WorldWideScience

Sample records for viral dna polymerase

  1. Autographa californica multiple nucleopolyhedrovirus DNA polymerase C terminus is required for nuclear localization and viral DNA replication.

    Science.gov (United States)

    Feng, Guozhong; Krell, Peter J

    2014-09-01

    The DNA polymerase (DNApol) of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is essential for viral DNA replication. The DNApol exonuclease and polymerase domains are highly conserved and are considered functional in DNA replication. However, the role of the DNApol C terminus has not yet been characterized. To identify whether only the exonuclease and polymerase domains are sufficient for viral DNA replication, several DNApol C-terminal truncations were cloned into a dnapol-null AcMNPV bacmid with a green fluorescent protein (GFP) reporter. Surprisingly, most of the truncation constructs, despite containing both exonuclease and polymerase domains, could not rescue viral DNA replication and viral production in bacmid-transfected Sf21 cells. Moreover, GFP fusions of these same truncations failed to localize to the nucleus. Truncation of the C-terminal amino acids 950 to 984 showed nuclear localization but allowed for only limited and delayed viral spread. The C terminus contains a typical bipartite nuclear localization signal (NLS) motif at residues 804 to 827 and a monopartite NLS motif at residues 939 to 948. Each NLS, as a GFP fusion peptide, localized to the nucleus, but both NLSs were required for nuclear localization of DNApol. Alanine substitutions in a highly conserved baculovirus DNApol sequence at AcMNPV DNApol amino acids 972 to 981 demonstrated its importance for virus production and DNA replication. Collectively, the data indicated that the C terminus of AcMNPV DNApol contains two NLSs and a conserved motif, all of which are required for nuclear localization of DNApol, viral DNA synthesis, and virus production. The baculovirus DNA polymerase (DNApol) is a highly specific polymerase that allows viral DNA synthesis and hence virus replication in infected insect cells. We demonstrated that the exonuclease and polymerase domains of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) alone are insufficient for viral

  2. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-12-01

    Full Text Available Abstract Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB whereas the bacterial replicative DNA polymerase (PolC is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the

  3. Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme.

    Directory of Open Access Journals (Sweden)

    Michael J Moser

    Full Text Available Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR. Wild-type 3173 Pol contains a proofreading 3'-5' exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth and two-enzyme (MMLV RT/Taq RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics.

  4. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences.

    Science.gov (United States)

    Huang, Sijun; Wilhelm, Steven W; Jiao, Nianzhi; Chen, Feng

    2010-10-01

    As a major cyanophage group, cyanobacterial podoviruses are important in regulating the biomass and population structure of picocyanobacteria in the ocean. However, little is known about their biogeography in the open ocean. This study represents the first survey of the biodiversity of cyanopodoviruses in the global oceans based on the viral encoded DNA polymerase (pol) gene. A total of 303 DNA pol sequences were amplified by PCR from 10 virus communities collected in the Atlantic and Pacific oceans and the South China Sea. At least five subclusters of cyanopodoviruses were identified in these samples, and one subcluster (subcluster VIII) was found in all sampling sites and comprised approximately 50% of total sequences. The diversity index based on the DNA pol gene sequences recovered through PCR suggests that cyanopodoviruses are less diverse in these oceanic samples than in a previously studied estuarine environment. Although diverse podoviruses were present in the global ocean, each sample was dominated by one major group of cyanopodoviruses. No clear biogeographic patterns were observed using statistical analysis. A metagenomic analysis based on the Global Ocean Sampling database indicates that other types of cyanopodovirus-like DNA pol sequences were present in the global ocean. Together, our study results suggest that cyanopodoviruses are widely distributed in the ocean but their community composition varies with local environments.

  5. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.

    Science.gov (United States)

    Stodola, Joseph L; Stith, Carrie M; Burgers, Peter M

    2016-05-27

    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Mutations conferring resistance to viral DNA polymerase inhibitors in camelpox virus give different drug-susceptibility profiles in vaccinia virus.

    Science.gov (United States)

    Duraffour, Sophie; Andrei, Graciela; Topalis, Dimitri; Krečmerová, Marcela; Crance, Jean-Marc; Garin, Daniel; Snoeck, Robert

    2012-07-01

    Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.

  7. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication.

    Science.gov (United States)

    Wang, Yi-Ping; Huang, Li-Ping; Du, Wen-Juan; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-08-01

    RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A mutation in the DNA polymerase accessory factor of herpes simplex virus 1 restores viral DNA replication in the presence of raltegravir.

    Science.gov (United States)

    Zhou, Bin; Yang, Kui; Wills, Elizabeth; Tang, Liang; Baines, Joel D

    2014-10-01

    Previous reports showed that raltegravir, a recently approved antiviral compound that targets HIV integrase, can inhibit the nuclease function of human cytomegalovirus (HCMV terminase) in vitro. In this study, subtoxic levels of raltegravir were shown to inhibit the replication of four different herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, HCMV, and mouse cytomegalovirus, by 30- to 700-fold, depending on the dose and the virus tested. Southern blotting and quantitative PCR revealed that raltegravir inhibits DNA replication of HSV-1 rather than cleavage of viral DNA. A raltegravir-resistant HSV-1 mutant was generated by repeated passage in the presence of 200 μM raltegravir. The genomic sequence of the resistant virus, designated clone 7, contained mutations in 16 open reading frames. Of these, the mutations F198S in unique long region 15 (UL15; encoding the large terminase subunit), A374V in UL32 (required for DNA cleavage and packaging), V296I in UL42 (encoding the DNA polymerase accessory factor), and A224S in UL54 (encoding ICP27, an important transcriptional regulator) were introduced independently into the wild-type HSV-1(F) genome, and the recombinant viruses were tested for raltegravir resistance. Viruses bearing both the UL15 and UL32 mutations inserted within the genome of the UL42 mutant were also tested. While the UL15, UL32, and UL54 mutant viruses were fully susceptible to raltegravir, any virus bearing the UL42 mutation was as resistant to raltegravir as clone 7. Overall, these results suggest that raltegravir may be a valuable therapeutic agent against herpesviruses and the antiviral activity targets the DNA polymerase accessory factor rather than the nuclease activity of the terminase. This paper shows that raltegravir, the antiretrovirus drug targeting integrase, is effective against various herpesviruses. Drug resistance mapped to the herpesvirus DNA polymerase accessory factor, which was an unexpected finding. Copyright © 2014

  9. DNA Polymerase e - More Than a Polymerase

    Directory of Open Access Journals (Sweden)

    Helmut Pospiech

    2003-01-01

    Full Text Available This paper presents a comprehensive review of the structure and function of DNA polymerase e. Together with DNA polymerases a and d, this enzyme replicates the nuclear DNA in the eukaryotic cell. During this process, DNA polymerase a lays down RNA-DNA primers that are utilized by DNA polymerases d and e for the bulk DNA synthesis. Attempts have been made to assign these two enzymes specifically to the synthesis of the leading and the lagging strand. Alternatively, the two DNA polymerases may be needed to replicate distinct regions depending on chromatin structure. Surprisingly, the essential function of DNA polymerase e does not depend on its catalytic activity, but resides in the nonenzymatic carboxy-terminal domain. This domain not only mediates the interaction of the catalytic subunit with the three smaller regulatory subunits, but also links the replication machinery to the S phase checkpoint. In addition to its role in DNA replication, DNA polymerase e fulfils roles in the DNA synthesis step of nucleotide excision and base excision repair, and has been implicated in recombinational processes in the cell.

  10. Pigmented cutaneous papillomatosis (pigmented epidermal nevus) in three pug dogs; histopathology, electron microscopy and analysis of viral DNA by the polymerase chain reaction.

    Science.gov (United States)

    Narama, I; Kobayashi, Y; Yamagami, T; Ozaki, K; Ueda, Y

    2005-01-01

    Canine pigmented epidermal nevus (CPEN) is a skin disorder of some breeds of dog characterized by multiple black plaques of the haired and non-haired skin. Three cases of pigmented cutaneous papillomatosis (previously described also as CPEN) in pug dogs were investigated histopathologically, immunohistochemically and electron microscopically. Additionally, DNA analyses with the polymerase chain reaction (PCR) were performed in two cases. Many nuclei of the stratum granulosa were diffusely immunolabelled for specific structural antigens of bovine papillomavirus (subgroup A), but nuclear inclusion bodies were not detected by retrospective examination of haematoxylin and eosin-stained sections of the affected skin. Aggregates of small numbers of viral particles (ranging from 37 to 43 nm in diameter) with a hexagonal structure were sparsely scattered throughout the nuclei of some of the superficial keratinocytes. PCR amplification targeted for the L1 gene of papillomavirus cloned from a case of CPEN yielded an expected fragment of 194-bp in the two CPEN cases examined but not in a case of canine oral papilloma.

  11. Archaeal DNA polymerases in biotechnology.

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Huang, Yanchao

    2015-08-01

    DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols.

  12. Fidelity of DNA polymerases in DNA amplification

    Energy Technology Data Exchange (ETDEWEB)

    Keohavong, P.; Thilly, W.G. (Massachusetts Institute of Technology, Cambridge (USA))

    1989-12-01

    Denaturing gradient gel electrophoresis (DGGE) was used to separate and isolate the products of DNA amplification by polymerase chain reaction (PCR). The strategy permitted direct enumeration and identification of point mutations created by T4, modified T7, Klenow fragment of polymerase I, and Thermus aquaticus (Tag) DNA polymerases. Incorrectly synthesized sequences were separated from the wild type by DGGE as mutant/wild-type heteroduplexes and the heteroduplex fraction was used to calculate the average error rate (mutations per base duplication). The error rate induced in the 104-base-pair low-temperature melting domain of exon 3 of the human hypoxanthine/guanine phosphoribosyltransferase (HPRT) gene was {approx} 3.4 {times} 10{sup {minus}5} for modified T7, 1.3 {times} 10{sup {minus}4} for Klenow fragment, and 2.1 {times} 10{sup {minus}4} for Taq polymerases after a 10{sup 6}-fold amplification. The error rate for T4 DNA polymerase was not more than 3 {times} 10{sup {minus}6} error per base duplication. The predominant mutations were sequenced and found to be transitions of G{center dot}C to A{center dot}T for T4 and modified T7 DNA polymerases, and A{center dot}T to G{center dot}C for Taq polymerase. Klenow fragment induced both possible transitions and deletions of 2 and 4 base pairs.

  13. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  14. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Peter McInerney

    2014-01-01

    Full Text Available As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.

  15. Crystal structure of Deep Vent DNA polymerase.

    Science.gov (United States)

    Hikida, Yasushi; Kimoto, Michiko; Hirao, Ichiro; Yokoyama, Shigeyuki

    2017-01-29

    DNA polymerases are useful tools in various biochemical experiments. We have focused on the DNA polymerases involved in DNA replication including the unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px). Many reports have described the different combinations between unnatural base pairs and DNA polymerases. As an example, for the replication of the Ds-Px pair, Deep Vent DNA polymerase exhibits high efficiency and fidelity, but Taq DNA polymerase shows much lower efficiency and fidelity. In the present study, we determined the crystal structure of Deep Vent DNA polymerase in the apo form at 2.5 Å resolution. Using this structure, we constructed structural models of Deep Vent DNA polymerase complexes with DNA containing an unnatural or natural base in the replication position. The models revealed that the unnatural Ds base in the template-strand DNA clashes with the side-chain oxygen of Thr664 in Taq DNA polymerase, but not in Deep Vent DNA polymerase. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Norovirus Polymerase Fidelity Contributes to Viral Transmission In Vivo

    DEFF Research Database (Denmark)

    Arias Esteban, Armando; Thorne, Lucy; Ghurburrun, Elsa

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences v...... and that maintaining diversity is important for the establishment of infection. This work supports the hypothesis that the reduced polymerase fidelity of the pandemic GII.4 human norovirus isolates may contribute to their global dominance.......Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences...... viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase...

  17. Norovirus Polymerase Fidelity Contributes to Viral Transmission In Vivo

    DEFF Research Database (Denmark)

    Arias Esteban, Armando; Thorne, Lucy; Ghurburrun, Elsa

    2016-01-01

    Intrahost genetic diversity and replication error rates are intricately linked to RNA virus pathogenesis, with alterations in viral polymerase fidelity typically leading to attenuation during infections in vivo. We have previously shown that norovirus intrahost genetic diversity also influences...... viral pathogenesis using the murine norovirus model, as increasing viral mutation frequency using a mutagenic nucleoside resulted in clearance of a persistent infection in mice. Given the role of replication fidelity and genetic diversity in pathogenesis, we have now investigated whether polymerase...... fidelity can also impact virus transmission between susceptible hosts. We have identified a high-fidelity norovirus RNA-dependent RNA polymerase mutant (I391L) which displays delayed replication kinetics in vivo but not in cell culture. The I391L polymerase mutant also exhibited lower transmission rates...

  18. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    OpenAIRE

    Peter McInerney; Paul Adams; Masood Z. Hadi

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differe...

  19. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    Science.gov (United States)

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the

  20. The Role OF DNA Polymerases in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Zahra Aghelan

    2016-07-01

    Full Text Available Background and Objectives: The major role of various types of DNA polymerases is genome replication. However, DNA polymerases are also necessary to establish the accuracy, efficiency of replication, repairing process, and consequently decrease in mutations induced by DNA-damaging agents. Cancer initiation is usually associated with induction of mutations in specific oncogenes or tumour suppressor genes by endogenous or exogenous genotoxic agents. Various point mutations occurring in cancer cells arise from error-generating activities of DNA polymerases. Published data show that decrease in the accuracy of DNA polymerases, without affecting their activity, could be the causative agents of tumors. It has also been reported in literature that the expression of DNA polymerases is altered in human cancers compared to normal tissue. In this review, we discuss some evidences of the role of various DNA polymerases in cancer development. The results of this study showed that lack of proper activity of DNA polymerases causes tumors through increase in the number of generated mutations in the genome. Attitude towards the function of these enzymes can result in new achievements for cancer prevention, diagnosis and treatment.

  1. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    Science.gov (United States)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  2. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-10-01

    Full Text Available Abstract Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. Reviewers This article was reviewed by Eugene Koonin and Mark Ragan.

  3. DNA Polymerase Gamma in Mitochondrial DNA Replication and Repair

    Directory of Open Access Journals (Sweden)

    William C. Copeland

    2003-01-01

    Full Text Available Mutations in mitochondrial DNA (mtDNA are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase γ (pol γ is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful duplication of mitochondrial DNA, both in preventing spontaneous errors and in DNA repair synthesis, falls on pol γ. Investigating the biological functions of pol γ and its inhibitors aids our understanding of the sources of mtDNA mutations. In animal cells, pol γ is composed of two subunits, a larger catalytic subunit of 125–140 kDa and second subunit of 35–55 kDa. The catalytic subunit contains DNA polymerase activity, 3’-5’ exonuclease activity, and a 5’-dRP lyase activity. The accessory subunit is required for highly processive DNA synthesis and increases the affinity of pol gamma to the DNA.

  4. Engineered DNA Polymerase Improves PCR Results for Plastid DNA

    Directory of Open Access Journals (Sweden)

    Melanie Schori

    2013-02-01

    Full Text Available Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase.

  5. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    Directory of Open Access Journals (Sweden)

    R.S. Diaz

    1998-10-01

    Full Text Available For certain applications of the polymerase chain reaction (PCR, it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMA™ DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2% and 0.13% error rates for ULTMA™ and Taq, respectively, after reading about 3,000 bases each. We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component.

  6. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2017-12-13

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this study provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red-cell aplasia. In fetuses, B19V infection can result in non-immune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression, and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  7. The DnaE polymerase from Deinococcus radiodurans features RecA-dependent DNA polymerase activity.

    Science.gov (United States)

    Randi, Lorenzo; Perrone, Alessandro; Maturi, Mirko; Dal Piaz, Fabrizio; Camerani, Michela; Hochkoeppler, Alejandro

    2016-12-01

    We report in the present study on the catalytic properties of the Deinococcus radiodurans DNA polymerase III α subunit (αDr). The αDr enzyme was overexpressed in Escherichia coli, both in soluble form and as inclusion bodies. When purified from soluble protein extracts, αDr was found to be tightly associated with E. coli RNA polymerase, from which αDr could not be dissociated. On the contrary, when refolded from inclusion bodies, αDr was devoid of E. coli RNA polymerase and was purified to homogeneity. When assayed with different DNA substrates, αDr featured slower DNA extension rates when compared with the corresponding enzyme from E. coli (E. coli DNA Pol III, αEc), unless under high ionic strength conditions or in the presence of manganese. Further assays were performed using a ssDNA and a dsDNA, whose recombination yields a DNA substrate. Surprisingly, αDr was found to be incapable of recombination-dependent DNA polymerase activity, whereas αEc was competent in this action. However, in the presence of the RecA recombinase, αDr was able to efficiently extend the DNA substrate produced by recombination. Upon comparing the rates of RecA-dependent and RecA-independent DNA polymerase activities, we detected a significant activation of αDr by the recombinase. Conversely, the activity of αEc was found maximal under non-recombination conditions. Overall, our observations indicate a sharp contrast between the catalytic actions of αDr and αEc, with αDr more performing under recombination conditions, and αEc preferring DNA substrates whose extension does not require recombination events. © 2016 The Author(s).

  8. Synthetic Nucleotides as Probes of DNA Polymerase Specificity

    Directory of Open Access Journals (Sweden)

    Jason M. Walsh

    2012-01-01

    Full Text Available The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.

  9. Novel triterpenoids inhibit both DNA polymerase and DNA topoisomerase.

    OpenAIRE

    Mizushina, Y; Iida, A; Ohta, K.; Sugawara, F; Sakaguchi, K.

    2000-01-01

    As described previously, we found that new triterpenoid compounds, designated fomitellic acids A and B, which selectively inhibit the activities of mammalian DNA polymerases alpha and beta [Mizushina, Tanaka, Kitamura, Tamai, Ikeda, Takemura, Sugawara, Arai, Matsukage, Yoshida and Sakaguchi (1998) Biochem. J. 330, 1325-1332; Tanaka, Kitamura, Mizushina, Sugawara and Sakaguchi (1998) J. Nat. Prod. 61, 193-197] and that a known triterpenoid, ursolic acid, is an inhibitor of human DNA topoisomer...

  10. Carcinogenic adducts induce distinct DNA polymerase binding orientations

    Science.gov (United States)

    Vrtis, Kyle B.; Markiewicz, Radoslaw P.; Romano, Louis J.; Rueda, David

    2013-01-01

    DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the adducts influence the polymerase dwell time on the DNA but also its binding position and orientation. Finally, we have directly observed an adduct- and mismatch-induced intermediate state, which may be an obligatory step in the DNA polymerase proofreading mechanism. PMID:23814187

  11. Directed evolution of DNA polymerases: construction and screening of DNA polymerase mutant libraries.

    Science.gov (United States)

    Gloeckner, Christian; Kranaster, Ramon; Marx, Andreas

    2010-06-01

    The protocols in this article describe the construction of a mutant DNA polymerase library using error-prone PCR (epPCR) as a method for gene randomization, followed by screening of the library using two different approaches. The examples described use an N-terminally truncated form of the thermostable DNA polymerase I of Thermus aquaticus (Taq DNA polymerase), namely Klentaq (KTQ), and protocols are included for the identification of variants with (1) increased DNA lesion-bypass ability and (2) enhanced selectivity for DNA match/mismatch recognition. The screening assays are based on double-stranded DNA detection (using SYBR Green I) which can be carried out using standard laboratory equipment. The described assays are designed for use in a 384-well plate format to increase screening throughput and reduce material costs. For improved accuracy and ease of liquid handling, the use of an automated liquid handling device is recommended. Curr. Protoc. Chem Biol. 2:89-109. © 2010 by John Wiley & Sons, Inc.

  12. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...... two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription...... initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP)....

  13. DNA polymerase proofreading: Multiple roles maintain genome stability.

    Science.gov (United States)

    Reha-Krantz, Linda J

    2010-05-01

    DNA polymerase proofreading is a spell-checking activity that enables DNA polymerases to remove newly made nucleotide incorporation errors from the primer terminus before further primer extension and also prevents translesion synthesis. DNA polymerase proofreading improves replication fidelity approximately 100-fold, which is required by many organisms to prevent unacceptably high, life threatening mutation loads. DNA polymerase proofreading has been studied by geneticists and biochemists for >35 years. A historical perspective and the basic features of DNA polymerase proofreading are described here, but the goal of this review is to present recent advances in the elucidation of the proofreading pathway and to describe roles of DNA polymerase proofreading beyond mismatch correction that are also important for maintaining genome stability. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Human papillomavirus DNA detection in sperm using polymerase chain reaction.

    Science.gov (United States)

    Olatunbosun, O; Deneer, H; Pierson, R

    2001-03-01

    To detect human papillomavirus (HPV) in semen and find if sperm washing removes HPV DNA. Amplification by nested polymerase chain reaction (PCR) was used to detect viral DNA sequences in semen samples from 85 volunteers. Forty-five men had historical or clinical evidence of genital HPV infection (study group) and 40 were healthy, clinically HPV-negative semen donors. We detected HPV DNA in the sperm cells of 24 of 45 subjects (53%) with past or current HPV infections in contrast to three of 40 healthy subjects (8%) (P HPV in 21 of 32 subjects (66%) with identifiable lesions and six of 53 (11%) without them (P sperm cells with HPV reduced cellular HPV DNA below detectable levels in only two cases. HPV is present in sperm cells from infected and apparently healthy subjects, and sperm washing does not eliminate the risk of HPV transmission to recipients. We suggest that HPV DNA testing should be done on the semen of prospective donors, and those with positive tests should be excluded from donation.

  15. Data of expression and purification of recombinant Taq DNA polymerase

    Directory of Open Access Journals (Sweden)

    Na Fang

    2016-12-01

    Full Text Available Polymerase chain reaction (PCR technique is widely used in many experimental conditions, and Taq DNA polymerase is critical in PCR process. In this article, the Taq DNA polymerase expression plasmid is reconstructed and the protein product is obtained by rapid purification, (“Rapid purification of high-activity Taq DNA polymerase” (Pluthero, 1993 [1], “Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli” (Desai and Pfaffle, 1995 [2]. Here we present the production data from protein expression and provide the analysis results of the production from two different vectors. Meanwhile, the purification data is also provided to show the purity of the protein product.

  16. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...

  17. Impact of genetic heterogeneity in polymerase of hepatitis B virus on dynamics of viral load and hepatitis B progression.

    Directory of Open Access Journals (Sweden)

    Chi-Jung Huang

    Full Text Available OBJECTIVE: The hepatitis B virus (HBV-polymerase region overlaps pre-S/S genes with high epitope density and plays an essential role in viral replication. We investigated whether genetic variation in the polymerase region determined long-term dynamics of viral load and the risk of hepatitis B progression in a population-based cohort study. METHODS: We sequenced the HBV-polymerase region using baseline plasma from treatment-naïve individuals with HBV-DNA levels≥1000 copies/mL in a longitudinal viral-load study of participants with chronic HBV infection followed-up for 17 years, and obtained sequences from 575 participants (80% with HBV genotype Ba and 17% with Ce. RESULTS: Patterns of viral sequence diversity across phases (i.e., immune-tolerant, immune-clearance, non/low replicative, and hepatitis B e antigen (HBeAg-negative hepatitis phases of HBV-infection, which were associated with viral and clinical features at baseline and during follow-up, were similar between HBV genotypes, despite greater diversity for genotype Ce vs. Ba. Irrespective of genotypes, however, HBeAg-negative participants had 1.5-to-2-fold higher levels of sequence diversity than HBeAg-positive participants (P<0.0001. Furthermore, levels of viral genetic divergence from the population consensus sequence, estimated by numbers of nucleotide substitutions, were inversely associated with long-term viral load even in HBeAg-negative participants. A mixed model developed through analysis of the entire HBV-polymerase region identified 153 viral load-associated single nucleotide polymorphisms in overall and 136 in HBeAg-negative participants, with distinct profiles between HBV genotypes. These polymorphisms were most evident at sites within or flanking T-cell epitopes. Seven polymorphisms revealed associations with both enhanced viral load and a more than 4-fold increased risk of hepatocellular carcinoma and/or liver cirrhosis. CONCLUSIONS: The data highlight a role of viral

  18. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  19. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  20. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  1. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex.

    Science.gov (United States)

    Kranzusch, Philip J; Whelan, Sean P J

    2011-12-06

    Arenaviruses form a noncytolytic infection in their rodent hosts, yet can elicit severe hemorrhagic disease in humans. How arenaviruses regulate gene expression remains unclear, and further understanding may provide insight into the dichotomy of these disparate infection processes. Here we reconstitute arenavirus RNA synthesis initiation and gene expression regulation in vitro using purified components and demonstrate a direct role of the viral Z protein in controlling RNA synthesis. Our data reveal that Z forms a species-specific complex with the viral polymerase (L) and inhibits RNA synthesis initiation by impairing L catalytic activity. This Z-L complex locks the viral polymerase in a promoter-bound, catalytically inactive state and may additionally ensure polymerase packaging during virion maturation. Z modulates host factors involved in cellular translation, proliferation, and antiviral signaling. Our data defines an additional role in governing viral RNA synthesis, revealing Z as the center of a network of host and viral connections that regulates viral gene expression.

  2. Molecular diversity and catalytic activity of Thermus DNA polymerases.

    Science.gov (United States)

    Gibbs, Moreland D; Reeves, Rosalind A; Mandelman, David; Mi, Qingli; Lee, Jun; Bergquist, Peter L

    2009-09-01

    Thermus aquaticus DNA polymerase (Taq polymerase) made the polymerase chain reaction feasible and led to a paradigm shift in genomic analysis. Other Thermus polymerases were reported to have comparable performance in PCR and there was an analysis of their properties in the 1990s. We re-evaluated our earlier phylogeny of Thermus species on the basis of 16S rDNA sequences and concluded that the genus could be divided into eight clades. We examined 22 representative isolates and isolated their DNA polymerase I genes. The eight most diverse polymerase genes were selected to represent the eight clades and cloned into an expression vector coding for a His-tag. Six of the eight polymerases were expressed so that there was sufficient protein for purification. The proteins were purified to homogeneity and examination of the biochemical characteristics showed that although they were competent to perform PCR, none was as thermostable as commercially available Taq polymerase; all had similar error-frequencies to Taq polymerase and all showed the expected 5'-3' exonuclease activity. We conclude that the initial selection of T. aquaticus for DNA polymerase purification was a far-reaching and fortuitous choice but simple mutagenesis procedures on other Thermus-derived polymerases should provide comparable thermostability for the PCR reaction.

  3. A novel eukaryote-made thermostable DNA polymerase which is free from bacterial DNA contamination.

    Science.gov (United States)

    Niimi, Hideki; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Ueno, Tomohiro; Hayashi, Shirou; Kitajima, Isao

    2011-09-01

    To achieve the production of a thermostable DNA polymerase free from bacterial DNA contamination, we developed eukaryote-made thermostable DNA (Taq) polymerase. The novel eukaryote-made thermostable DNA polymerase resolves the problem of contaminating bacterial DNA in conventional bacterially made thermostable DNA polymerase as a result of its manufacture and incomplete purification. Using eukaryote-made thermostable DNA polymerase, the sensitive and reliable detection of bacteria becomes feasible for large fields, thereby making the development of a wide range of powerful applications possible.

  4. Engineering processive DNA polymerases with maximum benefit and minimum cost

    Directory of Open Access Journals (Sweden)

    Linda J. Reha-Krantz

    2014-08-01

    Full Text Available DNA polymerases need to be engineered to achieve optimal performance for biotechnological applications, which often require high fidelity replication when using modified nucleotides and when replicating difficult DNA sequences. These tasks are achieved for the bacteriophage T4 DNA polymerase by replacing leucine with methionine in the highly conserved Motif A sequence (L412M. The costs are minimal. Although base substitution errors increase moderately, accuracy is maintained for templates with mono- and dinucleotide repeats and replication efficiency is enhanced . The L412M substitution increases intrinsic processivity and the additions of phage T4 clamp and single-stranded DNA binding proteins further strengthen the ability of the phage T4 L412M-DNA polymerase to replicate all types of difficult DNA sequences. Increased pyrophosphorolysis is a drawback of increased processivity, but pyrophosphorolysis is curbed by adding an inorganic pyrophosphatase or divalent metal cations, Mn2+ or Ca2+. In the absence of pyrophosphorolysis inhibitors, the T4 L412M-DNA polymerase catalyzed sequence-dependent pyrophosphorolysis under DNA sequencing conditions. These pyrophosphorolysis-sensitive DNA sequences provide insights into how the T4 DNA polymerase switches between nucleotide incorporation, pyrophosphorolysis and proofreading pathways. The L-to-M substitution was also tested in the yeast DNA polymerases delta and alpha. Because the mutant DNA polymerases displayed similar characteristics, we propose that amino acid substitutions in Motif A have the potential to increase processivity and to enhance performance in biotechnological applications. An underlying theme in this chapter is the use of genetic methods to identify mutant DNA polymerases with potential for use in current and future biotechnological applications.

  5. DNA polymerase of a basidiomycete fungus, Coprinus cinereus.

    Science.gov (United States)

    Lowe, D; Lewis, D

    1981-01-01

    DNA polymerase activity was studied in Coprinus cinereus, a basidiomycete fungus. Only one from of the enzyme could be demonstrated, whether by affinity or ion-exchange chromatography; this enzyme had a molecular weight of 185000 on Sephadex G-200, and was inhibited by mercaptoethanol. Coprinus, a representative of the most advanced type of the filamentous fungi, resembles other eukaryotic micro-organisms in its lack of a mammalian beta-type DNA polymerase. The properties of the polymerase are compared with those of two other fungi, and found to resemble most closely the yeast polymerase A in Mg2+ requirements and template preference. PMID:7197920

  6. Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex.

    Science.gov (United States)

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru

    2014-08-01

    Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at

  7. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    Science.gov (United States)

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  8. Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity.

    Science.gov (United States)

    Ackermann, Andreas; Staeheli, Peter; Schneider, Urs

    2007-08-01

    Borna disease virus (BDV) can persistently infect the central nervous system of a broad range of mammalian species. Mice are resistant to infections with primary BDV isolates, but certain laboratory strains can be adapted to replicate in mice. We determined the molecular basis of adaptation by studying mutations acquired by a cDNA-derived BDV strain during one brain passage in rats and three passages in mice. The adapted virus propagated efficiently in mouse brains and induced neurological disease. Its genome contained seven point mutations, three of which caused amino acid changes in the L polymerase (L1116R and N1398D) and in the polymerase cofactor P (R66K). Recombinant BDV carrying these mutations either alone or in combination all showed enhanced multiplication speed in Vero cells, indicating improved intrinsic viral polymerase activity rather than adaptation to a mouse-specific factor. Mutations R66K and L1116R, but not N1398D, conferred replication competence of recombinant BDV in mice if introduced individually. Virus propagation in mouse brains was substantially enhanced if both L mutations were present simultaneously, but infection remained mostly nonsymptomatic. Only if all three amino acid substitutions were combined did BDV replicate vigorously and induce early disease in mice. Interestingly, the virulence-enhancing effect of the R66K mutation in P could be attributed to reduced negative regulation of polymerase activity by the viral X protein. Our data demonstrate that BDV replication competence in mice is mediated by the polymerase complex rather than the viral envelope and suggest that altered regulation of viral gene expression can favor adaptation to new host species.

  9. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences.

    Science.gov (United States)

    Sanchez-Sandoval, Eugenia; Diaz-Quezada, Corina; Velazquez, Gilberto; Arroyo-Navarro, Luis F; Almanza-Martinez, Norineli; Trasviña-Arenas, Carlos H; Brieba, Luis G

    2015-09-01

    Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer. Copyright © 2015 © Elsevier B.V. and Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  10. Rapid purification of high activity Taq DNA polymerase expressed in ...

    African Journals Online (AJOL)

    A simplified method is described here for the preparation of a thermostable Taq DNA polymerase enzyme from Escherichia coli (E. coli) strain DH5a carrying the pTTQ18 expression vector transformed with the Taq polymerase gene. Standard purifications were done with 1 litre batch cultures of E. coli cells and produced ...

  11. Integration of random amplification of polymorphic DNA-polymerase ...

    African Journals Online (AJOL)

    adjusted reaction conditions strain-distinctive PCR-restriction fragment lenght polymorphism (RFLP) can be designed. Key words: Echinococcus granulosus, strain-specificity, random amplification of polymorphic DNA-polymerase chain reaction ...

  12. Directed Evolution of DNA Polymerases for Next Generation Sequencing

    Science.gov (United States)

    Leconte, Aaron M.; Patel, Maha P.; Sass, Lauryn E.; McInerney, Peter; Jarosz, Mirna; Kung, Li; Bowers, Jayson L.; Buzby, Philip R.; Efcavitch, J. William; Romesberg, Floyd E.

    2011-01-01

    We present the application of an activity-based phage display method to identify DNA polymerases tailored for next generation sequencing applications. Using this approach, we identify a mutant of Taq DNA polymerase that incorporates the fluorophore-labeled dA, dT, dC, and dG substrates ~50 to 400-fold more efficiently into scarred primers in solution and that also demonstrates significantly improved performance under actual sequencing conditions. PMID:20629059

  13. Interplay Among Constitutes of Ebola Virus: Nucleoprotein, Polymerase L, Viral Proteins

    Science.gov (United States)

    Zhang, Minchuan; He, Peiming; Su, Jing; Singh, Dadabhai T.; Su, Hailei; Su, Haibin

    Ebola virus is a highly lethal filovirus, claimed thousands of people in its recent outbreak. Seven viral proteins constitute ebola viral structure, and four of them (nucleoprotein (NP), polymerase L, VP35 and VP30) participate majorly in viral replication and transcription. We have elucidated a conformation change of NP cleft by VP35 NP-binding protein domains through superimposing two experimental NP structure images and discussed the function of this conformation change in the replication and transcription with polymerase complex (L, VP35 and VP30). The important roles of VP30 in viral RNA synthesis have also been discussed. A “tapping” model has been proposed in this paper for a better understanding of the interplay among the four viral proteins (NP, polymerase L, VP35 and VP30). Moreover, we have pinpointed some key residue changes on NP (both NP N- and C-terminal) and L between Reston and Zaire by computational studies. Together, this paper provides a description of interactions among ebola viral proteins (NP, L, VP35, VP30 and VP40) in viral replication and transcription, and sheds light on the complex system of viral reproduction.

  14. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  15. Mouse DNA polymerase accompanied by a novel RNA polymerase activity: purification and partial characterization.

    Science.gov (United States)

    Yagura, T; Kozu, T; Seno, T

    1982-02-01

    A mouse DNA polymerase accompanied by a novel RNA polymerase activity and its specific protein factor (stimulating factor) were purified from Ehrlich ascites tumor cells and partially characterized. The DNA polymerase was thought to be a subspecies of DNA polymerase alpha, and to be accompanied by or copurified with RNA polymerase activity capable of synthesizing RNA, which was probably utilized as a primer for subsequent DNA polymerization on a template of poly(dT) or poly(dC). This coupled reaction by RNA and DNA polymerase activities required the stimulating factor in addition to ribo- and deoxyribonucleotide substrates, although the degree of requirement depended on the kind of template and ribonucleotide substrate: the activity to incorporate dATP with poly(dT) plus ATP depended greatly on the stimulating factor, while the activity to incorporate dGTP with poly(dC) did not when GTP was added at high concentrations. GDP could be substituted for GTP, but the activity with poly(dC) plus GDP depended largely on the stimulating factor. Involvement of known RNA polymerases in the activity with poly(dT) was excluded, because addition of purified mouse RNA polymerases I and II had no effect on the incorporation of dATP, and alpha-amanitin (100 micrograms/ml) did not inhibit the incorporations of dATP and ATP. Analysis of the inhibition by the nucleotide analog 2',3'-dideoxynucleoside 5'-triphosphate (ddNTP) further supported the involvement of new RNA polymerase; ddNTPs inhibited the activities with poly(dT) and poly(dC) significantly more than RNA polymerases I and II or DNA polymerase alpha activity with poly(dT) . oligo(rA) and poly(dC) . oligo(dG) as template. Lineweaver-Burk analysis of the inhibitions showed that ddATP inhibited competitively with respect to ATP, and ddGTP inhibited competitively with respect to GDP but noncompetitively with respect to GTP.

  16. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  17. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  18. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  19. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies.

    Science.gov (United States)

    Boehr, David D; Liu, Xinran; Yang, Xiaorong

    2014-12-01

    The RNA-dependent RNA polymerase is responsible for genome replication of RNA viruses. Nuclear magnetic resonance experiments and molecular dynamics simulations have indicated that efficient and faithful polymerase function requires highly coordinated internal protein motions. Interference with these motions, either through amino acid substitutions or small molecule binding, can disrupt polymerase and virus function. In particular, these studies have pointed toward highly conserved structural elements, like the motif-D active-site loop, that can be modified to generate polymerases with desired properties. Viruses encoding engineered polymerases might serve as live, attenuated vaccine strains. Further elucidation of polymerase structural dynamics will also provide new avenues for anti-viral drug design. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  1. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.

    Science.gov (United States)

    Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B

    2017-10-01

    Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and

  2. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase

    Directory of Open Access Journals (Sweden)

    David Dulin

    2015-02-01

    Full Text Available RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage Φ6 RNA-dependent RNA polymerase. We extract large datasets fingerprinting real-time polymerase dynamics over four magnitudes in time, in the presence of nucleotide analogs, and under varying NTP and divalent cation concentrations and fork stability. Quantitative analysis reveals a new pause state that modulates polymerase fidelity and so ties viral polymerase pausing to the biological function of optimizing virulence. Adjusting the frequency of such pauses offers a target for therapeutics and may also reflect an evolutionary strategy for virus populations to track the gradual evolution of their hosts.

  3. Dynamic DNA Helicase-DNA Polymerase Interactions Assure Processive Replication Fork Movement

    NARCIS (Netherlands)

    Hamdan, Samir M.; Johnson, Donald E.; Tanner, Nathan A.; Lee, Jong-Bong; Qimron, Udi; Tabor, Stanley; Oijen, Antoine M. van; Richardson, Charles C.

    2007-01-01

    A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that

  4. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair.

    Science.gov (United States)

    Zahn, Karl E; Averill, April M; Aller, Pierre; Wood, Richard D; Doublié, Sylvie

    2015-04-01

    DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break-inducing agents, including ionizing radiation. Reported here are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contacts to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. These observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.

  5. Prediction of active site and distal residues in E. coli DNA polymerase III alpha polymerase activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-01-17

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 105 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  6. DNA-dependent RNA polymerase from Crithidia oncopelti kinetoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, G.N.; Levchenko, I.V.; Tarasov, I.A.; Kuz' min, E.V.

    1986-03-10

    Mitochondrial DNA-dependent RNA polymerase was isolated from Crithidia oncopelti kinetoplasts, and its properties were studied. RNA polymerase was solubilized from the structures with 2% digitonin in 0.25 M KCl. The enzyme was purified 550-fold according to activity by gel filtration through Sephadex 4B, followed by chromatography on heparin-Sepharose 4B, phosphocellulose, and DEAE-Sephadex A-50. The optimum conditions of the RNA polymerase reaction (time of incubation, temperature, Mg/sup 2 +/, K/sup +/ concentrations, etc) were determined. It was established that the activity of the enzyme is not inhibited by ..cap alpha..-amanitin, rifampicin, and streptolidigin, but is strongly suppressed by Mn/sup 2 +/ ions, a high KCl concentrations, as well as ethidium bromide. The RNA polymerase isolated transcribes denatured DNA substantially better than the native form. The enzyme utilizes mtDNA (in hybrid plasmids) as a substrate appreciably more actively than the nuclear form. Among the substrates used, the greatest template activity is possessed by single-stranded poly(dAT). In all the properties studied, DNA-dependent RNA polymerase from C. oncopelti kinetoplasts is similar to the mitochondrial enzymes of other eukaryotes but differs from the nuclear enzymes of this organism and from bacterial RNA polymerases.

  7. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.

    Science.gov (United States)

    Xu, Cuiling; Maxwell, Brian A; Suo, Zucai

    2014-08-12

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been performed to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. Application to phi 29 DNA polymerase fidelity mutants.

    Science.gov (United States)

    Saturno, J; Blanco, L; Salas, M; Esteban, J A

    1995-12-29

    Amino acids Tyr254 and Tyr390 of phi 29 DNA polymerase belong to one of the most conserved regions in eukaryotic-type DNA polymerases. In this paper we report a mutational study of these two residues to address their role in nucleotide selection. This study was carried out by means of a new kinetic analysis that takes advantage of the competition between DNA polymerization and 3'-->5' exonuclease activity to measure the Km values for correct and incorrect nucleotides in steady-state conditions. This method is valid for any 3'-->5' exonuclease-containing DNA polymerase, without any restriction concerning catalytic rates of nucleotide incorporation. The results showed that the discrimination factor achieved by phi 29 DNA polymerase in the nucleotide binding step of DNA polymerization is 2.4 x 10(3), that is, a wrong nucleotide is bound with a 2.4 x 10(3)-fold lower affinity than the correct one. Mutants Y254F, Y390F, and Y390S showed discrimination values of 7.0 x 10(2), > 1.9 x 10(3), and 2.9 x 10(2), respectively. The reduced accuracy of nucleotide binding produced by mutations Y254F and Y390S lead us to propose that phi 29 DNA polymerase residues Tyr254 and Tyr390, highly conserved in eukaryotic-type DNA polymerases, are involved in nucleotide binding selection, thus playing a crucial role in the fidelity of DNA replication. Comparison of the discrimination factors of mutants Y390S and Y390F strongly suggests that the phenyl ring of Tyr390 is directly involved in checking base-pairing correctness of the incoming nucleotide.

  9. Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5' → 3' Exonuclease Activity of Thermus aquaticus DNA Polymerase

    National Research Council Canada - National Science Library

    Pamela M. Holland; Richard D. Abramson; Robert Watson; David H. Gelfand

    1991-01-01

    The 5' → 3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal...

  10. Attenuation of foot-and-mouth disease virus by engineered viral polymerase fidelity

    Science.gov (United States)

    The foot-and-mouth disease virus (FMDV) RNA dependent RNA polymerase (RdRp or 3Dpol) catalyzes viral RNA synthesis. The 3Dpol is a low fidelity enzyme incapable of proofreading which results in a high mutation frequencies that allow the virus to rapidly adapt to different environments. In this study...

  11. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  12. EBV DNA polymerase inhibition of tannins from Eugenia uniflora.

    Science.gov (United States)

    Lee, M H; Chiou, J F; Yen, K Y; Yang, L L

    2000-06-30

    Nasopharyngeal carcinoma (NPC) is one of the high population malignant tumors among Chinese in southern China and southeast Asia. Epstein-Barr virus (EBV) is a human B lymphotropic herpes virus which is known to be closely associated with NPC. EBV DNA polymerase is a key enzyme during EBV replication and is measured by its radioactivity. The addition of phorbol 12-myristate 13-acetate to Raji cell cultures led to a large increase in EBV DNA polymerase, which was purified by sequential DEAE-cellulose, phosphocellulose and DNA-cellulose column chromatography. Four tannins were isolated from the active fractions of Eugenia uniflora L., which were tested for the inhibition of EBV DNA polymerase. The results showed the 50% inhibitory concentration (IC(50)) values of gallocatechin, oenothein B, eugeniflorins D(1) and D(2) were 26.5 62.3, 3.0 and 3.5 microM, respectively. Furthermore, when compared with the positive control (phosphonoacetic acid), an inhibitor of EBV replication, the IC(50) value was 16.4 microM. In view of the results, eugeniflorins D(1) and D(2) are the potency principles in the inhibition of EBV DNA polymerase from E. uniflora.

  13. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Tabor, S.; Richardson, C.C. [Harvard Medical School, Boston, MA (United States)

    1995-07-03

    Bacteriophage T7 DNA polymerase efficiently incorporates a chain-terminating dideoxynucleotide into DNA, in contrast to the DNA polymerases from Escherichia coli and Thermus aquaticus. The molecular basis for this difference has been determined by constructing active site hybrids of these polymerases. A single hydroxyl group on the polypeptide chain is critical for selectivity. Replacing tyrosine-526 of T7 DNA polymerase with phenylalanine increases discrimination against the four dideoxynucleotides by >2000-fold, while replacing the phenylalanine at the homologous position in E. coli DNA polymerase I (position 762) or T. aquaticus DNA polymerase (position 667) with tyrosine decreases discrimination against the four dideoxynucleotides 250- to 8000-fold. These mutations allow the engineering of new DNA polymerases with enhanced properties for use in DNA sequence analysis. 29 refs., 4 figs., 2 tabs.

  14. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  15. Selective inhibition of the reverse transcription of duck hepatitis B virus by binding of 2',3'-dideoxyguanosine 5'-triphosphate to the viral polymerase.

    Science.gov (United States)

    Howe, A Y; Robins, M J; Wilson, J S; Tyrrell, D L

    1996-01-01

    Hepatitis B virus (HBV) replication is mediated by the viral polymerase that possesses three functional domains: primer, DNA polymerase/reverse transcriptase, and RNase H. Using the Pekin duck as an animal model, we demonstrate a novel mechanism of inhibition of duck hepatitis B virus (DHBV) by 2,6-diaminopurine 2',3'-dideoxyriboside (ddDAPR), a prodrug of 2',3'-dideoxyguanosine (ddG). A selective and irreversible inhibition of DHBV DNA replication is found in ducklings treated with high doses of ddDAPR (20 to 50 mg/kg), but not with similar doses of 2',3'-dideoxycytidine (ddC). The inhibition mediated by ddDAPR occurs at a very early stage of the reverse transcription. Despite the inhibition of DHBV DNA replication by ddDAPR, the DNA polymerase and reverse transcriptase activities of the polymerase are found to remain active when tested on exogenous templates in activity gels. We have demonstrated direct binding of [alpha-32P]ddGTP to the DHBV polymerase expressed in an in vitro transcription and translation system. These results suggest that the binding of ddGTP to the polymerase blocks the initial DNA replication.

  16. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  17. Screen Anti-influenza Lead Compounds That Target the PAC Subunit of H5N1 Viral RNA Polymerase

    Science.gov (United States)

    Xiang, Junfeng; Li, Qian; Liang, Huanhuan; Tang, Yalin; Liu, Yingfang

    2012-01-01

    The avian influenza (H5N1) viral RNA polymerase protein PAC was used as a target to screen nine chlorogenic acid derivatives for their polymerase inhibitor activity. Among them, seven compounds were PAC ligands, and four inhibited influenza RNA polymerase activity. These results aid in the design of anti-influenza agents based on caffeoylquinic acid. PMID:22936968

  18. Randomly amplified polymorphic DNA-polymerase chain reaction ...

    Indian Academy of Sciences (India)

    Genetic similarity and diversity of cultured catfish Silurus asotus populations collected from two areas in western Korea were examined using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Out of 20 random primers tested, 5 produced 1344 RAPD bands ranging from 8.2 to 13.6 polymorphic ...

  19. Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity.

    Science.gov (United States)

    Chen, Han; Beardsley, G Peter; Coen, Donald M

    2014-12-09

    Many antiviral and anticancer drugs are nucleoside analogs that target polymerases and cause DNA chain termination. Interestingly, ganciclovir (GCV), the first line of therapy for human cytomegalovirus (HCMV) infections, induces chain termination despite containing the equivalent of a 3'-hydroxyl group. Certain HCMV GCV resistance (GCV(r)) mutations, including ones associated with treatment failures, result in substitutions in the 3'-5' exonuclease (Exo) domain of the catalytic subunit of the viral DNA polymerase (Pol). To investigate how these mutations confer resistance, we overexpressed and purified wild-type (WT) HCMV Pol and three GCV(r) Exo mutants. Kinetic studies provided little support for resistance being due to effects on Pol binding or incorporation of GCV-triphosphate. The mutants were defective for Exo activity on all primer templates tested, including those with primers terminating with GCV, arguing against the mutations increasing excision of the incorporated drug. However, although the WT enzyme terminated DNA synthesis after incorporation of GCV-triphosphate and an additional nucleotide (N+1), the Exo mutants could efficiently synthesize DNA to the end of such primer templates. Notably, the Exo activity of WT Pol rapidly and efficiently degraded N+2 primer templates to N+1 products that were not further degraded. On N+1 primer templates, WT Pol, much more than the Exo mutants, converted the incoming deoxynucleoside triphosphate to its monophosphate, indicative of rapid addition and removal of incorporated nucleotides ("idling"). These results explain how GCV induces chain termination and elucidate a previously unidentified mechanism of antiviral drug resistance.

  20. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box.

    Science.gov (United States)

    Carrasco-Miranda, Jesus S; Lopez-Zavala, Alonso A; Arvizu-Flores, Aldo A; Garcia-Orozco, Karina D; Stojanoff, Vivian; Rudiño-Piñera, Enrique; Brieba, Luis G; Sotelo-Mundo, Rogerio R

    2014-01-01

    DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV) that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA). This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein). The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.

  1. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box.

    Directory of Open Access Journals (Sweden)

    Jesus S Carrasco-Miranda

    Full Text Available DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA. This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein. The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.

  2. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  3. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    Science.gov (United States)

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  4. Studies on inhibitors of mammalian DNA polymerase alpha and beta: sulfolipids from a pteridophyte, Athyrium niponicum.

    Science.gov (United States)

    Mizushina, Y; Watanabe, I; Ohta, K; Takemura, M; Sahara, H; Takahashi, N; Gasa, S; Sugawara, F; Matsukage, A; Yoshida, S; Sakaguchi, K

    1998-02-15

    Three sulfolipid compounds, 1, 2, and 3, have been isolated from a higher plant, a pteridophyte, Athyrium niponicum, as potent inhibitors of the activities of calf DNA polymerase alpha and rat DNA polymerase beta. The inhibition by the sulfolipids was concentration dependent, and almost complete inhibition of DNA polymerase alpha and DNA polymerase beta was achieved at 6 and 8 microg/mL, respectively. The compounds did not influence the activities of calf thymus terminal deoxynucleotidyl transferase, prokaryotic DNA polymerases such as the Klenow fragment of DNA polymerase I, T4 DNA polymerase and Taq polymerase, the DNA metabolic enzyme DNase I, and even a DNA polymerase from a higher plant, cauliflower. Similarly, the compounds did not inhibit the activity of the human immunodeficiency virus type 1 reverse transcriptase. The kinetic studies of the compounds showed that DNA polymerase alpha was inhibited non-competitively with respect to the DNA template and substrate, whereas DNA polymerase beta was inhibited competitively with both the DNA template and substrate. The binding to DNA polymerase beta could be stopped with non-ionic detergent, but the binding to DNA polymerase alpha could not.

  5. HIV-1 viral DNA load in peripheral blood mononuclear cells from seroconverters and long-term infected individuals

    NARCIS (Netherlands)

    Jurriaans, S.; Dekker, J. T.; de Ronde, A.

    1992-01-01

    To determine viral DNA load in peripheral blood mononuclear cells (PBMC) from HIV-1-infected individuals. HIV-1 copy numbers were determined using a quantitative polymerase chain reaction (PCR), the PCR-aided template titration assay (PATTY). PATTY utilizes an internal plasmid control DNA, which is

  6. Evaluation of extraction methods from paraffin wax embedded tissues for PCR amplification of human and viral DNA

    OpenAIRE

    Chan, P; Chan, D.; To, K; Yu, M.; Cheung, J.; Cheng, A

    2001-01-01

    Aim—To evaluate the efficiency of phenol/chloroform, microwave, and Qiagen spin column based DNA extractions from paraffin wax embedded tissue for use in the polymerase chain reaction (PCR). In addition, to assess the reliability of amplifying a housekeeping gene to indicate successful viral DNA extraction.

  7. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2017-01-01

    Full Text Available DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1 template switching and recombination-dependent DNA synthesis; and (2 translesion synthesis (TLS using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.

  8. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner.

    Directory of Open Access Journals (Sweden)

    Elisa Sinigalia

    Full Text Available During the replication of human cytomegalovirus (HCMV genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s. These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.

  9. Specific incorporation of an artificial nucleotide opposite a mutagenic DNA adduct by a DNA polymerase.

    Science.gov (United States)

    Wyss, Laura A; Nilforoushan, Arman; Eichenseher, Fritz; Suter, Ursina; Blatter, Nina; Marx, Andreas; Sturla, Shana J

    2015-01-14

    The ability to detect DNA modification sites at single base resolution could significantly advance studies regarding DNA adduct levels, which are extremely difficult to determine. Artificial nucleotides that are specifically incorporated opposite a modified DNA site offer a potential strategy for detection of such sites by DNA polymerase-based systems. Here we investigate the action of newly synthesized base-modified benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates on DNA polymerases when performing translesion DNA synthesis past the pro-mutagenic DNA adduct O(6)-benzylguanine (O(6)-BnG). We found that a mutated form of KlenTaq DNA polymerase, i.e., KTqM747K, catalyzed O(6)-BnG adduct-specific processing of the artificial BenziTP in favor of the natural dNTPs. Steady-state kinetic parameters revealed that KTqM747K catalysis of BenziTP is 25-fold more efficient for template O(6)-BnG than G, and 5-fold more efficient than natural dTMP misincorporation in adduct bypass. Furthermore, the nucleotide analogue BenziTP is required for full-length product formation in O(6)-BnG bypass, as without BenziTP the polymerase stalls at the adduct site. By combining the KTqM747K polymerase and BenziTP, a first round of DNA synthesis enabled subsequent amplification of Benzi-containing DNA. These results advance the development of technologies for detecting DNA adducts.

  10. Coumarins as Potential Inhibitors of DNA Polymerases and Reverse Transcriptases. Searching New Antiretroviral and Antitumoral Drugs.

    Science.gov (United States)

    Garro, Hugo A; Pungitore, Carlos R

    2015-01-01

    Human Immunodeficiency Virus (HIV) is the viral agent of Acquired Immunodeficiency Syndrome (AIDS), and at present, there is no effective vaccine against HIV. Reverse Transcriptase (RT) is an essential enzyme for retroviral replication, such as HIV as well as for other RNA infectious viruses like Human T lymphocyte virus. Polymerases act in DNA metabolism, modulating different processes like mitosis, damage repair, transcription and replication. It has been widely documented that DNA Polymerases and Reverse Transcriptases serve as molecular targets for antiviral and antitumoral chemotherapy. Coumarins are oxygen heterocycles that are widely distributed throughout the plant kingdom. Natural coumarins have attraction due to their bioactive properties such as tumor promotion inhibitory effects, and anti-HIV activity. Coumarins and derivates exhibit potent inhibitory effects on HIV-1 replication in lymphocytes and compounds isolated from Calophyllum inophyllum or DCK derivates showed inhibitory activity against human RT. Furthermore, natural isocoumarins isolated from cultures of fungi or hydroxycoumarins were able to inhibit human DNA polymerase. In view of their importance as drugs and biologically active natural products, and their medicinally useful properties, extensive studies have been carried out on the synthesis of coumarin compounds in recent years. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), a class of antiretroviral chemotherapeutic agents, act by binding to an allosteric pocket showing, generally, low toxicity. This work tries to summarize the investigation about natural and synthetic coumarins with the ability to inhibit key enzymes that play a crucial role in DNA metabolism and their possible application as antiretroviral and antitumoral agents.

  11. Micro-RNA quantification using DNA polymerase and pyrophosphate quantification.

    Science.gov (United States)

    Yu, Hsiang-Ping; Hsiao, Yi-Ling; Pan, Hung-Yin; Huang, Chih-Hung; Hou, Shao-Yi

    2011-12-15

    A rapid quantification method for micro-RNA based on DNA polymerase activity and pyrophosphate quantification has been developed. The tested micro-RNA serves as the primer, unlike the DNA primer in all DNA sequencing methods, and the DNA probe serves as the template for DNA replication. After the DNA synthesis, the pyrophosphate detection and quantification indicate the existence and quantity of the tested miRNA. Five femtomoles of the synthetic RNA could be detected. In 20-100 μg RNA samples purified from SiHa cells, the measurement was done using the proposed assay in which hsa-miR-16 and hsa-miR-21 are 0.34 fmol/μg RNA and 0.71 fmol/μg RNA, respectively. This simple and inexpensive assay takes less than 5 min after total RNA purification and preparation. The quantification is not affected by the pre-miRNA which cannot serve as the primer for the DNA synthesis in this assay. This assay is general for the detection of the target RNA or DNA with a known matched DNA template probe, which could be widely used for detection of small RNA, messenger RNA, RNA viruses, and DNA. Therefore, the method could be widely used in RNA and DNA assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase

    OpenAIRE

    Dulin, David; Vilfan, Igor D.; Berghuis, Bojk A.; Hage, Susanne; Bamford, Dennis H.; Poranen, Minna M.; Depken, Martin; Dekker, Nynke H.

    2015-01-01

    RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage ?6 RNA-dependent RNA polymerase. We extra...

  13. Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein.

    Science.gov (United States)

    Pabla, Ritu; Rozario, Donald; Siede, Wolfram

    2008-02-01

    RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo.

  14. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Directory of Open Access Journals (Sweden)

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  15. The human papillomavirus DNA helicase E1 binds, stimulates, and confers processivity to cellular DNA polymerase epsilon

    Science.gov (United States)

    Chojnacki, Michaelle

    2018-01-01

    Abstract The papillomavirus (PV) helicase protein E1 recruits components of the cellular DNA replication machinery to the PV replication fork, such as Replication Protein A (RPA), DNA polymerase α-primase (pol α) and topoisomerase I (topo I). Here we show that E1 binds to DNA polymerase ϵ (pol ϵ) and dramatically stimulates the DNA synthesis activity of pol ϵ. This stimulation of pol ϵ by E1 is highly specific and occurs even in the absence of the known pol ϵ cofactors Replication Factor C (RFC), Proliferating Cell Nuclear Antigen (PCNA) and RPA. This stimulation is due to an increase in the processivity of pol ϵ and occurs independently of pol ϵ’s replication cofactors. This increase in processivity is dependent on the ability of the E1 helicase to hydrolyze ATP, suggesting it is dependent on E1’s helicase action. In addition, RPA, thought to be vital for processive DNA synthesis by both pol ϵ and pol δ, was found to be dispensable for processive synthesis by pol ϵ in the presence of E1. Overall, E1 appears to be conferring processivity to pol ϵ by directly tethering pol ϵ to the DNA parental strand and towing ϵ behind the E1 helicase as the replication fork progresses; and thereby apparently obviating the need for RPA for leading strand synthesis. Thus far only pol α and pol δ have been implicated in the DNA replication of mammalian viruses; this is the first reported example of a virus recruiting pol ϵ. Furthermore, this demonstrates a unique capacity of a viral helicase having evolved to stimulate a cellular replicative DNA polymerase. PMID:29155954

  16. Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Dulin, David; Vilfan, Igor D; Berghuis, Bojk A; Hage, Susanne; Bamford, Dennis H; Poranen, Minna M; Depken, Martin; Dekker, Nynke H

    2015-02-11

    RNA viruses have specific mutation rates that balance the conflicting needs of an evolutionary response to host antiviral defenses and avoidance of the error catastrophe. While most mutations are known to originate in replication errors, difficulties of capturing the underlying dynamics have left the mechanochemical basis of viral mutagenesis unresolved. Here, we use multiplexed magnetic tweezers to investigate error incorporation by the bacteriophage Φ6 RNA-dependent RNA polymerase. We extract large datasets fingerprinting real-time polymerase dynamics over four magnitudes in time, in the presence of nucleotide analogs, and under varying NTP and divalent cation concentrations and fork stability. Quantitative analysis reveals a new pause state that modulates polymerase fidelity and so ties viral polymerase pausing to the biological function of optimizing virulence. Adjusting the frequency of such pauses offers a target for therapeutics and may also reflect an evolutionary strategy for virus populations to track the gradual evolution of their hosts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Temperature Dependence and Thermodynamics of Klenow Polymerase Binding to Primed-Template DNA

    National Research Council Canada - National Science Library

    Datta, Kausiki; Wowor, Andy J; Richard, Allison J; LiCata, Vince J

    2006-01-01

    DNA binding of Klenow polymerase has been characterized with respect to temperature to delineate the thermodynamic driving forces involved in the interaction of this polymerase with primed-template DNA...

  18. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples

    National Research Council Canada - National Science Library

    Kermekchiev, Milko B; Kirilova, Lyubka I; Vail, Erika E; Barnes, Wayne M

    2009-01-01

    .... We show that the effect of these inhibitors is primarily upon Taq DNA polymerase, since mutational alteration of the polymerase can overcome the inhibition to the extent that no DNA purification is now required...

  19. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase.

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  20. Ethanolic Extract of Melia Fructus Has Anti-influenza A Virus Activity by Affecting Viral Entry and Viral RNA Polymerase

    Science.gov (United States)

    Jin, Young-Hee; Choi, Jang-Gi; Cho, Won-Kyung; Ma, Jin Yeul

    2017-01-01

    Meliae Fructus (MF) is the dried ripe fruit of Melia toosendan Siebold et Zuccarini, Meliaceae family. MF is widely used in traditional medicine to treat inflammation and helminthic infection and has anti-bacterial, anti-oxidant, anti-cancer, anti-inflammatory, and analgesic activities. However, potential anti-influenza properties of MF have yet to be investigated. We determined whether an ethanolic extract of MF (EMF) has anti-viral activity via an EMF pre-, co-, and post-treatment assay, using the Influenza A/PR/8/34 and H3N2 virus on Madin-Darby canine kidney (MDCK) cells. The EMF had anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cell. EMF inhibited the activity of hemagglutinin (HA) and neuraminidase (NA) of influenza virus. EMF inhibited viral HA, nucleoprotein (NP), matrix protein 2 (M2), non-structural protein 1 (NS1), polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) mRNA synthesis at 5 h post infection (hpi), however, the levels of PA, PB1, and PB2 mRNA were increased in pre- and co-EMF treated cells compared with control virus-infected and EMF post-treated cells at 18 hpi. The level of M2 protein expression was also decreased upon pre- and co-treatment with EMF. The PA protein was accumulated and localized in not only the nucleus but also the cytoplasm of virus-infected MDCK cells at 18 hpi. Pre-EMF treatment inhibited the expression of pAKT, which is induced by influenza virus infection, at the stage of virus entry. We also found that treatment of EMF up-regulated the antiviral protein Mx1, which may play a partial role in inhibiting influenza virus infection in pre- and co-EMF treated MDCK cells. In summary, these results strongly suggested that an ethanolic extract of Meliae Fructus inhibited influenza A virus infection by affecting viral entry, PA proteins of the RNA polymerase complex, and Mx1 induction and may be a potential and

  1. Structure and mechanism of human DNA polymerase [eta

    Energy Technology Data Exchange (ETDEWEB)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji; Ramón-Maiques, Santiago; Gregory, Mark; Lee, Jae Young; Masutani, Chikahide; Lehmann, Alan R.; Hanaoka, Fumio; Yang, Wei (Sussex); (NIH); (Gakushuin); (Osaka)

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.

  2. Cloning and analysis of the DNA polymerase-encoding gene from Thermus filiformis.

    Science.gov (United States)

    Jung, S E; Choi, J J; Kim, H K; Kwon, S T

    1997-12-31

    The gene encoding Thermus filiformis (Tfi) DNA polymerase was cloned and its nucleotide sequence was determined. The primary structure of Tfi DNA polymerase was deduced from its nucleotide sequence. Tfi DNA polymerase is comprised of 833 amino acid residues and its molecular mass was determined to be 93,890 Da. The deduced amino acid sequence of Tfi DNA polymerase showed a high sequence homology to E. coli DNA polymerase I-like DNA polymerases: 78.5% homology to Taq DNA polymerase, 78.4% to Tca DNA polymerase, and 41.8% to E. coli DNA polymerase I. An extremely high sequence identity was observed in the region containing polymerase activity. The G + C content of the coding region for the Tfi DNA polymerase gene was 68.5%, which was higher than that of the chromosomal DNA (65%). The G + C contents in the first, second, and third positions of the codons used were 71.8%, 40.9%, and 92.7% respectively. Codon usage in Tfi DNA polymerase was heavily biased towards the use of G + C in the third position. Rare codons with U or A as the third base were sometimes used to avoid using GA(A/T) TC and TCGA sequences, as they are recognition sites for the restriction endonucleases TfiI and TaqI.

  3. Cloning and analysis of the DNA polymerase-encoding gene from Thermus caldophilus GK24.

    Science.gov (United States)

    Kwon, S T; Kim, J S; Park, J H; Kim, H K; Lee, D S

    1997-04-30

    The gene encoding Thermus caldophilus GK24 (Tca) DNA polymerase was cloned into Escherichia coli using the structural gene coding for Thermus aquaticus YT-1 (Taq) DNA polymerase as a hybridization probe. The nucleotide sequence of the cloned DNA was determined. The primary structure of the Tca DNA polymerase was deduced from the nucleotide sequence. The Tca DNA polymerase comprised 834 amino acid residues and its molecular mass was determined to be 93,810. On alignment of the whole amino acid sequence, Tca DNA polymerase showed a high sequence homology with the E. coli DNA polymerase I-like DNA polymerases, and 86% identity with Taq DNA polymerase, 38% with E. coli and Streptococcus pneumoniae (Spn) DNA polymerase I. An extremely high sequence identity was observed in the region containing the polymerase activity. The codon usage in the Tca DNA polymerase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G+C content in the third position of the codons was as high as 93%. The Tca DNA polymerase gene was expressed under the control of tac promoter on a high copy plasmid, pTCA in E. coli.

  4. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    Science.gov (United States)

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  6. Impact of the DNA polymerase Theta on the DNA replication program

    Directory of Open Access Journals (Sweden)

    Giuseppe Baldacci

    2015-03-01

    Full Text Available The physiological function of the human DNA polymerase θ (pol θ is still unclear despite its in vitro translesion synthesis capacity during DNA damage repair process. However this DNA polymerase is always present along the cell cycle in the absence of replication stress and DNA damage. Is there a different molecular function? We present the genomic data of replication timing in depleted pol θ cells (GSE49693 and in cells overexpressing pol θ (GSE53070 indicating that Pol θ holds a novel role in the absence of external stress as a critical determinant of the replication timing program in human cells.

  7. Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming.

    Science.gov (United States)

    Jones, Scott A; Clark, Daniel N; Cao, Feng; Tavis, John E; Hu, Jianming

    2014-02-01

    Hepatitis B virus replicates a DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific association with a viral RNA signal, termed ε (Hε), located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. HP is made up of four domains, including the terminal protein (TP), the spacer, the reverse transcriptase (RT), and the RNase H domains. A recently developed, Hε-dependent, in vitro protein priming assay was used in this study to demonstrate that almost the entire TP and RT domains and most of the RNase H domain were required for protein priming. Specific residues within TP, RT, and the spacer were identified as being critical for HP-Hε binding and/or protein priming. Comparison of HP sequence requirements for Hε binding, pgRNA packaging, and protein priming allowed the classification of the HP mutants into five groups, each with distinct effects on these complex and related processes. Detailed characterization of HP requirements for these related and essential functions of HP will further elucidate the mechanisms of its multiple functions and aid in the targeting of these functions for antiviral therapy.

  8. Advances in Non-Viral DNA Vectors for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cinnamon L. Hardee

    2017-02-01

    Full Text Available Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic

  9. Search for viral nucleic acid sequences in brain tissues of patients with schizophrenia using nested polymerase chain reaction.

    Science.gov (United States)

    Taller, A M; Asher, D M; Pomeroy, K L; Eldadah, B A; Godec, M S; Falkai, P G; Bogert, B; Kleinman, J E; Stevens, J R; Torrey, E F

    1996-01-01

    We used polymerase chain reaction to search for nucleic acid sequences of several viruses in DNA and RNA extracted from brain tissues of schizophrenic and control subjects. We extracted DNA and RNA templates from frozen brain specimens of 31 patients with schizophrenia and 23 nonschizophrenic control patients with other diseases. The extracts were subjected to polymerase chain reaction with oligonucleotide primers for 12 different viruses (cytomegalovirus, Epstein-Barr virus, herpes simplex virus type 1, human herpesvirus type 6, varicellazoster virus, measles virus, mumps virus, rubella virus, the picornavirus group, influenza A virus, human T-cell lymphotropic virus type I, and St Louis encephalitis virus), several of which have been suspected of involvement in schizophrenia. Nested primers were used to increase the sensitivity of the method. No amplified nucleic acid sequences encoded by the selected viral genomes were detected in extracts of any brain specimens from either schizophrenic or control patients. These data agree with previous studies that failed to find sequences of a number of viruses in the cerebrospinal fluid or selected areas of the brains of schizophrenic patients. Additional efforts should be undertaken to identify other known and unknown pathogens in schizophrenia, sampling more areas of the brain from subjects with a variety of clinical types of schizophrenia.

  10. Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering

    Directory of Open Access Journals (Sweden)

    Takeshi eYamagami

    2014-09-01

    Full Text Available DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, DNA labeling, mutagenesis, and other experiments. Thermostable DNA polymerases are especially useful and became quite valuable after the development of PCR technology. A DNA polymerase from Thermus aquaticus (Taq polymerase is the most famous DNA polymerase as a PCR enzyme, and has been widely used all over the world. In this study, the gene fragments of the family A DNA polymerases were amplified by PCR from the DNAs from microorganisms within environmental soil samples, using a primer set for the two conserved regions. The corresponding region of the pol gene for Taq polymerase was substituted with the amplified gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, two residues, E742 and A743, in Taq polymerase were found to be critical for its elongation ability. Taq polymerases with mutations at 742 and 743 actually showed higher DNA affinity and faster primer extension ability. These factors also affected the PCR performance of the DNA polymerase, and improved PCR results were observed with the mutant Taq polymerase.

  11. Kaposi's sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence.

    Science.gov (United States)

    Sun, Qiming; Tsurimoto, Toshiki; Juillard, Franceline; Li, Lin; Li, Shijun; De León Vázquez, Erika; Chen, She; Kaye, Kenneth

    2014-08-12

    Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects tumor cells and persists as a multiple-copy, extrachromosomal, circular episome. To persist, the viral genome must replicate with each cell cycle. The KSHV latency-associated nuclear antigen (LANA) mediates viral DNA replication and persistence, but little is known regarding the underlying mechanisms. We find that LANA recruits replication factor C (RFC), the DNA polymerase clamp [proliferating cell nuclear antigen (PCNA)] loader, to drive DNA replication efficiently. Mutated LANA lacking RFC interaction was deficient for LANA-mediated DNA replication and episome persistence. RFC depletion had a negative impact on LANA's ability to replicate and maintain viral DNA in cells containing artificial KSHV episomes or in infected cells, leading to loss of virus. LANA substantially increased PCNA loading onto DNA in vitro and recruited RFC and PCNA to KSHV DNA in cells. These findings suggest that PCNA loading is a rate-limiting step in DNA replication that is incompatible with viral survival. LANA enhancement of PCNA loading permits efficient virus replication and persistence, revealing a previously unidentified mechanism for KSHV latency.

  12. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... in a region upstream of the transcriptional start point and significantly higher downstream. Investigation of the sequence composition in the two regions shows that the bendability profile originates from the sequential structure of the DNA, rather than the general nucleotide composition...

  13. Structural Determinant for Switching between the Polymerase and Exonuclease Modes in the PCNA-Replicative DNA Polymerase Complex

    Science.gov (United States)

    Nishida, Hirokazu; Mayanagi, Kouta; Ishino, Yoshizumi; Morikawa, Kosuke

    Proliferating cell nuclear antigen (PCNA) is responsible for the processivity of DNA polymerase. We determined the crystal structure of Pyrococcus furiosus DNA polymerase (PfuPol) complexed with a cognate monomeric PCNA, which allowed us to construct a convincing model of the polymerase-PCNA ring interaction. Electron microscopy analyses confirmed that this complex structure exists among the multiple functional configurations in solution. Together with data from mutational analyses, this structural study indicated that the novel interaction between a stretched loop of PCNA and the PfuPol Thumb domain is quite important, in addition to the authentic PCNA-polymerase recognition site (PIP box). A comparison of the present structures with the previously reported structures of polymerases complexed with DNA suggested that the second interaction site plays a crucial role in switching between the polymerase and exonuclease modes, by stabilizing only the polymerase mode. This proposed mechanism of fidelity control of replicative DNA polymerases was supported by experiments, in which a mutation within the second interaction site caused an enhancement in the exonuclease activity in the presence of PCNA.

  14. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Science.gov (United States)

    Kim, Sung-Kun; Castro, Aaron; Kim, Edward S; Dinkel, Austin P; Liu, Xiaoyun; Castro, Miguel

    2016-01-01

    Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD) simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD) values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor) as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  15. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Directory of Open Access Journals (Sweden)

    Sung-Kun Kim

    Full Text Available Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  16. Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus

    Directory of Open Access Journals (Sweden)

    Wendy Ribble

    2015-01-01

    Full Text Available DNA replication in bacteria is accomplished by a multicomponent replicase, the DNA polymerase III holoenzyme (pol III HE. The three essential components of the pol III HE are the α polymerase, the β sliding clamp processivity factor, and the DnaX clamp-loader complex. We report here the assembly of the functional holoenzyme from Thermus thermophilus (Tth, an extreme thermophile. The minimal holoenzyme capable of DNA synthesis consists of α, β and DnaX (τ and γ, δ and δ′ components of the clamp-loader complex. The proteins were each cloned and expressed in a native form. Each component of the system was purified extensively. The minimum holoenzyme from these five purified subunits reassembled is sufficient for rapid and processive DNA synthesis. In an isolated form the α polymerase was found to be unstable at temperatures above 65°C. We were able to increase the thermostability of the pol III HE to 98°C by addition and optimization of various buffers and cosolvents. In the optimized buffer system we show that a replicative polymerase apparatus, Tth pol III HE, is capable of rapid amplification of regions of DNA up to 15,000 base pairs in PCR reactions.

  17. Mammalian mutator mutant with an aphidicolin-resistant DNA polymerase alpha.

    OpenAIRE

    Liu, P.K.; Chang, C C; Trosko, J E; Dube, D K; Martin, G. M.; Loeb, L A

    1983-01-01

    The Chinese hamster V79 cell mutant aphr-4-2, selected for its resistance to aphidicolin, a specific inhibitor of DNA polymerase alpha (DNA nucleotidyltransferase, EC 2.7.7.7), is characterized by slow growth, UV sensitivity, and hypersensitivity to UV-induced mutation. DNA polymerase alpha has been purified from mitochondria-free crude extracts of the mutant and its parental wild-type cells by sequential column chromatography on DEAE-cellulose and phosphocellulose. The major DNA polymerase a...

  18. Viral Pathogen Detection by Metagenomics and Pan-Viral Group Polymerase Chain Reaction in Children With Pneumonia Lacking Identifiable Etiology.

    Science.gov (United States)

    Schlaberg, Robert; Queen, Krista; Simmon, Keith; Tardif, Keith; Stockmann, Chris; Flygare, Steven; Kennedy, Brett; Voelkerding, Karl; Bramley, Anna; Zhang, Jing; Eilbeck, Karen; Yandell, Mark; Jain, Seema; Pavia, Andrew T; Tong, Suxiang; Ampofo, Krow

    2017-05-01

    Community-acquired pneumonia (CAP) is a leading cause of pediatric hospitalization. Pathogen identification fails in approximately 20% of children but is critical for optimal treatment and prevention of hospital-acquired infections. We used two broad-spectrum detection strategies to identify pathogens in test-negative children with CAP and asymptomatic controls. Nasopharyngeal/oropharyngeal (NP/OP) swabs from 70 children <5 years with CAP of unknown etiology and 90 asymptomatic controls were tested by next-generation sequencing (RNA-seq) and pan viral group (PVG) PCR for 19 viral families. Association of viruses with CAP was assessed by adjusted odds ratios (aOR) and 95% confidence intervals controlling for season and age group. RNA-seq/PVG PCR detected previously missed, putative pathogens in 34% of patients. Putative viral pathogens included human parainfluenza virus 4 (aOR 9.3, P = .12), human bocavirus (aOR 9.1, P < .01), Coxsackieviruses (aOR 5.1, P = .09), rhinovirus A (aOR 3.5, P = .34), and rhinovirus C (aOR 2.9, P = .57). RNA-seq was more sensitive for RNA viruses whereas PVG PCR detected more DNA viruses. RNA-seq and PVG PCR identified additional viruses, some known to be pathogenic, in NP/OP specimens from one-third of children hospitalized with CAP without a previously identified etiology. Both broad-range methods could be useful tools in future epidemiologic and diagnostic studies.

  19. The interplay between polymerase organization and nucleosome occupancy along DNA : How dynamic roadblocks on the DNA induce the formation of RNA polymerase pelotons

    NARCIS (Netherlands)

    van den Berg, A.A.

    2017-01-01

    During transcription RNA polymerase (RNAP) moves along a DNA molecule to copy the information on the DNA to an RNA molecule. Many textbook pictures show an RNAP sliding along empty DNA, but in reality it is crowded on the DNA and RNAP competes for space with many proteins such as other RNAP’s and

  20. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η.

    Science.gov (United States)

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G; Schärer, Orlando D

    2016-09-06

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.

    OpenAIRE

    Mossi, R; Ferrari, E; Hübscher, U

    1998-01-01

    The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by th...

  2. Use of an improved quantitative polymerase chain reaction assay to determine differences in human rhinovirus viral loads in different populations.

    Science.gov (United States)

    Granados, Andrea; Luinstra, Kathy; Chong, Sylvia; Goodall, Emma; Banh, Lisa; Mubareka, Samira; Smieja, Marek; Mahony, James

    2012-12-01

    Human rhinoviruses (HRV) frequently cause acute respiratory infections and chronic respiratory disease exacerbations. However, testing is not generally offered. We developed a modified HRV quantitative polymerase chain reaction (qPCR) assay to assess viral loads in the community and hospital patients. The assay had a lower limit of detection of 2 log(10) viral copies/mL and displayed linearity over 5 log(10) viral copies, with a lower limit of quantitation of 4 log(10) viral copies/mL. Mean viral loads (95% confidence interval) for hospitalized children, university students, and institutionalized elderly, were 7.08 log(10) viral copies/mL (6.7-7.5), 6.87 log(10) viral copies/mL (6.5-7.2), and 7.09 log(10) viral copies/mL (6.9-7.3), respectively (P = 0.67). Serial specimens of 14 university students showed a decrease of mean viral loads from 6.36 log(10) viral copies/mL on day 1 to 2.32 log(10) viral copies/mL 7 days past symptom onset (P < 0.001). Using an HRV qPCR, we showed that viral loads did not differ between the community and hospitalized populations and significantly decreased following symptoms onset in healthy individuals. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  4. DNA sequencing using polymerase substrate-binding kinetics.

    Science.gov (United States)

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-23

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications.

  5. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  6. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L [MSKCC; (UMASS, Amherst); (UW-MED)

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  7. Structure of the SSB–DNA polymerase III interface and its role in DNA replication

    Science.gov (United States)

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L

    2011-01-01

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability. PMID:21857649

  8. Relative efficiency of polymerase chain reaction and enzyme-linked immunosorbant assay in determination of viral etiology in congenital cataract in infants

    Directory of Open Access Journals (Sweden)

    Shyamala G

    2008-01-01

    Full Text Available Background: Perinatal viral infections of fetus are among the leading causes of congenital cataract and identifying the viral etiology is important. Objectives: To detect the presence of Rubella virus (RV, herpes simplex virus (HSV and cytomegalovirus (CMV in lens aspirate specimens obtained from patients with congenital cataract and relate the results with serology. Setting and Design: Prospective study carried out in tertiary care hospital. Materials and Methods: Fifty lens aspirates from 50 infants with congenital cataract were subjected to HSV, RV isolation and polymerase chain reaction (PCR for detection of HSV and CMV. Reverse transcription polymerase chain reaction (RT-PCR was applied for RV detection. Peripheral blood specimens were screened for anti-HSV, RV and CMV antibodies by enzyme-linked immunosorbant assay (ELISA. Results: Rubella virus was detected in nine (18% lens aspirates, by nRT-PCR which includes six positive by culture. HSV-2 DNA was detected in nine other lens aspirates, while CMV was not detected by PCR. Serological results did not correlate with the presence of viruses in the lens aspirates. This is the first report of detection of HSV-2 DNA in cases of congenital cataract. Conclusions: Cytomegalovirus may not be playing a significant role in causation of congenital cataract. The role of serology in identifying causative viral infection for congenital cataract needs to be re-evaluated.

  9. Recruitment of RED-SMU1 complex by Influenza A Virus RNA polymerase to control Viral mRNA splicing.

    Directory of Open Access Journals (Sweden)

    Guillaume Fournier

    2014-06-01

    Full Text Available Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.

  10. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics.

    Science.gov (United States)

    Yeager, Andrew; Humphries, Kathryn; Farmer, Ellen; Cline, Gene; Miller, Bill R

    2018-02-26

    Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.

  11. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.

    Science.gov (United States)

    Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth

    2017-08-01

    Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity

  12. Differential utilization of 2',3'-dideoxyguanosine 5'-triphosphate as a substrate for various DNA polymerases.

    Science.gov (United States)

    Ono, K; Nakane, H

    1991-01-01

    2',3'-dideoxyguanosine 5'-triphosphate (ddGTP) was found to be an efficient substrate for DNA polymerase beta when activated DNA was used as the template.primer. Under the optimized reaction conditions with activated DNA, the rate of the incorporation of ddGTP into DNA was almost equal to that of the corresponding normal substrate dGTP. The Km value for ddGTP (1.8 microM) was smaller than that for dGTP (7.8 microM). In contrast, ddGTP was not utilized as a substrate for DNA polymerase gamma with any of the activated DNA and (dC)n.(dG)12-18 as the template primer. Other DNA polymerases such as DNA polymerase alpha, E coli DNA polymerase I and retroviral reverse transcriptase could poorly utilize ddGTP as a substrate. Some of the kinetic properties of DNA polymerase beta revealed toward ddGTP are also described. Since DNA polymerase beta plays a role in DNA repair, the present results predict possible appearance of cytotoxicity or clinical side effect(s) of 2',3'-dideoxyguanosine (ddG), known as a potent inhibitor of human immunodeficiency virus, when ddG is administered to the patients with acquired immune deficiency syndrome (AIDS) or AIDS-related complex.

  13. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  14. Viral and Cellular Genomes Activate Distinct DNA Damage Responses

    Science.gov (United States)

    Shah, Govind A.; O’Shea, Clodagh C.

    2015-01-01

    Summary In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate ‘self’ and ‘non-self’ genomes and determine if a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability. PMID:26317467

  15. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2'-modified DNA.

    Science.gov (United States)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S; Romesberg, Floyd E

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2' positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2'-OMe-modified oligonucleotides and their DNA counterparts via 'transcription' and 'reverse transcription' or, more importantly, that PCR-amplify partially C2'-OMe- or C2'-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  16. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    DEFF Research Database (Denmark)

    Xing, Xuanxuan; Zhang, Likui; Guo, Li

    2014-01-01

    Replication factor C (RFC) is known to function in loading proliferating cell nuclear antigen (PCNA) onto primed DNA, allowing PCNA to tether DNA polymerase for highly processive DNA synthesis in eukaryotic and archaeal replication. In this report, we show that an RFC complex from...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....... the hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...

  17. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  18. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.

    Science.gov (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J

    2017-07-21

    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparative Molecular Dynamics Studies of Human DNA Polymerase η

    Science.gov (United States)

    2015-01-01

    High-energy ultraviolet radiation damages DNA through the formation of cyclobutane pyrimidine dimers, which stall replication. When the lesion is a thymine–thymine dimer (TTD), human DNA polymerase η (Pol η) assists in resuming the replication process by inserting nucleotides opposite the damaged site. We performed extensive molecular dynamics (MD) simulations to investigate the structural and dynamical effects of four different Pol η complexes with or without a TTD and with either dATP or dGTP as the incoming base. No major differences in the overall structures and equilibrium dynamics were detected among the four systems, suggesting that the specificity of this enzyme is due predominantly to differences in local interactions in the binding regions. Analysis of the hydrogen-bonding interactions between the enzyme and the DNA and dNTP provided molecular-level insights. Specifically, the TTD was observed to engage in more hydrogen-bonding interactions with the enzyme than its undamaged counterpart of two normal thymines. The resulting greater rigidity and specific orientation of the TTD are consistent with the experimental observation of higher processivity and overall efficiency at TTD sites than at analogous sites with two normal thymines. The similarities between the systems containing dATP and dGTP are consistent with the experimental observation of relatively low fidelity with respect to the incoming base. Moreover, Q38 and R61, two strictly conserved amino acids across the Pol η family, were found to exhibit persistent hydrogen-bonding interactions with the TTD and cation-π interactions with the free base, respectively. Thus, these simulations provide molecular level insights into the basis for the selectivity and efficiency of this enzyme, as well as the roles of the two most strictly conserved residues. PMID:26562587

  20. Structures of DNA Polymerases caught processing size-augmented nucleotide probes

    OpenAIRE

    Betz, Karin; Streckenbach, Frank; Schnur, Andreas; Exner, Thomas E.; Welte, Wolfram; Diederichs, Kay; Marx, Andreas

    2010-01-01

    The integrity of the genome relies primarily on the ability of DNA polymerases to efficiently catalyze selective DNA synthesis according to the Watson Crick rule in a templatedirected manner during DNA replication, repair, and recombination. Remarkably, some DNA polymerases achieve selective information transfer to the offspring in line with the Watson Crick rule with intrinsic error rates as low as one mistake per one million synthesized nucleotides.[1] This is far below the value that would...

  1. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.

    Directory of Open Access Journals (Sweden)

    Claudia Huber

    Full Text Available Fidelity and selectivity of DNA polymerases are critical determinants for the biology of life, as well as important tools for biotechnological applications. DNA polymerases catalyze the formation of DNA strands by adding deoxynucleotides to a primer, which is complementarily bound to a template. To ensure the integrity of the genome, DNA polymerases select the correct nucleotide and further extend the nascent DNA strand. Thus, DNA polymerase fidelity is pivotal for ensuring that cells can replicate their genome with minimal error. DNA polymerases are, however, further optimized for more specific biotechnological or diagnostic applications. Here we report on the semi-rational design of mutant libraries derived by saturation mutagenesis at single sites of a 3'-5'-exonuclease deficient variant of Thermococcus kodakaraensis DNA polymerase (KOD pol and the discovery for variants with enhanced mismatch extension selectivity by screening. Sites of potential interest for saturation mutagenesis were selected by their proximity to primer or template strands. The resulting libraries were screened via quantitative real-time PCR. We identified three variants with single amino acid exchanges-R501C, R606Q, and R606W-which exhibited increased mismatch extension selectivity. These variants were further characterized towards their potential in mismatch discrimination. Additionally, the identified enzymes were also able to differentiate between cytosine and 5-methylcytosine. Our results demonstrate the potential in characterizing and developing DNA polymerases for specific PCR based applications in DNA biotechnology and diagnostics.

  2. Production of DNA polymerase by recombinant pET-17b/Pfu-Pol ...

    African Journals Online (AJOL)

    Polymerase chain reaction (PCR) is one of the most widely used techniques in molecular biology and biotechnology. Thermostable DNA polymerase is the key enzyme that catalyzes the amplification of DNA templates during PCR cycles. Although this enzyme has been produced worldwide, there is no reported cloning or ...

  3. Polymerase chain reaction and conventional DNA tests in detection of HPV DNA in cytologically normal and abnormal cervical scrapes

    DEFF Research Database (Denmark)

    Kalia, A.; Jalava, T.; Nieminen, P.

    1992-01-01

    Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test......Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test...

  4. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity.

    Science.gov (United States)

    Obeid, Samra; Schnur, Andreas; Gloeckner, Christian; Blatter, Nina; Welte, Wolfram; Diederichs, Kay; Marx, Andreas

    2011-07-04

    DNA is being constantly damaged by endo- and exogenous agents such as reactive oxygen species, chemicals, radioactivity, and ultraviolet radiation. Additionally, DNA is inherently labile, and this can result in, for example, the spontaneous hydrolysis of the glycosidic bond that connects the sugar and the nucleobase moieties in DNA; this results in abasic sites. It has long been obscure how cells achieve DNA synthesis past these lesions, and only recently has it been discovered that several specialized DNA polymerases are involved in translesion synthesis. The underlying mechanisms that render one DNA polymerase competent in translesion synthesis while another DNA polymerase fails are still indistinct. Recently two variants of Taq DNA polymerase that exhibited higher lesion bypass ability than the wild-type enzyme were identified by directed-evolution approaches. Strikingly, in both approaches it was independently found that substitution of a single nonpolar amino acid side chain by a cationic side chain increases the capability of translesion synthesis. Here, we combined both mutations in a single enzyme. We found that the KlenTaq DNA polymerase that bore both mutations superseded the wild-type as well as the respective single mutants in translesion-bypass proficiency. Further insights in the molecular basis of the detected gain of translesion-synthesis function were obtained by structural studies of DNA polymerase variants caught in processing canonical and damaged substrates. We found that increased positive charge of the surface potential in the area proximal to the negatively charged substrates promotes translesion synthesis by KlenTaq DNA polymerase, an enzyme that has very limited naturally evolved capability to perform translesion synthesis. Since expanded positively charged surface potential areas are also found in naturally evolved translesion DNA polymerases, our results underscore the impact of charge on the proficiency of naturally evolved translesion

  5. Interactions of replication versus repair DNA substrates with the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.

    Science.gov (United States)

    Yang, Yanling; LiCata, Vince J

    2011-11-01

    Different DNA polymerases partition differently between replication and repair pathways. In this study we examine if two Pol I family polymerases from evolutionarily distant organisms also differ in their preferences for replication versus repair substrates. The DNA binding preferences of Klenow and Klentaq DNA polymerases, from Escherichia coli and Thermus aquaticus respectively, have been studied using a fluorescence competition binding assay. Klenow polymerase binds primed-template DNA (the replication substrate) with up to 50× higher affinity than it binds to nicked DNA, DNA with a 2 base single-stranded gap, blunt-ended DNA, or to a DNA end with a 3' overhang. In contrast, Klentaq binds all of these DNAs almost identically, indicating that Klenow has a stronger ability to discriminate between replication and repair substrates than Klentaq. In contrast, both polymerases bind mismatched primed-template and blunt-ended DNA tighter than they bind matched primed-template DNA, suggesting that these two proteins may share a similar mechanism to identify mismatched DNA, despite the fact that Klentaq has no proofreading ability. In addition, the presence or absence of 5'- or 3'-phosphates has slightly different effects on DNA binding by the two polymerases, but again reinforce Klenow's more effective substrate discrimination capability. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.

    Science.gov (United States)

    Saturno, J; Lázaro, J M; Esteban, F J; Blanco, L; Salas, M

    1997-06-13

    Bacteriophage ø29 DNA polymerase shares with other DNA-dependent DNA polymerases several regions of amino acid homology along the primary structure. Among them, motif B, characterized by the consensus +x3Kx(6-7)YG (+ being a positively charged amino acid), appears to be specifically conserved in those polymerases that use DNA but not RNA as template. In particular, the lysine residue of this motif is invariant in all members of DNA-dependent polymerases. In this paper we report a mutational analysis of this invariant residue of motif B with the construction and characterization of two mutant proteins in the corresponding residue (Lys383) of ø29 DNA polymerase. Mutant proteins (K383R and K383P) were overexpressed, purified and analyzed under steady-state conditions. In agreement with the modular organization proposed for ø29 DNA polymerase, the exonuclease activity was not affected in either mutant protein. Conversely, mutant K383P showed no detectable capacity to incorporate dNTP substrates using either DNA or TP as primer, although its affinity for DNA was not affected. The conservative substitution of Lys383 by arginine (K383R) resulted in a considerable impairment to use dNTPs, in both processive and non-processive DNA synthesis; the Km for dNTPs being 200-fold higher than that of the wild-type enzyme. Mutant K383R recovered the wild-type polymerase/exonuclease ratio when Mn2+ was used instead of Mg2+ as metal activator, indicating a distorted binding of the [dNTP-metal] chelate at the mutant enzyme active site. The positive charge at residue Lys383 was also critical in the catalysis of deoxynucleotidylation of the terminal protein by ø29 DNA polymerase. The results obtained suggest a direct role for the lysine residue in motif B in forming an evolutionarily conserved DNA templated dNTP binding pocket. Additionally, K383R mutant protein was also affected in the progression from protein-primed initiation to DNA elongation, a switch between two modes of

  7. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Directory of Open Access Journals (Sweden)

    Sabine S Lange

    2016-01-01

    Full Text Available DNA polymerase ζ (pol ζ is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  8. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Science.gov (United States)

    Lange, Sabine S; Tomida, Junya; Boulware, Karen S; Bhetawal, Sarita; Wood, Richard D

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  9. Exploring possible DNA structures in real-time polymerase kinetics using Pacific Biosciences sequencer data.

    Science.gov (United States)

    Sawaya, Sterling; Boocock, James; Black, Michael A; Gemmell, Neil J

    2015-01-28

    Pausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures. We have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use this method to examine how polymerase kinetics are related to nucleotide base composition. We then examine tandem repeat sequences known for their ability to form different DNA structures: (CGG)n and (CG)n repeats which can, respectively, form G-quadruplex DNA and Z-DNA. We find pausing around the (CGG)n repeat that may indicate the presence of G-quadruplexes in some of the sequencer reads. The (CG)n repeat does not appear to cause polymerase pausing, but its kinetics signature nevertheless suggests the possibility that alternative nucleotide conformations may sometimes be present. We discuss the implications of using our method to discover DNA sequences capable of forming alternative structures. The analyses presented here can be reproduced on any Pacific Biosciences kinetics data for any DNA pattern of interest using an R package that we have made publicly available.

  10. DNA vaccines against viral diseases of farmed fish.

    Science.gov (United States)

    Evensen, Øystein; Leong, Jo-Ann C

    2013-12-01

    Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  12. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Yoshizawa

    2009-08-01

    Full Text Available Altered expression of DNA polymerase beta (Pol beta has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model.We have recently developed a novel transgenic mouse model that over-expresses Pol beta. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol beta over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol beta expression. We observed elevated expression of Pol beta in stomach adenomas and thyroid follicular carcinomas, but reduced Pol beta expression in esophageal adenocarcinomas and squamous carcinomas.These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.

  13. Mechanochemistry-The Amazing Viral DNA Packaging Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 5. Mechanochemistry - The Amazing Viral DNA Packaging Molecular Motor. K L Sebastian. General Article Volume 12 Issue 5 May 2007 pp 48-59. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Unnatural substrate repertoire of A, B, and X family DNA polymerases.

    Science.gov (United States)

    Hwang, Gil Tae; Romesberg, Floyd E

    2008-11-05

    As part of an effort to develop unnatural base pairs that are stable and replicable in DNA, we examined the ability of five different polymerases to replicate DNA containing four different unnatural nucleotides bearing predominantly hydrophobic nucleobase analogs. The unnatural pairs were developed based on intensive studies using the Klenow fragment of DNA polymerase I from E. coli (Kf) and found to be recognized to varying degrees. The five additional polymerases characterized here include family A polymerases from bacteriophage T7 and Thermus aquaticus, family B polymerases from Thermococcus litoralis and Thermococcus 9(o)N-7, and the family X polymerase, human polymerase beta. While we find that some aspects of unnatural base pair recognition are conserved among the polymerases, for example, the pair formed between two d3FB nucleotides is typically well recognized, the detailed recognition of most of the unnatural base pairs is generally polymerase dependent. In contrast, we find that the pair formed between d5SICS and dMMO2 is generally well recognized by all of the polymerases examined, suggesting that the determinants of efficient and general recognition are contained within the geometric and electronic structure of these unnatural nucleobases themselves. The data suggest that while the d3FB:d3FB pair is sufficiently well recognized by several of the polymerases for in vitro applications, the d5SICS:dMMO2 heteropair is likely uniquely promising for in vivo use. T7-mediated replication is especially noteworthy due to strong mispair discrimination.

  15. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering

    Directory of Open Access Journals (Sweden)

    Nørholm Morten HH

    2010-03-01

    Full Text Available Abstract Background The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Results Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. Conclusions The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  16. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability.

    Directory of Open Access Journals (Sweden)

    María-Victoria García-Ortíz

    2011-06-01

    Full Text Available Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5'- 3' exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity.

  17. Crystal Structure of Poliovirus 3CD Protein: Virally Encoded Protease and Precursor to the RNA-Dependent RNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte,L.; Wass, A.; Gohara, D.; Pathak, H.; Arnold, J.; Filman, D.; Cameron, C.; Hogle, J.

    2007-01-01

    Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3Cpro and the viral polymerase 3Dpol and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4- Angstroms resolution and the G64S fidelity mutant of 3Dpol at a 3.0- Angstroms resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3Dpol G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3Dpol makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.

  18. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    Science.gov (United States)

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  19. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta.

    Science.gov (United States)

    Washington, M T; Johnson, R E; Prakash, S; Prakash, L

    2000-03-28

    The Saccharomyces cerevisiae RAD30 gene functions in error-free replication of UV-damaged DNA. RAD30 encodes a DNA polymerase, Pol eta, which inserts two adenines opposite the two thymines of a cis-syn thymine-thymine (T-T) dimer. Here we use steady-state kinetics to determine the accuracy of DNA synthesis opposite the T-T dimer. Surprisingly, the accuracy of DNA synthesis opposite the damaged DNA is nearly indistinguishable from that opposite nondamaged DNA, with frequencies of misincorporation of about 10(-2) to 10(-3). These studies support the hypothesis that unlike most DNA polymerases, Pol eta is able to tolerate distortions in DNA resulting from damage, which then enables the polymerase to utilize the intrinsic base pairing ability of the T-T dimer.

  20. Accuracy of thymine–thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase η

    Science.gov (United States)

    Washington, M. Todd; Johnson, Robert E.; Prakash, Satya; Prakash, Louise

    2000-01-01

    The Saccharomyces cerevisiae RAD30 gene functions in error-free replication of UV-damaged DNA. RAD30 encodes a DNA polymerase, Pol η, which inserts two adenines opposite the two thymines of a cis-syn thymine–thymine (T–T) dimer. Here we use steady-state kinetics to determine the accuracy of DNA synthesis opposite the T–T dimer. Surprisingly, the accuracy of DNA synthesis opposite the damaged DNA is nearly indistinguishable from that opposite nondamaged DNA, with frequencies of misincorporation of about 10−2 to 10−3. These studies support the hypothesis that unlike most DNA polymerases, Pol η is able to tolerate distortions in DNA resulting from damage, which then enables the polymerase to utilize the intrinsic base pairing ability of the T–T dimer. PMID:10725365

  1. Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase η recruitment to DNA damage sites.

    Science.gov (United States)

    Whitehurst, Christopher B; Vaziri, Cyrus; Shackelford, Julia; Pagano, Joseph S

    2012-08-01

    PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.

  2. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chander, Yogesh; Koelbl, Jim; Puckett, Jamie; Moser, Michael J; Klingele, Audrey J; Liles, Mark R; Carrias, Abel; Mead, David A; Schoenfeld, Thomas W

    2014-01-01

    Meeting the goal of providing point of care (POC) tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol) is a thermostable viral enzyme that enables true POC use in clinics or in the field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP) for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations. Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst) and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular detection of

  3. A novel thermostable polymerase for RNA and DNA Loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Yogesh eChander

    2014-08-01

    Full Text Available Meeting the goal of providing point of care (POC tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol is a thermostable viral enzyme that enables true POC use in clinics or in field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations . Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular

  4. Investigations on the thermostability and function of truncated Thermus aquaticus DNA polymerase fragments.

    Science.gov (United States)

    Villbrandt, B; Sagner, G; Schomburg, D

    1997-11-01

    The thermostable DNA polymerase from Thermus aquaticus (Taq polymerase) has been truncated to molecular regions essential for polymerase activity. Two truncated forms of the full-length 832 amino acid Taq polymerase have been constructed according to sequence alignments and the known domain structure of the homologous Escherichia coli DNA polymerase I (E.coli pol I): variant delta288 (lacking the N-terminal 288 amino acid portion) and variant delta413 (lacking the N-terminal 413 amino acid portion). Both protein fragments were stable and showed polymerase activity, albeit specific activity and thermostability of the variant delta413 were significantly decreased compared with the full length Taq polymerase. In order to increase the thermostability of the variant delta413, a three-dimensional model of the polymerase domain of Taq polymerase was built by homology with a model of the Klenow fragment of the E.coli pol I based on the available Calpha coordinates. Consequently two variants were designed and constructed using site-directed mutagenesis. The strategies used were deletion of 10 flexible amino acids and replacement of two hydrophobic amino acids on the surface by more hydrophilic ones. Compared with the initial protein fragment, both variant enzymes showed an increase in polymerase activity and thermostability. After the completion of this work, X-ray coordinates of the Taq polymerase became available from the protein structure data bank. A comparison between the homology model and the experimental three-dimensional structure proved the quality of the model.

  5. Evaluation of extraction methods from paraffin wax embedded tissues for PCR amplification of human and viral DNA.

    Science.gov (United States)

    Chan, P K; Chan, D P; To, K F; Yu, M Y; Cheung, J L; Cheng, A F

    2001-05-01

    To evaluate the efficiency of phenol/chloroform, microwave, and Qiagen spin column based DNA extractions from paraffin wax embedded tissue for use in the polymerase chain reaction (PCR). In addition, to assess the reliability of amplifying a housekeeping gene to indicate successful viral DNA extraction. DNA samples extracted from 20 blocks of cervical carcinoma tissues using the three methods were subjected to PCRs targeting 509 bp and 355 bp of the beta globin gene, and 450 bp and 150 bp of human papillomavirus (HPV) DNA. Microwave extraction showed the highest positive rate for beta globin PCR, whereas the spin column method was the most efficient for HPV DNA extraction. When the 509 bp beta globin and 450 bp HPV PCR results were correlated, two of 10, eight of 12, and nine of 10 beta globin positive extractions prepared by means of the phenol/chloroform, microwave, and spin column methods, respectively, yielded HPV DNA of the expected size. For the beta globin negative samples, HPV was detected in three of 10, two of eight, and four of 10 samples. HPV DNA extraction was most efficient using the Qiagen spin column and had the highest positive predictive value when a housekeeping gene was used as an indicator of successful viral DNA extraction; the phenol/chloroform method was the least efficient. The potential drawbacks of some extraction methods when using a human housekeeping gene to assess the quality of viral DNA extraction need to be considered.

  6. DNA polymerases in the mitochondria: A critical review of the evidence.

    Science.gov (United States)

    Krasich, Rachel; Copeland, William C

    2017-01-01

    Since 1970, the DNA polymerase gamma (PolG) has been known to be the DNA polymerase responsible for replication and repair of mitochondrial DNA, and until recently it was generally accepted that this was the only polymerase present in mitochondria. However, recent data has challenged that opinion, as several polymerases are now proposed to have activity in mitochondria. To date, their exact role of these other DNA polymerases is unclear and the amount of evidence supporting their role in mitochondria varies greatly. Further complicating matters, no universally accepted standards have been set for definitive proof of the mitochondrial localization of a protein. To gain an appreciation of these newly proposed DNA polymerases in the mitochondria, we review the evidence and standards needed to establish the role of a polymerase in the mitochondria. Employing PolG as an example, we established a list of criteria necessary to verify the existence and function of new mitochondrial proteins. We then apply this criteria towards several other putative mitochondrial polymerases. While there is still a lot left to be done in this exciting new direction, it is clear that PolG is not acting alone in mitochondria, opening new doors for potential replication and repair mechanisms.

  7. Two Family B DNA Polymerases from Aeropyrum pernix, an Aerobic Hyperthermophilic Crenarchaeote

    Science.gov (United States)

    Cann, Isaac K. O.; Ishino, Sonoko; Nomura, Norimichi; Sako, Yoshihiko; Ishino, Yoshizumi

    1999-01-01

    DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3′→5′ exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80°C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95°C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family. PMID:10498710

  8. Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes

    Science.gov (United States)

    Ng, Terry Fei Fan; Willner, Dana L.; Lim, Yan Wei; Schmieder, Robert; Chau, Betty; Nilsson, Christina; Anthony, Simon; Ruan, Yijun; Rohwer, Forest; Breitbart, Mya

    2011-01-01

    Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes. PMID:21674005

  9. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase {beta} in long patch base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, Maria; Khodyreva, Svetlana [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation); Lavrik, Olga, E-mail: lavrik@niboch.nsc.ru [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation)

    2010-03-01

    Poly(ADP-ribose)polymerase 1 (PARP1), functioning as DNA nick-sensor, interacts with base excision repair (BER) DNA intermediates containing single-strand breaks. When bound to DNA breaks, PARP1 catalyzes synthesis of poly(ADP-ribose) covalently attached to itself and some nuclear proteins. Autopoly(ADP-ribosyl)ation of PARP1 facilitates its dissociation from DNA breaks and is considered as a factor regulating DNA repair. In the study, using system reconstituted from purified BER proteins, bovine testis nuclear extract and model BER DNA intermediates, we examined the influence of PARP1 and its autopoly(ADP-ribosyl)ation on DNA polymerase {beta} (Pol {beta})-mediated long patch (LP) BER DNA synthesis that is accomplished through a cooperation between Pol {beta} and apurinic/apyrimidinic endonuclease1 (APE1) or flap endonuclease 1 (FEN1) and gap-filling activity of Pol {beta}. PARP1 upon interaction with nicked LP BER DNA intermediated, formed after gap-filling, was shown to suppress the subsequent steps in LP pathway. PARP1 interferes with APE1-dependent stimulation of DNA synthesis by Pol {beta} via strand-displacement mechanism. PARP1 also represses Pol {beta}/FEN1-mediated LP BER DNA synthesis via a 'gap translation' mechanism inhibiting FEN1 activity on the nicked DNA intermediate. Poly(ADP-ribosyl)ation of PARP1 abolishes its inhibitory influence on LP BER DNA synthesis catalyzed by Pol {beta} both via APE1-mediated strand-displacement and FEN1-mediated 'gap translation' mechanism. Thus PARP1 may act as a negative regulator of Pol {beta} activity in LP BER pathway and poly(ADP-ribosyl)ation of PARP1 seems to play a critical role in enablement of Pol {beta}-mediated DNA synthesis in this process. In contrast, interaction of PARP1 with one nucleotide gapped DNA mimicking the intermediate of short patch (SP) BER slightly inhibits the gap-filling activity of Pol {beta} and the overall efficiency of SP BER is practically unaffected by PARP1. Thus

  10. Impact of two different commercial DNA extraction methods on BK virus viral load

    Directory of Open Access Journals (Sweden)

    Massimiliano Bergallo

    2016-03-01

    Full Text Available Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France and manual QIAGEN extraction (QIAGEN Hilden, Germany. BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit, for the extraction of BK virus from serum and urine specimens.

  11. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  12. Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.

    Science.gov (United States)

    Teng, Fang-Yuan; Hou, Xi-Miao; Fan, San-Hong; Rety, Stephane; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-12-01

    Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli. © 2017 Federation of European Biochemical Societies.

  13. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome.

    Science.gov (United States)

    Wallen, Jamie R; Zhang, Hao; Weis, Caroline; Cui, Weidong; Foster, Brittni M; Ho, Chris M W; Hammel, Michal; Tainer, John A; Gross, Michael L; Ellenberger, Tom

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  15. Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.; Pence, Matthew G.; Pallan, Pradeep S.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter (Vanderbilt)

    2014-10-02

    The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.

  16. Probing conformational changes of human DNA polymerase lambda using mass spectrometry-based protein footprinting.

    Science.gov (United States)

    Fowler, Jason D; Brown, Jessica A; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-07-17

    Crystallographic studies of the C-terminal DNA polymerase-beta-like domain of full-length human DNA polymerase lambda (fPollambda) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase beta. To examine solution-phase protein conformational changes in fPollambda, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a proline-rich domain at its N-terminus, we used a mass spectrometry-based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPollambda versus the binary complex of enzyme*gapped DNA and the ternary complex of enzyme*gapped DNA*dNTP (2'-deoxynucleotide triphosphate). These experiments suggested that fPollambda does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide. Site-directed mutagenesis and pre-steady-state kinetic studies confirmed the importance of R386 for the enzyme activity and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases.

  17. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  18. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    OpenAIRE

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cy...

  19. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.; (UPENN)

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  20. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus▿

    Science.gov (United States)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.

    2009-01-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins. PMID:19759157

  1. Systematic characterization of 2'-deoxynucleoside- 5'-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA

    National Research Council Canada - National Science Library

    Kuwahara, Masayasu; Nagashima, Jun-ichi; Hasegawa, Masatoshi; Tamura, Takehiro; Kitagata, Rina; Hanawa, Kazuo; Hososhima, Shin-ichi; Kasamatsu, Toshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki

    2006-01-01

    ...-) polymerases and pUC 18 plasmid DNA as a template. These assays were performed on two different amplifying regions of pUC18 with different T/C contents that are expected to have relatively high barriers for incorporation of either modified dU or dC...

  2. Amplified Detection of the Aptamer–Vanillin Complex with the Use of Bsm DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Mariia Andrianova

    2017-12-01

    Full Text Available The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10−6–1 × 10−8 M was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10−8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4.

  3. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase.

    Science.gov (United States)

    Andrianova, Mariia; Komarova, Natalia; Grudtsov, Vitaliy; Kuznetsov, Evgeniy; Kuznetsov, Alexander

    2017-12-26

    The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10 -6 -1 × 10 -8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10 -8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).

  4. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Science.gov (United States)

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  5. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR.

  6. (DNA) fragment using two-step polymerase chain reaction (PCR)

    African Journals Online (AJOL)

    Polymerase chain reaction (PCR), an essential tool in many fields such as molecular biology, normally comprises three steps: denaturation at a high temperature, annealing at a low temperature and elongation at a moderate temperature. Here, we report a two-step PCR method which incorporates annealing and elongation ...

  7. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).

    Science.gov (United States)

    Keszthelyi, Andrea; Daigaku, Yasukazu; Ptasińska, Katie; Miyabe, Izumi; Carr, Antony M

    2015-11-01

    Ribonucleotides are frequently misincorporated into DNA during replication, and they are rapidly repaired by ribonucleotide excision repair (RER). Although ribonucleotides in template DNA perturb replicative polymerases and can be considered as DNA damage, they also serve positive biological functions, including directing the orientation of mismatch repair. Here we describe a method for ribonucleotide identification by high-throughput sequencing that allows mapping of the location of ribonucleotides across the genome. When combined with specific mutations in the replicative polymerases that incorporate ribonucleotides at elevated frequencies, our ribonucleotide identification method was adapted to map polymerase usage across the genome. Polymerase usage sequencing (Pu-seq) has been used to define, in unprecedented detail, replication dynamics in yeasts. Although other methods that examine replication dynamics provide direct measures of replication timing and indirect estimates of origin efficiency, Pu-seq directly ascertains origin efficiency. The Pu-seq protocol can be completed in 12-14 d.

  8. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis-acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors.IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  9. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    Science.gov (United States)

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  10. How a DNA polymerase clamp loader opens a sliding clamp

    Science.gov (United States)

    Kelch, Brian A.; Makino, Debora L.; O’Donnell, Mike; Kuriyan, John

    2012-01-01

    Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of ATPases. We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit, and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy between the loader, the clamp and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA. PMID:22194570

  11. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  12. How a DNA polymerase clamp loader opens a sliding clamp

    OpenAIRE

    Kelch, Brian A.; Makino, Debora L.; O’Donnell, Mike; Kuriyan, John

    2011-01-01

    Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of ATPases. We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydroly...

  13. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    Czech Academy of Sciences Publication Activity Database

    Furukawa, T.; Angelis, Karel; Britt, A.B.

    2015-01-01

    Roč. 6, MAY 27 (2015) ISSN 1664-462X R&D Projects: GA ČR GA13-06595S Institutional support: RVO:61389030 Keywords : DNA polymerase * DNA repair * Non homologous end joining Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.495, year: 2015

  14. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation

    OpenAIRE

    Li,Ying; Mitaxov, Vesselin; Waksman, Gabriel

    1999-01-01

    The Taq DNA polymerase is the most commonly used enzyme in DNA sequencing. However, all versions of Taq polymerase are deficient in two respects: (i) these enzymes incorporate each of the four dideoxynucleoside 5′ triphosphates (ddNTPs) at widely different rates during sequencing (ddGTP, for example, is incorporated 10 times faster than the other three ddNTPs), and (ii) these enzymes show uneven band-intensity or peak-height patterns in radio-labeled or dye-labeled DNA sequence profiles, resp...

  15. Inhibition of DNA polymerase alpha by 2',3'-dideoxyribonucleoside 5'-triphosphates: effect of manganese ion.

    Science.gov (United States)

    Ono, K; Ogasawara, M; Iwata, Y; Nakane, H

    1984-01-01

    Inhibitory effects of 2',3'-dideoxyribonucleoside 5'-triphosphates (ddNTP's) on the activity of mouse myeloma DNA polymerase alpha were examined. In contrast to the widely accepted conclusion that DNA polymerase alpha was not inhibited by ddNTP, our results showed that all 4 ddNTP's (ddATP, ddCTP, ddGTP, ddTTP) exhibited strong inhibitory power to this enzyme in the presence of Mn2+. The observed inhibitions by ddNTP's were neither due to chain termination of growing DNA nor to enzyme inactivation by these compounds, but due to competition with deoxynucleoside triphosphate with the same base. The inhibition constant (Ki) varied depending on the combination of template-primer, substrate and inhibitor. The results suggest that Mn2+ plays a role in increasing affinity of the dideoxynucleotides to DNA polymerase alpha by interacting with anyone or more of the dideoxynucleotide, enzyme and template-primer.

  16. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N2-2'-deoxyguanosine (N2-dG) and N6-2'-deoxyadenosine (N6-dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N2-dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  17. DNA-polymerase induced by Herpesvirus papio (HVP) in cells of lymphoblastoid cultures derived from lymphomatous baboons. Report V.

    Science.gov (United States)

    Djachenko, A G; Lapin, B A

    1981-01-01

    A new DNA-polymerase was found in the cells of suspension lymphoblastoid cultures which produce lymphotropic baboon herpesvirus (HVP). This enzyme was isolated in a partially purified form. Some of its properties vary from those of other cellular DNA-polymerases. HVP-induced DNA-polymerase has a molecule weight of 160,000 and sedimentation coefficient of about 8 S. The enzyme is resistant to high salt concentration and N-ethylmaleimide, but it is very sensitive to phosphonoacetate. It effectively copies "activated" DNA and synthetic deoxyribohomopolymers. Attempts to reveal the DNA-polymerase activity in HVP virions were unsuccessful.

  18. Rapid, sensitive and cost effective method for isolation of viral DNA from feacal samples of dogs

    Directory of Open Access Journals (Sweden)

    Savi.

    2010-06-01

    Full Text Available A simple method for viral DNA extraction using chelex resin was developed. The method used was eco-friendly and cost effective compared to other methods such as phenol chloroform method which use health hazardous organic reagents. Further, a polymerase chain reaction (PCR based detection of canine parvovirus (CPV using primers from conserved region of VP2 gene was developed. To increase the sensitivity and specificity of reaction, nested PCR was designed. PCR reaction was optimized to amplify 747bp product of VP2 gene. The assay can be completed in few hours and doesn’t need hazardous chemicals. Thus, the sample preparation using chelating resin along with nested PCR seems to be a sensitive, specific and practical method for the detection of CPV in diarrhoeal feacal samples. [Vet. World 2010; 3(3.000: 105-106

  19. Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.

    Science.gov (United States)

    Tanasova, Marina; Goeldi, Silvan; Meyer, Fabian; Hanawalt, Philip C; Spivak, Graciela; Sturla, Shana J

    2015-05-26

    DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-Dependent RNA Polymerases in Viral siRNA Biogenesis

    OpenAIRE

    Qi, Xiaopeng; Bao, Forrest Sheng; Xie, Zhixin

    2009-01-01

    RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs) requires RNA-dependent RNA Polymerase (RDR) activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (T...

  1. Mutation of the little finger domain in human DNA polymerase η alters fidelity when copying undamaged DNA.

    Science.gov (United States)

    Beardslee, Renee A; Suarez, Samuel C; Toffton, Shannon M; McCulloch, Scott D

    2013-10-01

    DNA polymerase η (pol η) synthesizes past cyclobutane pyrimidine dimer and possibly 7,8-dihydro-8-oxoguanine (8-oxoG) lesions during DNA replication. Loss of pol η is associated with an increase in mutation rate, demonstrating its indispensable role in mutation suppression. It has been recently reported that β-strand 12 (amino acids 316-324) of the little finger region correctly positions the template strand with the catalytic core of the enzyme. The authors hypothesized that modification of β-strand 12 residues would disrupt correct enzyme-DNA alignment and alter pol η's activity and fidelity. To investigate this, the authors purified proteins containing the catalytic core of the polymerase, incorporated single amino acid changes to select β-strand 12 residues, and evaluated DNA synthesis activity for each pol η. Lesion bypass efficiencies and replication fidelities when copying DNA-containing cis-syn cyclobutane thymine-thymine dimer and 8-oxoG lesions were determined and compared with the corresponding values for the wild-type polymerase. The results confirm the importance of the β-strand in polymerase function and show that fidelity is most often altered when undamaged DNA is copied. Additionally, it is shown that DNA-protein contacts distal to the active site can significantly affect the fidelity of synthesis. Copyright © 2013 Wiley Periodicals, Inc.

  2. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available We previously reported that multiply-primed rolling circle amplification (MRPCA using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.

  3. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    2014-07-01

    Full Text Available The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the

  4. In Silico Screening Hepatitis B Virus DNA Polymerase Inhibitors from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2017-08-01

    Full Text Available Abstract Background: Hepatitis B virus infection (HBV is a significant global health problem and is a major cause of morbidity and mortality worldwide. Therefore, currently, introducing novel anti Hepatitis B drugs is taken into consideration. This study was planned to in silico screening novel Hepatitis B virus DNA polymerase inhibitors from two medicinal plants Terminalis chebula and Caesalpinia sappan. Materials and Methods: This is a descriptive-analytic study. In the study, three-dimensional structure of the Hepatitis B virus DNA polymerase was predicted using homology modeling method. A set of phytochemicals from mentioned plants were retrieved from Pubchem database in SDF format. In silico screening was carried out using molecular docking between mentioned phytochemicals and modeled polymerase by iGemdock 2.1 software. Results: Results of the study confirmed that all evaluated ligands have appropriate interactions to the polymerase with least toxicity and without genotoxicity potential. Results also showed that most interactions occur in reverse transcriptase domain which located in 354-694 area in the amino acid sequence of tested polymerase. Analysis of energy and amino acids involved in ligand-polymerase interaction revealed that Terchebin, Chebulinic Acid and Terflavin A have more effective interaction with the polymerase in compared to other ligands. Conclusion: Based on the results it can be concluded that evaluated compounds could be good candidates for in vitro and in vivo research in order to develop novel anti- Hepatitis B drugs.

  5. Comparison of proteases in DNA extraction via quantitative polymerase chain reaction.

    Science.gov (United States)

    Eychner, Alison M; Lebo, Roberta J; Elkins, Kelly M

    2015-06-01

    We compared four proteases in the QIAamp DNA Investigator Kit (Qiagen) to extract DNA for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate alternate proteases for improved DNA recovery as compared with proteinase K for forensic, biochemical research, genetic paternity and immigration, and molecular diagnostic purposes. The Quantifiler Kit TaqMan quantitative PCR assay was used to measure the recovery of DNA from human blood, semen, buccal cells, breastmilk, and earwax in addition to low-template samples, including diluted samples, computer keyboard swabs, chewing gum, and cigarette butts. All methods yielded amplifiable DNA from all samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase.

    Science.gov (United States)

    Morin, José A; Cao, Francisco J; Lázaro, José M; Arias-Gonzalez, J Ricardo; Valpuesta, José M; Carrascosa, José L; Salas, Margarita; Ibarra, Borja

    2015-04-20

    During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN). © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    Directory of Open Access Journals (Sweden)

    Javier Abellón-Ruiz

    2016-01-01

    Full Text Available In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil; Endonuclease V (EndoV, which recognises hypoxanthine; and Endonuclease Q (EndoQ, (which recognises both uracil and hypoxanthine. Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.

  8. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  9. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  10. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2003-01-01

    Full Text Available Abstract Background The eukaryotic RNA-dependent RNA polymerase (RDRP is involved in the amplification of regulatory microRNAs during post-transcriptional gene silencing. This enzyme is highly conserved in most eukaryotes but is missing in archaea and bacteria. No evolutionary relationship between RDRP and other polymerases has been reported so far, hence the origin of this eukaryote-specific polymerase remains a mystery. Results Using extensive sequence profile searches, we identified bacteriophage homologs of the eukaryotic RDRP. The comparison of the eukaryotic RDRP and their homologs from bacteriophages led to the delineation of the conserved portion of these enzymes, which is predicted to harbor the catalytic site. Further, detailed sequence comparison, aided by examination of the crystal structure of the DNA-dependent RNA polymerase (DDRP, showed that the RDRP and the β' subunit of DDRP (and its orthologs in archaea and eukaryotes contain a conserved double-psi β-barrel (DPBB domain. This DPBB domain contains the signature motif DbDGD (b is a bulky residue, which is conserved in all RDRPs and DDRPs and contributes to catalysis via a coordinated divalent cation. Apart from the DPBB domain, no similarity was detected between RDRP and DDRP, which leaves open two scenarios for the origin of RDRP: i RDRP evolved at the onset of the evolution of eukaryotes via a duplication of the DDRP β' subunit followed by dramatic divergence that obliterated the sequence similarity outside the core catalytic domain and ii the primordial RDRP, which consisted primarily of the DPBB domain, evolved from a common ancestor with the DDRP at a very early stage of evolution, during the RNA world era. The latter hypothesis implies that RDRP had been subsequently eliminated from cellular life forms and might have been reintroduced into the eukaryotic genomes through a bacteriophage. Sequence and structure analysis of the DDRP led to further insights into the

  11. Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    NARCIS (Netherlands)

    Vilfan, I.D.; Candelli, A.; Hage, S.; Aalto, A.P.; Poranen, M.M.; Bamford, D.H.; Dekker, N.H.

    2008-01-01

    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important

  12. New tools to study RNA interference to fish viruses: Fish cell lines permanently expressing siRNAs targeting the viral polymerase of viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Ruiz, S.; Schyth, Brian Dall; Encinas, P.

    2009-01-01

    Previous studies have indicated that low transfection efficiency can be a major problem when gene inhibition by the use of small interfering RNAs (siRNAs) is attempted in fish cells. This may especially be true when targeting genes of viruses which are fast replicating and which can still infect...... cells that have not been transfected with the antiviral siRNAs. To increase the amount of antiviral siRNAs per cell a different strategy than transfection was taken here. Thus, we describe carp epithelioma papulosum cyprinid (EPC) cell clones expressing siRNAs designed to target the L polymerase gene...... of the viral hemorrhagic septicemia virus (VHSV), a rhabdovirus affecting fish. Eight siRNA sequences were first designed, synthesized and screened for inhibition of in vitro VHSV infectivity. Small hairpin (sh) DNAs corresponding to three selected siRNAs were then cloned into pRNA-CMV3.1/puro plasmids...

  13. Impact of polymerase chain reaction results on patient management during a viral meningitis outbreak in Tropical North Queensland.

    Science.gov (United States)

    Stonehouse, Vicki; Furyk, Jeremy; Norton, Robert

    2012-02-01

    Enterovirus is the most commonly isolated pathogen in viral meningitis. We report on the first outbreak of viral meningitis in Tropical Queensland and the effect of polymerase chain reaction (PCR) results on antibiotic use and hospital length of stay. Retrospective case series of consecutive patients presenting to the Townsville ED with viral meningitis were evaluated by examining hospital medical records. The study period was November 2008 to February 2009. Forty-three patients were available for full analysis of which 17 (40%) were female and 17 (40%) had a positive enteroviral PCR. Antibiotics were commenced on 37 (86%) of patients. There was no difference in hospital length of stay in patients with a negative versus positive PCR (2.52 vs 2.72 days, P = 0.68) or duration of antibiotic therapy (2.20 vs 1.94 days, P = 0.61). In our study a positive result on PCR was not associated with a shorter hospital length of stay or a shorter duration of antibiotic therapy. This contrasts with previous reports on this topic and requires further evaluation. © 2011 The Authors. EMA © 2011 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  14. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  15. Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection.

    Science.gov (United States)

    Verhalen, Brandy; Justice, Joshua L; Imperiale, Michael J; Jiang, Mengxi

    2015-05-01

    BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells. In this report, we set out to determine what viral components are responsible for activating the two major phosphatidylinositol 3-kinase-like kinases (PI3KKs) involved in the DDR: ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3-related (ATR) kinase. Using a combination of UV treatment, lentivirus transduction, and mutant virus infection experiments, our results demonstrate that neither the input virus nor the expression of large T antigen (TAg) alone is sufficient to trigger the activation of ATM or ATR in our primary culture model. Instead, our data suggest that the activation of both the ATM- and ATR-mediated DDR pathways is linked to viral DNA replication. Intriguingly, a TAg mutant virus that is unable to activate the DDR causes substantial host DNA damage. Our study provides insight into how DDRs are activated by polyomaviruses in primary cells with intact cell cycle checkpoints and how the activation might be linked to the maintenance of host genome stability. Polyomaviruses are opportunistic pathogens that are associated with several human diseases under immunosuppressed conditions. BK polyomavirus (BKPyV) affects mostly kidney and bone marrow transplant patients. The detailed replication mechanism of these viruses remains to be determined. We have previously reported that BKPyV activates the host DNA damage response (DDR), a response normally used by the host cell to combat genotoxic stress, to aid its own replication. In this study, we identified that the trigger for DDR activation is viral

  16. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Qi

    Full Text Available RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs requires RNA-dependent RNA Polymerase (RDR activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (TMV-Cg and Arabidopsis thaliana as a model system, we analyzed the viral small RNA profile in wild-type plants as well as rdr mutants by applying small RNA deep sequencing technology. Over 100,000 TMV-Cg-specific small RNA reads, mostly of 21- (78.4% and 22-nucleotide (12.9% in size and originating predominately (79.9% from the genomic sense RNA strand, were captured at an early infection stage, yielding the first high-resolution small RNA map for a plant virus. The TMV-Cg genome harbored multiple, highly reproducible small RNA-generating hot spots that corresponded to regions with no apparent local hairpin-forming capacity. Significantly, both the rdr1 and rdr6 mutants exhibited globally reduced levels of viral small RNA production as well as reduced strand bias in viral small RNA population, revealing an important role for these host RDRs in viral siRNA biogenesis. In addition, an informatics analysis showed that a large set of host genes could be potentially targeted by TMV-Cg-derived siRNAs for posttranscriptional silencing. Two of such predicted host targets, which encode a cleavage and polyadenylation specificity factor (CPSF30 and an unknown protein similar to translocon-associated protein alpha (TRAP alpha, respectively, yielded a positive result in cleavage validation by 5'RACE assays. Our data raised the interesting possibility for viral siRNA-mediated virus-host interactions that may contribute to viral pathogenicity and host specificity.

  17. Optimised sample preparation of synovial fluid for detection of Chlamydia trachomatis DNA by polymerase chain reaction

    Science.gov (United States)

    Kuipers, J.; Nietfeld, L.; Dreses-Werringloe..., U.; Koehler, L.; Wollenhaupt, J.; Zeidler, H.; Hammer, M.

    1999-01-01

    OBJECTIVE—To optimise sample preparation of synovial fluid for Chlamydia trachomatis (CT) specific polymerase chain reaction (PCR).
METHODS—Serial dilutions of purified CT elementary bodies in synovial fluid were prepared. The synovial fluid pellet was processed by eight different methods of sample preparation. Then samples were analysed by CT specific PCR. The sensitivity of PCR was the basis of ranking of the eight different methods.
RESULTS—Highest sensitivity was achieved by methods including an additional step of DNA isolation. Additional extraction of protein and polysaccharides by cetyltrimethylammonium bromide (CTAB) increased sensitivity. Addition of hyaluronidase did not increase sensitivity of QIAEX-DNA extraction but was necessary, however, before phenol-chloroform-DNA extraction.
CONCLUSIONS—The method of synovial fluid sample preparation significantly influences the sensitivity of subsequent PCR. Additional DNA isolation and extraction of PCR inhibitors by CTAB led to higher sensitivity.

 Keywords: Chlamydia trachomatis; polymerase chain reaction; synovial fluid PMID:10343525

  18. Junk DNA enhances pEI-based non-viral gene delivery

    NARCIS (Netherlands)

    Gaal, E.V.B. van; Oosting, R.S.; Hennink, W.E.; Crommelin, D.J.A.; Mastrobattista, E.

    Gene therapy aims at delivering exogenous DNA into the nuclei of target cells to establish expression of a therapeutic protein. Non-viral gene delivery is examined as a safer alternative to viral approaches, but is presently characterized by a low efficiency. In the past years several non-viral

  19. Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation.

    Science.gov (United States)

    Li, Y; Mitaxov, V; Waksman, G

    1999-08-17

    The Taq DNA polymerase is the most commonly used enzyme in DNA sequencing. However, all versions of Taq polymerase are deficient in two respects: (i) these enzymes incorporate each of the four dideoxynucleoside 5' triphosphates (ddNTPs) at widely different rates during sequencing (ddGTP, for example, is incorporated 10 times faster than the other three ddNTPs), and (ii) these enzymes show uneven band-intensity or peak-height patterns in radio-labeled or dye-labeled DNA sequence profiles, respectively. We have determined the crystal structures of all four ddNTP-trapped closed ternary complexes of the large fragment of the Taq DNA polymerase (Klentaq1). The ddGTP-trapped complex structure differs from the other three ternary complex structures by a large shift in the position of the side chain of residue 660 in the O helix, resulting in additional hydrogen bonds being formed between the guanidinium group of this residue and the base of ddGTP. When Arg-660 is mutated to Asp, Ser, Phe, Tyr, or Leu, the enzyme has a marked and selective reduction in ddGTP incorporation rate. As a result, the G track generated during DNA sequencing by these Taq polymerase variants does not terminate prematurely, and higher molecular-mass G bands are detected. Another property of these Taq polymerase variants is that the sequencing patterns produced by these enzymes are remarkably even in band-intensity and peak-height distribution, thus resulting in a significant improvement in the accuracy of DNA sequencing.

  20. Specific effect of zinc ions on DNA polymerase activity of avian myeloblastosis virus.

    Science.gov (United States)

    Palan, P R; Eidinoff, M L

    1978-11-01

    The effect of selected cations on DNA synthesis by DNA-polymerase of avian myeloblastosis virus (AMV) was studied. Zinc ions at low concentration (0.2mM) in the assay system enhanced the activity about 2 x fold and at higher concentration (2.0 mM) inhibited the activity completely. In contrast, addition of lithium and potassium salts produced inhibitory effects in this ionic concentration range. Replacement of K+ ion had an inhibitory effect on the activity.

  1. Plant organellar DNA primase-helicase synthesizes RNA primers for organellar DNA polymerases using a unique recognition sequence.

    Science.gov (United States)

    Peralta-Castro, Antolín; Baruch-Torres, Noe; Brieba, Luis G

    2017-10-13

    DNA primases recognize single-stranded DNA (ssDNA) sequences to synthesize RNA primers during lagging-strand replication. Arabidopsis thaliana encodes an ortholog of the DNA primase-helicase from bacteriophage T7, dubbed AtTwinkle, that localizes in chloroplasts and mitochondria. Herein, we report that AtTwinkle synthesizes RNA primers from a 5'-(G/C)GGA-3' template sequence. Within this sequence, the underlined nucleotides are cryptic, meaning that they are essential for template recognition but are not instructional during RNA synthesis. Thus, in contrast to all primases characterized to date, the sequence recognized by AtTwinkle requires two nucleotides (5'-GA-3') as a cryptic element. The divergent zinc finger binding domain (ZBD) of the primase module of AtTwinkle may be responsible for template sequence recognition. During oligoribonucleotide synthesis, AtTwinkle shows a strong preference for rCTP as its initial ribonucleotide and a moderate preference for rGMP or rCMP incorporation during elongation. RNA products synthetized by AtTwinkle are efficiently used as primers for plant organellar DNA polymerases. In sum, our data strongly suggest that AtTwinkle primes organellar DNA polymerases during lagging strand synthesis in plant mitochondria and chloroplast following a primase-mediated mechanism. This mechanism contrasts to lagging-strand DNA replication in metazoan mitochondria, in which transcripts synthesized by mitochondrial RNA polymerase prime mitochondrial DNA polymerase γ. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Sensitivitas dan Spesifisitas Nested Polymerase Chain Reaction untuk Mendeteksi DNA Coxiella burnetii (SENSITIVITY AND SPECIFICITY OF NESTED POLYMERASE CHAIN REACTION FOR DETECTION OF COXIELLA BURNETII DNA

    Directory of Open Access Journals (Sweden)

    Trioso Purnawarman

    2014-04-01

    Full Text Available Sensitivity and specificity of nested polymerase chain reaction (nested PCR to detect Coxiella burnetii(C. burnetii DNA were studied. The primer system which consists of external primers (OMP1 and OMP2and internal primers (OMP3 and OMP4, was designed from the nucleotide sequence of the com I geneencoding for 27 kDa outer membrane protein and used to specifically amplify a 501 bp and 438 bp fragment.This nested PCR assay was 50 fold more sensitive than that of using PCR external primer only. TheNested PCR has a detection limit as low as 300 pg/?l. Specificity studies showed that nested PCR onlydetected C. burnetii DNA and did not happened Brucella abortus, Escherichia coli, Pseudomonas aeruginosaand Campylobacter Jejuni DNA. Nested PCR has high senstively and specificaly diagnostic method of C.burnetii as agent of Q fever disease.

  3. POLB: A new role of DNA polymerase beta in mitochondrial base excision repair.

    Science.gov (United States)

    Kaufman, Brett A; Van Houten, Bennett

    2017-12-01

    The mitochondrial genome is a matrilineally inherited DNA that encodes numerous essential subunits of the respiratory chain in all metazoans. As such mitochondrial DNA (mtDNA) sequence integrity is vital to organismal survival, but it has a limited cadre of DNA repair activities, primarily base excision repair (BER). We have known that the mtDNA is significantly oxidized by both endogenous and exogenous sources, but this does not lead to the expected preferential formation of transversion mutations, which suggest a robust base excision repair (BER) system. This year, two different groups reported compelling evidence that what was believed to be exclusively nuclear DNA repair polymerase, POLB, is located in the mitochondria and plays a significant role in mitochondrial BER, mtDNA integrity and mitochondrial function. In this commentary, we review the findings and highlight remaining questions for the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Translesion DNA polymerases Pol ζ, Pol η, Pol ι, Pol κ and Rev1 are ...

    Indian Academy of Sciences (India)

    MADU

    DNA damage can be induced by a variety of intrinsic and extrinsic mutagens including oxygen free radicals, radiation and alkylating agents, and if a damaged nucleotide escapes repair mechanisms that ordinarily remove it and restore the original sequence, it can present a block to the replicative polymerase. In current.

  5. Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV ...

    African Journals Online (AJOL)

    Mitochondrial toxicity, particularly symptomatic hyperlactataemia or lactic acidosis (SHL/LA), has been attributed to the use of nucleoside reverse transcriptase inhibitors (NRTIs), possibly because of their capacity to impede human mitochondrial DNA polymerase-γ (POLG), which is responsible for the replication of ...

  6. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    Science.gov (United States)

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  7. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II

    NARCIS (Netherlands)

    B. Steurer (Barbara); J.A. Marteijn (Jurgen)

    2016-01-01

    textabstractThe faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The

  8. Localized Cerebral Energy Failure in DNA Polymerase Gamma-Associated Encephalopathy Syndromes

    Science.gov (United States)

    Tzoulis, Charalampos; Neckelmann, Gesche; Mork, Sverre J.; Engelsen, Bernt E.; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A.

    2010-01-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that…

  9. The Chilo iridescent virus DNA polymerase promoter contains an essential AAAAT motif

    NARCIS (Netherlands)

    Nalcacioglu, R.; Ince, I.A.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2007-01-01

    The delayed-early DNA polymerase promoter of Chilo iridescent virus (CIV), officially known as Invertebrate iridescent virus, was fine mapped by constructing a series of increasing deletions and by introducing point mutations. The effects of these mutations were examined in a luciferase reporter

  10. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic.

    Directory of Open Access Journals (Sweden)

    Zhixing Feng

    Full Text Available DNA modifications such as methylation and DNA damage can play critical regulatory roles in biological systems. Single molecule, real time (SMRT sequencing technology generates DNA sequences as well as DNA polymerase kinetic information that can be used for the direct detection of DNA modifications. We demonstrate that local sequence context has a strong impact on DNA polymerase kinetics in the neighborhood of the incorporation site during the DNA synthesis reaction, allowing for the possibility of estimating the expected kinetic rate of the enzyme at the incorporation site using kinetic rate information collected from existing SMRT sequencing data (historical data covering the same local sequence contexts of interest. We develop an Empirical Bayesian hierarchical model for incorporating historical data. Our results show that the model could greatly increase DNA modification detection accuracy, and reduce requirement of control data coverage. For some DNA modifications that have a strong signal, a control sample is not even needed by using historical data as alternative to control. Thus, sequencing costs can be greatly reduced by using the model. We implemented the model in a R package named seqPatch, which is available at https://github.com/zhixingfeng/seqPatch.

  11. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  12. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression.

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures

    Science.gov (United States)

    Northam, Matthew R.; Moore, Elizabeth A.; Mertz, Tony M.; Binz, Sara K.; Stith, Carrie M.; Stepchenkova, Elena I.; Wendt, Kathern L.; Burgers, Peter M. J.; Shcherbakova, Polina V.

    2014-01-01

    DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances. We show that Pol ζ/Rev1-dependent mutations occur at sites of replication stalling at short repeated sequences capable of forming hairpin structures. The Rev1 deoxycytidyl transferase can take over the stalled replicative polymerase and incorporate an additional ‘C’ at the hairpin base. Full hairpin bypass often involves template-switching DNA synthesis, subsequent realignment generating multiply mismatched primer termini and extension of these termini by Pol ζ. The postreplicative pathway dependent on polyubiquitylation of proliferating cell nuclear antigen provides a backup mechanism for accurate bypass of these sequences that is primarily used when the Pol ζ/Rev1-dependent pathway is inactive. The results emphasize the pivotal role of noncanonical DNA structures in mutagenesis and reveal the long-sought-after mechanism of complex mutations that represent a unique signature of Pol ζ. PMID:24049079

  14. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase...

  15. Identification of amino acids in HIV-2 integrase involved in site-specific hydrolysis and alcoholysis of viral DNA termini

    NARCIS (Netherlands)

    D.C. van Gent (Dik); A.A. Groeneger; R.H. Plassterk

    1993-01-01

    textabstractThe human immunodeficiency virus integrase (HIV IN) protein cleaves two nucleotides off the 3' end of viral DNA and subsequently integrates the viral DNA into target DNA. IN exposes a specific phosphodiester bond near the viral DNA end to nucleophilic attack by water or

  16. Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Yu Kyung; Kim, Won Young; Kim, Min Jung; Han, Eunyoung [College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Myun Soo; Kim, Jong Jin [Forensic DNA Center, National Forensic Service, Seoul 158-707 (Korea, Republic of); Kim, Wook [Department of Biological Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Jong Eun [DNA Link, VICHEN CITY Building 3F, Seoul 121-850 (Korea, Republic of); Song, Joon Myong, E-mail: jmsong@snu.ac.kr [College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. Black-Right-Pointing-Pointer This probe provided PCR-free determination of human genomic DNA. Black-Right-Pointing-Pointer Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. Black-Right-Pointing-Pointer Qdot-labeled Alu sequence was used to assess DNA samples for human identification. - Abstract: Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.

  17. DNA Polymerase I Is Essential for Growth of Methylobacterium dichloromethanicum DM4 with Dichloromethane

    Science.gov (United States)

    Kayser, Martin F.; Stumpp, Michael T.; Vuilleumier, Stéphane

    2000-01-01

    Methylobacterium dichloromethanicum DM4 grows with dichloromethane as the unique carbon and energy source by virtue of a single enzyme, dichloromethane dehalogenase–glutathione S-transferase. A mutant of the dichloromethane-degrading strain M. dichloromethanicum DM4, strain DM4-1445, was obtained by mini-Tn5 transposon mutagenesis that was no longer able to grow with dichloromethane. Dichloromethane dehalogenase activity in this mutant was comparable to that of the wild-type strain. The site of mini-Tn5 insertion in this mutant was located in the polA gene encoding DNA polymerase I, an enzyme with a well-known role in DNA repair. DNA polymerase activity was not detected in cell extracts of the polA mutant. Conjugation of a plasmid containing the intact DNA polymerase I gene into the polA mutant restored growth with dichloromethane, indicating that the polA gene defect was responsible for the observed lack of growth of this mutant with dichloromethane. Viability of the DM4-1445 mutant was strongly reduced upon exposure to both UV light and dichloromethane. The polA′-lacZ transcriptional fusion resulting from mini-Tn5 insertion was constitutively expressed at high levels and induced about twofold after addition of 10 mM dichloromethane. Taken together, these data indicate that DNA polymerase I is essential for growth of M. dichloromethanicum DM4 with dichloromethane and further suggest an important role of the DNA repair machinery in the degradation of halogenated, DNA-alkylating compounds by bacteria. PMID:10986246

  18. Conformational Dynamics of Bacteriophage T7 DNA Polymerase and its Processivity Factor, Escherichia coli thioredoxin

    Energy Technology Data Exchange (ETDEWEB)

    Akabayov, B.; Akabayov, S; Lee , S; Tabor, S; Kulczyk , A; Richardson, C

    2010-01-01

    Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.

  19. Role of human DNA polymerase κ in extension opposite from a cis-syn thymine dimer.

    Science.gov (United States)

    Vasquez-Del Carpio, Rodrigo; Silverstein, Timothy D; Lone, Samer; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2011-04-29

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase κ (Polκ), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Polκ in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Polκ in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Role of Human DNA Polymerase kappa in Extension Opposite from a cis-syn Thymine Dimer

    Energy Technology Data Exchange (ETDEWEB)

    R Vasquez-Del Carpio; T Silverstein; S Lone; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.

  1. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  2. Enhanced polymerase activity confers replication competence of Borna disease virus in mice.

    Science.gov (United States)

    Ackermann, Andreas; Kugel, Daniela; Schneider, Urs; Staeheli, Peter

    2007-11-01

    We previously showed that mouse adaptation of cDNA-derived Borna disease virus (BDV) strain He/80(FR) was associated exclusively with mutations in the viral polymerase complex. Interestingly, independent mouse adaptation of non-recombinant He/80 was correlated with different alterations in the polymerase and mutations in the viral glycoprotein. We used reverse genetics to demonstrate that changes in the polymerase which improve enzymatic activity represent the decisive host range mutations. The glycoprotein mutations did not confer replication competence in mice, although they slightly improved viral performance if combined with polymerase mutations. Our findings suggest that the viral polymerase restricts the host range of BDV.

  3. Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jaszczur, Malgorzata; Flis, Krzysztof; Rudzka, Justyna; Kraszewska, Joanna; Budd, Martin E; Polaczek, Piotr; Campbell, Judith L; Jonczyk, Piotr; Fijalkowska, Iwona J

    2008-02-01

    Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.

  4. A new building block for DNA network formation by self-assembly and polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Holger Bußkamp

    2014-05-01

    Full Text Available The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.

  5. A new building block for DNA network formation by self-assembly and polymerase chain reaction.

    Science.gov (United States)

    Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.

  6. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2015-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.

  7. Detection of adenovirus DNA in clinical samples by SYBR Green real-time polymerase chain reaction assay.

    Science.gov (United States)

    Watanabe, Masahiro; Kohdera, Urara; Kino, Minoru; Haruta, Tsunekazu; Nukuzuma, Syoichi; Suga, Tomoko; Akiyoshi, Kyoko; Ito, Masahiro; Suga, Shigeru; Komada, Yoshihiro

    2005-06-01

    Adenoviruses are associated with a variety of diseases including upper respiratory tract infections, acute conjunctivitis, cystitis and gastroenteritis. Adenoviruses can also cause fatal disseminated infections in patients undergoing stem cell transplantation. Measurement of adenovirus load in clinical samples from localized adenovirus infections or disseminated adenovirus infections may provide important information for analyzing the pathogenesis of various adenovirus infections. The purpose of the present study was to develop and optimize a highly sensitive real-time polymerase chain reaction (PCR) assay to detect a wide range of adenoviruses and to detect adenovirus DNA in clinical samples from immunocompetent children. Clinical samples of throat swabs and blood were collected from 111 patients suspected of having adenovirus infection. The copy number of adenovirus DNA was measured by real-time PCR assay. SYBR Green real-time PCR assay is able to detect 10-10(6) copies of standard adenovirus DNA per run. Adenovirus DNA was detected in all culture-positive samples serotyped as 1, 2, 3, 4, 5, 6, 8 and 11. Viral loads on throat swabs from immunocompetent children with adenovirus infection ranged from 10(5) to 10(11) copies/mL. Adenovirus DNA was detected in 60% of blood samples and copy number ranged from 10(3) to 10(5) copies/mL. SYBR Green real-time PCR is a useful quantitative tool for analysis of adenovirus DNA. The present results for immunocompetent children with adenovirus infections provided basic data for comparison with data obtained from immunocompromised patients.

  8. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.

    Science.gov (United States)

    Zhang, Yinbo; Baranovskiy, Andrey G; Tahirov, Emin T; Tahirov, Tahir H; Pavlov, Youri I

    2016-07-01

    DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium

    Directory of Open Access Journals (Sweden)

    O'Donnell Mike

    2006-01-01

    Full Text Available Abstract Background Sliding DNA clamps are processivity factors that are required for efficient DNA replication. DNA polymerases maintain proximity to nucleic acid templates by interacting with sliding clamps that encircle DNA and thereby link the polymerase enzyme to the DNA substrate. Although the structures of sliding clamps from Gram-negative bacteria (E. coli, eukaryotes, archaea, and T4-like bacteriophages are well-known, the structure of a sliding clamp from Gram-positive bacteria has not been reported previously. Results We have determined the crystal structure of the dimeric β subunit of the DNA polymerase III holoenzyme of Streptococcus pyogenes. The sliding clamp from this Gram-positive organism forms a ring-shaped dimeric assembly that is similar in overall structure to that of the sliding clamps from Gram-negative bacteria, bacteriophage T4, eukaryotes and archaea. The dimer has overall dimensions of ~90 Å × ~70 Å × ~25 Å with a central chamber that is large enough to accommodate duplex DNA. In comparison to the circular shape of other assemblies, the S. pyogenes clamp adopts a more elliptical structure. Conclusion The sequences of sliding clamps from S. pyogenes and E. coli are only 23% identical, making the generation of structural models for the S. pyogenes clamp difficult in the absence of direct experimental information. Our structure of the S. pyogenes β subunit completes the catalog of clamp structures from all the major sequence grouping of sliding clamps. The more elliptical rather than circular structure of the S. pyogenes clamp implies that the topological nature of encircling DNA, rather than a precise geometric shape, is the most conserved aspect for this family of proteins.

  10. Mitochondrial polymerase gamma dysfunction and aging cause cardiac nuclear DNA methylation changes.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Fields, Earl; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Lewis, William

    2016-04-01

    Cardiomyopathy (CM) is an intrinsic weakening of myocardium with contractile dysfunction and congestive heart failure (CHF). CHF has been postulated to result from decreased mitochondrial energy production and oxidative stress. Effects of decreased mitochondrial oxygen consumption also can accelerate with aging. We previously showed DNA methylation changes in human hearts with CM. This was associated with mitochondrial DNA depletion, being another molecular marker of CM. We examined the relationship between mitochondrial dysfunction and cardiac epigenetic DNA methylation changes in both young and old mice. We used genetically engineered C57Bl/6 mice transgenic for a cardiac-specific mutant of the mitochondrial polymerase-γ (termed Y955C). Y955C mice undergo left ventricular hypertrophy (LVH) at a young age (∼ 94 days old), and LVH decompensated to CHF at old age (∼ 255 days old). Results found 95 genes differentially expressed as a result of Y955C expression, while 4,452 genes were differentially expressed as a result of aging hearts. Moreover, cardiac DNA methylation patterns differed between Y955C (4,506 peaks with 68.5% hypomethylation) and aged hearts (73,286 peaks with 80.2% hypomethylated). Correlatively, of the 95 Y955C-dependent differentially expressed genes, 30 genes (31.6%) also displayed differential DNA methylation; in the 4,452 age-dependent differentially expressed genes, 342 genes (7.7%) displayed associated DNA methylation changes. Both Y955C and aging demonstrated significant enrichment of CACGTG-associated E-box motifs in differentially methylated regions. Cardiac mitochondrial polymerase dysfunction alters nuclear DNA methylation. Furthermore, aging causes a robust change in cardiac DNA methylation that is partially associated with mitochondrial polymerase dysfunction. Copyright © 2016 the American Physiological Society.

  11. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis.

    Science.gov (United States)

    Pedroza-García, José-Antonio; Mazubert, Christelle; Del Olmo, Ivan; Bourge, Mickael; Domenichini, Séverine; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Piñeiro, Manuel; Jarillo, José A; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2017-03-01

    Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  13. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair.

    Directory of Open Access Journals (Sweden)

    Kelly Beagan

    2017-05-01

    Full Text Available Double strand breaks (DSBs and interstrand crosslinks (ICLs are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ, coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance.

  14. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei.

    Science.gov (United States)

    Dabrowski, S; Kur, J

    1998-10-01

    Complete PCR-derived DNA fragments containing the structural genes for DNA polymerases of the archaeons Pyrococcus furiosus and Pyrococcus woesei were cloned into an expression vector. The clones expressing thermostable His-tagged DNA polymerases were selected. The cloned fragments were sequenced. The DNA sequences were verified to be authentic by sequencing several clones. The nucleotide (nt) sequence revealed that DNA polymerase of P. woesei (Pwo DNA polymerase) consists of 775 amino acids and has a molecular weight of 90,566. It shows 100% nucleotide identity to the nucleotide sequence of DNA polymerase from P. furiosus (Pfu DNA polymerase). The results confirm that nucleotide sequences of both archaeons (P. furiosus and P. woesei) are highly similar. The recombinant DNA polymerases (His-tagged Pfu and His-tagged Pwo) contained a polyhistidine tag at the N-terminus (43 additional amino acids) that allowed single-step isolation by Ni-affinity chromatography. We found that recombinant plasmids are toxic or unstable in the expressing strain BL21(DE3), even in the absence of the inducing agent, IPTG. However, the plasmids were stable in BL21(DE3) containing the pLysS plasmid, which suppresses expression prior to induction, and His-tagged proteins were expressed upon IPTG addition. The proteins were purified by heat treatment (to denature E. coli proteins), followed by metal-affinity chromatography on Ni2+-Sepharose columns. The enzymes were characterized and displayed high DNA polymerase activity and thermostability. This bacterial expression system appears to be the method of choice for production of Pfu or Pwo DNA polymerases. Copyright 1998 Academic Press.

  15. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis.

    Science.gov (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping

    2015-11-01

    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  16. Data of self-made Taq DNA polymerase prepared for screening purposes

    Directory of Open Access Journals (Sweden)

    E.V. Konovalova

    2017-04-01

    Full Text Available DNA analysis is a key procedure in genetic engineering. Nowadays the analysis is often done by PCR with Taq DNA polymerase. Although the last enzyme price is quite low, demand for numerous analyses results in much money expenditure which are not affordable for many laboratories. In a meanwhile, many screening tasks do not require the highly purified enzyme. Taking into account the enzyme unique properties it makes possible to marginally simplify its production without resorting to costly or lengthy techniques such as column chromatography and/or dialysis. Here the data of routine usage of Taq DNA polymerase prepared according to the protocol developed in our laboratory is presented. The protocol takes only several hours to realize and does not need qualified personnel or expensive equipment. Yet it gives the enzyme preparation suitable for most screening purposes. The isolated Taq DNA polymerase stock can be stored as ammonium sulfate suspension in a refrigerator for prolonged period, not less than 6 months. The working enzyme solution is prepared from the stock suspension on demand, not more than once in a month and can be stored also in a refrigerator.

  17. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity.

    Science.gov (United States)

    McCulloch, Scott D; Kokoska, Robert J; Masutani, Chikahide; Iwai, Shigenori; Hanaoka, Fumio; Kunkel, Thomas A

    2004-03-04

    Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that escape nucleotide excision repair (NER). Here we have determined the efficiency and fidelity of dimer bypass. We show that Pol eta copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis. This ability of Pol eta to sense the dimer location as synthesis proceeds may facilitate polymerase switching before and after lesion bypass. Pol eta bypasses a dimer with low fidelity and with higher error rates at the 3' thymine than at the 5' thymine. A similar bias is seen with Sulfolobus solfataricus DNA polymerase 4, which forms a Watson-Crick base pair at the 3' thymine of a dimer but a Hoogsteen base pair at the 5' thymine (ref. 3). Ultraviolet-induced mutagenesis is also higher at the 3' base of dipyrimidine sequences. Thus, in normal people and particularly in individuals with NER-defective xeroderma pigmentosum who accumulate dimers, errors made by Pol eta during dimer bypass could contribute to mutagenesis and skin cancer.

  18. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  19. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction.

    Science.gov (United States)

    Ririe, K M; Rasmussen, R P; Wittwer, C T

    1997-02-15

    A microvolume fluorometer integrated with a thermal cycler was used to acquire DNA melting curves during polymerase chain reaction by fluorescence monitoring of the double-stranded DNA specific dye SYBR Green I. Plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product gives a DNA melting curve. The shape and position of this DNA melting curve are functions of the GC/AT ratio, length, and sequence and can be used to differentiate amplification products separated by less than 2 degrees C in melting temperature. Desired products can be distinguished from undesirable products, in many cases eliminating the need for gel electrophoresis. Analysis of melting curves can extend the dynamic range of initial template quantification when amplification is monitored with double-stranded DNA specific dyes. Complete amplification and analysis of products can be performed in less than 15 min.

  20. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    Science.gov (United States)

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dubarry, Marion; Lawless, Conor; Banks, A Peter; Cockell, Simon; Lydall, David

    2015-08-21

    Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer. Copyright © 2015 Dubarry et al.

  2. Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA.

    Science.gov (United States)

    Tak, Yu Kyung; Kim, Won Young; Kim, Min Jung; Han, Eunyoung; Han, Myun Soo; Kim, Jong Jin; Kim, Wook; Lee, Jong Eun; Song, Joon Myong

    2012-04-06

    Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Systematic functional comparative analysis of four single-stranded DNA-binding proteins and their affection on viral RNA metabolism.

    Directory of Open Access Journals (Sweden)

    Haiyan Shi

    Full Text Available The accumulation of single-stranded DNA-binding (SSB proteins is essential for organisms and has various applications. However, no study has simultaneously and systematically compared the characteristics of SSB proteins. In addition, SSB proteins may bind RNA and play an unknown biological role in RNA metabolism. Here, we expressed a novel species of SSB protein derived from Thermococcus kodakarensis KOD1 (KOD, as well as SSB proteins from Thermus thermophilus (TTH, Escherichia coli, and Sulfolobus Solfataricus P2 (SSOB, abbreviated kod, tth, bl21, and ssob, respectively. These SSB proteins could bind ssDNA and viral RNA. bl21 resisted heat treatment for more than 9 h, Ssob and kod could withstand 95°C for 10 h and retain its ssDNA- and RNA-binding ability. Four SSB proteins promoted the specificity of the DNA polymerase in PCR-based 5- and 9-kb genome fragment amplification. kod also increased the amplification of a 13-kb PCR product, and SSB protein-bound RNA resisted Benzonase digestion. The SSB proteins could also enter the host cell bound to RNA, which resulted in modulation of viral RNA metabolism, particularly ssob and bl21.

  4. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.

    Science.gov (United States)

    Elias, Angela A; Cisneros, G Andrés

    2014-01-01

    A fidelity-checking site for DNA polymerase I has been proposed based on recent single-molecule Förster resonance energy transfer studies. The checking site is believed to ensure proper base pairing of the newly inserted nucleotide. Computational studies have been utilized to predict residues involved in this putative checking site on the Klenow and Bacillus fragments. Here, we employ energy decomposition analysis, electrostatic free energy response, and noncovalent interaction plots to identify the residues involved in the hypothesized checking site in the homologous Klenow fragment from Thermus aquaticus (Klentaq). Our results indicate multiple protein residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Many of these residues are also conserved along A family polymerases. © 2014 Elsevier Inc. All rights reserved.

  5. Characterization of Wild-type and Temperature Sensitive Mutants of HSV-1 DNA Polymerase

    Science.gov (United States)

    1988-08-15

    two genomic isomeric arrangements [Ben-Porat , 1979; Plummer, 1973] o Virus: Pseudorabies Virus (Suid herpesvirus 1) Equine Herpesvirus (Equid...Huang, 1975], equine herpesvirus [Cohen et al., 1975; Kemp et al., 1975) and HSV [Keir & Gold, 1963]. Since then, several herpesvirus DNA polymerases... hypersensitive to the inhibitor PAA, based on an in vivo plaque reduction assay, when compared to the levels of PAA needed to inhibit HSV-1 KOS plaque

  6. The effect of DNA-dispersed single-walled carbon nanotubes on the polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Ryan M Williams

    Full Text Available The unique properties of single-wall carbon nanotubes (SWCNT make them useful in many new technologies and applications. The interaction of DNA and SWCNT is of interest for many uses, including molecular sensors. This study determined polymerase chain reaction (PCR efficiency in amplifying a 76 base pair DNA sequence in the presence of SWCNT, of heterogeneous "Mix" and (6,5-enriched chiralities, associated with three DNA sequences. The dependence of PCR efficiency on the concentration of DNA:SWCNT preparations was measured, as well as their age and level of dispersion (less than one month or between four and ten months. Additionally, the ability to directly amplify the DNA sequence associated with the SWCNT scaffold was investigated. In PCRs with DNA:SWCNT preparations less than one month old, concentrations greater than or equal to 0.1 mg/mL inhibited the PCR reaction. In PCRs with older preparations, no inhibition was seen at 0.01 or 0.1 mg/mL, with amplification at 1 mg/mL in some samples. Additionally, our studies showed that the DNA directly associated with the SWCNT can be amplified using PCR. This work provides an inhibitory concentration of DNA-dispersed SWCNT in PCR reactions for different preparations as well as a basis for future DNA:SWCNT studies that require PCR amplification. This will be useful for future studies focused on the use of SWCNT in molecular sensing technologies.

  7. In Vitro Bypass of Thymidine Glycol by DNA Polymerase θ Forms Sequence-Dependent Frameshift Mutations.

    Science.gov (United States)

    Laverty, Daniel J; Greenberg, Marc M

    2017-12-26

    Unrepaired DNA lesions block replication and threaten genomic stability. Several specialized translesion polymerases, including polymerase θ (Pol θ), contribute to replicative bypass of these lesions. The role of Pol θ in double-strand break repair is well-understood, but its contribution to translesion synthesis is much less so. We describe the action of Pol θ on templates containing thymidine glycol (Tg), a major cytotoxic, oxidative DNA lesion that blocks DNA replication. Unrepaired Tg lesions are bypassed in human cells by specialized translesion polymerases by one of two distinct pathways: high-fidelity bypass by the combined action of Pol κ and Pol ζ or weakly mutagenic bypass by Pol θ. Here we report that in vitro bypass of Tg by Pol θ results in frameshift mutations (deletions) in a sequence-dependent fashion. Steady-state kinetic analysis indicated that one- and two-nucleotide deletions are formed 9- and 6-fold more efficiently, respectively, than correct, full-length bypass products. Sequencing of in vitro bypass products revealed that bypass preference decreased in the following order on a template where all three outcomes were possible: two-nucleotide deletion > correct bypass > one-nucleotide deletion. These results suggest that bypass of Tg by Pol θ results in mutations opposite the lesion, as well as frameshift mutations.

  8. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K. (Texas-MED); (Mount Sinai Hospital)

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.

  9. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database

    Directory of Open Access Journals (Sweden)

    Anssi Nurminen

    2017-06-01

    Full Text Available DNA polymerase gamma (POLG is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA. Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS, childhood myocerebrohepatopathy spectrum (MCHS, myoclonic epilepsy myopathy sensory ataxia (MEMSA, the ataxia neuropathy spectrum (ANS and progressive external ophthalmoplegia (PEO. We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG. The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  10. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    Science.gov (United States)

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG. The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  11. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  12. A simple protocol for the automation of DNA cycle sequencing reactions and polymerase chain reactions.

    Science.gov (United States)

    Civitello, A B; Richards, S; Gibbs, R A

    1992-01-01

    Automated DNA sequencing methods using robotic workstations have been previously reported, however it is often an arduous task to import these technologies into a laboratory. We describe protocols making use of a Beckman Biomek 1000 robotic workstation to prepare polymerase chain reactions (PCRs) and "cycle sequencing" reactions to be performed in a Perkin Elmer Cetus System 9600 thermocycler. The combination of these two instruments allows a high throughput of PCR and DNA sequencing reactions. The programs described are freely available via anonymous file transfer protocol (FTP).

  13. On-Chip integration of sample pretreatment and Multiplex polymerase chain reaction (PCR) for DNA analysis

    DEFF Research Database (Denmark)

    Brivio, Monica; Snakenborg, Detlef; Søgaard, E.

    2008-01-01

    In this paper we present a modular lab-on-a-chip system for integrated sample pre-treatment (PT) by magnetophoresis and DNA amplification by polymerase chain reaction (PCR). It consists of a polymer-based microfluidic chip mounted on a custom-made thermocycler (Figure 1) and includes a simple...... and efficient method for switching the liquid flow between the PT and PCR chamber. Purification of human genomic DNA from EDTA-treated blood and multiplex PCR were successfully carried out on-chip using the developed lab-on-a-chip system....

  14. A simplified protocol for producing Taq DNA polymerase in biology laboratory

    Directory of Open Access Journals (Sweden)

    Touraj Farazmandfar

    2013-09-01

    Full Text Available Background: Taq DNA polymerase is a very important enzyme for molecular biological studies such as DNA amplification and DNA sequencing by the PCR. It is a standard enzyme that is used in 90% of molecular biology labs today. The aim of this study was to produce Taq DNA polymerase enzyme in E. coli by a reliable, practical, simple and low cost method.Materials and Methods: In this study, the Taq gene was amplified from the genomic DNA of Thermus aquaticus and cloned into pTrc99A vector. Recombinant plasmid is expressed in E. coli strain TOP10. Product protein is extracted and purified. Expression of gene was analyzed by SDS-PAGE and gene amplification.Results: SDS-PAGE showed an approximately 94 KDa protein. The density of protein bands in agarose gel electrophoresis indicated that the purified enzyme is more active than the non purified one.Conclusion: The protocols described in this paper lead to the production of pure and active enzyme that can be applied in both teaching and research laboratories.

  15. DNA extraction, Polymerase Chain Reaction, and Sequencing : Workshop in Clinical Genetics

    Directory of Open Access Journals (Sweden)

    Sumadi Lukman Anwar

    2017-02-01

    Full Text Available Abstract DNA extraction, Polymerase Chain Reaction (PCR, and Sequencing are basic methods in molecular biology and genetics. Those there are routinely performed as basic methods in genetic research and currently also for diagnostic lab especially for pathology and human genetics. With the advance in the genetics and clinical service for cancer management, mutation analysis is very important not only for diagnosis but also for prediction of therapeutic response. Detection of KRAS, BRAF, EGFR, and c-KIT mutations is presently performed in almost every molecular pathology lab as part of daily clinical service in cancer management. In this workshop we will discuss tips and tricks for those three basic lab methods. How to improve amount and purity of DNA extraction from blood and tissues, how to avoid DNA degradation during the procedure and storage, how to perform PCR, factors and substance that inhibit polymerases during PCR, how to design effective primer pairs, and how basic theory for sequencing, and interpretation of sequencing will be discussed. Although it has been widely discussed, this workshop is especially important for clinicians who previous do not have hands-on laboratory experience. In addition, number of labs with ability to perform and serve basic genetic and molecular analysis are still limited in Indonesia. With this workshop, we expect to improve knowledge and skill in DNA extraction, PCR, and Sequencing. Keywords : DNA, PCR, sequencing

  16. Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6.

    Directory of Open Access Journals (Sweden)

    Angela Corona

    Full Text Available The DNA polymerase and ribonuclease H (RNase H activities of human immunodeficiency virus type 1 (HIV-1 are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket, and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.

  17. Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6.

    Science.gov (United States)

    Corona, Angela; Meleddu, Rita; Esposito, Francesca; Distinto, Simona; Bianco, Giulia; Masaoka, Takashi; Maccioni, Elias; Menéndez-Arias, Luis; Alcaro, Stefano; Le Grice, Stuart F J; Tramontano, Enzo

    2016-01-01

    The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket), and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.

  18. A novel method for detecting polymerase chain reaction product utilizing the 5 prime yields 3 prime exonuclease activity of Thermus aquaticus DNA polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Holland, P.M.; Watson, R.; Abramson, R.D.; Gelfand, D.H. (Cetus Corp., Emeryville, CA (United States))

    1991-03-11

    The polymerase chain reaction (PCR) method of DNA amplification is a powerful and sensitive technique which has been greatly simplified by the use of the thermostable enzyme Thermus aquaticus (Taq) DNA polymerase. In addition to its polymerase activity, Taq DNA polymerase also has a 5{prime}{yields}3{prime} exonuclease activity. Utilizing this activity, the authors have developed a PCR detection method which generates signal simultaneously with target sequence amplification. No additional probing, blotting or hybridization assays of amplified product are necessary. A 5{prime}{yields}3{prime} exonuclease cleaves 5{prime} terminal nucleotides of nicked double stranded DNA. The authors have generated a substrate suitable for exonuclease activity in a PCR assay by the addition of a labeled oligonucleotide probe designed to hybridize within the target sequence. During amplification, the 5{prime}{yields}3{prime} exonuclease activity of Taq DNA polymerase degrades the probe into smaller fragments which can be differentiated from undegraded probe. The presence of probe does not influence PCR product formation. Hydrolysis occurs only when probe is bound specifically to template. The presence of high complexity DNA in the PCR mixture does not compromise the specificity of probe interaction. In a PCR assay, the amount of detectable label may be modified by altering cycle number, target copy number or probe concentration. The size of labeled fragments may also be modified by varying base composition of the probe. This detection method is advantageous over present day procedures in that it is neither labor intensive nor requires significant skills. The minimal sample handling could reduce the risk of sample contamination, thereby increasing accuracy.

  19. Substrate rescue of DNA polymerase β containing a catastrophic L22P mutation.

    Science.gov (United States)

    Kirby, Thomas W; Derose, Eugene F; Beard, William A; Shock, David D; Wilson, Samuel H; London, Robert E

    2014-04-15

    DNA polymerase (pol) β is a multidomain enzyme with two enzymatic activities that plays a central role in the overlapping base excision repair and single-strand break repair pathways. The high frequency of pol β variants identified in tumor-derived tissues suggests a possible role in the progression of cancer, making the determination of the functional consequences of these variants of interest. Pol β containing a proline substitution for leucine 22 in the lyase domain (LD), identified in gastric tumors, has been reported to exhibit severe impairment of both lyase and polymerase activities. Nuclear magnetic resonance (NMR) spectroscopic evaluations of both pol β and the isolated LD containing the L22P mutation demonstrate destabilization sufficient to result in LD-selective unfolding with minimal structural perturbations to the polymerase domain. Unexpectedly, addition of single-stranded or hairpin DNA resulted in partial refolding of the mutated lyase domain, both in isolation and for the full-length enzyme. Further, formation of an abortive ternary complex using Ca(2+) and a complementary dNTP indicates that the fraction of pol β(L22P) containing the folded LD undergoes conformational activation similar to that of the wild-type enzyme. Kinetic characterization of the polymerase activity of L22P pol β indicates that the L22P mutation compromises DNA binding, but nearly wild-type catalytic rates can be observed at elevated substrate concentrations. The organic osmolyte trimethylamine N-oxide (TMAO) is similarly able to induce folding and kinetic activation of both polymerase and lyase activities of the mutant. Kinetic data indicate synergy between the TMAO cosolvent and substrate binding. NMR data indicate that the effect of the DNA results primarily from interaction with the folded LD(L22P), while the effect of the TMAO results primarily from destabilization of the unfolded LD(L22P). These studies illustrate that substrate-induced catalytic activation of pol

  20. In vitro replication studies of carboxymethylated DNA lesions with Saccharomyces cerevisiae polymerase η.

    Science.gov (United States)

    Swanson, Ashley L; Wang, Jianshuang; Wang, Yinsheng

    2011-09-06

    Humans are exposed to N-nitroso compounds (NOCs) both endogenously and exogenously from a number of environmental sources, and NOCs are both mutagenic and carcinogenic. After metabolic activation, some NOCs can induce carboxymethylation of nucleobases through a diazoacetate intermediate, which could give rise to p53 mutations similar to those seen in human gastrointestinal cancers. It was previously found that the growth of polymerase η-deficient human cells was inhibited by treatment with azaserine, a DNA carboxymethylation agent, suggesting the importance of this polymerase in bypassing the azaserine-induced carboxymethylated DNA lesions. In this study, we examined how carboxymethylated DNA lesions, which included N(6)-carboxymethyl-2'-deoxyadenosine (N(6)-CMdA), N(4)-carboxymethyl-2'-deoxycytidine (N(4)-CMdC), N3-carboxymethylthymidine (N3-CMdT), and O(4)-carboxymethylthymidine (O(4)-CMdT), perturbed the efficiency and fidelity of DNA replication mediated by Saccharomyces cerevisiae polymerase η (pol η). Our results from steady-state kinetic assay showed that pol η could readily bypass and extend past N(6)-CMdA and incorporated the correct nucleotides opposite the lesion and its neighboring 5'-nucleoside with high efficiency. By contrast, the polymerase could bypass N(4)-CMdC inefficiently, with substantial misincorporation of dCMP followed by dAMP, though pol η could extend past the lesion with high fidelity and efficiency when dGMP was incorporated opposite the lesion. On the other hand, yeast pol η experienced great difficulty in bypassing O(4)-CMdT and N3-CMdT, and the polymerase inserted preferentially the incorrect dGMP opposite these two DNA lesions; the extension step, nevertheless, occurred with high fidelity and efficiency when the correct dAMP was opposite the lesion, as opposed to the preferentially incorporated incorrect dGMP. These results suggest that these lesions may contribute significantly to diazoacetate-induced mutations and those in

  1. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Directory of Open Access Journals (Sweden)

    Ana Lisa do Vale Gomes

    2006-10-01

    Full Text Available This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA. The efficiency was 0.99 and the correlation coefficient (R² was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC. The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.

  2. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  3. Guanine α-carboxy nucleoside phosphonate (G-α-CNP) shows a different inhibitory kinetic profile against the DNA polymerases of human immunodeficiency virus (HIV) and herpes viruses.

    Science.gov (United States)

    Balzarini, Jan; Menni, Michael; Das, Kalyan; van Berckelaer, Lizette; Ford, Alan; Maguire, Nuala M; Liekens, Sandra; Boehmer, Paul E; Arnold, Eddy; Götte, Matthias; Maguire, Anita R

    2017-07-15

    α-Carboxy nucleoside phosphonates (α-CNPs) are modified nucleotides that represent a novel class of nucleotide-competing reverse transcriptase (RT) inhibitors (NcRTIs). They were designed to act directly against HIV-1 RT without the need for prior activation (phosphorylation). In this respect, they differ from the nucleoside or nucleotide RTIs [N(t)RTIs] that require conversion to their triphosphate forms before being inhibitory to HIV-1 RT. The guanine derivative (G-α-CNP) has now been synthesized and investigated for the first time. The (L)-(+)-enantiomer of G-α-CNP directly and competitively inhibits HIV-1 RT by interacting with the substrate active site of the enzyme. The (D)-(-)-enantiomer proved inactive against HIV-1 RT. In contrast, the (+)- and (-)-enantiomers of G-α-CNP inhibited herpes (i.e. HSV-1, HCMV) DNA polymerases in a non- or uncompetitive manner, strongly indicating interaction of the (L)-(+)- and the (D)-(-)-G-α-CNPs at a location different from the polymerase substrate active site of the herpes enzymes. Such entirely different inhibition profile of viral polymerases is unprecedented for a single antiviral drug molecule. Moreover, within the class of α-CNPs, subtle differences in their sensitivity to mutant HIV-1 RT enzymes were observed depending on the nature of the nucleobase in the α-CNP molecules. The unique properties of the α-CNPs make this class of compounds, including G-α-CNP, direct acting inhibitors of multiple viral DNA polymerases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Allergic fungal rhinosinusitis: detection of fungal DNA in sinus aspirate using polymerase chain reaction.

    Science.gov (United States)

    El-Morsy, S M; Khafagy, Y W; El-Naggar, M M; Beih, A A

    2010-02-01

    This study investigated allergic fungal rhinosinusitis cases, and aimed to compare the detection of fungi in sinus aspirate by culture and by polymerase chain reaction assay, and to relate the presence of fungi in the nasal sinuses to the type of fungal allergen causing disease. Sixty-eight cases of allergic fungal rhinosinusitis underwent fungal culture and polymerase chain reaction assay for universal fungal, aspergillus and bipolaris DNA. Aspergillus-specific immunoglobulin E levels were measured in sinus aspirate, and total serum immunoglobulin E levels were calculated. A control group of 10 cases was included in the study. Of the 68 allergic fungal rhinosinusitis cases, only 42 (61.7 per cent) had positive fungal cultures; of the 10 controls, only three (30 per cent) had positive cultures. Species from the dematiaceous family were most commonly grown, being isolated in 30 cases (71.4 per cent). Bipolaris was the most commonly isolated species (18 cases) followed by curvularia (11 cases) and alternaria (one case). Polymerase chain reaction assay detected fungal DNA in all the allergic fungal rhinosinusitis cases and also in four controls (40 per cent). Ten patients (of 68; 14.7 per cent) were positive for Aspergillus fumigatus specific immunoglobulin E. The mean concentration of this immunoglobulin was 11.32 +/- 4.12 IU/ml in patients and 0 IU/ml in controls, a statistically significant difference. Detection of fungal DNA in nasal aspirate by polymerase chain reaction was superior to fungal cultures as a method of detecting fungal growth. In allergic fungal rhinosinusitis, fungal growth is not always accompanied by an allergic reaction.

  5. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  6. Two X family DNA polymerases, lambda and mu, in meiotic tissues of the basidiomycete, Coprinus cinereus.

    Science.gov (United States)

    Sakamoto, Aiko; Iwabata, Kazuki; Koshiyama, Akiyo; Sugawara, Hiroko; Yanai, Takuro; Kanai, Yoshihiro; Takeuchi, Ryo; Daikuhara, Yoko; Takakusagi, Yoichi; Sakaguchi, Kengo

    2007-12-01

    The X family DNA polymerases lambda (CcPollambda) and mu (CcPolmu) were shown to be expressed during meiotic prophase in the basidiomycete, Coprinus cinereus. These two polymerases are the only members of the X family in the C. cinereus genome. The open reading frame of CcPollambda encoded a predicted product of 800 amino acid residues and that of CcPolmicro of 621 amino acid residues. Both CcPollambda and CcPolmicro required Mn(2+) ions for activity, and both were strongly inhibited by dideoxythymidine triphosphate. Unlike their mammalian counterparts, CcPollambda and CcPolmicro had no terminal deoxynucleotidyl transferase activity. Immunostaining analysis revealed that CcPollambda was present at meiotic prophase nuclei in zygotene and pachytene cells, which is the period when homologous chromosomes pair and recombine. CcPolmicro was present in a slightly wider range of cell stages, zygotene to diplotene. In analyses using D-loop recombination intermediate substrates, we found that both CcPollambda and CcPolmicro could promote primer extension of an invading strand in a D-loop structure. Moreover, both polymerases could fully extend the primer in the D-loop substrate, suggesting that D-loop extension is an activity intrinsic to CcPollambda and CcPolmicro. Based on these data, we discuss the possible roles of these polymerases in meiosis.

  7. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template

    Science.gov (United States)

    Pai, Dave A.; Kaplan, Craig D.; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C.; Engelke, David R.

    2014-01-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template. PMID:24614752

  8. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    Science.gov (United States)

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  9. Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q

    Science.gov (United States)

    Ren, Yaou; Lai, Yanhao; Laverde, Eduardo E.; Lei, Ruipeng; Rein, Hayley L.

    2017-01-01

    Trinucleotide repeat (TNR) instability is associated with human neurodegenerative diseases and cancer. Recent studies have pointed out that DNA base excision repair (BER) mediated by DNA polymerase β (pol β) plays a crucial role in governing somatic TNR instability in a damage-location dependent manner. It has been shown that the activities and function of BER enzymes and cofactors can be modulated by their polymorphic variations. This could alter the function of BER in regulating TNR instability. However, the roles of BER polymorphism in modulating TNR instability remain to be elucidated. A previous study has shown that a pol β polymorphic variant, polβR137Q is associated with cancer due to its impaired polymerase activity and its deficiency in interacting with a BER cofactor, proliferating cell nuclear antigen (PCNA). In this study, we have studied the effect of the pol βR137Q variant on TNR instability. We showed that pol βR137Q exhibited weak DNA synthesis activity to cause TNR deletion during BER. We demonstrated that similar to wild-type pol β, the weak DNA synthesis activity of pol βR137Q allowed it to skip over a small loop formed on the template strand, thereby facilitating TNR deletion during BER. Our results further suggest that carriers with pol βR137Q polymorphic variant may not exhibit an elevated risk of developing human diseases that are associated with TNR instability. PMID:28475635

  10. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    Science.gov (United States)

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  11. Multiplex viral polymerase chain reaction testing using the FilmArray device compared with direct fluorescent antibody testing.

    Science.gov (United States)

    Wang, Jason; Simons, Debra B; Adams, James L; Jerris, Robert C; Rogers, Beverly Barton

    2014-01-01

    Advances in fluidics, electronics, and instrument design have enabled automation of complex molecular assays. The FilmArray Respiratory Panel (RP) is one such assay; it allows for rapid detection of multiple viral and bacterial respiratory targets via nested polymerase chain reaction (PCR), with all components contained within a single pouch. We performed a detailed comparison of workflow between the FilmArray RP and direct fluorescent antibody (DFA) staining. The FilmArray RP proved to be more efficient, with as few as 91 total touches needed and as little as 4 minutes 52 seconds hands-on time. This compares with as many as 502 total touches and 12 minutes 45 seconds hands-on time for DFA staining. FilmArray RP detected a greater number of organisms (20 viruses and bacteria vs 7 viruses for DFA staining) and required less training compared with DFA staining. The ease of use of the FilmArray RP makes this molecular assay amenable to operation 24 hours a day, 7 days a week in routine laboratory and point-of-care settings.

  12. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.

    Science.gov (United States)

    Takeshita, Daijiro; Tomita, Kozo

    2010-09-07

    Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.

  13. Development of Plant Expression Vector with Taq DNA Polymerase Gene to Yield Heat-tolerant Maize Lines

    National Research Council Canada - National Science Library

    Ya-Jun Zhang; Ling-Yan Zhou; Yu-Xian Bai; Wen-Bin Yi; Kun Cu; Xiaoxiong Nie; Xue-Lian Liang

    2017-01-01

    In this study, we have focused on using Taq DNA polymerase gene to develop heat-tolerant maize transgenic lines, which would aid in controlling crop loss due to heat stress and potentially increase the economic value...

  14. Low expression of DNA polymerase beta in human testicular germ cell tumours--impact on foetal gonocytic origin theory.

    Science.gov (United States)

    Nowak, Radosława; Grzybowska, Ewa A; Wilczyńska, Anna; Pykało, Roman; Siedlecki, Janusz A

    2002-01-01

    Different models of pathogenesis of adult testicular germ cell tumours (TGCTs) are presented. Analysis of telomeric length and DNA polymerase beta expression suggests that seminoma and nonseminoma, two main histological types of TGCTs, derive independently from transformed foetal primordial cells.

  15. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo.

    Science.gov (United States)

    Masumura, Kenichi; Toyoda-Hokaiwado, Naomi; Niimi, Naoko; Grúz, Petr; Wada, Naoko A; Takeiri, Akira; Jishage, Kou-Ichi; Mishima, Masayuki; Nohmi, Takehiko

    2017-12-01

    DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development.

    Science.gov (United States)

    Onishi, Kohei; Uyeda, Akiko; Shida, Mitsuhiro; Hirayama, Teruyoshi; Yagi, Takeshi; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-30

    DNA repair is crucial for genome stability in the developing cortex, as somatic de novo mutations cause neurological disorders. However, how DNA repair contributes to neuronal development is largely unknown. To address this issue, we studied the spatiotemporal roles of DNA polymerase β (Polβ), a key enzyme in DNA base excision repair pathway, in the developing cortex using distinct forebrain-specific conditional knock-out mice, Emx1-Cre/Polβ (fl/fl) and Nex-Cre/Polβ (fl/fl) mice. Polβ expression was absent in both neural progenitors and postmitotic neurons in Emx1-Cre/Polβ (fl/fl) mice, whereas only postmitotic neurons lacked Polβ expression in Nex-Cre/Polβ (fl/fl) mice. We found that DNA double-strand breaks (DSBs) were frequently detected during replication in cortical progenitors of Emx1-Cre/Polβ (fl/fl) mice. Increased DSBs remained in postmitotic cells, which resulted in p53-mediated neuronal apoptosis. This neuronal apoptosis caused thinning of the cortical plate, although laminar structure was normal. In addition, accumulated DSBs also affected growth of corticofugal axons but not commissural axons. These phenotypes were not observed in Nex-Cre/Polβ (fl/fl) mice. Moreover, cultured Polβ-deficient neural progenitors exhibited higher sensitivity to the base-damaging agent methylmethanesulfonate, resulting in enhanced DSB formation. Similar damage was found by vitamin C treatment, which induces TET1-mediated DNA demethylation via 5-hydroxymethylcytosine. Together, genome stability mediated by Polβ-dependent base excision repair is crucial for the competence of neural progenitors, thereby contributing to neuronal differentiation in cortical development.SIGNIFICANCE STATEMENT DNA repair is crucial for development of the nervous system. However, how DNA polymerase β (Polβ)-dependent DNA base excision repair pathway contributes to the process is still unknown. We found that loss of Polβ in cortical progenitors rather than postmitotic neurons led to

  17. The mini-chromosome maintenance (Mcm complexes interact with DNA polymerase α-primase and stimulate its ability to synthesize RNA primers.

    Directory of Open Access Journals (Sweden)

    Zhiying You

    Full Text Available The Mini-chromosome maintenance (Mcm proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2~7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2~7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.

  18. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site.

    Directory of Open Access Journals (Sweden)

    Alicia del Prado

    Full Text Available Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.

  19. Utilization of 2',3'-dideoxyguanosine 5'-triphosphate as an inhibitor and substrate for DNA polymerase alpha.

    Science.gov (United States)

    Ono, K; Nakane, H

    1990-01-01

    The activity of DNA polymerase alpha was strongly inhibited by low concentrations (less than 1 microM) of 2',3'-dideoxyguanosine 5'-triphosphate (ddGTP) in the presence of Mn2+, although the incorporation of [3H]ddGTP into the product DNA was not detectable under the same reaction conditions. ddGTP competitively inhibited the incorporation of [3H]dGTP into the DNA. The Kis of DNA polymerase alpha for ddGTP were as low as 0.035 microM with activated DNA and 0.044 microM with (dC)n.(dG)12-18 as respective template.primers. By increasing [3H]ddGTP concentration (greater than 1 microM), however, it became an efficient substrate for DNA polymerase alpha. Under the assay conditions with activated DNA as the template.primer and Mg2+ as the divalent cation, the maximum incorporation rate of [3H]ddGTP reached 14.5% when compared to that of the corresponding normal substrate [3H]dGTP. These results indicate that the observed inhibition of DNA polymerase alpha activity by low concentrations of ddGTP in the presence of Mn2+ cannot be explained by the incorporation of ddGTP followed by chain termination of the growing DNA, and the results also support the previously presented hypothesis that the inhibition is caused by competition between the dideoxynucleotide inhibitor and its corresponding deoxynucleotide substrate at the same enzyme binding site. Thus ddGTP acts as an inhibitor or a substrate for DNA polymerase alpha depending on its concentration and the species of divalent cation. Some of the kinetic properties of DNA polymerase alpha connected with ddGTP are also described.

  20. Electrostatic field of the large fragment of Escherichia coli DNA polymerase I.

    Science.gov (United States)

    Warwicker, J; Ollis, D; Richards, F M; Steitz, T A

    1985-12-05

    The electrostatic field of the large fragment of Escherichia coli DNA polymerase I (Klenow fragment) has been calculated by the finite difference procedure on a 2 A grid. The potential field is substantially negative at physiological pH (reflecting the net negative charge at this pH). The largest regions of positive potential are in the deep crevice of the C-terminal domain, which is the proposed binding site for the DNA substrate. Within the crevice, the electrostatic potential has a partly helical form. If the DNA is positioned to fulfil stereochemical requirements, then the positive potential generally follows the major groove and (to a lesser extent) the negative potential is in the minor groove. Such an arrangement could stabilize DNA configurations related by screw symmetry. The histidine residues of the Klenow fragment give the positive field of the groove a sensitivity to relatively small pH changes around neutrality. We suggest that the histidine residues could change their ionization states in response to DNA binding, and that this effect could contribute to the protein-DNA binding energy.

  1. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation.

    Directory of Open Access Journals (Sweden)

    Jennifer Yamtich

    Full Text Available Several germline single nucleotide polymorphisms (SNPs have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β, encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER, a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797 in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.

  2. Mitochondrial disorders of DNA polymerase γ dysfunction: from anatomic to molecular pathology diagnosis.

    Science.gov (United States)

    Zhang, Linsheng; Chan, Sherine S L; Wolff, Daynna J

    2011-07-01

    Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Review of pertinent published literature and relevant Internet databases. Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis.

  3. Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis.

    Science.gov (United States)

    Stepchenkova, E I; Tarakhovskaya, E R; Siebler, H M; Pavlov, Y I

    2017-01-01

    Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ. Copyright © 2016

  4. A RecA Protein Surface Required for Activation of DNA Polymerase V

    Science.gov (United States)

    Gruber, Angela J.; Erdem, Aysen L.; Sabat, Grzegorz; Karata, Kiyonobu; Jaszczur, Malgorzata M.; Vo, Dan D.; Olsen, Tayla M.; Woodgate, Roger; Goodman, Myron F.; Cox, Michael M.

    2015-01-01

    DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis. PMID:25811184

  5. Rare case of post-cataract-surgery Prevotella endophthalmitis diagnosed by polymerase chain reaction DNA sequencing.

    Science.gov (United States)

    Amissah-Arthur, Kwesi N; Farooq, Tahir A; Dhillon, Navpreet; Cunliffe, Ian A; Bansal, Atul

    2013-03-01

    We report the presentation, diagnosis, and management of endophthalmitis caused by the opportunistic Prevotella species. The case was referred to us following uneventful phacoemulsification and intraocular lens implantation. Accurate identification of this rare cause of endophthalmitis was made using bacterial polymerase chain reaction DNA sequencing. Subsequent prompt modification of antibacterial therapy allowed resolution of signs and symptoms and significant visual recovery. To our knowledge, this is the first reported case of diagnosis and management of post-cataract-surgery endophthalmitis caused by the opportunistic Prevotella species. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Ribonucleotide incorporation by human DNA polymerase eta impacts translesion synthesis and RNase H2 activity

    OpenAIRE

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2017-01-01

    Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing p...

  7. Ribonucleotide incorporation by human DNA polymerase ? impacts translesion synthesis and RNase H2 activity

    OpenAIRE

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; H?bscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Abstract Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol ? can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2?-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol ? is also capable of synth...

  8. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  9. Tighter binding of HIV reverse transcriptase to RNA-DNA vs. DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA*

    OpenAIRE

    Bohlayer, William P.; DeStefano, Jeffrey J.

    2006-01-01

    Binding of HIV reverse transcriptase (RT) to unique substrates that positioned RNA-DNA or DNA-DNA near the polymerase or RNase H domains was measured. The substrates consisted of a 50 nucleotide template and DNA primers ranging from 23–43 nucleotides. Five different types of template strands were used: homogeneous (1) RNA or (2) DNA, (3) first 20 5′ nucleotides DNA and last 30 RNA, (4) first 20 RNA and last 30 DNA, (5) 15 nucleotides DNA followed by 5 RNA then 30 DNA. The different length pri...

  10. Increased methylation of Human Papillomavirus type 16 DNA correlates with viral integration in Vulval Intraepithelial Neoplasia.

    Science.gov (United States)

    Bryant, Dean; Onions, Tiffany; Raybould, Rachel; Jones, Sadie; Tristram, Amanda; Hibbitts, Samantha; Fiander, Alison; Powell, Ned

    2014-11-01

    Methylation of HPV16 DNA is a promising biomarker for triage of HPV positive cervical screening samples but the biological basis for the association between HPV-associated neoplasia and increased methylation is unclear. To determine whether HPV16 DNA methylation was associated with viral integration, and investigate the relationships between viral DNA methylation, integration and gene expression. HPV16 DNA methylation, integration and gene expression were assessed using pyrosequencing, ligation-mediated PCR and QPCR, in biopsies from 25 patients attending a specialist vulval neoplasia clinic and in short-term clonal cell lines derived from vulval and vaginal neoplasia. Increased methylation of the HPV16 L1/L2 and E2 regions was associated with integration of viral DNA into the host genome. This relationship was observed both in vivo and in vitro. Increased methylation of E2 binding sites did not appear to be associated with greater expression of viral early genes. Expression of HPV E6 and E7 did not correlate with either integration state or increased L1/L2 methylation. The data suggest that increased HPV DNA methylation may be partly attributable to viral integration, and provide a biological rationale for quantification of L1/L2 methylation in triage of HPV positive cervical screening samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

    Science.gov (United States)

    Modell, Joshua W; Jiang, Wenyan; Marraffini, Luciano A

    2017-04-06

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide protection against viral and plasmid infection by capturing short DNA sequences from these invaders and integrating them into the CRISPR locus of the prokaryotic host. These sequences, known as spacers, are transcribed into short CRISPR RNA guides that specify the cleavage site of Cas nucleases in the genome of the invader. It is not known when spacer sequences are acquired during viral infection. Here, to investigate this, we tracked spacer acquisition in Staphylococcus aureus cells harbouring a type II CRISPR-Cas9 system after infection with the staphylococcal bacteriophage ϕ12. We found that new spacers were acquired immediately after infection preferentially from the cos site, the viral free DNA end that is first injected into the cell. Analysis of spacer acquisition after infection with mutant phages demonstrated that most spacers are acquired during DNA injection, but not during other stages of the viral cycle that produce free DNA ends, such as DNA replication or packaging. Finally, we showed that spacers acquired from early-injected genomic regions, which direct Cas9 cleavage of the viral DNA immediately after infection, provide better immunity than spacers acquired from late-injected regions. Our results reveal that CRISPR-Cas systems exploit the phage life cycle to generate a pattern of spacer acquisition that ensures a successful CRISPR immune response.

  12. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    Science.gov (United States)

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  13. DNA-modified artificial viral capsids self-assembled from DNA-conjugated β-annulus peptide.

    Science.gov (United States)

    Nakamura, Yoko; Yamada, Saki; Nishikawa, Shoko; Matsuura, Kazunori

    2017-07-01

    β-Annulus peptides from tomato bushy stunt virus conjugated with DNAs (dA20 and dT20 ) at the C-terminal were synthesized. The DNA-modified β-annulus peptides self-assembled into artificial viral capsids with sizes of 45-160 nm. ζ-Potential measurements revealed that the DNAs were coated on the surface of artificial viral capsids. Fluorescence assays indicated that the DNAs on the artificial viral capsids were partially hybridized with the complementary DNAs. Moreover, the DNA-modified artificial viral capsids formed aggregates by adding complementary polynucleotides. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  14. Detection of Toxoplasma gondii DNA by polymerase chain reaction in experimentally desiccated tissues

    Directory of Open Access Journals (Sweden)

    Márcia Andreia Barge Loução Terra

    2004-03-01

    Full Text Available Despite toxoplasmosis being a common infection among human and other warm-blooded animals worldwide, there are no findings about Toxoplasma gondii evolutionary forms in ancient populations. The molecular techniques used for amplification of genetic material have allowed recovery of ancient DNA (aDNA from parasites contained in mummified tissues. The application of polymerase chain reaction (PCR to paleoparasitological toxoplasmosis research becomes a promising option, since it might allow diagnosis, acquisition of paleoepidemiological data, access to toxoplasmosis information related origin, evolution, and distribution among the ancient populations.Furthermore, it makes possible the analysis of parasite aDNA aiming at phylogenetic studies. To standardize and evaluate PCR applicability to toxoplasmosis paleodiagnostic, an experimental mummification protocol was tested using desiccated tissues from mice infected with the ME49 strain cysts, the chronic infection group (CIG, or infected with tachyzoites (RH strain, the acute infection group (AIG. Tissues were subjected to DNA extraction followed by PCR amplification of T. gondii B1 gene. PCR recovered T. gondii DNA in thigh muscle, encephalon, heart, and lung samples. AIG presented PCR positivity in encephalon, lungs, hearts, and livers. Based on this results, we propose this molecular approach for toxoplasmosis research in past populations.

  15. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  16. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria.

    Science.gov (United States)

    Prasad, Rajendra; Çağlayan, Melike; Dai, Da-Peng; Nadalutti, Cristina A; Zhao, Ming-Lang; Gassman, Natalie R; Janoshazi, Agnes K; Stefanick, Donna F; Horton, Julie K; Krasich, Rachel; Longley, Matthew J; Copeland, William C; Griffith, Jack D; Wilson, Samuel H

    2017-12-01

    Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability. Published by Elsevier B.V.

  17. Nucleotide insertion initiated by van der Waals interaction during polymerase beta DNA replication

    CERN Document Server

    Arulsamy, Andrew Das

    2011-01-01

    Immortality will remain a fantasy for as long as aging is determined by the erroneous biochemical reactions during a particular DNA replication. The replication and base excision repair mechanism, associated to eukaryotic DNA polymerase-beta enzyme are central to maintaining a healthy cell. Here, we give a series of unambiguous theoretical analyses and prove that the exclusive biochemical reaction involved in a single nucleotide insertion into the DNA primer can be efficiently tracked using the renormalized van der Waals interaction of the stronger type, and the Hermansson blue-shifting hydrogen bond effect. We found that there are two biochemical steps involved to complete the insertion of a single dCTP into the 3' end of a DNA primer. First, the O3' (from a DNA primer) initiates the nucleophilic attack on P_alpha?(from an incoming dCTP), in response, O3_alpha (bonded to P_alpha) retaliates by interacting with H' (bonded to O3'). These interactions are shown to be strongly interdependent and require the form...

  18. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma.

    Science.gov (United States)

    Lim, S E; Copeland, W C

    2001-06-29

    Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.

  19. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation.

    Science.gov (United States)

    Gao, Zhihuan; Liu, Hai-Liang; Daxinger, Lucia; Pontes, Olga; He, Xinjian; Qian, Weiqiang; Lin, Huixin; Xie, Mingtang; Lorkovic, Zdravko J; Zhang, Shoudong; Miki, Daisuke; Zhan, Xiangqiang; Pontier, Dominique; Lagrange, Thierry; Jin, Hailing; Matzke, Antonius J M; Matzke, Marjori; Pikaard, Craig S; Zhu, Jian-Kang

    2010-05-06

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.

  20. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  1. Validation study of HPV DNA detection from stained FNA smears by polymerase chain reaction

    DEFF Research Database (Denmark)

    Channir, Hani Ibrahim; Larsen, Christian Grønhøj; Ahlborn, Lise Barlebo

    2016-01-01

    BACKGROUND: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) often presents with cystic cervical metastasis and a small primary tumor localized in the palatine tonsils or base of the tongue, which is diagnostically challenging. Testing for HPV DNA in fine......-needle aspiration (FNA) smears from metastases may facilitate a targeted diagnostic workup for identifying the primary tumor. This study was designed to assess the ability to detect HPV DNA in FNA smears with polymerase chain reaction (PCR). METHODS: May-Grünvald-Giemsa (MGG)-stained FNA smears from metastases...... and corresponding surgical specimens were collected from 71 patients with known HPV-positive OPSCC, 12 patients with oral squamous cell carcinoma (OSCC), 20 patients with branchial cleft cysts, and 20 patients with Warthin tumors. Thirty-eight patients with OPSCC and 7 patients with OSCC had FNA smears available...

  2. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase {eta} from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Maria Jesus [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Alejandre-Duran, Encarna [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Ruiz-Rubio, Manuel [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain)]. E-mail: ge1rurum@uco.es

    2006-10-10

    DNA polymerase {eta} belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol{eta} homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol{eta} activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  3. The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP.

    Science.gov (United States)

    Goodman, Myron F

    2014-09-26

    My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    Science.gov (United States)

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  5. Carborane-linked 2'-deoxyuridine 5'-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA.

    Science.gov (United States)

    Balintová, Jana; Simonova, Anna; Białek-Pietras, Magdalena; Olejniczak, Agnieszka; Lesnikowski, Zbigniew J; Hocek, Michal

    2017-11-01

    5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mitochondrial DNA Polymerase POLG1 Disease Mutations and Germline Variants Promote Tumorigenic Properties.

    Science.gov (United States)

    Singh, Bhupendra; Owens, Kjerstin M; Bajpai, Prachi; Desouki, Mohamed Mokhtar; Srinivasasainagendra, Vinodh; Tiwari, Hemant K; Singh, Keshav K

    2015-01-01

    Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2'-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic

  7. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.

    Directory of Open Access Journals (Sweden)

    Carrie L Flood

    2015-03-01

    Full Text Available It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3'-terminal 8 oxoG, unlike a 3'-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants.

  8. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7.

    Science.gov (United States)

    Li, Ying; Dutta, Shuchismita; Doublié, Sylvie; Bdour, Hussam Moh'd; Taylor, John-Stephen; Ellenberger, Tom

    2004-08-01

    Ultraviolet-induced DNA damage poses a lethal block to replication. To understand the structural basis for this, we determined crystal structures of a replicative DNA polymerase from bacteriophage T7 in complex with nucleotide substrates and a DNA template containing a cis-syn cyclobutane pyrimidine dimer (CPD). When the 3' thymine is the templating base, the CPD is rotated out of the polymerase active site and the fingers subdomain adopts an open orientation. When the 5' thymine is the templating base, the CPD lies within the polymerase active site where it base-pairs with the incoming nucleotide and the 3' base of the primer, while the fingers are in a closed conformation. These structures reveal the basis for the strong block of DNA replication that is caused by this photolesion.

  9. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2017-03-08

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.

  10. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    Full Text Available Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV, a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg RNA which is also required as bicistronic mRNA for the capsid (core protein and the reverse transcriptase (Pol; their open reading frames (ORFs overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES. We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR and humanized Renilla green fluorescent protein (hrGFP produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to

  11. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Science.gov (United States)

    Wang, Zihua; Wu, Li; Cheng, Xin; Liu, Shizhu; Li, Baosheng; Li, Haijun; Kang, Fubiao; Wang, Junping; Xia, Huan; Ping, Caiyan; Nassal, Michael; Sun, Dianxing

    2013-01-01

    Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV), a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg) RNA which is also required as bicistronic mRNA for the capsid (core) protein and the reverse transcriptase (Pol); their open reading frames (ORFs) overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES). We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR) and humanized Renilla green fluorescent protein (hrGFP) produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to better

  12. Comparison of DNA extraction methods for polymerase chain reaction amplification of guanaco (Lama guanicoe) fecal DNA samples.

    Science.gov (United States)

    Espinosa, M I; Bertin, A; Squeo, F A; Cortés, A; Gouin, N

    2015-01-23

    Feces-based population genetic studies have become increasingly popular. However, polymerase chain reaction (PCR) amplification rates from fecal material vary depending on the species, populations, loci, and extraction protocols. Here, we assessed the PCR amplification success of three microsatellite markers and a segment of the mitochondrial control region of DNA extracted from field-collected feces of guanaco (Lama guanicoe) using two protocols - Qiagen DNA Stool Kit and 2 cetyltrimethylammonium bromide/phenol:chloroform:isoamyl alcohol (2CTAB/PCI) method. Chelex resin treatment to remove inhibitors was also tested. Our results show that the mitochondrial locus was the most difficult to amplify. PCR success rates improved for all markers after Chelex treatment of extracted DNA, and 2CTAB/PCI method (95.83%) appeared to perform slightly better than stool kit (91.67%) for the nuclear markers. Amplification success was significantly influenced by the extraction method, Chelex treatment, and locus (P 0.89), but they decreased slightly after treatment for amplification of nuclear markers and markedly after treatment for amplification of the mitochondrial control region. Thus, we showed that Chelex treatment gives high PCR success, especially for nuclear markers, and adequate DNA extraction rates can be achieved from L. guanicoe feces even from non-fresh fecal material. Although not significant, 2CTAB/PCI method tended to provide higher successful amplification rates on a whole set of samples, suggesting that the method could be particularly useful when using small sample sizes.

  13. DNA viral infection in patients following allogeneic transplantation of bone marrow

    OpenAIRE

    Hubáček, Petr

    2009-01-01

    Infectious complications are very common after haematopoietic stem cell transplantation (HSCT). Beside bacterial and mycotic infections, viral infections are important cause of morbidity and mortality of these patients. Among viral infections, the most common are infections caused by DNA viruses. Between January 2001 and October 2008, we have tested samples from 217 paediatric and 382 adult patients after HSCT. In total, we have tested 15 757 samples (median 31 samples for children, 20 for ad...

  14. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  15. Identification of Species Related to Anopheles (Nyssorhynchus) albitarsis by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (Diptera: Culicidae)

    Science.gov (United States)

    1995-11-01

    plified polymorphic DNA in the population genet- ics and systematics of grasshoppers . Genome 35: 569-574. Galvgo ALA, Damesceno RG 1942. Sobre urn...iynchus) albitarsis by Random Amplified Polymorphic DNA -Polymerase Chain Reaction (Diptera: Culicidae) Richard C Wilkerson/+, Thomas V Caffigan, Jo...Instituto de Biologia do ExCrcito, Rua Francisco Manuel 102, 2091 l-270 Rio de Janeiro, RJ, Brasil Species-specific Random Amplified Polymorphic DNA

  16. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    Science.gov (United States)

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  17. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis.

    Science.gov (United States)

    Kanemaru, Yuki; Suzuki, Tetsuya; Sassa, Akira; Matsumoto, Kyomu; Adachi, Noritaka; Honma, Masamitsu; Numazawa, Satoshi; Nohmi, Takehiko

    2017-01-01

    Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and

  18. Escherichia coli processivity clamp β from DNA polymerase III is dynamic in solution†

    Science.gov (United States)

    Fang, Jing; Engen, John R.; Beuning, Penny J.

    2011-01-01

    Escherichia coli DNA polymerase III is a highly processive replicase due to the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with diminished ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains showed different dynamics though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from Domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of Domain III also underwent partial unfolding with a half-life ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a “ring holder” to stabilize the transient opening of the β clamp, rather than as a “ring opener”. PMID:21657794

  19. The herpes viral transcription factor ICP4 forms a novel DNA recognition complex

    Science.gov (United States)

    Tunnicliffe, Richard B.; Lockhart-Cairns, Michael P.; Levy, Colin; Mould, A. Paul; Jowitt, Thomas A.; Sito, Hilary; Baldock, Clair; Sandri-Goldin, Rozanne M.

    2017-01-01

    Abstract The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain. PMID:28505309

  20. Development of nested polymerase chain reaction-based diagnosis of duck enteritis virus and detection of DNA polymerase gene from non-descriptive duck breeds of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Mandal

    2017-03-01

    Full Text Available Aim: The study was undertaken to detect the clinical signs, postmortem lesions of embryonated duck plague (DP infected eggs, and histopathological changes of chorioallantoic membrane (CAM in non-descriptive ducks of West Bengal with special reference to standardize nested polymerase chain reaction (PCR. Materials and Methods: After postmortem of suspected carcasses, samples were collected for virus isolation and identification through specific pathogen free (Khaki Campbell embryonated duck eggs. PCR was also done as confirmatory test after doing postmortem of duck embryos. DP specific nested PCR was standardized for better confirmation of the disease. Sensitivity of nested primers was also tested for DP virus. Results: Gross, postmortem and histopathological changes were prominent in dead embryos. First set of primer was able to detect 602 bp fragments of DNA polymerase gene of duck enteritis virus from infected CAM. Subsequently, a DP specific nested PCR which was very much sensitive for very small amount of viral genome was successfully standardized. After NCBI blast nucleotide sequence of nested PCR product (Accession No. HG425076 showed homology with the sequences data available in GenBank. Conclusion: The study concludes that PCR assay is very much helpful to diagnose DP disease and developed nested PCR is a double confirmatory diagnostic tool for DP.

  1. Ddc1 checkpoint protein and DNA polymerase ɛ interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; van der Kemp, Patricia Auffret; Koval, Vladimir V; Boiteux, Serge; Lavrik, Olga I

    2011-08-15

    To characterize proteins that interact with base excision/single-strand interruption repair DNA intermediates in cell free extracts of Saccharomyces cerevisiae, we used a combination of photoaffinity labeling with the protein identification by MALDI-TOF-MS peptide mapping. Photoreactive analogue of dCTP, namely exo-N-[4-(4-azido-2,3,5,6,-tetrafluorobenzylidenehydrazinocarbonyl)-butylcarbamoyl]-2'-deoxycytidine-5'-triphosphate, and [(32)P]-labeled DNA duplex containing one nucleotide gap were used to generate nick-containing DNA with a photoreactive dCMP residue at the 3'-margin of the nick. This photoreactive DNA derivative was incubated with the yeast cell extract and after UV irradiation a number of proteins were labeled. Two of the crosslinked proteins were identified as the catalytic subunit of DNA polymerase ɛ and Ddc1 checkpoint protein. Labeling of DNA polymerase ɛ catalytic subunit with the nick-containing DNA repair intermediate indicates that the DNA polymerase is involved in the DNA repair synthesis in yeast, at least at DNA single-strand interruptions. Crosslinking of Ddc1 to DNA nicks took place independently of the other components of checkpoint clamp, Mec3 and Rad17, suggesting that the protein alone is able to recognize DNA single-strand breaks. Indeed, purified GST-tagged Ddc1 protein was efficiently crosslinked to nick-containing DNA. The interaction of Ddc1 with DNA nicks may provide a link between the DNA damage checkpoint and DNA base excision/single-strand breaks repair pathways in yeast. In addition, we found that absence of Ddc1 protein greatly influences the overall pattern of other proteins crosslinked to DNA nick. We suggested that this last effect of Ddc1 is at least partially due to its capacity to prevent proteolytic degradation of the DNA-protein adducts. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. [Influence of different DNA extractions on the identification of streptococcus sanguis group by arbitrary primed polymerase chain reaction

    Science.gov (United States)

    Zhang, Wei-Dong; Chen, Hui; Yu, Zhong-Sheng

    2002-08-01

    OBJECTIVE: To assess the influence of different DNA extractions on the identification of streptococcus sanguis group (SSG) species by arbitrary primed polymerase chain reaction (AP-PCR). METHODS: AP-PCR was used to distinguish SSG species by designing 25bp arbitrary primer 5'AAG AGA GGA GCT AGC TCT TCT TGG A 3', and the genomic DNA was extracted by 3 methods. RESULTS: There were great differences in the main band of DNA polymorphism among SSG species. The similar band could be got from the different DNA extractions in the same species. CONCLUSION: Different DNA extractions have no influence on the identification of SSG.

  3. Detection of bovine herpesvirus 2 and bovine herpesvirus 4 DNA in trigeminal ganglia of naturally infected cattle by polymerase chain reaction.

    Science.gov (United States)

    Campos, F S; Franco, A C; Oliveira, M T; Firpo, R; Strelczuk, G; Fontoura, F E; Kulmann, M I R; Maidana, S; Romera, S A; Spilki, F R; Silva, A D; Hübner, S O; Roehe, P M

    2014-06-25

    Establishment of latent infection within specific tissues in the host is a common biological feature of the herpesviruses. In the case of bovine herpesvirus 2 (BoHV-2), latency is established in neuronal tissues, while bovine herpesvirus 4 (BoHV-4) and ovine herpesvirus 2 (OvHV-2) latent virus targets on cells of the monocytic lineage. This study was conducted in quest of BoHV-2, BoHV-4 and OvHV-2 DNA in two hundred trigeminal ganglia (TG) specimens, derived from one hundred clinically healthy cattle, majority of them naturally infected with bovine herpesvirus 1 (BoHV-1) and bovine herpesvirus 5 (BoHV-5). Total DNA extracted from ganglia was analyzed by polymerase chain reaction (PCR) designed to amplify part of the genes coding for BoHV-2, and BoHV-4 glycoprotein B and, for OvHV-2, the gene coding for phosphoribosylformylglycinamidine synthase-like protein. BoHV-2 DNA was detected in TG samples of two (2%) and BoHV-4 DNA in nine (9%) of the animals, whereas OvHV-2 DNA could not be detected in any of the TG DNA. The two animals in which BoHV-2 DNA was identified were also co-infected with BoHV-1 and BoHV-5. Within the nine animals in which BoHV-4 DNA was detected, six were also co-infected with BoHV-1 and BoHV-5. This report provides for the first time evidence that viral DNA from BoHV-2 and BoHV-4 can be occasionally detected in TG of naturally infected cattle. Likewise, in this report we provided for the first time evidence that the co-infection of cattle with three distinct bovine herpesviruses might be a naturally occurring phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. L-Homoserylaminoethanol, a novel dipeptide alcohol inhibitor of eukaryotic DNA polymerase from a plant cultured cells, Nicotina tabacum L.

    Science.gov (United States)

    Kuriyama, Isoko; Asano, Naoki; Kato, Ikuo; Oshige, Masahiko; Sugino, Akio; Kadota, Yasuhiro; Kuchitsu, Kazuyuki; Yoshida, Hiromi; Sakaguchi, Kengo; Mizushina, Yoshiyuki

    2004-03-01

    We found a novel inhibitor specific to eukaryotic DNA polymerase epsilon(pol epsilon) from plant cultured cells, Nicotina tabacum L. The compound (compound 1) was a dipeptide alcohol, L-homoserylaminoethanol. The 50% inhibition of pol epsilon activity by the compound was 43.6 microg/mL, and it had almost no effect on the activities of the other eukaryotic DNA polymerases such as alpha, beta, gamma and delta, prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human telomerase, human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, human DNA topoisomerase I and II, T4 polynucleotide kinase and bovine deoxyribonuclease I. Kinetic studies showed that inhibition of pol epsilon by the compound was non-competitive with respect to both template-primer DNA and nucleotide substrate. We succeeded in chemically synthesizing the stereoisomers, L-homoserylaminoethanol and D-homoserylaminoethanol, and found both were effective to the same extent. The IC(50) values of L- and D-homoserylaminoethanols for pol epsilon were 42.0 and 41.5 microg/mL, respectively. This represents the second discovery of a pol epsilon-specific inhibitor, and the first report on a water-soluble peptide-like compound as the inhibitor, which is required in biochemical studies of pol epsilon.

  5. Replicative homeostasis II: Influence of polymerase fidelity on RNA virus quasispecies biology: Implications for immune recognition, viral autoimmunity and other "virus receptor" diseases

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-08-01

    Full Text Available Abstract Much of the worlds' population is in active or imminent danger from established infectious pathogens, while sporadic and pandemic infections by these and emerging agents threaten everyone. RNA polymerases (RNApol generate enormous genetic and consequent antigenic heterogeneity permitting both viruses and cellular pathogens to evade host defences. Thus, RNApol causes more morbidity and premature mortality than any other molecule. The extraordinary genetic heterogeneity defining viral quasispecies results from RNApol infidelity causing rapid cumulative genomic RNA mutation a process that, if uncontrolled, would cause catastrophic loss of sequence integrity and inexorable quasispecies extinction. Selective replication and replicative homeostasis, an epicyclical regulatory mechanism dynamically linking RNApol fidelity and processivity with quasispecies phenotypic diversity, modulating polymerase fidelity and, hence, controlling quasispecies behaviour, prevents this happening and also mediates immune escape. Perhaps more importantly, ineluctable generation of broad phenotypic diversity after viral RNA is translated to protein quasispecies suggests a mechanism of disease that specifically targets, and functionally disrupts, the host cell surface molecules – including hormone, lipid, cell signalling or neurotransmitter receptors – that viruses co-opt for cell entry. This mechanism – "Viral Receptor Disease (VRD" – may explain so-called "viral autoimmunity", some classical autoimmune disorders and other diseases, including type II diabetes mellitus, and some forms of obesity. Viral receptor disease is a unifying hypothesis that may also explain some diseases with well-established, but multi-factorial and apparently unrelated aetiologies – like coronary artery and other vascular diseases – in addition to diseases like schizophrenia that are poorly understood and lack plausible, coherent, pathogenic explanations.

  6. DNA Polymerase ɛ Deficiency Leading to an Ultramutator Phenotype: A Novel Clinically Relevant Entity.

    Science.gov (United States)

    Castellucci, Enrico; He, Tianfang; Goldstein, D Yitzchak; Halmos, Balazs; Chuy, Jennifer

    2017-05-01

    Deficiencies in DNA repair due to mutations in the exonuclease domain of DNA polymerase ɛ have recently been described in a subset of cancers characterized by an ultramutated and microsatellite stable (MSS) phenotype. This alteration in DNA repair is distinct from the better-known mismatch repair deficiencies which lead to microsatellite instability (MSI) and an increased tumor mutation burden. Instead, mutations in POLE lead to impaired proofreading intrinsic to Pol ɛ during DNA replication resulting in a dramatically increased mutation rate. Somatic mutations of Pol ɛ have been found most frequently in endometrial and colorectal cancers (CRC) and can lead to a unique familial syndrome in the case of germline mutations. While other key genomic abnormalities, such as MSI, have known prognostic and treatment implications, in this case it is less clear. As molecular genotyping of tumors becomes routine in the care of cancer patients, less common, but potentially actionable findings such as these POLE mutations could be overlooked unless appropriate algorithms are in place. We present two cases of metastatic CRC with a POLE mutation, both of which are ultramutated and MSS. The basic biochemical mechanisms leading to a unique phenotype in POLE deficiency as well as challenges faced with interpreting the genomic profiling of tumors in this important subset of patients and the potential clinical implications will be discussed here. The Oncologist 2017;22:497-502 KEY POINTS: Clinicians should recognize that tumors with high tumor mutation burden and that are microsatellite stable may harbor a POLE mutation, which is associated with an ultramutated phenotype.Work-up for POLE deficiency should indeed become part of the routine molecular testing paradigm for patients with colorectal cancer.This subset of patients may benefit from clinical trials where the higher number of mutation-associated neoantigens and defect in DNA repair may be exploited therapeutically. © Alpha

  7. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose polymerase-1.

    Directory of Open Access Journals (Sweden)

    Ingrid Oit-Wiscombe

    Full Text Available Chronic oxidative stress (OS, a major mechanism of chronic obstructive pulmonary disease (COPD, may cause significant damage to DNA. Poly(ADP-ribose polymerase (PARP-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR 7.88, 95% CI 4.26-14.57; p<0.001 and OR 3.91, 95% CI 2.69-5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001. An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040. Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.

  8. Frequent Hypermethylation of RASSF1A, TSLC1, High Viral Load of Epstein-Barr Virus DNA in Nasopharyngeal Carcinoma, Matched Tumor-Adjacent Tissues

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    2005-09-01

    Full Text Available We examined the promoter hypermethylation of tumorsuppressor genes RASSF1A, TSLC1, quantitated EBV DNA load in nasopharyngeal carcinoma (NPC tissues (T tissues, matched tumor-adjacent tissues outside 0.5 cm (P tissues, outside 1.0 cm (Z tissues to evaluate the role of promoter hypermethylation of RASSF1A, TSLC1 as well as viral load in the pathogenesis of NPC. Methylation-specific polymerase chain reaction (PCR for RASSF1A, TSLC1, quantitative real-time PCR analysis of EBV DNA were performed on matched T, P, Z tissues (n = 28 as well as chronic nasopharyngitis tissues (n = 8. Hypermethylated RASSF1A was frequently detected in the T (82%, P tissues (75%, but less frequently in Z tissues (46%. The average quantities of EBV DNA (copies/μg DNA in matched T, P, Z tissues were 673,000, 90,000, 7000. The differences of promoter hypermethylation of RASSF1A, EBV viral load among T, P, Z tissues were statistically significant, with more frequent methylation, higher viral load detected when tissues examined were nearer to the NPC tissues. Our results suggest that aberrant hypermethylation of RASSF1A, high EBV load might be important events in NPC pathogenesis, they may be useful molecular diagnostic markers for this cancer.

  9. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase.

    Science.gov (United States)

    Agudo, Rubén; Calvo, Patricia A; Martínez-Jiménez, María I; Blanco, Luis

    2017-09-06

    We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Application of the arbitrarily primed polymerase chain reaction for the detection of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, F.; Evenden, A.; Jha, A.; Depledge, M. [University of Plymouth (United Kingdom). Environmental Research Centre; Child, P. [ADAS Boxworth (United Kingdom); Savva, D.; Walker, C. [University of Reading (United Kingdom). School of Animal and Microbial Sciences

    1998-07-01

    The technique of arbitrarily primed polymerase chain reaction (AP-PCR) shows potential as a selective and sensitive assay for the detection of xenobiotic-induced DNA damage. Problems, however, may occur in AP-PCR, diminishing its discriminative abilities. These problems include the presence of spurious amplification products in non-template-containing negative control reactions, and a lack of reproducibility amongst amplification patterns. Experiments designed to remove contaminated nucleic acids by ultraviolet (UV) treatment indicated that spurious bands are the result of aberrant primer-induced polymerisation, an event shown to be influenced by the concentration of deoxynucleotide triphosphates (dNTP) present in the reaction mixtures. Optimisation of dNTP concentration from 0.22 to 0.33 MM resulted in clear negative controls and highly reproducible amplification patterns with all DNA templates. As an example of the application of the method, in the present study, the macroalga Palmaria palmata (Rhodophyta) was exposed to UV A and B radiations. The study shows that the AP-PCR method can detect DNA damage and may be useful in detecting such damage following exposure of cells to xenobiotics. (author)

  11. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells

    Science.gov (United States)

    Srivastava, Amit Kumar; Han, Chunhua; Zhao, Ran; Cui, Tiantian; Dai, Yuntao; Mao, Charlene; Zhao, Weiqiang; Zhang, Xiaoli; Yu, Jianhua; Wang, Qi-En

    2015-01-01

    Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment. PMID:25831546

  12. Temperature dependence of accuracy of DNA polymerase I from Geobacillus anatolicus.

    Science.gov (United States)

    Cağlayan, Melike; Bilgin, Neş'e

    2012-09-01

    Klenow-like DNA polymerase I fragment from Geobacillus anatolicus (GF) was cloned and purified. The accuracy of GF was measured in vitro at three different temperatures under single turnover conditions as well as using a forward mutation assay. In pre-steady-state kinetic measurements, when temperature was raised from 22 °C to 50 °C, the rate (k(pol)) for cognate dTTP and non-cognate dATP nucleotide incorporations increased six- and four-fold, respectively, whereas the K(d) for both nucleotide incorporations changed only slightly. As a result, the error frequency was remained constant (∼4 × 10(-4)) over this temperature range. The accuracy of GF was also measured using a forward mutation assay during a single cycle of DNA synthesis of the lacZα complementation gene in M13mp2 DNA. In this assay, which scores various types of replication errors, mutant frequency of GF was 5 × 10(-3) at 72 °C which is four-fold higher than that of 37 °C. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity.

    Science.gov (United States)

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2017-03-17

    Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide.

    Science.gov (United States)

    Tang, Jiang-bo; Svilar, David; Trivedi, Ram N; Wang, Xiao-hong; Goellner, Eva M; Moore, Briana; Hamilton, Ronald L; Banze, Lauren A; Brown, Ashley R; Sobol, Robert W

    2011-05-01

    Temozolomide (TMZ) is the preferred chemotherapeutic agent in the treatment of glioma following surgical resection and/or radiation. Resistance to TMZ is attributed to efficient repair and/or tolerance of TMZ-induced DNA lesions. The majority of the TMZ-induced DNA base adducts are repaired by the base excision repair (BER) pathway and therefore modulation of this pathway can enhance drug sensitivity. N-methylpurine DNA glycosylase (MPG) initiates BER by removing TMZ-induced N3-methyladenine and N7-methylguanine base lesions, leaving abasic sites (AP sites) in DNA for further processing by BER. Using the human glioma cell lines LN428 and T98G, we report here that potentiation of TMZ via BER inhibition [methoxyamine (MX), the PARP inhibitors PJ34 and ABT-888 or depletion (knockdown) of PARG] is greatly enhanced by over-expression of the BER initiating enzyme MPG. We also show that methoxyamine-induced potentiation of TMZ in MPG expressing glioma cells is abrogated by elevated-expression of the rate-limiting BER enzyme DNA polymerase β (Polβ), suggesting that cells proficient for BER readily repair AP sites in the presence of MX. Further, depletion of Polβ increases PARP inhibitor-induced potentiation in the MPG over-expressing glioma cells, suggesting that expression of Polβ modulates the cytotoxic effect of combining increased repair initiation and BER inhibition. This study demonstrates that MPG overexpression, together with inhibition of BER, sensitizes glioma cells to the alkylating agent TMZ in a Polβ-dependent manner, suggesting that the expression level of both MPG and Polβ might be used to predict the effectiveness of MX and PARP-mediated potentiation of TMZ in cancer treatment.

  15. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami

    2017-05-08

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  16. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  17. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription

    Science.gov (United States)

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-01-01

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I–Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association. DOI: http://dx.doi.org/10.7554/eLife.20832.001 PMID:28262097

  18. Insights into the error bypass of 1-Nitropyrene DNA adduct by DNA polymerase ι: A QM/MM study

    Science.gov (United States)

    Li, Yanwei; Bao, Lei; Zhang, Ruiming; Tang, Xiaowen; Zhang, Qingzhu; Wang, Wenxing

    2017-10-01

    The error bypass mechanism of DNA polymerase ι toward N-(deoxyguanosin-8-yl)-1-aminopyrene adduction was studied by using quantum mechanics/molecular mechanics method. The most favorable mechanism highlights three elementary steps: proton transfer from dC to dATP, phosphoryl transfer, and deprotonation of dAMP. The phosphoryl transfer step was found to be rate-determining. The calculated average barrier (23.8 kcal mol-1) is in accordance with the experimental value (21.5 kcal mol-1). Electrostatic influence analysis indicates that residues Asp126 and Lys207 significantly suppress the error bypass while Glu127 facilitates the process. These results highlight the origins of the mutagenicity of nitrated polycyclic aromatic hydrocarbons in molecular detail.

  19. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    The use of molecular methods to investigate the community structure and diversity of microalgae has largely replaced the previous morphological methods that were routinely carried out by microscopy. Different DNA polymerases can lead to bias in PCR amplification and affect the downstream community...... and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  20. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    Science.gov (United States)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  1. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology.

    Science.gov (United States)

    Xu, Man; Arku, Benedict; Jartti, Tuomas; Koskinen, Janne; Peltola, Ville; Hedman, Klaus; Söderlund-Venermo, Maria

    2017-05-15

    Human bocavirus (HBoV) 1 can cause life-threatening respiratory tract infection in children. Diagnosing acute HBoV1 infection is challenging owing to long-term airway persistence. We assessed whether messenger RNA (mRNA) detection would correlate better than DNA detection with acute HBoV1 infection. Paired serum samples from 121 children with acute wheezing were analyzed by means of serology. Quantitative polymerase chain reaction (PCR) and reverse-transcription (RT) PCR were applied to nasopharyngeal swab (NPS) samples from all acutely HBoV1-infected children and from controls with nonacute infection. By serology, 16 of 121 children (13.2%) had acute HBoV1 infection, all of whom had HBoV1 DNA in NPS samples, and 12 of 16 (75%) had HBoV1 mRNA. Among 25 children with nondiagnostic results, 6 had HBoV1 DNA in NPS samples, and 1 had mRNA. All 13 mRNA-positive samples exhibited high DNA loads (≥106 copies/mL). No mRNA persisted for 2 weeks, whereas HBoV1 DNA persisted for 2 months in 4 children; 1 year later all 15 samples were DNA negative. Compared with serology, DNA PCR had high clinical sensitivity (100%) but, because of viral persistence, low specificity (76%). In contrast, mRNA RT-PCR had low clinical sensitivity (75%) but high specificity (96%). A combination of HBoV1 serology and nasopharyngeal DNA quantitative PCR and mRNA RT-PCR should be used for accurate diagnosis of HBoV1 infection.

  2. The K167I variant of DNA polymerase β that is found in Esophageal Carcinoma patients impairs polymerase activity and BER.

    Science.gov (United States)

    Wang, Yuanyuan; Zang, Wenqiao; Du, Yuwen; Chen, Xiaonan; Zhao, Guoqiang

    2015-11-03

    DNA polymerase β (pol β) is a key enzyme in DNA base excision repair, and an important factor for maintaining genomic integrity and stability. Esophageal carcinoma (EC) patients who have been identified as carrying the K167I variant of pol β have been shown to have decreased life expectancy. However, it is unknown if the variant affects pol β's functions and/or how it contributes to the initiation and progression of cancer. In this study, we expressed and purified the K167I variant. Moreover, we found that K167I significantly reduced polymerase activity. As a result, the K167I substitution reduced base excision repair (BER) efficiency when assayed in a reconstitution assay or when using cellular extracts. Finally, we observed EC cells expressing the K167I variant to be sensitive to DNA damaging agents. These results suggest the K167I variant affected pol β biochemical activity resulting in impaired BER function, which might subsequently contribute to genomic instability and cancer development.

  3. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration.

    Science.gov (United States)

    Cooper, Arik; García, Mayra; Petrovas, Constantinos; Yamamoto, Takuya; Koup, Richard A; Nabel, Gary J

    2013-06-20

    Human immunodeficiency virus-1 (HIV-1) has infected more than 60 million people and caused nearly 30 million deaths worldwide, ultimately the consequence of cytolytic infection of CD4(+) T cells. In humans and in macaque models, most of these cells contain viral DNA and are rapidly eliminated at the peak of viraemia, yet the mechanism by which HIV-1 induces helper T-cell death has not been defined. Here we show that virus-induced cell killing is triggered by viral integration. Infection by wild-type HIV-1, but not an integrase-deficient mutant, induced the death of activated primary CD4 lymphocytes. Similarly, raltegravir, a pharmacologic integrase inhibitor, abolished HIV-1-induced cell killing both in cell culture and in CD4(+) T cells from acutely infected subjects. The mechanism of killing during viral integration involved the activation of DNA-dependent protein kinase (DNA-PK), a central integrator of the DNA damage response, which caused phosphorylation of p53 and histone H2AX. Pharmacological inhibition of DNA-PK abolished cell death during HIV-1 infection in vitro, suggesting that processes which reduce DNA-PK activation in CD4 cells could facilitate the formation of latently infected cells that give rise to reservoirs in vivo. We propose that activation of DNA-PK during viral integration has a central role in CD4(+) T-cell depletion, raising the possibility that integrase inhibitors and interventions directed towards DNA-PK may improve T-cell survival and immune function in infected individuals.

  4. Polymerase spiral reaction (PSR): a novel, visual isothermal amplification method for detection of canine parvovirus 2 genomic DNA.

    Science.gov (United States)

    Gupta, Vikas; Chakravarti, Soumendu; Chander, Vishal; Majumder, Saurabh; Bhat, Shabir Ahmad; Gupta, Vivek Kumar; Nandi, Sukdeb

    2017-07-01

    Canine parvovirus-2 (CPV-2), which is ubiquitously distributed worldwide, causes severe and often fatal gastroenteritis in dogs. Accurate, differential and rapid diagnosis of canine parvoviral enteritis remains a challenge for clinicians. A recently developed isothermal amplification technique, polymerase spiral reaction (PSR), was optimized for the first time for a viral pathogen with reference recombinant plasmid standards from different CPV-2 antigenic variants (CPV-2, CPV-2a, CPV-2b and CPV-2c) and subsequently validated using clinical samples. Addition of chromogenic substrate SYBR Green I after the completion of the reaction resulted in bright green fluorescence in positive samples, while negative samples and a no-template control remained orange. These results were further substantiated through visualization of a laddering pattern of the PSR-amplified product in an agarose gel in positive cases and the absence of this pattern in no-template control and negative samples. The PSR assay was found to be highly specific, as it did not react with other putative canine pathogens (canine adenovirus 1 and canine distemper virus). The sensitivity of the newly developed PSR technique was compared with that of conventional PCR, real-time PCR and LAMP, using a serial tenfold dilution of canine parvovirus DNA. The detection limit of PSR was found to be at the femtogram level, which is comparable with that of real-time PCR and LAMP, which are ten times more sensitive than conventional PCR. The assay was validated using 90 clinical samples, of which 54 were found positive, while only 45 samples were positive in conventional PCR. This novel assay, which is fully compliant with the 'ASSURED' concept for disease diagnosis, provides a simple, rapid, specific, sensitive and cost-effective method for diagnosis of canine parvoviral enteritis in veterinary clinics.

  5. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    Science.gov (United States)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  6. High levels of DNA polymerase β mRNA corresponding with the high activity in Graves' thyroid tissue.

    Science.gov (United States)

    Hayakawa, N; Sato, Y; Nagasaka, A; Mano, Y; Nagasaka, T; Nakai, A; Iwase, K; Yoshida, S

    2017-04-01

    High DNA polymerase β activity has been observed in the thyroid tissue of patients with Graves' disease (Nagasaka et al. in Metabolism 37:1051-1054, 1988). This fact aroused our interest in whether the alteration of DNA polymerase β activity depends on DNA polymerase β (DNA poly β) mRNA levels, which may be modulated by thyroid-stimulating hormone (TSH) or thyroid-stimulating substances, i.e. TSH receptor antibody (TRAb). Addition of TSH or TRAb to primary cultures of Graves' disease thyroid cells for 4 h led to no increase in DNA poly β mRNA levels. In contrast, thyroid hormone synthesizing enzyme, peroxidase, mRNA levels increased fivefold after coculture with TSH and TRAb, even though DNA poly β activity and mRNA levels are already significantly higher in Graves' disease thyroid tissues, compared with normal thyroid tissue. These results indicate that DNA poly β expression in Graves' disease thyroid cells may be maximally activated or plateau in response to thyroid-stimulating immunoglobulins, or that the activation of to poly β expression may occur via pathways other than the G protein and cyclic AMP system.

  7. The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts.

    Science.gov (United States)

    Wyss, Laura A; Nilforoushan, Arman; Williams, David M; Marx, Andreas; Sturla, Shana J

    2016-08-19

    Enzymatic approaches for locating alkylation adducts at single-base resolution in DNA could enable new technologies for understanding carcinogenesis and supporting personalized chemotherapy. Artificial nucleotides that specifically pair with alkylated bases offer a possible strategy for recognition and amplification of adducted DNA, and adduct-templated incorporation of an artificial nucleotide has been demonstrated for a model DNA adduct O(6)-benzylguanine by a DNA polymerase. In this study, DNA adducts of biological relevance, O(6)-methylguanine (O(6)-MeG) and O(6)-carboxymethylguanine (O(6)-CMG), were characterized to be effective templates for the incorporation of benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates ( BENZI: TP and BIM: TP) by an engineered KlenTaq DNA polymerase. The enzyme catalyzed specific incorporation of the artificial nucleotide BENZI: opposite adducts, with up to 150-fold higher catalytic efficiency for O(6)-MeG over guanine in the template. Furthermore, addition of artificial nucleotide BENZI: was required for full-length DNA synthesis during bypass of O(6)-CMG. Selective incorporation of the artificial nucleotide opposite an O(6)-alkylguanine DNA adduct was verified using a novel 2',3'-dideoxy derivative of BENZI: TP. The strategy was used to recognize adducts in the presence of excess unmodified DNA. The specific processing of BENZI: TP opposite biologically relevant O(6)-alkylguanine adducts is characterized herein as a basis for potential future DNA adduct sequencing technologies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage

    NARCIS (Netherlands)

    C. Vink (Cornelis); D.C. van Gent (Dik); Y. Elgersma (Ype); R.H. Plassterk

    1991-01-01

    textabstractRetroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first

  9. De novo reconstruction of plant RNA and DNA virus genomes from viral siRNAs

    Science.gov (United States)

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  10. Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen

    2018-01-01

    two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. Conclusions: The viruses harboring the 245–248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures...... to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were...

  11. Comparison of DNA extraction methods from small samples of newborn screening cards suitable for retrospective perinatal viral research.

    Science.gov (United States)

    McMichael, Gai L; Highet, Amanda R; Gibson, Catherine S; Goldwater, Paul N; O'Callaghan, Michael E; Alvino, Emily R; MacLennan, Alastair H

    2011-04-01

    Reliable detection of viral DNA in stored newborn screening cards (NSC) would give important insight into possible silent infection during pregnancy and around birth. We sought a DNA extraction method with sufficient sensitivity to detect low copy numbers of viral DNA from small punch samples of NSC. Blank NSC were spotted with seronegative EDTA-blood and seropositive EBV EDTA-blood. DNA was extracted with commercial and noncommercial DNA extraction methods and quantified on a spectrofluorometer using a PicoGreen dsDNA quantification kit. Serial dilutions of purified viral DNA controls determined the sensitivity of the amplification protocol, and seropositive EBV EDTA-blood amplified by nested PCR (nPCR) validated the DNA extraction methods. There were considerable differences between the commercial and noncommercial DNA extraction methods (P=0.014; P=0.016). Commercial kits compared favorably, but the QIamp DNA micro kit with an added forensic filter step was marginally more sensitive. The mean DNA yield from this method was 3 ng/μl. The limit of detection was 10 viral genome copies in a 50-μl reaction. EBV nPCR detection in neat and 1:10 diluted DNA extracts could be replicated reliably. We conclude that the QIamp Micro DNA extraction method with the added forensic spin-filter step was suitable for retrospective DNA viral assays from NSC.

  12. In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv.

    Directory of Open Access Journals (Sweden)

    Alka Jadaun

    Full Text Available Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb. DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated using Modeller 9v10 with the template structure of E. Coli DNA polymerase III alpha subunit (2HNH_A. The generated models were validated using a number of programmes such as RAMPAGE/PROCHECK, VERIFY_3D, and ProSA. MtbDnaE2 has few conserved residues and four conserved domains similar to that present in DNA polymerase III of E. coli. In silico screening was performed with bioactive anti-tuberculosis compounds and 6-AU (a known inhibitor of DNA polymerase III of Bacillus subtilis and its analogues against the modeled MtbDnaE2 structure. Docking was performed using GOLD v5.2 software which resulted in the identification of top ten compounds with high GOLD fitness scores and binding affinity (X-Score. To further evaluate the efficacy of these compounds, in silico ADMET analysis was performed using MedChem Designer v3. Given their high binding affinity to the targeted MtbDnaE2, which is essential for DNA replication in the Mtb and good ADMET properties, these compounds are promising candidates for further evaluation and development as anti-tubercular agents.

  13. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Huading Lu

    Full Text Available The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS with a low molecular weight (Mw PEI (Mw = 1.8 kDa. Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w. The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.

  14. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ

    Science.gov (United States)

    Fernandez-Leiro, Rafael; Conrad, Julian; Scheres, Sjors HW; Lamers, Meindert H

    2015-01-01

    The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cryo-electron microscopy structures of DNA-bound and DNA-free states of the PolIII-clamp-exonuclease-τc complex. The structures show how the polymerase is tethered to the DNA through multiple contacts with the clamp and exonuclease. A novel contact between the polymerase and clamp is made in the DNA bound state, facilitated by a large movement of the polymerase tail domain and τc. These structures provide crucial insights into the organization of the catalytic core of the replisome and form an important step towards determining the structure of the complete holoenzyme. DOI: http://dx.doi.org/10.7554/eLife.11134.001 PMID:26499492

  15. Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2011-06-01

    Full Text Available Abstract The hepatitis B virus (HBV has been classified into eight genotypes (A-H based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed using CLUSTAL V (DNASTAR on the eight (A-H standard full-length nucleotide sequences of HBV DNA from GenBank (NCBI and the corresponding semi-nested PCR products from the HBV DNA polymerase gene. The differences in the semi-nested PCR fragments of the polymerase genes among genotypes A through F were greater than 4%, which is consistent with the intergenotypic divergence of at least 4% in HBV DNA S gene sequences. Genotyping using the semi-nested PCR products of the DNA polymerase genes revealed that only genotypes B, C, and D were present in the 50 cases, from Shenyang, China, with a distribution of 11 cases (22%, 25 cases (50%, and 14 cases (28% respectively. These results demonstrate that our new genotyping method utilizing a fragment of the HBV DNA polymerase gene is valid and can be employed as a general genotyping strategy in areas with prevalent HBV genotypes A through F. In Shenyang, China, genotypes C, B, and D were identified with this new genotyping method, and genotype C was demonstrated to be the dominant genotype.

  16. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S-adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro, we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Inhibition of DNA Binding by the Phosphorylation of Poly ADP-Ribose Polymerase Protein Catalyzed by Protein Kinase C

    Science.gov (United States)

    1993-04-21

    glycohydrolase and ADP-ribose polymerase (3). Besides enzymatic activities, ADPRT possesses significant colligative properties towards DNA termini and certain...differentiation of particular cell types (3). The biochemical role of ADPRT in living cells in most probably related to both catalytic and colligative properties

  18. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    Science.gov (United States)

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  19. Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase.

    Science.gov (United States)

    Bibillo, Arkadiusz; Lener, Daniela; Klarmann, George J; Le Grice, Stuart F J

    2005-01-01

    Aspartic acid residues comprising the -D-(aa) n -Y-L-D-D- DNA polymerase active site triad of reverse transcriptase from the Saccharomyces cerevisiae long terminal repeat-retrotransposon Ty3 (Asp151, Asp213 and Asp214) were evaluated via site-directed mutagenesis. An Asp151-->Glu substitution showed a dramatic decrease in catalytic efficiency and a severe translocation defect following initiation of DNA synthesis. In contrast, enzymes harboring the equivalent alteration at Asp213 and Asp214 retained DNA polymerase activity. Asp151-->Asn and Asp213-->Asn substitutions eliminated both polymerase activities. However, while Asp214 of the triad could be replaced by either Asn or Glu, introducing Gln seriously affected processivity. Mutants of the carboxylate triad at positions 151 and 213 also failed to catalyze pyrophosphorolysis. Finally, alterations to the DNA polymerase active site affected RNase H activity, suggesting a close spatial relationship between these N- and C-terminal catalytic centers. Taken together, our data reveal a critical role for Asp151 and Asp213 in catalysis. In contrast, the second carboxylate of the Y-L-D-D motif (Asp214) is not essential for catalysis, and possibly fulfills a structural role. Although Asp214 was most insensitive to substitution with respect to activity of the recombinant enzyme, all alterations at this position were lethal for Ty3 transposition.

  20. Purification and characterization of porcine liver DNA polymerase gamma: utilization of dUTP and dTTP during in vitro DNA synthesis.

    OpenAIRE

    Mosbaugh, D W

    1988-01-01

    Porcine liver DNA polymerase gamma has been demonstrated to preferentially incorporate dTMP over dUMP during in vitro DNA synthesis. When polymerase activity was measured in standard reactions containing saturating levels of either dTTP or dUTP, the polymerization rate was slightly faster in the reaction containing dTTP. However, under conditions where both dTTP and dUTP competed, at an equal molar concentration, approximately 3-times more thymine residues were incorporated than uracil residu...

  1. Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta.

    Science.gov (United States)

    Johnson, Robert E; Prakash, Louise; Prakash, Satya

    2005-08-30

    UV-light-induced cyclobutane pyrimidine dimers (CPDs) present a severe block to synthesis by replicative DNA polymerases (Pols), whereas Poleta promotes proficient and error-free replication through CPDs. Although the archael Dpo4, which, like Poleta, belongs to the Y family of DNA Pols, can also replicate through a CPD, it is much less efficient than Poleta. The x-ray crystal structure of Dpo4 complexed with either the 3'-thymine (T) or the 5' T of a cis-syn TT dimer has indicated that, whereas the 3' T of the dimer forms a Watson-Crick base pair with the incoming dideoxy ATP, the 5' T forms a Hoogsteen base pair with the dideoxy ATP in syn conformation. Based upon these observations, a similar mechanism involving Hoogsteen base pairing of the 5' T of the dimer with the incoming A has been proposed for Poleta. Here we examine the mechanisms of CPD bypass by Dpo4 and Poleta using nucleotide analogs that specifically disrupt the Hoogsteen or Watson-Crick base pairing. Our results show that both Dpo4 and Poleta incorporate dATP opposite the 5' T of the CPD via Watson-Crick base pairing and not by Hoogsteen base pairing. Furthermore, opposite the 3' T of the dimer, the two Pols differ strikingly in the mechanisms of dATP incorporation, with Dpo4 incorporating opposite an abasic-like intermediate and Poleta using the normal Watson-Crick base pairing. These observations have important implications for the mechanisms used for the inefficient vs. efficient bypass of CPDs by DNA Pols.

  2. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.

    Directory of Open Access Journals (Sweden)

    Samuel C Suarez

    Full Text Available DNA polymerase η (pol η synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS, is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA, when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD. We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.

  3. Herpes simplex virus type 1 and human DNA polymerase interactions with 2'-deoxyguanosine 5'-triphosphate analogues. Kinetics of incorporation into DNA and induction of inhibition.

    Science.gov (United States)

    Reardon, J E

    1989-11-15

    The ability of herpes simplex virus type 1 (HSV-1) DNA polymerase, HeLa polymerase alpha, and HeLa polymerase beta to utilize several dGTP analogues has been investigated using a defined synthetic template primer. The relative efficiencies of the triphosphates of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir triphosphate, ACVTP), 9-[(1,3-dihydroxy-2-propoxy)methyl] guanine (ganciclovir triphosphate, DHPGTP), and 2',3'-dideoxyguanosine (ddGTP) as substrates for the three polymerases were: HSV-1 polymerase, dGTP greater than ACVTP approximately equal to DHPGTP greater than ddGTP; polymerase alpha, dGTP greater than ACVTP approximately equal to DHPGTP much greater than ddGTP; polymerase beta, ddGTP greater than dGTP much greater than ACVTP approximately equal to DHPGTP. The potent inhibition of HSV-1 polymerase by ACVTP has been shown previously to be due to the formation of a dead-end complex upon binding of the next 2'-deoxynucleoside 5'-triphosphate encoded by the template after incorporation of acyclovir monophosphate into the 3' end of the primer (Reardon, J. E., and Spector, T. (1989) J. Biol. Chem. 264, 7405-7411). This mechanism was shown here to be a general mechanism for inhibition of polymerases by the obligate chain terminators, ACVTP and ddGTP. The ACVTP-induced inhibition was 30-fold more potent with HSV-1 polymerase than with polymerase alpha. This difference may contribute to the antiviral selectivity of this nucleotide analogue. The effect of ganciclovir monophosphate incorporation (a nonobligate chain terminator) on subsequent primer extension was also evaluated. With HSV-1 polymerase and polymerase alpha, although there was a considerable reduction in the efficiency of utilization of the 3'-DHPGMP-terminal primer, contrasting kinetic behavior was observed. With HSV-1 polymerase, insertion of DHPGTP resulted in a significant reduction in Vmax for subsequent nucleotide incorporations. In contrast, with polymerase alpha, a relatively small decrease in

  4. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Science.gov (United States)

    Sowd, Gregory A; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L; Fanning, Ellen

    2014-12-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  5. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  6. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  7. BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients

    Science.gov (United States)

    Erard, Veronique; Kim, Hyung Woo; Corey, Lawrence; Limaye, Ajit; Huang, Meei-Li; Myerson, David; Davis, Chris; Boeckh, Michael

    2005-01-01

    We performed a case-control study to determine the association of BK plasma viremia with hemorrhagic cystitis (HC) in hematopoietic cell transplant (HCT) recipients. Thirty cases of HC (14 of which occurred after platelet engraftment with documented BK viruria [BK-HC]) were compared with matched controls. Weekly plasma samples were tested for BK virus DNA by polymerase chain reaction (PCR). BK viremia detected before or during the disease was independently associated with HC (adjusted odds ratio = 30, P < .001); BK viremia was even important before clinical symptoms of HC occurred (odds ratio = 11, P < .001). Cases of HC and BK-HC had a significantly higher peak of BK plasma viral load than controls. BK virus was detected by in situ hybridization in bladder biopsies of 2 cases with severe HC and long-lasting BK viremia. BK virus seems to play a role in the development of HC and quantitative detection of BK DNA in plasma appears to be a marker of BK virus disease in HCT recipients. PMID:15845896

  8. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Science.gov (United States)

    Abyzov, Alexej; Uzun, Alper; Strauss, Phyllis R; Ilyin, Valentin A

    2008-04-25

    Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site) and three with pol-beta located upstream of APEX1 (5' to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in any DNA

  9. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces.

    Directory of Open Access Journals (Sweden)

    Alexej Abyzov

    2008-04-01

    Full Text Available Abasic (AP sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1 cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta. While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site and three with pol-beta located upstream of APEX1 (5' to the damaged site. Molecular dynamics (MD simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in

  10. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves

  11. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shen Cenchao; Yang Wenjuan; Ji Qiaoli; Zhang Zhizhou [HIT Bio-X Centre for Systems Biotechnology, Harbin Institute of Technology, Weihai 200642 (China); Maki, Hisaji [Department of Molecular Biology, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma, Nara 630-0101 (Japan); Dong Anjie, E-mail: scc20001017@gmail.co, E-mail: zhangzzbiox@gmail.co [Department of Chemical Engineering, Tianjin University, Tianjin 300072 (China)

    2009-11-11

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  13. Detection of antibodies to single-stranded DNA in naturally acquired and experimentally induced viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, I.D.; Feinstone, S.M.; Purcell, R.H.; Alter, H.J.

    1980-01-01

    A sensitive ''Farr'' assay, utilizing /sup 125/I-labelled DNA was developed for detecting antibody to single-stranded DNA (anti-ssDNA). The test was shown to be specific and as sensitive as assays using /sup 14/C-labelled DNA, for the detection of antibody in patients with connective tissue diseases. Groups of sera from patients with naturally acquired viral hepatitis and experimentally infected chimpanzees were tested for anti-ssDNA by the /sup 125/I assay and by counterimmunoelectrophoresis (CIEP). No consistent pattern was observed with either technique, indicating the elevated levels of this antibody are not as reliable markers of parenchymal liver damage as had been previously suggested.

  14. Development of sensitive crop-specific polymerase chain reaction assays using 5S DNA: applications in food traceability.

    Science.gov (United States)

    Doveri, Silvia; Lee, David

    2007-06-13

    The 5S intergenic spacers were amplified using a common pair of primers and sequenced from four species (Brassica napus, Zea mays, Helianthus annuus, and Glycine max). Crop-specific assays were developed from primers designed from the spacers and tested to amplify corresponding DNAs in both conventional end-point and real-time polymerase chain reactions (PCRs). The high copy numbers of the 5S DNA in plants make it possible to detect very small amounts of DNA using this marker. This sensitivity made it possible to compare different DNA extraction methods for highly processed food products using 5S spacers, even allowing dilution of templates to overcome PCR inhibition.

  15. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Characterization of an Avipoxvirus From a Bald Eagle ( Haliaeetus leucocephalus ) Using Novel Consensus PCR Protocols for the rpo147 and DNA-Dependent DNA Polymerase Genes.

    Science.gov (United States)

    Stephen, Alexa A; Leone, Angelique M; Toplon, David E; Archer, Linda L; Wellehan, James F X

    2016-12-01

    A juvenile female bald eagle ( Haliaeetus leucocephalus ) was presented with emaciation and proliferative periocular lesions. The eagle did not respond to supportive therapy and was euthanatized. Histopathologic examination of the skin lesions revealed plaques of marked epidermal hyperplasia parakeratosis, marked acanthosis and spongiosis, and eosinophilic intracytoplasmic inclusion bodies. Novel polymerase chain reaction (PCR) assays were done to amplify and sequence DNA polymerase and rpo147 genes. The 4b gene was also analyzed by a previously developed assay. Bayesian and maximum likelihood phylogenetic analyses of the obtained sequences found it to be poxvirus of the genus Avipoxvirus and clustered with other raptor isolates. Better phylogenetic resolution was found in rpo147 rather than the commonly used DNA polymerase. The novel consensus rpo147 PCR assay will create more accurate phylogenic trees and allow better insight into poxvirus history.

  17. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  18. Structural and mechanistic investigations into a DNA polymerase from Drosophila melanogaster embryos

    Energy Technology Data Exchange (ETDEWEB)

    Diffley, J.F.X.

    1985-01-01

    A procedure for isolating DNA polymerase ..cap alpha.. (DNAP..cap alpha..) from Drosophila melanogaster embryos is described. A novel affinity chromatographic step exploits the differential binding affinity exhibited by this enzyme for poly A and poly G agarose. DNAP..cap alpha.. isolated from embryos of 9 hour average age appears identical to an enzyme previously described. A potentially larger form of the enzyme is isolated from 2.5 hour average age embryos. Two independent methods were used to demonstrate that DNAP..cap alpha.. obeys a rigidly ordered substrate binding mechanism with template-primer binding being prerequisite to dNTP binding. One method, utilizing alternative pathway kinetics, is described here for the first time. Pyridoxal-5-phosphate (PLP) was found to inhibit DNAP..cap alpha.. reversibly, at low stoichiometry and with a saturation effect, all criteria for an affinity label. Furthermore, PLP inhibition is dependent on pH and MgCl/sub 2/ concentration in the range of optimal DNAP activity. From protection experiments with normal substrates and dideoxyterminated primers and from the effects of substrates and PLP on initial velocities, it was conclusively shown that PLP inhibits DNAP by binding at two different sites. A procedure for the isolation of a pyridoxal kinase from Lactobacillus casei, optimal reaction conditions of the purified enzyme and its use in the synthesis of /sup 32/P PLP are all described.

  19. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kochenova, O V; Soshkina, J V; Stepchenkova, E I; Inge-Vechtomov, S G; Shcherbakova, P V

    2011-01-01

    We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη. Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

  20. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    Science.gov (United States)

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  1. Analysis ulcerative colitis for presence Epstein-Barr virus DNA sequences by polymerase chain reaction technique

    Directory of Open Access Journals (Sweden)

    Sahar Mehrabani khasraghi

    2016-02-01

    Full Text Available Introduction: Ulcerative colitis (UC is one type of inflammatory bowel disease (IBD. The purpose of this study is to explore the prevalence of Epstein–Barr virus (EBV in UC patients in comparison with healthy subjects using the polymerase chain reaction (PCR method. Methods: In this case-control study, five biopsies of patients with UC and 30 healthy people as controls were selected. Sampling was performed by endoscopic biopsy operation. After DNA extraction, PCR was used to determine EBV genome by specific primers. Statistical analysis was performed using the chi-square test. Results: The results of PCR indicated that EBV genome was detected in 60.0% of samples in the case group, and 36.7% of samples in the control group were positive for EBV. Thus, no significant association was observed between the prevalence of EBV and incidence of UC in comparison with the control group (P = 0.36. Conclusion: The findings presented herein demonstrate no direct molecular evidence to support an association of EBV with UC. These results, do not exclude the possibility oncogenic role of EBV to infect the different colon cell.

  2. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    Science.gov (United States)

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  3. Purification and characterization of porcine liver DNA polymerase gamma: utilization of dUTP and dTTP during in vitro DNA synthesis.

    Science.gov (United States)

    Mosbaugh, D W

    1988-06-24

    Porcine liver DNA polymerase gamma has been demonstrated to preferentially incorporate dTMP over dUMP during in vitro DNA synthesis. When polymerase activity was measured in standard reactions containing saturating levels of either dTTP or dUTP, the polymerization rate was slightly faster in the reaction containing dTTP. However, under conditions where both dTTP and dUTP competed, at an equal molar concentration, approximately 3-times more thymine residues were incorporated than uracil residues into DNA. Similarly, preferential incorporation of dTMP was observed on several substrates including poly (dA).oligo p(dT), poly (rA).oligo p(dT) and poly (dA-dT). The discrimination against dUMP incorporation was even more apparent with reduced levels of dUTP. These observations were consistent with the finding that the Km for DNA polymerase gamma was about 3-fold lower for dTTP (0.4 microM) than for dUTP (1.1 microM). On the other hand, the Vmax for these two reactions was very similar. Discrimination against dUMP incorporation was also observed during inhibition of polymerase gamma by dideoxyribonucleoside triphosphates. Dideoxythymidine triphosphate preferentially inhibited dUMP incorporation compared to that of dTMP, whereas ddATP, ddCTP and ddGTP inhibited both reactions equally.

  4. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis.

    Science.gov (United States)

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-09-06

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing; Progress report, June 1, 1990--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, C.C.

    1993-12-31

    This project focuses on the DNA polymerase (gene 5 protein) of phage T7 for use in DNA sequence analysis. Gene 5 protein interacts with accessory proteins to acquire properties essential for DNA replication. One goal is to understand these interactions in order to modify the proteins for use in DNA sequencing. E. coli thioredoxin, binds to gene 5 protein and clamps it to a primer-template. They have analyzed the binding of gene 5 protein-thioredoxin to primer-templates and have defined the optimal conditions to form an extremely stable complex with a dNTP in the polymerase catalytic site. The spatial proximity of these components has been determined using fluorescence emission anisotropy. The T7 DNA binding protein, the gene 2.5 protein, interacts with gene 5 protein and gene 4 protein to increase processivity and primer synthesis, respectively. Mutant gene 2.5 proteins have been isolated that do not interact with T7 DNA polymerase and can not support T7 growth. The nucleotide binding site of the T7 helicase has been identified and mutations affecting the site provide information on how the hydrolysis of NTPs fuel its unidirectional translocation. The sequence, GTC, has been shown to be necessary and sufficient for recognition by the T7 primase. The T7 gene 5.5 protein interacts with the E. coli nucleoid protein, H-NS, and also overcomes the phage {lambda} rex restriction system.

  6. The rolling circle . capsid complex as an intermediate in phi X DNA replication and viral assembly.

    Science.gov (United States)

    Koths, K; Dressler, D

    1980-05-10

    Late in the life cycle of the single-stranded DNA phage phi X, the synthesis of positive strand DNA is coupled to the maturation of progeny virions. DNA synthesis and packaging take place in a replication-assembly complex, which we have purified to homogeneity and characterized. The following conclusions can be drawn: 1. The DNA component of the replication-assembly complex is a rolling circle with a single-stranded DNA tail which is less than or equal to genome length. 2. The major protein component of the replication-assembly complex is an intact viral capsid, as shown by gel analysis of 35S-labeled complexes. As replication proceeds at the DNA growing point, the positive strand tail of the rolling circle is displaced directly into the capsid. In addition to the capsid, the complex contains at least 1 molecule of the phi X gene A nicking protein, which appears to be covalently linked to the DNA. 3. The rolling circle . capsid complex can be purified to homogeneity by taking advantage of its uniform sedimentation velocity (35 S) and its uniform density upon equilibrium centrifugation in CsCl (1.50 g/cc). 4. The replication-assembly complex can be visualized in the electron microscope. An electron-dense particle, which has the dimensions of a viral capsid, is observed attached to a rolling circle at the DNA growing point. 5. Hybridization of specific phi X restriction fragments to the deproteinized, single-stranded tails of intact rolling circles has allowed the use of these replicating intermediates to determine both the origin/terminus and the direction of phi X positive strand DNA synthesis. The ends of the rolling circle tails map in the Hae III restriction Fragment Z6b, at the position on the phi X genome at which the gene A endonuclease is known to cut. This result indicates that this endonuclease participates in the "termination" of each round of synthesis by cutting off unit-length viral genomes. 6. Rolling circle . capsid complexes were also isolated from

  7. XRCC1 Is Specifically Associated with Poly(ADP-Ribose) Polymerase and Negatively Regulates Its Activity following DNA Damage

    Science.gov (United States)

    Masson, Murielle; Niedergang, Claude; Schreiber, Valérie; Muller, Sylviane; Menissier-de Murcia, Josiane; de Murcia, Gilbert

    1998-01-01

    Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) is a zinc-finger DNA-binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these breaks, the immediate poly(ADP-ribosyl)ation of nuclear proteins involved in chromatin architecture and DNA metabolism converts DNA damage into intracellular signals that can activate DNA repair programs or cell death options. To have greater insight into the physiological function of this enzyme, we have used the two-hybrid system to find genes encoding proteins putatively interacting with PARP. We have identified a physical association between PARP and the base excision repair (BER) protein XRCC1 (X-ray repair cross-complementing 1) in the Saccharomyces cerevisiae system, which was further confirmed to exist in mammalian cells. XRCC1 interacts with PARP by its central region (amino acids 301 to 402), which contains a BRCT (BRCA1 C terminus) module, a widespread motif in DNA repair and DNA damage-responsive cell cycle checkpoint proteins. Overexpression of XRCC1 in Cos-7 or HeLa cells dramatically decreases PARP activity in vivo, reinforcing the potential protective function of PARP at DNA breaks. Given that XRCC1 is also associated with DNA ligase III via a second BRCT module and with DNA polymerase β, our results provide strong evidence that PARP is a member of a BER multiprotein complex involved in the detection of DNA interruptions and possibly in the recruitment of XRCC1 and its partners for efficient processing of these breaks in a coordinated manner. The modular organizations of these interactors, associated with small conserved domains, may contribute to increasing the efficiency of the overall pathway. PMID:9584196

  8. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sonja Koopal

    2007-09-01

    Full Text Available Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV-infected tumor cells that express endothelial cell (EC markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.

  9. A DNA-Based Encryption Method Based on Two Biological Axioms of DNA Chip and Polymerase Chain Reaction (PCR) Amplification Techniques.

    Science.gov (United States)

    Zhang, Yunpeng; Wang, Zhiwen; Wang, Zhenzhen; Liu, Xin; Yuan, Xiaojing

    2017-09-27

    Researchers have gained a deeper understanding of DNA-based encryption and its effectiveness in enhancing information security in recent years. However, there are many theoretical and technical issues about DNA-based encryption that need to be addressed before it can be effectively used in the field of security. Currently, the most popular DNA-based encryption schemes are based on traditional cryptography and the integration of existing DNA technology. These schemes are not completely based on DNA computing and biotechnology. Herein, as inspired by nature, encryption based on DNA has been developed, which is, in turn, based on two fundamental biological axioms about DNA sequencing: 1) DNA sequencing is difficult under the conditions of not knowing the correct sequencing primers and probes, and 2) without knowing the correct probe, it is difficult to decipher precisely and sequence the information of unknown and mixed DNA/peptide nucleic acid (PNA) probes, which only differ in nucleotide sequence, arranged on DNA chips (microarrays). In essence, when creating DNA-based encryption by means of biological technologies, such as DNA chips and polymerase chain reaction (PCR) amplification, the encryption method discussed herein cannot be decrypted, unless the DNA/PNA probe or PCR amplification is known. The biological analysis, mathematical analysis, and simulation results demonstrate the feasibility of the method, which provides much stronger security and reliability than that of traditional encryption methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    Science.gov (United States)

    2013-07-01

    Athens, Greece, 07/10 Makridakis N. Error-prone polymerase mutations and prostate cancer progression, COBRE /Cancer Genetics group seminar, Tulane...New Orleans, LA, 03/11 12 Makridakis N. Error-prone polymerases, genomic instability and prostate cancer progression, COBRE / External...Orleans, LA, 09/11 Makridakis N. Error-prone polymerases, genomic instability and prostate cancer progression, COBRE / External Advisory Board

  11. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama

    2013-07-01

    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  12. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    Science.gov (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  13. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  14. Detection of Viral Hemorrhagic Septicemia Virus by Quantitative Reverse Transcription Polymerase Chain Reaction from Two Fish Species at Two Sites in Lake Superior

    Science.gov (United States)

    Cornwell, Emily R.; Eckerlin, Geofrey E.; Getchell, Rodman G.; Groocock, Geoffrey H.; Thompson, Tarin M.; Batts, William N.; Casey, Rufina N.; Kurath, Gael; Winton, James R.; Bowser, Paul R.; Bain, Mark B.; Casey, James W.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.

  15. Detection of viral hemorrhagic septicemia virus by quantitative reverse transcription polymerase chain reaction from two fish species at two sites in Lake Superior.

    Science.gov (United States)

    Cornwell, Emily R; Eckerlin, Geofrey E; Getchell, Rodman G; Groocock, Geoffrey H; Thompson, Tarin M; Batts, William N; Casey, Rufina N; Kurath, Gael; Winton, James R; Bowser, Paul R; Bain, Mark B; Casey, James W

    2011-12-01

    Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.

  16. Host DNA damage response factors localize to merkel cell polyomavirus DNA replication sites to support efficient viral DNA replication.

    Science.gov (United States)

    Tsang, Sabrina H; Wang, Xin; Li, Jing; Buck, Christopher B; You, Jianxin

    2014-03-01

    Accumulating evidence indicates a role for Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma (MCC), making MCPyV the first polyomavirus to be clearly associated with human cancer. With the high prevalence of MCPyV infection and the increasing amount of MCC diagnosis, there is a need to better understand the virus and its oncogenic potential. In this study, we examined the relationship between the host DNA damage response (DDR) and MCPyV replication. We found that components of the ATM- and ATR-mediated DDR pathways accumulate in MCPyV large T antigen (LT)-positive nuclear foci in cells infected with native MCPyV virions. To further study MCPyV replication, we employed our previously established system, in which recombinant MCPyV episomal DNA is autonomously replicated in cultured cells. Similar to native MCPyV infection, where both MCPyV origin and LT are present, the host DDR machinery colocalized with LT in distinct nuclear foci. Immunofluorescence in situ hybridization and bromodeoxyuridine (BrdU) incorporation analysis showed that these DDR proteins and MCPyV LT in fact colocalized at the actively replicating MCPyV replication complexes, which were absent when a replication-defective LT mutant or an MCPyV-origin mutant was introduced in place of wild-type LT or wild-type viral origin. Inhibition of DDR kinases using chemical inhibitors and ATR/ATM small interfering RNA (siRNA) knockdown reduced MCPyV DNA replication without significantly affecting LT expression or the host cell cycle. This study demonstrates that these host DDR factors are important for MCPyV DNA replication, providing new insight into the host machinery involved in the MCPyV life cycle. MCPyV is the first polyomavirus to be clearly associated with human cancer. However, the MCPyV life cycle and its oncogenic mechanism remain poorly understood. In this report, we show that, in cells infected with native MCPyV virions, components of the ATM- and ATR-mediated DDR

  17. Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood.

    Science.gov (United States)

    Mühl, Helge; Kochem, Anna-Julia; Disqué, Claudia; Sakka, Samir G

    2010-01-01

    Universal 16S rRNA gene polymerase chain reaction (PCR) is a promising means of detecting bacteremia. Among other factors, the PCR reagents play a prominent role for obtaining a high sensitivity of detection. The reagents are ideally optimized with respect to the amplifying activity and absence of contaminating DNA. In this study, it was shown in a universal 16S rDNA real-time PCR assay that commercial PCR reagents can vary greatly among each other in these characters. Only 1 of the 5 reagents tested met the criteria of sensitive detection of pathogen DNA with a minimum of false-positive results. The reagent was validated by the detection of pathogens at low titers using bacterial DNA extracted from blood that was spiked with various Gram-positive and Gram-negative bacteria.

  18. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest qPCR......AIMS: The aim of this study was to cost-effectively improve detection of foodborne pathogens in PCR inhibitory samples through the use of alternative DNA polymerases. METHODS AND RESULTS: Commercially available polymerases (n=16) and PCR master mixes (n=4) were screened on DNA purified from...... (LOD=103 -106 CFU ml-1 /not detected) with fecal samples. CONCLUSIONS: Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. SIGNIFICANCE AND IMPACT OF STUDY: This work exemplifies a cost-effective strategy...

  19. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  20. Effect of the Y955C mutation on mitochondrial DNA polymerase nucleotide incorporation efficiency and fidelity.

    Science.gov (United States)

    Estep, Patricia A; Johnson, Kenneth A

    2011-07-26

    The human mitochondrial DNA polymerase (pol γ) is responsible for the replication of the mitochondrial genome. Mutation Y955C in the active site of pol γ results in early onset progressive external ophthalmoplegia, premature ovarian failure, and Parkinson's disease. In single-turnover kinetic studies, we show that the Y955C mutation results in a decrease in the maximal rate of polymerization and an increase in the K(m) for correct incorporation. The mutation decreased the specificity constant for correct incorporation of dGTP, TTP, and ATP to values of 1.5, 0.35, and 0.044 μM(-1) s(-1), respectively, representing reductions of 30-, 110-, and 1300-fold, respectively, relative to the value for the wild-type enzyme. The fidelity of incorporation was reduced 6-130-fold, largely because of the significant decrease in the specificity constant for correct dATP:T incorporation. For example, k(cat)/K(m) for forming a TTP:T mismatch was decreased 10-fold from 0.0002 to 0.00002 μM(-1) s(-1) by the Y955C mutant, but the 1300-fold slower incorporation of the correct dATP:T relative to that of the wild type led to a 130-fold lower fidelity. While correct incorporation of 8-oxo-dGTP was largely unchanged, the level of incorporation of 8-oxo-dG with dA in the template strand was reduced 500-fold. These results support a role for Y955 in stabilizing A:T base pairs at the active site of pol γ and suggest that the severe clinical symptoms of patients with this mutation may be due, in part, to the reduced efficiency of incorporation of dATP opposite T, and that the autosomal dominant phenotype may arise from the resulting higher mutation frequency. © 2011 American Chemical Society

  1. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus.

    Science.gov (United States)

    Deval, Jerome; Symons, Julian A; Beigelman, Leo

    2014-12-01

    A number of important human infections are caused by positive-strand RNA viruses, yet almost none can be treated with small molecule antiviral therapeutics. One exception is the chronic infection caused by hepatitis C virus (HCV), against which new generations of potent inhibitors are being developed. One of the main molecular targets for anti-HCV drugs is the viral RNA-dependent RNA polymerase, NS5B. This review summarizes the search for nucleoside and nucleotide analogs that inhibit HCV NS5B, which led to the FDA approval of sofosbuvir in 2013. Advances in anti-HCV therapeutics have also stimulated efforts to develop nucleoside analogs against other positive-strand RNA viruses. Although it remains to be validated in the clinic, the prospect of using nucleoside analogs to treat acute infections caused by RNA viruses represents an important paradigm shift and a new frontier for future antiviral therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Reduction of DNA contamination in RNA samples for reverse transcription-polymerase chain reaction using selective precipitation by compaction agents.

    Science.gov (United States)

    Añez-Lingerfelt, Mariaclara; Fox, George E; Willson, Richard C

    2009-01-01

    An important problem in measurement of messenger RNA (mRNA) levels by reverse transcription-polymerase chain reaction (RT-PCR) is DNA contamination, which can produce artifactually increased mRNA concentration. Current methods to eliminate contaminating DNA can compromise the integrity of the RNA, are time-consuming, and/or are hazardous. We present a rapid, nuclease-free, and cost-effective method of eliminating contaminating DNA in RNA samples using selective precipitation by compaction agents. Compaction agents are cationic molecules that bind to double-stranded nucleic acids, driven by electrostatic interactions and steric complementarity. The effectiveness and DNA selectivity of six compaction agents were investigated: trivalent spermidine, Triquat A, and Triquat 7; tetravalent spermine and Quatro-quat; and hexavalent Quatro-diquat. Effectiveness was measured initially by supernatant UV absorbance after precipitation of salmon sperm DNA. Effectiveness and selectivity were then investigated using differences in RT-PCR C(t) values with synthetic mixtures of human genomic DNA and total RNA and with total RNA isolated from cells. With 500 microM spermidine or Triquat A, the supernatant DNA could not be detected up to 40 cycles of PCR (C(t)12.6), whereas the C(t) for the mRNA was increased by only five cycles. Therefore, spermidine and Triquat A each show strong DNA selectivity and could be used to eliminate contaminating DNA in measurements of mRNA.

  3. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  4. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells

    OpenAIRE

    de Murcia, Josiane Ménissier; Niedergang, Claude; Trucco, Carlotta; Ricoul, Michèle; Dutrillaux, Bernard; Mark, Manuel; Oliver, F Javier; Masson, Murielle; Dierich, Andrée; LeMeur, Marianne; Walztinger, Caroline; Chambon, Pierre; de Murcia, Gilbert

    1997-01-01

    Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP−/− mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensi...

  5. Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase

    OpenAIRE

    Bibillo, Arkadiusz; Lener, Daniela; Klarmann, George J.; Le Grice, Stuart F. J.

    2005-01-01

    Aspartic acid residues comprising the -D-(aa) n -Y-L-D-D- DNA polymerase active site triad of reverse transcriptase from the Saccharomyces cerevisiae long terminal repeat-retrotransposon Ty3 (Asp151, Asp213 and Asp214) were evaluated via site-directed mutagenesis. An Asp151→Glu substitution showed a dramatic decrease in catalytic efficiency and a severe translocation defect following initiation of DNA synthesis. In contrast, enzymes harboring the equivalent alteration at Asp213 and Asp214 ret...

  6. Molecular detection of human papillomavirus and viral DNA load after radiotherapy for cervical carcinomas.

    Science.gov (United States)

    Kahla, Saloua; Kochbati, Lotfi; Sarraj, Sana; Ben Daya, Imen; Maalej, Mongi; Oueslati, Ridha

    2016-10-13

    Infection with high-risk types of human papillomavirus (HPV) is a necessary cause for cervical carcinoma. Radiation therapy together with surgery is the most effective treatment. The purpose of this study was to investigate the molecular basis of the response to radiotherapy in cervical cancer cells. Tumor cells were obtained from biopsies of 44 cervical cancers, collected before and after radiotherapy. The presence of HPV was analyzed by polymerase chain reaction (PCR) using primers specific for the L1 region. The prevalence of HPV was 70.4%, with HPV16 being the most common (54.5%) and HPV18 the second (15.9%). Our analyses show that ionizing radiation does not influence HPV detection, as the percentage of HPV-positive biopsies was similar in patients before and after radiotherapy (HPV16 60% vs. 51.7% and HPV18 20% vs. 13.7%, respectively). However, the detection of HPV did vary by tumor stage, with the highest proportion observed in late-stage tumors (HPV16 and HPV18 in 80% and 60% of stage III tumors, respectively). We also found that HPV viral load is influenced by radiotherapy and tumor stage, with the highest viral loads in late-stage tumors (stage III) after 1 day since radiotherapy (p<0.05). According to Kaplan-Meier curves, higher HPV viral load was associated with significantly shortened progression-free survival (p = 0.04). Our data provide prospective evidence that ionizing radiation can affect the HPV viral load and this might offer the best strategies for assessment of therapeutic efficacy.

  7. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    Science.gov (United States)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  8. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B.

    Science.gov (United States)

    Chénard, Caroline; Wirth, Jennifer F; Suttle, Curtis A

    2016-06-14

    Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting

  9. Characterizing the mitochondrial DNA polymerase gamma interactome by BioID identifies Ruvbl2 localizes to the mitochondria.

    Science.gov (United States)

    Liyanage, Sanduni U; Coyaud, Etienne; Laurent, Estelle M N; Hurren, Rose; Maclean, Neil; Wood, Stuart R; Kazak, Lawrence; Shamas-Din, Aisha; Holt, Ian; Raught, Brian; Schimmer, Aaron

    2017-01-01

    Human mitochondrial DNA (mtDNA) is replicated by the mitochondrial DNA polymerase gamma (POLG). Using proximity dependent biotin labelling (BioID), we characterized the POLG interactome and identified new interaction partners involved in mtDNA maintenance, transcription, translation and protein quality control. We also identified interaction with the nuclear AAA+ ATPase Ruvbl2, suggesting mitochondrial localization for this protein. Ruvbl2 was detected in mitochondria-enriched fractions in leukemic cells. Additionally, transgenic overexpression of Ruvbl2 from an alternative translation initiation site resulted in mitochondrial co-localization. Overall, POLG interactome mapping identifies novel proteins which support mitochondrial biogenesis and a potential novel mitochondrial isoform of Ruvbl2. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. A molecular biological study on the identification of the molecular species of DNA polymerases for repairing radiation-damaged DNA and the factors modifying the mutation rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Koichi; Inoue, Shuji [National Inst. of Health and Nutrition, Tokyo (Japan)

    1997-02-01

    Aiming at prevention and treatment of radiation damages, the authors have been investigating DNA damages by X-ray and its repairing mechanism, however, the molecular species of DNA polymerase which mediate the repairing could not been identified by biochemical methods using various inhibitors because of their low specificity. Therefore, in this study, anti-sense oligonucleotides for DNA polymerase {alpha}, {delta} and {epsilon} were obtained by chemical synthesis and transduced into human fibroblast cell, NB1RGB by three methods; endocytotic method, electroporation method and lipofection method. For the first method, the addition of those peptides into the cell culture at 5 {mu}M inhibited the polymerase activity by up to 30% and it was economically difficult to use at higher concentrations than it. For the electroporation method, different conditions were tested in the respects of initial potential, time constant and buffer, but the uptake of thimidine was scarcely decreased in the surviving cells, suggesting that the surviving rate would be short in the cells electroporated with those anti-sense peptides. For the lipofection method, among several cationic lipids tested, lipofectamine significantly enlarged the decrease of thymidine uptake by anti-sense {delta}, however it was considered that its application to DNA repairing is difficult because lipofectamine is strongly cytotoxic. Therefore, construction of a vector which allows to express anti-sense RNA in those cells is undertaken. (M.N.)

  11. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth

    Science.gov (United States)

    Kiselinova, Maja; De Spiegelaere, Ward; Buzon, Maria Jose; Malatinkova, Eva; Lichterfeld, Mathias; Vandekerckhove, Linos

    2016-01-01

    The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (pHIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. PMID:26938995

  12. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Directory of Open Access Journals (Sweden)

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  13. Retroviral DNA integration: viral and cellular determinants of target-site selection.

    Directory of Open Access Journals (Sweden)

    Mary K Lewinski

    2006-06-01

    Full Text Available Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV integrates preferentially within active transcription units, whereas murine leukemia virus (MLV integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN coding region into HIV (to make HIVmIN caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb, and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.

  14. Human Mitochondrial DNA Polymerase γ Exhibits Potential for Bypass and Mutagenesis at UV-induced Cyclobutane Thymine Dimers*

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Gustafson, Margaret A.; Copeland, William C.; Meyer, Joel N.

    2012-01-01

    Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3′-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3′-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells. PMID:22194617

  15. Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Gustafson, Margaret A; Copeland, William C; Meyer, Joel N

    2012-03-16

    Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.

  16. Defect of Dpb2p, a noncatalytic subunit of DNA polymerase ɛ, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kraszewska, Joanna; Garbacz, Marta; Jonczyk, Piotr; Fijalkowska, Iwona J; Jaszczur, Malgorzata

    2012-09-01

    The Saccharomyces cerevisiae DNA polymerase epsilon holoenzyme (Pol ɛ HE) is composed of four subunits: Pol2p, Dpb2p, Dpb3p and Dpb4p. The biological functions of Pol2p, the catalytic subunit of Pol ɛ, are subject of active investigation, while the role of the other three, noncatalytic subunits, is not well defined. We showed previously that mutations in Dpb2p, a noncatalytic but essential subunit of Pol ɛ HE, influence the fidelity of DNA replication in yeast cells. The strength of the mutator phenotype due to the different dpb2 alleles was inversely proportional to the strength of protein-protein interactions between Pol2p and the mutated forms of Dpb2p. To understand better the mechanisms of the contribution of Dpb2p to the controlling of the level of spontaneous mutagenesis we undertook here a further genetic analysis of the mutator phenotype observed in dpb2 mutants. We demonstrate that the presence of mutated forms of Dpb2p in the cell not only influences the intrinsic fidelity of Pol ɛ but also facilitates more frequent participation of error-prone DNA polymerase zeta (Pol ζ) in DNA replication. The obtained results suggest that the structural integrity of Pol ɛ HE is a crucial contributor to accurate chromosomal DNA replication and, when compromised, favors participation of error prone DNA Pol ζ in this process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication.

    Science.gov (United States)

    Coiras, Mayte; Montes, Marta; Montanuy, Immaculada; López-Huertas, María Rosa; Mateos, Elena; Le Sommer, Caroline; Garcia-Blanco, Mariano A; Hernández-Munain, Cristina; Alcamí, José; Suñé, Carlos

    2013-10-28

    Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication.

  18. Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis.

    Science.gov (United States)

    Bencherit, Djihad; Remy, Sylvie; Le Vern, Yves; Vychodil, Tereza; Bertzbach, Luca D; Kaufer, Benedikt B; Denesvre, Caroline; Trapp-Fragnet, Laëtitia

    2017-12-15

    Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability

  19. Genome of orf virus. Restriction endonuclease analysis of viral DNA isolated from lesions of orf in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A.J.; Ellis, G.; Balassu, T. (Massay Univ., Palmerston North (New Zealand). Dept. of Veterinary Pathology and Public Health)

    1982-01-01

    The purification of orf virus directly from scab material from clinical cases of orf in sheep and restriction endonuclease analysis of the viral DNA is described. Between 7 x 10/sup 9/ and 1.6 x 10/sup 11/ virus particles, and 0.7 to 22.8 ..mu..g of viral DNA could be recovered from lg of scab material. Considerable heterogeneity was observed between different field isolates when restriction endonuclease digests of orf DNA were compared by gel electrophoresis. It was also shown, for two isolates that these fragment patterns did not change after plaque purification and passage in cell culture. It is suggested that restriction endonuclease analysis of viral DNA offers a convenient method of identification of isolates of orf virus. The molecular weight of orf DNA was determined and found to be 88.8 x 10/sup 6/.

  20. Quantitative screening of single copies of human papilloma viral DNA without amplification.

    Science.gov (United States)

    Li, Jiangwei; Lee, Ji-Young; Yeung, Edward S

    2006-09-15

    We describe a novel quantitative viral screening method based on single-molecule detection that does not require amplification. DNA of human papilloma virus (HPV), the major etiological agent of cervical cancer, served as the screening target in this study. Eight 100-nucleotide single-stranded DNA probes were designed complementary to the E6-E7 gene of HPV-16 DNA. The probes were covalently stained with Alexa Fluor 532 and hybridized to the target in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, we employed fluorescence resonance energy transfer and added YOYO-3 dye as the acceptor. The two colors from Alexa Fluor 532 and YOYO-3 were dispersed by a transmission grating located in front of the ICCD. With this reinforced criterion for identifying the hybridized molecules, zero false-positive count was achieved. We also showed that DNA extracts from Pap test specimens did not interfere with the measurements.

  1. Synergistic Effects of the in cis T251I and P587L Mitochondrial DNA Polymerase γ Disease Mutations.

    Science.gov (United States)

    DeBalsi, Karen L; Longley, Matthew J; Hoff, Kirsten E; Copeland, William C

    2017-03-10

    Human mitochondrial DNA (mtDNA) polymerase γ (Pol γ) is the only polymerase known to replicate the mitochondrial genome. The Pol γ holoenzyme consists of the p140 catalytic subunit (POLG) and the p55 homodimeric accessory subunit (POLG2), which enhances binding of Pol γ to DNA and promotes processivity of the holoenzyme. Mutations within POLG impede maintenance of mtDNA and cause mitochondrial diseases. Two common POLG mutations usually found in cis in patients primarily with progressive external ophthalmoplegia generate T251I and P587L amino acid substitutions. To determine whether T251I or P587L is the primary pathogenic allele or whether both substitutions are required to cause disease, we overproduced and purified WT, T251I, P587L, and T251I + P587L double variant forms of recombinant Pol γ. Biochemical characterization of these variants revealed impaired DNA binding affinity, reduced thermostability, diminished exonuclease activity, defective catalytic activity, and compromised DNA processivity, even in the presence of the p55 accessory subunit. However, physical association with p55 was unperturbed, suggesting intersubunit affinities similar to WT. Notably, although the single mutants were similarly impaired, a dramatic synergistic effect was found for the double mutant across all parameters. In conclusion, our analyses suggest that individually both T251I and P587L substitutions functionally impair Pol γ, with greater pathogenicity predicted for the single P587L variant. Combining T251I and P587L induces extreme thermal lability and leads to synergistic nucleotide and DNA binding defects, which severely impair catalytic activity and correlate with presentation of disease in patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification.

    Directory of Open Access Journals (Sweden)

    Matthias Drum

    Full Text Available The selectivity of DNA polymerases is crucial for many applications. For example, high discrimination between the extension of matched versus mismatched primer termini is desired for the detection of a single nucleotide variation at a particular locus within the genome. Here we describe the generation of thermostable mutants of the large fragment of Thermus aquaticus DNA polymerase (KlenTaq with increased mismatch extension selectivity. In contrast to previously reported much less active KlenTaq mutants with mismatch discrimination abilities, many of the herein discovered mutants show conserved wild-type-like high activities. We demonstrate for one mutant containing the single amino acid exchange R660V the suitability for application in allele-specific amplifications directly from whole blood without prior sample purification. Also the suitability of the mutant for methylation specific amplification in the diagnostics of 5-methyl cytosines is demonstrated. Furthermore, the identified mutant supersedes other commercially available enzymes in human leukocyte antigen (HLA analysis by sequence-specific primed polymerase chain reactions (PCRs.

  3. Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis.

    Science.gov (United States)

    Saturno, J; Lázaro, J M; Blanco, L; Salas, M

    1998-10-30

    Almost all known nucleic acid polymerases require three acidic residues to bind the metal ion during catalysis of nucleotide incorporation. Nevertheless, recent crystallographic data on bacteriophage RB69 DNA polymerase indicate that the first aspartate residue belonging to the conserved motif "YxDTDS" could have a merely structural role. To address this question, a mutant protein at the homologous aspartate residue (Asp456) in phi29 DNA polymerase was made 3'-5' exonuclease deficient. This allowed us to analyse the functional importance of this residue in different metal-dependent reactions that can be performed using either terminal protein (TP) or DNA primers. When Mg2+ was used as the metal activator, the synthetic activities of the mutant phi29 DNA polymerase, TP-primed initiation and DNA-primed polymerisation, were about 50-fold less efficient than those of the wild-type enzyme. Interestingly, the use of Mn2+ as the metal activator partially restored the wild-type phenotype. When polymerisation required an efficient translocation along the template, mutation of Asp456 strongly affected the catalytic efficiency of phi29 DNA polymerase. The results presented here indicate that Asp456 has a catalytic role as a metal-activator ligand, but also contributes to enzyme translocation along the DNA, required during consecutive nucleotide incorporation cycles. Moreover, Asp456 appears to be critical to remodel the active site during transition from TP priming to DNA priming. The results are discussed in the light of structural information corresponding to distantly related polymerases. Copyright 1998 Academic Press.

  4. The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brandão, Luis N; Ferguson, Rebecca; Santoro, Irma; Jinks-Robertson, Sue; Sclafani, Robert A

    2014-08-01

    The yeast Dbf4-dependent kinase (DDK) (composed of Dbf4 and Cdc7 subunits) is an essential, conserved Ser/Thr protein kinase that regulates multiple processes in the cell, including DNA replication, recombination and induced mutagenesis. Only DDK substrates important for replication and recombination have been identified. Consequently, the mechanism by which DDK regulates mutagenesis is unknown. The yeast mcm5-bob1 mutation that bypasses DDK's essential role in DNA replication was used here to examine whether loss of DDK affects spontaneous as well as induced mutagenesis. Using the sensitive lys2ΔA746 frameshift reversion assay, we show DDK is required to generate "complex" spontaneous mutations, which are a hallmark of the Polζ translesion synthesis DNA polymerase. DDK co-immunoprecipitated with the Rev7 regulatory, but not with the Rev3 polymerase subunit of Polζ. Conversely, Rev7 bound mainly to the Cdc7 kinase subunit and not to Dbf4. The Rev7 subunit of Polζ may be regulated by DDK phosphorylation as immunoprecipitates of yeast Cdc7 and also recombinant Xenopus DDK phosphorylated GST-Rev7 in vitro. In addition to promoting Polζ-dependent mutagenesis, DDK was also important for generating Polζ-independent large deletions that revert the lys2ΔA746 allele. The decrease in large deletions observed in the absence of DDK likely results from an increase in the rate of replication fork restart after an encounter with spontaneous DNA damage. Finally, nonepistatic, additive/synergistic UV sensitivity was observed in cdc7Δ pol32Δ and cdc7Δ pol30-K127R,K164R double mutants, suggesting that DDK may regulate Rev7 protein during postreplication "gap filling" rather than during "polymerase switching" by ubiquitinated and sumoylated modified Pol30 (PCNA) and Pol32. Copyright © 2014 by the Genetics Society of America.

  5. Three Proliferating Cell Nuclear Antigen-Like Proteins Found in the Hyperthermophilic Archaeon Aeropyrum pernix: Interactions with the Two DNA Polymerases

    Science.gov (United States)

    Daimon, Katsuya; Kawarabayasi, Yutaka; Kikuchi, Hisashi; Sako, Yoshihiko; Ishino, Yoshizumi

    2002-01-01

    Proliferating cell nuclear antigen (PCNA) is an essential component in the eukaryotic DNA replication machinery, in which it works for tethering DNA polymerases on the DNA template to accomplish processive DNA synthesis. The PCNA also interacts with many other proteins in important cellular processes, including cell cycle control, DNA repair, and an apoptotic pathway in the domain Eucarya. We identified three genes encoding PCNA-like sequences in the genome of Aeropyrum pernix, a crenarchaeal archaeon. We cloned and expressed these genes in Escherichia coli and analyzed the gene products. All three PCNA homologs stimulated the primer extension activities of the two DNA polymerases, polymerase I (Pol I) and Pol II, identified in A. pernix to various extents, among which A. pernix PCNA 3 (ApePCNA3) provided a most remarkable effect on both Pol I and Pol II. The three proteins were confirmed to exist in the A. pernix cells. These results suggest that the three PCNAs work as the processivity factor of DNA polymerases in A. pernix cells under different conditions. In Eucarya, three checkpoint proteins, Hus1, Rad1, and Rad9, have been proposed to form a PCNA-like ring structure and may work as a sliding clamp for the translesion DNA polymerases. Therefore, it is very interesting that three active PCNAs were found in one archaeal cell. Further analyses are necessary to determine whether each PCNA has specific roles, and moreover, how they reveal different functions in the cells. PMID:11790738

  6. Clinical spectrum, diagnostic criteria, and polymerase chain reaction of aqueous humor in viral and toxoplasma detection in Fuchs′ uveitis syndrome

    Directory of Open Access Journals (Sweden)

    Swapnali Sabhapandit

    2016-01-01

    Full Text Available Aim : The aim of this study is to describe the clinical features and diagnostic criteria of Fuchs′ uveitis (FU and to determine whether it has an association with virus and toxoplasma in the aqueous humor during cataract surgery. Setting and Design : This is a prospective, case-control study. Materials and Methods : Patients with FU (n = 25, anterior uveitis (n = 15, and no uveitis (normal (n = 50 were included based on predefined inclusion and exclusion criteria for all three groups. Polymerase chain reaction (PCR of aqueous humor and serum for rubella, herpes simplex virus (HSV, cytomegalovirus (CMV, varicella-zoster virus (VZV, and toxoplasma was done using conventional uniplex PCR. Statistical Analysis : It was done using SPSS software using Chi-square test for categorical variables, and P < 0.05 was considered statistically significant. Results : Ninety patients were enrolled in the study in three groups, comparable for age, gender, and laterality of ocular involvement. All patients had diffuse keratic precipitates in FU group (P = 0001 with none having posterior synechiae (P = 0.046 which was statistically significant when compared to anterior uveitis patients. Iris nodules were noted in one case in both groups. Serum and aqueous PCR was negative for detection of VZV, CMV, toxoplasma, and rubella in all groups. PCR for HSV was positive in one patient in "normal" group but was not statistically significant. Conclusion: Our study shows that diagnosis of FU is mainly clinical. There appears to be no role of aqueous humor testing for viruses by PCR to aid in etiological diagnosis.

  7. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp. Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Directory of Open Access Journals (Sweden)

    Caroline Chénard

    2016-06-01

    Full Text Available Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages.

  8. holE, the gene coding for the theta subunit of DNA polymerase III of Escherichia coli: characterization of a holE mutant and comparison with a dnaQ (epsilon-subunit) mutant.

    OpenAIRE

    Slater, S C; Lifsics, M R; O'Donnell, M; Maurer, R

    1994-01-01

    DNA polymerase III holoenzyme is a multiprotein complex responsible for the bulk of chromosomal replication in Escherichia coli and Salmonella typhimurium. The catalytic core of the holoenzyme is an alpha epsilon theta heterotrimer that incorporates both a polymerase subunit (alpha; dnaE) and a proofreading subunit (epsilon; dnaQ). The role of theta is unknown. Here, we describe a null mutation of holE, the gene for theta. A strain carrying this mutation was fully viable and displayed no muta...

  9. DNA Polymerase ζ-Dependent Lesion Bypass in Saccharomyces cerevisiae Is Accompanied by Error-Prone Copying of Long Stretches of Adjacent DNA

    Science.gov (United States)

    Kochenova, Olga V.; Daee, Danielle L.; Mertz, Tony M.; Shcherbakova, Polina V.

    2015-01-01

    Translesion synthesis (TLS) helps cells to accomplish chromosomal