oh, Jooyoung; Park, Jeanho; Kim, Sayup; Lee, Nak-Kyu; Lee, Boreom

    2017-10-24

    Virtual reality (VR) is a computer technique that creates an artificial environment composed of realistic images, sounds, and other sensations. Many researchers have used VR devices to generate various stimuli, and have utilized them to perform experiments or to provide treatment. In this study, the participants performed mental tasks using a VR device while physiological signals were measured: a photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (SKT). In general, stress is an important factor that can influence the autonomic nervous system (ANS). Heart-rate variability (HRV) is known to be related to ANS activity, so we used an HRV derived from the PPG peak interval. In addition, the peak characteristics of the skin conductance (SC) from EDA and SKT variation can also reflect ANS activity; we utilized them as well. Then, we applied a kernel-based extreme-learning machine (K-ELM) to correctly classify the stress levels induced by the VR task to reflect five different levels of stress situations: baseline, mild stress, moderate stress, severe stress, and recovery. Twelve healthy subjects voluntarily participated in the study. Three physiological signals were measured in stress environment generated by VR device. As a result, the average classification accuracy was over 95% using K-ELM and the integrated feature (IT = HRV + SC + SKT). In addition, the proposed algorithm can embed a microcontroller chip since K-ELM algorithm have very short computation time. Therefore, a compact wearable device classifying stress levels using physiological signals can be developed.

  4. Virtual Reality-Based Attention Bias Modification Training for Social Anxiety: A Feasibility and Proof of Concept Study.

    Science.gov (United States)

    Urech, Antoine; Krieger, Tobias; Chesham, Alvin; Mast, Fred W; Berger, Thomas

    2015-01-01

    Attention bias modification (ABM) programs have been considered as a promising new approach for the treatment of various disorders, including social anxiety disorder (SAD). However, previous studies yielded ambiguous results regarding the efficacy of ABM in SAD. The present proof-of-concept study investigates the feasibility of a newly developed virtual reality (VR)-based dot-probe training paradigm. It was designed to facilitate attentional disengagement from threatening stimuli in socially anxious individuals (N = 15). The following outcomes were examined: (a) self-reports of enjoyment, motivation, flow, and presence; (b) attentional bias for social stimuli; and (c) social anxiety symptoms. Results showed that ABM training is associated with high scores in enjoyment, motivation, flow, and presence. Furthermore, significant improvements in terms of attention bias and social anxiety symptoms were observed from pre- to follow-up assessment. The study suggests that VR is a feasible and presumably a promising new medium for ABM trainings. Controlled studies will need to be carried out.

  5. Virtual Reality-Based Attention Bias Modification Training for Social Anxiety: A Feasibility and Proof of Concept Study

    Directory of Open Access Journals (Sweden)

    Antoine eUrech

    2015-10-01

    Full Text Available Attention bias modification (ABM programs have been considered as a promising new approach for the treatment of various disorders, including social anxiety disorder (SAD. However, previous studies yielded ambiguous results regarding the efficacy of ABM in SAD. The present proof-of-concept study investigates the feasibility of a newly developed virtual reality (VR-based dot-probe training paradigm. It was designed to facilitate attentional disengagement from threatening stimuli in socially anxious individuals (N=15. The following outcomes were examined: (a self-reports of enjoyment, motivation, flow and presence, (b attentional bias for social stimuli, and (c social anxiety symptoms. Results showed that ABM training is associated with high scores in enjoyment, motivation, flow and presence. Furthermore, significant improvements in terms of attention bias and social anxiety symptoms were observed from pre- to follow-up assessment. The study suggests that VR is a feasible and presumably a promising new medium for ABM trainings. Controlled studies will need to be carried out.

  6. Virtual Reality Design: How Head-Mounted Displays Change Design Paradigms of Virtual Reality Worlds

    Directory of Open Access Journals (Sweden)

    Christian Stein

    2016-09-01

    Full Text Available With the upcoming generation of virtual reality HMDs, new virtual worlds, scenarios, and games are created especially for them. These are no longer bound to a remote screen or a relatively static user, but to an HMD as a more immersive device. This article discusses requirements for virtual scenarios implemented in new-generation HMDs to achieve a comfortable user experience. Furthermore, the effects of positional tracking are introduced and the relation between the user’s virtual and physical body is analyzed. The observations made are exemplified by existing software prototypes. They indicate how the term “virtual reality,” with all its loaded connotations, may be reconceptualized to express the peculiarities of HMDs in the context of gaming, entertainment, and virtual experiences.

  7. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    Science.gov (United States)

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  8. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  9. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  10. Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

    Science.gov (United States)

    Sun, Guo-Chen; Wang, Fei; Chen, Xiao-Lei; Yu, Xin-Guang; Ma, Xiao-Dong; Zhou, Ding-Biao; Zhu, Ru-Yuan; Xu, Bai-Nan

    2016-12-01

    The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A Virtual Reality Dance Training System Using Motion Capture Technology

    Science.gov (United States)

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  12. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  13. Virtual Reality: A Tool for Cartographic Visualization | Quaye-Ballard ...

    African Journals Online (AJOL)

    Visualization methods in the analysis of geographical datasets are based on static models, which restrict the visual analysis capabilities. The use of virtual reality, which is a three-dimensional (3D) perspective, gives the user the ability to change viewpoints and models dynamically overcomes the static limitations of ...

  14. Towards a taxonomy of virtual reality user interfaces

    NARCIS (Netherlands)

    Coomans, M.K.D.; Timmermans, H.J.P.

    1997-01-01

    Virtual Reality-based user interfaces (VRUIs) are expected to bring about a revolution in computing. VR can potentially communicate large amounts of data in an easily understandable format. VR looks very promising, but it is still a very new interface technology for which very little

  15. Near-Infrared Spectroscopy-Based Frontal Lobe Neurofeedback Integrated in Virtual Reality Modulates Brain and Behavior in Highly Impulsive Adults

    OpenAIRE

    Hudak, Justin; Blume, Friederike; Dresler, Thomas; Haeussinger, Florian B.; Renner, Tobias J.; Fallgatter, Andreas J.; Gawrilow, Caterina; Ehlis, Ann-Christine

    2017-01-01

    Based on neurofeedback (NF) training as a neurocognitive treatment in attention-deficit/hyperactivity disorder (ADHD), we designed a randomized, controlled functional near-infrared spectroscopy (fNIRS) NF intervention embedded in an immersive virtual reality classroom in which participants learned to control overhead lighting with their dorsolateral prefrontal brain activation. We tested the efficacy of the intervention on healthy adults displaying high impulsivity as a sub-clinical populatio...

  16. The Virtual Tablet: Virtual Reality as a Control System

    Science.gov (United States)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  17. Virtual Reality Applications for Stress Management Training in the Military.

    Science.gov (United States)

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  18. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  19. A Cloud-Based Virtual Reality App for a Novel Telemindfulness Service: Rationale, Design and Feasibility Evaluation.

    Science.gov (United States)

    Cikajlo, Imre; Cizman Staba, Ursa; Vrhovac, Suzana; Larkin, Frances; Roddy, Mark

    2017-06-05

    Worldwide, there has been a marked increase in stress and anxiety, also among patients with traumatic brain injury (TBI). Access to psychology services is limited, with some estimates suggesting that over 50% of sufferers are not accessing the existing services available to them for reasons such as inconvenience, embarrassment, or stigmatization concerns around mental health. Health service providers have increasingly been turning to drug-free therapies, such as mindfulness programs, as complementary treatments. Virtual reality (VR) as a new delivery method for meditation-based stress and anxiety reduction therapy offers configurable environments and privacy protection. Our objective was to design a serious learning-meditation environment and to test the feasibility of the developed telemindfulness approach based on cloud technologies. We developed a cloud-based system, which consisted of a Web interface for the mindfulness instructor and remote clients, who had 3D VR headsets. The mindfulness instructor could communicate over the Web interface with the participants using the headset. Additionally, the Web app enabled group sessions in virtual rooms, 360-degree videos, and real interactions or standalone meditation. The mindfulness program was designed as an 8-week Mindfulness-Based Stress Reduction course specifically for the developed virtual environments. The program was tested with four employees and four patients with TBI. The effects were measured with psychometric tests, the Mindful Attention Awareness Scale (MAAS) and the Satisfaction With Life Scale (SWLS). Patients also carried out the Mini-Mental State Examination (MMSE). An additional objective evaluation has also been carried out by tracking head motion. Additionally, the power spectrum analyses of similar tasks between sessions were tested. The patients achieved a higher level of life satisfaction during the study (SWLS: mean 23.0, SD 1.8 vs mean 18.3, SD 3.9) and a slight increase of the MAAS score

  20. Applying Virtual Reality to commercial Edutainment

    Science.gov (United States)

    Grissom, F.; Goza, Sharon P.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) when defined as a computer generated, immersive, three dimensional graphics environment which provides varying degrees of interactivity, remains an expensive, highly specialized application, yet to find its way into the school, home, or business. As a novel approach to a theme park-type attraction, though, its use can be justified. This paper describes how a virtual reality 'tour of the human digestive system' was created for the Omniplex Science Museum of Oklahoma City, Oklahoma. The customers main objectives were: (1) to educate; (2) to entertain; (3) to draw visitors; and (4) to generate revenue. The 'Edutainment' system ultimately delivered met these goals. As more such systems come into existence the resulting library of licensable programs will greatly reduce development costs to individual institutions.

  1. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  2. Haptics for Virtual Reality and Teleoperation

    CERN Document Server

    Mihelj, Matjaž

    2012-01-01

    This book covers all topics relevant for the design of haptic interfaces and teleoperation systems. The book provides the basic knowledge required for understanding more complex approaches and more importantly it introduces all issues that must be considered for designing efficient and safe haptic interfaces. Topics covered in this book provide insight into all relevant components of a haptic system. The reader is guided from understanding the virtual reality concept to the final goal of being able to design haptic interfaces for specific tasks such as nanomanipulation.  The introduction chapter positions the haptic interfaces within the virtual reality context. In order to design haptic interfaces that will comply with human capabilities at least basic understanding of human sensors-motor system is required. An overview of this topic is provided in the chapter related to human haptics. The book does not try to introduce the state-of-the-art haptic interface solutions because these tend to change quickly. On...

  3. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients.

    Science.gov (United States)

    Choi, Jun Hwan; Han, Eun Young; Kim, Bo Ryun; Kim, Sun Mi; Im, Sang Hee; Lee, So Young; Hyun, Chul Woong

    2014-08-01

    To investigate the effectiveness of commercial gaming-based virtual reality (VR) therapy on the recovery of paretic upper extremity in subacute stroke patients. Twenty patients with the first-onset subacute stroke were enrolled and randomly assigned to the case group (n=10) and the control group (n=10). Primary outcome was measured by the upper limb score through the Fugl-Meyer Assessment (FMA-UL) for the motor function of both upper extremities. Secondary outcomes were assessed for motor function of both upper extremities including manual function test (MFT), box and block test (BBT), grip strength, evaluated for activities of daily living (Korean version of Modified Barthel Index [K-MBI]), and cognitive functions (Korean version of the Mini-Mental State Examination [K-MMSE] and continuous performance test [CPT]). The case group received commercial gaming-based VR therapy using Wii (Nintendo, Tokyo, Japan), and the control group received conventional occupational therapy (OT) for 30 minutes a day during the period of 4 weeks. All patients were evaluated before and after the 4-week intervention. There were no significant differences in the baseline between the two groups. After 4 weeks, both groups showed significant improvement in the FMA-UL, MFT, BBT, K-MBI, K-MMSE, and correct detection of auditory CPT. However, grip strength was improved significantly only in the case group. There were no significant intergroup differences before and after the treatment. These findings suggested that the commercial gaming-based VR therapy was as effective as conventional OT on the recovery of upper extremity motor and daily living function in subacute stroke patients.

  4. New technologies, virtual reality and multimedia, in Radiation Protection training

    International Nuclear Information System (INIS)

    Felipe, A.; Sanchez-Mayoral, M. L.; Lamela, B.; Merino, A.; Sarti, F.

    2003-01-01

    Iberdrola Ingenieria y Consultoria (Iberinco) has developed some computer applications based in New Technologies, Virtual Reality and Multimedia, with the aim to optimise the formation and training of professionally exposed workers as well as to inform the public. The use of the new technologies could be an important help for the workers training. Virtual Reality Projects developed by Iberinco are: a) CIPRES: Interactive Calculations of Radiological Protection in a Simulation Environmental and, b) ACEWO: Workers Control Access to Nuclear Power Plants, virtual Reality could be directly applicable to several aspects related with Radiological Protection Training, for example. An application that workers could used to learn the main aspects of Radiological Protection related with: a) Physical concepts, b) Regulations, c) Use of protective clothing, d) Access into and exit out controlled areas, e) ALARA criterion. An examples is the project ACEWO. A training program based on Virtual Reality systems with simulations of procedures in which the operators could receive high doses. In this way, the operation time and dose could be minimised according to the ALARA criterion owing to the ability of repeating the exercise, or the work, as many times as be necessary, like project CIPRES. Iberinco has been developed an educational CD multimedia on nuclear energy and the protection measures foreseen in the emergency plans for the Spanish Civil Protection Agency, with the aim of being distributed to all the schools placed near a nuclear power plant. (Author) 4 refs

  5. Maestro, a wonder in virtual reality

    International Nuclear Information System (INIS)

    Debiar, A.; Loverini, M.J.; Annibal, M.

    1997-01-01

    The CEA's robotics and remote control service has developed an innovative control unit for the MAESTRO manipulator (modular arm and efficient system for tele-robotics), allowing for the association of robotics and virtual reality. Applications are aimed at preparing tasks and missions in nuclear reactor maintenance and monitoring, enhancing video images with synthetic images, and assisting the operator's task allowing him to feel all the interactions between the robot and the obstacles

  6. Natural interaction for mobile virtual reality

    OpenAIRE

    Prosenik, Uroš

    2016-01-01

    Virtual reality (VR) has recently become a real hit. Also, an increasing number of mobile devices that are used for everyday needs support and are powerful enough to run VR applications. As a result, the market is growing in number of VR glasses, which project the image from mobile device screens to user eyes. These glasses can be from different manufacturers and different shapes. Many VR glasses do not provide any additional controllers for interaction with the mobile device. The user is lim...

  7. Physics Education in Virtual Reality: An Example

    OpenAIRE

    Hannes Kaufmann; Bernd Meyer

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths and other properties of objects before, during and after experiments. Innovative teaching content is presented thatexploits the strengths of the 3D...

  8. Virtual reality in the treatment of pain

    OpenAIRE

    Botella Arbona, Cristina; García Palacios, Azucena; Baños Rivera, Rosa María; Quero Castellano, Soledad; Bretón-López, Juana

    2008-01-01

    Many medical procedures produce acute pain that in most cases is quite disturbing for the individual. Medication is the treatment of choice for acute pain. However, given the involvement of psychological aspects in the experience of pain, psychological techniques are being used as an effective adjunct to alleviate pain related to medical procedures. In the last years a new technology is demonstrating an enormous potential in this field: Virtual Reality (VR) distraction. In this ar...

  9. Virtual Reality for Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Elisa R. Zanier

    2018-05-01

    Full Text Available In this perspective, we discuss the potential of virtual reality (VR in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  10. Virtual Reality and Haptics for Product Assembly

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2012-01-01

    Full Text Available Haptics can significantly enhance the user's sense of immersion and interactivity. An industrial application of virtual reality and haptics for product assembly is described in this paper, which provides a new and low-cost approach for product assembly design, assembly task planning and assembly operation training. A demonstration of the system with haptics device interaction was available at the session of exp.at'11.

  11. Educational Uses of Virtual Reality Technology.

    Science.gov (United States)

    1998-01-01

    assist learning disabled students in gaining such skills. This VIRART researchers are also working on providing support for autistic students. In this...on the use of VR to help autistic children. In their first effort, these researchers used Street World to investigate the usability of the technology ...ANALYSES Educational Uses of Virtual Reality Technology Christine Youngblut mm QUALITY INSPECTED B, 19980325 036 / . , This work was conducted

  12. The Dark Shadow of Virtual Reality

    Directory of Open Access Journals (Sweden)

    Claire Su-Yeon Park

    2018-01-01

    science fiction: many large commercial companies are really building gigantic VR platforms (Kim, 2017. VR developers boast that the platforms can be categorized based on the purpose of the VR platform, e.g., Media, Communication, Travel, Education, Games, Medicine, the Military, and even Adult Movies (Kim, 2017. Also, the platform itself may be another “false” real world built up in the VR platform that mirrors our current real life (Kim, 2017. Imagine: a person could have a dual identity for (1 real life and (2 VR life (Kim, 2017. It sounds fantastic, does it not? Unfortunately, it may not be true. Suppose that a person selects the “Adult Movies” VR platform. Using Head Mounted Displays (HMD device and electronic sensors, a person would not only experience a vivid and lively video, but also feel a “real-life” touch. Such an option is very dangerous to adolescents because they are particularly vulnerable to sexually explicit content (Adeolu, Owoaje, & Olumide, 2016. While we cannot begin to fathom the implications, it is possible that this technology could lead to higher rates of teen pregnancy or sexually transmitted diseases (STDs in reality (Kann et al., 2016. Young people might also lose touch with reality, mistaking the virtual world as being more “real” than reality itself. For example, a young couple with a baby were playing a video game in which they were trying to save a baby from harm while neglecting their own baby to the point that the baby died (Kang, 2016. Further, what if the real economy began to operate just like the “Big Market”? In fact, VR developers are already creating such a VR platform (Kim, 2017. Since real estate is unlimited in the VR world, so is the amount of investment. This strongly suggests that VR as well as Artificial Intelligence (AI can ensure that the winner (primarily developers such as Data Scientists and AI algorithm makers takes all. Is such a situation fair and just? Here is another example: What if a person

  13. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  14. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  15. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  16. Sound For Animation And Virtual Reality

    Science.gov (United States)

    Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1995-01-01

    Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.

  17. Virtual reality disaster training: translation to practice.

    Science.gov (United States)

    Farra, Sharon L; Miller, Elaine T; Hodgson, Eric

    2015-01-01

    Disaster training is crucial to the mitigation of both mortality and morbidity associated with disasters. Just as clinical practice needs to be grounded in evidence, effective disaster education is dependent upon the development and use of andragogic and pedagogic evidence. Educational research findings must be transformed into useable education strategies. Virtual reality simulation is a teaching methodology that has the potential to be a powerful educational tool. The purpose of this article is to translate research findings related to the use of virtual reality simulation in disaster training into education practice. The Ace Star Model serves as a valuable framework to translate the VRS teaching methodology and improve disaster training of healthcare professionals. Using the Ace Star Model as a framework to put evidence into practice, strategies for implementing a virtual reality simulation are addressed. Practice guidelines, implementation recommendations, integration to practice and evaluation are discussed. It is imperative that health educators provide more exemplars of how research evidence can be moved through the various stages of the model to advance practice and sustain learning outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Proficiency-based laparoscopic and endoscopic training with virtual reality simulators: a comparison of proctored and independent approaches.

    Science.gov (United States)

    Snyder, Christopher W; Vandromme, Marianne J; Tyra, Sharon L; Hawn, Mary T

    2009-01-01

    Virtual reality (VR) simulators for laparoscopy and endoscopy may be valuable tools for resident education. However, the cost of such training in terms of trainee and instructor time may vary depending upon whether an independent or proctored approach is employed. We performed a randomized controlled trial to compare independent and proctored methods of proficiency-based VR simulator training. Medical students were randomized to independent or proctored training groups. Groups were compared with respect to the number of training hours and task repetitions required to achieve expert level proficiency on laparoscopic and endoscopic simulators. Cox regression modeling was used to compare time to proficiency between groups, with adjustment for appropriate covariates. Thirty-six medical students (18 independent, 18 proctored) were enrolled. Achievement of overall simulator proficiency required a median of 11 hours of training (range, 6-21 hours). Laparoscopic and endoscopic proficiency were achieved after a median of 11 (range, 6-32) and 10 (range, 5-27) task repetitions, respectively. The number of repetitions required to achieve proficiency was similar between groups. After adjustment for covariates, trainees in the independent group achieved simulator proficiency with significantly fewer hours of training (hazard ratio, 2.62; 95% confidence interval, 1.01-6.85; p = 0.048). Our study quantifies the cost, in instructor and trainee hours, of proficiency-based laparoscopic and endoscopic VR simulator training, and suggests that proctored instruction does not offer any advantages to trainees. The independent approach may be preferable for surgical residency programs desiring to implement VR simulator training.

  19. Individualized feedback-based virtual reality exercise improves older women's self-perceived health: a randomized controlled trial.

    Science.gov (United States)

    Lee, Minyoung; Son, Jaebum; Kim, Jungjin; Yoon, BumChul

    2015-01-01

    Individualized feedback-based virtual reality (IFVR) exercise is gaining attention as a cost-effective self-management strategy, however little is known about whether older adults themselves perceive IFVR exercise effective in improving their health. Therefore, we studied the effect of IFVR exercise on health-related quality of life (HRQoL) in older women. Fifty-four older women aged ≥65 years were randomized to either IFVR exercise group (IFVRG, n=26) or group-based exercise group (GG, n=28). Both groups received a 60-min intervention three times a week for eight weeks. The Short-Form Health Survey (SF-36) was administered. To identify the possible placebo effect, 30-Second Chair Stand Test (30SCST), 8-Foot Up-and-Go Test (8FUGT), and 2-Minute Step Test (2MST) were also administered. intention-to-treat analysis with adjustment for baseline levels revealed that IFVRG showed greater improvement in mental health (p=0.029) and lower body strength (p=0.042), compared to GG. Within-group analysis for HRQoL revealed that IFVRG showed an increase in role-physical (p=0.015), bodily pain (p=0.017), general health (p=0.004), vitality (p=0.010), role-emotional (p=0.007), and mental health (phealth (p=0.023), and social functioning (p = 0.023). Both groups showed an increase in 30SCST, 2MST and 8FUGT (all pexercise improved HRQoL in older women, in addition to improving physical fitness. Therefore, it might be recommended to older women as an effective self-management strategy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. International workshop on multimodal virtual and augmented reality (workshop summary)

    NARCIS (Netherlands)

    Hürst, W.O.; Iwai, Daisuke; Balakrishnan, Prabhakaran

    2016-01-01

    Virtual reality (VR) and augmented reality (AR) are expected by many to become the next wave of computing with significant impacts on our daily lives. Motivated by this, we organized a workshop on “Multimodal Virtual and Augmented Reality (MVAR)” at the 18th ACM International Conference on

  1. Virtual Reality in Engineering Education: The Future of Creative Learning

    Directory of Open Access Journals (Sweden)

    Abdul-Hadi Ghazi Abulrub

    2011-12-01

    Full Text Available Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incorporate virtual reality technology into future teaching strategies. Despite the cost challenges, educational benefits of implementing virtual reality remain compelling. This paper explains virtual reality principle and describes the interactive educational environment developed at WMG, the University of Warwick. It also discusses the benefits of using state-of-the-art 3D photorealistic interactive and immersive virtual environment for engineering undergraduates and postgraduate teaching, learning and training.

  2. Virtual reality simulators and training in laparoscopic surgery.

    Science.gov (United States)

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Virtual reality neurosurgery: a simulator blueprint.

    Science.gov (United States)

    Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J

    2004-04-01

    This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.

  4. [Impact of a virtual reality-based intervention on motor performance and balance of a child with cerebral palsy: a case study].

    Science.gov (United States)

    Pavão, Silvia Leticia; Arnoni, Joice Luiza Bruno; de Oliveira, Alyne Kalyane Câmara; Rocha, Nelci Adriana Cicuto Ferreira

    2014-12-01

    To verify the effect of an intervention protocol using virtual reality (VR) on the motor performance and balance of a child with cerebral palsy (CP). To comply with the proposed objectives, a 7-year old child with spastic hemiplegic cerebral palsy (cP), GMFcS level I, was submitted to a physiotherapy intervention protocol of 12 45-minute sessions, twice a week, using virtual reality-based therapy. The protocol used a commercially-available console (XBOX(®)360 Kinect(®)) able to track and reproduce body movements on a screen. Prior to the intervention protocol, the child was evaluated using the Motor Development Scale (MDS) and the Pediatric Balance Scale (PBS) in order to assess motor development and balance, respectively. Two baseline assessments with a 2-week interval between each other were carried out for each tool. Then, the child was re-evaluated after the twelfth session. The results showed no changes in the two baseline scores. After the intervention protocol, the child improved his scores in both tools used: the PBS score increased by 3 points, reaching the maximal score, and the MDS increased from a much inferior motor performance to just an inferior motor performance. The evidence presented in this case supports the use of virtual reality as a promising tool to be incorporated into the rehabilitation process of patients with neuromotor dysfunction. Copyright © 2014 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  5. Using Virtual Reality For Outreach Purposes in Planetology

    Science.gov (United States)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  6. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  7. Virtual Reality: A Dream Come True or a Nightmare.

    Science.gov (United States)

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  8. I'm Not a Real Doctor, but I Play One in Virtual Reality: Implications of Virtual Reality for Judgments about Reality.

    Science.gov (United States)

    Shapiro, Michael A.; McDonald, Daniel G.

    1992-01-01

    Shows that communication and social psychology research in the past 100 years have identified 2 different aspects of reality evaluation. Outlines the critical elements to form a theory of media reality effects. Extends that theory to include virtual reality, and shows how virtual reality will be an important tool for investigating these effects.…

  9. The assessment of virtual reality for human anatomy instruction

    Science.gov (United States)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  10. Study on an Interactive Truck Crane Simulation Platform Based on Virtual Reality Technology

    Science.gov (United States)

    Sang, Yong; Zhu, Yu; Zhao, Honghua; Tang, Mingyan

    2016-01-01

    The modern web-based distance education overcomes space-time restriction of the traditional teaching forms. However, being short of specifically observable and operable experimental equipment makes the web-based education lack advantages in the knowledge learning progress, which needs strong stereoscopic effect and operability. Truck crane is the…

  11. Interaction with virtual crowd in Immersive and semi‐Immersive Virtual Reality systems

    OpenAIRE

    Kyriakou, Marios; Pan, Xueni; Chrysanthou, Yiorgos

    2016-01-01

    This study examines attributes of virtual human behavior that may increase the plausibility of a simulated crowd and affect the user's experience in Virtual Reality. Purpose-developed experiments in both Immersive and semi-Immersive Virtual Reality systems queried the impact of collision and basic interaction between real-users and the virtual crowd and their effect on the apparent realism and ease of navigation within Virtual Reality (VR). Participants' behavior and subjective measurements i...

  12. Virtual Reality and its Implementation in Transport Ergonomics

    Directory of Open Access Journals (Sweden)

    Jasna Jurum-Kipke

    2007-03-01

    Full Text Available The experience of our environment is based on the informationthat reach us by means of our sensory organs, andwhich are subsequently processed in our brains. Digital interpretationimplemented to mathematical models of the studiedsubjects brings us to the so-called virtual reality that allows us toreplace some natural human senses, in this case the visualones, by computer-generated infonnation. The procedure is expandedto three-dimensional (3D scanning i. e. searching ofthe special form of the obse1ved subject/object, then digital recordingof the space point cloud (pixels which correspond tothe item, then vectorisation of the fonn, rendering and finallyanimation. In this way, by watching the display, the impressionof the virtual environment can be generated in the human perception.Moreover, in this way the human model can be realizedin a characteristic way in such a virtual space. The implementationof this virtual reality, in accordance with the possibilitiesthat it provides, has been the subject of very intensive researchin the world, and in Croatia as well. The work presentssome possibilities of applying virtual reality in the field of ergonomicanalysis of the collision process of two vehicles.

  13. VIRTUAL WOLVERHAMPTON: RECREATING THE HISTORIC CITY IN VIRTUAL REALITY

    Directory of Open Access Journals (Sweden)

    Eleanor Ramsey

    2017-11-01

    Full Text Available While many towns and cities have historic origins, the modern urban landscape is often unrecognisable from the past. Over the last two thousand years innumerable changes have occurred, from the Roman period to the Industrial Revolution, culminating in wide scale development and redevelopment of towns and cities during the 19th and 20th centuries. Fragments of the past survive as extant buildings, monuments, and areas, and are offered protection through mechanisms such as the National Heritage List for England. However, these buildings are part of a dynamic and changing environment, and their place within their original landscape not always visible. Meanwhile, the advent of mainstream and accessible immersive virtual reality offers opportunities to recreate and explore the past, and to disseminate a deeper understanding of the history and historic context of our heritage assets to a broader audience via new technologies. This paper discusses a project based on Wolverhampton that aims to create immersive and 360° experiences of the historic city that allows the user or viewer to explore how the city might have been in the past from a ‘first person’ perspective. It uses multiple approaches to gather, verify and validate archival data, records, maps and building style information. The project itself is a work-in-progress, with various approaches being explored. It looks at sources of information used to inform the virtual world; software and methodologies used to create the model; different forms of VR output; potential forms of funding for wider dissemination; and problems encountered so far.

  14. A study on constructing a machine-maintenance training system based on virtual reality technology

    International Nuclear Information System (INIS)

    Ishii, H.; Kashiwa, K.; Tezuka, T.; Yoshikawa, H.

    1997-01-01

    The development of a VR based training system are presented for teaching disassembling procedures of mechanical machines used in nuclear power plant. The methods of Petri net model for describing trainees' plausible actions in the disassembling process and reduce a right sequence of action sequence are developed as well as realization of the related Petri net editor and the demonstration of the developed VR based training system was demonstrated by example practice of disassembly simulation of check valve. Moreover, the needed future works are also discussed

  15. Virtual Reality Simulations and Animations in a Web-Based Interactive Manufacturing Engineering Module

    Science.gov (United States)

    Ong, S. K.; Mannan, M. A.

    2004-01-01

    This paper presents a web-based interactive teaching package that provides a comprehensive and conducive yet dynamic and interactive environment for a module on automated machine tools in the Manufacturing Division at the National University of Singapore. The use of Internet technologies in this teaching tool makes it possible to conjure…

  16. Using Virtual Reality for Task-Based Exercises in Teaching Non-Traditional Students of German

    Science.gov (United States)

    Libbon, Stephanie

    2004-01-01

    Using task-based exercises that required web searches and online activities, this course introduced non-traditional students to the sights and sounds of the German culture and language and simultaneously to computer technology. Through partner work that required negotiation of the net as well as of the language, these adult beginning German…

  17. Preliminary evaluation of a virtual reality-based simulator for learning spinal anesthesia.

    LENUS (Irish Health Repository)

    2012-12-27

    STUDY OBJECTIVE: To evaluate the influence of a simulation-based program on the initial performance of dural puncture by medical interns, and to refine the design of simulator-based teaching and competence assessment. DESIGN: Prospective interventional study. SETTING: Academic medical center. SUBJECTS: 27 medical interns inexperienced in the technique of spinal anesthesia or dural puncture and within 12 months of graduating from medical school, were randomly assigned to a conventional or a simulator-based teaching course of spinal anesthesia: 13 were recruited to the Conventional Group (CG) and 14 to the Simulator Group (SG). MEASUREMENTS: A SenseGraphic Immersive workbench and a modified Phantom desktop with shutter glasses were used to create a teaching environment. Outcomes of teaching were assessed in two phases within three weeks of the teaching course: Phase I consisted of a written examination followed by assessment on the simulator. A global rating scale and a task-specific checklist were used. Phase II (for those participants for whom a suitable opportunity arose to perform spinal anesthesia under supervision within three wks of the teaching course) consisted of structured observation of clinical performance of the procedure in the operating room. Participants were assessed by independent, study-blinded experts. Student\\'s two-tailed impaired t-tests were used to compare the parametric outcomes (P < 0.05 was considered significant). MAIN RESULTS: All participants completed the written test successfully with no difference between groups. Ten participants from CG and 13 from SG completed the simulator-based testing performing similarly in terms of the global rating scale. Five participants in CG and 6 in SG proceeded to clinical testing. On the global rating scale, interns in SG scored higher than those in CG. They performed similarly according to the task-specific checklist. CONCLUSIONS: Overall, no difference was measured between those taught with

  18. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: implications for enhanced criteria-based return-to-sport rehabilitation.

    Science.gov (United States)

    Gokeler, Alli; Bisschop, Marsha; Myer, Gregory D; Benjaminse, Anne; Dijkstra, Pieter U; van Keeken, Helco G; van Raay, Jos J A M; Burgerhof, Johannes G M; Otten, Egbert

    2016-07-01

    The purpose of this study was to evaluate the influence of immersion in a virtual reality environment on knee biomechanics in patients after ACL reconstruction (ACLR). It was hypothesized that virtual reality techniques aimed to change attentional focus would influence altered knee flexion angle, knee extension moment and peak vertical ground reaction force (vGRF) in patients following ACLR. Twenty athletes following ACLR and 20 healthy controls (CTRL) performed a step-down task in both a non-virtual reality environment and a virtual reality environment displaying a pedestrian traffic scene. A motion analysis system and force plates were used to measure kinematics and kinetics during a step-down task to analyse each single-leg landing. A significant main effect was found for environment for knee flexion excursion (P = n.s.). Significant interaction differences were found between environment and groups for vGRF (P = 0.004), knee moment (P virtual reality environment on knee biomechanics in patients after ACLR compared with controls. Patients after ACLR immersed in virtual reality environment demonstrated knee joint biomechanics that approximate those of CTRL. The results of this study indicate that a realistic virtual reality scenario may distract patients after ACLR from conscious motor control. Application of clinically available technology may aid in current rehabilitation programmes to target altered movement patterns after ACLR. Diagnostic study, Level III.

  19. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    Science.gov (United States)

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A multimedia - virtual reality based- tool for training in radiological protection

    International Nuclear Information System (INIS)

    Salve, R.; Castro, A.; Javier, Castelo; Francisco, Diaz; Francisco, Massana; Antonio, A. de; Herrero, P.

    2001-01-01

    This paper presents the work that has been carried out under the frame of the project PRVIR, promoted by DTN in co-operation with the UPM and Vandellos II NPP, as the pilot plant. The aim of the project is to make use of computer-based training in nuclear plants, taking advantage of multimedia resources and advanced computer graphics. The area that has been selected for this first training program is radiological protection fundamentals, and the end users of the program will be professionally exposed workers. The software can also be used for radiological protection concepts dissemination purposes. (author)

  1. A multimedia - virtual reality based- tool for training in radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Castro, A. [DTN, Madrid (Spain); Antonio, A. de; Herrero, P. [UPM Facultad de Informatica, Madrid (Spain); Diaz, F.; Massana, F [Central Nuclear Vandellos 2, Tarragona (Spain)

    2001-07-01

    This paper presents the work that has been carried out under the frame of the project PRVIR, promoted by DTN in co-operation with the UPM and Vandellos II NPP, as the pilot plant. The aim of the project is to make use of computer-based training in nuclear plants, taking advantage of multimedia resources and advanced computer graphics. The area that has been selected for this first training program is radiological protection fundamentals, and the end users of the program will be professionally exposed workers. The software can also be used for radiological protection concepts dissemination purposes. (author)

  2. Augmented Reality versus Virtual Reality for 3D Object Manipulation.

    Science.gov (United States)

    Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu

    2018-02-01

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  3. Engembangan Virtual Class Untuk Pembelajaran Augmented Reality Berbasis Android

    OpenAIRE

    Arief, Rifiana; Umniati, Naeli

    2012-01-01

    Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students' needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning were: a) having...

  4. ENGEMBANGAN VIRTUAL CLASS UNTUK PEMBELAJARAN AUGMENTED REALITY BERBASIS ANDROID

    OpenAIRE

    Rifiana Arief; Naeli Umniati

    2015-01-01

    ABSTRACT Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students’ needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning we...

  5. Virtual Reality in Engineering Education: The Future of Creative Learning

    OpenAIRE

    Abdul-Hadi Ghazi Abulrub; Alex Attridge; Mark A Williams

    2011-01-01

    Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incor...

  6. Review of virtual reality treatment for mental health.

    Science.gov (United States)

    Gourlay, D; Lun, K C; Liya, G

    2001-01-01

    This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.

  7. The role of presence in virtual reality exposure therapy

    OpenAIRE

    Price, Matthew; Anderson, Page

    2006-01-01

    A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed f...

  8. Possible Application of Virtual Reality in Geography Teaching

    OpenAIRE

    Ivan Stojšić; Anđelija Ivkov Džigurski; Olja Maričić; Ljubica Ivanović Bibić; Smiljana Đukičin Vučković

    2017-01-01

    Abstract Virtual reality represents simulated three-dimensional environment created by hardware and software, which providing realistic experience and possibility of interaction to the end-user. Benefits provided by immersive virtual reality in educational setting were recognised in the past decades, however mass application was left out due to the lack of development and high price. Intensive development of new platforms and virtual reality devices in the last few years started up with Oc...

  9. The Research on Chinese Idioms Educational Games in TCFL Based on Virtual Reality

    Directory of Open Access Journals (Sweden)

    Hu Xiao-Qiang

    2016-01-01

    Full Text Available In recent years, overseas set off a craze for learning Chinese. Chinese Idioms teaching is important but difficult for foreigners in Teaching Chinese as a Foreign Language (TCFL. The VR educational game should be a good choice to solve the problem with education, entertainment, and high immerse. In this study, Yu Gong moves the mountain' is designed as an example. Unity 3D is the main development tool, Leap Motion is interactive way, and also doing an interview with some findings and conclusions. Comparison of textbooks or teachers explaining, VR Chinese Idioms educational game can enhance most of the learners understanding with intense interest. However, the educational game should be integrated into more entertainment and it costs at least 10 minutes or more to adapt the operation of Leap Motion. In the further research, the VR Chinese Idioms educational games for the TCFL can be better gradually based on this research.

  10. Image-based computational fluid dynamics in the lung: virtual reality or new clinical practice?

    Science.gov (United States)

    Burrowes, Kelly S; De Backer, Jan; Kumar, Haribalan

    2017-11-01

    The development and implementation of personalized medicine is paramount to improving the efficiency and efficacy of patient care. In the respiratory system, function is largely dictated by the choreographed movement of air and blood to the gas exchange surface. The passage of air begins in the upper airways, either via the mouth or nose, and terminates at the alveolar interface, while blood flows from the heart to the alveoli and back again. Computational fluid dynamics (CFD) is a well-established tool for predicting fluid flows and pressure distributions within complex systems. Traditionally CFD has been used to aid in the effective or improved design of a system or device; however, it has become increasingly exploited in biological and medical-based applications further broadening the scope of this computational technique. In this review, we discuss the advancement in application of CFD to the respiratory system and the contributions CFD is currently making toward improving precision medicine. The key areas CFD has been applied to in the pulmonary system are in predicting fluid transport and aerosol distribution within the airways. Here we focus our discussion on fluid flows and in particular on image-based clinically focused CFD in the ventilatory system. We discuss studies spanning from the paranasal sinuses through the conducting airways down to the level of the alveolar airways. The combination of imaging and CFD is enabling improved device design in aerosol transport, improved biomarkers of lung function in clinical trials, and improved predictions and assessment of surgical interventions in the nasal sinuses. WIREs Syst Biol Med 2017, 9:e1392. doi: 10.1002/wsbm.1392 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  11. Cervical motion assessment using virtual reality.

    Science.gov (United States)

    Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved

    2009-05-01

    Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.

  12. Virtual reality and consciousness inference in dreaming.

    Science.gov (United States)

    Hobson, J Allan; Hong, Charles C-H; Friston, Karl J

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that - through experience-dependent plasticity - becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep - and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis - evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  13. VIRTUAL REALITY IN WAKING AND DREAMING CONSCIOUSNESS

    Directory of Open Access Journals (Sweden)

    Allan eHobson

    2014-10-01

    Full Text Available This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity –becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM sleep dreaming, may provide the theatre for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness. In short, our premise or hypothesis is that the waking brain engages with the sensorium to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  14. Validation of a virtual reality-based robotic surgical skills curriculum.

    Science.gov (United States)

    Connolly, Michael; Seligman, Johnathan; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-05-01

    The clinical application of robotic-assisted surgery (RAS) is rapidly increasing. The da Vinci Surgical System™ is currently the only commercially available RAS system. The skills necessary to perform robotic surgery are unique from those required for open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (fundamentals of laparoscopic surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool specific for robotic surgery. Based on previously published data and expert opinion, we developed a robotic skills curriculum. We sought to evaluate this curriculum for evidence of construct validity (ability to discriminate between users of different skill levels). Four experienced surgeons (>20 RAS) and 20 novice surgeons (first-year medical students with no surgical or RAS experience) were evaluated. The curriculum comprised five tasks utilizing the da Vinci™ Skills Simulator (Pick and Place, Camera Targeting 2, Peg Board 2, Matchboard 2, and Suture Sponge 3). After an orientation to the robot and a period of acclimation in the simulator, all subjects completed three consecutive repetitions of each task. Computer-derived performance metrics included time, economy of motion, master work space, instrument collisions, excessive force, distance of instruments out of view, drops, missed targets, and overall scores (a composite of all metrics). Experienced surgeons significantly outperformed novice surgeons in most metrics. Statistically significant differences were detected for each task in regards to mean overall scores and mean time (seconds) to completion. The curriculum we propose is a valid method of assessing and distinguishing robotic surgical skill levels on the da Vinci Si™ Surgical System. Further study is needed to establish proficiency levels and to demonstrate that training on the simulator with the proposed curriculum leads to improved robotic

  15. OCULUS study: Virtual reality-based education in daily clinical practice.

    Science.gov (United States)

    Balsam, Paweł; Borodzicz, Sonia; Malesa, Karolina; Puchta, Dominika; Tymińska, Agata; Ozierański, Krzysztof; Kołtowski, Łukasz; Peller, Michał; Grabowski, Marcin; Filipiak, Krzysztof J; Opolski, Grzegorz

    2018-01-03

    Atrial fibrillation (AF) is associated with high risk of stroke and other thromboembolic complications. The OCULUS study aimed to evaluate the effectiveness of the three-dimensional (3D) movie in teaching patients about the consequences of AF and pharmacological stroke prevention. The study was based on a questionnaire and included 100 consecutive patients (38% women, 62% with AF history). Using the oculus glasses and a smartphone, a 3D movie describing the risk of stroke in AF was shown. Similar questions were asked immediately after, 1 week and 1 year after the projection. Before the projection 22/100 (22.0%) declared stroke a consequence of AF, while immediately after 83/100 (83.0%) (p < 0.0001)patients declared this consequence. Seven days after, stroke as AF consequence was chosen by 74/94 (78.7%) vs. 22/94 (23.4%) when compared to the baseline knowledge; p < 0.0001, a similar trend was also observed in one-year follow-up (64/90 [71.1%] vs. 21/90 [23.3%]; p < 0.0001). Before the projection 88.3% (83/94) patients responded, that drugs may reduce the risk of stroke, and after 1 week the number of patients increased to (94/94 [100%]; p = 0.001). After 1 year 87/90 (96.7%) answered that drugs may diminish the risk of stroke (p = 0.02 in comparison to the baseline survey 78/90 [86.7%]). Use of OAC to reduce the risk of stroke was initially chosen by 66/94 (70.2%), by 90/94 (95.7%; p < 0.0001) 7 days after and by 83/90 (92.2%; p < 0.0001) one year after. 3D movie is an effective tool in transferring knowledge about the consequences of AF and the pivotal role of OAC in stroke prevention. ClinicalTrials.gov, NCT03104231. Registered on 28 March 2017.

  16. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system.

    Science.gov (United States)

    Wittmann, Frieder; Held, Jeremia P; Lambercy, Olivier; Starkey, Michelle L; Curt, Armin; Höver, Raphael; Gassert, Roger; Luft, Andreas R; Gonzenbach, Roman R

    2016-08-11

    The effect of rehabilitative training after stroke is dose-dependent. Out-patient rehabilitation training is often limited by transport logistics, financial resources and a lack of motivation/compliance. We studied the feasibility of an unsupervised arm therapy for self-directed rehabilitation therapy in patients' homes. An open-label, single group study involving eleven patients with hemiparesis due to stroke (27 ± 31.5 months post-stroke) was conducted. The patients trained with an inertial measurement unit (IMU)-based virtual reality system (ArmeoSenso) in their homes for six weeks. The self-selected dose of training with ArmeoSenso was the principal outcome measure whereas the Fugl-Meyer Assessment of the upper extremity (FMA-UE), the Wolf Motor Function Test (WMFT) and IMU-derived kinematic metrics were used to assess arm function, training intensity and trunk movement. Repeated measures one-way ANOVAs were used to assess differences in training duration and clinical scores over time. All subjects were able to use the system independently in their homes and no safety issues were reported. Patients trained on 26.5 ± 11.5 days out of 42 days for a duration of 137 ± 120 min per week. The weekly training duration did not change over the course of six weeks (p = 0.146). The arm function of these patients improved significantly by 4.1 points (p = 0.003) in the FMA-UE. Changes in the WMFT were not significant (p = 0.552). ArmeoSenso based metrics showed an improvement in arm function, a high number of reaching movements (387 per session), and minimal compensatory movements of the trunk while training. Self-directed home therapy with an IMU-based home therapy system is safe and can provide a high dose of rehabilitative therapy. The assessments integrated into the system allow daily therapy monitoring, difficulty adaptation and detection of maladaptive motor patterns such as trunk movements during reaching. Unique identifier: NCT02098135 .

  17. Wayfinding and Glaucoma: A Virtual Reality Experiment.

    Science.gov (United States)

    Daga, Fábio B; Macagno, Eduardo; Stevenson, Cory; Elhosseiny, Ahmed; Diniz-Filho, Alberto; Boer, Erwin R; Schulze, Jürgen; Medeiros, Felipe A

    2017-07-01

    Wayfinding, the process of determining and following a route between an origin and a destination, is an integral part of everyday tasks. The purpose of this study was to investigate the impact of glaucomatous visual field loss on wayfinding behavior using an immersive virtual reality (VR) environment. This cross-sectional study included 31 glaucomatous patients and 20 healthy subjects without evidence of overall cognitive impairment. Wayfinding experiments were modeled after the Morris water maze navigation task and conducted in an immersive VR environment. Two rooms were built varying only in the complexity of the visual scene in order to promote allocentric-based (room A, with multiple visual cues) versus egocentric-based (room B, with single visual cue) spatial representations of the environment. Wayfinding tasks in each room consisted of revisiting previously visible targets that subsequently became invisible. For room A, glaucoma patients spent on average 35.0 seconds to perform the wayfinding task, whereas healthy subjects spent an average of 24.4 seconds (P = 0.001). For room B, no statistically significant difference was seen on average time to complete the task (26.2 seconds versus 23.4 seconds, respectively; P = 0.514). For room A, each 1-dB worse binocular mean sensitivity was associated with 3.4% (P = 0.001) increase in time to complete the task. Glaucoma patients performed significantly worse on allocentric-based wayfinding tasks conducted in a VR environment, suggesting visual field loss may affect the construction of spatial cognitive maps relevant to successful wayfinding. VR environments may represent a useful approach for assessing functional vision endpoints for clinical trials of emerging therapies in ophthalmology.

  18. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    Science.gov (United States)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  19. Therapeutic Media: Treating PTSD with Virtual Reality Exposure Therapy

    Directory of Open Access Journals (Sweden)

    Kathrin Friedrich

    2016-09-01

    Full Text Available Applying head-mounted displays (HMDs and virtual reality scenarios in virtual reality exposure therapy (VRET promises to alleviate combat-related post-traumatic stress disorders (among others. Its basic premise is that, through virtual scenarios, patients may re-engage immersively with situations that provoke anxiety, thereby reducing fear and psychosomatic stress. In this context, HMDs and visualizations should be considered not merely as devices for entertainment purposes or tools for achieving pragmatic objectives but also as a means to instruct and guide patients’ imagination and visual perception in triggering traumatic experiences. Under what perceptual and therapeutic conditions is virtual therapy to be considered effective? Who is the “ideal” patient for such therapy regimes, both in terms of his/her therapeutic indications and his/her perceptual readiness to engage with VR scenarios? In short, how are “treatable” patients conceptualized by and within virtual therapy? From a media-theory perspective, this essay critically explores various aspects of the VRET application Bravemind in order to shed light on conditions of virtual exposure therapy and conceptions of subjectivity and traumatic experience that are embodied and replicated by such HMD-based technology.

  20. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.

    Science.gov (United States)

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the

  1. Lung Segmentation Refinement based on Optimal Surface Finding Utilizing a Hybrid Desktop/Virtual Reality User Interface

    Science.gov (United States)

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation

  2. Summer Students in Virtual Reality: A Pilot Study on Educational Applications of Virtual Reality Technology.

    Science.gov (United States)

    Bricken, Meredith; Byrne, Chris M.

    The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…

  3. Super-resolution optics for virtual reality

    Science.gov (United States)

    Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.

  4. Virtual reality visualization of accelerator magnets

    International Nuclear Information System (INIS)

    Huang, M.; Papka, M.; DeFanti, T.; Kettunen, L.

    1995-01-01

    The authors describe the use of the CAVE virtual reality visualization environment as an aid to the design of accelerator magnets. They have modeled an elliptical multipole wiggler magnet being designed for use at the Advanced Photon Source at Argonne National Laboratory. The CAVE environment allows the authors to explore and interact with the 3-D visualization of the magnet. Capabilities include changing the number of periods the magnet displayed, changing the icons used for displaying the magnetic field, and changing the current in the electromagnet and observing the effect on the magnetic field and particle beam trajectory through the field

  5. Simulation of eye disease in virtual reality.

    Science.gov (United States)

    Jin, Bei; Ai, Zhuming; Rasmussen, Mary

    2005-01-01

    It is difficult to understand verbal descriptions of visual phenomenon if one has no such experience. Virtual Reality offers a unique opportunity to "experience" diminished vision and the problems it causes in daily life. We have developed an application to simulate age-related macular degeneration, glaucoma, protanopia, and diabetic retinopathy in a familiar setting. The application also includes the introduction of eye anatomy representing both normal and pathologic states. It is designed for patient education, health care practitioner training, and eye care specialist education.

  6. Virtual reality in rehabilitation after stroke

    Directory of Open Access Journals (Sweden)

    Krasnova-Goleva V.V.

    2016-01-01

    Full Text Available After a stroke many people have serious problems in motion activity, decline in cognitive activity, as well as a number of psychological problems that may accompany the man for many years. Motivational rehabilitation component plays a decisive role in the process of recovery after suffering a stroke. At present one of the most successful methods of rehabilitation is considered to be a recovery through "observation-imitation”, because this method enhances the plasticity of the brain and, as a result, rehabilitation potential. Modern rehabilitation using virtual reality had demonstrated good results to improve motor and cognitive skills, as well as the psychological condition

  7. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study......, the physicians answered a questionnaire regarding the realism of the simulator. Results: The realism of the anatomy and the appearance of the scope were rated higher than the movement of the scope, feeling of resistance, and performances of bronchoalveolar lavages and biopsies. Overall, the simulator was judged...

  8. Communication in the age of virtual reality

    CERN Document Server

    Biocca, Frank

    2013-01-01

    This volume addresses virtual reality (VR) -- a tantalizing communication medium whose essence challenges our most deeply held notions of what communication is or can be. The editors have gathered an expert team of engineers, social scientists, and cultural theorists for the first extensive treatment of human communication in this exciting medium. The first part introduces the reader to VR's state-of-the-art as well as future trends. In the next section, leading research scientists discuss how knowledge of communication can be used to build more effective and exciting communication applicati

  9. Showing Complex Astrophysical Settings Through Virtual Reality

    Science.gov (United States)

    Green, Joel; Smith, Denise; Smith, Louis Chad; Lawton, Brandon; Lockwood, Alexandra; Jirdeh, Hussein

    2018-01-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in spring 2019, will routinely showcase astrophysical concepts that will challenge the public's understanding. Emerging technologies such as virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. For example, we imagine a spacefarer inside a protoplanetary disk, seeing the accretion process directly. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before.

  10. Simulation data analysis by virtual reality system

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Mizuguchi, Naoki; Shoji, Mamoru; Ishiguro, Seiji; Ohno, Nobuaki

    2010-01-01

    We introduce new software for analysis of time-varying simulation data and new approach for contribution of simulation to experiment by virtual reality (VR) technology. In the new software, the objects of time-varying field are visualized in VR space and the particle trajectories in the time-varying electromagnetic field are also traced. In the new approach, both simulation results and experimental device data are simultaneously visualized in VR space. These developments enhance the study of the phenomena in plasma physics and fusion plasmas. (author)

  11. Virtual reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    Since the first virtual reality (VR) system was developed by Dr. Ivan Sutherland in the 1960s, various research and development have been conducted to apply VR to many fields. One promising applications is a nuclear-related one. VR is useful for control room design support, operation training, maintenance training, decommissioning planning support, nuclear education, work image sharing, telecollaboration, and even providing an experimental test-bed. In this lecture note, fundamental knowledge of VR is presented first, and various VR applications to nuclear fields are stated along with their advantages. Then appropriate cases for introducing VR are summarized and future prospects are given. (author)

  12. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative...

  13. Virtual reality for the treatment of autism.

    Science.gov (United States)

    Strickland, D

    1997-01-01

    Autism is a mental disorder which has received attention in several unrelated studies using virtual reality. One of the first attempts was to diagnose children with special needs at Tokyo University using a sandbox playing technique. Although operating the computer controls proved to be too difficult for the individuals with autism in the Tokyo study, research at the University of Nottingham, UK, is successful in using VR as a learning aid for children with a variety of disorders including autism. Both centers used flat screen computer systems with virtual scenes. Another study which concentrated on using VR as a learning aid with an immersive headset system is described in detail in this chapter. Perhaps because of the seriousness of the disorder and the lack of effective treatments, autism has received more study than attention deficit disorders, although both would appear to benefit from many of the same technology features.

  14. Evaluating the usability of a virtual reality-based Android application in managing the pain experience of wheelchair users.

    Science.gov (United States)

    Spyridonis, Fotios; Gronli, Tor-Morten; Hansen, Jarle; Ghinea, Gheorghita

    2012-01-01

    Pain constitutes an important medical concern that can have severe implications to a wheelchair user's quality of life. Results from studies indicate that pain is a common problem in this group of individuals, having a reported frequency of always (12%) and everyday (33%). This incidence signifies the need for more applicable and effective pain management clinical tools. As a result, in this paper we present an Android application (PainDroid) that has been enhanced with Virtual Reality (VR) technology for the purpose of improving the management of pain. Our evaluation with a group of wheelchair users revealed that PainDroid demonstrated high usability among this population, and is foreseen that it can make an important contribution in research on the assessment and management of pain.

  15. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    Science.gov (United States)

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  16. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Mathieu Bergeron

    2015-01-01

    Full Text Available Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients’ symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points, changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  17. Simulation Of Assembly Processes With Technical Of Virtual Reality

    Science.gov (United States)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  18. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Software Documentation]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  19. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Computer software]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  20. Distributed Virtual Reality: System Concepts for Cooperative Training and Commanding in Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Eckhard Freund

    2003-02-01

    Full Text Available The general aim of the development of virtual reality technology for automation applications at the IRF is to provide the framework for Projective Virtual Reality which allows users to "project" their actions in the virtual world into the real world primarily by means of robots but also by other means of automation. The framework is based on a new task-oriented approach which builds on the "task deduction" capabilities of a newly developed virtual reality system and a task planning component. The advantage of this new approach is that robots which work at great distances from the control station can be controlled as easily and intuitively as robots that work right next to the control station. Robot control technology now provides the user in the virtual world with a "prolonged arm" into the physical environment, thus paving the way for a new quality of userfriendly man machine interfaces for automation applications. Lately, this work has been enhanced by a new structure that allows to distribute the virtual reality application over multiple computers. With this new step, it is now possible for multiple users to work together in the same virtual room, although they may physically be thousands of miles apart. They only need an Internet or ISDN connection to share this new experience. Last but not least, the distribution technology has been further developed to not just allow users to cooperate but to be able to run the virtual world on many synchronized PCs so that a panorama projection or even a cave can be run with 10 synchronized PCs instead of high-end workstations, thus cutting down the costs for such a visualization environment drastically and allowing for a new range of applications.