WorldWideScience

Sample records for viral rna production

  1. Mycoviruses, RNA silencing, and viral RNA recombination.

    Science.gov (United States)

    Nuss, Donald L

    2011-01-01

    In contrast to viruses of plants and animals, viruses of fungi, mycoviruses, uniformly lack an extracellular phase to their replication cycle. The persistent, intracellular nature of the mycovirus life cycle presents technical challenges to experimental design. However, these properties, coupled with the relative simplicity and evolutionary position of the fungal host, also provide opportunities for examining fundamental aspects of virus-host interactions from a perspective that is quite different from that pertaining for most plant and animal virus infections. This chapter presents support for this view by describing recent advances in the understanding of antiviral defense responses against one group of mycoviruses for which many of the technical experimental challenges have been overcome, the hypoviruses responsible for hypovirulence of the chestnut blight fungus Cryphonectria parasitica. The findings reveal new insights into the induction and suppression of RNA silencing as an antiviral defense response and an unexpected role for RNA silencing in viral RNA recombination. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  3. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Qi

    Full Text Available RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs requires RNA-dependent RNA Polymerase (RDR activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (TMV-Cg and Arabidopsis thaliana as a model system, we analyzed the viral small RNA profile in wild-type plants as well as rdr mutants by applying small RNA deep sequencing technology. Over 100,000 TMV-Cg-specific small RNA reads, mostly of 21- (78.4% and 22-nucleotide (12.9% in size and originating predominately (79.9% from the genomic sense RNA strand, were captured at an early infection stage, yielding the first high-resolution small RNA map for a plant virus. The TMV-Cg genome harbored multiple, highly reproducible small RNA-generating hot spots that corresponded to regions with no apparent local hairpin-forming capacity. Significantly, both the rdr1 and rdr6 mutants exhibited globally reduced levels of viral small RNA production as well as reduced strand bias in viral small RNA population, revealing an important role for these host RDRs in viral siRNA biogenesis. In addition, an informatics analysis showed that a large set of host genes could be potentially targeted by TMV-Cg-derived siRNAs for posttranscriptional silencing. Two of such predicted host targets, which encode a cleavage and polyadenylation specificity factor (CPSF30 and an unknown protein similar to translocon-associated protein alpha (TRAP alpha, respectively, yielded a positive result in cleavage validation by 5'RACE assays. Our data raised the interesting possibility for viral siRNA-mediated virus-host interactions that may contribute to viral pathogenicity and host specificity.

  4. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...... production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions...... between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged...

  5. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection

    Directory of Open Access Journals (Sweden)

    Alyssa Flobinus

    2016-10-01

    Full Text Available Systemic movement of beet necrotic yellow vein virus (BNYVV in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3 and for long‐distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR, unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA‐dependent RNA polymerase 6 (RDR6 pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3.

  6. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  7. Recruitment of RED-SMU1 complex by Influenza A Virus RNA polymerase to control Viral mRNA splicing.

    Directory of Open Access Journals (Sweden)

    Guillaume Fournier

    2014-06-01

    Full Text Available Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.

  8. Conventional and unconventional mechanisms for capping viral mRNA.

    Science.gov (United States)

    Decroly, Etienne; Ferron, François; Lescar, Julien; Canard, Bruno

    2011-12-05

    In the eukaryotic cell, capping of mRNA 5' ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5'-3' exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved mechanisms to protect their RNA 5' ends with either a covalently attached peptide or a cap moiety (7-methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5'-caps and escape innate immunity.

  9. Interactions between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly.

    Science.gov (United States)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea; Burdick, Ryan C; Levine, Louis; Li, Kelvin; Rein, Alan; Pathak, Vinay K; Hu, Wei-Shau

    2017-08-15

    Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious viruslike particles, and the viral RNA is dispensable in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle production when Gag is expressed at levels similar to those in cells containing one provirus. However, such enhancement is diminished when Gag is overexpressed, suggesting that the effects of viral RNA can be replaced by increased Gag concentration in cells. We also showed that the specific interactions between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA-Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral RNA genome carries the genetic information to new host cells, providing instructions to generate new virions, and therefore is essential for virion infectivity. In this report, we show that the specific interaction of the viral RNA genome with the structural protein Gag facilitates virion assembly and particle production. These findings resolve the conundrum that HIV-1 RNA is selectively packaged into virions with high efficiency despite being dispensable for virion assembly

  10. siRNA as an alternative therapy against viral infections

    Directory of Open Access Journals (Sweden)

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  11. Viral tRNA Mimicry from a Biocommunicative Perspective

    Directory of Open Access Journals (Sweden)

    Ascensión Ariza-Mateos

    2017-12-01

    Full Text Available RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that

  12. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    a different fluorophore. II. Cell culture and infection conditions. Cells must be plated on an appropriate substrate for subsequent microscopy...Only.. Vero cells infected with Ebola virus were fixed in methanol. Viral RNA (red) was detected using a 5 minute RNA FISH incubation with...hybridization buffer containing RNA FISH probes and DAPI. Cells were imaged on a confocal microscope with a 10x air objective (top left), a 20x air objective

  13. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Michael G Brown

    Full Text Available Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of

  14. Replicon RNA Viral Vectors as Vaccines

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2016-11-01

    Full Text Available Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.

  15. Anti-viral RNA silencing: do we look like plants ?

    Directory of Open Access Journals (Sweden)

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  16. Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-Dependent RNA Polymerases in Viral siRNA Biogenesis

    OpenAIRE

    Qi, Xiaopeng; Bao, Forrest Sheng; Xie, Zhixin

    2009-01-01

    RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs) requires RNA-dependent RNA Polymerase (RDR) activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (T...

  17. Respiratory viral RNA on toys in pediatric office waiting rooms.

    Science.gov (United States)

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  18. RNA-binding protein CPEB1 remodels host and viral RNA landscapes.

    Science.gov (United States)

    Batra, Ranjan; Stark, Thomas J; Clark, Elizabeth; Belzile, Jean-Philippe; Wheeler, Emily C; Yee, Brian A; Huang, Hui; Gelboin-Burkhart, Chelsea; Huelga, Stephanie C; Aigner, Stefan; Roberts, Brett T; Bos, Tomas J; Sathe, Shashank; Donohue, John Paul; Rigo, Frank; Ares, Manuel; Spector, Deborah H; Yeo, Gene W

    2016-12-01

    Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections.

  19. RNA binding protein CPEB1 remodels host and viral RNA landscapes

    Science.gov (United States)

    Batra, Ranjan; Stark, Thomas J.; Clark, Elizabeth; Belzile, Jean-Philippe; Wheeler, Emily C.; Yee, Brian A.; Huang, Hui; Gelboin-Burkhart, Chelsea; Huelga, Stephanie C.; Aigner, Stefan; Roberts, Brett T.; Bos, Tomas J.; Sathe, Shashank; Donohue, John Paul; Rigo, Frank; Ares, Manuel; Spector, Deborah H.; Yeo, Gene W.

    2016-01-01

    Host and virus interactions at the post-transcriptional level are critical for infection but remain poorly understood. Human cytomegalovirus (HCMV) is a prevalent herpesvirus family member that causes severe complications in immunocompromised patients and newborns. Here, we perform comprehensive transcriptome-wide analyses revealing that HCMV infection results in widespread alternative splicing (AS), shorter 3′-untranslated regions (3′UTRs) and polyA tail lengthening in host genes. The host RNA binding protein cytoplasmic polyadenylation element binding protein 1 (CPEB1) is highly induced upon infection and ectopic expression of CPEB1 in non-infected cells recapitulates infection-related post-transcriptional changes. CPEB1 is also required for polyA-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reverses infection-related cytopathology and post-transcriptional changes, and decreases productive HCMV titers. Host RNA processing is also altered in herpes simplex virus-2 (HSV-2) infected cells, indicating a common theme among herpesvirus infections. Our work is a starting point for therapeutic targeting of host RNA binding proteins in herpesvirus infections. PMID:27775709

  20. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data

    Science.gov (United States)

    2014-01-01

    Background Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. Methods In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. Results The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. Conclusions SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. Availability and implementation SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/. PMID:24607237

  1. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  2. Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA.

    Science.gov (United States)

    Rossetto, Cyprian C; Tarrant-Elorza, Margaret; Verma, Subhash; Purushothaman, Pravinkumar; Pari, Gregory S

    2013-05-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphoma. In cell culture, KSHV results in a latent infection, and lytic reactivation is usually induced with the expression of K-Rta or by treatment with phorbol 12-myristate 13-acetate (TPA) and/or n-butyrate. Lytic infection is marked by the activation of the entire viral genomic transcription cascade and the production of infectious virus. KSHV-infected cells express a highly abundant, long, noncoding transcript referred to as polyadenylated nuclear RNA (PAN RNA). PAN RNA interacts with specific demethylases and physically binds to the KSHV genome to mediate activation of viral gene expression. A recombinant BACmid lacking the PAN RNA locus fails to express K-Rta and does not produce virus. We now show that the lack of PAN RNA expression results in the failure of the initiation of the entire KSHV transcription program. In addition to previous findings of an interaction with demethylases, we show that PAN RNA binds to protein components of Polycomb repression complex 2 (PRC2). RNA-Seq analysis using cell lines that express PAN RNA shows that transcription involving the expression of proteins involved in cell cycle, immune response, and inflammation is dysregulated. Expression of PAN RNA in various cell types results in an enhanced growth phenotype, higher cell densities, and increased survival compared to control cells. Also, PAN RNA expression mediates a decrease in the production of inflammatory cytokines. These data support a role for PAN RNA as a major global regulator of viral and cellular gene expression.

  3. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase

    OpenAIRE

    Dulin, David; Vilfan, Igor D.; Berghuis, Bojk A.; Hage, Susanne; Bamford, Dennis H.; Poranen, Minna M.; Depken, Martin; Dekker, Nynke H.

    2015-01-01

    RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage ?6 RNA-dependent RNA polymerase. We extra...

  4. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  5. Selective gene silencing by viral delivery of short hairpin RNA

    Directory of Open Access Journals (Sweden)

    Sliva Katja

    2010-09-01

    Full Text Available Abstract RNA interference (RNAi technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i cytoplasmic delivery of short double-stranded (ds interfering RNA oligonucleotides (siRNA, where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA, which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells.

  6. Accurate strand-specific quantification of viral RNA.

    Directory of Open Access Journals (Sweden)

    Nicole E Plaskon

    Full Text Available The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o'nyong-nyong (ONNV that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (- strand RNA with this assay when higher levels of cDNA generated from the (+ strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (- strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR(R Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV, the recent cause of large outbreaks of disease in the Indian Ocean

  7. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications

    NARCIS (Netherlands)

    Pijlman, G.P.; Suhrbier, A.; Khromykh, A.A.

    2006-01-01

    The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of

  8. Hybrid viral vectors for vaccine and antibody production in plants.

    Science.gov (United States)

    Yusibov, Vidadi; Streatfield, Stephen J; Kushnir, Natasha; Roy, Gourgopal; Padmanaban, Annamalai

    2013-01-01

    Plants have a demonstrated potential for large-scale, rapid production of recombinant proteins for diverse product applications, including subunit vaccines and monoclonal antibodies. In this field, the accent has recently shifted from the engineering of "edible" vaccines based on stable expression of target protein in transgenic or transplastomic plants to the development of purified formulated vaccines that are delivered via injection. The injectable vaccines are commonly produced using transient expression of target gene delivered into genetically unmodified plant host via viral or bacterial vectors. Most viral vectors are based on plant RNA viruses, where nonessential sequences are replaced with the gene of interest. Utilization of viral hybrids that consist of genes and regulatory elements of different virus species, or transcomplementation systems (vector/transgene) had a substantial impact on the level of target protein expression. Development and introduction of agroviral hybrid vectors that combine genetic elements of bacterial binary plasmids and plant viral vectors, and agroinfiltration as a tool of the vector delivery have resulted in significant progress in large-scale production of recombinant vaccines and monoclonal antibodies in plants. This article presents an overview of plant hybrid viral vector expression systems developed so far.

  9. Who Regulates Whom? An Overview of RNA Granules and Viral Infections

    Directory of Open Access Journals (Sweden)

    Natalia Poblete-Durán

    2016-06-01

    Full Text Available After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs, which are translationally silent sites of RNA triage and processing bodies (PBs, which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs.

  10. Accessory factors of cytoplasmic viral RNA sensors required for antiviral innate immune response

    Directory of Open Access Journals (Sweden)

    Hiroyuki eOshiumi

    2016-05-01

    Full Text Available Type I interferon (IFN induces many antiviral factors in host cells. RIG-I-like receptors (RLRs are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and thus cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.

  11. Infidelity of translation of encephalomyocarditis viral RNA with tRNA from human malignant trophoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, O.K.; Kuchino, Y.

    1977-09-23

    We have investigated tRNA from the human malignant trophoblastic cells (BeWo cell) and human chorionic tissue for the translation of specific mRNAs, in a tRNA-dependent protein synthesizing system from Ehrlich ascites cells. BeWo cell tRNA and chorionic tRNA supported oviduct mRNA or encephalomyocarditis (EMC) viral RNA directed amino acid incorporation into polypeptides equally effectively. Polypeptides synthesized with oviduct mRNA and tRNA from both sources were identical upon sodium dodecylsulfate polyacrylamide gel electrophoresis. But the EMC RNA directed polypeptides synthesized with BeWo cell tRNA were different from those synthesized with chorionic tRNA. A polypeptide (molecular weight 58,000) was apparently not synthesized and the synthesis of a faster moving component (molecular weight, 14,000) was enhanced when BeWo cell tRNA was used. These results imply a functional difference in tRNA from human malignant cells compared to their normal counterpart.

  12. Ebola Virus VP35 Interaction with Dynein LC8 Regulates Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luthra, Priya; Jordan, David S.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, D. S.

    2015-03-04

    Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.

  13. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  14. Innate immune system activation by viral RNA: How to predict it?

    Science.gov (United States)

    Kondili, M; Roux, M; Vabret, N; Bailly-Bechet, M

    2016-01-15

    The immune system is able to identify foreign pathogens via different pathways. In the case of viral infection, recognition of the viral RNA is a crucial step, and many efforts have been made to understand which features of viral RNA are detected by the immune system. The biased viral RNA composition, measured as host-virus nucleotidic divergence, or CpG enrichment, has been proposed as salient signal. Peculiar structural features of these RNA could also be related to the immune system activation. Here, we gather multiple datasets and proceed to a meta-analysis to uncover the best predictors of immune system activation by viral RNA. "A" nucleotide content and Minimum Folding Energy are good predictors, and are more easily generalized than more complex indicators suggested previously. As RNA composition and structure are highly correlated, we suggest further experiments on synthetic sequences to identify the viral RNA sensing mechanisms by immune system receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase

    Directory of Open Access Journals (Sweden)

    David Dulin

    2015-02-01

    Full Text Available RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage Φ6 RNA-dependent RNA polymerase. We extract large datasets fingerprinting real-time polymerase dynamics over four magnitudes in time, in the presence of nucleotide analogs, and under varying NTP and divalent cation concentrations and fork stability. Quantitative analysis reveals a new pause state that modulates polymerase fidelity and so ties viral polymerase pausing to the biological function of optimizing virulence. Adjusting the frequency of such pauses offers a target for therapeutics and may also reflect an evolutionary strategy for virus populations to track the gradual evolution of their hosts.

  16. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome

    Science.gov (United States)

    Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei

    2004-11-01

    Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity

  17. A paper-based platform for detection of viral RNA.

    Science.gov (United States)

    Zhang, Daohong; Broyles, David; Hunt, Eric A; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K

    2017-02-27

    Viral detection presents a host of challenges for even the most sensitive analytical techniques, and the complexity of common detection platforms typically preclude portability. With these considerations in mind, we designed a paper microzone plate-based virus detection system for the detection of viral genetic material that can be performed with simple instruments. The sensing system can detect viral cDNA reverse-transcribed from total RNA extraction by utilizing a biotinylated capture probe and an Alexa Fluor® 647-labeled reporter probe. The biotinylated capture probe was linked to the paper surface via NeutrAvidin® that was physically adsorbed on the paper. After addition of reverse-transcribed sample and reporter probe in sequence, the reverse-transcribed target captured the reporter probe and tethered it to the capture probe in a bridged format. Fluorescence intensity was imaged using a Western blot imaging system, and higher target concentration was visible by the increased emission intensity from Alexa Fluor® 647. By utilizing paper, this detection setup could also serve as a sample concentration method via evaporation, which could remarkably lower the detection limit if needed. This detection platform used Epstein-Barr virus (EBV) RNA as a proof-of-concept by sensing cDNA resulting from reverse transcription and can be further expanded as a general method for other pathogens. EBV is a well-known human tumor virus, which has also recently been linked to the development of cervical cancer. The assay was accomplished within two hours including the room-temperature RNA extraction and reverse transcription steps. Also, this paper microzone plate-based platform can potentially be applicable for the development of point-of-care (POC) detection kits or devices due to its robust design, convenient interface, and easy portability. The experiment could be stopped after each step, and continued at a later time. The shelf-life of the modified paper plate setup was at

  18. Characterization of viral RNA splicing using whole-transcriptome datasets from host species.

    Science.gov (United States)

    Zhou, Chengran; Liu, Shanlin; Song, Wenhui; Luo, Shiqi; Meng, Guanliang; Yang, Chentao; Yang, Hua; Ma, Jinmin; Wang, Liang; Gao, Shan; Wang, Jian; Yang, Huanming; Zhao, Yun; Wang, Hui; Zhou, Xin

    2018-02-19

    RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses.

  19. The viral RNA capping machinery as a target for antiviral drugs.

    Science.gov (United States)

    Ferron, François; Decroly, Etienne; Selisko, Barbara; Canard, Bruno

    2012-10-01

    Most viruses modify their genomic and mRNA 5'-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5'-3' exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5'-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Live Cell Imaging Reveals the Relocation of dsRNA Binding Proteins Upon Viral Infection.

    Science.gov (United States)

    Barton, Deborah A; Roovers, Elke F; Gouil, Quentin; da Fonseca, Guilherme C; Reis, Rodrigo S; Jackson, Craig; Overall, Robyn L; Fusaro, Adriana F; Waterhouse, Peter M

    2017-06-01

    Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins DRB3 and DRB4 are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3, and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRC) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis by T-DNA insertion rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3, and DRB5 are invasion sensors that relocate to nascent VRC, where they bind to viral RNA and inhibit virus replication.

  1. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    Science.gov (United States)

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide

  2. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex.

    Science.gov (United States)

    Kranzusch, Philip J; Whelan, Sean P J

    2011-12-06

    Arenaviruses form a noncytolytic infection in their rodent hosts, yet can elicit severe hemorrhagic disease in humans. How arenaviruses regulate gene expression remains unclear, and further understanding may provide insight into the dichotomy of these disparate infection processes. Here we reconstitute arenavirus RNA synthesis initiation and gene expression regulation in vitro using purified components and demonstrate a direct role of the viral Z protein in controlling RNA synthesis. Our data reveal that Z forms a species-specific complex with the viral polymerase (L) and inhibits RNA synthesis initiation by impairing L catalytic activity. This Z-L complex locks the viral polymerase in a promoter-bound, catalytically inactive state and may additionally ensure polymerase packaging during virion maturation. Z modulates host factors involved in cellular translation, proliferation, and antiviral signaling. Our data defines an additional role in governing viral RNA synthesis, revealing Z as the center of a network of host and viral connections that regulates viral gene expression.

  3. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase–promoter complex

    Science.gov (United States)

    Kranzusch, Philip J.; Whelan, Sean P. J.

    2011-01-01

    Arenaviruses form a noncytolytic infection in their rodent hosts, yet can elicit severe hemorrhagic disease in humans. How arenaviruses regulate gene expression remains unclear, and further understanding may provide insight into the dichotomy of these disparate infection processes. Here we reconstitute arenavirus RNA synthesis initiation and gene expression regulation in vitro using purified components and demonstrate a direct role of the viral Z protein in controlling RNA synthesis. Our data reveal that Z forms a species-specific complex with the viral polymerase (L) and inhibits RNA synthesis initiation by impairing L catalytic activity. This Z–L complex locks the viral polymerase in a promoter-bound, catalytically inactive state and may additionally ensure polymerase packaging during virion maturation. Z modulates host factors involved in cellular translation, proliferation, and antiviral signaling. Our data defines an additional role in governing viral RNA synthesis, revealing Z as the center of a network of host and viral connections that regulates viral gene expression. PMID:22106304

  4. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies.

    Science.gov (United States)

    Boehr, David D; Liu, Xinran; Yang, Xiaorong

    2014-12-01

    The RNA-dependent RNA polymerase is responsible for genome replication of RNA viruses. Nuclear magnetic resonance experiments and molecular dynamics simulations have indicated that efficient and faithful polymerase function requires highly coordinated internal protein motions. Interference with these motions, either through amino acid substitutions or small molecule binding, can disrupt polymerase and virus function. In particular, these studies have pointed toward highly conserved structural elements, like the motif-D active-site loop, that can be modified to generate polymerases with desired properties. Viruses encoding engineered polymerases might serve as live, attenuated vaccine strains. Further elucidation of polymerase structural dynamics will also provide new avenues for anti-viral drug design. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral...

  6. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...... into each nascent virion. These studies shed light on the mechanism by which HIV-1 achieves efficient genome packaging during virus assembly.IMPORTANCE Retrovirus assembly is a well-choreographed event, during which many viral and cellular components come together to generate infectious virions. The viral...

  7. Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures.

    Science.gov (United States)

    Stik, Grégoire; Muylkens, Benoît; Coupeau, Damien; Laurent, Sylvie; Dambrine, Ginette; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Pfeffer, Sébastien; Rasschaert, Denis

    2014-07-10

    The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied

  8. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Dulin, David; Vilfan, Igor D; Berghuis, Bojk A; Hage, Susanne; Bamford, Dennis H; Poranen, Minna M; Depken, Martin; Dekker, Nynke H

    2015-02-11

    RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage Φ6 RNA-dependent RNA polymerase. We extract large datasets fingerprinting real-time polymerase dynamics over four magnitudes in time, in the presence of nucleotide analogs, and under varying NTP and divalent cation concentrations and fork stability. Quantitative analysis reveals a new pause state that modulates polymerase fidelity and so ties viral polymerase pausing to the biological function of optimizing virulence. Adjusting the frequency of such pauses offers a target for therapeutics and may also reflect an evolutionary strategy for virus populations to track the gradual evolution of their hosts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5.

    Science.gov (United States)

    Ye, Chengjin; Jia, Lu; Sun, Yanting; Hu, Boli; Wang, Lun; Lu, Xingmeng; Zhou, Jiyong

    2014-10-01

    Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway

  10. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...... two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription...... initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP)....

  11. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    Science.gov (United States)

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  13. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism.

    Science.gov (United States)

    Wang, Pin; Xu, Junfang; Wang, Yujia; Cao, Xuetao

    2017-11-24

    Viruses regulate host metabolic networks to improve their survival. The molecules that are responsive to viral infection and regulate such metabolic changes are hardly known, but are essential for understanding viral infection. Here we identify a long noncoding RNA (lncRNA) that is induced by multiple viruses, but not by type I interferon (IFN-I), and facilitates viral replication in mouse and human cells. In vivo deficiency of lncRNA-ACOD1 (a lncRNA identified by its nearest coding gene Acod1, aconitate decarboxylase 1) significantly attenuates viral infection through IFN-I-IRF3 (interferon regulatory factor 3)-independent pathways. Cytoplasmic lncRNA-ACOD1 directly binds the metabolic enzyme glutamic-oxaloacetic transaminase (GOT2) near the substrate niche, enhancing its catalytic activity. Recombinant GOT2 protein and its metabolites could rescue viral replication upon lncRNA-ACOD1 deficiency and increase lethality. This work reveals a feedback mechanism of virus-induced lncRNA-mediated metabolic promotion of viral infection and a potential target for developing broad-acting antiviral therapeutics. Copyright © 2017, American Association for the Advancement of Science.

  15. Global Analysis of Mouse Polyomavirus Infection Reveals Dynamic Regulation of Viral and Host Gene Expression and Promiscuous Viral RNA Editing.

    Directory of Open Access Journals (Sweden)

    Seth B Garren

    2015-09-01

    Full Text Available Mouse polyomavirus (MPyV lytically infects mouse cells, transforms rat cells in culture, and is highly oncogenic in rodents. We have used deep sequencing to follow MPyV infection of mouse NIH3T6 cells at various times after infection and analyzed both the viral and cellular transcriptomes. Alignment of sequencing reads to the viral genome illustrated the transcriptional profile of the early-to-late switch with both early-strand and late-strand RNAs being transcribed at all time points. A number of novel insights into viral gene expression emerged from these studies, including the demonstration of widespread RNA editing of viral transcripts at late times in infection. By late times in infection, 359 host genes were seen to be significantly upregulated and 857 were downregulated. Gene ontology analysis indicated transcripts involved in translation, metabolism, RNA processing, DNA methylation, and protein turnover were upregulated while transcripts involved in extracellular adhesion, cytoskeleton, zinc finger binding, SH3 domain, and GTPase activation were downregulated. The levels of a number of long noncoding RNAs were also altered. The long noncoding RNA MALAT1, which is involved in splicing speckles and used as a marker in many late-stage cancers, was noticeably downregulated, while several other abundant noncoding RNAs were strongly upregulated. We discuss these results in light of what is currently known about the MPyV life cycle and its effects on host cell growth and metabolism.

  16. [Presence of autocomplementary RNA with viral specificity in cells infected with herpes virus].

    Science.gov (United States)

    Béchet, J M; Montagnier, L; Latarjet, R

    1975-01-13

    RNA from cells infected with Herpes simplex virus contain a higher percentage of double-stranded RNA than non-infected cells. This percentage increases three-fold upon self-annealing. The complementary RNA sequences were shown to be virus-specific by the following criteria: (1) high melting temperature than double-stranded RNA from non infected cells; (2) higher density in caesium sulphate; (3) specific hybridization with viral DNA.

  17. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  18. Selective gene silencing by viral delivery of short hairpin RNA

    National Research Council Canada - National Science Library

    Sliva, Katja; Schnierle, Barbara S

    2010-01-01

    ...: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii...

  19. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    Science.gov (United States)

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the

  20. Determining mutant spectra of three RNA viral samples using ultra-deep sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H

    2012-06-06

    RNA viruses have extremely high mutation rates that enable the virus to adapt to new host environments and even jump from one species to another. As part of a viral transmission study, three viral samples collected from naturally infected animals were sequenced using Illumina paired-end technology at ultra-deep coverage. In order to determine the mutant spectra within the viral quasispecies, it is critical to understand the sequencing error rates and control for false positive calls of viral variants (point mutantations). I will estimate the sequencing error rate from two control sequences and characterize the mutant spectra in the natural samples with this error rate.

  1. Alterations in siRNA and miRNA expression profiles detected by deep sequencing of transgenic rice with siRNA-mediated viral resistance

    National Research Council Canada - National Science Library

    Guo, Cheng; Li, Li; Wang, Xifeng; Liang, Chun

    2015-01-01

    .... Aiming to gain a deeper understanding of the RNA-mediated gene silencing defense process in plants, the expression profiles of siRNAs and miRNAs before and after viral infection in both wild type...

  2. An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Rui Lu

    2009-02-01

    Full Text Available Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi. C. elegans also encodes three Dicer-related helicase (drh genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.

  3. Persistence of viral RNA in the brain of experimentally infected mice with coxsackievirus B5

    Directory of Open Access Journals (Sweden)

    Sobotova Z.

    2011-04-01

    Full Text Available The aim of our study was to follow the persistence of viral RNA in selected organs of experimentally infected with coxsackievirus (CV B5 strains from different sources such as a patient’s sample, an environmental sample and a prototype virus strain. Methods . CD-1 mice were infected with CVB5 strain Faulkner the prototype, CVB5 – isolate from treated sewage waste and isolate from patient’s stool sample both identified as CVB5. The viral RNA was detected by RT-PCR using enterovirus primers specific for the non-coding 5' region. Results . We observed presence of RNA in the brain and heart of mice infected with isolate from patient’s stool at day 45 post infection (p. i.. Conclusion. We conclude that CVB5 persists in the brain and heart after oral infection of CD1 mice. The relevance of viral persistence maybe related viral origin and the genetics

  4. A dsRNA virus with filamentous viral particles.

    Science.gov (United States)

    Jia, Hengxia; Dong, Kaili; Zhou, Lingling; Wang, Guoping; Hong, Ni; Jiang, Daohong; Xu, Wenxing

    2017-08-01

    Viruses with double-stranded RNA genomes form isometric particles or are capsidless. Here we report a double-stranded RNA virus, Colletotrichum camelliae filamentous virus 1 (CcFV-1) isolated from a fungal pathogen, that forms filamentous particles. CcFV-1 has eight genomic double-stranded RNAs, ranging from 990 to 2444 bp, encoding 10 putative open reading frames, of which open reading frame 1 encodes an RNA-dependent RNA polymerase and open reading frame 4 a capsid protein. When inoculated, the naked CcFV-1 double-stranded RNAs are infectious and induce the accumulation of the filamentous particles in vivo. CcFV-1 is phylogenetically related to Aspergillus fumigatus tetramycovirus-1 and Beauveria bassiana polymycovirus-1, but differs in morphology and in the number of genomic components. CcFV-1 might be an intermediate virus related to truly capsidated viruses, or might represent a distinct encapsidating strategy. In terms of genome and particle architecture, our findings are a significant addition to the knowledge of the virosphere diversity.Viruses with double-stranded RNA (dsRNA) genomes form typically isometric particles or are capsid-less. Here, the authors identify a mycovirus with an eight-segmented dsRNA genome that forms exceptionally long filamentous particles and could represent an evolutionary link between ssRNA and dsRNA viruses.

  5. Impact of collection method on assessment of semen HIV RNA viral load.

    Directory of Open Access Journals (Sweden)

    Brendan J W Osborne

    Full Text Available The blood HIV RNA viral load is the best-defined predictor of HIV transmission, in part due to ease of measurement and the correlation of blood and genital tract (semen or cervico-vaginal viral load, although recent studies found semen HIV RNA concentration to be a stronger predictor of HIV transmission. There is currently no standardized method for semen collection when measuring HIV RNA concentration. Therefore, we compared two collection techniques in order to study of the impact of antiretroviral therapy on the semen viral load.Semen was collected by masturbation from HIV-infected, therapy-naïve men who have sex with men (MSM either undiluted (Visit 1 or directly into transport medium (Visit 2. Seminal plasma was then isolated, and the HIV RNA concentration obtained with each collection technique was measured and corrected for dilution if necessary. Collection of semen directly into transport medium resulted in a median HIV RNA viral load that was 0.4 log10 higher than undiluted samples.The method of semen collection is an important consideration when quantifying the HIV RNA viral load in this compartment.

  6. Systematic functional comparative analysis of four single-stranded DNA-binding proteins and their affection on viral RNA metabolism.

    Directory of Open Access Journals (Sweden)

    Haiyan Shi

    Full Text Available The accumulation of single-stranded DNA-binding (SSB proteins is essential for organisms and has various applications. However, no study has simultaneously and systematically compared the characteristics of SSB proteins. In addition, SSB proteins may bind RNA and play an unknown biological role in RNA metabolism. Here, we expressed a novel species of SSB protein derived from Thermococcus kodakarensis KOD1 (KOD, as well as SSB proteins from Thermus thermophilus (TTH, Escherichia coli, and Sulfolobus Solfataricus P2 (SSOB, abbreviated kod, tth, bl21, and ssob, respectively. These SSB proteins could bind ssDNA and viral RNA. bl21 resisted heat treatment for more than 9 h, Ssob and kod could withstand 95°C for 10 h and retain its ssDNA- and RNA-binding ability. Four SSB proteins promoted the specificity of the DNA polymerase in PCR-based 5- and 9-kb genome fragment amplification. kod also increased the amplification of a 13-kb PCR product, and SSB protein-bound RNA resisted Benzonase digestion. The SSB proteins could also enter the host cell bound to RNA, which resulted in modulation of viral RNA metabolism, particularly ssob and bl21.

  7. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  8. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5.

    Science.gov (United States)

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul; Wu, Jianguo; He, Biao

    2015-12-01

    Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of

  9. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing

  10. Multi-resistance strategy for viral diseases and in vitro shRNA verification method in pigs.

    Science.gov (United States)

    Oh, Jong-Nam; Choi, Kwang-Hwan; Lee, C K

    2017-12-19

    Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. First, CD163, the PRRSV viral receptor, was edited with the CRISPR-Cas9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  11. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming.

    Science.gov (United States)

    Jones, Scott A; Clark, Daniel N; Cao, Feng; Tavis, John E; Hu, Jianming

    2014-02-01

    Hepatitis B virus replicates a DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific association with a viral RNA signal, termed ε (Hε), located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. HP is made up of four domains, including the terminal protein (TP), the spacer, the reverse transcriptase (RT), and the RNase H domains. A recently developed, Hε-dependent, in vitro protein priming assay was used in this study to demonstrate that almost the entire TP and RT domains and most of the RNase H domain were required for protein priming. Specific residues within TP, RT, and the spacer were identified as being critical for HP-Hε binding and/or protein priming. Comparison of HP sequence requirements for Hε binding, pgRNA packaging, and protein priming allowed the classification of the HP mutants into five groups, each with distinct effects on these complex and related processes. Detailed characterization of HP requirements for these related and essential functions of HP will further elucidate the mechanisms of its multiple functions and aid in the targeting of these functions for antiviral therapy.

  12. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.

    Science.gov (United States)

    Nakagawa, K; Lokugamage, K G; Makino, S

    2016-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. © 2016 Elsevier Inc. All rights reserved.

  13. Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs.

    Science.gov (United States)

    Folimonova, Svetlana Y; Harper, Scott J; Leonard, Michael T; Triplett, Eric W; Shilts, Turksen

    2014-11-01

    Superinfection exclusion (SIE), a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or closely related virus, has been described for different viruses, including important pathogens of humans, animals, and plants. Several mechanisms acting at various stages of the viral life cycle have been proposed to explain SIE. Most cases of SIE in plant virus systems were attributed to induction of RNA silencing, a host defense mechanism that is mediated by small RNAs. Here we show that SIE by Citrus tristeza virus (CTV) does not correlate with the production of viral small interfering RNAs (siRNAs). CTV variants, which differed in the SIE ability, had similar siRNAs profiles. Along with our previous observations that the exclusion phenomenon requires a specific viral protein, p33, the new data suggest that SIE by CTV is highly complex and appears to use different mechanisms than those proposed for other viruses. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Science.gov (United States)

    Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-05-01

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Science.gov (United States)

    Kolliopoulou, Anna; Taning, Clauvis N. T.; Smagghe, Guy; Swevers, Luc

    2017-01-01

    RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed. PMID:28659820

  16. HIV viral RNA extraction in wax immiscible filtration assisted by surface tension (IFAST) devices.

    Science.gov (United States)

    Berry, Scott M; LaVanway, Alex J; Pezzi, Hannah M; Guckenberger, David J; Anderson, Meghan A; Loeb, Jennifer M; Beebe, David J

    2014-05-01

    The monitoring of viral load is critical for proper management of antiretroviral therapy for HIV-positive patients. Unfortunately, in the developing world, significant economic and geographical barriers exist, limiting access to this test. The complexity of current viral load assays makes them expensive and their access limited to advanced facilities. We attempted to address these limitations by replacing conventional RNA extraction, one of the essential processes in viral load quantitation, with a simplified technique known as immiscible filtration assisted by surface tension (IFAST). Furthermore, these devices were produced via the embossing of wax, enabling local populations to produce and dispose of their own devices with minimal training or infrastructure, potentially reducing the total assay cost. In addition, IFAST can be used to reduce cold chain dependence during transportation. Viral RNA extracted from raw samples stored at 37°C for 1 week exhibited nearly complete degradation. However, IFAST-purified RNA could be stored at 37°C for 1 week without significant loss. These data suggest that RNA isolated at the point of care (eg, in a rural clinic) via IFAST could be shipped to a central laboratory for quantitative RT-PCR without a cold chain. Using this technology, we have demonstrated accurate and repeatable measurements of viral load on samples with as low as 50 copies per milliliter of sample. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Persistence of viral RNA in the brain of experimentally infected mice with coxsackievirus B5

    OpenAIRE

    Sobotova Z.; Marosova L.; Badurova M.; Sojka M.; Borsanyiova M.; Stipalova D.; Bopegamage S.

    2011-01-01

    The aim of our study was to follow the persistence of viral RNA in selected organs of experimentally infected with coxsackievirus (CV) B5 strains from different sources such as a patient’s sample, an environmental sample and a prototype virus strain. Methods . CD-1 mice were infected with CVB5 strain Faulkner the prototype, CVB5 – isolate from treated sewage waste and isolate from patient’s stool sample both identified as CVB5. The viral RNA was detected by RT-PCR using enterovirus primers sp...

  18. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins.

    Science.gov (United States)

    Hedil, Marcio; Kormelink, Richard

    2016-07-23

    The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  19. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins

    Directory of Open Access Journals (Sweden)

    Marcio Hedil

    2016-07-01

    Full Text Available The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.

  20. Distribution of viral RNA in mouse tissues during acute phase of coxsackievirus B5 infection.

    Science.gov (United States)

    Moon, Mi Sun; Joo, Chul Hyun; Hwang, In Seok; Ye, Jeong Sook; Jun, Eun Jung; Lee, Hui Sun; Kim, Donghou; Lee, Min-Jae; Lee, Heuiran; Kim, Yoo Kyum

    2005-01-01

    To investigate histopathological changes and distribution of coxsackievirus B5 (CVB5) RNA in mouse heart, liver, and pancreas during the acute phase of infection. C3H/HeJ male mice, aged 3-4 weeks, were inoculated intraperitoneally with 5 x 10(5) plaque-forming units of CVB5 and sacrificed at 1, 2, 3, 4, 7 and 10 days postinfection (p.i.). Inflammation of the heart, liver, and pancreatic tissue sections was evaluated by hematoxylin and eosin staining, and virus was detected using antibody to viral coat protein VP1. A quantitative real-time RT-PCR method, using primers and probe targeted to the highly conserved sequences in the 5'-untranslated region of the virus, was used to evaluate the kinetics of CVB5 RNA during the development of myocarditis or pancreatitis. Marginal inflammatory changes were observed in the heart tissues although viral RNA was constantly present between 1 and 10 days p.i., peaking at 4 days p.i. The pancreatic tissues displayed massive lymphocyte infiltration and loss of acinar cells at day 4 p.i. and viral RNA was detected between 1 and 10 days p.i., peaking at 2-3 days p.i. In the liver, viral RNA was detected between 1 and 7 days. No mortality was observed. CVB5 induced acute pancreatitis without subsequent development of myocarditis. Clearance of CVB5 RNA from the pancreas and heart was slower than clearance from the liver. Our real-time RT-PCR method, which is more sensitive than conventional plaque assay, may provide valuable insight into viral RNA kinetics during CVB5 infection. Copyright (c) 2005 S. Karger AG, Basel.

  1. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-02-01

    Full Text Available Abstract Background Small RNA (sRNA regulatory pathways (SRRPs are important to anti-viral defence in mosquitoes. To identify critical features of the virus infection process in Dengue serotype 2 (DENV2-infected Ae. aegypti, we deep-sequenced small non-coding RNAs. Triplicate biological replicates were used so that rigorous statistical metrics could be applied. Results In addition to virus-derived siRNAs (20-23 nts previously reported for other arbovirus-infected mosquitoes, we show that PIWI pathway sRNAs (piRNAs (24-30 nts and unusually small RNAs (usRNAs (13-19 nts are produced in DENV-infected mosquitoes. We demonstrate that a major catalytic enzyme of the siRNA pathway, Argonaute 2 (Ago2, co-migrates with a ~1 megadalton complex in adults prior to bloodfeeding. sRNAs were cloned and sequenced from Ago2 immunoprecipitations. Viral sRNA patterns change over the course of infection. Host sRNAs were mapped to the published aedine transcriptome and subjected to analysis using edgeR (Bioconductor. We found that sRNA profiles are altered early in DENV2 infection, and mRNA targets from mitochondrial, transcription/translation, and transport functional categories are affected. Moreover, small non-coding RNAs (ncRNAs, such as tRNAs, spliceosomal U RNAs, and snoRNAs are highly enriched in DENV-infected samples at 2 and 4 dpi. Conclusions These data implicate the PIWI pathway in anti-viral defense. Changes to host sRNA profiles indicate that specific cellular processes are affected during DENV infection, such as mitochondrial function and ncRNA levels. Together, these data provide important progress in understanding the DENV2 infection process in Ae. aegypti.

  2. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  3. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Science.gov (United States)

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection

    Directory of Open Access Journals (Sweden)

    Bruce W. Banfield

    2014-09-01

    Full Text Available In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.

  5. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    Science.gov (United States)

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  6. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  7. Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    NARCIS (Netherlands)

    Vilfan, I.D.; Candelli, A.; Hage, S.; Aalto, A.P.; Poranen, M.M.; Bamford, D.H.; Dekker, N.H.

    2008-01-01

    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important

  8. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  9. Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in ...

    African Journals Online (AJOL)

    The overlapping epidemiology of human immunodeficiency virus (HIV) infection and tuberculosis (TB) is expected in Nigeria that is ranked 10th amongst the 22 countries that bears the burden of TB worldwide. This study aims to estimate the HIV-1 RNA viral load and impact of anti TB therapy (ATT) in a CD4 cell count ...

  10. De novo reconstruction of plant RNA and DNA virus genomes from viral siRNAs

    Science.gov (United States)

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  11. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases.

    Science.gov (United States)

    Muller, Mandy; Glaunsinger, Britt A

    2017-08-01

    During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonu- clease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs, including the transcript encoding interleukin-6 (IL-6), escape SOX-induced cleavage. IL-6 escape is mediated through a 3' UTR RNA regulatory element that overrides the SOX targeting mechanism. Here, we reveal that this protective RNA element functions to broadly restrict cleavage by a range of homologous and non-homologous viral endonucleases. However, it does not impede cleavage by cellular endonucleases. The IL-6 protective sequence may be representative of a larger class of nuclease escape elements, as we identified a similar protective element in the GADD45B mRNA. The IL-6 and GADD45B-derived elements display similarities in their sequence, putative structure, and several associated RNA binding proteins. However, the overall composition of their ribonucleoprotein complexes appears distinct, leading to differences in the breadth of nucleases restricted. These findings highlight how RNA elements can selectively control transcript abundance in the background of widespread virus-induced mRNA degradation.

  12. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing.

    Science.gov (United States)

    Iki, Taichiro; Tschopp, Marie-Aude; Voinnet, Olivier

    2017-05-01

    Phytoviruses encode viral suppressors of RNA silencing (VSRs) to counteract the plant antiviral silencing response, which relies on virus-derived small interfering (si)RNAs processed by Dicer RNaseIII enzymes and subsequently loaded into ARGONAUTE (AGO) effector proteins. Here, a tobacco cell-free system was engineered to recapitulate the key steps of antiviral RNA silencing and, in particular, the most upstream double-stranded (ds)RNA processing reaction, not kinetically investigated thus far in the context of plant VSR studies. Comparative biochemical analyses of distinct VSRs in the reconstituted assay showed that in all cases tested, VSR interactions with siRNA duplexes inhibited the loading, but not the activity, of antiviral AGO1 and AGO2. Turnip crinkle virus P38 displayed the additional and unique property to bind both synthetic and RNA-dependent-RNA-polymerase-generated long dsRNAs, and inhibited the processing into siRNAs. Single amino acid substitutions in P38 could dissociate dsRNA-processing from AGO-loading inhibition in vitro and in vivo, illustrating dual-inhibitory strategies discriminatively deployed within a single viral protein, which, we further show, are bona fide suppressor functions that evolved independently of the conserved coat protein function of P38. © 2017 Iki et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Dengue viral RNA levels in peripheral blood mononuclear cells are associated with disease severity and preexisting dengue immune status.

    Directory of Open Access Journals (Sweden)

    Anon Srikiatkhachorn

    Full Text Available BACKGROUND: Infection with dengue viruses (DENV causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF, to dengue hemorrhagic fever (DHF. The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known. METHOD: The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR. RESULTS: Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells. CONCLUSIONS: B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC. Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.

  14. Cell substrates for the production of viral vaccines.

    Science.gov (United States)

    Aubrit, Françoise; Perugi, Fabien; Léon, Arnaud; Guéhenneux, Fabienne; Champion-Arnaud, Patrick; Lahmar, Mehdi; Schwamborn, Klaus

    2015-11-04

    Vaccines have been used for centuries to protect people and animals against infectious diseases. For vaccine production, it has become evident that cell culture technology can be considered as a key milestone and has been the result of decades of progress. The development and implementation of cell substrates have permitted massive and safe production of viral vaccines. The demand in new vaccines against emerging viral diseases, the increasing vaccine production volumes, and the stringent safety rules for manufacturing have made cell substrates mandatory viral vaccine producer factories. In this review, we focus on cell substrates for the production of vaccines against human viral diseases. Depending on the nature of the vaccine, choice of the cell substrate is critical. Each manufacturer intending to develop a new vaccine candidate should assess several cell substrates during the early development phase in order to select the most convenient for the application. First, as vaccine safety is quite naturally a central concern of Regulatory Agencies, the cell substrate has to answer the regulatory rules stringency. In addition, the cell substrate has to be competitive in terms of viral-specific production yields and manufacturing costs. No cell substrate, even the so-called "designer" cell lines, is able to fulfil all the requested criteria for all viral vaccines. Therefore, the availability of a variety of cell substrates for vaccine production is essential because it improves the chance to successfully respond to the current and future needs of vaccines linked to new emerging or re-emerging infectious diseases (e.g. pandemic flu, Ebola, and Chikungunya outbreaks). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors

    Science.gov (United States)

    Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József

    2006-01-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105

  16. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  17. CXCR2 is critical for dsRNA-induced lung injury: relevance to viral lung infection

    Directory of Open Access Journals (Sweden)

    Xue Ying

    2005-05-01

    Full Text Available Abstract Background Respiratory viral infections are characterized by the infiltration of leukocytes, including activated neutrophils into the lung that can lead to sustained lung injury and potentially contribute to chronic lung disease. Specific mechanisms recruiting neutrophils to the lung during virus-induced lung inflammation and injury have not been fully elucidated. Since CXCL1 and CXCL2/3, acting through CXCR2, are potent neutrophil chemoattractants, we investigated their role in dsRNA-induced lung injury, where dsRNA (Poly IC is a well-described synthetic agent mimicking acute viral infection. Methods We used 6–8 week old female BALB/c mice to intratracheally inject either single-stranded (ssRNA or double-stranded RNA (dsRNA into the airways. The lungs were then harvested at designated timepoints to characterize the elicited chemokine response and resultant lung injury following dsRNA exposure as demonstrated qualititatively by histopathologic analysis, and quantitatively by FACS, protein, and mRNA analysis of BAL fluid and tissue samples. We then repeated the experiments by first pretreating mice with an anti-PMN or corresponding control antibody, and then subsequently pretreating a separate cohort of mice with an anti-CXCR2 or corresponding control antibody prior to dsRNA exposure. Results Intratracheal dsRNA led to significant increases in neutrophil infiltration and lung injury in BALB/c mice at 72 h following dsRNA, but not in response to ssRNA (Poly C; control treatment. Expression of CXCR2 ligands and CXCR2 paralleled neutrophil recruitment to the lung. Neutrophil depletion studies significantly reduced neutrophil infiltration and lung injury in response to dsRNA when mice were pretreated with an anti-PMN monoclonal Ab. Furthermore, inhibition of CXCR2 ligands/CXCR2 interaction by pretreating dsRNA-exposed mice with an anti-CXCR2 neutralizing Ab also significantly attenuated neutrophil sequestration and lung injury. Conclusion

  18. Oral cavity tumors in younger patients show a poor prognosis and do not contain viral RNA.

    Science.gov (United States)

    Brägelmann, J; Dagogo-Jack, I; El Dinali, M; Stricker, T; Brown, C D; Zuo, Z; Khattri, A; Keck, M; McNerney, M E; Longnecker, R; Bieging, K; Kocherginsky, M; Alexander, K; Salgia, R; Lingen, M W; Vokes, E E; White, K P; Cohen, E E W; Seiwert, T Y

    2013-06-01

    Oral cavity and in particular oral tongue cancers occur with a rising incidence in younger patients often lacking the typical risk factors of tobacco use, alcohol use, and human papilloma virus (HPV) infection. Their prognosis when treated with chemoradiation has not been well studied and responsible risk factors remain elusive. A viral etiology (other than HPV) has been hypothesized. First we analyzed outcomes from 748 head and neck cancer patients with locoregionally advanced stage tumors treated with curative-intent chemoradiation by anatomic site. Second, we analyzed seven oral tongue (OT) tumors from young, non-smokers/non-drinkers for the presence of viral mRNA using short-read massively-parallel sequencing (RNA-Seq) in combination with a newly-developed digital subtraction method followed by viral screening and discovery algorithms. For positive controls we used an HPV16-positive HNC cell line, a cervical cancer, and an EBV-LMP2A transgene lymphoma. Younger patients with oral cavity tumors had worse outcomes compared to non-oral cavity patients. Surprisingly none of the seven oral tongue cancers showed significant presence of viral transcripts. In positive controls the expected viral material was identified. Oral cavity tumors in younger patients have a poor prognosis and do not appear to be caused by a transcriptionally active oncovirus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis.

    Directory of Open Access Journals (Sweden)

    Yi-ying Chou

    Full Text Available The Influenza A virus genome consists of eight negative sense, single-stranded RNA segments. Although it has been established that most virus particles contain a single copy of each of the eight viral RNAs, the packaging selection mechanism remains poorly understood. Influenza viral RNAs are synthesized in the nucleus, exported into the cytoplasm and travel to the plasma membrane where viral budding and genome packaging occurs. Due to the difficulties in analyzing associated vRNPs while preserving information about their positions within the cell, it has remained unclear how and where during cellular trafficking the viral RNAs of different segments encounter each other. Using a multicolor single-molecule sensitivity fluorescence in situ hybridization (smFISH approach, we have quantitatively monitored the colocalization of pairs of influenza viral RNAs in infected cells. We found that upon infection, the viral RNAs from the incoming particles travel together until they reach the nucleus. The viral RNAs were then detected in distinct locations in the nucleus; they are then exported individually and initially remain separated in the cytoplasm. At later time points, the different viral RNA segments gather together in the cytoplasm in a microtubule independent manner. Viral RNAs of different identities colocalize at a high frequency when they are associated with Rab11 positive vesicles, suggesting that Rab11 positive organelles may facilitate the association of different viral RNAs. Using engineered influenza viruses lacking the expression of HA or M2 protein, we showed that these viral proteins are not essential for the colocalization of two different viral RNAs in the cytoplasm. In sum, our smFISH results reveal that the viral RNAs travel together in the cytoplasm before their arrival at the plasma membrane budding sites. This newly characterized step of the genome packaging process demonstrates the precise spatiotemporal regulation of the

  20. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  1. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase.

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  2. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  3. Translational regulation of viral secretory proteins by the 5' coding regions and a viral RNA-binding protein.

    Science.gov (United States)

    Nordholm, Johan; Petitou, Jeanne; Östbye, Henrik; da Silva, Diogo V; Dou, Dan; Wang, Hao; Daniels, Robert

    2017-08-07

    A primary function of 5' regions in many secretory protein mRNAs is to encode an endoplasmic reticulum (ER) targeting sequence. In this study, we show how the regions coding for the ER-targeting sequences of the influenza glycoproteins NA and HA also function as translational regulatory elements that are controlled by the viral RNA-binding protein (RBP) NS1. The translational increase depends on the nucleotide composition and 5' positioning of the ER-targeting sequence coding regions and is facilitated by the RNA-binding domain of NS1, which can associate with ER membranes. Inserting the ER-targeting sequence coding region of NA into different 5' UTRs confirmed that NS1 can promote the translation of secretory protein mRNAs based on the nucleotides within this region rather than the resulting amino acids. By analyzing human protein mRNA sequences, we found evidence that this mechanism of using 5' coding regions and particular RBPs to achieve gene-specific regulation may extend to human-secreted proteins. © 2017 Nordholm et al.

  4. The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation.

    Science.gov (United States)

    Hamann, Martin V; Müllers, Erik; Reh, Juliane; Stanke, Nicole; Effantin, Gregory; Weissenhorn, Winfried; Lindemann, Dirk

    2014-10-08

    One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed. Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold). Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome

  5. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA

    Directory of Open Access Journals (Sweden)

    Rottier Peter JM

    2008-05-01

    Full Text Available Abstract Background Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays. Results In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms. Conclusion We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.

  6. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  7. Functional analysis of a weak viral RNA silencing suppressor using two GFP variants as silencing inducers.

    Science.gov (United States)

    Mann, Krin S; Dietzgen, Ralf G

    2017-01-01

    RNA silencing in plants can be triggered by the introduction of an exogenous gene. Green fluorescent protein (GFP) has been widely used as a visual reporter to study RNA silencing and viral-mediated suppression of RNA silencing in the model plant Nicotiana benthamiana. In transgenic N. benthamiana plants expressing an endoplasmic reticulum targeted GFP variant (16c) known as mGFP5, RNA silencing can be induced by ectopic over-expression of mGFP5. However, other GFP variants can also be used to induce GFP silencing in these plants. We compared the efficiency to induce local and systemic silencing of two commonly used GFP variants: enhanced GFP (eGFP) and mGFP5. Using lettuce necrotic yellows virus (LNYV) P protein to suppress GFP silencing, we demonstrate that eGFP gene, which is 76% identical at the nucleotide level to the endogenously expressed mGFP5 in 16c plants, triggers silencing more slowly and concurrently prolongs detectable silencing suppressor activity of the weak LNYV P suppressor, compared to the homologous mGFP5 gene. The use of eGFP as RNA silencing inducer in wild type or 16c plants appears to be a useful tool in identifying and analysing weak viral RNA silencing suppressor proteins whose activity might otherwise have been masked when challenged by a stronger RNA silencing response. We also show that reducing the dosage of strong dsRNA silencing inducers in conjunction with their homologous GFP targets facilitates the discovery and analysis of "weaker" RNA silencing suppressor activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing.

    Science.gov (United States)

    Pourcelot, Marie; Zemirli, Naima; Silva Da Costa, Leandro; Loyant, Roxane; Garcin, Dominique; Vitour, Damien; Munitic, Ivana; Vazquez, Aimé; Arnoult, Damien

    2016-08-18

    After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.

  9. Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA.

    Science.gov (United States)

    Gould, Philip S; Easton, Andrew J; Dimmock, Nigel J

    2017-09-21

    The live attenuated influenza vaccine FluMist ® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.

  10. Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA

    Directory of Open Access Journals (Sweden)

    Philip S. Gould

    2017-09-01

    Full Text Available The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013–2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.

  11. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain.

    Science.gov (United States)

    Beatman, Erica L; Massey, Aaron; Shives, Katherine D; Burrack, Kristina S; Chamanian, Mastooreh; Morrison, Thomas E; Beckham, J David

    2015-12-30

    We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha

  12. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics

    Directory of Open Access Journals (Sweden)

    Vladimir Reinharz

    2017-10-01

    Full Text Available The multiscale model of hepatitis C virus (HCV dynamics, which includes intracellular viral RNA (vRNA replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

  13. Viral dsRNA in the wine yeast Saccharomyces bayanus var. uvarum.

    Science.gov (United States)

    Ivannikova, Yuliya V; Naumova, Elena S; Naumov, Gennadi I

    2007-01-01

    The presence of viral dsRNA (L and M fractions) in the cryophilic yeast Saccharomyces bayanus var. uvarum is documented here for the first time. Sixty-eight strains of different origins were analyzed. Most of them did not carry dsRNA; the L fraction was found in seven strains, while 11 strains had both L and M fractions. The size of the L fraction was invariable (4.5 kb), as in the cultured yeast Saccharomyces cerevisiae. In contrast to L-dsRNA, the M fraction varied in size from ca. 1.2 to 1.8 kb. In total, seven different M-dsRNA types were recognized (M1-M3 and M8-M11), predominantly among French wine strains of S. bayanus var. uvarum. Phenotypic analysis revealed that the M-dsRNAs found were cryptic and may represent mutant forms of killer plasmids.

  14. Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features.

    Science.gov (United States)

    Kumar, Shiva; Ansari, Faraz A; Scaria, Vinod

    2009-08-20

    MicroRNAs (small approximately 22 nucleotide long non-coding endogenous RNAs) have recently attracted immense attention as critical regulators of gene expression in multi-cellular eukaryotes, especially in humans. Recent studies have proved that viruses also express microRNAs, which are thought to contribute to the intricate mechanisms of host-pathogen interactions. Computational predictions have greatly accelerated the discovery of microRNAs. However, most of these widely used tools are dependent on structural features and sequence conservation which limits their use in discovering novel virus expressed microRNAs and non-conserved eukaryotic microRNAs. In this work an efficient prediction method is developed based on the hypothesis that sequence and structure features which discriminate between host microRNA precursor hairpins and pseudo microRNAs are shared by viral microRNA as they depend on host machinery for the processing of microRNA precursors. The proposed method has been found to be more efficient than recently reported ab-initio methods for predicting viral microRNAs and microRNAs expressed by mammals.

  15. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency.

    Directory of Open Access Journals (Sweden)

    Max Schelker

    2016-10-01

    Full Text Available After endocytic uptake, influenza viruses transit early endosomal compartments and eventually reach late endosomes. There, the viral glycoprotein hemagglutinin (HA triggers fusion between endosomal and viral membrane, a critical step that leads to release of the viral segmented genome destined to reach the cell nucleus. Endosomal maturation is a complex process involving acidification of the endosomal lumen as well as endosome motility along microtubules. While the pH drop is clearly critical for the conformational change and membrane fusion activity of HA, the effect of intracellular transport dynamics on the progress of infection remains largely unclear. In this study, we developed a comprehensive mathematical model accounting for the first steps of influenza virus infection. We calibrated our model with experimental data and challenged its predictions using recombinant viruses with altered pH sensitivity of HA. We identified the time point of virus-endosome fusion and thereby the diffusion distance of the released viral genome to the nucleus as a critical bottleneck for efficient virus infection. Further, we concluded and supported experimentally that the viral RNA is subjected to cytosolic degradation strongly limiting the probability of a successful genome import into the nucleus.

  16. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  17. Activation and Role of NACHT, LRR, and PYD Domains-Containing Protein 3 Inflammasome in RNA Viral Infection

    Directory of Open Access Journals (Sweden)

    Junyang Yu

    2017-10-01

    Full Text Available NACHT, LRR, and PYD domains-containing protein 3 (NLRP3 inflammasome activation and effects during ribonucleic acid (RNA viral infection are the focus of a wide range of research currently. Both the pathogen-associated molecule pattern derived from virions and intracellular stress molecules involved in the process of viral infection lead to activation of the NLRP3 inflammasome, which in turn triggers inflammatory responses for antiviral defense and tissue healing. However, aberrant activation of the NLRP3 inflammasome can instead support viral pathogenesis and promote disease progression. Here, we summarize and expound upon the recent literature describing the molecular mechanisms underlying the activation and effects of the NLRP3 inflammasome in RNA viral infection to highlight how it provides protection against RNA viral infection.

  18. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    Directory of Open Access Journals (Sweden)

    Libkind Diego

    2009-10-01

    Full Text Available Abstract Background Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. Results Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2 present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs an increase of L2 relative to L1 dsRNA was observed, whiles the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. Conclusion The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could

  19. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas.

    Science.gov (United States)

    Baeza, Marcelo; Sanhueza, Mario; Flores, Oriana; Oviedo, Vicente; Libkind, Diego; Cifuentes, Víctor

    2009-10-08

    Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X

  20. Aichi Virus Leader Protein Is Involved in Viral RNA Replication and Encapsidation

    Science.gov (United States)

    Sasaki, Jun; Nagashima, Shigeo; Taniguchi, Koki

    2003-01-01

    Aichi virus, a member of the family Picornaviridae, encodes a leader (L) protein of 170 amino acids (aa). The Aichi virus L protein exhibits no significant sequence homology to those of other picornaviruses. In this study, we investigated the function of the Aichi virus L protein in virus growth. In vitro translation and cleavage assays indicated that the L protein has no autocatalytic activity and is not involved in polyprotein cleavage. The L-VP0 junction was cleaved by 3C proteinase. Immunoblot analysis showed that the L protein is stably present in infected cells. Characterization of various L mutants derived from an infectious cDNA clone revealed that deletion of 93 aa of the center part (aa 43 to 135), 50 aa of the N-terminal part (aa 4 to 53), or 90 aa of the C-terminal part (aa 74 to 163) abolished viral RNA replication. A mutant (Δ114-163) in which 50 aa of the C-terminal part (aa 114 to 163) were deleted exhibited efficient RNA replication and translation abilities, but the virus yield was 4 log orders lower than that of the wild type. Sedimentation analysis of viral particles generated in mutant Δ114-163 RNA-transfected cells showed that the mutant has a severe defect in the formation of mature virions, but not in that of empty capsids. Thus, the data obtained in this study indicate that the Aichi virus L protein is involved in both viral RNA replication and encapsidation. PMID:14512530

  1. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase

    NARCIS (Netherlands)

    Dulin, D.; Vilfan, I.D.; Berghuis, B.A.; Hage, S.; Bamford, D.H.; Poranen, M.M.; Depken, S.M.; Dekker, N.H.

    2015-01-01

    RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left

  2. A Viral Product Diffusion Model to Forecast the Market Performance of Products

    Directory of Open Access Journals (Sweden)

    Ping Jiang

    2017-01-01

    Full Text Available To investigate the diffusion of products in the market, this paper proposes a viral product diffusion model using an epidemiological approach. This model presents the process of product diffusion through the dynamics of human behaviors. Based on the stability theory of Ordinary Differential Equations, we demonstrate the conditions under which a product in the market persists or dies out eventually. Next, we use Google data to validate the model. Fitting results illustrate that the viral product diffusion model not only depicts the steady growth process of products, but also describes the whole diffusion process during which the products increase at the initial stage and then gradually decrease and sometimes even exhibit multiple peaks. This shows that the viral product diffusion model can be used to forecast the developing tendency of products in the market through early behavior of these products. Moreover, our model also provides useful insights on how to design effective marketing strategies via social contagions.

  3. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    Science.gov (United States)

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  4. Replication competent HIV-1 viruses that express intragenomic microRNA reveal discrete RNA-interference mechanisms that affect viral replication.

    Science.gov (United States)

    Klase, Zachary; Houzet, Laurent; Jeang, Kuan-Teh

    2011-11-23

    It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication of a lentivirus such as HIV-1 after the deliberate intragenomic insertion of a bona fide miRNA. We have constructed several HIV-1 molecular clones, each containing a discrete cellular miRNA positioned in Nef. These retroviral genomes express the inserted miRNA and are generally replication competent in T-cells. The inserted intragenomic miRNA was observed to elicit two different consequences for HIV-1 replication. First, the expression of miRNAs with predicted target sequences in the HIV-1 genome was found to reduce viral replication. Second, in one case, where an inserted miRNA was unusually well-processed by Drosha, this processing event inhibited viral replication. This is the first study to examine in detail the replication competence of HIV-1 genomes that express cis-embedded miRNAs. The results indicate that a replication competent retroviral genome is not precluded from encoding and expressing a viral miRNA.

  5. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  6. Label Free Inhibitor Screening of Hepatitis C Virus (HCV NS5B Viral Protein Using RNA Oligonucleotide

    Directory of Open Access Journals (Sweden)

    Sang Eun Kim

    2011-06-01

    Full Text Available Globally, over 170 million people (ca. 3% of the World’s population are infected with the hepatitis C virus (HCV, which can cause serious liver diseases such as chronic hepatitis, evolving into subsequent health problems. Driven by the need to detect the presence of HCV, as an essential factor in diagnostic medicine, the monitoring of viral protein has been of great interest in developing simple and reliable HCV detection methods. Despite considerable advances in viral protein detection as an HCV disease marker, the current enzyme linked immunosorbent assay (ELISA based detection methods using antibody treatment have several drawbacks. To overcome this bottleneck, an RNA aptamer become to be emerged as an antibody substitute in the application of biosensor for detection of viral protein. In this study, we demonstrated a streptavidin-biotin conjugation method, namely, the RNA aptamer sensor system that can quantify viral protein with detection level of 700 pg mL−1 using a biotinylated RNA oligonucleotide on an Octet optical biosensor. Also, we showed this method can be used to screen inhibitors of viral protein rapidly and simply on a biotinylated RNA oligonucleotide biosensor. Among the inhibitors screened, (−-Epigallocatechin gallate showed high binding inhibition effect on HCV NS5B viral protein. The proposed method can be considered a real-time monitoring method for inhibitor screening of HCV viral protein and is expected to be applicable to other types of diseases.

  7. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  8. Screen Anti-influenza Lead Compounds That Target the PAC Subunit of H5N1 Viral RNA Polymerase

    Science.gov (United States)

    Xiang, Junfeng; Li, Qian; Liang, Huanhuan; Tang, Yalin; Liu, Yingfang

    2012-01-01

    The avian influenza (H5N1) viral RNA polymerase protein PAC was used as a target to screen nine chlorogenic acid derivatives for their polymerase inhibitor activity. Among them, seven compounds were PAC ligands, and four inhibited influenza RNA polymerase activity. These results aid in the design of anti-influenza agents based on caffeoylquinic acid. PMID:22936968

  9. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    Directory of Open Access Journals (Sweden)

    Stacia L. Phillips

    2016-01-01

    Full Text Available Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches.

  10. Influence of primer & probe chemistry and amplification target on reverse transcription digital PCR quantification of viral RNA

    Directory of Open Access Journals (Sweden)

    Fran Van Heuverswyn

    2016-09-01

    Our data highlight the importance of dPCR method optimisation and the advantage of using a more sophisticated primer and probe chemistry, which turned out to be dependent on the template type. Considerations are provided with respect to the molecular diagnostics of viral RNA pathogens, and more specifically, for precise quantification of RNA, which is of tremendous importance for the development of RNA calibration materials and the qualification of these calibrants as certified reference materials.

  11. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism.

    Directory of Open Access Journals (Sweden)

    Tim R Blower

    Full Text Available Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein-RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that "escaped" ToxIN-mediated abortive infection within Pectobacterium atrosepticum. Wild-type ΦTE encoded a short sequence similar to the repetitive nucleotide sequence of the RNA antitoxin, ToxI, from ToxIN. The ΦTE escape mutants had expanded the number of these "pseudo-ToxI" genetic repeats and, in one case, an escape phage had "hijacked" ToxI from the plasmid-borne toxIN locus, through recombination. Expression of the pseudo-ToxI repeats during ΦTE infection allowed the phage to replicate, unaffected by ToxIN, through RNA-based molecular mimicry. This is the first example of a non-coding RNA encoded by a phage that evolves by selective expansion and recombination to enable viral suppression of a defensive bacterial suicide system. Furthermore, the ΦTE escape phages had evolved enhanced capacity to transduce replicons expressing ToxIN, demonstrating virus-mediated horizontal transfer of genetic altruism.

  12. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study

    Science.gov (United States)

    Pathak, Arup K.; Bandyopadhyay, Tusar

    2017-04-01

    Oral polio vaccine is considered to be the most thermolabile of all the common childhood vaccines. Despite heavy water (D2O) having been known for a long time to stabilise attenuated viral RNA against thermodegradation, the molecular underpinnings of its mechanism of action are still lacking. Whereas, understanding the basis of D2O action is an important step that might reform the way other thermolabile drugs are stored and could possibly minimize the cold chain problem. Here using a combination of parallel tempering and well-tempered metadynamics simulation in light water (H2O) and in D2O, we have fully described the free energy surface associated with the folding/unfolding of a RNA hairpin containing a non-canonical basepair motif, which is conserved within the 3'-untranslated region of poliovirus-like enteroviruses. Simulations reveal that in heavy water (D2O) there is a considerable increase of the stability of the folded basin as monitored through an intramolecular hydrogen bond (HB), size, shape, and flexibility of RNA structures. This translates into a higher melting temperature in D2O by 41 K when compared with light water (H2O). We have explored the hydration dynamics of the RNA, hydration shell around the RNA surface, and spatial dependence of RNA-solvent collective HB dynamics in the two water systems. Simulation in heavy water clearly showed that D2O strengthens the HB network in the solvent, lengthens inter-residue water-bridge lifetime, and weakens dynamical coupling of the hairpin to its solvation environment, which enhances the rigidity of solvent exposed sites of the native configurations. The results might suggest that like other added osmoprotectants, D2O can act as a thermostabilizer when used as a solvent.

  13. Structure-function relationship of viral cis-acting RNA elements : the role of the OriI and OriR in enterovirus replication

    NARCIS (Netherlands)

    Ooij, Martinus Johannes Maria van

    2007-01-01

    The genus Enterovirus belongs to Picornaviridae, a family of small, non-enveloped, lytic RNA viruses. They contain a single-stranded RNA genome of positive polarity of approximately 7,500 nucleotides. A viral protein VPg is specifically linked to the 5'terminus of the viral RNA. IRES-mediated

  14. RNase L Mediates the Antiviral Effect of Interferon through a Selective Reduction in Viral RNA during Encephalomyocarditis Virus Infection

    Science.gov (United States)

    Li, Xiao-Ling; Blackford, John A.; Hassel, Bret A.

    1998-01-01

    The 2′,5′-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A. PMID:9525594

  15. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.

    Directory of Open Access Journals (Sweden)

    Jitka Holcakova

    Full Text Available Cyclin-dependent kinases (CDKs are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional

  16. Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA.

    Science.gov (United States)

    Liu, Dongcheng; Wang, Yan; Yuan, Yan

    2018-01-10

    KSHV lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. Virus-encoded b-Zip family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here we report that K8 is a RNA binding protein, which also associates with many proteins including other RNA binding proteins. Many K8-involved protein-protein interactions are mediated by RNA. Using a crosslinking and immunoprecipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, that include both viral (PAN, T1.4, T0.7 and etc.) and cellular (MALAT-1, MRP, 7SK and etc.) RNAs. An RNA-binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 binding to many noncoding RNAs as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The function of K8 and associated T1.4 RNA was investigated in details and results showed that T1.4 mediates the binding of K8 with ori-Lyt DNA. T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble replication complex. Depletion of T1.4 abolished the DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection.ImportanceGenome wide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding region are actually transcribed and give rise to stable RNAs. Emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes exampled by ribosome or spliceosome are not ancient relics of the last riboorganism but would be well adapted for regulatory role

  17. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation

    Science.gov (United States)

    Molleston, Jerome M.; Sabin, Leah R.; Moy, Ryan H.; Menghani, Sanjay V.; Rausch, Keiko; Gordesky-Gold, Beth; Hopkins, Kaycie C.; Zhou, Rui; Jensen, Torben Heick; Wilusz, Jeremy E.; Cherry, Sara

    2016-01-01

    RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. PMID:27474443

  18. Roles of the Coding and Noncoding Regions of Rift Valley Fever Virus RNA Genome Segments in Viral RNA Packaging

    OpenAIRE

    Murakami, Shin; Terasaki, Kaori; Narayanan, Krishna; Makino, Shinji

    2012-01-01

    We characterized the RNA elements involved in the packaging of Rift Valley fever virus RNA genome segments, L, M, and S. The 5′-terminal 25 nucleotides of each RNA segment were equally competent for RNA packaging and carried an RNA packaging signal, which overlapped with the RNA replication signal. Only the deletion mutants of L RNA, but not full-length L RNA, were efficiently packaged, implying the possible requirement of RNA compaction for L RNA packaging.

  19. Production and titering of recombinant adeno-associated viral vectors.

    Science.gov (United States)

    McClure, Christina; Cole, Katy L H; Wulff, Peer; Klugmann, Matthias; Murray, Andrew J

    2011-11-27

    In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced.

  20. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  1. Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates.

    Science.gov (United States)

    Khanaliha, Khadijeh; Masoumi-Asl, Hossein; Bokharaei-Salim, Farah; Tabatabaei, Azardokht; Naghdalipoor, Mehri

    2017-08-01

    The Totiviridae family includes a number of viruses that can infect protozoan parasites such as Leishmania and Giardia and fungi like Saccharomyces cerevisiae. Some isolates of Trichomonas vaginalis are also infected with one or more double-stranded RNA (dsRNA) viruses. In this study, the frequency of Trichomonas vaginalis virus (TVV1) was evaluated in Iranian isolates of T. vaginalis in Tehran, Iran. One thousand five hundred vaginal samples were collected from patients attending obstetrics and gynaecology hospitals associated with Iran University of Medical Sciences in Tehran, Iran from October 2015 to September 2016. Trichomonas vaginalis isolates were cultured in Diamond's modified medium. Nucleic acids were extracted using a DNA/RNA extraction kit and RT-PCR was performed. Among 1500 collected vaginal samples, 8 (0.53%) cases of T. vaginalis infection were found. Half (4/8) of the T. vaginalis positive cases were infected with TVV1. Phylogenetic mapping indicated that the Iranian isolates were most closely related to TVV1-OC5, TVV1-UR1. Iranian isolates of T. vaginalis were infected with TVV1. The frequency of viral infection (TVV1) in T. vaginalis isolates found in this study is higher than previously reported in Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication.

    Science.gov (United States)

    Wang, Yi-Ping; Huang, Li-Ping; Du, Wen-Juan; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-08-01

    RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export.

    Science.gov (United States)

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P; Forst, Christian V; Roth, Michael G; Levy, David E; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A; Fontoura, Beatriz M A

    2012-02-06

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. © 2012 Zhang et al.

  4. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  5. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Chao, E-mail: liuchao9@mail.sysu.edu.cn [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Zhang, Hui [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China)

    2015-12-15

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  6. Association between feline immunodeficiency virus (FIV) plasma viral RNA load, concentration of acute phase proteins and disease severity.

    Science.gov (United States)

    Kann, Rebecca K C; Seddon, Jennifer M; Kyaw-Tanner, Myat T; Henning, Joerg; Meers, Joanne

    2014-08-01

    Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Interactive effects of viral and bacterial production on marine bacterial diversity.

    Directory of Open Access Journals (Sweden)

    Chiaki Motegi

    Full Text Available A general model of species diversity predicts that the latter is maximized when productivity and disturbance are balanced. Based on this model, we hypothesized that the response of bacterial diversity to the ratio of viral to bacterial production (VP/BP would be dome-shaped. In order to test this hypothesis, we obtained data on changes in bacterial communities (determined by terminal restriction fragment length polymorphism of 16S rRNA gene along a wide VP/BP gradient (more than two orders of magnitude, using seawater incubations from NW Mediterranean surface waters, i.e., control and treatments with additions of phosphate, viruses, or both. In December, one dominant Operational Taxonomic Unit accounted for the major fraction of total amplified DNA in the phosphate addition treatment (75±20%, ± S.D., but its contribution was low in the phosphate and virus addition treatment (23±19%, indicating that viruses prevented the prevalence of taxa that were competitively superior in phosphate-replete conditions. In contrast, in February, the single taxon predominance in the community was held in the phosphate addition treatment even with addition of viruses. We observed statistically robust dome-shaped response patterns of bacterial diversity to VP/BP, with significantly high bacterial diversity at intermediate VP/BP. This was consistent with our model-based hypothesis, indicating that bacterial production and viral-induced mortality interactively affect bacterial diversity in seawater.

  8. Linkage between the leader sequence and leader RNA production in Borna disease virus-infected cells.

    Science.gov (United States)

    Honda, Tomoyuki; Sofuku, Kozue; Kojima, Shohei; Yamamoto, Yusuke; Ohtaki, Naohiro; Tomonaga, Keizo

    2017-10-01

    The 3'-untranslated region (UTR) of the non-segmented, negative-strand (NNS) RNA viral genome is called the leader sequence, and functions as the promoter for viral replication and transcription. NNS RNA viruses also use the sequence as a template to synthesize leader RNAs (leRNAs) with unknown functions. Borna disease virus (BDV) is unique because it establishes a persistent infection and replicates in the nucleus. No report has yet demonstrated the presence of leRNAs during BDV infection. Here, we report that BDV synthesizes leRNAs from the 3'-UTR of the genome. They started at position 5 in the 3'-UTR and ended by the transcription start signal of the nucleoprotein gene. The level of leRNA production is not correlated with the levels of viral replication and transcription. On the other hand, mutation of the 3'-UTR affects leRNA production. Our findings add a novel viral transcript to the BDV life cycle and shed light on BDV replication and/or transcription. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming.

    Science.gov (United States)

    Jeon, Eun Jin; Tadamura, Kazuki; Murakami, Taiki; Inaba, Jun-Ichi; Kim, Bo Min; Sato, Masako; Atsumi, Go; Kuchitsu, Kazuyuki; Masuta, Chikara; Nakahara, Kenji S

    2017-10-01

    Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance

  10. Design and validation of small interfering RNA on respiratory syncytial virus M2-2 gene: A potential approach in RNA interference on viral replication.

    Science.gov (United States)

    Chin, V K; Atika Aziz, Nur A; Hudu, Shuaibu A; Harmal, Nabil S; Syahrilnizam, A; Jalilian, Farid A; Zamberi, S

    2016-10-01

    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  12. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors.

    Science.gov (United States)

    Nakanishi, Hideyuki; Miki, Kenji; Komatsu, Kaoru R; Umeda, Masayuki; Mochizuki, Megumi; Inagaki, Azusa; Yoshida, Yoshinori; Saito, Hirohide

    2017-06-01

    MicroRNA (miRNA) activity differs with cell type, suggesting it can be used as a cell marker. In this study, we developed novel miRNA-responsive non-viral reporter vectors to continuously monitor and visualize miRNA dynamics during differentiation and to efficiently purify target living cells. Each vector codes miRNA-responsive and reference reporter genes in a single mRNA. These two genes are independent modules but transcribed by a single promoter, which enables us to distinguish miRNA-mediated post-transcriptional repression from transcriptional repression. We generated stable, miRNA-responsive vector-containing human induced pluripotent stem cells (hiPSCs) using the piggyBac transposon or episomal vectors. We could continuously monitor the differentiation status of living hiPSCs by detecting the activity of hiPSC-specific miRNA (miR-302a*). In addition, we could selectively sort hiPSC-derived cardiomyocytes using cardiomyocyte-specific miRNA (miR-208a or miR-1)-reporter vectors. Our miRNA reporter system provides a simple way to quantitatively and continuously monitor and visualize changes in the cellular state and should facilitate a broad range of studies that depend on cellular changes including drug discovery and cell-fate conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Prokaryote diversity and viral production in deep-sea sediments and seamounts

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Luna, Gian Marco; Magagnini, Mirko; Manini, Elena; Pusceddu, Antonio

    2009-05-01

    Despite the fact that marine prokaryotes and viruses have been increasingly investigated over the last decade, knowledge on prokaryote diversity and viral production in bathyal sediments is limited. We investigated microbial variables in the deep-sea sediments around two seamounts at 3000-m depth in the Tyrrhenian Sea and sediments located at the same depth, but not affected by the presence of the seamounts. We hypothesized that seamounts altered significantly prokaryotes-viruses interactions in surrounding deep-sea sediments. Sediments surrounding seamounts were characterised by prokaryotic abundances significantly higher than those observed in non-seamount sediments. Benthic viral production was about double in sediments close to seamounts than in non-seamount sediments, where virus turnover was up to 3 times lower. Total Bacteria, as assessed by CARD-FISH, dominated prokaryotic community structure, whereas Archaea accounted on average for approximately 10%. The fraction of Crenarchaeota was always higher than Euryarchaeota. Bacterial diversity, estimated using ARISA, was high, with up to 127 different microbial operational taxonomic units (OTUs) in a single sample. Archaeal richness (determined using T-RFLP of the 16S rRNA gene) ranged from 12 to 20 OTUs, while Archaeal evenness was comprised between 0.529±0.018 and 0.623±0.08. Results represent a pointer for future investigations dealing with the interactions between viruses and prokaryotes in deep-sea sediments.

  14. Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    Science.gov (United States)

    Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-01-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215

  15. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus.

    Science.gov (United States)

    Deval, Jerome; Symons, Julian A; Beigelman, Leo

    2014-12-01

    A number of important human infections are caused by positive-strand RNA viruses, yet almost none can be treated with small molecule antiviral therapeutics. One exception is the chronic infection caused by hepatitis C virus (HCV), against which new generations of potent inhibitors are being developed. One of the main molecular targets for anti-HCV drugs is the viral RNA-dependent RNA polymerase, NS5B. This review summarizes the search for nucleoside and nucleotide analogs that inhibit HCV NS5B, which led to the FDA approval of sofosbuvir in 2013. Advances in anti-HCV therapeutics have also stimulated efforts to develop nucleoside analogs against other positive-strand RNA viruses. Although it remains to be validated in the clinic, the prospect of using nucleoside analogs to treat acute infections caused by RNA viruses represents an important paradigm shift and a new frontier for future antiviral therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Robust real-time cell analysis method for determining viral infectious titers during development of a viral vaccine production process.

    Science.gov (United States)

    Charretier, Cédric; Saulnier, Aure; Benair, Loïc; Armanet, Corinne; Bassard, Isabelle; Daulon, Sandra; Bernigaud, Bertrand; Rodrigues de Sousa, Emanuel; Gonthier, Clémence; Zorn, Edouard; Vetter, Emmanuelle; Saintpierre, Claire; Riou, Patrice; Gaillac, David

    2018-02-01

    The classical cell-culture methods, such as cell culture infectious dose 50% (CCID50) assays, are time-consuming, end-point assays currently used during the development of a viral vaccine production process to measure viral infectious titers. However, they are not suitable for handling the large number of tests required for high-throughput and large-scale screening analyses. Impedance-based bio-sensing techniques used in real-time cell analysis (RTCA) to assess cell layer biological status in vitro, provide real-time data. In this proof-of-concept study, we assessed the correlation between the results from CCID50 and RTCA assays and compared time and costs using monovalent and tetravalent chimeric yellow fever dengue (CYD) vaccine strains. For the RTCA assay, Vero cells were infected with the CYD sample and real-time impedance was recorded, using the dimensionless cell index (CI). The CI peaked just after infection and decreased as the viral cytopathic effect occurred in a dose-dependent manner. The time to the median CI (CITmed) was correlated with viral titers determined by CCID50 over a range of about 4-5log10 CCID50/ml. This in-house RTCA virus-titration assay was shown to be a robust method for determining real-time viral infectious titers, and could be an alternative to the classical CCID50 assay during the development of viral vaccine production process. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing.

    Directory of Open Access Journals (Sweden)

    Shih-Shun Lin

    2009-02-01

    Full Text Available Plant microRNAs (miRNA guide cleavage of target mRNAs by DICER-like proteins, thereby reducing mRNA abundance. Native precursor miRNAs can be redesigned to target RNAs of interest, and one application of such artificial microRNA (amiRNA technology is to generate plants resistant to pathogenic viruses. Transgenic Arabidopsis plants expressing amiRNAs designed to target the genome of two unrelated viruses were resistant, in a highly specific manner, to the appropriate virus. Here, we pursued two different goals. First, we confirmed that the 21-nt target site of viral RNAs is both necessary and sufficient for resistance. Second, we studied the evolutionary stability of amiRNA-mediated resistance against a genetically plastic RNA virus, TuMV. To dissociate selective pressures acting upon protein function from those acting at the RNA level, we constructed a chimeric TuMV harboring a 21-nt, amiRNA target site in a non-essential region. In the first set of experiments designed to assess the likelihood of resistance breakdown, we explored the effect of single nucleotide mutation within the target 21-nt on the ability of mutant viruses to successfully infect amiRNA-expressing plants. We found non-equivalency of the target nucleotides, which can be divided into three categories depending on their impact in virus pathogenicity. In the second set of experiments, we investigated the evolution of the virus mutants in amiRNA-expressing plants. The most common outcome was the deletion of the target. However, when the 21-nt target was retained, viruses accumulated additional substitutions on it, further reducing the binding/cleavage ability of the amiRNA. The pattern of substitutions within the viral target was largely dominated by G to A and C to U transitions.

  18. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy.

    Science.gov (United States)

    Garmann, Rees F; Gopal, Ajaykumar; Athavale, Shreyas S; Knobler, Charles M; Gelbart, William M; Harvey, Stephen C

    2015-05-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. © 2015 Garmann et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Doubly Spliced RNA of Hepatitis B Virus Suppresses Viral Transcription via TATA-Binding Protein and Induces Stress Granule Assembly.

    Science.gov (United States)

    Tsai, Kuen-Nan; Chong, Chin-Liew; Chou, Yu-Chi; Huang, Chien-Chiao; Wang, Yi-Ling; Wang, Shao-Win; Chen, Mong-Liang; Chen, Chun-Hong; Chang, Chungming

    2015-11-01

    The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes. Patients infected with certain genotypes of HBV have a lower risk of hepatocellular carcinoma and exhibit a more favorable response to antiviral therapy than patients infected with other HBV

  20. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    Directory of Open Access Journals (Sweden)

    Graham H Cowan

    2012-12-01

    Full Text Available The potato mop-top virus (PMTV triple gene block 2 (TGB2 movement protein fused to monomeric red fluorescent protein (mRFP-TGB2 was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localisations and interactions of mRFP-TGB2 were investigated using confocal imaging (CLSM and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum, mobile granules, small round structures (1-2 µm in diameter and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labelled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein, genomic RNA and fluorescently-labelled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localised to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.

  1. Viral RNA testing and automation on the bead-based CBNE detection microsystem.

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Bourdon, Christopher Jay; Farrell, Cara M.; Rossito, Paul (University of California at Davis); McClain, Jaime L.; Derzon, Mark Steven; Cullor, James Sterling (University of California at Davis); Rahimian, Kamayar

    2008-09-01

    We developed prototype chemistry for nucleic acid hybridization on our bead-based diagnostics platform and we established an automatable bead handling protocol capable of 50 part-per-billion (ppb) sensitivity. We are working towards a platform capable of parallel, rapid (10 minute), raw sample testing for orthogonal (in this case nucleic acid and immunoassays) identification of biological (and other) threats in a single sensor microsystem. In this LDRD we developed the nucleic acid chemistry required for nucleic acid hybridization. Our goal is to place a non-cell associated RNA virus (Bovine Viral Diarrhea, BVD) on the beads for raw sample testing. This key pre-requisite to showing orthogonality (nucleic acid measurements can be performed in parallel with immunoassay measurements). Orthogonal detection dramatically reduces false positives. We chose BVD because our collaborators (UC-Davis) can supply samples from persistently infected animals; and because proof-of-concept field testing can be performed with modification of the current technology platform at the UC Davis research station. Since BVD is a cattle-prone disease this research dovetails with earlier immunoassay work on Botulinum toxin simulant testing in raw milk samples. Demonstration of BVD RNA detection expands the repertoire of biological macromolecules that can be adapted to our bead-based detection. The resources of this late start LDRD were adequate to partially demonstrate the conjugation of the beads to the nucleic acids. It was never expected to be adequate for a full live virus test but to motivate that additional investment. In addition, we were able to reduce the LOD (Limit of Detection) for the botulinum toxin stimulant to 50 ppb from the earlier LOD of 1 ppm. A low LOD combined with orthogonal detection provides both low false negatives and low false positives. The logical follow-on steps to this LDRD research are to perform live virus identification as well as concurrent nucleic acid and

  2. Intracerebral Borna disease virus infection of bank voles leading to peripheral spread and reverse transcription of viral RNA.

    Directory of Open Access Journals (Sweden)

    Paula Maria Kinnunen

    Full Text Available Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV, as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus. In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional BDV-endemic areas, can serve as a viral host; we therefore explored whether this species can be infected with BDV, and if so, how the virus spreads and whether viral RNA is transcribed into DNA in vivo.We infected neonate bank voles intracerebrally with BDV and euthanized them 2 to 8 weeks post-infection. Specific Ig antibodies were detectable in 41%. Histological evaluation revealed no significant pathological alterations, but BDV RNA and antigen were detectable in all infected brains. Immunohistology demonstrated centrifugal spread throughout the nervous tissue, because viral antigen was widespread in peripheral nerves and ganglia, including the mediastinum, esophagus, and urinary bladder. This was associated with viral shedding in feces, of which 54% were BDV RNA-positive, and urine at 17%. BDV nucleocapsid gene DNA occurred in 66% of the infected voles, and, surprisingly, occasionally also phosphoprotein DNA. Thus, intracerebral BDV infection of bank vole led to systemic infection of the nervous tissue and viral excretion, as well as frequent reverse transcription of the BDV genome, enabling genomic integration. This first experimental bornavirus infection in wild mammals confirms the recent findings regarding bornavirus DNA, and suggests that bank voles are

  3. Intracerebral Borna disease virus infection of bank voles leading to peripheral spread and reverse transcription of viral RNA.

    Science.gov (United States)

    Kinnunen, Paula Maria; Inkeroinen, Hanna; Ilander, Mette; Kallio, Eva Riikka; Heikkilä, Henna Pauliina; Koskela, Esa; Mappes, Tapio; Palva, Airi; Vaheri, Antti; Kipar, Anja; Vapalahti, Olli

    2011-01-01

    Bornaviruses, which chronically infect many species, can cause severe neurological diseases in some animal species; their association with human neuropsychiatric disorders is, however, debatable. The epidemiology of Borna disease virus (BDV), as for other members of the family Bornaviridae, is largely unknown, although evidence exists for a reservoir in small mammals, for example bank voles (Myodes glareolus). In addition to the current exogenous infections and despite the fact that bornaviruses have an RNA genome, bornavirus sequences integrated into the genomes of several vertebrates millions of years ago. Our hypothesis is that the bank vole, a common wild rodent species in traditional BDV-endemic areas, can serve as a viral host; we therefore explored whether this species can be infected with BDV, and if so, how the virus spreads and whether viral RNA is transcribed into DNA in vivo.We infected neonate bank voles intracerebrally with BDV and euthanized them 2 to 8 weeks post-infection. Specific Ig antibodies were detectable in 41%. Histological evaluation revealed no significant pathological alterations, but BDV RNA and antigen were detectable in all infected brains. Immunohistology demonstrated centrifugal spread throughout the nervous tissue, because viral antigen was widespread in peripheral nerves and ganglia, including the mediastinum, esophagus, and urinary bladder. This was associated with viral shedding in feces, of which 54% were BDV RNA-positive, and urine at 17%. BDV nucleocapsid gene DNA occurred in 66% of the infected voles, and, surprisingly, occasionally also phosphoprotein DNA. Thus, intracerebral BDV infection of bank vole led to systemic infection of the nervous tissue and viral excretion, as well as frequent reverse transcription of the BDV genome, enabling genomic integration. This first experimental bornavirus infection in wild mammals confirms the recent findings regarding bornavirus DNA, and suggests that bank voles are capable of

  4. The Mechanism of Synchronous Precise Regulation of Two Shrimp White Spot Syndrome Virus Targets by a Viral MicroRNA

    Directory of Open Access Journals (Sweden)

    Yaodong He

    2017-11-01

    Full Text Available MicroRNAs (miRNAs, important factors in animal innate immunity, suppress the expressions of their target genes by binding to target mRNA’s 3′ untranslated regions (3′UTRs. However, the mechanism of synchronous regulation of multiple targets by a single miRNA remains unclear. In this study, the interaction between a white spot syndrome virus (WSSV miRNA (WSSV-miR-N32 and its two viral targets (wsv459 and wsv322 was characterized in WSSV-infected shrimp. The outcomes indicated that WSSV-encoded miRNA (WSSV-miR-N32 significantly inhibited virus infection by simultaneously targeting wsv459 and wsv322. The silencing of wsv459 or wsv322 by siRNA led to significant decrease of WSSV copies in shrimp, showing that the two viral genes were required for WSSV infection. WSSV-miR-N32 could mediate 5′–3′ exonucleolytic digestion of its target mRNAs, which stopped at the sites of target mRNA 3′UTRs close to the sequence complementary to the miRNA seed sequence. The complementary bases (to the target mRNA sequence of a miRNA 9th–18th non-seed sequence were essential for the miRNA targeting. Therefore, our findings presented novel insights into the mechanism of miRNA-mediated suppression of target gene expressions, which would be helpful for understanding the roles of miRNAs in innate immunity of invertebrate.

  5. New tools to study RNA interference to fish viruses: Fish cell lines permanently expressing siRNAs targeting the viral polymerase of viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Ruiz, S.; Schyth, Brian Dall; Encinas, P.

    2009-01-01

    Previous studies have indicated that low transfection efficiency can be a major problem when gene inhibition by the use of small interfering RNAs (siRNAs) is attempted in fish cells. This may especially be true when targeting genes of viruses which are fast replicating and which can still infect...... cells that have not been transfected with the antiviral siRNAs. To increase the amount of antiviral siRNAs per cell a different strategy than transfection was taken here. Thus, we describe carp epithelioma papulosum cyprinid (EPC) cell clones expressing siRNAs designed to target the L polymerase gene...... of the viral hemorrhagic septicemia virus (VHSV), a rhabdovirus affecting fish. Eight siRNA sequences were first designed, synthesized and screened for inhibition of in vitro VHSV infectivity. Small hairpin (sh) DNAs corresponding to three selected siRNAs were then cloned into pRNA-CMV3.1/puro plasmids...

  6. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.

    Science.gov (United States)

    Takeshita, Daijiro; Tomita, Kozo

    2010-09-07

    Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.

  7. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Directory of Open Access Journals (Sweden)

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  8. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    Science.gov (United States)

    Pou, Christian; Codoñer, Francisco M; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing should be specifically validated in clinical trials before it can be applied to routine clinical decision-making.

  9. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication.

    Science.gov (United States)

    Jacobs, Alexander; Hoover, Haley; Smith, Edward; Clemmer, David E; Kim, Chul-Hyun; Kao, C Cheng

    2018-01-09

    In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery.

    Science.gov (United States)

    Shimura, Hanako; Pantaleo, Vitantonio; Ishihara, Takeaki; Myojo, Nobutoshi; Inaba, Jun-ichi; Sueda, Kae; Burgyán, József; Masuta, Chikara

    2011-05-01

    Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.

  11. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery.

    Directory of Open Access Journals (Sweden)

    Hanako Shimura

    2011-05-01

    Full Text Available Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV Y satellite RNA (Y-sat is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs, which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.

  12. Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients.

    Directory of Open Access Journals (Sweden)

    Myeong Hee Kim

    Full Text Available Bkv-miR-B1-5p, one of the microRNAs encoded by BK virus, was recently reported to be elevated in the blood among the patients with BK virus nephropathy (BKVN. Urinary exosome was suggested to be a possible source of biomarker for kidney diseases, but it was unknown whether it could contain viral microRNA as well as human microRNAs. The aim of this study was to evaluate whether urinary exosomal BK viral microRNA were expressed during replication and could be used to diagnose BKVN in kidney transplant recipients.In a cross-sectional multicenter study, we collected and analyzed 458 graft biopsies from 385 kidney transplant recipients. Urine samples were collected at the time of graft biopsy, and microRNAs in urinary exosome were measured once. For 13 patients with BKVN and 67 age, sex-matched kidney transplant recipients, we measured BK viral microRNA B1-5p, 3p and human microRNA-16 in urinary exosomal fraction and compared the diagnostic value with BK viral load in plasma and urine.Pathology proven BKVN was diagnosed in 13 patients (2.8%. High levels of bkv-miR-B1-5p and bkv-miR-B1-3p were shown in all patients with BKVN. Meanwhile, plasma BK viral load assay (cut-off value of ≥ 4.0 log10 copies/mL showed false negative in 3 cases and urinary BK viral load assay (cut-off value of ≥ 7.0 log10 copies/mL showed false negative in 1 case among these 13 patients. The receiver operator characteristics curve analysis for bkv-miR-B1-5p and bkv-miR-B1-5p/miR-16 showed excellent discriminative power for the diagnosis of BKVN, with area under the curve values of 0.989 and 0.985, respectively.This study suggests that urinary exosomal bkv-miR-B1-5p and bkv-miR-B1-5p/miR-16 could be surrogate markers for the diagnosis of BKVN.

  13. The Norovirus NS3 Protein Is a Dynamic Lipid- and Microtubule-Associated Protein Involved in Viral RNA Replication.

    Science.gov (United States)

    Cotton, Ben T; Hyde, Jennifer L; Sarvestani, Soroush T; Sosnovtsev, Stanislav V; Green, Kim Y; White, Peter A; Mackenzie, Jason M

    2017-02-01

    Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and dsRNA

  14. Viral proteins that bind double-stranded RNA: countermeasures against host antiviral responses.

    Science.gov (United States)

    Krug, Robert M

    2014-06-01

    Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins of influenza A virus and Ebola viruses (EBOVs).

  15. Risk mitigation strategies for viral contamination of biotechnology products: consideration of best practices.

    Science.gov (United States)

    Rosenberg, Amy S; Cherney, Barry; Brorson, Kurt; Clouse, Kathleen; Kozlowski, Steven; Hughes, Patricia; Friedman, Rick

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Viral contamination of biotech product facilities is a potentially devastating manufacturing risk and, unfortunately, is more common than is generally reported or previously appreciated. Although viral contaminants of biotech products are thought to originate principally from biological raw materials, all potential process risks merit evaluation. Limitations to existing methods for virus detection are becoming evident as emerging viruses have contaminated facilities and disrupted supplies of critical products. New technologies, such as broad-based polymerase chain reaction screens for multiple virus types, are increasingly becoming available to detect adventitious viral contamination and thus, mitigate risks to biotech products and processes. Further, the industry embrace of quality risk management that promotes improvements in testing stratagems, enhanced viral inactivation methods for raw materials, implementation and standardization of robust viral clearance procedures, and efforts to learn from both epidemiologic screening of raw material sources and from the experience of other manufacturers with regard to this problem will serve to enhance the safety of biotech products available to patients. Based on this evolving landscape, we propose a set of principles for manufacturers of biotech products: Pillars of Risk Mitigation for Viral Contamination of Biotech Products.

  16. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3'-end

    National Research Council Canada - National Science Library

    Harutyunyan, Shushan; Kumar, Mohit; Sedivy, Arthur; Subirats, Xavier; Kowalski, Heinrich; Köhler, Gottfried; Blaas, Dieter

    2013-01-01

    .... In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell...

  17. Human β-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD.

    Science.gov (United States)

    Arnason, Jason W; Murphy, James C; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Shelfoon, Christopher; Maciejewski, Barbara; Dumonceaux, Curtis J; Lewenza, W Shawn; Proud, David; Leigh, Richard

    2017-01-01

    Viral-bacterial co-infections are associated with severe exacerbations of COPD. Epithelial antimicrobial peptides, including human β-defensin-2 (HBD-2), are integral to innate host defenses. In this study, we examined how co-infection of airway epithelial cells with rhinovirus and Pseudomonas aeruginosa modulates HBD-2 expression, and whether these responses are attenuated by cigarette smoke and in epithelial cells obtained by bronchial brushings from smokers with normal lung function or from COPD patients. When human airway epithelial cells from normal lungs were infected with rhinovirus, Pseudomonas aeruginosa, or the combination, co-infection with rhinovirus and bacteria resulted in synergistic induction of HBD-2 (peffects of Pseudomonas aeruginosa were mediated via interactions of flagellin with TLR5. The effects of HRV-16 depended upon viral replication but did not appear to be mediated via the intracellular RNA helicases, retinoic acid-inducible gene-I or melanoma differentiation-associated gene-5. Cigarette smoke extract significantly decreased HBD-2 production in response to co-infection. Attenuated production was also observed following co-infection of cells obtained from healthy smokers or COPD patients compared to healthy controls (pexposure to HRV-16 and Pseudomonas aeruginosa induces synergistic production of HBD-2 from epithelial cells and that this synergistic induction of HBD-2 is reduced in COPD patients. This may contribute to the more severe exacerbations these patients experience in response to viral-bacterial co-infections.

  18. Novel viral translation strategies.

    Science.gov (United States)

    Au, Hilda H T; Jan, Eric

    2014-01-01

    Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. © 2014 John Wiley & Sons, Ltd.

  19. Production and Titering of Recombinant Adeno-associated Viral Vectors

    OpenAIRE

    McClure, Christina; Cole, Katy L. H.; Wulff, Peer; Klugmann, Matthias; Murray, Andrew J.

    2011-01-01

    In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and ...

  20. MicroRNA Roles in the NF-κB Signaling Pathway during Viral Infections

    Directory of Open Access Journals (Sweden)

    Zeqian Gao

    2014-01-01

    Full Text Available NF-κB signaling network is a crucial component of innate immunity. miRNAs are a subtype of small noncoding RNAs, involved in regulation of gene expression at the posttranscriptional level. Increasing evidence has emerged that miRNAs play an important role in regulation of NF-κB signaling pathway during viral infections. Both host and viral miRNAs are attributed to modulation of NF-κB activity, thus affecting viral infection and clearance. Understandings of the mechanisms of these miRNAs will open a direction for development of novel antivirus drugs.

  1. Characterizing the roles of Cryphonectria parasitica RNA-dependent RNA polymerase-like genes in antiviral defense, viral recombination and transposon transcript accumulation.

    Directory of Open Access Journals (Sweden)

    Dong-Xiu Zhang

    Full Text Available An inducible RNA-silencing pathway, involving a single Dicer protein, DCL2, and a single Argonaute protein, AGL2, was recently shown to serve as an effective antiviral defense response in the chestnut blight fungus Cryphonectria parasitica. Eukaryotic RNA-dependent RNA polymerases (RdRPs are frequently involved in transcriptional and posttranscriptional gene silencing and antiviral defense. We report here the identification and characterization of four RdRP genes (rdr1-4 in the C. parasitica genome. Sequence relationships with other eukaryotic RdRPs indicated that RDR1 and RDR2 were closely related to QDE-1, an RdRP involved in RNA silencing ("quelling" in Neurospora crassa, whereas RDR3 was more closely related to the meiotic silencing gene SAD-1 in N. crassa. The RdRP domain of RDR4, related to N. crassa RRP-3 of unknown function, was truncated and showed evidence of alternative splicing. Similar to reports for dcl2 and agl2, the expression levels for rdr3 and rdr4 increased after hypovirus CHV-1/EP713 infection, while expression levels of rdr1 and rdr2 were unchanged. The virus-responsive induction patterns for rdr3 and rdr4 were altered in the Δdcl2 and Δagl2 strains, suggesting some level of interaction between rdr3 and rdr4 and the dcl2/agl2 silencing pathway. Single rdr gene knockouts Δrdr1-4, double knockouts Δrdr1/2, Δrdr2/3, Δrdr1/3, and a triple knockout, Δrdr1/2/3, were generated and evaluated for effects on fungal phenotype, the antiviral defense response, viral RNA recombination activity and transposon expression. None of the single or multiple rdr knockout strains displayed any phenotypic differences from the parental strains with or without viral infection or any significant changes in viral RNA accumulation or recombination activity or transposon RNA accumulation, indicating no detectable contribution by the C. parasitica rdr genes to these processes.

  2. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  3. Crystal Structure of Poliovirus 3CD Protein: Virally Encoded Protease and Precursor to the RNA-Dependent RNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte,L.; Wass, A.; Gohara, D.; Pathak, H.; Arnold, J.; Filman, D.; Cameron, C.; Hogle, J.

    2007-01-01

    Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3Cpro and the viral polymerase 3Dpol and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4- Angstroms resolution and the G64S fidelity mutant of 3Dpol at a 3.0- Angstroms resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3Dpol G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3Dpol makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.

  4. Crystal Structure of Poliovirus 3CD Protein: Virally Encoded Protease and Precursor to the RNA-Dependent RNA Polymerase▿

    Science.gov (United States)

    Marcotte, Laura L.; Wass, Amanda B.; Gohara, David W.; Pathak, Harsh B.; Arnold, Jamie J.; Filman, David J.; Cameron, Craig E.; Hogle, James M.

    2007-01-01

    Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3Cpro and the viral polymerase 3Dpol and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-Å resolution and the G64S fidelity mutant of 3Dpol at a 3.0-Å resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3Dpol G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3Dpol makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro. PMID:17251299

  5. Diurnal variations in bacterial and viral production in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Jasna, V.; Haridevi, C.K.; Jina, S.; Greeshma, M.; Breezy, J.; Nair, M.

    of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light...

  6. Bovine viral diarrhoea virus antigen in foetal calf serum batches and consequences of such contamination for vaccine production.

    Science.gov (United States)

    Makoschey, B; van Gelder, P T J A; Keijsers, V; Goovaerts, D

    2003-09-01

    A protocol to test foetal calf serum (FCS) for contamination with bovine viral diarrhoea virus (BVDV) is described. Following this protocol, which combines cell culture methods and detection of pestivirus RNA, seven batches of FCS were tested. Infectious BVDV was detected in four of those batches. One of the remaining batches contained a relatively high number of non-infectious BVDV particles. A sample of this batch was formulated with aluminium hydroxide and aluminium phosphate as adjuvant into an experimental vaccine preparation. This product was injected twice into BVDV seronegative cattle with a 4 week interval. Blood samples taken 4 weeks after the second application were negative for BVDV specific antibodies. Our data stress that detection of BVDV RNA is not sufficient for a complete risk assessment on FCS. Discrimination between infectious and non-infectious BVDV is essential. This can only be achieved by cell culture methods.

  7. Tools for translation: non-viral materials for therapeutic mRNA delivery

    Science.gov (United States)

    Hajj, Khalid A.; Whitehead, Kathryn A.

    2017-10-01

    In recent years, messenger RNA (mRNA) has come into the spotlight as a versatile therapeutic with the potential to prevent and treat a staggering range of diseases. Billions of dollars have been invested in the commercial development of mRNA drugs, with ongoing clinical trials focused on vaccines (for example, influenza and Zika viruses) and cancer immunotherapy (for example, myeloma, leukaemia and glioblastoma). Although significant progress has been made in the design of in vitro-transcribed mRNA that retains potency while minimizing unwanted immune responses, the widespread use of mRNA drugs requires the development of safe and effective drug delivery vehicles. In this Review, we provide an overview of the field of mRNA therapeutics and describe recent advances in the development of synthetic materials that encapsulate and deliver mRNA payloads.

  8. Influence of HEK293 metabolism on the production of viral vectors and vaccine.

    Science.gov (United States)

    Petiot, Emma; Cuperlovic-Culf, Miroslava; Shen, Chun Fang; Kamen, Amine

    2015-11-04

    Mammalian cell cultures are increasingly used for the production of complex biopharmaceuticals including viral vectors and vaccines. HEK293 is the predominant cell line used for the transient expression of recombinant proteins and a well-established system for the production of viral vectors. Understanding metabolic requirements for high productivity in HEK293 cells remains an important area of investigation. Many authors have presented approaches for increased productivity through optimization of cellular metabolism from two distinct perspectives. One is a non-targeted approach, which is directed to improving feeding strategies by addition of exhausted or critical substrates and eventually removal of toxic metabolites. Alternatively, a targeted approach has attempted to identify specific targets for optimization through better understanding of the cellular metabolism under different operating conditions. This review will present both approaches and their successes with regards to improvement of viral production in HEK293 cells outlining the key relations between HEK293 cell metabolism and viral vector productivity. Also, we will summarize the current knowledge on HEK293 metabolism indicating remaining issues to address and problems to resolve to maximize the productivity of viral vectors in HEK293 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Full Viral Suppression, Low-Level Viremia, and Quantifiable Plasma HIV-RNA at the End of Pregnancy in HIV-Infected Women on Antiretroviral Treatment.

    Science.gov (United States)

    Baroncelli, Silvia; Pirillo, Maria F; Tamburrini, Enrica; Guaraldi, Giovanni; Pinnetti, Carmela; Degli Antoni, Anna; Galluzzo, Clementina M; Stentarelli, Chiara; Amici, Roberta; Floridia, Marco

    2015-07-01

    There is limited information on full viral suppression and low-level HIV-RNA viremia in HIV-infected women at the end of pregnancy. We investigated HIV-RNA levels close to delivery in women on antiretroviral treatment in order to define rates of complete suppression, low-level viremia, and quantifiable HIV-RNA, exploring as potential determinants some clinical and viroimmunological variables. Plasma samples from a national study in Italy, collected between 2003 and 2012, were used. According to plasma HIV-RNA levels, three groups were defined: full suppression (target not detected), low-level viremia (target detected but HIV-RNA (≥37 copies/ml). Multivariable logistic regression was used to define determinants of full viral suppression and of quantifiable HIV-RNA. Among 107 women evaluated at a median gestational age of 35 weeks, 90 (84.1%) had HIV-RNA HIV-RNA was 109 copies/ml (IQR 46-251), with only one case showing resistance (mutation M184V; rate: 9.1%). In multivariable analyses, women with higher baseline HIV-RNA levels and with hepatitis C virus (HCV) coinfection were significantly more likely to have quantifiable HIV-RNA in late pregnancy. Full viral suppression was significantly more likely with nonnucleoside reverse transcriptase inhibitor (NNRTI)-based regimens and significantly less likely with higher HIV-RNA in early pregnancy. No cases of HIV transmission occurred. In conclusion, HIV-infected pregnant women showed a high rate of viral suppression and a low resistance rate before delivery. In most cases no target HIV-RNA was detected in plasma, suggesting a low risk of subsequent virological rebound and development of resistance. Women with high levels of HIV-RNA in early pregnancy and those who have concomitant HCV infection should be considered at higher risk of having quantifiable HIV-RNA at the end of pregnancy.

  10. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    Science.gov (United States)

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  11. A probabilistic model for analyzing viral risks of plasma-derived medicinal products.

    Science.gov (United States)

    Janssen, Mart P; Over, Jan; van der Poel, Cees L; Cuijpers, H Theo M; van Hout, Ben A

    2008-01-01

    The prevention of transmission of viral infections by plasma-derived medicinal products is of concern to manufacturers, legislators, and patient representative groups. Recent European legislation requires a viral risk assessment for all new marketing applications of such products. A discrete event Monte Carlo model was developed to determine the viral transmission risks of the plasma-derived medicinal products. The model incorporates donor epidemiology, donation intervals, efficiency of screening tests for viral markers, inventory hold period, size and composition of the manufacturing pool, production time, process virus reduction capacity, and product yield. With the model, the human immunodeficiency virus (HIV) and hepatitis C virus (HCV) contamination risks of a typical hypothetical plasma product were calculated, and the sensitivity of the risk to various model variables was analyzed. The residual HIV and HCV risks of the finished products are linear in change with viral incidence rate and inversely linear with product yield and process virus reduction capacity. For the product analyzed in this article, the residual risk is less sensitive to changes in screening test pool size, donation frequency, and inventory hold period. There is only a limited dependency on the donation type (apheresis or whole-blood donations) and a negligible dependency on the manufacturing pool size. The use of probabilistic model simulation techniques is indispensable when estimating realistic residual viral risks of plasma-derived medicinal products. In contrast to conventional deterministic residual risk estimations, the probabilistic approach allows incorporation of specific manufacturing decisions and therefore provides the only feasible alternative for a correct assessment of residual risks.

  12. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants.

    Science.gov (United States)

    Fahim, Muhammad; Ayala-Navarrete, Ligia; Millar, Anthony A; Larkin, Philip J

    2010-09-01

    Wheat streak mosaic virus (WSMV), vectored by Wheat curl mite, has been of great economic importance in the Great Plains of the United States and Canada. Recently, the virus has been identified in Australia, where it has spread quickly to all major wheat growing areas. The difficulties in finding adequate natural resistance in wheat prompted us to develop transgenic resistance based on RNA interference (RNAi). An RNAi construct was designed to target the nuclear inclusion protein 'a' (NIa) gene of WSMV. Wheat was stably cotransformed with two plasmids: pStargate-NIa expressing hairpin RNA (hpRNA) including WSMV sequence and pCMneoSTLS2 with the nptII selectable marker. When T(1) progeny were assayed against WSMV, ten of sixteen families showed complete resistance in transgenic segregants. The resistance was classified as immunity by four criteria: no disease symptoms were produced; ELISA readings were as in uninoculated plants; viral sequences could not be detected by RT-PCR from leaf extracts; and leaf extracts failed to give infections in susceptible plants when used in test-inoculation experiments. Southern blot hybridization analysis indicated hpRNA transgene integrated into the wheat genome. Moreover, accumulation of small RNAs derived from the hpRNA transgene sequence positively correlated with immunity. We also showed that the selectable marker gene nptII segregated independently of the hpRNA transgene in some transgenics, and therefore demonstrated that it is possible using these techniques, to produce marker-free WSMV immune transgenic plants. This is the first report of immunity in wheat to WSMV using a spliceable intron hpRNA strategy.

  13. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  14. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity

    Directory of Open Access Journals (Sweden)

    Larance Ronsard

    2017-08-01

    Full Text Available HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.

  15. Use of alternative product in patients with chronic viral hepatitis

    Directory of Open Access Journals (Sweden)

    Mahmut Dulger

    2014-09-01

    Full Text Available Objectives: Some of the patients with chronic hepatitis use both alternative product and/or antiviral treatment. These herbal products sometimes lead to clinical deterioration. In this study we aimed to determine the purpose of alternative product utilization and rate among the chronic hepatitis B (CHB and C (CHC patients. Methods: This prospective cohort study included 200 consecutive adult patients with chronic hepatitis B and C at the Department of Infectious Diseases, Ondokuz Mayis University, between 1 March 2012 and 30 July 2012. At enrollment, clinical information, demographics, laboratory variables and knowledge about alternative products were recorded. Results: Of the patients 150 had CHB, 50 had CHC. 54% of patients were male. Use of alternative products was 26%. Antiviral treatment rate was 48.5% for all patients. The most used alternative products were artichoke extract and honey. 67.3% of patients were using single alternative product whereas the others were using two or more alternative products. 46.2% of patients who use alternative product provided information about the alternative product usage, but the others did not. Conclusions: Majority of patients used alternative products. More than half of these patients did not give information to their physicians about their use of alternative medicine. Use of alternative product should be asked in all patients with chronic hepatitis. Herbal product usage was detected in majority of patients and also approximately half of these patients did not give information to their doctors about taking alternative medicine. In conclusion, it is necessary to take detailed information about herbal product usage in patients with chronic hepatitis. J Microbiol Infect Dis 2014; 4(3: 102-106

  16. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse.

    Science.gov (United States)

    Barends, Sharief; Bink, Hugo H J; van den Worm, Sjoerd H E; Pleij, Cornelis W A; Kraal, Barend

    2003-01-10

    Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.

  17. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips.

    Science.gov (United States)

    Wang, Qiaochun; Cuellar, Wilmer J; Rajamäki, Minna-Liisa; Hirata, Yukimasa; Valkonen, Jari P T

    2008-03-01

    Accumulation of viruses in vegetatively propagated plants causes heavy yield losses. Therefore, supply of virus-free planting materials is pivotal to sustainable crop production. In previous studies, Raspberry bushy dwarf virus (RBDV) was difficult to eradicate from raspberry (Rubus idaeus) using the conventional means of meristem tip culture. As shown in the present study, it was probably because this pollen-transmitted virus efficiently invades leaf primordia and all meristematic tissues except the least differentiated cells of the apical dome. Subjecting plants to thermotherapy prior to meristem tip culture heavily reduced viral RNA2, RNA3 and the coat protein in the shoot tips, but no virus-free plants were obtained. Therefore, a novel method including thermotherapy followed by cryotherapy was developed for efficient virus eradication. Heat treatment caused subcellular alterations such as enlargement of vacuoles in the more developed, virus-infected cells, which were largely eliminated following subsequent cryotherapy. Using this protocol, 20-36% of the treated shoot tips survived, 30-40% regenerated and up to 35% of the regenerated plants were virus-free, as tested by ELISA and reverse transcription loop-mediated isothermal amplification. Novel cellular and molecular insights into RBDV-host interactions and the factors influencing virus eradication were obtained, including invasion of shoot tips and meristematic tissues by RBDV, enhanced viral RNA degradation and increased sensitivity to freezing caused by thermotherapy, and subcellular changes and subsequent death of cells caused by cryotherapy. This novel procedure should be helpful with many virus-host combinations in which virus eradication by conventional means has proven difficult.

  18. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq.

    Science.gov (United States)

    Concha, Monica; Wang, Xia; Cao, Subing; Baddoo, Melody; Fewell, Claire; Lin, Zhen; Hulme, William; Hedges, Dale; McBride, Jane; Flemington, Erik K

    2012-02-01

    Using an enhanced RNA-Seq pipeline to analyze Epstein-Barr virus (EBV) transcriptomes, we investigated viral and cellular gene expression in the Akata cell line following B-cell-receptor-mediated reactivation. Robust induction of EBV gene expression was observed, with most viral genes induced >200-fold and with EBV transcripts accounting for 7% of all mapped reads within the cell. After induction, hundreds of candidate splicing events were detected using the junction mapper TopHat, including a novel nonproductive splicing event at the gp350/gp220 locus and several alternative splicing events at the LMP2 locus. A more detailed analysis of lytic LMP2 transcripts showed an overall lack of the prototypical type III latency splicing events. Analysis of nuclear versus cytoplasmic RNA-Seq data showed that the lytic forms of LMP2, EBNA-2, EBNA-LP, and EBNA-3A, -3B, and -3C have higher nuclear-to-cytoplasmic accumulation ratios than most lytic genes, including classic late genes. These data raise the possibility that at least some lytic transcripts derived from these latency gene loci may have unique, noncoding nuclear functions during reactivation. Our analysis also identified two previously unknown genes, BCLT1 and BCRT2, that map to the BamHI C-region of the EBV genome. Pathway analysis of cellular gene expression changes following B-cell receptor activation identified an inflammatory response as the top predicted function and ILK and TREM1 as the top predicted canonical pathways.

  19. Viral phylodynamics.

    Directory of Open Access Journals (Sweden)

    Erik M Volz

    Full Text Available Viral phylodynamics is defined as the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viralphylogenies. Since the coining of the term in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation. Transmission dynamics can be considered at the level of cells within an infected host, individual hosts within a population, or entire populations of hosts. Many viruses, especially RNA viruses, rapidly accumulate genetic variation because of short generation times and high mutation rates. Patterns of viral genetic variation are therefore heavily influenced by how quickly transmission occurs and by which entities transmit to one another. Patterns of viral genetic variation will also be affected by selection acting on viral phenotypes. Although viruses can differ with respect to many phenotypes, phylodynamic studies have to date tended to focus on a limited number of viral phenotypes. These include virulence phenotypes, phenotypes associated with viral transmissibility, cell or tissue tropism phenotypes, and antigenic phenotypes that can facilitate escape from host immunity. Due to the impact that transmission dynamics and selection can have on viral genetic variation, viral phylogenies can therefore be used to investigate important epidemiological, immunological, and evolutionary processes, such as epidemic spread[2], spatio-temporal dynamics including metapopulation dynamics[3], zoonotic transmission, tissue tropism[4], and antigenic drift[5]. The quantitative investigation of these processes through the consideration of viral phylogenies is the central aim of viral phylodynamics.

  20. Role of viral RNA and lipid in the adverse events associated with the 2010 Southern Hemisphere trivalent influenza vaccine.

    Science.gov (United States)

    Rockman, Steve; Becher, Dorit; Dyson, Allison; Koernig, Sandra; Morelli, Adriana Baz; Barnden, Megan; Camuglia, Sarina; Soupourmas, Peter; Pearse, Martin; Maraskovsky, Eugene

    2014-06-24

    In Australia, during the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in post-marketing adverse event reports of febrile seizures (FS) in children under 5 years of age shortly after vaccination with the CSL 2010 SH trivalent influenza vaccine (CSL 2010 SH TIV) compared to previous CSL TIVs and other licensed 2010 SH TIVs. In an accompanying study, we described the contribution to these adverse events of the 2010 SH influenza strains as expressed in the CSL 2010 SH TIV using in vitro cytokine/chemokine secretion from whole blood cells and induction of NF-κB activation in HEK293 reporter cells. The aim of the present study was to identify the root cause components that elicited the elevated cytokine/chemokine and NF-κB signature. Our studies demonstrated that the pyrogenic signal was associated with a heat-labile, viral-derived component(s) in the CSL 2010 SH TIV. Further, it was found that viral lipid-mediated delivery of short, fragmented viral RNA was the key trigger for the increased cytokine/chemokine secretion and NF-κB activation. It is likely that the FS reported in children viral components of the new influenza strains (particularly B/Brisbane/60/2008 and to a lesser extent H1N1 A/California/07/2009). These combined to heighten immune activation of innate immune cells, which in a small proportion of children <5 years of age is associated with the occurrence of FS. The data also demonstrates that CSL TIVs formulated with increased levels of splitting agent (TDOC) for the B/Brisbane/60/2008 strain can attenuate the pro-inflammatory signals in vitro, identifying a potential path forward for generating a CSL TIV indicated for use in children <5 years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  2. Specific dysregulation of IFNγ production by natural killer cells confers susceptibility to viral infection.

    Directory of Open Access Journals (Sweden)

    Nassima Fodil

    2014-12-01

    Full Text Available Natural Killer (NK cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H(+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease.

  3. The conserved 3′X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization

    Science.gov (United States)

    Cantero-Camacho, Ángel; Gallego, José

    2015-01-01

    The 3′X domain of hepatitis C virus is a strongly conserved structure located at the 3′ terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem–loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3′X adopts a structure composed of two stem–loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3′X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3′X stem–loops. PMID:26240378

  4. The conserved 3'X terminal domain of hepatitis C virus genomic RNA forms a two-stem structure that promotes viral RNA dimerization.

    Science.gov (United States)

    Cantero-Camacho, Ángel; Gallego, José

    2015-09-30

    The 3'X domain of hepatitis C virus is a strongly conserved structure located at the 3' terminus of the viral genomic RNA. This domain modulates the replication and translation processes of the virus in conjunction with an upstream 5BSL3.2 stem-loop, and contains a palindromic sequence that facilitates RNA dimerization. Based on nuclear magnetic resonance spectroscopy and gel electrophoresis, we report here that domain 3'X adopts a structure composed of two stem-loops, and not three hairpins or a mixture of folds, as previously proposed. This structure exposes unpaired terminal nucleotides after a double-helical stem and palindromic bases in an apical loop, favoring genomic RNA replication and self-association. At higher ionic strength the domain forms homodimers comprising an intermolecular duplex of 110 nucleotides. The 3'X sequences can alternatively form heterodimers with 5BSL3.2. This contact, reported to favor translation, likely involves local melting of one of the 3'X stem-loops. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2011-12-01

    Full Text Available SARS coronavirus (SCoV nonstructural protein (nsp 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.

  6. Levels and patterns of HIV RNA viral load in untreated pregnant women

    DEFF Research Database (Denmark)

    NN, NN; Patel, Deven; Thorne, Claire

    2008-01-01

    -infected pregnant women enrolled in the European Collaborative Study. CD4 counts and HIV RNA measurements were routinely collected from 1992 and 1998, respectively. Linear mixed effects models based on 246 women for whom complete data were available examined changes in HIV RNA levels over pregnancy, with a nested...... random effects term accounting for measurement variability within women and period of sample collection. RESULTS: The change in HIV RNA over pregnancy varied significantly by race (p=0.005): from the second trimester until delivery, HIV RNA decreased significantly by an estimated 0.019 log(10) copies....../ml/week in white women (95% CI -0.03, -0.007); in black women the estimated 0.016 log(10) copies/ml/week increase (95% CI -0.005, 0.037) was not statistically significant. At delivery, HIV RNA levels in black women were 0.45 log(10) copies/ml higher (95% CI 0.08, 0.83) than in white women. CONCLUSIONS: Our...

  7. Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.

    2010-10-22

    Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.

  8. TNFα PRODUCTION AND APOPTOSIS REGULATION IN VIRAL HEPATITIS TYPE C

    Directory of Open Access Journals (Sweden)

    V. V. Novitsky

    2005-01-01

    Full Text Available Abstract. Chronical course of infection caused by hepatitis C virus is accompanied by increase Fas-positive lymphocytes of peripheral blood. Cultivation of agglutinin-stimulated mononuclear blood cells of patients with chronic hepatitis C revealed inhibition of apoptotic reactions of blood lymphocytes. This fact correlated with decrease in production of TNFα and accelerated synthesis of soluble receptor for this cytokine. We suggest a virus-specific influence on apoptosis regulation of target cells.

  9. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  10. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  11. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor

    Directory of Open Access Journals (Sweden)

    Buchmeier Michael J

    2001-02-01

    Full Text Available Abstract Background Recent studies of viral entry proteins from influenza, measles, human immunodeficiency virus, type 1 (HIV-1, and Ebola virus have shown, first with molecular modeling, and then X-ray crystallographic or other biophysical studies, that these disparate viruses share a coiled-coil type of entry protein. Results Structural models of the transmembrane glycoproteins (GP-2 of the Arenaviruses, lymphochoriomeningitis virus (LCMV and Lassa fever virus, are presented, based on consistent structural propensities despite variation in the amino acid sequence. The principal features of the model, a hydrophobic amino terminus, and two antiparallel helices separated by a glycosylated, antigenic apex, are common to a number of otherwise disparate families of enveloped RNA viruses. Within the first amphipathic helix, demonstrable by circular dichroism of a peptide fragment, there is a highly conserved heptad repeat pattern proposed to mediate multimerization by coiled-coil interactions. The amino terminal 18 amino acids are 28% identical and 50% highly similar to the corresponding region of Ebola, a member of the Filovirus family. Within the second, charged helix just prior to membrane insertion there is also high similarity over the central 18 amino acids in corresponding regions of Lassa and Ebola, which may be further related to the similar region of HIV-1 defining a potent antiviral peptide analogue. Conclusions These findings indicate a common pattern of structure and function among viral transmembrane fusion proteins from a number of virus families. Such a pattern may define a viral transmembrane superfamily that evolved from a common precursor eons ago.

  12. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Meleri Jones

    2014-01-01

    Full Text Available Varicella zoster virus (VZV is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.

  13. Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme.

    Directory of Open Access Journals (Sweden)

    Moshe Dessau

    Full Text Available The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biology. However, the molecular basis of fitness tradeoffs is rarely determined in terms of how these pleiotropic mutations affect protein structure. Here we use an interdisciplinary approach to study how antagonistic pleiotropy and protein function dictate a fitness tradeoff. We challenged populations of an RNA virus, bacteriophage Φ6, to evolve in a novel temperature environment where heat shock imposed extreme virus mortality. A single amino acid substitution in the viral lysin protein P5 (V207F favored improved stability, and hence survival of challenged viruses, despite a concomitant tradeoff that decreased viral reproduction. This mutation increased the thermostability of P5. Crystal structures of wild-type, mutant, and ligand-bound P5 reveal the molecular basis of this thermostabilization--the Phe207 side chain fills a hydrophobic cavity that is unoccupied in the wild-type--and identify P5 as a lytic transglycosylase. The mutation did not reduce the enzymatic activity of P5, suggesting that the reproduction tradeoff stems from other factors such as inefficient capsid assembly or disassembly. Our study demonstrates how combining experimental evolution, biochemistry, and structural biology can identify the mechanisms that drive the antagonistic pleiotropic phenotypes of an individual point mutation in the classic evolutionary tug-of-war between survival and reproduction.

  14. Using Proteomics to Identify Viral microRNA-Regulated Genes | Center for Cancer Research

    Science.gov (United States)

    Kaposi sarcoma is a soft tissue malignancy that affects the skin, the mucous membranes, the lymph nodes and other organs of individuals with compromised immune systems. It is caused by infection with human herpesvirus-8 also known as Kaposi sarcoma-associated herpesvirus or KSHV. The herpesvirus family is unique in that it is the only viral family currently known to express multiple microRNAs (miRNAs); KSHV produces 12 pre-miRNAs, which are processed into at least 25 mature miRNAs. While their functions are not well understood, these miRNAs may be a way for the virus to alter the host immune response without producing proteins that could be recognized and targeted by the immune system. Joseph Ziegelbauer, Ph.D., in CCR’s HIV and AIDS Malignancy Branch, and his colleagues set out to identify human targets of KSHV miRNAs and to understand their functional importance.

  15. Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors.

    Science.gov (United States)

    Yasumoto, Jun; Kasai, Hirotake; Yoshimura, Kentaro; Otoguro, Teruhime; Watashi, Koichi; Wakita, Takaji; Yamashita, Atsuya; Tanaka, Tomohisa; Takeda, Sen; Moriishi, Kohji

    2017-07-01

    The relationship between hepatitis B virus (HBV) infection and lipid accumulation remains largely unknown. In this study, we investigated the effect of HBV propagation on lipid droplet growth in HBV-infected cells and HBV-producing cell lines, HepG2.2.15 and HBV-inducible Hep38.7-Tet. The amount of intracellular triglycerides was significantly reduced in HBV-infected and HBV-producing cells compared with HBV-lacking control cells. Electron and immunofluorescent microscopic analyses showed that the average size of a single lipid droplet (LD) was significantly less in the HBV-infected and HBV-producing cells than in the HBV-lacking control cells. Cell death-inducing DFF45-like effectors (CIDEs) B and C (CIDEB and CIDEC), which are involved in LD expansion for the improvement of lipid storage, were expressed at a significantly lower level in HBV-infected or HBV-producing cells than in HBV-lacking control cells, while CIDEA was not detected in those cells regardless of HBV production. The activity of the CIDEB and CIDEC gene promoters was impaired in HBV-infected or HBV-producing cells compared to HBV-lacking control cells, while CIDEs potentiated HBV core promoter activity. The amount of HNF4α, that can promote the transcription of CIDEB was significantly lower in HBV-producing cells than in HBV-lacking control cells. Knockout of CIDEB or CIDEC significantly reduced the amount of supernatant HBV DNA, intracellular viral RNA and nucleocapsid-associated viral DNA, while the expression of CIDEB or CIDEC recovered HBV production in CIDEB- or CIDEC-knockout cells. These results suggest that HBV regulates its own viral replication via CIDEB and CIDEC.

  16. RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation

    Directory of Open Access Journals (Sweden)

    Daniel Enosi Tuipulotu

    2017-08-01

    Full Text Available Viruses inherently exploit normal cellular functions to promote replication and survival. One mechanism involves transcriptional control of the host, and knowledge of the genes modified and their molecular function can aid in understanding viral-host interactions. Norovirus pathogenesis, despite the recent advances in cell cultivation, remains largely uncharacterized. Several studies have utilized the related murine norovirus (MNV to identify innate response, antigen presentation, and cellular recognition components that are activated during infection. In this study, we have used next-generation sequencing to probe the transcriptomic changes of MNV-infected mouse macrophages. Our in-depth analysis has revealed that MNV is a potent stimulator of the innate response including genes involved in interferon and cytokine production pathways. We observed that genes involved in viral recognition, namely IFIH1, DDX58, and DHX58 were significantly upregulated with infection, whereas we observed significant downregulation of cytokine receptors (Il17rc, Il1rl1, Cxcr3, and Cxcr5 and TLR7. Furthermore, we identified that pathways involved in protein degradation (including genes Psmb3, Psmb4, Psmb5, Psmb9, and Psme2, antigen presentation, and lymphocyte activation are downregulated by MNV infection. Thus, our findings illustrate that MNV induces perturbations in the innate immune transcriptome, particularly in MHC maturation and viral recognition that can contribute to disease pathogenesis.

  17. Relationship between serum HBV-RNA levels and intrahepatic viral as well as histologic activity markers in entecavir-treated patients.

    Science.gov (United States)

    Wang, Jing; Yu, Yiqi; Li, Guojun; Shen, Chuan; Meng, Zhefeng; Zheng, Jianming; Jia, Yanhong; Chen, Shaolong; Zhang, Xiao; Zhu, Mengqi; Zheng, Jiangjiang; Song, Zhangzhang; Wu, Jing; Shao, Lingyun; Qian, Peiyu; Mao, Xiaona; Wang, Xuanyi; Huang, Yuxian; Zhao, Caiyan; Zhang, Jiming; Qiu, Chao; Zhang, Wenhong

    2017-09-21

    In diagnostics, serum hepatitis B virus (HBV)-RNA levels are valuable when the HBV-DNA load in circulation is effectively suppressed by nucleos(t)ide analogue (NUC) therapy. This study aimed to determine the intrahepatic viral replication activity reflected in serum HBV-RNA and whether HBV-RNA contributes to liver histological changes in patients treated with NUC. A cross-sectional set of serum and liver biopsy samples was obtained from patients treated with entecavir, who had undetectable levels of serum HBV-DNA. The correlations between serum HBV-RNA concentration and levels of peripheral and intrahepatic viral replicative forms, as well as histological scores, were analyzed. Quasispecies of serum HBV-RNA and intrahepatic viral replicative forms were examined by deep sequencing. HBV-RNA-positive hepatocytes were visualized by in situ hybridization. Serum HBV-RNA was detected in 35 of 47 patients (74.47%, 2.33-4.80log10copies/ml). These levels correlated not only with the intrahepatic HBV-RNA level and the ratio of intrahepatic HBV-RNA to covalently closed circular DNA (cccDNA), but also with the histological scores for grading and staging. Regarding quasispecies, serum HBV-RNA was dynamic and more genetically homogenous to simultaneously sampled intrahepatic HBV-RNA than to the cccDNA pool. In situ histology revealed that HBV-RNA-positive hepatocytes were clustered in foci, sporadically distributed across the lobules, and co-localized with hepatitis B surface antigen. Serum HBV-RNA levels reflect intrahepatic viral transcriptional activity and are associated with liver histopathology in patients receiving NUC therapy. Our study sheds light on the nature of HBV-RNA in the pathogenesis of chronic HBV infection and has implications for the management of chronic hepatitis B during NUC therapy. Serum HBV-RNA levels are indicative of the intrahepatic transcriptional activity of covalently closed circular DNA and are associated with liver histological changes in

  18. Epigenetic engineering of ribosomal RNA genes enhances protein production.

    Directory of Open Access Journals (Sweden)

    Raffaella Santoro

    Full Text Available Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA genes encode the major component of the ribosome but many rRNA gene copies are not transcribed due to epigenetic silencing by the nucleolar remodelling complex (NoRC [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer.

  19. Prevalence of hepatitis A viral RNA and antibodies among Chinese blood donors.

    Science.gov (United States)

    Sun, P; Su, N; Lin, F Z; Ma, L; Wang, H J; Rong, X; Dai, Y D; Li, J; Jian, Z W; Tang, L H; Xiao, W; Li, C Q

    2015-12-09

    Like other developing countries, China was reported to have a relatively high seroprevalence of anti-hepatitis A antibodies (anti-HAV). However, no studies have evaluated the prevalence of anti-HAV and HAV RNA among voluntary blood donors with or without elevated serum alanine transaminase (ALT) levels. Anti-HAV antibodies were detected using an enzyme-linked immunosorbent assay, and reverse transcription quantitative polymerase chain reaction was carried out for detection of HAV RNA. In the current study, we analyzed a total of 450 serum samples with elevated ALT levels (≥40 U/L) and 278 serum samples with non-elevated ALT levels. Seroprevalence rates of anti-HAV were 51.6% in donors with elevated ALT and 41.4% in donors with non-elevated ALT; however, none of the samples was positive for HAV RNA. The results of our study showed lower seroprevalence rates of anti-HAV in blood donors (irrespective of ALT levels) than those in published data on Chinese populations. Although donors with elevated ALT had statistically higher prevalence rates of anti- HAV than did those with non-elevated ALT, none of the serum samples had detectable levels of the active virus. In conclusion, our results demonstrate that the transmission of hepatitis A by blood transfusion will occur rarely.

  20. The internal initiation of translation in bovine viral diarrhea virus RNA depends on the presence of an RNA pseudoknot upstream of the initiation codon

    Directory of Open Access Journals (Sweden)

    Moes Lorin

    2007-11-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV is the prototype representative of the pestivirus genus in the Flaviviridae family. It has been shown that the initiation of translation of BVDV RNA occurs by an internal ribosome entry mechanism mediated by the 5' untranslated region of the viral RNA 1. The 5' and 3' boundaries of the IRES of the cytopathic BVDV NADL have been mapped and it has been suggested that the IRES extends into the coding of the BVDV polyprotein 2. A putative pseudoknot structure has been recognized in the BVDV 5'UTR in close proximity to the AUG start codon. A pseudoknot structure is characteristic for flavivirus IRESes and in the case of the closely related classical swine fever virus (CSFV and the more distantly related Hepatitis C virus (HCV pseudoknot function in translation has been demonstrated. Results To characterize the BVDV IRESes in detail, we studied the BVDV translational initiation by transfection of dicistronic expression plasmids into mammalian cells. A region coding for the amino terminus of the BVDV SD-1 polyprotein contributes considerably to efficient initiation of translation. The translation efficiency mediated by the IRES of BVDV strains NADL and SD-1 approximates the poliovirus type I IRES directed translation in BHK cells. Compared to the poliovirus IRES increased expression levels are mediated by the BVDV IRES of strain SD-1 in murine cell lines, while lower levels are observed in human cell lines. Site directed mutagenesis revealed that a RNA pseudoknot upstream of the initiator AUG is an important structural element for IRES function. Mutants with impaired ability to base pair in stem I or II lost their translational activity. In mutants with repaired base pairing either in stem 1 or in stem 2 full translational activity was restored. Thus, the BVDV IRES translation is dependent on the pseudoknot integrity. These features of the pestivirus IRES are reminiscent of those of the classical

  1. RNA structures regulating nidovirus RNA synthesis

    NARCIS (Netherlands)

    Born, Erwin van den

    2006-01-01

    Viruses depend on their host cell for the production of their progeny. The genetic information that is required to regulate this process is contained in the viral genome. In the case of plus-stranded RNA viruses, like nidoviruses, the RNA genome is directly involved in translation (resulting in the

  2. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages.

    Science.gov (United States)

    Liu, Huiquan; Fu, Yanping; Xie, Jiatao; Cheng, Jiasen; Ghabrial, Said A; Li, Guoqing; Peng, Youliang; Yi, Xianhong; Jiang, Daohong

    2012-06-20

    Double-stranded (ds) RNA fungal viruses are typically isometric single-shelled particles that are classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite, bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are more diverse than previously recognized. Although an increasing number of viral complete genomic sequences have become available, the evolution of these diverse dsRNA viruses remains to be clarified. This is particularly so since there is little evidence for horizontal gene transfer (HGT) among dsRNA viruses. In this study, we report the molecular properties of two novel dsRNA mycoviruses that were isolated from a field strain of Sclerotinia sclerotiorum, Sunf-M: one is a large monopartite virus representing a distinct evolutionary lineage of dsRNA viruses; the other is a new member of the family Partitiviridae. Comprehensive phylogenetic analysis and genome comparison revealed that there are at least ten monopartite, three bipartite, one tripartite and three quadripartite lineages in the known dsRNA mycoviruses and that the multipartite lineages have possibly evolved from different monopartite dsRNA viruses. Moreover, we found that homologs of the S7 Domain, characteristic of members of the genus phytoreovirus in family Reoviridae are widely distributed in diverse dsRNA viral lineages, including chrysoviruses, endornaviruses and some unclassified dsRNA mycoviruses. We further provided evidence that multiple HGT events may have occurred among these dsRNA viruses from different families. Our study provides an insight into the phylogeny and evolution of mycovirus-related dsRNA viruses and reveals that the occurrence of HGT between different virus species and the development of multipartite genomes during evolution are important macroevolutionary mechanisms in dsRNA viruses.

  3. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages

    Directory of Open Access Journals (Sweden)

    Liu Huiquan

    2012-06-01

    Full Text Available Abstract Background Double-stranded (ds RNA fungal viruses are typically isometric single-shelled particles that are classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite, bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are more diverse than previously recognized. Although an increasing number of viral complete genomic sequences have become available, the evolution of these diverse dsRNA viruses remains to be clarified. This is particularly so since there is little evidence for horizontal gene transfer (HGT among dsRNA viruses. Results In this study, we report the molecular properties of two novel dsRNA mycoviruses that were isolated from a field strain of Sclerotinia sclerotiorum, Sunf-M: one is a large monopartite virus representing a distinct evolutionary lineage of dsRNA viruses; the other is a new member of the family Partitiviridae. Comprehensive phylogenetic analysis and genome comparison revealed that there are at least ten monopartite, three bipartite, one tripartite and three quadripartite lineages in the known dsRNA mycoviruses and that the multipartite lineages have possibly evolved from different monopartite dsRNA viruses. Moreover, we found that homologs of the S7 Domain, characteristic of members of the genus phytoreovirus in family Reoviridae are widely distributed in diverse dsRNA viral lineages, including chrysoviruses, endornaviruses and some unclassified dsRNA mycoviruses. We further provided evidence that multiple HGT events may have occurred among these dsRNA viruses from different families. Conclusions Our study provides an insight into the phylogeny and evolution of mycovirus-related dsRNA viruses and reveals that the occurrence of HGT between different virus species and the development of multipartite genomes during evolution are important macroevolutionary mechanisms in dsRNA viruses.

  4. Comparison of sampling methods to measure HIV RNA viral load in female genital tract secretions.

    Science.gov (United States)

    Jaumdally, Shameem Z; Jones, Heidi E; Hoover, Donald R; Gamieldien, Hoyam; Kriek, Jean-Mari; Langwenya, Nontokozo; Myer, Landon; Passmore, Jo-Ann S; Todd, Catherine S

    2017-03-01

    How does menstrual cup (MC) compare to other genital sampling methods for HIV RNA recovery? We compared HIV RNA levels between MC, endocervical swab (ECS), and ECS-enriched cervicovaginal lavage (eCVL) specimens in 51 HIV-positive, antiretroviral therapy-naive women at enrollment, 3 and 6 months, with order rotated by visit. Paired comparisons were analyzed with McNemar's exact tests, signed-rank tests, and an extension of Somer's D for pooled analyses across visits. MC specimens had the highest proportion of quantifiable HIV VL at enrollment and month 3, but more MC specimens (n=12.8%) were insufficient for testing, compared with ECS (2%, P=0.006) and eCVL (0%, P<0.001). Among sufficient specimens, median VL was significantly higher for MC (2.62 log 10 copies/mL) compared to ECS (1.30 log 10 copies/mL, P<0.001) and eCVL (1.60 log 10 copies/mL, P<0.001) across visits. MC may be more sensitive than eCVL and CVS, provided insufficient specimens are reduced. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  6. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system.

    Science.gov (United States)

    Ehlert, Erich M; Eggers, Ruben; Niclou, Simone P; Verhaagen, Joost

    2010-02-18

    After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs) and several axon guidance molecules, including all members of the secreted (class 3) Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi) is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV) mediated expression of short hairpin RNAs (shRNAs) to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1) and Neuropilin 2 (Npn-2). We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG) of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  7. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  8. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  9. Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Science.gov (United States)

    Blondot, Marie-Lise; Dubosclard, Virginie; Fix, Jenna; Lassoued, Safa; Aumont-Nicaise, Magali; Bontems, François; Eléouët, Jean-François; Sizun, Christina

    2012-01-01

    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1. PMID:22675274

  10. Caenorhabditis elegans RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs.

    Science.gov (United States)

    Coffman, Stephanie R; Lu, Jinfeng; Guo, Xunyang; Zhong, Jing; Jiang, Hongshan; Broitman-Maduro, Gina; Li, Wan-Xiang; Lu, Rui; Maduro, Morris; Ding, Shou-Wei

    2017-03-21

    Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors.IMPORTANCE The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from

  11. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Qiu-Sheng Shi

    2012-01-01

    Full Text Available Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs made from monomethoxypoly(ethylene glycol-poly(lactic-co-glycolic acid-poly-l-lysine (mPEG-PLGA-PLL triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.

  12. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    Science.gov (United States)

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing. PMID:22312268

  13. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  14. A Narcissus mosaic viral vector system for protein expression and flavonoid production

    Science.gov (United States)

    2013-01-01

    Background With the explosive numbers of sequences generated by next generation sequencing, the demand for high throughput screening to understand gene function has grown. Plant viral vectors have been widely used as tools in down-regulating plant gene expression. However, plant viral vectors can also express proteins in a very efficient manner and, therefore, can also serve as a valuable tool for characterizing proteins and their functions in metabolic pathways in planta. Results In this study, we have developed a Gateway®-based high throughput viral vector cloning system from Narcissus Mosaic Virus (NMV). Using the reporter genes of GFP and GUS, and the plant genes PAP1 (an R2R3 MYB which activates the anthocyanin pathway) and selenium-binding protein 1 (SeBP), we show that NMV vectors and the model plant Nicotiana benthamiana can be used for efficient protein expression, protein subcellular localization and secondary metabolite production. Conclusions Our results suggest that not only can the plant viral vector system be employed for protein work but also can potentially be amenable to producing valuable secondary metabolites on a large scale, as the system does not require plant regeneration from seed or calli, which are stages where certain secondary metabolites can interfere with development. PMID:23849589

  15. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation.

    Directory of Open Access Journals (Sweden)

    Francis Fieni

    Full Text Available HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA in the axillary lymph node (6.48 ± 0.50 were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05, epididymis (3.08 ± 1.19; p<0.0001, prostate (3.36 ± 1.30; p<0.01, and seminal vesicle (2.67 ± 1.50; p<0.0001. Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.

  16. Alternaria Inhibits Double-stranded RNA-Induced Cytokines Productions through TLR3

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2014-01-01

    Background Fungi may be involved in asthma and chronic rhinosinusitis (CRS). PBMCs from CRS patients produce IL-5, IL-13 and INF-γ by Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Methods Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC Class II, CD40, CD80, CD86 and OX40L. Production of IL-6, IP-10, I-TAC and IFN -β were measured by ELISA. TLR3 mRNA and protein expression were detected by quantitative Real time-PCR and Western blot. Results Alternaria and poly I:C enhanced cell surface expression of MHC Class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited IP-10, I-TAC and IFN-β production induced by viral double-stranded RNA (dsRNA)-mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. Conclusion These findings suggest that fungus, Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. PMID:23711857

  17. Alternaria inhibits double-stranded RNA-induced cytokine production through Toll-like receptor 3.

    Science.gov (United States)

    Wada, Kota; Kobayashi, Takao; Matsuwaki, Yoshinori; Moriyama, Hiroshi; Kita, Hirohito

    2013-01-01

    Fungi may be involved in asthma and chronic rhinosinusitis (CRS). Peripheral blood mononuclear cells from CRS patients produce interleukin (IL)-5, IL-13 and interferon (IFN)-γ in the presence of Alternaria. In addition, Alternaria produces potent Th2-like adjuvant effects in the airway. Therefore, we hypothesized that Alternaria may inhibit Th1-type defense mechanisms against virus infection. Dendritic cells (DCs) were generated from mouse bone marrow. The functional responses were assessed by expression of cell surface molecules by FACS (MHC class II, CD40, CD80, CD86 and OX40L). Production of IL-6, chemokine CXCL10 (IP-10), chemokine CXCL11 (I-TAC) and IFN-β was measured by ELISA. Toll-like receptor 3 (TLR3) mRNA and protein expression was detected by quantitative real-time PCR and Western blot. Alternaria and polyinosinic-polycytidylic acid (poly I:C) enhanced cell surface expression of MHC class II, CD40, CD80, CD86 and OX40L, and IL-6 production in a concentration-dependent manner. However, Alternaria significantly inhibited production of IP-10, I-TAC and IFN-β, induced by viral double-stranded RNA (dsRNA) mimic poly I:C. TLR3 mRNA expression and protein production by poly I:C were significantly inhibited by Alternaria. These reactions are likely caused by heat-stable factor(s) in Alternaria extract with >100 kDa molecular mass. These findings suggest that the fungus Alternaria may inhibit production of IFN-β and other cytokines by DCs by suppressing TLR3 expression. These results indicate that Alternaria may inhibit host innate immunity against virus infection. Copyright © 2013 S. Karger AG, Basel.

  18. Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients

    Directory of Open Access Journals (Sweden)

    Witwer Kenneth W

    2012-01-01

    Full Text Available Abstract Background HIV-1-infected elite controllers or suppressors (ES maintain undetectable viral loads ( Results miRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150. Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation. Conclusions The intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.

  19. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  20. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  1. Association of human mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol does not require other viral proteins

    Directory of Open Access Journals (Sweden)

    Lydia Kobbi

    2016-06-01

    Full Text Available In human, the cytoplasmic (cLysRS and mitochondrial (mLysRS species of lysyl-tRNA synthetase are encoded by a single gene. Following HIV-1 infection, mLysRS is selectively taken up into viral particles along with the three tRNALys isoacceptors. The GagPol polyprotein precursor is involved in this process. With the aim to reconstitute in vitro the HIV-1 tRNA3Lys packaging complex, we first searched for the putative involvement of another viral protein in the selective viral hijacking of mLysRS only. After screening all the viral proteins, we observed that Vpr and Rev have the potential to interact with mLysRS, but that this association does not take place at the level of the assembly of mLysRS into the packaging complex. We also show that tRNA3Lys can form a ternary complex with the two purified proteins mLysRS and the Pol domain of GagPol, which mimicks its packaging complex.

  2. Hepatitis E virus ORF2 protein over-expressed by baculovirus in hepatoma cells, efficiently encapsidates and transmits the viral RNA to naïve cells

    Directory of Open Access Journals (Sweden)

    Emerson Suzanne U

    2011-04-01

    Full Text Available Abstract A recombinant baculovirus(vBacORF2 that expressed the full-length ORF2 capsid protein of a genotype 1 strain of hepatitis E virus(HEV was constructed. Transduction of S10-3 human hepatoma cells with this baculovirus led to large amounts of ORF2 protein production in ~50% of the cells as determined by immune fluorescence microscopy. The majority of the ORF2 protein detected by Western blot was 72 kDa, the size expected for the full-length protein. To determine if the exogenously-supplied ORF2 protein could transencapsidate viral genomes, S10-3 cell cultures that had been transfected the previous day with an HEV replicon of genotype 1 that contained the gene for green fluorescent protein(GFP, in place of that for ORF2 protein, were transduced with the vBacORF2 virus. Cell lysates were prepared 5 days later and tested for the ability to deliver the GFP gene to HepG2/C3A cells, another human hepatoma cell line. FACS analysis indicated that lysates from cell cultures receiving only the GFP replicon were incapable of introducing the replicon into the HepG2/C3A cells whereas ~2% of the HepG2/C3A cells that received lysate from cultures that had received both the replicon and the baculovirus produced GFP. Therefore, the baculovirus-expressed ORF2 protein was able to trans-encapsidate the viral replicon and form a particle that could infect naïve HepG2/C3A cells. This ex vivo RNA packaging system should be useful for studying many aspects of HEV molecular biology.

  3. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    Science.gov (United States)

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  4. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge.

    Directory of Open Access Journals (Sweden)

    Diletta Magini

    Full Text Available Current hemagglutinin (HA-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP and the matrix protein 1 (M1 was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM® vectors expressing influenza NP (SAM(NP, M1 (SAM(M1, and NP and M1 (SAM(M1-NP delivered with lipid nanoparticles (LNP induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM and effector memory (TEM CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP and protein (monovalent inactivated influenza vaccine (MIIV was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines.

  5. Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production.

    Science.gov (United States)

    Vieira, Helena L A; Estêvão, Catarina; Roldão, António; Peixoto, Cristina C; Sousa, Marcos F Q; Cruz, Pedro E; Carrondo, Manuel J T; Alves, Paula M

    2005-10-17

    Rotavirus infection causes diarrhoeal disease in infants, killing more than half million children each year. Virus-like particles (VLP) seem to be excellent vaccine candidates, since they are cheaper to produce than attenuated viral vaccines and safer, as they do not contain genetic material. The present work focus on a triple layered particle composed by three rotavirus structural proteins: VP2, VP6 and VP7, produced in an insect cell/baculovirus expressing system. Two strategies were evaluated for 2/6/7 VLP production: co-infection with three monocistronic baculovirus vectors or single-infection with a tricistronic multi-gene baculovirus vector; these strategies were followed at different levels: baculovirus DNA replication kinetics, mRNA stability, protein production and VLP formation. This study highlights some of the reasons why the tricistronic baculovirus strategy is more efficient for production of triple layered rotavirus 2/6/7 VLP than monocistronic co-infection, in particular: (i) the tricistronic vector presents higher DNA replication rates than the monocistronic vectors, (ii) the mRNA stability is invariant for all mRNAs corresponding to VP2, VP6 and VP7 and (iii) the tricistronic baculovirus strategy produces an excess of VP7 over VP6 when compared to the VP7/VP6 stoichiometric ratio in the native rotavirus. Although the co-infection strategy leads to protein production akin to the rotavirus VP7/VP6 stoichiometric ratio, the tricistronic vector strategy yields higher amounts of rotavirus-like particles.

  6. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.

    Science.gov (United States)

    Hecker, James G

    2016-01-01

    Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and

  7. Non-human Primate Schlafen11 Inhibits Production of Both Host and Viral Proteins.

    Directory of Open Access Journals (Sweden)

    Alex C Stabell

    2016-12-01

    Full Text Available Schlafen11 (encoded by the SLFN11 gene has been shown to inhibit the accumulation of HIV-1 proteins. We show that the SLFN11 gene is under positive selection in simian primates and is species-specific in its activity against HIV-1. The activity of human Schlafen11 is relatively weak compared to that of some other primate versions of this protein, with the versions encoded by chimpanzee, orangutan, gibbon, and marmoset being particularly potent inhibitors of HIV-1 protein production. Interestingly, we find that Schlafen11 is functional in the absence of infection and reduces protein production from certain non-viral (GFP and even host (Vinculin and GAPDH transcripts. This suggests that Schlafen11 may just generally block protein production from non-codon optimized transcripts. Because Schlafen11 is an interferon-stimulated gene with a broad ability to inhibit protein production from many host and viral transcripts, its role may be to create a general antiviral state in the cell. Interestingly, the strong inhibitors such as marmoset Schlafen11 consistently block protein production better than weak primate Schlafen11 proteins, regardless of the virus or host target being analyzed. Further, we show that the residues to which species-specific differences in Schlafen11 potency map are distinct from residues that have been targeted by positive selection. We speculate that the positive selection of SLFN11 could have been driven by a number of different factors, including interaction with one or more viral antagonists that have yet to be identified.

  8. Feasibility of dsRNA treatment for post-clearing SPF shrimp stocks of newly discovered viral infections using Laem Singh virus (LSNV) as a model.

    Science.gov (United States)

    Saksmerprome, Vanvimon; Charoonnart, Patai; Flegel, Timothy W

    2017-05-02

    Using post-larvae derived from specific pathogen free (SPF) stocks in penaeid shrimp farming has led to a dramatic increase in production. At the same time, new pathogens of farmed shrimp are continually being discovered. Sometimes these pathogens are carried by shrimp and other crustaceans as persistent infections without gross signs of disease. Thus it is that a 5-generation stock of Penaeus monodon SPF for several pathogens was found, post-stock-development, to be persistently-infected with newly-discovered Laem Singh virus (LSNV). In this situation, the stock developers were faced with destroying their existing stock (developed over a long period at considerable cost) and starting the whole stock development process anew in order to add LSNV to its SPF list. As an alternative, it was hypothesized that injection of complementary dsRNA into viral-infected broodstock prior to mating might inhibit replication of the target virus sufficiently to reduce or eliminate its transmission to their offspring. Subsequent selection of uninfected offspring would allow for post-clearing of LSNV from the existing stock and for conversion of the stock to LSNV-free status. Testing this hypothesis using the LSNV-infected stock described above, we found that transmission was substantially reduced in several treated broodstock compared to much higher transmission in buffer-injected broodstock. Based on these results, the model is proposed for post-clearing of SPF stocks using dsRNA treatment. The model may also be applicable to post-clearing of exceptional, individual performers from grow-out ponds for return to a nucleus breeding center. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  10. X-linked RNA-binding motif protein (RBMX) is required for the maintenance of Borna disease virus nuclear viral factories.

    Science.gov (United States)

    Hirai, Yuya; Honda, Tomoyuki; Makino, Akiko; Watanabe, Yuzo; Tomonaga, Keizo

    2015-11-01

    Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that establishes persistent infection in the nucleus. Although BDV forms viral inclusion bodies, termed viral speckles of transcripts (vSPOTs), which are associated with chromatin in the nucleus, the host factors involved in the maintenance of vSPOTs remain largely unknown. In this study, we identified X-linked RNA-binding motif protein (RBMX) as a nuclear factor interacting with BDV nucleoprotein. Interestingly, knockdown of RBMX led to disruption of the formation of vSPOTs and reduced both transcription and replication of BDV. Our results indicate that RBMX is involved in the maintenance of the structure of the virus factory in the nucleus.

  11. Comparison of primer sets and one-step reverse transcription polymerase chain reaction kits for the detection of bluetongue viral RNA.

    Science.gov (United States)

    Lee, Fan; Lin, Yeou-Liang; Tsai, Hsiang-Jung

    2014-05-01

    Bluetongue virus is the etiological agent of bluetongue, one of the most important insect-transmitted animal diseases in the world. To establish a feasible diagnostic procedure for detecting the viral RNA, seven commercially available one-step RT-PCR kits in combination with three primer sets were evaluated. Results of this study showed remarkable differences in analytical sensitivity between the examined RT-PCR kits. In addition, it was found that a World Organization for Animal Health-recommended primer set may not be effective in detecting most BTV RNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Viral RNA silencing suppression

    NARCIS (Netherlands)

    Hedil, Marcio; Kormelink, Richard

    2016-01-01

    The Bunyaviridae is a family of arboviruses including both plant-and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative

  13. APOBEC3G induces a hypermutation gradient: purifying selection at multiple steps during HIV-1 replication results in levels of G-to-A mutations that are high in DNA, intermediate in cellular viral RNA, and low in virion RNA

    Directory of Open Access Journals (Sweden)

    Pathak Vinay K

    2009-02-01

    Full Text Available Abstract Background Naturally occurring Vif variants that are unable to inhibit the host restriction factor APOBEC3G (A3G have been isolated from infected individuals. A3G can potentially induce G-to-A hypermutation in these viruses, and hypermutation could contribute to genetic variation in HIV-1 populations through recombination between hypermutant and wild-type genomes. Thus, hypermutation could contribute to the generation of immune escape and drug resistant variants, but the genetic contribution of hypermutation to the viral evolutionary potential is poorly understood. In addition, the mechanisms by which these viruses persist in the host despite the presence of A3G remain unknown. Results To address these questions, we generated a replication-competent HIV-1 Vif mutant in which the A3G-binding residues of Vif, Y40RHHY44, were substituted with five alanines. As expected, the mutant was severely defective in an A3G-expressing T cell line and exhibited a significant delay in replication kinetics. Analysis of viral DNA showed the expected high level of G-to-A hypermutation; however, we found substantially reduced levels of G-to-A hypermutation in intracellular viral RNA (cRNA, and the levels of G-to-A mutations in virion RNA (vRNA were even further reduced. The frequencies of hypermutation in DNA, cRNA, and vRNA were 0.73%, 0.12%, and 0.05% of the nucleotides sequenced, indicating a gradient of hypermutation. Additionally, genomes containing start codon mutations and early termination codons within gag were isolated from the vRNA. Conclusion These results suggest that sublethal levels of hypermutation coupled with purifying selection at multiple steps during the early phase of viral replication lead to the packaging of largely unmutated genomes, providing a mechanism by which mutant Vif variants can persist in infected individuals. The persistence of genomes containing mutated gag genes despite this selection pressure indicates that dual

  14. Improved detection of Bovine Viral Diarrhea Virus in Bovine lymphoid cell lines using PrimeFlow RNA assay

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...

  15. ARCHITECT® HIV Ag/Ab Combo assay: correlation of HIV-1 p24 antigen sensitivity and RNA viral load using genetically diverse virus isolates.

    Science.gov (United States)

    Brennan, Catherine A; Yamaguchi, Julie; Vallari, Ana; Swanson, Priscilla; Hackett, John R

    2013-06-01

    HIV antigen/antibody (Ag/Ab) combination assays represent a significant advancement in assays used for diagnosing HIV infection based on their ability to detect acute and chronic infections. During acute HIV infection (AHI), detection depends on assay sensitivity for p24 Ag. To directly compare the Ag sensitivity of the ARCHITECT(®) HIV Ag/Ab Combo assay to RNA viral load using cell culture supernatants of virus isolates. HIV-1 isolates allow correlation in the total absence of an antibody response to infection and across genetically diverse HIV-1 group M strains. Thirty-five HIV-1 isolates comprising subtypes A-D, F and G, CRF01_AE, CRF02_AG, and unique recombinant forms were evaluated. Cell-free culture supernatant for each isolate was diluted to four levels and tested in the HIV Combo assay to determine a signal to cutoff ratio and the RealTime(®) HIV-1 assay to quantify RNA. The RNA copies/mL at the HIV Combo assay cutoff was determined. The median RNA copies/mL at the HIV Combo assay cutoff was 57,900 for individual virus isolates (range 26,440-102,400). A single plot of all the data gave a value of 58,500RNA copies/mL. An analysis of data published for acute HIV infection in human subjects gave a similar result; HIV Combo detected 97% of AHIs with RNA copies/mL > 30,700. Based on analysis of virus isolates, the ARCHITECT HIV Combo assay can detect p24 Ag when RNA is above approximately 58,000copies/mL. The correlation of viral load and Ag sensitivity was consistent across genetically diverse HIV-1 group M strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Exosomes from Hepatitis C Infected Patients Transmit HCV Infection and Contain Replication Competent Viral RNA in Complex with Ago2-miR122-HSP90

    Science.gov (United States)

    Kodys, Karen; Bala, Shashi; Szabo, Gyongyi

    2014-01-01

    Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies. PMID:25275643

  17. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90.

    Science.gov (United States)

    Bukong, Terence N; Momen-Heravi, Fatemeh; Kodys, Karen; Bala, Shashi; Szabo, Gyongyi

    2014-10-01

    Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies.

  18. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot.

    Directory of Open Access Journals (Sweden)

    Jae-Su Moon

    Full Text Available The hepatitis C virus (HCV internal ribosome entry site (IRES that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343 where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens.

  19. MRB7260 is essential for productive protein-RNA interactions within the RNA Editing Substrate Binding Complex during trypanosome RNA editing.

    Science.gov (United States)

    McAdams, Natalie M; Simpson, Rachel M; Chen, Runpu; Sun, Yijun; Read, Laurie

    2018-01-12

    The trypanosome RNA Editing Substrate Binding Complex (RESC) acts as the platform for mitochondrial uridine insertion/deletion RNA editing and facilitates the protein-protein and protein-RNA interactions required for the editing process. RESC is broadly comprised of two subcomplexes: GRBC (Guide RNA Binding Complex) and REMC (RNA Editing Mediator Complex). Here, we characterize the function and position in RESC organization of a previously unstudied RESC protein, MRB7260. We show that MRB7260 forms numerous RESC-related complexes, including a novel, small complex with the guide RNA binding protein, GAP1, which is a canonical GRBC component, and REMC components MRB8170 and TbRGG2. RNA immunoprecipitations in MRB7260-depleted cells show that MRB7260 is critical for normal RNA trafficking between REMC and GRBC. Analysis of protein-protein interactions also reveals an important role for MRB7260 in promoting stable association of the two subcomplexes. High throughput sequencing analysis of RPS12 mRNAs from MRB7260 replete and depleted cells demonstrates that MRB7260 is critical for gRNA exchange and early gRNA utilization, with the exception of the initiating gRNA. Together, these data demonstrate that MRB7260 is essential for productive protein-RNA interactions with RESC during RNA editing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. A Tiny RNA that Packs a Big Punch: The Critical Role of a Viral miR-155 Ortholog in Lymphomagenesis in Marek’s Disease

    Directory of Open Access Journals (Sweden)

    Guoqing Zhuang

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that have been identified in animals, plants, and viruses. These small RNAs play important roles in post-transcriptional regulation of various cellular processes, including development, differentiation, and all aspects of cancer biology. Rapid-onset T-cell lymphoma of chickens, namely Marek’s disease (MD, induced by Gallid alphaherpesvirus 2 (GaHV2, could provide an ideal natural animal model for herpesvirus-related cancer research. GaHV2 encodes 26 mature miRNAs derived from 14 precursors assembled in three distinct gene clusters in the viral genome. One of the most highly expressed GaHV2 miRNAs, miR-M4-5p, shows high sequence similarity to the cellular miR-155 and the miR-K12-11 encoded by Kaposi’s sarcoma-associated herpesvirus, particularly in the miRNA “seed region.” As with miR-K12-11, miR-M4-5p shares a common set of host and viral target genes with miR-155, suggesting that they may target the same regulatory cellular networks; however, differences in regulatory function between miR-155 and miR-M4-5p may distinguish non-viral and viral mediated tumorigenesis. In this review, we focus on the functions of miR-M4-5p as the viral ortholog of miR-155 to explore how the virus mimics a host pathway to benefit the viral life cycle and trigger virus-induced tumorigenesis.

  1. D471G Mutation in LCMV-NP Affects Its Ability to Self-associate and Results in a Dominant Negative Effect in Viral RNA Synthesis

    Directory of Open Access Journals (Sweden)

    Luis Martínez-Sobrido

    2012-10-01

    Full Text Available Arenaviruses merit significant interest because several family members are etiological agents of severe hemorrhagic fevers, representing a major burden to public health. Currently, there are no FDA-licensed vaccines against arenaviruses and the only available antiviral therapy is limited to the use of ribavirin that is partially effective. Arenavirus nucleoprotein (NP is found associated with the genomic RNA forming the viral ribonucleoproteins (vRNPs that together with the polymerase (L direct viral replication and transcription. Virion formation requires the recruitment of vRNPs into budding sites, a process in which the arenavirus matrix-like protein (Z plays a major role. Therefore, proper NP-NP and NP-Z interactions are required for the generation of infectious progeny. In this work we demonstrate the role of the amino acid residue D471 in the self-association of lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP. Amino acid substitutions at this position abrogate NP oligomerization, affecting its ability to mediate replication and transcription of a minigenome reporter plasmid. However, its ability to interact with the Z protein, counteract the cellular interferon response and bind to dsRNA analogs was retained. Additionally, we also document the dominant negative effect of D471G mutation on viral infection, suggesting that NP self-association is an excellent target for the development of new antivirals against arenaviruses.

  2. The 5′-End Sequence of the Genome of Aichi Virus, a Picornavirus, Contains an Element Critical for Viral RNA Encapsidation

    Science.gov (United States)

    Sasaki, Jun; Taniguchi, Koki

    2003-01-01

    Picornavirus positive-strand RNAs are selectively encapsidated despite the coexistence of viral negative-strand RNAs and cellular RNAs in infected cells. However, the precise mechanism of the RNA encapsidation process in picornaviruses remains unclear. Here we report the first identification of an RNA element critical for encapsidation in picornaviruses. The 5′ end of the genome of Aichi virus, a member of the family Picornaviridae, folds into three stem-loop structures (SL-A, SL-B, and SL-C, from the most 5′ end). In the previous study, we constructed a mutant, termed mut6, by exchanging the seven-nucleotide stretches of the middle part of the stem in SL-A with each other to maintain the base pairings of the stem. mut6 exhibited efficient RNA replication and translation but formed no plaques. The present study showed that in cells transfected with mut6 RNA, empty capsids were accumulated, but few virions containing RNA were formed. This means that mut6 has a severe defect in RNA encapsidation. Site-directed mutational analysis indicated that as the mutated region was narrowed, the encapsidation was improved. As a result, the mutation of the 7 bp of the middle part of the stem in SL-A was required for abolishing the plaque-forming ability. Thus, the 5′-end sequence of the Aichi virus genome was shown to play an important role in encapsidation. PMID:12610129

  3. Replication competent HIV-1 viruses that express intragenomic microRNA reveal discrete RNA-interference mechanisms that affect viral replication

    OpenAIRE

    Klase Zachary; Houzet Laurent; Jeang Kuan-Teh

    2011-01-01

    Abstract Background It remains unclear whether retroviruses can encode and express an intragenomic microRNA (miRNA). Some have suggested that processing by the Drosha and Dicer enzymes might preclude the viability of a replicating retroviral RNA genome that contains a cis-embedded miRNA. To date, while many studies have shown that lentiviral vectors containing miRNAs can transduce mammalian cells and express the inserted miRNA efficiently, no study has examined the impact on the replication o...

  4. An A14U Substitution in the 3' Noncoding Region of the M Segment of Viral RNA Supports Replication of Influenza Virus with an NS1 Deletion by Modulating Alternative Splicing of M Segment mRNAs.

    Science.gov (United States)

    Zheng, Min; Wang, Pui; Song, Wenjun; Lau, Siu-Ying; Liu, Siwen; Huang, Xiaofeng; Mok, Bobo Wing-Yee; Liu, Yen-Chin; Chen, Yixin; Yuen, Kwok-Yung; Chen, Honglin

    2015-10-01

    The NS1 protein of influenza virus has multiple functions and is a determinant of virulence. Influenza viruses with NS1 deletions (DelNS1 influenza viruses) are a useful tool for studying virus replication and can serve as effective live attenuated vaccines, but deletion of NS1 severely diminishes virus replication, hampering functional studies and vaccine production. We found that WSN-DelNS1 viruses passaged in cells consistently adapted to gain an A14U substitution in the 3' noncoding region of the M segment of viral RNA (vRNA) which restored replicative ability. DelNS1-M-A14U viruses cannot inhibit interferon expression in virus infected-cells, providing an essential model for studying virus replication in the absence of the NS1 protein. Characterization of DelNS1-M-A14U virus showed that the lack of NS1 has no apparent effect on expression of other viral proteins, with the exception of M mRNAs. Expression of the M transcripts, M1, M2, mRNA3, and mRNA4, is regulated by alternative splicing. The A14U substitution changes the splicing donor site consensus sequence of mRNA3, altering expression of M transcripts, with M2 expression significantly increased and mRNA3 markedly suppressed in DelNS1-M-A14U, but not DelNS1-M-WT, virus-infected cells. Further analysis revealed that the A14U substitution also affects promoter function during replication of the viral genome. The M-A14U mutation increases M vRNA synthesis in DelNS1 virus infection and enhances alternative splicing of M2 mRNA in the absence of other viral proteins. The findings demonstrate that NS1 is directly involved in influenza virus replication through modulation of alternative splicing of M transcripts and provide strategic information important to construction of vaccine strains with NS1 deletions. Nonstructural protein (NS1) of influenza virus has multiple functions. Besides its role in antagonizing host antiviral activity, NS1 is also believed to be involved in regulating virus replication, but

  5. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

    Science.gov (United States)

    Dauber, Bianca; Saffran, Holly A; Smiley, James R

    2014-09-01

    We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during

  6. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Science.gov (United States)

    Sowd, Gregory A; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L; Fanning, Ellen

    2014-12-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  7. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  8. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  9. Persistent genital tract HIV-1 RNA shedding after change in treatment regimens in antiretroviral-experienced women with detectable plasma viral load.

    Science.gov (United States)

    Venkatesh, Kartik K; DeLong, Allison K; Kantor, Rami; Chapman, Stacey; Ingersoll, Jessica; Kurpewski, Jaclynn; De Pasquale, Maria Pia; D'Aquila, Richard; Caliendo, Angela M; Cu-Uvin, Susan

    2013-04-01

    To longitudinally assess the association between plasma viral load (PVL) and genital tract human immunodeficiency virus (GT HIV) RNA among HIV-1 infected women changing highly active antiretroviral therapy (HAART) because of detectable PVL on current treatment. Women were eligible for the study if they had detectable PVL (defined as two consecutive samples with PVL>1000 copies/mL) and intended to change their current HAART regimen at the time of enrollment. Paired plasma and GT HIV-1 RNA were measured prospectively over 3 years. Longitudinal analyses examined rates of GT HIV-1 RNA shedding and the association with PVL. Sixteen women were followed for a median of 11 visits contributing a total of 205 study visits. At study enrollment, all had detectable PVL and 69% had detectable GT HIV-1 RNA. Half of the women changed to a new HAART regimen with ≥3 active antiretroviral drugs. The probability of having detectable PVL ≥30 days after changing HAART was 0.56 (95% CI: 0.37 to 0.74). Fourteen women (88%) had detectable PVL on a follow-up visit ≥30 or 60 days after changing HAART; and 12 women (75%) had detectable GT HIV-1 RNA on a follow-up visit ≥30 or 60 days after changing HAART. When PVL was undetectable, GT shedding occurred at 11% of visits, and when PVL was detectable, GT shedding occurred at 47% of visits. Some treatment-experienced HIV-infected women continue to have detectable virus in both the plasma and GT following a change in HAART, highlighting the difficulty of viral suppression in this patient population.

  10. F-specific RNA bacteriophages, especially members of subgroup II, should be reconsidered as good indicators of viral pollution of oysters.

    Science.gov (United States)

    Hartard, C; Leclerc, M; Rivet, R; Maul, A; Loutreul, J; Banas, S; Boudaud, N; Gantzer, C

    2017-10-27

    Norovirus (NoV) is the leading cause of gastroenteritis outbreaks linked to oyster consumption. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as indicators of viral contamination in oysters, by focusing especially on the subgroup FRNAPH-II. These viral indicators have been neglected because of their sometimes different behavior from that of NoV in shellfish, especially during the depuration processes usually performed before marketing. However, a significant bias needs to be taken into account which is that, in the absence of routine culture methods, NoV is targeted by genome detection while FRNAPH presence is usually investigated by isolation of infectious particles. In this study, by targeting both viruses using genome detection, a significant correlation was observed between FRNAPH-II and NoV in shellfish collected from various European harvesting areas impacted by fecal pollution. Moreover, during their depuration, while high persistence of NoV was confirmed, similar or even greater persistence was observed for FRNAPH-II genome over 30 days. Such striking genome persistence calls into question the relevance of molecular methods in assessing viral hazard. Targeting the same virus (i.e. FRNAPH-II) by culture and genome detection in specimens coming from harvesting areas as well as during depuration, we concluded that the presence of genomes in shellfish does not provide any information on the presence of the corresponding infectious particles. In view of these results, infectious FRNAPH detection should be reconsidered as a valuable indicator in oysters and its potential for assessing viral hazard needs to be investigated.IMPORTANCE This work brings new data about the behavior of viruses in shellfish, as well as concerning the relevance of molecular methods to detect them and evaluate the viral hazard. Firstly, a high correlation has been observed between F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and

  11. Expression of E6/E7 mRNA from 'high risk' human papillomavirus in relation to CIN grade, viral load and p16INK4a.

    Science.gov (United States)

    Andersson, Sonia; Hansson, Berit; Norman, Ingrid; Gaberi, Vera; Mints, Miriam; Hjerpe, Anders; Karlsen, Frank; Johansson, Bo

    2006-09-01

    Detection of E6/E7 mRNA expression with real-time nucleic acid sequence-based amplification assay (NASBA) method (PreTect HPV-Proofer) from high-risk types of human papillomaviruses (HR-HPV) were compared with the presence of viral load, determined with quantitative real-time PCR in 80 cervical samples. Results regarding positivity and typing were in agreement using the two methods. However, there was no correlation between viral loads for HPV 16 or 18/45 and oncogene expression. Among 15 women with low grade atypia detected at a population-based cytology screening, and scored as 'within normal limits' according to histopathology, 14% were positive for oncogene expression, whereas 71% were HR-HPV positive. A correlation was observed between HR-HPV oncogene expression and high scores of p16(INK4a) positivity. Since HPV-Proofer detects full-length E6/E7 mRNA, a positive result should correlate with presence of integrated HPV, loss of HPV replication and stabilized E6/E7 full-length mRNA expression. Such expression from integrated HR-HPV generates a high and stable expression of full-length E6 proteins, which explains why a positive HPV-Proofer result was independent of viral load and correlate with high expression of p16(INK4a). Thus, E6/E7 oncogene expression analysis yielded information, which is consistent with and will complement the results from a real-time PCR method in a clinical prognostic procedure.

  12. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines.

    Directory of Open Access Journals (Sweden)

    Breanne Landry

    Full Text Available Use of small interfering RNA (siRNA is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2 with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ≈ 0.5 and led to siRNA/polymer complexes of ≈ 100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP and an endogenous (CXCR4 target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia.

  13. Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen

    2018-01-01

    two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. Conclusions: The viruses harboring the 245–248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures...... to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were...

  14. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A|info:eu-repo/dai/nl/304823597; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for

  15. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.

    Science.gov (United States)

    Miller, Jason B; Zhang, Shuyuan; Kos, Petra; Xiong, Hu; Zhou, Kejin; Perelman, Sofya S; Zhu, Hao; Siegwart, Daniel J

    2017-01-19

    CRISPR/Cas is a revolutionary gene editing technology with wide-ranging utility. The safe, non-viral delivery of CRISPR/Cas components would greatly improve future therapeutic utility. We report the synthesis and development of zwitterionic amino lipids (ZALs) that are uniquely able to (co)deliver long RNAs including Cas9 mRNA and sgRNAs. ZAL nanoparticle (ZNP) delivery of low sgRNA doses (15 nm) reduces protein expression by >90 % in cells. In contrast to transient therapies (such as RNAi), we show that ZNP delivery of sgRNA enables permanent DNA editing with an indefinitely sustained 95 % decrease in protein expression. ZNP delivery of mRNA results in high protein expression at low doses in vitro (<600 pM) and in vivo (1 mg kg(-1) ). Intravenous co-delivery of Cas9 mRNA and sgLoxP induced expression of floxed tdTomato in the liver, kidneys, and lungs of engineered mice. ZNPs provide a chemical guide for rational design of long RNA carriers, and represent a promising step towards improving the safety and utility of gene editing. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  17. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR.

    Science.gov (United States)

    Sun, Yi; Dhumpa, Raghuram; Bang, Dang Duong; Høgberg, Jonas; Handberg, Kurt; Wolff, Anders

    2011-04-21

    The endemic of Avian Influenza Virus (AIV) in Asia and epizootics in some European regions have caused serious economic losses. Multiplex reverse-transcriptase (RT) PCR has been developed to detect and subtype AIV. However, the number of targets that can be amplified in a single run is limited because of uncontrollable primer-primer interferences. In this paper, we describe a lab-on-a-chip device for fast AIV screening by integrating DNA microarray-based solid-phase PCR on a microfluidic chip. A simple UV cross-linking method was used to immobilize the DNA probes on unmodified glass surface, which makes it convenient to integrate microarray with microfluidics. This solid-phase RT-PCR method combined RT amplification of extracted RNA in the liquid phase and species-specific nested PCR on the solid phase. Using the developed approach, AIV viruses and their subtypes were unambiguously identified by the distinct patterns of amplification products. The whole process was reduced to less than 1 hour and the sample volume used in the microfluidic chip was at least 10 times less than in the literature. By spatially separating the primers, highly multiplexed amplification can be performed in solid-phase PCR. Moreover, multiplex PCR and sequence detection were done in one step, which greatly simplified the assay and reduced the processing time. Furthermore, by incorporating the microarray into a microchamber-based PCR chip, the sample and the reagent consumption were greatly reduced, and the problems of bubble formation and solution evaporation were effectively prevented. This microarray-based PCR microchip can be widely employed for virus detection and effective surveillance in wild avian and in poultry productions.

  18. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  19. Comparison of Illumina de novo assembled and Sanger sequenced viral genomes: A case study for RNA viruses recovered from the plant pathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Khalifa, Mahmoud E; Varsani, Arvind; Ganley, Austen R D; Pearson, Michael N

    2016-07-02

    The advent of 'next generation sequencing' (NGS) technologies has led to the discovery of many novel mycoviruses, the majority of which are sufficiently different from previously sequenced viruses that there is no appropriate reference sequence on which to base the sequence assembly. Although many new genome sequences are generated by NGS, confirmation of the sequence by Sanger sequencing is still essential for formal classification by the International Committee for the Taxonomy of Viruses (ICTV), although this is currently under review. To empirically test the validity of de novo assembled mycovirus genomes from dsRNA extracts, we compared the results from Illumina sequencing with those from random cloning plus targeted PCR coupled with Sanger sequencing for viruses from five Sclerotinia sclerotiorum isolates. Through Sanger sequencing we detected nine viral genomes while through Illumina sequencing we detected the same nine viruses plus one additional virus from the same samples. Critically, the Illumina derived sequences share >99.3 % identity to those obtained by cloning and Sanger sequencing. Although, there is scope for errors in de novo assembled viral genomes, our results demonstrate that by maximising the proportion of viral sequence in the data and using sufficiently rigorous quality controls, it is possible to generate de novo genome sequences of comparable accuracy from Illumina sequencing to those obtained by Sanger sequencing. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparative clinical sample preparation of DNA and RNA viral nucleic acids for a commercial deep sequencing system (Illumina MiSeq(®)).

    Science.gov (United States)

    Ullmann, Leila Sabrina; de Camargo Tozato, Claudia; Malossi, Camila Dantas; da Cruz, Tais Fukuta; Cavalcante, Raíssa Vasconcelos; Kurissio, Jacqueline Kazue; Cagnini, Didier Quevedo; Rodrigues, Marianna Vaz; Biondo, Alexander Welker; Araujo, João Pessoa

    2015-08-01

    Sequence-independent methods for viral discovery have been widely used for whole genome sequencing of viruses. Different protocols for viral enrichment, library preparation and sequencing have increasingly been more available and at lower costs. However, no study to date has focused on optimization of viral sample preparation for commercial deep sequencing. Accordingly, the aim of the present study was to evaluate an In-House enzymatic protocol for double-stranded DNA (dsDNA) synthesis and also compare the use of a commercially available kit protocol (Nextera XT, Illumina Inc, San Diego, CA, USA) and its combination with a library quantitation kit (Kapa, Kapa Biosystems, Wilmington, MA, USA) for deep sequencing (Illumina Miseq). Two RNA viruses (canine distemper virus and dengue virus) and one ssDNA virus (porcine circovirus type 2) were tested with the optimized protocols. The tested method for dsDNA synthesis has shown satisfactory results and may be used in laboratory setting, particularly when enzymes are already available. Library preparation combining commercial kits (Nextera XT and Kapa) has yielded more reads and genome coverage, probably due to a lack of small fragment recovering at the normalization step of Nextera XT. In addition, libraries may be diluted or concentrated to provide increase on genome coverage with Kapa quantitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Comparative analysis of CE-SSCP to standard RFLP-CE-FLA method in quantification of known viral variants within an RNA virus quasispecies.

    Science.gov (United States)

    Gulija, Tanja Košutić; Ivancic-Jelecki, Jelena; Santak, Maja; Forcic, Dubravko

    2011-07-01

    RNA viruses display the highest replication error rate in our biosphere, leading to highly diverse viral populations termed quasispecies. The gold standard method for detection and quantification of variants in a quasispecies is cloning and sequencing, but it is expensive, laborious and time consuming. Therefore, other mutation detection approaches, including SSCP, are often used. In this study, we demonstrate development and the usage of a CE-SSCP method for quantification of two nearly identical viral variants in heterogenic population of a mumps virus strain and its comparison to RFLP-CE-fragment length analysis (RFLP-CE-FLA). Analyzed PCR fragments were of the same size (245 bp) with one difference in their nucleotide sequence. The limit of detection of both methods was at 5% of the minor variant. When PCR amplicons of the two variants were pooled, methods' results were very similar. On the contrary, the quantification results of samples in which variants were mixed prior to PCR showed substantial difference between the two methods. Our results indicate that although both methods can be used for detection and monitoring of a specific mutation within a viral population, caution should be taken when quantitative analysis of complex samples is based solely on results of one method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells.

    Science.gov (United States)

    Conceição, M M; Tonso, A; Freitas, C B; Pereira, C A

    2007-11-07

    Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected

  3. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein

    Directory of Open Access Journals (Sweden)

    Chou Shih-Jie

    2009-04-01

    Full Text Available Abstract Replication of the Japanese encephalitis virus (JEV genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5 in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.

  4. The formation and modification of chromatin-like structure of human parvovirus B19 regulate viral genome replication and RNA processing.

    Science.gov (United States)

    Xu, Huanzhou; Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Wang, Hanzhong; Guan, Wuxiang

    2017-03-15

    B19 virus (B19V) is a single stranded virus in the genus of Erythroparvovirus in the family of Parvoviridae. One of the limiting steps of B19V infection is the replication of viral genome which affected the alternative processing of its RNA. Minute virus of mice (MVM) and adeno-associated virus (AAV) has been reported to form chromatin-like structure within hours after infection of cells. However, the role of chromatin-like structure is unclear. In the present study, we found that B19V formed chromatin-like structure after 12h when B19V infectious clone was co-transfected with pHelper plasmid to HEK293T cells. Interestingly, the inhibitor of DNA methyl-transferase (5-Aza-2'-deoxycytidine, DAC) inhibited not only the formation of chromatin-like structure, but also the replication of the viral genomic DNA. More importantly, the splicing of the second intron at splice acceptor sites (A2-1, and A2-2) were reduced and polyadenylation at (pA)p increased when transfected HEK293T cells were treated with DAC. Our results showed that the formation and modification of chromatin-like structure are a new layer to regulate B19V gene expression and RNA processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimization of design and production strategies for novel adeno-associated viral display peptide libraries.

    Science.gov (United States)

    Körbelin, J; Hunger, A; Alawi, M; Sieber, T; Binder, M; Trepel, M

    2017-08-01

    Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.

  6. Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production.

    Science.gov (United States)

    Roldão, António; Vieira, Helena L A; Charpilienne, Annie; Poncet, Didier; Roy, Polly; Carrondo, Manuel J T; Alves, Paula M; Oliveira, R

    2007-03-10

    Rotavirus is the most common cause of severe diarrhoea in children worldwide, responsible for more than half a million deaths in children per year. Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, since they are non-infectious, highly immunogenic, amenable to large-scale production and safer to produce than those based on attenuated viruses. This work focuses on the analysis and modeling of the major events taking place inside Spodoptera frugiperda (Sf-9) cells infected by recombinant baculovirus that may be critical for the expression of rotavirus viral proteins (VPs). For model validation, experiments were performed adopting either a co-infection strategy, using three monocistronic recombinant baculovirus each one coding for viral proteins VP(2), VP(6) and VP(7), or single-infection strategies using a multigene baculovirus coding for the three proteins of interest. A characteristic viral DNA (vDNA) replication rate of 0.19+/-0.01 h(-1) was obtained irrespective of the monocistronic or multigene vector employed, and synthesis of progeny virus was found to be negligible in comparison to intracellular vDNA concentrations. The timeframe for vDNA, mRNA and VP synthesis tends to decrease with increasing multiplicity of infection (MOI) due to the metabolic burden effect. The protein synthesis rates could be ranked according to the gene size in the multigene experiments but not in the co-infection experiments. The model exhibits acceptable prediction power of the dynamics of intracellular vDNA replication, mRNA synthesis and VP production for the three proteins involved. This model is intended to be the basis for future Rota VLPs process optimisation and also a means to evaluating different baculovirus constructs for Rota VLPs production.

  7. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons.

    Science.gov (United States)

    Porrero, César; Rodríguez-Moreno, Javier; Quetglas, José I; Smerdou, Cristian; Furuta, Takahiro; Clascá, Francisco

    2016-01-01

    We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

  8. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication

    Science.gov (United States)

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-07-01

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  9. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiple viral infections in Agaricus bisporus - Characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing.

    Science.gov (United States)

    Deakin, Gregory; Dobbs, Edward; Bennett, Julie M; Jones, Ian M; Grogan, Helen M; Burton, Kerry S

    2017-05-26

    Thirty unique non-host RNAs were sequenced in the cultivated fungus, Agaricus bisporus, comprising 18 viruses each encoding an RdRp domain with an additional 8 ORFans (non-host RNAs with no similarity to known sequences). Two viruses were multipartite with component RNAs showing correlative abundances and common 3' motifs. The viruses, all positive sense single-stranded, were classified into diverse orders/families. Multiple infections of Agaricus may represent a diverse, dynamic and interactive viral ecosystem with sequence variability ranging over 2 orders of magnitude and evidence of recombination, horizontal gene transfer and variable fragment numbers. Large numbers of viral RNAs were detected in multiple Agaricus samples; up to 24 in samples symptomatic for disease and 8-17 in asymptomatic samples, suggesting adaptive strategies for co-existence. The viral composition of growing cultures was dynamic, with evidence of gains and losses depending on the environment and included new hypothetical viruses when compared with the current transcriptome and EST databases. As the non-cellular transmission of mycoviruses is rare, the founding infections may be ancient, preserved in wild Agaricus populations, which act as reservoirs for subsequent cell-to-cell infection when host populations are expanded massively through fungiculture.

  11. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review.

    Science.gov (United States)

    Shukla, Shruti; Cho, Hyunjeong; Kwon, O Jun; Chung, Soo Hyun; Kim, Myunghee

    2018-02-11

    Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.

  12. RNA-Seq Analysis of Gene Expression, Viral Pathogen, and B-Cell/T-Cell Receptor Signatures in Complex Chronic Disease.

    Science.gov (United States)

    Bouquet, Jerome; Gardy, Jennifer L; Brown, Scott; Pfeil, Jacob; Miller, Ruth R; Morshed, Muhammad; Avina-Zubieta, Antonio; Shojania, Kam; McCabe, Mark; Parker, Shoshana; Uyaguari, Miguel; Federman, Scot; Tang, Patrick; Steiner, Ted; Otterstater, Michael; Holt, Rob; Moore, Richard; Chiu, Charles Y; Patrick, David M

    2017-02-15

    Chronic fatigue syndrome (CFS) remains poorly understood. Although infections are speculated to trigger the syndrome, a specific infectious agent and underlying pathophysiological mechanism remain elusive. In a previous study, we described similar clinical phenotypes in CFS patients and alternatively diagnosed chronic Lyme syndrome (ADCLS) patients—individuals diagnosed with Lyme disease by testing from private Lyme specialty laboratories but who test negative by reference 2-tiered serologic analysis. Here, we performed blinded RNA-seq analysis of whole blood collected from 25 adults diagnosed with CFS and 13 ADCLS patients, comparing these cases to 25 matched controls and 11 patients with well-controlled systemic lupus erythematosus (SLE). Samples were collected at patient enrollment and not during acute symptom flares. RNA-seq data were used to study host gene expression, B-cell/T-cell receptor profiles (BCR/TCR), and potential viral infections. No differentially expressed genes (DEGs) were found to be significant when CFS or ADCLS cases were compared to controls. Forty-two DEGs were found when SLE cases were compared to controls, consistent with activation of interferon signaling pathways associated with SLE disease. BCR/TCR repertoire analysis did not show significant differences between CFS and controls or ADCLS and controls. Finally, viral sequences corresponding to anelloviruses, human pegivirus 1, herpesviruses, and papillomaviruses were detected in RNA-seq data, but proportions were similar (P = .73) across all genus-level taxonomic categories. Our observations do not support a theory of transcriptionally mediated immune cell dysregulation in CFS and ADCLS, at least outside of periods of acute symptom flares.

  13. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Maria Viana Pinto

    2012-08-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an etiologic agent that causes important economic losses in the world. It is endemic in cattle herds in most parts of the world. The purpose of this study was to evaluate the in vitro cytotoxic effect and antiviral properties of several marine natural products obtained from seaweeds: the indole alkaloid caulerpin (CAV, 1 and three diterpenes: 6-hydroxydichotoma-3,14-diene-1,17-dial (DA, 2, 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene (DB1, 3 and 8,10,18-trihydroxy-2,6-dolabelladiene (DB3, 4. The screening to evaluate the cytotoxicity of compounds did not show toxic effects to MDBK cells. The antiviral activity of the compounds was measured by the inhibition of the cytopathic effect on infected cells by plaque assay (PA and EC50 values were calculated for CAV (EC=2,0± 5.8, DA (EC 2,8± 7.7, DB1 (EC 2,0±9.7, and DB3 (EC 2,3±7.4. Acyclovir (EC50 322± 5.9 was used in all experiments as the control standard. Although the results of the antiviral activity suggest that all compounds are promising as antiviral agents against BVDV, the Selectivity Index suggests that DB1 is the safest of the compounds tested.

  14. Identification of a novel papillomavirus in a Northern Fulmar (Fulmarus glacialis) with viral production in cartilage.

    Science.gov (United States)

    Gaynor, A M; Fish, S; Duerr, R S; Cruz, F N Dela; Pesavento, P A

    2015-05-01

    We report the identification of a novel papillomavirus, Fulmarus glacialis papillomavirus 1 (FgPV1), present within an interdigital foot mass of a Northern Fulmar (Fulmarus glacialis). The mass of interest was composed of normal stratified and keratinized epithelium and dense mesenchymal cells with central cartilaginous islands. Within the nuclei of many chondrocytes were loose aggregates or paracrystalline arrays of virions approximately 50 nm in size. Degenerate polymerase chain reaction was used to identify the virus as a putative papillomavirus, and the entire viral genome of 8132 base pairs was subsequently amplified and sequenced. Analysis revealed canonical papillomavirus architecture, including the early open reading frames E6, E7, E1, and E2 and the 2 late proteins L1 and L2. FgPV1 is most closely related to a cluster of avian and reptilian papillomaviruses as visualized by phylogenetic trees. This observation suggests that papillomavirus virion production can occur in mesenchymal cells. © The Author(s) 2014.

  15. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics?

    Science.gov (United States)

    Guo, Jianfeng; Bourre, Ludovic; Soden, Declan M; O'Sullivan, Gerald C; O'Driscoll, Caitriona

    2011-01-01

    Cancer is one of the most wide-spread diseases of modern times, with an estimated increase in the number of patients diagnosed worldwide, from 11.3 million in 2007 to 15.5 million in 2030 (www.who.int). In many cases, due to the delay in diagnosis and high increase of relapse, survival rates are low. Current therapies, including surgery, radiation and chemotherapy, have made significant progress, but they have many limitations and are far from ideal. Although immunotherapy has recently offered great promise as a new approach in cancer treatment, it is still very much in its infancy and more information on this approach is required before it can be widely applied. For these reasons effective, safe and patient-acceptable cancer therapy is still largely an unmet clinical need. Recent knowledge of the genetic basis of the disease opens up the potential for cancer gene therapeutics based on siRNA. However, the future of such gene-based therapeutics is dependent on achieving successful delivery. Extensive research is ongoing regarding the design and assessment of non-viral delivery technologies for siRNA to treat a wide range of cancers. Preliminary results on the first human Phase I trial for solid tumours, using a targeted non-viral vector, illustrate the enormous therapeutic benefits once the issue of delivery is resolved. In this review the genes regulating cancer will be discussed and potential therapeutic targets will be identified. The physiological and biochemical changes caused by tumours, and the potential to exploit this knowledge to produce bio-responsive 'smart' delivery systems, will be evaluated. This review will also provide a critical and comprehensive overview of the different non-viral formulation strategies under investigation for siRNA delivery, with particular emphasis on those designed to exploit the physiological environment of the disease site. In addition, a section of the review will be dedicated to pre-clinical animal models used to evaluate

  16. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing.

    Science.gov (United States)

    de Solis, Christopher A; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well.

  17. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing.

    Directory of Open Access Journals (Sweden)

    Christopher A. de Solis

    2016-08-01

    Full Text Available The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV. Specifically, we developed an inducible gRNA (gRNAi AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as one day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e. Cas9 mouse, CRISPRi, etc., and therefore it likely can be used to render these systems inducible as well.

  18. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins.

    Directory of Open Access Journals (Sweden)

    Teymur Kazakov

    2015-04-01

    Full Text Available Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV, an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.

  19. Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles

    NARCIS (Netherlands)

    de la Escosura, A; Verwegen, M.; Sikkema, F.D.; Comellas Aragones, M.; Kirilyuk, A.; Rasing, T.; Nolte, Roeland; Cornelissen, Jeroen Johannes Lambertus Maria

    2008-01-01

    The use of a viral template has allowed the synthesis of monodisperse Prussian blue nanoparticles with a diameter of 18 ± 1.7 nm and their organization into hexagonal patterns on mica and hydrophilic carbon surfaces.

  20. Production of neutralizing antisera against viral hemorrhagic septicemia (VHS) virus by intravenous injections of rabbits

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Lorenzen, Niels; LaPatra, S.E.

    1999-01-01

    Rabbit antisera against viral hemorrhagic septicemia virus (VHSV) produced by two immunization procedures were compared for neutralization and immunochemical properties against homologous and heterologous strains. The VHSV isolate used as the immunogen was a member of a serogroup not neutralized ...

  1. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication.

    Science.gov (United States)

    Coiras, Mayte; Montes, Marta; Montanuy, Immaculada; López-Huertas, María Rosa; Mateos, Elena; Le Sommer, Caroline; Garcia-Blanco, Mariano A; Hernández-Munain, Cristina; Alcamí, José; Suñé, Carlos

    2013-10-28

    Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication.

  2. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    Science.gov (United States)

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  3. Prevalence of Howell-Jolly body-like inclusions in HIV patients and their correlation with CD4 counts and HIV RNA viral load.

    Science.gov (United States)

    Chang, Brian; Huang, Richard Sheng Poe; Dasgupta, Amitava; Nguyen, Nghia; Wahed, Amer

    2015-01-01

    Previous reports have described the rare occurrence of detached nuclear fragments resembling Howell-Jolly bodies within neutrophils from HIV patients, organ-transplant recipients, and patients on immunosuppressive drugs. To date, their potential clinical significance is unknown, and pathologists tend to disregard their presence. Our study sought to find a correlation between these inclusions and the overall disease state, specifically within the HIV patient population. Eighty-three peripheral smears, all from different patients, were examined for the presence of inclusions and compared with recent CD4 counts and HIV RNA viral loads. Six cases contained inclusions, yielding a prevalence of 7.2%. These six patients had a mean CD4 count of 546±305 cells/μL compared to 247±242 cells/μL in those lacking inclusions (pHowell-Jolly body-like inclusions may be viewed as a potential biomarker indicative of a low risk for disease progression and/or good response to therapy based upon higher CD4 counts and relatively favorable viral loads. © 2015 by the Association of Clinical Scientists, Inc.

  4. RBM20 Regulates Circular RNA Production From the Titin Gene

    NARCIS (Netherlands)

    Khan, Mohsin A. F.; Reckman, Yolan J.; Aufiero, Simona; van den Hoogenhof, Maarten M. G.; van der Made, Ingeborg; Beqqali, Abdelaziz; Koolbergen, Dave R.; Rasmussen, Torsten B.; van der Velden, Jolanda; Creemers, Esther E.; Pinto, Yigal M.

    2016-01-01

    RNA-binding motif protein 20 (RBM20) is essential for normal splicing of many cardiac genes, and loss of RBM20 causes dilated cardiomyopathy. Given its role in splicing, we hypothesized an important role for RBM20 in forming circular RNAs (circRNAs), a novel class of noncoding RNA molecules. To

  5. Rescue of foot-and-mouth disease viruses that are pathogenic for cattle from preserved viral RNA samples

    DEFF Research Database (Denmark)

    Belsham, Graham; Jamal, Syed Muhammad; Tjørnehøj, Kirsten

    2011-01-01

    of the rescued viruses (of serotype O and Asia 1) were inoculated into bull calves under high containment conditions. Acute clinical disease was observed in each case which spread rapidly from the inoculated calves to in-contact animals. Thus the rescued viruses were highly pathogenic. The availability......Background: Foot and mouth disease is an economically important disease of cloven-hoofed animals including cattle, sheep and pigs. It is caused by a picornavirus, foot-and-mouth disease virus (FMDV), which has a positive sense RNA genome which, when introduced into cells, can initiate virus...... replication. Principal Findings: A system has been developed to rescue infectious FMDV from RNA preparations generated from clinical samples obtained under experimental conditions and then applied to samples collected in the ‘‘field’’. Clinical samples from suspect cases of foot-and-mouth disease (FMD) were...

  6. Viral infection increases glucocorticoid-induced interleukin-10 production through ERK-mediated phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Sinnie Sin Man Ng

    Full Text Available The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs. Dexamethasone (DEX treatment and subsequent Newcastle disease virus (NDV infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs, but not plasmacytoid DCs (pDCs were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related

  7. Viral Infection Increases Glucocorticoid-Induced Interleukin-10 Production through ERK-Mediated Phosphorylation of the Glucocorticoid Receptor in Dendritic Cells: Potential Clinical Implications

    Science.gov (United States)

    Ng, Sinnie Sin Man; Li, Andrew; Pavlakis, George N.; Ozato, Keiko; Kino, Tomoshige

    2013-01-01

    The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs). Dexamethasone (DEX) treatment and subsequent Newcastle disease virus (NDV) infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL)-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs), but not plasmacytoid DCs (pDCs) were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK) inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related allergic disorders

  8. Production effects of pathogens causing bovine leukosis, bovine viral diarrhea, paratuberculosis, and neosporosis.

    Science.gov (United States)

    Tiwari, A; Vanleeuwen, J A; Dohoo, I R; Keefe, G P; Haddad, J P; Tremblay, R; Scott, H M; Whiting, T

    2007-02-01

    The primary purpose of this research was to determine associations among seropositivity for bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV), Mycobacterium avium ssp. paratuberculosis (MAP), and Neospora caninum (NC) and each of 3 outcome variables (305-d milk, fat, and protein production) in Canadian dairy cattle. Serum samples from up to 30 randomly selected cows from 342 herds on monthly milk testing were tested for antibodies against BLV (IDEXX ELISA; IDEXX Corporation, Westbrook, ME), MAP (IDEXX or Biocor ELISA; Biocor Animal Health, Inc., Omaha, NE), and NC (IDEXX or Biovet ELISA; Biovet Inc., St. Hyacinthe, Quebec, Canada). Up to 5 unvaccinated cattle over 6 mo of age were tested for virus-neutralizing antibodies to the Singer strain of type 1 BVDV. Dairy Herd Improvement records were obtained electronically for all sampled cows. Linear mixed models with herd and cow as random variables were fit, with significant restricted maximum likelihood estimates of outcome effects being obtained, while controlling for potential confounding variables. Bovine leukemia virus seropositivity was not associated with 305-d milk, 305-d fat, or 305-d protein production. Cows in BVDV-seropositive herds (at least one unvaccinated animal with a titer > or =1:64) had reductions in 305-d milk, fat, and protein of 368, 10.2, and 9.5 kg, respectively, compared with cows in BVDV-seronegative herds. Mycobacterium avium ssp. paratuberculosis seropositivity was associated with lower 305-d milk of 212 kg in 4+-lactation cows compared with MAP-seronegative 4+-lactation cows. Neospora caninum seropositivity in primiparous cows was associated with lower 305-d milk, fat, and protein of 158, 5.5, and 3.3 kg, respectively, compared with NC-seronegative primiparous cows. There were no interactions among seropositivity for any of the pathogens and their effects on any of the outcomes examined, although the low MAP seroprevalence limited this analysis. Results from this research

  9. Direct effect of dsRNA mimetics on cancer cells induces endogenous IFN-β production capable of improving dendritic cell function.

    Science.gov (United States)

    Gatti, Gerardo; Nuñez, Nicolás Gonzalo; Nocera, David Andrés; Dejager, Lien; Libert, Claude; Giraudo, Constancio; Maccioni, Mariana

    2013-07-01

    Viral double-stranded RNA (dsRNA) mimetics have been explored in cancer immunotherapy to promote antitumoral immune response. Polyinosine-polycytidylic acid (poly I:C) and polyadenylic-polyuridylic acid (poly A:U) are synthetic analogs of viral dsRNA and strong inducers of type I interferon (IFN). We describe here a novel effect of dsRNA analogs on cancer cells: besides their potential to induce cancer cell apoptosis through an IFN-β autocrine loop, dsRNA-elicited IFN-β production improves dendritic cell (DC) functionality. Human A549 lung and DU145 prostate carcinoma cells significantly responded to poly I:C stimulation, producing IFN-β at levels that were capable of activating STAT1 and enhancing CXCL10, CD40, and CD86 expression on human monocyte-derived DCs. IFN-β produced by poly I:C-activated human cancer cells increased the capacity of monocyte-derived DCs to stimulate IFN-γ production in an allogeneic stimulatory culture in vitro. When melanoma murine B16 cells were stimulated in vitro with poly A:U and then inoculated into TLR3(-/-) mice, smaller tumors were elicited. This tumor growth inhibition was abrogated in IFNAR1(-/-) mice. Thus, dsRNA compounds are effective adjuvants not only because they activate DCs and promote strong adaptive immunity, but also because they can directly act on cancer cells to induce endogenous IFN-β production and contribute to the antitumoral response. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. RD-114 virus story: from RNA rumor virus to a useful viral tool for elucidating the world cats' journey.

    Science.gov (United States)

    Miyazawa, Takayuki; Shimode, Sayumi; Nakagawa, So

    2016-01-01

    RD-114 virus is a feline endogenous retrovirus (ERV) isolated from human rhabdomyosarcoma in 1971 and classified as endogenous gammaretrovirus in domestic cats (Felis catus). Based on the previous reports in 70's, it has been considered that a horizontal, infectious event occurred to transfer the virus from ancient baboon species to ancient cat species, whereupon it became endogenous in the cat species about several million years ago in Mediterranean Basin. Although it has been believed that all domestic cats harbor infectious RD-114 provirus in their genome, we revealed that cats do not have infectious RD-114 viral loci, but infectious RD-114 virus is resurrected by recombination between uninfectious RD-114 virus-related ERVs [here we designated them as RD-114-related sequences (RDRSs)]. Further, we also revealed the RDRSs which would potentially be resurrected as RD-114 virus (here we refer to them as ''new'' RDRSs) had entered the genome of the domestic cat after domestication of the cat around 10 thousand years ago. The fractions and positions of RDRSs in the cat genome differed in Western and Eastern cat populations and cat breeds. Our study revealed that RDRS would be a useful tool for elucidating the world travel routes of domestic cats after domestication.

  11. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice.

    Science.gov (United States)

    Zhang, Chao; Ding, Zuomei; Wu, Kangcheng; Yang, Liang; Li, Yang; Yang, Zhen; Shi, Shan; Liu, Xiaojuan; Zhao, Shanshan; Yang, Zhirui; Wang, Yu; Zheng, Luping; Wei, Juan; Du, Zhenguo; Zhang, Aihong; Miao, Hongqin; Li, Yi; Wu, Zujian; Wu, Jianguo

    2016-09-06

    MicroRNAs (miRNAs) are pivotal modulators of plant development and host-virus interactions. However, the roles and action modes of specific miRNAs involved in viral infection and host susceptibility remain largely unclear. In this study, we show that Rice ragged stunt virus (RRSV) infection caused increased accumulation of miR319 but decreased expression of miR319-regulated TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) genes, especially TCP21, in rice plants. Transgenic rice plants overexpressing miR319 or downregulating TCP21 exhibited disease-like phenotypes and showed significantly higher susceptibility to RRSV in comparison with the wild-type plants. In contrast, only mild disease symptoms were observed in RRSV-infected lines overexpressing TCP21 and especially in the transgenic plants overexpressing miR319-resistant TCP21. Both RRSV infection and overexpression of miR319 caused the decreased endogenous jasmonic acid (JA) levels along with downregulated expression of JA biosynthesis and signaling-related genes in rice. However, treatment of rice plants with methyl jasmonate alleviated disease symptoms caused by RRSV and reduced virus accumulation. Taken together, our results suggest that the induction of miR319 by RRSV infection in rice suppresses JA-mediated defense to facilitate virus infection and symptom development. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  12. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?

    Directory of Open Access Journals (Sweden)

    Clerzius Guerline

    2005-10-01

    Full Text Available Abstract Increasing evidence indicates that RNA interference (RNAi may be used to provide antiviral immunity in mammalian cells. Human micro (miRNAs can inhibit the replication of a primate virus, whereas a virally-encoded miRNA from HIV inhibits its own replication. Indirect proof comes from RNAi suppressors encoded by mammalian viruses. Influenza NS1 and Vaccinia E3L proteins can inhibit RNAi in plants, insects and worms. HIV-1 Tat protein and Adenovirus VA RNAs act as RNAi suppressors in mammalian cells. Surprisingly, many RNAi suppressors are also inhibitors of the interferon (IFN-induced protein kinase R (PKR but the potential overlap between the RNAi and the IFN pathways remains to be determined. The link between RNAi as an immune response and the IFN pathway may be formed by a cellular protein, TRBP, which has a dual role in HIV replication and RNAi. TRBP has been isolated as an HIV-1 TAR RNA binding protein that increases HIV expression and replication by inhibiting PKR and by increasing translation of structured RNAs. A recent report published in the Journal of Virology shows that the poor replication of HIV in astrocytes is mainly due to a heightened PKR response that can be overcome by supplying TRBP exogenously. In two recent papers published in Nature and EMBO Reports, TRBP is now shown to interact with Dicer and to be required for RNAi mediated by small interfering (si and micro (miRNAs. The apparent discrepancy between TRBP requirement in RNAi and in HIV replication opens the hypotheses that RNAi may be beneficial for HIV-1 replication or that HIV-1 may evade the RNAi restriction by diverting TRBP from Dicer and use it for its own benefit.

  13. Viral pathogens.

    Science.gov (United States)

    Ragni, M V; Sherman, K E; Jordan, J A

    2010-07-01

    Despite continuous improvement in safety and purity of blood products for individuals with haemophilia, transmissible agents continue to affect individuals with haemophilia. This chapter addresses three viral pathogens with significant clinical impact: HIV, hepatitis C and parvovirus B19. Hepatitis C is the leading cause of chronic hepatitis and the major co-morbid complication of haemophilia treatment. Clinically, asymptomatic intermittent alanine aminotransferase elevation is typical, with biopsy evidence of advanced fibrosis currently in 25%. Current treatment is effective in up to 70%, and many new agents are in development. For those progressing to end-stage liver disease, liver transplantation outcomes are similar to those in non-haemophilia subjects, although pretransplant mortality is higher. HIV infection, the second leading co-morbid condition in haemophilia, is managed as a chronic infection with highly active antiretroviral therapy (HAART). HAART also slows hepatitis C virus (HCV) progression in those with HIV/HCV co-infection. Viral inactivation and recombinant technologies have effectively prevented transfusion-transmitted viral pathogens in haemophilia. Human parvovirus B19 infection, typically associated with anaemia or, rarely severe aplastic crisis, is a non-lipid enveloped virus, for which standard inactivation techniques are ineffective. Thus, nucleic acid testing (NAT) to screen the blood supply for B19 DNA is currently under consideration by the Food and Drug Administration. To the extent, viral inactivation, recombinant, and NAT technologies are available worldwide, and the lifespan for those with haemophilia is approaching that of the normal population. The purpose of this chapter is to provide an update on three clinically significant transfusion-transmitted viral pathogens.

  14. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile.

    Science.gov (United States)

    Ruiz-Ruiz, Susana; Navarro, Beatriz; Gisel, Andreas; Peña, Leandro; Navarro, Luis; Moreno, Pedro; Di Serio, Francesco; Flores, Ricardo

    2011-04-01

    To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21-22-nt, with a biased distribution of their 5' nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3'-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3' co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation.

  15. Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene.

    Science.gov (United States)

    Souza, Ana Cláudia; Vasques, Raquel Medeiros; Inoue-Nagata, Alice Kazuko; Lacorte, Cristiano; Maldaner, Franciele Roberta; Noronha, Eliane Ferreira; Nagata, Tatsuya

    2013-10-01

    Binary vector-based transient expression of heterologous proteins in plants is a very attractive strategy due to the short time required for proceeding from planning to expression. However, this expression system is limited by comparatively lower yields due to strong post-transcriptional gene silencing (PTGS) in the host plants. The aim of this study was to optimize a procedure for expression of norovirus virus-like particles (VLPs) in plants using a binary vector with co-expression of a PTGS suppressor to increase the yield of the target protein. The effects of four plant viral PTGS suppressors on protein expression were evaluated using green fluorescent protein (GFP) as a reporter. Constructs for both GFP and PTGS suppressor genes were co-infiltrated in Nicotiana benthamiana plants, and the accumulation of GFP was evaluated. The most effective PTGS suppressor was the 126K protein of Pepper mild mottle virus. Therefore, this suppressor was selected as the norovirus capsid gene co-expression partner for subsequent studies. The construct containing the major (vp1) and minor capsid (vp2) genes with a 3'UTR produced a greater amount of protein than the construct with the major capsid gene alone. Thus, the vp1-vp2-3'UTR and 126K PTGS suppressor constructs were co-infiltrated at middle scale and VLPs were purified by sucrose gradient centrifugation. Proteins of the expected size, specific to the norovirus capsid antibody, were observed by Western blot. VLPs were observed by transmission electron microscopy. It was concluded that protein expression in a binary vector co-expressed with the 126K PTGS suppressor protein enabled superior expression and assembly of norovirus VLPs.

  16. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Kawano, Yoshihiko; Iwata, Seiko; Kawada, Jun-ichi; Gotoh, Kensei; Suzuki, Michio; Torii, Yuka; Kojima, Seiji; Kimura, Hiroshi; Ito, Yoshinori

    2013-09-01

    Chronic active Epstein-Barr virus (CAEBV) infection has high mortality and morbidity, and biomarkers for disease severity and prognosis are required. MicroRNAs (miRNAs) are small noncoding RNAs, and EBV encodes multiple miRNAs. Because plasma contains sufficiently stable miRNAs, circulating EBV-associated miRNA profiles were investigated as novel biomarkers in CAEBV infection. Plasma miRNA expression was assessed for 12 miRNAs encoded within 2 EBV open reading frames (BART and BHRF). Expression levels were investigated in 19 patients with CAEBV infection, 14 patients with infectious mononucleosis, and 11 healthy controls. Relative expression levels of plasma miRNAs were determined by TaqMan probe-based quantitative assay. Plasma miR-BART1-5p, 2-5p, 5, and 22 levels in patients with CAEBV infection were significantly greater than those in patients with infectious mononucleosis and in controls. Plasma miR-BART2-5p, 4, 7, 13, 15, and 22 levels were significantly elevated in patients with CAEBV infection with systemic symptoms, compared with levels in patients with no systemic symptoms. The levels of miR-BART2-5p, 13, and 15 showed clinical cutoff values associated with specific clinical conditions, in contrast to plasma EBV loads. Levels of specific plasma EBV miRNAs were elevated differentially in patients with CAEBV infection. Several EBV miRNAs, particularly miR-BART2-5p, 13, and 15, are potentially biomarkers of disease severity or prognosis.

  17. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  18. Human ?-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD

    OpenAIRE

    Arnason, Jason W.; Murphy, James C.; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L.; Shelfoon, Christopher; Maciejewski, Barbara; Dumonceaux, Curtis J.; Lewenza, W. Shawn; Proud, David; Leigh, Richard

    2017-01-01

    Viral-bacterial co-infections are associated with severe exacerbations of COPD. Epithelial antimicrobial peptides, including human ?-defensin-2 (HBD-2), are integral to innate host defenses. In this study, we examined how co-infection of airway epithelial cells with rhinovirus and Pseudomonas aeruginosa modulates HBD-2 expression, and whether these responses are attenuated by cigarette smoke and in epithelial cells obtained by bronchial brushings from smokers with normal lung function or from...

  19. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells.

    Science.gov (United States)

    Butz, Karin; Ristriani, Tutik; Hengstermann, Arnd; Denk, Claudia; Scheffner, Martin; Hoppe-Seyler, Felix

    2003-09-04

    The targeted inhibition of antiapoptotic factors in tumour cells may provide a rational approach towards the development of novel anticancer therapies. Using human papillomavirus (HPV)-transformed cells as a model system, we investigated if RNA interference (RNAi)-mediated gene silencing can be employed in order to overcome the apoptosis resistance of cancer cells. We found that both vector-borne and synthetic small interfering (si)RNAs, specifically directed against the antiapoptotic HPV E6 oncogene, restored dormant tumour suppressor pathways in HPV-positive cancer cells that are otherwise inactive in the presence of E6. This ultimately resulted in massive apoptotic cell death, selectively in HPV-positive tumour cells. These findings show that RNAi provides a powerful molecular strategy to inactivate intracellular E6 function efficiently. Moreover, they define E6 as a most promising therapeutic target to eliminate HPV-positive tumour cells specifically by RNAi. Thus, by sequence-specific targeting of antiapoptotic genes, siRNAs may be developed into novel therapeutics that can efficiently correct the apoptosis deficiency of cancer cells.

  20. Characterization of temperature-sensitive HVJ (Sendai virus) infection in Vero cells: inhibitory mechanism of viral production at 41 degrees.

    Science.gov (United States)

    Hirayama, Etsuko; Ishida, Yo-ichi; Sugimoto, Masao; Hiraki, Akihiro; Kim, Jeman

    2003-01-01

    In a previous study, it was found that the synthesis of hemagglutinating virus of Japan (HVJ; Sendai virus)-specific proteins was inhibited at the transcriptional level at 41 degrees in LLC-MK2 cells. During an investigation of the temperature sensitivity of HVJ production in other host cells, the synthesis of HVJ-specific proteins was recognized even at 41 degrees in Vero cells. Viral production, however, was not detected, indicating the inhibition of steps after the synthesis of viral proteins. Hemadsorption activity was not detected at 41 degrees, suggesting problems with the envelope proteins, especially hemagglutinin-neuraminidase (HN) protein, at the cell membrane. Immunofluorescent staining and surface immunoprecipitation showed that HN protein was not present on the surface in spite of its localization in the cytoplasm. Further, analysis of the cell membrane fraction suggested that fusion (F) protein was integrated into the cell membrane but HN protein was not at 41 degrees. Electron microscopic observation showed that budding sites with spike structures formed and nucleocapsids assembled under the sites at 41 degrees without HN protein, although budded HVJ virions were not detected. At this time, F protein was exposed to the cell membrane and interacted with matrix and nucleocapsid proteins. The results suggested that the suppression of HVJ production at 41 degrees was due to the absence of HN protein in the membrane of Vero cells. Copyright 2003 S. Karger AG, Basel

  1. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  2. A Viral mRNA Motif at the 3′-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution

    Science.gov (United States)

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-01

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3′ untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3′-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5′-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3′-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range. PMID:26755446

  3. A Viral mRNA Motif at the 3'-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution.

    Science.gov (United States)

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-12

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3' untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3'-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5'-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3'-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range.

  4. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries.

    Science.gov (United States)

    Drew, Victor J; Barro, Lassina; Seghatchian, Jerard; Burnouf, Thierry

    2017-10-01

    Over 110 million units of blood are collected yearly. The need for blood products is greater in developing countries, but so is the risk of contracting a transfusion-transmitted infection. Without efficient donor screening/viral testing and validated pathogen inactivation technology, the risk of transfusion-transmitted infections correlates with the infection rate of the donor population. The World Health Organization has published guidelines on good manufacturing practices in an effort to ensure a strong global standard of transfusion and blood product safety. Sub-Saharan Africa is a high-risk region for malaria, human immunodeficiency virus (HIV), hepatitis B virus and syphilis. Southeast Asia experiences high rates of hepatitis C virus. Areas with a tropical climate have an increased risk of Zika virus, Dengue virus, West Nile virus and Chikungunya, and impoverished countries face economical limitations which hinder efforts to acquire the most modern pathogen inactivation technology. These systems include Mirasol® Pathogen Reduction Technology, INTERCEPT®, and THERAFLEX®. Their procedures use a chemical and ultraviolet or visible light for pathogen inactivation and significantly decrease the threat of pathogen transmission in plasma and platelets. They are licensed for use in Europe and are used in several other countries. The current interest in the blood industry is the development of pathogen inactivation technologies that can treat whole blood (WB) and red blood cell (RBC). The Mirasol system has recently undergone phase III clinical trials for treating WB in Ghana and has demonstrated some efficacy toward malaria inactivation and low risk of adverse effects. A 2nd-generation of the INTERCEPT® S-303 system for WB is currently undergoing a phase III clinical trial. Both methodologies are applicable for WB and components derived from virally reduced WB or RBC.

  5. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries

    Science.gov (United States)

    Drew, Victor J.; Barro, Lassina; Seghatchian, Jerard; Burnouf, Thierry

    2017-01-01

    Over 110 million units of blood are collected yearly. The need for blood products is greater in developing countries, but so is the risk of contracting a transfusion-transmitted infection. Without efficient donor screening/viral testing and validated pathogen inactivation technology, the risk of transfusion-transmitted infections correlates with the infection rate of the donor population. The World Health Organization has published guidelines on good manufacturing practices in an effort to ensure a strong global standard of transfusion and blood product safety. Sub-Saharan Africa is a high-risk region for malaria, human immunodeficiency virus (HIV), hepatitis B virus and syphilis. Southeast Asia experiences high rates of hepatitis C virus. Areas with a tropical climate have an increased risk of Zika virus, Dengue virus, West Nile virus and Chikungunya, and impoverished countries face economical limitations which hinder efforts to acquire the most modern pathogen inactivation technology. These systems include Mirasol® Pathogen Reduction Technology, INTERCEPT®, and THERAFLEX®. Their procedures use a chemical and ultraviolet or visible light for pathogen inactivation and significantly decrease the threat of pathogen transmission in plasma and platelets. They are licensed for use in Europe and are used in several other countries. The current interest in the blood industry is the development of pathogen inactivation technologies that can treat whole blood (WB) and red blood cell (RBC). The Mirasol system has recently undergone phase III clinical trials for treating WB in Ghana and has demonstrated some efficacy toward malaria inactivation and low risk of adverse effects. A 2nd-generation of the INTERCEPT® S-303 system for WB is currently undergoing a phase III clinical trial. Both methodologies are applicable for WB and components derived from virally reduced WB or RBC. PMID:28488960

  6. Efficient production of recombinant adeno-associated viral vector, serotype DJ/8, carrying the GFP gene.

    Science.gov (United States)

    Hashimoto, Haruo; Mizushima, Tomoko; Chijiwa, Tsuyoshi; Nakamura, Masato; Suemizu, Hiroshi

    2017-06-15

    The purpose of this study was to establish an efficient method for the preparation of an adeno-associated viral (AAV), serotype DJ/8, carrying the GFP gene (AAV-DJ/8-GFP). We compared the yields of AAV-DJ/8 vector, which were produced by three different combination methods, consisting of two plasmid DNA transfection methods (lipofectamine and calcium phosphate co-precipitation; CaPi) and two virus DNA purification methods (iodixanol and cesium chloride; CsCl). The results showed that the highest yield of AAV-DJ/8-GFP vector was accomplished with the combination method of lipofectamine transfection and iodixanol purification. The viral protein expression levels and the transduction efficacy in HEK293 and CHO cells were not different among four different combination methods for AAV-DJ/8-GFP vectors. We confirmed that the AAV-DJ/8-GFP vector could transduce to human and murine hepatocyte-derived cell lines. These results show that AAV-DJ/8-GFP, purified by the combination of lipofectamine and iodixanol, produces an efficient yield without altering the characteristics of protein expression and AAV gene transduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production.

    Science.gov (United States)

    Sánchez, Elena G; Riera, Elena; Nogal, Marisa; Gallardo, Carmina; Fernández, Paloma; Bello-Morales, Raquel; López-Guerrero, José Antonio; Chitko-McKown, Carol G; Richt, Jürgen A; Revilla, Yolanda

    2017-09-04

    African swine fever virus (ASFV) is a highly pathogenic, double-stranded DNA virus with a marked tropism for cells of the monocyte-macrophage lineage, affecting swine species and provoking severe economic losses and health threats. In the present study, four established porcine cell lines, IPAM-WT, IPAM-CD163, C∆2+ and WSL, were compared to porcine alveolar macrophage (PAM) in terms of surface marker phenotype, susceptibility to ASFV infection and virus production. The virulent ASFV Armenia/07, E70 or the naturally attenuated NHV/P68 strains were used as viral models. Cells expressed only low levels of specific receptors linked to the monocyte/macrophage lineage, with low levels of infection overall, with the exception of WSL, which showed more efficient production of strain NHV/P68 but not of strains E70 and Armenia/07.

  8. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs

    NARCIS (Netherlands)

    ter Brake, Olivier; Berkhout, Ben

    2005-01-01

    RNA interference (RNAi) is an evolutionary conserved gene silencing mechanism in which small interfering RNA (siRNA) mediates the sequence specific degradation of mRNA. The recent discovery that exogenously delivered siRNA can trigger RNAi in mammalian cells raises the possibility to use this

  9. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays.

    Science.gov (United States)

    Honkela, Antti; Peltonen, Jaakko; Topa, Hande; Charapitsa, Iryna; Matarese, Filomena; Grote, Korbinian; Stunnenberg, Hendrik G; Reid, George; Lawrence, Neil D; Rattray, Magnus

    2015-10-20

    Genes with similar transcriptional activation kinetics can display very different temporal mRNA profiles because of differences in transcription time, degradation rate, and RNA-processing kinetics. Recent studies have shown that a splicing-associated RNA production delay can be significant. To investigate this issue more generally, it is useful to develop methods applicable to genome-wide datasets. We introduce a joint model of transcriptional activation and mRNA accumulation that can be used for inference of transcription rate, RNA production delay, and degradation rate given data from high-throughput sequencing time course experiments. We combine a mechanistic differential equation model with a nonparametric statistical modeling approach allowing us to capture a broad range of activation kinetics, and we use Bayesian parameter estimation to quantify the uncertainty in estimates of the kinetic parameters. We apply the model to data from estrogen receptor α activation in the MCF-7 breast cancer cell line. We use RNA polymerase II ChIP-Seq time course data to characterize transcriptional activation and mRNA-Seq time course data to quantify mature transcripts. We find that 11% of genes with a good signal in the data display a delay of more than 20 min between completing transcription and mature mRNA production. The genes displaying these long delays are significantly more likely to be short. We also find a statistical association between high delay and late intron retention in pre-mRNA data, indicating significant splicing-associated production delays in many genes.

  10. Viral encephalitis

    Directory of Open Access Journals (Sweden)

    Marcus Tulius T Silva

    2013-09-01

    Full Text Available While systemic viral infections are exceptionally common, symptomatic viral infections of the brain parenchyma itself are very rare, but a serious neurologic condition. It is estimated that viral encephalitis occurs at a rate of 1.4 cases per 100.000 inhabitants. Geography is a major determinant of encephalitis caused by vector-borne pathogens. A diagnosis of viral encephalitis could be a challenge to the clinician, since almost 70% of viral encephalitis cases are left without an etiologic agent identified. In this review, the most common viral encephalitis will be discussed, with focus on ecology, diagnosis, and clinical management.

  11. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Shengniao Niu

    Full Text Available Hibiscus chlorotic ringspot virus (HCRSV is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP functions on virus replication and movement in kenaf (Hibiscus cannabinus L., two HCRSV mutants, designated as p2590 (A to G in which the first start codon ATG was replaced with GTG and p2776 (C to G in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.

  12. Induction of tachykinin production in airway epithelia in response to viral infection.

    Directory of Open Access Journals (Sweden)

    James P Stewart

    2008-03-01

    Full Text Available The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung.In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection.Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response.

  13. MicroRNA expression in rainbow trout (Oncorhynchus mykiss) vaccinated with a DNA vaccine encoding the glycoprotein gene of Viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    Viral hemorrhagic septicemia caused by a fish rhabdovirus, Viral hemorrhagic septicemia virus (VHSV), results in significant mortality in farmed rainbow trout (Oncorhynchus mykiss Walbaum). Although the disease had been eradicated in Denmark, wildlife marine reservoir of VHSV poses a threat parti...

  14. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    NARCIS (Netherlands)

    Miesen, P.; Ivens, A.; Buck, A.H.; Rij, R.P. van

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of

  15. Factors associated with time to achieve an undetectable HIV RNA viral load after start of antiretroviral treatment in HIV-1-infected pregnant women

    NARCIS (Netherlands)

    Snippenburg, W.; Nellen, F. J. B.; Smit, C.; Wensing, A. M. J.; Godfried, M. H.; Mudrikova, T.

    2017-01-01

    To identify factors associated with the time to viral suppression in women starting antiretroviral treatment (ART) during pregnancy. Knowledge on duration of viral load (VL) decline could help deciding the timing of treatment initiation. Highly active antiretroviral treatment (HAART)-naive pregnant

  16. Viral marketing

    OpenAIRE

    Bláhová, Adéla

    2012-01-01

    The aim of my thesis is to provide a comprehensive overview of the viral marketing and to analyze selected viral campaigns. There is a description of advantages and disadvantages of this marketing tool. In the end I suggest for which companies viral marketing is an appropriate form of the promotion.

  17. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein.

    Science.gov (United States)

    Zhang, Liyong; Xiang, Wenpei; Wang, Guoliang; Yan, Zhengzheng; Zhu, Zhaowei; Guo, Zhong; Sengupta, Rajib; Chen, Alex F; Loughran, Patricia A; Lu, Ben; Wang, Qingde; Billiar, Timothy R

    2016-07-15

    The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs.

    Science.gov (United States)

    Tartour, Kevin; Nguyen, Xuan-Nhi; Appourchaux, Romain; Assil, Sonia; Barateau, Véronique; Bloyet, Louis-Marie; Burlaud Gaillard, Julien; Confort, Marie-Pierre; Escudero-Perez, Beatriz; Gruffat, Henri; Hong, Saw See; Moroso, Marie; Reynard, Olivier; Reynard, Stéphanie; Decembre, Elodie; Ftaich, Najate; Rossi, Axel; Wu, Nannan; Arnaud, Frédérick; Baize, Sylvain; Dreux, Marlène; Gerlier, Denis; Paranhos-Baccala, Glaucia; Volchkov, Viktor; Roingeard, Philippe; Cimarelli, Andrea

    2017-09-01

    IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.

  19. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  20. Viral infection and host defense.

    Science.gov (United States)

    Carter, W A; De Clercq, E

    1974-12-27

    Double-stranded RNA, made as an intermediary substance in the replication of most, if not all, viruses, may play a much more important role in the pathogenesis and the recovery from virus infections than has hitherto been suspected. Apparently, dsRNA is used by both the challenge virus and the host cell in an attempt to gain "molecular control." Double-stranded RNA exerts a set of effects, which may be well balanced, not only at the level of the individual cell but also at the complex assemblage of these cells termed the organism (Fig. 1). In the cell, interferon synthesis is triggered, although interferon mRNA translation may not occur if dsRNA shuts off protein synthesis too quickly. In the whole organism, the disease severity will depend on how certain toxic reactions evoked by infection (such as cell necrosis and fever) are counterbalanced by an increase in the host defense mechanisms (for example, immune responsiveness and interferon production). Many aspects of the response, relating to either progress of, or recovery from, the disease, can be explained on the basis of a dsRNA. In addition to drawing attention to the biodynamic role of dsRNA, our hypothesis suggests specific experimental vectors designed to enhance our information on the molecular basis of the morbid process which occurs with viral infection. Finally, we suggest that, although the dsRNA molecule may be viewed as a rather simple unit structure, the opportunity for further diversity in the biological activity of a given dsRNA molecule always exists. Namely, each deviation from a perfectly double-helical arrangement introduces the possibility for emphasizing one biological reactivity at the expense of another. This latter structure-activity property may partially account for the extreme apparent diversity, commonly encountered, in the presentations of virologic illness. Appendix note added in proof. Subsequent to submission of this text, we have found that the potent mitogen effect of dsRNA for

  1. The p22 RNA Silencing Suppressor of the Crinivirus Tomato chlorosis virus is Dispensable for Local Viral Replication but Important for Counteracting an Antiviral RDR6-Mediated Response during Systemic Infection

    Directory of Open Access Journals (Sweden)

    Yazmín Landeo-Ríos

    2016-06-01

    Full Text Available Among the components of the RNA silencing pathway in plants, RNA-dependent RNA polymerases (RDRs play fundamental roles in antiviral defence. Here, we demonstrate that the Nicotiana benthamiana RDR6 is involved in defence against the bipartite crinivirus (genus Crinivirus, family Closteroviridae Tomato chlorosis virus (ToCV. Additionally, by producing a p22-deficient ToCV infectious mutant clone (ToCVΔp22, we studied the role of this viral suppressor of RNA silencing in viral infection in both wild-type and RDR6-silenced N. benthamiana (NbRDR6i plants. We demonstrate that p22 is dispensable for the replication of ToCV, where RDR6 appears not to have any effect. Furthermore, the finding that ToCV∆p22 systemic accumulation was impaired in wild-type N. benthamiana but not in NbRDR6i plants suggests a role for p22 in counteracting an RDR6-mediated antiviral response of the plant during systemic infection.

  2. Viral Gastroenteritis (Stomach Flu)

    Science.gov (United States)

    ... Viral gastroenteritis (stomach flu) Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  3. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA

    NARCIS (Netherlands)

    Harwig, Alex; Jongejan, Aldo; van Kampen, Antoine H. C.; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Evidence is accumulating that retroviruses can produce microRNAs (miRNAs). To prevent cleavage of their RNA genome, retroviruses have to use an alternative RNA source as miRNA precursor. The transacting responsive (TAR) hairpin structure in HIV-1 RNA has been suggested as source for miRNAs, but how

  4. Production of a highly immunogenic subunit ISCOM vaccine against Bovine Viral Diarrhea Virus

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Roensholt, L.; Jensen, M.Holm

    1999-01-01

    by Vaccination of the dam. We describe in this report the production and initial testing of an inactivated subunit vaccine against BVDV. The vaccine is based on production of antigen in primary bovine cell cultures, extraction of antigens from infected cells with detergent, chromatographic purification......, concentration, and insertion of antigens into immune stimulating complexes (ISCOMs). Vaccines based on two different Danish strains of BVDV were injected into calves and the antisera produced were tested for neutralising activity against a panel of Danish BVDV strains. The two vaccines induced different...... neutralisation responses, which seem to partly complement each other. The implication of these observations for successful Vaccination against BVDV is discussed....

  5. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle

    Directory of Open Access Journals (Sweden)

    Neill John D

    2012-08-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. Methods The sequence of the open reading frame (ORF from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Results Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were

  6. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  7. Feed intake and weight changes in Bos indicus-Bos taurus crossbred steers following Bovine Viral Diarrhea Virus Type 1b challenge under production conditions

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366) that were challenge...

  8. Induction of GADD34 is necessary for dsRNA-dependent interferon-β production and participates in the control of Chikungunya virus infection.

    Directory of Open Access Journals (Sweden)

    Giovanna Clavarino

    Full Text Available Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR phosphorylates translation initiation factor 2-alpha (eIF2α and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a, an important component of the unfolded protein response (UPR, is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.

  9. Effects of Heterologous tRNA Modifications on the Production of Proteins Containing Noncanonical Amino Acids

    Directory of Open Access Journals (Sweden)

    Ana Crnković

    2018-02-01

    Full Text Available Synthesis of proteins with noncanonical amino acids (ncAAs enables the creation of protein-based biomaterials with diverse new chemical properties that may be attractive for material science. Current methods for large-scale production of ncAA-containing proteins, frequently carried out in Escherichia coli, involve the use of orthogonal aminoacyl-tRNA synthetases (o-aaRSs and tRNAs (o-tRNAs. Although o-tRNAs are designed to be orthogonal to endogenous aaRSs, their orthogonality to the components of the E. coli metabolism remains largely unexplored. We systematically investigated how the E. coli tRNA modification machinery affects the efficiency and orthogonality of o-tRNASep used for production of proteins with the ncAA O-phosphoserine (Sep. The incorporation of Sep into a green fluorescent protein (GFP in 42 E. coli strains carrying deletions of single tRNA modification genes identified several genes that affect the o-tRNA activity. Deletion of cysteine desulfurase (iscS increased the yield of Sep-containing GFP more than eightfold, while overexpression of dimethylallyltransferase MiaA and pseudouridine synthase TruB improved the specificity of Sep incorporation. These results highlight the importance of tRNA modifications for the biosynthesis of proteins containing ncAAs, and provide a novel framework for optimization of o-tRNAs.

  10. Production of Myxoma virus gateway entry and expression libraries and validation of viral protein expression.

    Science.gov (United States)

    Smallwood, Sherin E; Rahman, Masmudur M; Werden, Steven J; Martino, Maria Fernanda; McFadden, Grant

    2011-05-01

    Invitrogen's Gateway technology is a recombination-based cloning method that allows for rapid transfer of numerous open reading frames (ORFs) into multiple plasmid vectors, making it useful for diverse high-throughput applications. Gateway technology has been utilized to create an ORF library for Myxoma virus (MYXV), a member of the Poxviridae family of DNA viruses. MYXV is the prototype virus for the genus Leporipoxvirus, and is pathogenic only in European rabbits. MYXV replicates exclusively in the host cell cytoplasm, and its genome encodes 171 ORFs. A number of these ORFs encode proteins that interfere with or modulate host defense mechanisms, particularly the inflammatory responses. Furthermore, MYXV is able to productively infect a variety of human cancer cell lines and is being developed as an oncolytic virus for treating human cancers. MYXV is therefore an excellent model for studying poxvirus biology, pathogenesis, and host tropism, and a good candidate for ORFeome development.

  11. Pemasaran ViralViral Marketing

    OpenAIRE

    Situmorang, James Rianto

    2010-01-01

    Viral marketing is an extremely powerful and effective form of internet marketing. Itis a new form of word-of-mouth through internet. In viral marketing, someone passeson a marketing message to someone else and so on. Viral marketing proposes thatmessages can be rapidly disseminated from consumer to consumer leading to largescale market acceptance. The analogy of a virus is used to described the exponentialdiffusion of information in an electronic environment and should not be confusedwith th...

  12. Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: a FRET-based probe for sensing double-stranded fluorophore tagged small RNAs.

    Science.gov (United States)

    Koukiekolo, Roger; Jakubek, Zygmunt J; Cheng, Jenny; Sagan, Selena M; Pezacki, John Paul

    2009-08-01

    Eukaryotes have evolved complex cellular responses to double-stranded RNA. One response that is highly conserved across many species is the RNA silencing pathway. Tombusviruses have evolved a mechanism to evade the RNA silencing pathway that involves a small protein, p19, that acts as a suppressor of RNA silencing. This protein binds specifically to small-interfering RNAs (siRNAs) with nanomolar affinity in a sequence-independent manner and with size selectivity. Here we demonstrate a new approach for rapidly determining the quantities of siRNA using fluorescence resonance energy transfer (FRET) between the Carnation Italian ringspot virus (CIRV) p19-CFP fusion protein and Cy3-labeled siRNA. The CIRV p19 fusion protein binds double-stranded siRNAs with nanomolar affinity as determined by FRET. [corrected

  13. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    Science.gov (United States)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  14. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    Directory of Open Access Journals (Sweden)

    Tamara Kakoschke

    Full Text Available To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.

  15. A new methodology for polyvalent intravenous immunoglobulin solution production with a two-stage process of viral inactivation

    Directory of Open Access Journals (Sweden)

    Antônio Edson de Souza Lucena

    2010-12-01

    Full Text Available Highly purified intravenous immunoglobulin G concentrate (IV IgG was produced with the use of polyethylene glycol associated to a single-stage precipitation by ethanol, instead of the classic Cohn-Oncley process, which employs cold alcohol as the precipitating agent, in a three-stage process. Precipitation of crude fraction containing more than 95% of immunoglobulin G was performed by liquid chromatography with a cation exchanger, CM-Sepharose, as a stationary phase. During the process, the product was subjected to two-stage viral inactivation. The first stage was performed by the action of sodium caprylate, 30 mM at pH 5.1+/- 0.1, and the second stage was performed by the action of a solvent-detergent mixture. The finished product was formulated at 5% with 10% sucralose as the stabilizing agent. The process yields 3.3g of IgG/liter of plasma. The finished product analysis showed an anti-complementary activity lower than 1CH50. Polymer and aggregate percent levels were lower than 3% in the five batches studied. The analysis of neutralizing capacity showed the presence of antibacterial and antiviral antibodies in at least three times higher concentrations than the levels found in source plasma. The finished product fulfilled all purity requirements stated in the 4th edition of the European pharmacopeia.Obteve-se concentrado de imunoglobulina G intravenosa IgGIV, altamente purificado, utilizando-se polietilenoglicol associado a uma única etapa de precipitação por etanol, em substituição ao tradicional método descrito por Cohn-Oncley, que emprega, em três etapas, o mesmo álcool resfriado, como agente precipitante. A purificação da fração bruta contendo mais de 95% de imunoglobulina G foi realizada utilizando-se cromatografia líquida com um trocador de cátion, a CM-Sepharose, como fase estacionária. Durante o processamento o produto foi submetido a dupla inativação viral sendo a primeira pela ação do caprilato de sódio, 30 mM a p

  16. Symptom severity and viral protein or RNA accumulation in lettuce affected by big-vein disease Severidad de síntomas y acumulación de proteínas o ARN virales en lechugas afectadas por la enfermedad de las venas grandes

    Directory of Open Access Journals (Sweden)

    Carolina Araya

    2011-03-01

    Full Text Available Big-vein disease (BVD is a widespread and economically damaging disease in lettuce (Lactuca sativa L.. Typical symptoms are chlorotic clearing around leaf veins, leaf deformations, and impaired head development. In this research, we studied the relationship between symptom intensity and protein and viral RNA accumulation in infected plants. Naturally infected lettuce plants, from the field or greenhouse, were classified according to their symptomatology: mild, moderate, severe, and symptomless. Coat protein accumulation was evaluated by a double antibody sandwich/enzyme-linked immunosorbent assay (DAS-ELISA, and RNA levels were studied by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR and quantitative RT-PCR. Virus coat protein accumulation did not differ for the two viruses associated with this disease among lettuce plants showing different symptom severity. Similarly, abundance of Mirafiori lettuce big-vein virus (MLBVV-RNA3 or Lettuce big-vein associated virus (LBVaV-RNA-2 were not different (P > 0.05 for diverse big vein disease severity rating scales. This suggests that symptom severity expressed by big-vein diseased lettuce plants did not necessarily reflect the accumulation of viruses associated with this disease in the host. Therefore, lettuce plants showing mild symptoms of BVD do not necessarily present lower virus levels than plants showing more severe symptomatology.La enfermedad de las venas grandes de la lechuga (Lactuca sativa L. es de origen viral, está ampliamente distribuida en el mundo, y provoca graves daños económicos en este cultivo. Los síntomas típicos de la enfermedad son clorosis alrededor de las venas, deformación de hojas y ausencia de formación de cabezas. En este trabajo se estudió la relación entre la intensidad de síntomas y la acumulación de proteínas y ARNs de origen viral en plantas afectadas por esta enfermedad. Lechugas infectadas naturalmente, provenientes de campo y de

  17. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  18. TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems.

    Directory of Open Access Journals (Sweden)

    Claire Wynne

    Full Text Available In recent years members of the tripartite motif-containing (TRIM family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR- and RIG-I-like receptor (RLR-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ and TRAF family member-associated NF-κB activator (TANK. Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems.

  19. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Directory of Open Access Journals (Sweden)

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  20. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  1. Methyl-CpG binding protein 2, receptors of innate immunity and receptor for advanced glycation end-products in human viral meningoencephalitis.

    Science.gov (United States)

    Maslinska, Danuta; Laure-Kamionowska, Milena; Maslinski, Sławomir

    2014-01-01

    Inflammation is a normal host defense reaction to infections and tissue injury. In pathology, the process of inflammation is deregulated by various environmental factors, prolonged activation of Toll-like receptors (TLRs), induction of epigenetic machinery or expression of receptors for advanced glycation end-products (RAGE). In the present study, we examined immunoexpression of proteins participating in the above-mentioned mechanisms, in the brain of patients with viral meningoencephalitis. The results showed that depending on the period of the disease, the process of inflammation is deregulated in different ways. In an early period of viral meningoencephalitis, we found numerous so-called microglial nodules which were strongly immunopositive to methyl-CpG protein 2 (MeCP2). This protein is an epigenetic factor important for methylation of DNA; therefore, our results suggest that cells collected in the nodules may participate in modification of the host defense reaction. Moreover, in the early period of viral meningoencephalitis, we found that Purkinje cells of the cerebellum contain TLR3 or TLR9 receptors that can recognize viral pathogens and may activate a self-destructive mechanism in these neurons. In the later (advanced) period of viral meningoencephalitis, despite some of the above observations, RAGE protein was detected in the brain of adult and aging patients. It means that in this period of the disease, the inflammatory process may be deregulated by numerous post-translationally modified proteins that are transported to the brain after binding with activated RAGE. In addition, young patients appeared more susceptible to viral infections than adult and aging patients, because most of them died during the early period of meningoencephalitis.

  2. Evaluation of sera with a low signal to cut-off ratio using two chemiluminescent assays for detecting Hepatitis C Virus, and their correlation with the detection of Viral RNA.

    Science.gov (United States)

    López-Fabal, M ª Fátima; Pérez-Rivilla, Alfredo; Gómez-Garcés, José Luis

    2017-02-23

    All commercial assays used to measure the presence of Hepatitis C virus (HCV) antibodies set cut-off points to categorise the results, but the problem of false positive results in screening hepatitis C sera is well known. The aim of this study was to evaluate the results obtained by two chemiluminescent assays in selected sera, and compare these results with the detection of viral RNA in the specimens studied. Two hundred reactive sera (positive) were selected, although with a low signal to cut-off ratio (S/CO), were selected, using two chemiluminescent assays and were then subjected to genome amplification. Viral RNA could be only be detected in 8 (4%) of the selected specimens. Taking these results into account, we believe that the design of the current chemiluminescent assays do not provide sufficient specificity when they are used as the only tests for the diagnosis of hepatitis C. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Viral Hepatitis

    Science.gov (United States)

    ... Us FAQs Ask a Question Toll Free Numbers Homeless Veterans Chat VA » Health Care » Viral Hepatitis » Veterans and ... Vet Centers) War Related Illness & Injury Study Center Homeless Veterans Returning Service Members Rural Veterans Seniors & Aging Veterans ...

  4. In Vivo Production of Small Recombinant RNAs Embedded in a 5S rRNA-Derived Protective Scaffold.

    Science.gov (United States)

    Stepanov, Victor G; Fox, George E

    2015-01-01

    Preparative synthesis of RNA is a challenging task that is usually accomplished using either chemical or enzymatic polymerization of ribonucleotides in vitro. Herein, we describe an alternative approach in which RNAs of interest are expressed as a fusion with a 5S rRNA-derived scaffold. The scaffold provides protection against cellular ribonucleases resulting in cellular accumulations comparable to those of regular ribosomal RNAs. After isolation of the chimeric RNA from the cells, the scaffold can be removed if necessary by deoxyribozyme-catalyzed cleavage followed by preparative electrophoretic separation of the cleavage reaction products. The protocol is designed for sustained production of high quality RNA on the milligram scale.

  5. Multifaceted regulation of translational readthrough by RNA replication elements in a tombusvirus.

    Directory of Open Access Journals (Sweden)

    Peter A Cimino

    2011-12-01

    Full Text Available Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii mediating cis-preferential replication of viral genomes, and (iii coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family.

  6. Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes.

    OpenAIRE

    Baca-Regen, L; Heinzinger, N; Stevenson, M; Gendelman, H E

    1994-01-01

    Alpha interferon (IFN-alpha) restricts multiple steps of the human immunodeficiency virus type 1 (HIV-1) life cycle. A well-described effect of IFN-alpha is in the modulation of viral nucleic acid synthesis. We demonstrate that IFN-alpha influences HIV-1 DNA synthesis principally by reducing the production of late products of reverse transcription. The magnitude of IFN-alpha-induced downregulation of HIV-1 DNA and/or progeny virion production was dependent on the IFN-alpha concentration, the ...

  7. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II.

    Directory of Open Access Journals (Sweden)

    Ophir Shalem

    2011-09-01

    Full Text Available Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes.

  8. CpG oligodeoxynucleotide and double-stranded RNA synergize nitric oxide production and mRNA expression of inducible nitric oxide synthase, pro-inflammatory cytokines, and chemokines in chicken monocytes

    Science.gov (United States)

    Toll-like receptors (TLRs) recognize microbial components and initiate the innate immune responses that control microbial infections. The interaction between ligands of TLR3 and TLR9, poly I:C (an analog of viral double-stranded RNA), and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide) on t...

  9. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa

    Science.gov (United States)

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A.

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis. PMID:24833221

  10. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Rebecca A. Mosher

    2013-09-01

    Full Text Available Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-siRNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis.

  11. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) During Infection With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With an Anti-VHSV DNA Vaccine

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Lorenzen, Niels

    This project seeks to characterize molecular genetic and immunological mechanisms involved in rainbow trout (Oncorhynchus mykiss) immunity towards Viral hemorrhagic septicemia virus (VHSV). To do so, we consider both relevant genes and the newly discovered small double-stranded RNAs called microR...

  12. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone.

    Directory of Open Access Journals (Sweden)

    Hongjie Xia

    2015-07-01

    Full Text Available RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71, which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3'-to-5' unwinds RNA helices in an adenosine triphosphate (ATP-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16, another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings

  13. Identification of Restriction Factors by Human Genome-Wide RNA Interference Screening of Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as Inhibitors of the Vaccinia Virus K1L-C7L- Mutant.

    Science.gov (United States)

    Sivan, Gilad; Ormanoglu, Pinar; Buehler, Eugen C; Martin, Scott E; Moss, Bernard

    2015-08-04

    RNA interference (RNAi) screens intended to identify host factors that restrict virus replication may fail if the virus already counteracts host defense mechanisms. To overcome this limitation, we are investigating the use of viral host range mutants that exhibit impaired replication in nonpermissive cells. A vaccinia virus (VACV) mutant with a deletion of both the C7L and K1L genes, K1L(-)C7L(-), which abrogates replication in human cells at a step prior to late gene expression, was chosen for this strategy. We carried out a human genome-wide small interfering RNA (siRNA) screen in HeLa cells infected with a VACV K1L(-)C7L(-) mutant that expresses the green fluorescent protein regulated by a late promoter. This positive-selection screen had remarkably low background levels and resulted in the identification of a few cellular genes, notably SAMD9 and WDR6, from approximately 20,000 tested that dramatically enhanced green fluorescent protein expression. Replication of the mutant virus was enabled by multiple siRNAs to SAMD9 or WDR6. Moreover, SAMD9 and WDR6 clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout HeLa cell lines were permissive for replication of the K1L(-)C7L(-) mutant, in agreement with the siRNA data. Expression of exogenous SAMD9 or interferon regulatory factor 1 restricted replication of the K1L(-)C7L(-) mutant in the SAMD9(-/-) cells. Independent interactions of SAMD9 with the K1 and C7 proteins were suggested by immunoprecipitation. Knockout of WDR6 did not reduce the levels of SAMD9 and interactions of WDR6 with SAMD9, C7, and K1 proteins were not detected, suggesting that these restriction factors act independently but possibly in the same innate defense pathway. The coevolution of microbial pathogens with cells has led to an arms race in which the invader and host continuously struggle to gain the advantage. For this reason, traditional siRNA screens may fail to uncover important immune mechanisms if the pathogens

  14. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  15. Mutagenic analysis of potato virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation.

    Science.gov (United States)

    Zayakina, Olga; Arkhipenko, Marina; Kozlovsky, Stanislav; Nikitin, Nikolai; Smirnov, Alexander; Susi, Petri; Rodionova, Nina; Karpova, Olga; Atabekov, Joseph

    2008-01-01

    Previously, we have shown that encapsidated Potato virus X (PVX) RNA was non-translatable in vitro, but could be converted into a translatable form by binding of the PVX movement protein TGBp1 to one end of the virion or by coat protein (CP) phosphorylation. Here, a mutagenic analysis of PVX CP and TGBp1 was used to identify the regions involved in TGBp1-CP binding and translational activation of PVX RNA by TGBp1. It was found that the C-terminal (C-ter) 10/18 amino acids region was not essential for virus-like particle (VP) assembly from CP and RNA. However, the VPs assembled from the CP lacking C-ter 10/18 amino acids were incapable of TGBp1 binding and being translationally activated. It was suggested that the 10-amino-acid C-ter regions of protein subunits located at one end of a polar helical PVX particle contain a domain accessible to TGBp1 binding and PVX remodelling. The non-translatable particles assembled from the C-ter mutant CP could be converted into a translatable form by CP phosphorylation. The TGBp1-CP binding activity was preserved unless a conservative motif IV was removed from TGBp1. By contrast, TGBp1-dependent activation of PVX RNA translation was abolished by deletions of various NTPase/helicase conservative motifs and their combinations. The motif IV might be essential for TGBp1-CP binding, but insufficient for PVX RNA translation activation. The evidence to discriminate between these two events, i.e. TGBp1 binding to the CP-helix and TGBp1-dependent RNA translation activation, is discussed.

  16. Core Gene Expression and Association of Genotypes with Viral ...

    African Journals Online (AJOL)

    Purpose: To determine genotypic distribution, ribonucleic acid (RNA) RNA viral load and express core gene from Hepatitis C Virus (HCV) infected patients in Punjab, Pakistan. Methods: A total of 1690 HCV RNA positive patients were included in the study. HCV genotyping was tested by type-specific genotyping assay, viral ...

  17. Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production

    OpenAIRE

    Rydzanicz, Roman; Zhao, X. Sharon; Johnson, Philip E.

    2005-01-01

    We describe a computer program, Assembly PCR Oligo Maker, created to automate the design of oligodeoxynucleotides for the PCR-based construction of long DNA molecules. This program is freely available at and has been specifically designed to aid in the construction of DNA molecules that are to be used for the production of RNA molecules by in vitro synthesis with T7 RNA polymerase. The input for Assembly PCR Oligo Maker is either the desired DNA sequence to be made or an RNA sequence. If RNA ...

  18. Two viral proteins involved in the proteolytic processing of the cowpea mosaic virus polyproteins.

    NARCIS (Netherlands)

    Vos, P.; Verver, J.; Jaegle, M.; Wellink, J.; Kammen, van A.; Goldbach, R.

    1988-01-01

    A series of specific deletion mutants derived from a full-length cDNA clone of cowpea mosaic virus (CPMV) B RNA was constructed with the aim to study the role of viral proteins in the proteolytic processing of the primary translation products. For the same purpose cDNA clones were constructed having

  19. Guillain-Barré Syndrome, Acute Disseminated Encephalomyelitis and Encephalitis Associated with Zika Virus Infection in Brazil: Detection of Viral RNA and Isolation of Virus during Late Infection.

    Science.gov (United States)

    Brito Ferreira, Maria Lucia; Antunes de Brito, Carlos Alexandre; Moreira, Álvaro José Porto; de Morais Machado, Maria Íris; Henriques-Souza, Adélia; Cordeiro, Marli Tenório; de Azevedo Marques, Ernesto Torres; Pena, Lindomar José

    2017-11-01

    Zika virus (ZIKV) emerged in Brazil in 2015, which was followed by an increase of Guillain-Barre Syndrome (GBS) cases. We report the epidemiological, clinical, and laboratory findings of the first six neurological cases associated with ZIKV in Brazil seen in a reference neurology hospital in Pernambuco, Brazil. In all cases, ZIKV was detected in serum and/or cerebrospinal fluid (CSF) samples. In this case series, four cases were defined as GBS, one as acute disseminated encephalomyelitis (ADEM) and the other as encephalitis. ZIKV was detected in all cases by RT-PCR and virus isolation was successful in two patients. The time between ZIKV acute symptoms and the development of neurological manifestations varied from 3 to 13 days and ZIKV was detected between 15 and 34 days after the initial symptoms. Our results highlight the need to include ZIKV as a differential diagnosis for neurological syndromes in countries with circulation of this arbovirus. Because the viremia in these patients appears to persist longer, direct diagnostic techniques such as RT-PCR and viral isolation should be considered even if it is after the acute phase of viral infection.

  20. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells.

    Directory of Open Access Journals (Sweden)

    Ryoichiro Nishibayashi

    Full Text Available Interleukin-12 (IL-12 is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB. Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells.

  1. KSHV-encoded viral interferon regulatory factor 4 (vIRF4) interacts with IRF7 and inhibits interferon alpha production.

    Science.gov (United States)

    Hwang, Sung-Woo; Kim, DongIk; Jung, Jae U; Lee, Hye-Ra

    2017-05-06

    Before an infection can be completely established, the host immediately turns on the innate immune system through activating the interferon (IFN)-mediated antiviral pathway. Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes a unique antagonistic mechanism of type I IFN-mediated host antiviral immunity by incorporating four viral interferon regulatory factors (vIRF1-4). Herein, we characterized novel immune evasion strategies of vIRF4 to inhibit the IRF7-mediated IFN-α production. KSHV vIRF4 specifically interacts with IRF7, resulting in inhibition of IRF7 dimerization and ultimately suppresses IRF7-mediated activation of type I IFN. These results suggest that each of the KSHV vIRFs, including vIRF4, subvert IFN-mediated anti-viral response via different mechanisms. Therefore, it is indicated that KSHV vIRFs are indeed a crucial immunomodulatory component of their life cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Detection of hepatitis C viral RNA sequences in fresh and paraffin-embedded liver biopsy specimens of non-A, non-B hepatitis patients

    NARCIS (Netherlands)

    Bresters, D.; Cuypers, H. T.; Reesink, H. W.; Chamuleau, R. A.; Schipper, M. E.; Boeser-Nunnink, B. D.; Lelie, P. N.; Jansen, P. L.

    1992-01-01

    In this study methods of HCV-RNA detection in fresh frozen and formalin-fixed, paraffin-embedded liver biopsies are described. Of 22 untreated chronic non-A, non-B hepatitis patients and 6 control patients, a plasma sample and part of a liver biopsy were freshly frozen for hepatitis C virus (HCV)

  3. Viral Effects of a dsRNA Mycovirus (PoV-ASI2792) on the Vegetative Growth of the Edible Mushroom Pleurotus ostreatus.

    Science.gov (United States)

    Song, Ha-Yeon; Choi, Hyo-Jin; Jeong, Hansaem; Choi, Dahye; Kim, Dae-Hyuk; Kim, Jung-Mi

    2016-12-01

    A double-stranded RNA (dsRNA) mycovirus was detected in malformed fruiting bodies of Pleurotus ostreatus strain ASI2792, one of bottle cultivated commercial strains of the edible oyster mushroom. The partial RNA-dependent RNA polymerase (RdRp) gene of the P. ostreatus ASI2792 mycovirus (PoV-ASI2792) was cloned, and a cDNA sequences alignment revealed that the sequence was identical to the RdRp gene of a known PoSV found in the P. ostreatus strain. To investigate the symptoms of PoV-ASI2792 infection by comparing the isogenic virus-free P. ostreatus strains with a virus-infected strain, isogenic virus-cured P. ostreatus strains were obtained by the mycelial fragmentation method for virus curing. The absence of virus was verified with gel electrophoresis after dsRNA-specific virus purification and Northern blot analysis using a partial RdRp cDNA of PoV-ASI2792. The growth rate and mycelial dry weight of virus-infected P. ostreatus strain with PoV-ASI2792 mycovirus were compared to those of three virus-free isogenic strains on 10 different media. The virus-cured strains showed distinctly higher mycelial growth rates and dry weights on all kinds of experimental culture media, with at least a 2.2-fold higher mycelial growth rate on mushroom complete media (MCM) and Hamada media, and a 2.7-fold higher mycelial dry weight on MCM and yeastmalt-glucose agar media than those of the virus-infected strain. These results suggest that the infection of PoV mycovirus has a deleterious effect on the vegetative growth of P. ostreatus.

  4. Viral Effects of a dsRNA Mycovirus (PoV-ASI2792) on the Vegetative Growth of the Edible Mushroom Pleurotus ostreatus

    Science.gov (United States)

    Song, Ha-Yeon; Choi, Hyo-Jin; Jeong, Hansaem; Choi, Dahye

    2016-01-01

    A double-stranded RNA (dsRNA) mycovirus was detected in malformed fruiting bodies of Pleurotus ostreatus strain ASI2792, one of bottle cultivated commercial strains of the edible oyster mushroom. The partial RNA-dependent RNA polymerase (RdRp) gene of the P. ostreatus ASI2792 mycovirus (PoV-ASI2792) was cloned, and a cDNA sequences alignment revealed that the sequence was identical to the RdRp gene of a known PoSV found in the P. ostreatus strain. To investigate the symptoms of PoV-ASI2792 infection by comparing the isogenic virus-free P. ostreatus strains with a virus-infected strain, isogenic virus-cured P. ostreatus strains were obtained by the mycelial fragmentation method for virus curing. The absence of virus was verified with gel electrophoresis after dsRNA-specific virus purification and Northern blot analysis using a partial RdRp cDNA of PoV-ASI2792. The growth rate and mycelial dry weight of virus-infected P. ostreatus strain with PoV-ASI2792 mycovirus were compared to those of three virus-free isogenic strains on 10 different media. The virus-cured strains showed distinctly higher mycelial growth rates and dry weights on all kinds of experimental culture media, with at least a 2.2-fold higher mycelial growth rate on mushroom complete media (MCM) and Hamada media, and a 2.7-fold higher mycelial dry weight on MCM and yeastmalt-glucose agar media than those of the virus-infected strain. These results suggest that the infection of PoV mycovirus has a deleterious effect on the vegetative growth of P. ostreatus. PMID:28154486

  5. Serotype-specific interactions among functional domains of dengue virus 2 nonstructural proteins (NS) 5 and NS3 are crucial for viral RNA replication.

    Science.gov (United States)

    Teramoto, Tadahisa; Balasubramanian, Anuradha; Choi, Kyung H; Padmanabhan, Radhakrishnan

    2017-06-09

    Four serotypes of mosquito-borne dengue virus (DENV), evolved from a common ancestor, are human pathogens of global significance for which there is no vaccine or antiviral drug available. The N-terminal domain of DENV NS5 has guanylyltransferase and methyltransferase (MTase), and the C-terminal region has the polymerase (POL), all of which are important for 5'-capping and RNA replication. The crystal structure of NS5 shows it as a dimer, but the functional evidence for NS5 dimer is lacking. Our studies showed that the substitution of DENV2 NS5 MTase or POL for DENV4 NS5 within DENV2 RNA resulted in a severe attenuation of replication in the transfected BHK-21 cells. A replication-competent species was evolved with the acquired mutations in the DENV2 and DENV4 NS5 MTase or POL domain or in the DENV2 NS3 helicase domain in the DENV2 chimera RNAs by repeated passaging of infected BHK-21 or mosquito cells. The linker region of seven residues in NS5, rich in serotype-specific residues, is important for the recovery of replication fitness in the chimera RNA. Our results, taken together, provide genetic evidence for a serotype-specific interaction between NS3 and NS5 as well as specific interdomain interaction within NS5 required for RNA replication. Genome-wide RNAseq analysis revealed the distribution of adaptive mutations in RNA quasispecies. Those within NS3 and NS5 are located at the surface and/or within the NS5 dimer interface, providing a functional significance to the crystal structure NS5 dimer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Valuable Virality

    NARCIS (Netherlands)

    Akpinar, E.; Berger, Jonah

    2017-01-01

    Given recent interest in social media, many brands now create content that they hope consumers will view and share with peers. While some campaigns indeed go “viral,” their value to the brand is limited if they do not boost brand evaluation or increase purchase. Consequently, a key question is how

  7. Viral Gastroenteritis

    Science.gov (United States)

    ... help relieve the symptoms of viral gastroenteritis in adults: drinking plenty of liquids such as fruit juices, sports ... as the child is hungry giving infants breast milk or full strength ... solutions Older adults and adults with weak immune systems should also ...

  8. CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis.

    Science.gov (United States)

    Fang, Xiaofeng; Shi, Yupeng; Lu, Xiuli; Chen, Zulong; Qi, Yijun

    2015-08-01

    Small RNAs (sRNAs) play important regulatory roles in various aspects of plant biology. They are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. There are three major classes of sRNAs in Arabidopsis: DCL1-dependent microRNA (miRNA), DCL3-dependent heterochromatic siRNA (hc-siRNA), and DCL4-dependent trans-acting siRNA (ta-siRNA). We have previously isolated a mutant with compromised miRNA activity, cma33. Here we show that CMA33 encodes a nuclear localized protein, XAP5 CIRCADIAN TIMEKEEPER (XCT). The cma33/xct mutation led to reduced accumulation of not only miRNAs but also hc-siRNAs and ta-siRNAs. Intriguingly, we found that the expression of DCL1, DCL3, and DCL4, but not other genes in the sRNA biogenesis pathways, was decreased in cma33/xct. Consistent with this, the occupancy of Pol II at DCL1, DCL3, and DCL4 genes was reduced upon the loss of CMA33/XCT. Collectively, our data suggest that CMA33/XCT modulates sRNA production through regulating the transcription of DCLs. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. Identification of Restriction Factors by Human Genome-Wide RNA Interference Screening of Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as Inhibitors of the Vaccinia Virus K1L−C7L− Mutant

    Science.gov (United States)

    Sivan, Gilad; Ormanoglu, Pinar; Buehler, Eugen C.; Martin, Scott E.

    2015-01-01

    ABSTRACT RNA interference (RNAi) screens intended to identify host factors that restrict virus replication may fail if the virus already counteracts host defense mechanisms. To overcome this limitation, we are investigating the use of viral host range mutants that exhibit impaired replication in nonpermissive cells. A vaccinia virus (VACV) mutant with a deletion of both the C7L and K1L genes, K1L−C7L−, which abrogates replication in human cells at a step prior to late gene expression, was chosen for this strategy. We carried out a human genome-wide small interfering RNA (siRNA) screen in HeLa cells infected with a VACV K1L−C7L− mutant that expresses the green fluorescent protein regulated by a late promoter. This positive-selection screen had remarkably low background levels and resulted in the identification of a few cellular genes, notably SAMD9 and WDR6, from approximately 20,000 tested that dramatically enhanced green fluorescent protein expression. Replication of the mutant virus was enabled by multiple siRNAs to SAMD9 or WDR6. Moreover, SAMD9 and WDR6 clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout HeLa cell lines were permissive for replication of the K1L−C7L− mutant, in agreement with the siRNA data. Expression of exogenous SAMD9 or interferon regulatory factor 1 restricted replication of the K1L−C7L− mutant in the SAMD9−/− cells. Independent interactions of SAMD9 with the K1 and C7 proteins were suggested by immunoprecipitation. Knockout of WDR6 did not reduce the levels of SAMD9 and interactions of WDR6 with SAMD9, C7, and K1 proteins were not detected, suggesting that these restriction factors act independently but possibly in the same innate defense pathway. PMID:26242627

  10. The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana[W][OA

    Science.gov (United States)

    Wang, Xian-Bing; Jovel, Juan; Udomporn, Petchthai; Wang, Ying; Wu, Qingfa; Li, Wan-Xiang; Gasciolli, Virginie; Vaucheret, Herve; Ding, Shou-Wei

    2011-01-01

    Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed. PMID:21467580

  11. Associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus, antibodies against bovine viral diarrhea virus, or antibodies against infectious bovine rhinotracheitis virus in calves.

    Science.gov (United States)

    Waldner, Cheryl L; Kennedy, Richard I

    2008-07-01

    To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. 1,782 calves from 61 beef herds. Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.

  12. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV)

    DEFF Research Database (Denmark)

    Bohle, Harry; Lorenzen, Niels; Schyth, Brian Dall

    2011-01-01

    Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been...... for dicer for the generation of siRNAs targeting the nucleoprotein N gene of viral hemorrhagic septicemia virus (VHSV). This rhabdovirus infects salmonid fish and is responsible for large yearly losses in aquaculture production. Specificity of the DsiRNA is assured in two ways: first, by using...

  13. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.

    Science.gov (United States)

    Rothenfusser, Simon; Goutagny, Nadege; DiPerna, Gary; Gong, Mei; Monks, Brian G; Schoenemeyer, Annett; Yamamoto, Masahiro; Akira, Shizuo; Fitzgerald, Katherine A

    2005-10-15

    The paramyxovirus Sendai (SV), is a well-established inducer of IFN-alphabeta gene expression. In this study we show that SV induces IFN-alphabeta gene expression normally in cells from mice with targeted deletions of the Toll-IL-1 resistance domain containing adapters MyD88, Mal, Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF), and TRIF-related adaptor molecule TLR3, or the E3 ubiquitin ligase, TNFR-associated factor 6. This TLR-independent induction of IFN-alphabeta after SV infection is replication dependent and mediated by the RNA helicase, retinoic acid-inducible gene-I (RIG-I) and not the related family member, melanoma differentiation-associated gene 5. Furthermore, we characterize a RIG-I-like RNA helicase, Lgp2. In contrast to RIG-I or melanoma differentiation-associated gene 5, Lgp2 lacks signaling caspase recruitment and activation domains. Overexpression of Lgp2 inhibits SV and Newcastle disease virus signaling to IFN-stimulated regulatory element- and NF-kappaB-dependent pathways. Importantly, Lgp2 does not prevent TLR3 signaling. Like RIG-I, Lgp2 binds double-stranded, but not single-stranded, RNA. Quantitative PCR analysis demonstrates that Lgp2 is present in unstimulated cells at a lower level than RIG-I, although both helicases are induced to similar levels after virus infection. We propose that Lgp2 acts as a negative feedback regulator of antiviral signaling by sequestering dsRNA from RIG-I.

  14. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference.

    Science.gov (United States)

    Chaudhari, Aparna; Pathakota, Gireesh-Babu; Annam, Pavan-Kumar

    2016-01-01

    DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.

  15. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen...... on the same plasmid and not the tRNAs per se. These phenomena seem to have been largely overlooked despite the huge popularity of the T7/pET-based systems for bacterial protein production....... of complementary rare codons in genes-of-interest. Here we show that such extra tRNA, supplied by the commonly used pLysSRARE2 plasmid, can cause two side effects: (1) growth and gene expression can be impaired, and (2) apparent positive effects can be caused by differential expression of the lysozyme gene encoded...

  16. Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs.

    Science.gov (United States)

    Chen, Shu-Chuan; Jeng, King-Song; Lai, Michael M C

    2017-10-15

    Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target.IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of

  17. Determination of the Cell Permissiveness Spectrum, Mode of RNA Replication, and RNA-Protein Interaction of Zika Virus.

    Science.gov (United States)

    Hou, Wangheng; Armstrong, Najealicka; Obwolo, Lilian Akello; Thomas, Michael; Pang, Xiaowu; Jones, Kevin S; Tang, Qiyi

    2017-03-31

    Two lineages of Zika virus (ZIKV) have been classified according to the phylogenetic analysis: African and Asian lineages. It is unclear whether differences exist between the two strains in host cell permissiveness, this information is important for understanding viral pathogenesis and designing anti-viral strategies. In the present study, we comparatively studied the permissive spectrum of human cells for both the African (MR766) and Asian strains (PRVABC59) using an RNA in situ hybridization (RISH) to visualize RNA replication, an immunofluorescence technology, and a western blot assay to determine viral protein production, and a real-time RT-PCR to examine viral RNA multiplication level. The experiments were undertaken in the condition of cell culture. We identified several human cell lines, including fibroblast, epithelial cells, brain cells, stem cells, and blood cells that are susceptible for the infection of both Asian and African strains. We did not find any differences between the MR766 and the PRVABC59 in the permissiveness, infection rate, and replication modes. Inconsistent to a previous report (Hamel et al. JVI 89:8880-8896, 2015), using RISH or real-time RT-PCR, we found that human foreskin fibroblast cells were not permissive for ZIKV infection. Instead, human lung fibroblast cells (MRC-5) were fully permissive for ZIKV infection. Surprisingly, a direct interaction of ZIKV RNA with envelop (E) protein (a structure protein) was demonstrated by an RNA chromatin immunoprecipitation (ChIP) assay. Three binding sites were identified in the ZIKV RNA genome for the interaction with the E protein. Our results imply that the E protein may be important for viral RNA replication, and provide not only the information of ZIKV permissiveness that guides the usage of human cells for the ZIKV studies, but also the insight into the viral RNA-E protein interaction that may be targeted for intervention by designing small molecule drugs.

  18. Development of Polypeptide-based Nanoparticles for Non-viral Delivery of CD22 RNA Trans-splicing Molecule as a New Precision Medicine Candidate Against B-lineage ALL

    Directory of Open Access Journals (Sweden)

    Fatih M. Uckun

    2015-07-01

    Full Text Available CD22ΔE12 has emerged as a driver lesion in the pathogenesis of pediatric B-lineage acute lymphoblastic leukemia (ALL and a new molecular target for RNA therapeutics. Here we report a 43-gene CD22ΔE12 signature transcriptome that shows a striking representation in primary human leukemia cells from patients with relapsed BPL. Our data uniquely indicate that CD22ΔE12 is a candidate driver lesion responsible for the activation of MAPK and PI3-K pathways in aggressive forms of B-lineage ALL. We also show that the forced expression of a CD22 RNA trans-splicing molecule (RTM markedly reduces the capacity of the leukemic stem cell fraction of CD22ΔE12+ B-lineage ALL cells to engraft and cause overt leukemia in NOD/SCID mice. We have successfully complexed our rationally designed lead CD22-RTM with PVBLG-8 to prepare a non-viral nanoscale formulation of CD22ΔE12-RTM with potent anti-cancer activity against CD22ΔE12+ B-lineage leukemia and lymphoma cells. CD22-RTM nanoparticles effectively delivered the CD22-RTM cargo into B-lineage ALL cells and exhibited significant anti-leukemic activity in vitro.

  19. Epstein-Barr virus mRNA export factor EB2 is essential for intranuclear capsid assembly and production of gp350.

    Science.gov (United States)

    Batisse, Julien; Manet, Evelyne; Middeldorp, Jaap; Sergeant, Alain; Gruffat, Henri

    2005-11-01

    Most human herpesviruses, including Epstein-Barr virus (EBV), express a protein which functions primarily as an mRNA export factor. Previously, we deleted the gene for the Epstein-Barr virus mRNA export factor EB2 from the EBV genome and then introduced the mutated genome into 293 cells. Using a transcomplementation assay in which ectopic expression of the transcription factor EB1/ZEBRA was sufficient to induce the EBV productive cycle, we showed that Ori-Lyt-dependent replication of the EBV DNA occurs in the absence of EB2, indicating that EB2 is not essential for the expression and export of early mRNAs. However, in the absence of EB2, no infectious viral particles are produced (H. Gruffat, J. Batisse, D. Pich, B. Neuhierl, E. Manet, W. Hammerschmidt, and A. Sergeant, J. Virol. 76:9635-9644, 2002). In this report, we now show that EB2 is essential for the nuclear export of most, but not all, late mRNAs produced from intronless genes that translate into proteins involved in intranuclear capsid assembly and maturation. As a consequence, we show that EB2 is essential for the proper assembly of intranuclear capsids. Interestingly, the late BLLF1 gene contains an intron, and both unspliced and spliced mRNAs must be exported to the cytoplasm to be translated into gp350 and gp220, respectively (M. Hummel, D. A. Thorley-Lawson, and E. Kieff, J. Virol. 49:413-417, 1984). Our results also demonstrate that although BLLF1 spliced mRNAs are exported to the cytoplasm independently of EB2, EB2 is essential for the nuclear export of unspliced BLLF1 mRNA. In the same assay, herpes simplex virus 1 ICP27 completely inhibited the nuclear export of BLLF1 spliced mRNAs whereas unspliced BLLF1 mRNAs were exported, confirming that in a physiological assay, ICP27 inhibits splicing.

  20. Design, synthesis, and evaluation of bioactive molecules; Quantification of tricyclic pyrones from pharmacokinetic studies; Nanodelivery of siRNA; and Synthesis of viral protease inhibitors

    Science.gov (United States)

    Weerasekara, Sahani Manjitha

    Four research projects were carried out and they are described in this dissertation. Glycogen synthase kinase-3 beta (GSK3?) plays a pivotal and central role in the pathogenesis of Alzheimer's disease (AD) and protein kinase C (PKC) controls the function of other proteins via phosphorylation and involves in tumor promotion. In pursuit of identifying novel GSK3beta and/or PKC inhibitors, substituted quinoline molecules were designed and synthesized based on the structure-activity-relationship studies. Synthesized molecules were evaluated for their neural protective activities and selected molecules were further tested for inhibitory activities on GSK3beta and PKC enzymes. Among these compounds, compound 2 was found to have better GSK3beta enzyme inhibitory and MC65 cell protection activities at low nanomolar concentrations and poor PKC inhibitory activity whereas compound 3 shows better PKC inhibitory activity. This demonstrates the potential for uses of quinoline scaffold in designing novel compounds for AD and cancer. Pharmacokinetics and distribution profiles of two anti-Alzheimer molecules, CP2 and TP70, discovered in our laboratory were assessed using HPLC/MS. Plasma samples of mice and rats fed with TP70 via different routes over various times were analyzed to quantify the amounts of TP70 in plasma of both species. Distribution profiles of TP70 in various tissues of mice were studied and results show that TP70 penetrated the blood brain barrier and accumulated in the brain tissue in significant amounts. Similarly, the amount of CP2 in plasma of mice was analyzed. The HPLC analysis revealed that both compounds have good PK profiles and bioavailability, which would make them suitable candidates for further in vivo efficacy studies. Nanodelivery of specific dsRNA for suppressing the western corn rootworm (WCR, Diabrotica virgifera virgifera) genes was studied using modified chitosan or modified polyvinylpyrrolidinone (PVP) as nanocarriers. Computational

  1. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages.

    Directory of Open Access Journals (Sweden)

    Carlos Zgheib

    Full Text Available Type 2 diabetes mellitus is a complex, systemic metabolic disease characterized by insulin resistance and resulting hyperglycemia, which is associated with impaired wound healing. The clinical complications associated with hyperglycemia are attributed, in part, to the increased production of reactive oxygen species (ROS. Recent studies revealed that long non-coding RNAs (lncRNAs play important regulatory roles in many biological processes. Specifically, lncRNA Lethe has been described as exhibiting an anti-inflammatory effect by binding to the p65 subunit of NFκB and blocking its binding to DNA and the subsequent activation of downstream genes. We therefore hypothesize that dysregulation of Lethe's expression plays a role in hyperglycemia-induced ROS production. To test our hypothesis, we treated RAW264.7 macrophages with low glucose (5 mM or high glucose (25 mM for 24h. High glucose conditions significantly induced ROS production and NOX2 gene expression in RAW cells, while significantly decreasing Lethe gene expression. Overexpression of Lethe in RAW cells eliminated the increased ROS production induced by high glucose conditions, while also attenuating the upregulation of NOX2 expression. Similar results was found also in non-diabetic and diabetic primary macrophage, bone marrow derived macrophage (BMM. Furthermore, overexpression of Lethe in RAW cells treated with high glucose significantly reduced the translocation of p65-NFkB to the nucleus, which resulted in decreased NOX2 expression and ROS production. Interestingly, these findings are consistent with the decreased Lethe gene expression and increased NOX2 gene expression observed in a mouse model of diabetic wound healing. These findings provide the first evidence that lncRNA Lethe is involved in the regulation of ROS production in macrophages through modulation of NOX2 gene expression via NFκB signaling. Moreover, this is the first report to describe a role of lncRNAs, in particular

  2. Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages.

    Science.gov (United States)

    Zgheib, Carlos; Hodges, Maggie M; Hu, Junyi; Liechty, Kenneth W; Xu, Junwang

    2017-01-01

    Type 2 diabetes mellitus is a complex, systemic metabolic disease characterized by insulin resistance and resulting hyperglycemia, which is associated with impaired wound healing. The clinical complications associated with hyperglycemia are attributed, in part, to the increased production of reactive oxygen species (ROS). Recent studies revealed that long non-coding RNAs (lncRNAs) play important regulatory roles in many biological processes. Specifically, lncRNA Lethe has been described as exhibiting an anti-inflammatory effect by binding to the p65 subunit of NFκB and blocking its binding to DNA and the subsequent activation of downstream genes. We therefore hypothesize that dysregulation of Lethe's expression plays a role in hyperglycemia-induced ROS production. To test our hypothesis, we treated RAW264.7 macrophages with low glucose (5 mM) or high glucose (25 mM) for 24h. High glucose conditions significantly induced ROS production and NOX2 gene expression in RAW cells, while significantly decreasing Lethe gene expression. Overexpression of Lethe in RAW cells eliminated the increased ROS production induced by high glucose conditions, while also attenuating the upregulation of NOX2 expression. Similar results was found also in non-diabetic and diabetic primary macrophage, bone marrow derived macrophage (BMM). Furthermore, overexpression of Lethe in RAW cells treated with high glucose significantly reduced the translocation of p65-NFkB to the nucleus, which resulted in decreased NOX2 expression and ROS production. Interestingly, these findings are consistent with the decreased Lethe gene expression and increased NOX2 gene expression observed in a mouse model of diabetic wound healing. These findings provide the first evidence that lncRNA Lethe is involved in the regulation of ROS production in macrophages through modulation of NOX2 gene expression via NFκB signaling. Moreover, this is the first report to describe a role of lncRNAs, in particular Lethe, in

  3. Universal bacterial identification by mass spectrometry of 16S ribosomal RNA cleavage products

    Science.gov (United States)

    Jackson, George W.; McNichols, Roger J.; Fox, George E.; Willson, Richard C.

    2007-03-01

    The public availability of over 180,000 bacterial 16S ribosomal RNA (rRNA) sequences has facilitated microbial identification and classification using nucleic acid hybridization and other molecular approaches. Species-specific PCR, microarrays, and in situ hybridization are based on the presence of unique subsequences in the target sequence and therefore require prior knowledge of what organisms are likely to be present in a sample. Mass spectrometry is not limited by a pre-synthesized inventory of probe/primer sequences. It has already been demonstrated that organism identification can be recovered from mass spectra using various methods including base-specific cleavage of nucleic acids. The feasibility of broad bacterial identification by comparing such mass spectral patterns to predictive databases derived from virtually all previously sequenced strains has yet to be demonstrated, however. Herein, we present universal bacterial identification by base-specific cleavage, mass spectrometry, and an efficient coincidence function for rapid spectral scoring against a large database of predicted "mass catalogs". Using this approach in conjunction with universal PCR of the 16S rDNA gene, four bacterial isolates and an uncultured clone were successfully identified against a database of predicted cleavage products derived 6rom over 47,000 16S rRNA sequences representing all major bacterial taxaE At present, the conventional DNA isolation and PCR steps require approximately 2 h, while subsequent transcription, enzymatic cleavage, mass spectrometric analysis, and database comparison require less than 45 min. All steps are amenable to high-throughput implementation.

  4. Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.

    Directory of Open Access Journals (Sweden)

    John S Cho

    2009-09-01

    Full Text Available The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha. How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.

  5. Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection.

    Science.gov (United States)

    Hoover, Haley S; Wang, Joseph Che-Yen; Middleton, Stefani; Ni, Peng; Zlotnick, Adam; Vaughan, Robert C; Kao, C Cheng

    2016-09-01

    The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically

  6. The Transcription Factor T-Bet Is Regulated by MicroRNA-155 in Murine Anti-Viral CD8+ T Cells via SHIP-1

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hope

    2017-12-01

    Full Text Available We report here that the expression of the transcription factor T-bet, which is known to be required for effector cytotoxic CD8+ T lymphocytes (CTL generation and effector memory cell formation, is regulated in CTL by microRNA-155 (miR-155. Importantly, we show that the proliferative effect of miR-155 on CD8+ T cells is mediated by T-bet. T-bet levels in CTL were controlled in vivo by miR-155 via SH2 (Src homology 2-containing inositol phosphatase-1 (SHIP-1, a known direct target of miR-155, and SHIP-1 directly downregulated T-bet. Our studies reveal an important and unexpected signaling axis between miR-155, T-bet, and SHIP-1 in in vivo CTL responses and suggest an important signaling module that regulates effector CTL immunity.

  7. Viral epigenetics.

    Science.gov (United States)

    Milavetz, Barry I; Balakrishnan, Lata

    2015-01-01

    DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can

  8. Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin.

    Science.gov (United States)

    Schwarzer, Jana; Rapp, Erdmann; Hennig, René; Genzel, Yvonne; Jordan, Ingo; Sandig, Volker; Reichl, Udo

    2009-07-09

    Mammalian cell culture processes are commonly used for production of recombinant glycoproteins, antibodies and viral vaccines. Since several years there is an increasing interest in cell culture-based influenza vaccine production to overcome limitations of egg-based production systems, to improve vaccine supply and to increase flexibility in vaccine manufacturing. With the switch of the production system several key questions concerning the possible impact of host cell lines on antigen quality, passage-dependent selection of certain viral phenotypes or changes in hemagglutinin (HA) conformation have to be addressed to guarantee safety and efficiency of vaccines. In contrast to the production of recombinant glycoproteins, comparatively little is known regarding glycosylation of HA, derived from mammalian cell cultures. Within this study, a capillary DNA-sequencer (based on CGE-LIF technology), was utilized for N-glycan analysis of three different influenza virus strains, which were replicated in six different cell lines. Detailed results concerning the influence of the host cell line on complexity and composition of the HA N-glycosylation pattern, are presented. Strong host cell but also virus type and subtype dependence of HA N-glycosylation was found. Clear differences were already observed, by N-glycan fingerprint comparison. Further structural investigations of the N-glycan pools revealed that host cell dependence of HA N-glycosylation was mainly related to minor variations of the (monomeric) constitution of single N-glycans. To some extent, shifts in the N-glycan pool composition regarding the proportion of different N-glycan types were observed. In contrast to this, a principal switch of the N-glycan type attached to HA was observed when comparing different virus types (A and B) and subtypes (H1N1 and H3N2).

  9. Viral bronchiolitis.

    Science.gov (United States)

    Florin, Todd A; Plint, Amy C; Zorc, Joseph J

    2017-01-14

    Viral bronchiolitis is a common clinical syndrome affecting infants and young children. Concern about its associated morbidity and cost has led to a large body of research that has been summarised in systematic reviews and integrated into clinical practice guidelines in several countries. The evidence and guideline recommendations consistently support a clinical diagnosis with the limited role for diagnostic testing for children presenting with the typical clinical syndrome of viral upper respiratory infection progressing to the lower respiratory tract. Management is largely supportive, focusing on maintaining oxygenation and hydration of the patient. Evidence suggests no benefit from bronchodilator or corticosteroid use in infants with a first episode of bronchiolitis. Evidence for other treatments such as hypertonic saline is evolving but not clearly defined yet. For infants with severe disease, the insufficient available data suggest a role for high-flow nasal cannula and continuous positive airway pressure use in a monitored setting to prevent respiratory failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Viral Subversion of the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Valerie Le Sage

    2013-08-01

    Full Text Available The nuclear pore complex (NPC acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.

  11. Ultrastructural Characterization of Turnip Mosaic Virus-Induced Cellular Rearrangements Reveals Membrane-Bound Viral Particles Accumulating in Vacuoles.

    Science.gov (United States)

    Wan, Juan; Basu, Kaustuv; Mui, Jeannie; Vali, Hojatollah; Zheng, Huanquan; Laliberté, Jean-François

    2015-12-01

    Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The

  12. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery.

    Science.gov (United States)

    Moon, Stephanie L; Dodd, Benjamin J T; Brackney, Doug E; Wilusz, Carol J; Ebel, Gregory D; Wilusz, Jeffrey

    2015-11-01

    Productive arbovirus infections require mechanisms to suppress or circumvent the cellular RNA interference (RNAi) pathway, a major antiviral response in mosquitoes. In this study, we demonstrate that two flaviviruses, Dengue virus and Kunjin virus, significantly repress siRNA-mediated RNAi in infected human cells as well as during infection of the mosquito vector Culex quinquefasciatus. Arthropod-borne flaviviruses generate a small structured non-coding RNA from the viral 3' UTR referred to as sfRNA. Analysis of infections with a mutant Kunjin virus that is unable to generate appreciable amounts of the major sfRNA species indicated that RNAi suppression was associated with the generation of the non-coding sfRNA. Co-immunoprecipitation of sfRNA with RNAi mediators Dicer and Ago2 suggest a model for RNAi suppression. Collectively, these data help to establish a clear role for sfRNA in RNAi suppression and adds to the emerging impact of viral long non-coding RNAs in modulating aspects of anti-viral immune processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas/Progress and limitations of dsRNA strategies in the control of viral diseases in aquaculture

    National Research Council Canada - National Science Library

    Ljubomir Papic; Katherine García; Jaime Romero

    2015-01-01

    ... de peces activando mecanismos de defensa inmune innata. La definición de un adecuado sistema de suministro para asegurar el ingreso de los dsRNA a la célula objetivo ha resultado en pruebas medianamente exitosas. Sin embargo, el cómo suministrar el dsRNA para asegurar el ingreso al organismo en su hábitat natural, se presenta como la pr...

  14. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    Science.gov (United States)

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  15. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yao Hailan

    2012-08-01

    Full Text Available Abstract Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B expressed by a recombinant vector (pGCL-2B or a recombinant lentivirus (Lenti-2B were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.

  16. Viral small interfering RNAs target host genes to mediate disease symptoms in plants.

    Directory of Open Access Journals (Sweden)

    Neil A Smith

    2011-05-01

    Full Text Available The Cucumber mosaic virus (CMV Y-satellite RNA (Y-Sat has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco. How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.

  17. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine

    NARCIS (Netherlands)

    Geeraedts, Felix; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2012-01-01

    Whole inactivated virus (WIV) influenza vaccines are more immunogenic in unprimed individuals than split-virus or subunit vaccines. In mice, this superior immunogenicity has been linked to the recognition of the viral ssRNA by endosomal TLR7 receptors in immune cells, leading to IFN alpha production

  18. Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA hsa-miR-92a

    Science.gov (United States)

    Poole, Emma; Avdic, Selmir; Hodkinson, Jemima; Jackson, Sarah; Wills, Mark; Slobedman, Barry

    2014-01-01

    ABSTRACT The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system. PMID:25253336

  19. Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a.

    Science.gov (United States)

    Poole, Emma; Avdic, Selmir; Hodkinson, Jemima; Jackson, Sarah; Wills, Mark; Slobedman, Barry; Sinclair, John

    2014-12-01

    The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the "latent" phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system. Copyright © 2014 Poole et al.

  20. Human Papillomavirus E2 Protein: Linking Replication, Transcription, and RNA Processing.

    Science.gov (United States)

    Graham, Sheila V

    2016-10-01

    The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the infected epithelium. This means that viral proteins must exert control over epithelial gene expression in order to optimize viral production. The HPV E2 protein controls replication, transcription, and viral genome partitioning during the viral infectious life cycle. It consists of a nucleic acid-binding domain and a protein-protein interaction domain separated by a flexible serine and arginine-rich hinge region. Over the last few years, mounting evidence has uncovered an important new role for E2 in viral and cellular RNA processing. This Gem discusses the role of E2 in controlling the epithelial cellular environment and how E2 might act to coordinate late events in the viral replication cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants

    Directory of Open Access Journals (Sweden)

    Vaibhav Jain

    2016-02-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV encodes 12 viral microRNAs (miRNAs that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12, and for mutants deleted for 10 of 12 (ΔmiR-cluster or all 12 miRNAs (ΔmiR-all. NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community.

  2. Protein-RNA linkage and posttranslational modifications of feline calicivirus and murine norovirus VPg proteins

    Directory of Open Access Journals (Sweden)

    Allan Olspert

    2016-06-01

    Full Text Available Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV and murine norovirus (MNV. These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5′ end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle.

  3. NITRIC OXIDE PRODUCTION AND iNOS mRNA EXPRESSION IN IFN-8-STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH iNOS siRNAs

    Science.gov (United States)

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biological pathway i...

  4. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products.

    Science.gov (United States)

    Fleming, Aaron M; Alshykhly, Omar; Zhu, Judy; Muller, James G; Burrows, Cynthia J

    2015-06-15

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design.

  5. Temperature-Sensitive Mutants in the Influenza A Virus RNA Polymerase: Alterations in the PA Linker Reduce Nuclear Targeting of the PB1-PA Dimer and Result in Viral Attenuation.

    Science.gov (United States)

    Da Costa, Bruno; Sausset, Alix; Munier, Sandie; Ghounaris, Alexandre; Naffakh, Nadia; Le Goffic, Ronan; Delmas, Bernard

    2015-06-01

    The influenza virus RNA-dependent RNA polymerase catalyzes genome replication and transcription within the cell nucleus. Efficient nuclear import and assembly of the polymerase subunits PB1, PB2, and PA are critical steps in the virus life cycle. We investigated the structure and function of the PA linker (residues 197 to 256), located between its N-terminal endonuclease domain and its C-terminal structured domain that binds PB1, the polymerase core. Circular dichroism experiments revealed that the PA linker by itself is structurally disordered. A large series of PA linker mutants exhibited a temperature-sensitive (ts) phenotype (reduced viral growth at 39.5°C versus 37°C/33°C), suggesting an alteration of folding kinetic parameters. The ts phenotype was associated with a reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using a fluorescent-tagged PB1, we observed that ts and lethal PA mutants did not efficiently recruit PB1 to reach the nucleus at 39.5°C. A protein complementation assay using PA mutants, PB1, and β-importin IPO5 tagged with fragments of the Gaussia princeps luciferase showed that increasing the temperature negatively modulated the PA-PB1 and the PA-PB1-IPO5 interactions or complex stability. The selection of revertant viruses allowed the identification of different types of compensatory mutations located in one or the other of the three polymerase subunits. Two ts mutants were shown to be attenuated and able to induce antibodies in mice. Taken together, our results identify a PA domain critical for PB1-PA nuclear import and that is a "hot spot" to engineer ts mutants that could be used to design novel attenuated vaccines. By targeting a discrete domain of the PA polymerase subunit of influenza virus, we were able to identify a series of 9 amino acid positions that are appropriate to engineer temperature-sensitive (ts) mutants. This is the first time that a large number of ts mutations were

  6. The evidence for a microRNA product of human DROSHA gene.

    Science.gov (United States)

    Mechtler, Peter; Johnson, Sydney; Slabodkin, Hannah; Cohanim, Amir B; Brodsky, Leonid; Kandel, Eugene S

    2017-11-02

    MicroRNAs are short RNA molecules that regulate function and stability of a large subset of eukaryotic mRNAs. In the main pathway of microRNA biogenesis, a short "hairpin" is excised from a primary transcript by ribonuclease DROSHA, followed by additional nucleolytic processing by DICER and inclusion of the mature microRNA into the RNA-induced silencing complex. We report that a microRNA-like molecule is encoded by human DROSHA gene within a predicted stem-loop element of the respective transcript. This putative mature microRNA is complementary to DROSHA transcript variant 1 and can attenuate expression of the corresponding protein. The findings suggest a possibility for a negative feedback loop, wherein DROSHA processes its own transcript and produces an inhibitor of its own biosynthesis.

  7. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro.

    Directory of Open Access Journals (Sweden)

    Kawaljit Kaur

    Full Text Available The RNA-binding protein Hu antigen R (HuR binds to AU-rich elements (ARE in the 3'-untranslated region (UTR of target mRNAs. The HuR-ARE interactions stabilize many oncogenic mRNAs that play important roles in tumorigenesis. Thus, small molecules that interfere with the HuR-ARE interaction could potentially inhibit cancer cell growth and progression. Using a fluorescence polarization (FP competition assay, we identified the compound azaphilone-9 (AZA-9 derived from the fungal natural product asperbenzaldehyde, binds to HuR and inhibits HuR-ARE interaction (IC50 ~1.2 μM. Results from surface plasmon resonance (SPR verified the direct binding of AZA-9 to HuR. NMR methods mapped the RNA-binding interface of HuR and identified the involvement of critical RNA-binding residues in binding of AZA-9. Computational docking was then used to propose a likely binding site for AZA-9 in the RNA-binding cleft of HuR. Our results show that AZA-9 blocks key RNA-binding residues of HuR and disrupts HuR-RNA interactions in vitro. This knowledge is needed in developing more potent AZA-9 derivatives that could lead to new cancer therapy.

  8. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation.

    Science.gov (United States)

    Pontoppidan, Peter L; Jordan, Karina; Carlsen, Anting Liu; Uhlving, Hilde Hylland; Kielsen, Katrine; Christensen, Mette; Ifversen, Marianne; Nielsen, Claus Henrik; Sangild, Per; Heegaard, Niels Henrik Helweg; Heilmann, Carsten; Sengeløv, Henrik; Müller, Klaus

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a procedure with a high risk of treatment related mortality. The primary aim of the present study was to examine associations between markers of gastrointestinal toxicity, markers of systemic inflammation, and plasma levels of microRNA (miRNA) -155 and -146a during the first month after HSCT. The secondary aim was to characterize the impact of the toxic-inflammatory response on the function of circulating leukocytes during immune recovery. Thirty HSCT patients were included. Gastrointestinal injury was monitored by toxicity scores, lactulose-mannitol test and plasma citrulline, as a measure of the enterocyte population. Nadir of citrulline and maximum of oral toxicity scores, intestinal permeability, CRP and plasma levels of IL-6 and IL-10 was seen at day +7 post-HSCT. miRNA-155 and mi-RNA-146a showed an inverse relation with significantly elevated miRNA-155 and decreased miRNA-146a levels, from day 0 to day +28 compared with pre-conditioning levels. Citrulline levels below the median at day +7 were associated with higher spontaneous production of IL-6 and TNF-α as well as higher in vitro stimulated production of IL-17A at day +21. This study is the first to demonstrate that toxic responses to chemotherapy are accompanied by differential regulation of miRNAs with opposing effects on immune regulation. We find that a proinflammatory miRNA profile is sustained during the first three weeks after the transplantation, indicating that these miRNAs may play a role in the regulation of the inflammatory environment during immune reconstitution after HSCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. RNA N6-adenosine methylation (m6A) steers epitranscriptomic control of herpesvirus replication.

    Science.gov (United States)

    Ye, Fengchun

    2017-01-01

    Latency is a hallmark of all herpesviruses, during which the viral genomes are silenced through DNA methylation and suppressive histone modifications. When latent herpesviruses reactivate to undergo productive lytic replication, the suppressive epigenetic marks are replaced with active ones to allow for transcription of viral genes. Interestingly, by using Kaposi's sarcoma-associated herpesvirus (KSHV) as a model, we recently demonstrated that the newly transcribed viral RNAs are also subjected to post-transcriptional N6-adenosine methylation (m6A). Blockade of this post-transcriptional event abolishes viral protein expression and halts virion production. We found that m6A modification controls RNA splicing, stability, and protein translation to regulate viral lytic gene expression and replication. Thus, our finding for the first time reveals a critical role of this epitranscriptomic mechanism in the control of herpesviral replication, which shall shed lights on development of novel strategies for the control of herpesviral infection.

  10. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs.

    Directory of Open Access Journals (Sweden)

    Yvonne Lai

    Full Text Available Toll-like Receptor 3 (TLR3 detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3.Using a human bronchial epithelial cell line (BEAS2B and human embryonic kidney cells (HEK 293T transiently transfected with TLR3, we found that LL37 enhanced poly(I:C-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands.LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA.

  11. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    Science.gov (United States)

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  12. Cellular RNA Helicase DDX1 Is Involved in Transmissible Gastroenteritis Virus nsp14-Induced Interferon-Beta Production

    Directory of Open Access Journals (Sweden)

    Yanrong Zhou

    2017-08-01

    Full Text Available Transmissible gastroenteritis virus (TGEV, an enteropathogenic coronavirus (CoV of porcine, causes lethal watery diarrhea and severe dehydration in piglets and leads to severe economic losses in the swine industry. Unlike most CoVs that antagonize type I interferon (IFN production, previous studies showed that TGEV infection induces IFN-I production both in vivo and in vitro. However, the underlying mechanism(s remain largely unknown. In this study, we found that TGEV infection significantly facilitated IFN-β production as well as activation of the transcription factors IFN regulatory factor 3 (IRF3 and nuclear factor-kappaB (NF-κB in porcine kidney (PK-15 cells. Screening of TGEV-encoded proteins demonstrated that non-structural protein 14 (nsp14 was the most potent IFN-β inducer and induced IFN-β production mainly by activating NF-κB but not IRF3. Further analysis showed that nsp14 interacted with DDX1, a member of the DExD/H helicase family. Knockdown of DDX1 by specific small interfering RNA (siRNA significantly decreased nsp14-induced IFN-β production and NF-κB activation. Furthermore, TGEV-induced IFN-β production and IFN-stimulated gene (ISG expression were decreased in cells transfected with DDX1-specific siRNA, indicating the vital role of DDX1 to TGEV-induced IFN-β responses. In summary, our data revealed a potential coactivator role of host RNA helicase DDX1 to the induction of IFN-β response initiated by TGEV and demonstrated that nsp14 is an important IFN inducer among the TGEV-encoded proteins.

  13. Characterizing ZC3H18, a Multi-domain Protein at the Interface of RNA Production and Destruction Decisions

    DEFF Research Database (Denmark)

    Winczura, Kinga; Schmid, Manfred; Iasillo, Claudia

    2018-01-01

    decay. To dissect ZC3H18 function, we conducted interaction screening and mutagenesis of the protein, which revealed a phosphorylation-dependent isoform. Surprisingly, the modified region of ZC3H18 associates with core histone proteins. Further examination of ZC3H18 function, by genome-wide analyses......, demonstrated its impact on transcription of a subset of protein-coding genes. This activity requires the CBC-interacting domain of the protein, with some genes being also dependent on the NEXT- and/or histone-interacting domains. Our data shed light on the domain requirements of a protein positioned centrally......Nuclear RNA metabolism is influenced by protein complexes connecting to both RNA-productive and -destructive pathways. The ZC3H18 protein binds the cap-binding complex (CBC), universally present on capped RNAs, while also associating with the nuclear exosome targeting (NEXT) complex, linking to RNA...

  14. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome.

    Directory of Open Access Journals (Sweden)

    Christopher J Hale

    2009-08-01

    Full Text Available Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA-directed DNA methylation (RdDM factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA-dependent RNA polymerase, RDR2 (MOP1. Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II-based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species.

  15. Comparison of HPV detection technologies: Hybrid capture 2, PreTect HPV-Proofer and analysis of HPV DNA viral load in HPV16, HPV18 and HPV33 E6/E7 mRNA positive specimens.

    LENUS (Irish Health Repository)

    Keegan, Helen

    2012-02-01

    Human papillomavirus (HPV) testing using molecular methods in liquid based cytology (LBC) specimens may be useful as an adjunct to cervical screening by cytology. We compared the positivity rate of the commercially available HPV DNA method hybrid capture 2 (hc2) and the commercially available E6\\/E7 mRNA method PreTect HPV-Proofer in cytological specimens (n=299). LBC specimens collected (n=299) represented the following cervical cytological disease categories: Normal (n=60), borderline nuclear abnormalities (BNA) (n=34), CIN1 (n=121), CIN2 (n=60), CIN3 (n=24). Overall, 69% (205\\/299) of the cases were positive by hc2 and 38% (112\\/299) of the cases were positive by PreTect HPV-Proofer. Concordance rates between the two tests were highest in the high-grade cytology cases (CIN2: 67% and CIN3: 83%) and the normal cytology cases (88%) and lowest in the BNA and CIN1 categories (56% and 52%). HPV DNA viral load analyses were carried out on HPV16 (n=55), HPV18 (n=9) and HPV33 (n=13) samples that were positive by PreTect HPV-Proofer. The sensitivity and specificity of PreTect HPV-Proofer and the hc2 DNA test for the detection of high-grade cytology (i.e. CIN2+) were 71.4% and 75.8% vs 100% and 43.7%, respectively. The relatively low detection rate observed by PreTect HPV-Proofer in the whole range of cytological positive cases, combined with a relatively higher specificity and PPV, suggests that PreTect HPV-Proofer may be more useful than hc2 for triage and in predicting high-grade disease.

  16. [Capping strategies in RNA viruses].

    Science.gov (United States)

    Bouvet, Mickaël; Ferron, François; Imbert, Isabelle; Gluais, Laure; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; Decroly, Etienne

    2012-04-01

    Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential. © 2012 médecine/sciences – Inserm / SRMS.

  17. Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production.

    Science.gov (United States)

    Rydzanicz, Roman; Zhao, X Sharon; Johnson, Philip E

    2005-07-01

    We describe a computer program, Assembly PCR Oligo Maker, created to automate the design of oligodeoxynucleotides for the PCR-based construction of long DNA molecules. This program is freely available at http://publish.yorku.ca/~pjohnson/AssemblyPCRoligomaker.html and has been specifically designed to aid in the construction of DNA molecules that are to be used for the production of RNA molecules by in vitro synthesis with T7 RNA polymerase. The input for Assembly PCR Oligo Maker is either the desired DNA sequence to be made or an RNA sequence. If RNA is the input, the program first determines the DNA sequence necessary to produce the desired RNA molecule. The program then determines the sequences of all the oligodeoxynucleotides necessary for a two-step assembly PCR-based synthesis of the desired DNA molecule. The oligodeoxynucleotide sequences outputted are designed to have a uniform melt temperature and are checked for regions of overlap outside of the desired priming regions necessary for the PCR reaction. The validity of the program was verified experimentally by synthesizing a 191-nt long DNA molecule using the DNA sequences suggested by the program.

  18. Architecture and regulation of negative-strand viral enzymatic machinery.

    Science.gov (United States)

    Kranzusch, Philip J; Whelan, Sean P J

    2012-07-01

    Negative-strand (NS) RNA viruses initiate infection with a unique polymerase complex that mediates both mRNA transcription and subsequent genomic RNA replication. For nearly all NS RNA viruses, distinct enzymatic domains catalyzing RNA polymerization and multiple steps of 5' mRNA cap formation are contained within a single large polymerase protein (L). While NS RNA viruses include a variety of emerging human and agricultural pathogens, the enzymatic machinery driving viral replication and gene expression remains poorly understood. Recent insights with Machupo virus and vesicular stomatitis virus have provided the first structural information of viral L proteins, and revealed how the various enzymatic domains are arranged into a conserved architecture shared by both segmented and nonsegmented NS RNA viruses. In vitro systems reconstituting RNA synthesis from purified components provide new tools to understand the viral replicative machinery, and demonstrate the arenavirus matrix protein regulates RNA synthesis by locking a polymerase-template complex. Inhibition of gene expression by the viral matrix protein is a distinctive feature also shared with influenza A virus and nonsegmented NS RNA viruses, possibly illuminating a conserved mechanism for coordination of viral transcription and polymerase packaging.

  19. [Recent progress of the mechanisms for RNA viruses to block the recognition of dsRNA with RIG-I-like receptors].

    Science.gov (United States)

    Wang, Guo-qing; Zhu, Zi-xiang; Cao, Wei-jun; Liu, Lei; Zheng, Hai-xue

    2014-11-01

    RIG-I-like receptors (RLRs) belong to pattern recognition receptors, which perform significant roles in antiviral responses. RLRs can initiate a cascade of signaling transduction that induces the production of type I interferon and activates the interferon signaling pathway, ultimately resulting in antiviral responses. In the course of evolution, viruses have been constantly counteracting host immune systems to facilitate their own survival and replication, and have developed a set of antagonistic strategies. These mainly comprise elusion, disguise and attack strategies to eliminate the activation of RLRs. In virus-infected cells, RLRs recognize viral RNA and then induce antiviral responses. A better understanding of viral antagonistic strategies against RLRs will provide insights into the development of new antiviral medicines. This mini-review concludes that there are three main antagonistic strategies by which RNA viruses can counteract the activation of the RLRs pathway. It aims to provide references and insights for similar studies on viral antagonism in an array of RNA viruses.

  20. Rapid and highly fieldable viral diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.

    2016-12-20

    The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.

  1. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells.

    Directory of Open Access Journals (Sweden)

    Nichole R Klatt

    2010-01-01

    Full Text Available While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We found that, in both early (day 57 post-SIV and late (day 177 post-SIV chronic SIV infection, depletion of CD8+ lymphocytes did not result in a measurable increase in the lifespan of either short- or long-lived productively infected cells in vivo. This result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T cells in SIV-infected macaques with high virus replication.

  2. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    Science.gov (United States)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  3. Feed Intake and Weight Changes in Bos indicus-Bos taurus Crossbred Steers Following Bovine Viral Diarrhea Virus Type 1b Challenge Under Production Conditions.

    Science.gov (United States)

    Runyan, Chase A; Downey-Slinker, Erika D; Ridpath, Julia F; Hairgrove, Thomas B; Sawyer, Jason E; Herring, Andy D

    2017-12-12

    Bovine viral diarrhea virus (BVDV) has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers ( n = 366) that were challenged with BVDV Type 1b, and where family lines were stratified across three vaccine treatments of modified live (MLV), killed, (KV) or no vaccine (NON). Pyrexia classification based on 40.0 °C threshold following challenge and vaccine treatment were investigated for potential interactions with sire for weight change and feed intake following challenge. Pyrexia classification affected daily feed intake (ADFI, p = 0.05), and interacted with day ( p gain (ADG) and cumulative feed intake during the first 14 day post-challenge; ADG (CV of 104%) and feed efficiency were highly variable in the 14-day period immediately post-challenge as compared to the subsequent 14-day periods. A sire × vaccine strategy interaction affected ADFI ( p < 0.001), and a sire by time period interaction affected ADG ( p = 0.03) and total feed intake ( p = 0.03). This study demonstrates that different coping responses may exist across genetic lines to the same pathogen, and that subclinical BVDV infection has a measurable impact on cattle production measures.

  4. Feed Intake and Weight Changes in Bos indicus-Bos taurus Crossbred Steers Following Bovine Viral Diarrhea Virus Type 1b Challenge Under Production Conditions

    Directory of Open Access Journals (Sweden)

    Chase A. Runyan

    2017-12-01

    Full Text Available Bovine viral diarrhea virus (BVDV has major impacts on beef cattle production worldwide, but the understanding of host animal genetic influence on illness is limited. This study evaluated rectal temperature, weight change and feed intake in Bos indicus crossbred steers (n = 366 that were challenged with BVDV Type 1b, and where family lines were stratified across three vaccine treatments of modified live (MLV, killed, (KV or no vaccine (NON. Pyrexia classification based on 40.0 °C threshold following challenge and vaccine treatment were investigated for potential interactions with sire for weight change and feed intake following challenge. Pyrexia classification affected daily feed intake (ADFI, p = 0.05, and interacted with day (p < 0.001 for ADFI. Although low incidence of clinical signs was observed, there were marked reductions in average daily gain (ADG and cumulative feed intake during the first 14 day post-challenge; ADG (CV of 104% and feed efficiency were highly variable in the 14-day period immediately post-challenge as compared to the subsequent 14-day periods. A sire × vaccine strategy interaction affected ADFI (p < 0.001, and a sire by time period interaction affected ADG (p = 0.03 and total feed intake (p = 0.03. This study demonstrates that different coping responses may exist across genetic lines to the same pathogen, and that subclinical BVDV infection has a measurable impact on cattle production measures.