WorldWideScience

Sample records for vipera aspis venom

  1. Reappraisal of Vipera aspis venom neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Elisabeth Ferquel

    Full Text Available BACKGROUND: The variation of venom composition with geography is an important aspect of intraspecific variability in the Vipera genus, although causes of this variability remain unclear. The diversity of snake venom is important both for our understanding of venomous snake evolution and for the preparation of relevant antivenoms to treat envenomations. A geographic intraspecific variation in snake venom composition was recently reported for Vipera aspis aspis venom in France. Since 1992, cases of human envenomation after Vipera aspis aspis bites in south-east France involving unexpected neurological signs were regularly reported. The presence of genes encoding PLA(2 neurotoxins in the Vaa snake genome led us to investigate any neurological symptom associated with snake bites in other regions of France and in neighboring countries. In parallel, we used several approaches to characterize the venom PLA(2 composition of the snakes captured in the same areas. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an epidemiological survey of snake bites in various regions of France. In parallel, we carried out the analysis of the genes and the transcripts encoding venom PLA(2s. We used SELDI technology to study the diversity of PLA(2 in various venom samples. Neurological signs (mainly cranial nerve disturbances were reported after snake bites in three regions of France: Languedoc-Roussillon, Midi-Pyrénées and Provence-Alpes-Côte d'Azur. Genomes of Vipera aspis snakes from south-east France were shown to contain ammodytoxin isoforms never described in the genome of Vipera aspis from other French regions. Surprisingly, transcripts encoding venom neurotoxic PLA(2s were found in snakes of Massif Central region. Accordingly, SELDI analysis of PLA(2 venom composition confirmed the existence of population of neurotoxic Vipera aspis snakes in the west part of the Massif Central mountains. CONCLUSIONS/SIGNIFICANCE: The association of epidemiological studies to

  2. Unusual neurotoxic envenomations by Vipera aspis aspis snakes in France.

    Science.gov (United States)

    de Haro, L; Robbe-Vincent, A; Saliou, B; Valli, M; Bon, C; Choumet, V

    2002-03-01

    Vipera aspis aspis (V.a.a.) is the most dangerous poisonous snake in South-Eastern France. The clinical symptoms observed after V.a.a. envenomations involve mostly local signs (pain, edema) associated in the more severe cases with systemic symptoms (gastro-intestinal and cardiovascular manifestations). Since 1992, several unusual cases of moderate and severe 'neurotoxic' envenomations by V.a.a. snakes have been reported in a very localized area in South-Eastern France. Most of the human patients mainly suffered neurological signs owing to cephalic muscle paralysis. Drowsiness and dyspnea were observed for the most severe cases. Envenomed animals suffered respiratory distress and paralysis. The local signs were never as severe as observed after envenomations by vipers in other French regions. Human patients with moderate or severe clinical features received two intravenous injections of Viperfav antivenom, the first dose inducing the decrease of the neurological signs and the second reducing significantly the edema. Neurotoxic components immunologically cross-reacting with toxins from V. ammodytes ammodytes venom from Eastern Europe were detected in the blood of all patients suffering neurological symptoms after a V.a.a. bite. The protective efficacy of various antivenoms was evaluated in mice. The existence of geographical variations in the composition of V.a.a. venom emphasizes on the use of polyvalent antivenom in the treatment of viper envenomations in France.

  3. Immunological Cross-Reactivity and Neutralisation of European Viper Venoms with the Monospecific Vipera berus Antivenom ViperaTAb

    Directory of Open Access Journals (Sweden)

    Nicholas R. Casewell

    2014-08-01

    Full Text Available Medically important cases of snakebite in Europe are predominately caused by European vipers of the genus Vipera. The mainstay of snakebite therapy is polyclonal antibody therapy, referred to as antivenom. Here we investigate the capability of the monospecific V. berus antivenom, ViperaTAb®, to cross-react with, and neutralise lethality induced by, a variety of European vipers. Using ELISA and immunoblotting, we find that ViperaTAb® antibodies recognise and bind to the majority of toxic components found in the venoms of the Vipera species tested at comparably high levels to those observed with V. berus. Using in vivo pre-clinical efficacy studies, we demonstrate that ViperaTAb® effectively neutralises lethality induced by V. berus, V. aspis, V. ammodytes and V. latastei venoms and at much higher levels than those outlined by regulatory pharmacopoeial guidelines. Notably, venom neutralisation was found to be superior to (V. berus, V. aspis and V. latastei, or as equally effective as (V. ammodytes, the monospecific V. ammodytes “Zagreb antivenom”, which has long been successfully used for treating European snake envenomings. This study suggests that ViperaTAb® may be a valuable therapeutic product for treating snakebite by a variety of European vipers found throughout the continent.

  4. Immunological Cross-Reactivity and Neutralisation of European Viper Venoms with the Monospecific Vipera berus Antivenom ViperaTAb

    Science.gov (United States)

    Casewell, Nicholas R.; Al-Abdulla, Ibrahim; Smith, David; Coxon, Ruth; Landon, John

    2014-01-01

    Medically important cases of snakebite in Europe are predominately caused by European vipers of the genus Vipera. The mainstay of snakebite therapy is polyclonal antibody therapy, referred to as antivenom. Here we investigate the capability of the monospecific V. berus antivenom, ViperaTAb®, to cross-react with, and neutralise lethality induced by, a variety of European vipers. Using ELISA and immunoblotting, we find that ViperaTAb® antibodies recognise and bind to the majority of toxic components found in the venoms of the Vipera species tested at comparably high levels to those observed with V. berus. Using in vivo pre-clinical efficacy studies, we demonstrate that ViperaTAb® effectively neutralises lethality induced by V. berus, V. aspis, V. ammodytes and V. latastei venoms and at much higher levels than those outlined by regulatory pharmacopoeial guidelines. Notably, venom neutralisation was found to be superior to (V. berus, V. aspis and V. latastei), or as equally effective as (V. ammodytes), the monospecific V. ammodytes “Zagreb antivenom”, which has long been successfully used for treating European snake envenomings. This study suggests that ViperaTAb® may be a valuable therapeutic product for treating snakebite by a variety of European vipers found throughout the continent. PMID:25153254

  5. Frequency and effort of reproduction in female Vipera aspis from a southern population

    Science.gov (United States)

    Zuffi, Marco A. L.; Giudici, Federico; Ioalè, Paolo

    1999-11-01

    The frequency of reproduction of the asp viper ( Vipera aspis, Viperidae) was studied in a population living along the coasts of central Italy. An annual reproductive cycle seemed to be the rule during the 5-year study period. Annual reproduction, high average mass of reproductive females, and large size of neonates, compared with other northern or continental populations, are presumably due to the particularly suitable climatic conditions of the area, as in most coastal habitats of the Mediterranean region. Such a scenario should influence the extent of the feeding period, which allows females, within a few months after parturition, to regain their previous body condition and reproduce again the following year.

  6. Immunological cross-reactivity and neutralisation of European viper venoms with the monospecific Vipera berus antivenom ViperaTAb

    National Research Council Canada - National Science Library

    Casewell, Nicholas R; Al-Abdulla, Ibrahim; Smith, David; Coxon, Ruth; Landon, John

    2014-01-01

    .... Using ELISA and immunoblotting, we find that ViperaTAb® antibodies recognise and bind to the majority of toxic components found in the venoms of the Vipera species tested at comparably high levels to those observed with V. berus...

  7. Heterodimeric neurotoxic phospholipases A2--the first proteins from venom of recently established species Vipera nikolskii: implication of venom composition in viper systematics.

    Science.gov (United States)

    Ramazanova, Anna S; Zavada, Larisa L; Starkov, Vladislav G; Kovyazina, Irina V; Subbotina, Tatyana F; Kostyukhina, Ekaterina E; Dementieva, Irina N; Ovchinnikova, Tatiana V; Utkin, Yuri N

    2008-03-15

    For the first time the venom of recently established viper species Vipera nikolskii was fractionated and two heterodimeric phospholipases A(2) (HDP-1 and HDP-2) were isolated. Isolation of HDP-1 and HDP-2 is the first indication of the presence of two heterodimeric phospholipases A(2) in the venom of one viper species. When tested on the frog neuromuscular junction, isolated proteins affected neuromuscular transmission acting presynaptically. Using RP-HPLC, each heterodimer was separated into two monomeric subunits: basic phospholipase A(2) (HDP-1P and HDP-2P) and acidic component without enzymatic activity (HDP-In). The complete primary structures of subunits were deduced from corresponding sequences of cDNAs. The determined amino acid sequences were homologous to those of vipoxin from Vipera ammodytes and vaspin from Vipera aspis. Similar proteins were not found earlier in the well-studied venom of Vipera berus, the species from which V. nikolskii was recently separated. Our finding supports at the biochemical level the correctness of the establishment of V. nikolskii as an independent species. The finding of similar proteins (HDPs and vipoxin) in geographically remote species (V. nikolskii and V. ammodytes) corroborates the hypothesis about the pre-existence of genes encoding these proteins in all true viper species and their expression under certain conditions.

  8. Fat is sexy for females but not males: the influence of body reserves on reproduction in snakes (Vipera aspis).

    Science.gov (United States)

    Aubret, Fabien; Bonnet, Xavier; Shine, Richard; Lourdais, Olivier

    2002-09-01

    Reproduction is energetically expensive for both sexes, but the magnitude of expenditure and its relationship to reproductive success differ fundamentally between males and females. Males allocate relatively little to gamete production and, thus, can reproduce successfully with only minor energy investment. In contrast, females of many species experience high fecundity-independent costs of reproduction (such as migration to nesting sites), so they need to amass substantial energy reserves before initiating reproductive activity. Thus, we expect that the relationship between energy reserves and the intensity of reproductive behavior involves a threshold effect in females, but a gradual (or no) effect in males. We tested this prediction using captive vipers (Vipera aspis), dividing both males and females into groups of high versus low body condition. Snakes from each group were placed together and observed for reproductive behavior; sex-steroid levels were also measured. As predicted, females in below-average body condition had very low estradiol levels and did not show sexual receptivity, whereas males of all body condition indices had significant testosterone levels and displayed active courtship. Testosterone levels and courtship intensity increased gradually (i.e., no step function) with body condition in males, but high estradiol levels and sexual receptivity were seen only in females with body reserves above a critical threshold. Copyright 2002 Elsevier Science (USA)

  9. Proteome and Peptidome of Vipera berus berus Venom

    Directory of Open Access Journals (Sweden)

    Aleksandra Bocian

    2016-10-01

    Full Text Available Snake venom is a rich source of peptides and proteins with a wide range of actions. Many of the venom components are currently being tested for their usefulness in the treatment of many diseases ranging from neurological and cardiovascular to cancer. It is also important to constantly search for new proteins and peptides with properties not yet described. The venom of Vipera berus berus has hemolytic, proteolytic and cytotoxic properties, but its exact composition and the factors responsible for these properties are not known. Therefore, an attempt was made to identify proteins and peptides derived from this species venom by using high resolution two-dimensional electrophoresis and MALDI ToF/ToF mass spectrometry. A total of 11 protein classes have been identified mainly proteases but also l-amino acid oxidases, C-type lectin like proteins, cysteine-rich venom proteins and phospholipases A2 and 4 peptides of molecular weight less than 1500 Da. Most of the identified proteins are responsible for the highly hemotoxic properties of the venom. Presence of venom phospholipases A2 and l-amino acid oxidases cause moderate neuro-, myo- and cytotoxicity. All successfully identified peptides belong to the bradykinin-potentiating peptides family. The mass spectrometry data are available via ProteomeXchange with identifier PXD004958.

  10. Analysis of the gut contents of Vipera aspis (Reptilia, Viperidae from an area of Central Italy (Tolfa Mountains, Latium: a new method to study the terrestrial small mammals / Contributo allo studio della microteriofauna di un'area dell'Italia centrale (Monti della Tolfa, Lazio mediante analisi del contenuto stomacale di Vipera aspis (Reptilia, Viperidae

    Directory of Open Access Journals (Sweden)

    Massimo Capula

    1990-07-01

    Full Text Available Abstract A preliminary study of the trophic system between terrestrial small mammals and their specialized predator, the Asp Viper (Vipera aspis, was carried out through analysis of gut contents of 62 Vipera aspis specimens from 6 localities of Tolfa Mountains (Latium, Central Italy. Two different techniques were used in order to obtain the gut contents from a living viper: (i gently pressing its belly; (ii exposing the animal at a low temperature (<8 °C. Twelve out of 18 small mammal species occurring in this area were preyed by the vipers. The number of preyed species is very similar to that observed in the pellets of Tyto alba (Aves, Strigiformes from the same area. The only apparent exception is represented by Microtus savii: this mammal was never preyed by Vipera aspis, although being one of the principal preys of Tyto alba. These data indicate that the analysis of Vipera aspis gut contents could be utilized as a method to integrate faunistic observations on terrestrial micromammals obtained with both traditional and Barn Owl pellets data. Riassunto Nel presente contributo sono stati presi in esame i dati desunti dall'analisi dei contenuti stomacali di 62 esemplari di Vipera aspis catturati in 6 diverse stazioni dei Monti della Tolfa (Lazio, Italia centrale. Tali dati sono stati confrontati con quelli esistenti sui micromammiferi della medesima area ottenuti con l'analisi dei rigetti dei rapaci notturni e con i metodi tradizionali. Le vipere esaminate hanno predato 12 delle 18 specie di micromammiferi terrestri presenti nei Monti della Tolfa. Un numero simile di specie predate è stato osservato nella stessa area con il metodo dell'analisi dei rigetti del Barbagianni (Tyto alba. Tali dati indicano che la metodologia descritta può essere utilizzata efficacemente al fine di integrare i dati faunistici sui micromammiferi

  11. Age-dependent variations in the venom proteins of Vipera xanthina (Gray, 1849) (Ophidia: Viperidae).

    Science.gov (United States)

    Arikan, Hüseyin; Alpagut Keskin, Nurşen; Cevik, I Ethem; Ilgaz, Cetin

    2006-01-01

    In this study, polyacrylamide disc gel electrophoresis and densitometry analysis methods were used to analyze venom extracts of Vipera xanthina specimens of different lengths (35, 47 and 88 cm) collected from the same locality. The electropherograms of the venom protein samples showed age-dependent qualitative and quantitative variations.

  12. [Influence of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom].

    Science.gov (United States)

    Abiev, G A; Babaev, E I; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G

    2009-11-01

    The aim of the article was to study the effect of electromagnetic radiation on toxicity of Vipera lebetina obtusa venom. It was found that mice intoxicated with snake venom, with moderate to high exposure to electromagnetic radiation and mice intoxicated with venom, which had not been exposed to the radiation showed the same symptoms of intoxication and death. At the same time, the longevity of mice intoxicated with venom exposed to electromagnetic radiation was higher. The longevity of mice in control group was 25+/-5 min. The longevity of mice intoxicated with exposed to electromagnetic radiation snake venom was from 29 to 60 min. The research showed that the longevity of mice intoxicated with snake venom rose with the level of electromagnetic radiation intensity the snake was exposed to. Accordingly, snake venom, with exposure to high intensity electromagnetic radiation is less toxic.

  13. Vipera russelli venom-induced oxidative stress and hematological alterations: amelioration by crocin a dietary colorant.

    Science.gov (United States)

    Sebastin Santhosh, M; Hemshekhar, M; Thushara, R M; Devaraja, S; Kemparaju, K; Girish, K S

    2013-01-01

    Snakebite is a serious medical and socio-economic problem affecting the healthy individuals and agricultural and farming populations worldwide. In India, Vipera russelli snakebite is common, ensuing high morbidity and mortality. The venom components persuade multifactorial stress phenomenon and alter the physiological setting by causing disruption of the blood cells and vital organs. The present study demonstrates the anti-ophidian property of Crocin (Crocus sativus), a potent antioxidant against viper venom-induced oxidative stress. The in vivo oxidative damage induced by venom was clearly evidenced by the increased oxidative stress markers and antioxidant enzymes/molecules along with the proinflammatory cytokines including IL-1β, TNF-α and IL-6. Furthermore, venom depleted the hemoglobin, hematocrit, mean corpuscular volume and platelet count in experimental animals. Crocin ameliorated the venom-induced oxidative stress, hematological alteration and proinflammatory cytokine levels. At present, administration of antivenom is an effective therapy against systemic toxicity, but it offers no protection against the rapidly spreading oxidative damage and infiltration of pro-inflammatory mediators. These pathologies will continue even after antivenom administration. Hence, a long-term auxiliary therapy is required to treat secondary as well as neglected complications of snakebite. Copyright © 2012 John Wiley & Sons, Ltd.

  14. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-08

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  15. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana Venom with Platelets, Bacterial and Cancer Cells

    Science.gov (United States)

    Samel, Mari; Vija, Heiki; Kurvet, Imbi; Künnis-Beres, Kai; Trummal, Katrin; Subbi, Juhan; Kahru, Anne; Siigur, Jüri

    2013-01-01

    Secretory phospholipasesA2 (sPLA2s) form a large family of structurally related enzymes widespread in nature. Herein, we studied the inhibitory effects of sPLA2s from Vipera lebetina (VLPLA2), Vipera berus berus (VBBPLA2), and Naja naja oxiana (NNOPLA2) venoms on (i) human platelets, (ii) four different bacterial strains (gram-negative Escherichia coli and Vibrio fischeri; gram-positive Staphylococcus aureus and Bacillus subtilis) and (iii) five types of cancer cells (PC-3, LNCaP, MCF-7, K-562 and B16-F10) in vitro. sPLA2s inhibited collagen-induced platelet aggregation: VBBPLA2 IC50 = 0.054, VLPLA2 IC50 = 0.072, NNOPLA2 IC50 = 0.814 μM. p-Bromophenacylbromide-inhibited sPLA2 had no inhibitory action on platelets. 36.17 μM VBBPLA2 completely inhibited the growth of gram-positive Bacillus subtilis whereas no growth inhibition was observed towards gram-negative Escherichia coli. The inhibitory action of sPLA2s (~0.7 μM and ~7 μM) towards cancer cells depended on both venom and cell type. VBBPLA2 (7.2 μM) inhibited significantly the viability of K-562 cells and the cell death appeared apoptotic. The sPLA2s exhibited no inhibitory effect towards LNCaP cells and some effect (8%–20%) towards other cells. Thus, already sub-μM concentrations of sPLA2s inhibited collagen-induced platelet aggregation and from the current suite of studied svPLA2s and test cells, VBBPLA2 was the most growth inhibitory towards Bacillus subtilis and K-562 cells. PMID:23348053

  16. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana Venom with Platelets, Bacterial and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jüri Siigur

    2013-01-01

    Full Text Available Secretory phospholipasesA2 (sPLA2s form a large family of structurally related enzymes widespread in nature. Herein, we studied the inhibitory effects of sPLA2s from Vipera lebetina (VLPLA2, Vipera berus berus (VBBPLA2, and Naja naja oxiana (NNOPLA2 venoms on (i human platelets, (ii four different bacterial strains (gram-negative Escherichia coli and Vibrio fischeri; gram-positive Staphylococcus aureus and Bacillus subtilis and (iii five types of cancer cells (PC-3, LNCaP, MCF-7, K-562 and B16-F10 in vitro. sPLA2s inhibited collagen-induced platelet aggregation: VBBPLA2 IC50 = 0.054, VLPLA2 IC50 = 0.072, NNOPLA2 IC50 = 0.814 μM. p-Bromophenacylbromide-inhibited sPLA2 had no inhibitory action on platelets. 36.17 μM VBBPLA2 completely inhibited the growth of gram-positive Bacillus subtilis whereas no growth inhibition was observed towards gram-negative Escherichia coli. The inhibitory action of sPLA2s (~0.7 μM and ~7 μM towards cancer cells depended on both venom and cell type. VBBPLA2 (7.2 μM inhibited significantly the viability of K-562 cells and the cell death appeared apoptotic. The sPLA2s exhibited no inhibitory effect towards LNCaP cells and some effect (8%–20% towards other cells. Thus, already sub-μM concentrations of sPLA2s inhibited collagen-induced platelet aggregation and from the current suite of studied svPLA2s and test cells, VBBPLA2 was the most growth inhibitory towards Bacillus subtilis and K-562 cells.

  17. [Molecular cloning and analysis of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of Vipera nikolskii viper].

    Science.gov (United States)

    Ramazanova, A S; Fil'kin, S Iu; Starkov, V G; Utkin, Iu N

    2011-01-01

    Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.

  18. Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary.

    Science.gov (United States)

    Malina, Tamás; Krecsák, László; Westerström, Alexander; Szemán-Nagy, Gábor; Gyémánt, Gyöngyi; M-Hamvas, Márta; Rowan, Edward G; Harvey, Alan L; Warrell, David A; Pál, Balázs; Rusznák, Zoltán; Vasas, Gábor

    2017-09-01

    We have revealed intra-population variability among venom samples from several individual European adders (Vipera berus berus) within a defined population in Eastern Hungary. Individual differences in venom pattern were noticed, both gender-specific and age-related, by one-dimensional electrophoresis. Gelatin zymography demonstrated that these individual venoms have different degradation profiles indicating varying protease activity in the specimens from adders of different ages and genders. Some specimens shared a conserved region of substrate degradation, while others had lower or extremely low protease activity. Phospholipase A 2 activity of venoms was similar but not identical. Interspecimen diversity of the venom phospholipase A 2 -spectra (based on the components' molecular masses) was detected by MALDI-TOF MS. The lethal toxicity of venoms (LD 50 ) also showed differences among individual snakes. Extracted venom samples had varying neuromuscular paralysing effect on chick biventer cervicis nerve-muscle preparations. The paralysing effect of venom was lost when calcium in the physiological salt solution was replaced by strontium; indicating that the block of twitch responses to nerve stimulation is associated with the activity of a phospholipase-dependent neurotoxin. In contrast to the studied V. b. berus venoms from different geographical regions so far, this is the first V. b. berus population discovered to have predominantly neurotoxic neuromuscular activity. The relevance of varying venom yields is also discussed. This study demonstrates that individual venom variation among V. b. berus living in particular area of Eastern Hungary might contribute to a wider range of clinical manifestations of V. b. berus envenoming than elsewhere in Europe. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Single Dose of ViperfavTM May Be Inadequate for Vipera ammodytes Snake Bite: A Case Report and Pharmacokinetic Evaluation

    Directory of Open Access Journals (Sweden)

    Tihana Kurtović

    2016-08-01

    Full Text Available ViperfavTM is a commercial F(ab’2 antivenom prepared against European vipers venom. It is safe and effective for treating envenomation caused by Vipera aspis and Vipera berus. Therapeutic efficacy for treating Vipera ammodytes ammodytes (V. a. ammodytes envenoming has not been yet described, although protective efficacy has been demonstrated in preclinical studies. We report on a 32-year-old man bitten by V. a. ammodytes who was treated with Viperfav™. Viperfav™ promptly reduced local extension and improved systemic pathological signs, but 24 h after the incident a recurrence of thrombocytopenia occurred despite a favorable pharmacokinetic profile with systemic clearance (1.64 (mL·h−1·kg−1 and elimination half-life (97 h among the highest ever reported. The recommended dose of Viperfav™ for V. aspis and V. berus bites may be inadequate for serious V. a. ammodytes envenomations. Following V. a. ammodytes bite, serial blood counts and coagulation profiles should be performed to help guide Viperfav™ treatment, along with supplemental administration as indicated.

  20. Vixapatin (VP12, a C-Type Lectin-Protein from Vipera xantina palestinae Venom: Characterization as a Novel Anti-angiogenic Compound

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2012-10-01

    Full Text Available A C-type lectin-like protein (CTL, originally identified as VP12 and lately named Vixapatin, was isolated and characterized from Israeli viper Vipera xantina palestinae snake venom. This CTL was characterized as a selective α2β1 integrin inhibitor with anti-melanoma metastatic activity. The major aim of the present study was to prove the possibility that this protein is also a potent novel anti-angiogenic compound. Using an adhesion assay, we demonstrated that Vixapatin selectively and potently inhibited the α2 mediated adhesion of K562 over-expressing cells, with IC50 of 3 nM. 3 nM Vixapatin blocked proliferation of human dermal microvascular endothelial cells (HDMEC; 25 nM inhibited collagen I induced migration of human fibrosarcoma HT-1080 cells; and 50 nM rat C6 glioma and human breast carcinoma MDA-MB-231 cells. 1 µM Vixapatin reduced HDMEC tube formation by 75% in a Matrigel assay. Furthermore, 1 µM Vixapatin decreased by 70% bFGF-induced physiological angiogenesis, and by 94% C6 glioma-induced pathological angiogenesis, in shell-less embryonic quail chorioallantoic membrane assay. Vixapatin’s ability to inhibit all steps of the angiogenesis process suggest that it is a novel pharmacological tool for studying α2β1 integrin mediated angiogenesis and a lead compound for the development of a novel anti-angiogenic/angiostatic/anti-cancer drug.

  1. THE USE OF THE ANTI-VENOM SPECIFIC ANTIBODIES ISOLATED FROM DUCK EGGS FOR INACTIVATION OF THE VIPER VENOM

    Directory of Open Access Journals (Sweden)

    ADRIANA CRISTE

    2008-05-01

    Full Text Available The activity of specific anti-venom can be demonstrated using protection test in laboratory mice. Our study aimed to emphasize the possibility of viper venom inactivation by the antibodies produced and isolated from duck eggs and also to the activation concentration of these antibodies. The venom used for inoculation was harvested from two viper species (Vipera ammodytes and Vipera berus. The immunoglobulin extract had a better activity on the venom from Vipera berus compared to the venom from Vipera ammodytes. This could be the result of a better immunological response, as consequence of the immunization with this type of venom, compared to the response recorded when the Vipera ammodytes venom was used. Besides the advantages of low cost, high productivity and reduced risk of anaphylactic shock, the duck eggs also have high activity up to dilutions of 1/16, 1/32, respectively, with specific activity and 100 surviving in individuals which received 3 x DL50.

  2. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae.

    Science.gov (United States)

    Munawar, Aisha; Trusch, Maria; Georgieva, Dessislava; Spencer, Patrick; Frochaux, Violette; Harder, Sönke; Arni, Raghuvir K; Duhalov, Deyan; Genov, Nicolay; Schlüter, Hartmut; Betzel, Christian

    2011-12-01

    Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.

  3. [Vipera berus bite--a case report].

    Science.gov (United States)

    Zajkowska, Joanna; Garkowski, Adam; Pancewicz, Sławomir

    2010-11-01

    Cases of bite by common viper (Vipera berus) are rare on the territory of Poland, and the mortality after bites is less than 1%. This paper describes a case of 81-year-old patient with massive swelling, redness and soreness of the right hand, which occurred shortly after the adder bite. In this paper we present composition and mechanisms of the venom's action, clinical symptoms and treatment of poisoning after a snake bite. Based on the reported case authors draw attention to hospital treatment and indications for administration of antivenom as the only causative method of treatment.

  4. Variation in yield and lethality of venoms from Iranian snakes.

    Science.gov (United States)

    Latifi, M

    1984-01-01

    The dangerous venomous terrestrial snakes of Iran belong to three groups: the Elapidae (cobras); the Viperinae (true vipers); the Crotalinae (pit vipers). Geographical distribution of each species was determined. Studies on the venoms extracted from the following Iranian snakes, Oxus cobra, Naja naja oxiana, Levantine viper (Afyi), Vipera lebetina, Carpet viper, Echis carinatus, Persian horned viper, Pseudocerastes persicus, Latifii viper, Vipera latifii, Mountain viper, Vipera xanthina and Caucasus pit viper (Agkistrodon halys), indicated that the yield of venom varies in each species. Venoms were compared for their lethality (i.v. LD50 in mice) and their rate of production. The antigenic components of the venoms were compared with their antisera by gel diffusion tests. To obtain the best results from antivenom treatment, the serum should be made against the venom of the local population of snakes or, at least, the commercial antivenom should be controlled for potency by testing with local reference venom.

  5. Clinical picture of envenoming with the Meadow Viper (Vipera (Acridophaga) ursinii).

    Science.gov (United States)

    Krecsák, László; Zacher, Gábor; Malina, Tamás

    2011-01-01

    The vipers in the Vipera (Acridophaga) ursinii complex are small-sized insectivorous snakes found in parts of central and southern Europe. Subspecies include Vipera ursinii ursinii, Vipera ursinii moldavica, Vipera ursinii macrops, Vipera ursinii rakosiensis, and Vipera ursinii graeca and are commonly known as the meadow vipers. These are the least known European Vipera from a clinical point of view. We identified cases of V. ursinii envenomations through three methods, including literature search in PubMed, ISI web of Knowldge, JSTOR, Biological Abstracts, Zoological Record, using the various combination of the following terms: snakebite, envenoming, bite, venom, ursinii, meadow viper, steppe viper (in English, French, Italian, Hungarian, Croatian, Serbian, Romanian), review of paper-based medical case records of hospitals in Hungary (four) and Romania (one) covering the 1970-July 2010 period, and personal communications of professional and amateur herpetologists studying V. ursinii and snake-handlers bitten by these snakes. We identified 64 cases from subspecies: V. u. ursinii (14), V. u. moldavica (8), V. u. macrops (5), and V. u. rakosiensis (37). Forty-five bites were collected from the literature, 5 from hospitals, 10 cases were communicated by seven herpetologists and four cases by two snake keepers. Bites were mostly asymptomatic. Forty-five envenomings (70%) resulted in mild and moderate local symptoms, involving pain with low-intensity, pruritus, numbness, swelling with or without erythema and/or local hematoma. Bullae (n = 3, 5%), mild superficial necrosis (n = 4, 6%), cellulitis (n = 1, 2%), and moderately extended edema (n = 8, 13%) of the bitten extremity rarely develop. Massive limb edema was recorded in eight (13%) cases. The most common systemic symptoms were dizziness caused by transient hypotension and tachycardia. Gastrointestinal disorders (i.e. nausea, vomiting) were rare (n = 2, 3%) compared to other Vipera, and probably triggered only by

  6. [Envenoming by common viper (Vipera berus)--subject still exists...].

    Science.gov (United States)

    Ciszowski, Krzysztof; Modła, Arkadiusz

    2004-01-01

    The only venomous reptile that naturally occurs in Poland is the adder or common viper (Vipera berus). Its bites are not of great epidemiological importance, but in some cases serious life-threatening symptoms may appear. The most common symptoms of adder envenomation are: local edema, reddening and pain of the bitten site and also the general symptoms coming from the alimentary tract (vomiting, diarrhoea, abdominal pain), the circulatory system (hypotension, shock, ECG abnormalities), the central nervous system (sleepiness, vertigo, disorientation, loss of consciousness), hematological symptoms (leukocytosis, hemolysis, coagulopathy) and allergic symptoms (fever, urticaria, angio-oedema). In the present study we described the case of a twenty-year-old patient hospitalized at the Toxicology Department of the Collegium Medicum UJ after a viper bite. Except for some above-mentioned symptoms he also developed ocular symptoms like ptosis and blurred vision. Such symptoms after the common viper bite have not been described in the literature till now. The cause of them seems to be an intense allergic reaction in the region of the orbit and eyelids all the more so because the patient had the positive allergy history. However, taking into account the latest reports from the literature, a neurotoxic action of some components of the Vipera berus venom may also play a role. Because of the developing general symptoms a specific equine antivenom was administered to the patient, apart from the supportive care, without any serious side effects that usually are observed after the use of such a kind of sera. It is thought that the sheep antivenom is better than the equine one considering a lack of allergic side effects. As a result of applied treatment the local and general symptoms including ocular symptoms subsided.

  7. Advanced surface protection for improved reliability PCB systems (ASPIS)

    NARCIS (Netherlands)

    Ballantyne, A.; Forrest, G.; Goosey, M.; Griguceviciene, A.; Juodkazyte, J.; Kellner, R.; Kosenko, A.; Ramanauskas, R.; Ryder, K.; Selskis, A.; Tarozaite, R.; Veninga, E.

    2012-01-01

    Purpose - The purpose of this paper is to detail progress on the European Commission supported FP7 ASPIS project that is undertaking a multi-faceted approach to develop novel and improved nickel-gold (ENIG) solderable finish chemistries and processes in order to overcome issues such as "black pad"

  8. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.

    Science.gov (United States)

    Kovalchuk, Sergey I; Ziganshin, Rustam H; Starkov, Vladislav G; Tsetlin, Victor I; Utkin, Yuri N

    2016-04-12

    Venoms of most Russian viper species are poorly characterized. Here, by quantitative chromato-mass-spectrometry, we analyzed protein and peptide compositions of venoms from four Vipera species (V. kaznakovi, V. renardi, V. orlovi and V. nikolskii) inhabiting different regions of Russia. In all these species, the main components were phospholipases A₂, their content ranging from 24% in V. orlovi to 65% in V. nikolskii. Altogether, enzyme content in venom of V. nikolskii reached ~85%. Among the non-enzymatic proteins, the most abundant were disintegrins (14%) in the V. renardi venom, C-type lectin like (12.5%) in V. kaznakovi, cysteine-rich venom proteins (12%) in V. orlovi and venom endothelial growth factors (8%) in V. nikolskii. In total, 210 proteins and 512 endogenous peptides were identified in the four viper venoms. They represented 14 snake venom protein families, most of which were found in the venoms of Vipera snakes previously. However, phospholipase B and nucleotide degrading enzymes were reported here for the first time. Compositions of V. kaznakovi and V. orlovi venoms were described for the first time and showed the greatest similarity among the four venoms studied, which probably reflected close relationship between these species within the "kaznakovi" complex.

  9. In vitro screening and evaluation of antivenom phytochemicals from Azima tetracantha Lam. leaves against Bungarus caeruleus and Vipera russelli.

    Science.gov (United States)

    Janardhan, Bhavya; Shrikanth, Vineetha M; Mirajkar, Kiran K; More, Sunil S

    2014-04-01

    Snakebites are considered a neglected tropical disease that affects thousands of people worldwide. Although antivenom is the only treatment available, it is associated with several side effects. As an alternative, plants have been extensively studied in order to obtain an alternative treatment. In folk medicine, Azima tetracantha Lam. is usually used to treat snakebites. The present study aims to provide a scientific explanation for the use of this plant against snakebite. The extracts of shade dried leaves of A. tetracantha were tested for in vitro inhibitory activity on toxic venom enzymes like phosphomonoesterase, phosphodiesterase, acetylcholinesterase, hyaluronidase etc. from Bungarus caeruleus and Vipera russelli venoms. The ethylacetate extract rendered a significant inhibitory effect on the phosphomonoesterase, phosphodiesterase, phospholipase A2 and acetylcholinesterase enzymes. The present study suggests that ethylacetate extract of A. tetracantha leaves possesses compounds that inhibit the activity of toxic enzymes from Bungarus caeruleus and Vipera russelli venom. Further pharmacological and in vivo studies would provide evidence that this substance may lead to a potential treatment against these venoms.

  10. Impact d’un stress aigu sur la reproduction de la vipère aspic Vipera aspis

    OpenAIRE

    Labidalle, Chloé

    2016-01-01

    aLes vipères aspic, serpents venimeux présents en France, subissent régulièrement des stress aigus, en captivité (manipulations) et dans leur milieu naturel (prédation). Les objectifs de ce travail étaient d’évaluer l’effet d’un stress aigu sur les hormones sexuelles et sur certains métabolites marqueurs de la reproduction. Ce travail a été réalisé sur vingt-deux animaux, et valide tout d’abord le glucomètre portable pour la mesure de la glycémie chez cette espèce. Ensuite, nous avons évalué ...

  11. Venomous snakebites.

    Science.gov (United States)

    Adukauskienė, Dalia; Varanauskienė, Eglė; Adukauskaitė, Agnė

    2011-01-01

    More than 5 million people are bitten by venomous snakes annually and more than 100,000 of them die. In Europe, one person dies due to envenomation every 3 years. There is only one venomous snake species in Lithuania--the common adder (Vipera berus)--which belongs to the Viperidae family; however, there are some exotic poisonous snakes in the zoos and private collections, such as those belonging to the Elapidae family (cobras, mambas, coral snakes, etc.) and the Crotalidae subfamily of the Viperidae family (pit vipers, such as rattlesnakes). Snake venom can be classified into hemotoxic, neurotoxic, necrotoxic, cardiotoxic, and nephrotoxic according to the different predominant effects depending on the family (i.e., venom of Crotalidae and Viperidae snakes is more hemotoxic and necrotoxic, whereas venom of Elapidae family is mainly neurotoxic). The intoxication degree is estimated according to the appearance of these symptoms: 1) no intoxication ("dry" bite); 2) mild intoxication (local edema and pain); 3) moderate intoxication (pain, edema spreading out of the bite zone, and systemic signs); 4) severe intoxication (shock, severe coagulopathy, and massive edemas). This topic is relevant because people tend to make major mistakes providing first aid (e.g., mouth suction, wound incision, and application of ice or heat). Therefore, this article presents the essential tips on how first aid should be performed properly according to the "Guidelines for the Management of Snake-Bites" by the World Health Organization (2010). Firstly, the victim should be reassured. Rings or other things must be removed preventing constriction of the swelling limb. Airway/breathing must be maintained. The bitten limb should be immobilized and kept below heart level to prevent venom absorption and systemic spread. Usage of pressure bandage is controversial since people usually apply it improperly. Incision, mouth suction, or excision should not be performed; neither a tourniquet nor ice or

  12. Hemostatic interference of Indian king cobra (Ophiophagus hannah) Venom. Comparison with three other snake venoms of the subcontinent.

    Science.gov (United States)

    Gowtham, Yashonandana J; Kumar, M S; Girish, K S; Kemparaju, K

    2012-06-01

    Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

  13. Clinical and biochemical changes in 53 Swedish dogs bitten by the European adder - Vipera berus

    Directory of Open Access Journals (Sweden)

    Frendin Jan HM

    2010-04-01

    Full Text Available Abstract Background Every year many dogs in Sweden are bitten by Vipera berus, the only venomous viper in Sweden. This prospective study investigated clinical signs, some biochemical parameters, treatment, and progress of disease after snakebite in 53 dogs. Effects of treatment with and without glucocorticoids were evaluated. Methods All fifty-three dogs bitten by Vipera berus were examined the same day the dog was bitten and the next day. Two more examinations during 23 days post snake bite were included. Creatinine, creatine kinase (CK, alanine aminotransferase (ALT, glutamate dehydrogenase (GLDH, alkaline phosphatase (ALP and bile acid results were followed through 3 to 4 samplings from 34 of the dogs. Results All dogs had variable severity of local swelling in the bite area and 73 per cent had affected mental status. Initial cardiac auscultation examination was normal in all dogs, but six dogs had cardiac abnormalities at their second examination, including cardiac arrhythmias and cardiac murmurs. All dogs received fluid therapy, 36 dogs were given analgesics, 22 dogs were treated with glucocorticoids, and ten dogs were treated with antibiotics. Evidence of transient muscle damage (increased CK was seen one day after the snake bite in 15 (54% of 28 sampled dogs. Moderate changes in hepatic test results occurred in 1 dog and several dogs (22 of 34 had transient, minor increases in one or more hepatic test result. No dog died during the observation period as a consequence of the snake bite. Conclusions Snake bite caused local swelling in all dogs and mental depression of short duration in most dogs. Some dogs had transient clinical signs that could be indicative of cardiac injury and some other had transient biochemical signs of liver injury. Treatment with glucocorticoids did not have any clear positive or negative effect on clinical signs and mortality.

  14. Clinical and biochemical changes in 53 Swedish dogs bitten by the European adder--Vipera berus.

    Science.gov (United States)

    Lervik, Jessica Berger; Lilliehöök, Inger; Frendin, Jan H M

    2010-04-23

    Every year many dogs in Sweden are bitten by Vipera berus, the only venomous viper in Sweden. This prospective study investigated clinical signs, some biochemical parameters, treatment, and progress of disease after snakebite in 53 dogs. Effects of treatment with and without glucocorticoids were evaluated. All fifty-three dogs bitten by Vipera berus were examined the same day the dog was bitten and the next day. Two more examinations during 23 days post snake bite were included. Creatinine, creatine kinase (CK), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH), alkaline phosphatase (ALP) and bile acid results were followed through 3 to 4 samplings from 34 of the dogs. All dogs had variable severity of local swelling in the bite area and 73 per cent had affected mental status. Initial cardiac auscultation examination was normal in all dogs, but six dogs had cardiac abnormalities at their second examination, including cardiac arrhythmias and cardiac murmurs. All dogs received fluid therapy, 36 dogs were given analgesics, 22 dogs were treated with glucocorticoids, and ten dogs were treated with antibiotics. Evidence of transient muscle damage (increased CK) was seen one day after the snake bite in 15 (54%) of 28 sampled dogs. Moderate changes in hepatic test results occurred in 1 dog and several dogs (22 of 34) had transient, minor increases in one or more hepatic test result. No dog died during the observation period as a consequence of the snake bite. Snake bite caused local swelling in all dogs and mental depression of short duration in most dogs. Some dogs had transient clinical signs that could be indicative of cardiac injury and some other had transient biochemical signs of liver injury. Treatment with glucocorticoids did not have any clear positive or negative effect on clinical signs and mortality.

  15. Short term effects of animal venoms on the mitotic index of the duodenal mucosa of albino rats.

    Science.gov (United States)

    Abu Sinna, G; al-Zahaby, A; Abd el-Aal, A; Abd el-Baset, A; Saber, T

    1992-01-01

    Short term administration of the venoms of the snakes Naja haje, Naja nigricollis, and Cerastes vipera and of the scorpion Leiurus quinquestriatus on the mitotic index of the duodenal mucosal cells of the white rat, Rattus rattus, has been studied. All the venoms increased the number of dividing cells of the duodenal mucosa significantly. Naja haje crude venom was fractionated into three fractions. Fraction I had no effect on the mitotic index whereas fractions II and III increased it significantly. Treatment of rats with Naja haje venom fractions II and III after blocking the histamine or the serotonin receptors did not affect the stimulatory action of the two venom fractions on the mitotic index, which it increased significantly. It was suggested that the venoms of Naja haje, Naja nigricollis, Cerastes vipera, and Leiurus quinquestriatus and Naja haje venom fractions possessed a mitogenic activity. Fraction II of Naja haje venom acted through both the muscarinic and adrenergic receptors while fraction III acted on the adrenergic ones.

  16. Assessment of leukocygram of Vipera berus from Samara region

    Directory of Open Access Journals (Sweden)

    Romanova Elena Borisovna

    2016-12-01

    Full Text Available The leucogram of peripheral blood of the common adder Vipera berus inhabiting the national park "Samarskaya Luka" and the forested urban area of Samara were studied. In the adders from Samara the activation of immune processes, and the enhancement of the blood protective function were revealed. It was shown that the determined features of leucogram were connected with genetic characteristics of adders’ population.

  17. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    The term venom is used for a variety of toxins that are injected by certain animals into a victim through a specialized apparatus. Though venom is most commonly employed as a means of defense and predation, it is also used as a means of asserting dominance over conspecifics. Venomous animals include sea anemones ...

  18. Cross neutralization of dangerous snake venoms from Africa and the Middle East using the VACSERA polyvalent antivenom. Egyptian Organization for Biological Products & Vaccines.

    Science.gov (United States)

    Seddik, Salwa S; Wanas, Soheir; Helmy, Madiha H; Hashem, Mohamed

    2002-12-01

    This study was performed to assess the ability of polyvalent snake venom anti-serum, produced by the Egyptian Organization for Biological Products & Vaccines (VACSERA), to neutralize several toxic activities of snake venoms, not only of those included in the antivenom mixture, but also some additional venoms of snakes from Egyptian, African, and Middle Eastern habitats. In general, the results revealed that polyvalent snake venom anti-serum from VACSERA is highly effective in neutralizing Egyptian snake venoms, especially Naja haje, Naja nigricolles, Naja pallida, Cerastes cerastes, Cerastes cerastes cerastes, Cerastes vipera, Pseudocerastes persicus fieldi, and Walterinnisia egyptia. The antivenom was also effective against Naja haje, Walterinnisia egyptia, and Bites aritans from Saudi Arabia. High activity was obtained against venoms from Naja haje, Naja nigricolles, and Naja pallida of Sudan, as well as the African Naja melanoleuca, Naja mossambica, Naja naja oxiana, Bites gabonica, and Vipera lebetina. Only moderate effectiveness was obtained with Echis coloratus and Echis carinatus, and the polyvalent antiserum was ineffective against the venom of Naja nivea.

  19. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.

    Science.gov (United States)

    Ramazanova, Anna S; Starkov, Vladislav G; Osipov, Alexey V; Ziganshin, Rustam H; Filkin, Sergey Yu; Tsetlin, Victor I; Utkin, Yuri N

    2009-01-01

    Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system.

  20. Snake (Vipera berus) bite: The cause of severe anaphylactic shock and hepatocellular injury

    National Research Council Canada - National Science Library

    Pałgan, K; Kuźmiński, A; Janik, A; Gotz-Żbikowska, M; Bartuzi, Z

    2015-01-01

    Vipera berus bites lead to a variety of clinical manifestations. Local swelling, coagulopathy, nephrotoxicity, cardiac effects and myotoxicity are known to be associated with envenoming by a viper bite...

  1. Aspirin in venous leg ulcer study (ASPiVLU): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Weller, Carolina D; Barker, Anna; Darby, Ian; Haines, Terrence; Underwood, Martin; Ward, Stephanie; Aldons, Pat; Dapiran, Elizabeth; Madan, Jason J; Loveland, Paula; Sinha, Sankar; Vicaretti, Mauro; Wolfe, Rory; Woodward, Michael; McNeil, John

    2016-04-11

    Venous leg ulceration is a common and costly problem that is expected to worsen as the population ages. Current treatment is compression therapy; however, up to 50 % of ulcers remain unhealed after 2 years, and ulcer recurrence is common. New treatments are needed to address those wounds that are more challenging to heal. Targeting the inflammatory processes present in venous ulcers is a possible strategy. Limited evidence suggests that a daily dose of aspirin may be an effective adjunct to aid ulcer healing and reduce recurrence. The Aspirin in Venous Leg Ulcer study (ASPiVLU) will investigate whether 300-mg oral doses of aspirin improve time to healing. This randomised, double-blinded, multicentre, placebo-controlled, clinical trial will recruit participants with venous leg ulcers from community settings and hospital outpatient wound clinics across Australia. Two hundred sixty-eight participants with venous leg ulcers will be randomised to receive either aspirin or placebo, in addition to compression therapy, for 24 weeks. The primary outcome is time to healing within 12 weeks. Secondary outcomes are ulcer recurrence, wound pain, quality of life and wellbeing, adherence to study medication, adherence to compression therapy, serum inflammatory markers, hospitalisations, and adverse events at 24 weeks. The ASPiVLU trial will investigate the efficacy and safety of aspirin as an adjunct to compression therapy to treat venous leg ulcers. Study completion is anticipated to occur in December 2018. Australian New Zealand Clinical Trials Registry, ACTRN12614000293662.

  2. ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft

    Directory of Open Access Journals (Sweden)

    S. Klimov

    1997-05-01

    Full Text Available The plasma-wave experiment ASPI (analysis of spectra of plasma waves and instabilities on board the INTERBALL spacecraft is a combined wave diagnostics experiment. It performs measurements of the DC and AC magnetic field vector by flux-gate and search-coil sensors, the DC and AC electric field vector by Langmuir double probes and the plasma current by Langmuir split probe. Preliminary data analysis shows the low noise levels of the sensors and the compatibility of new data with the results of previous missions. During several months of in-orbit operation a rich collection of data was acquired, examples of which at the magnetopause and plasma sheet are presented in second part of the paper.

  3. Ant venoms.

    Science.gov (United States)

    Hoffman, Donald R

    2010-08-01

    The review summarizes knowledge about ants that are known to sting humans and their venoms. Fire ants and Chinese needle ants are showing additional spread of range. Fire ants are now important in much of Asia. Venom allergens have been characterized and studied for fire ants and jack jumper ants. The first studies of Pachycondyla venoms have been reported, and a major allergen is Pac c 3, related to Sol i 3 from fire ants. There are very limited data available for other ant groups. Ants share some common proteins in venoms, but each group appears to have a number of possibly unique components. Further proteomic studies should expand and clarify our knowledge of these fascinating animals.

  4. An activator of blood coagulation factor X from the venom of Bungarus fasciatus.

    Science.gov (United States)

    Zhang, Y; Xiong, Y L; Bon, C

    1995-10-01

    A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mol. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.

  5. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  6. Comparative morphology of the skin of Natrix tessellata (family: Colubridae) and Cerastes vipera (family: Viperidae).

    Science.gov (United States)

    Abo-Eleneen, Rasha E; Allam, Ahmed A

    2011-10-01

    We studied beneficial difference of the skin of two snakes. Two snakes were chosen from two different habitats and two families: Colubridae (Natrix tessellata) and Viperidae (Cerastes vipera). The investigations were performed by light and electron microscopy. Histologically, the skin of the studied species show pronounced modifications that correlated with functional demands. The scales in Natrix tessellata overlapped slightly, while in Cerastes vipera they were highly overlapped. SEM shows that scales of Natrix tessellata had bidentate tips while the scales of Cerastes vipera were keeled. Histochemically, in both studied species, melanocytes and collagenous fibres were distributed throughout the dermis. Polysaccharides were highly concentrated in the epidermis and dermis of both species while proteins were highly concentrated only in the epidermis. Transmission electron microscopy (TEM) showed that the skin of both snakes consisted of keratins located in the epidermis. Some lipids and mucus were incorporated into the outer scale surfaces such that lipids were part of the fully keratinised hard layer of the snakes' skins. Lipids are probably responsible for limiting water loss and ion movements across the skin. Melanosomes from epidermal melanocytes were present only in Cerastes vipera. In aggregate, these results indicate that snakeskin may provide an ecological indicator whereby epidermal and integumentary specializations may be ecologically correlated.

  7. Are ticks venomous animals?

    Science.gov (United States)

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. Conclusions Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary

  8. Morphometric differences between extant and extinct Italian populations of the adder, Vipera berus (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Augusto Gentilli

    2006-01-01

    Full Text Available Vipera berus (Linnaeus, 1758 is the terrestrial snake showing the widest distribution in the world, occuring from Great Britain, France and Northern Italy to the Sakhalin Island and North Korea (Nilson, 1980; Saint Girons, 1980; Nilson et al., 1994; Nilson & Andrén, 1997a. However, adders do not occur uniformly over their distribution area, but are scattered in several isolated populations (Nilson & Andrén, 1997a. Frequently, ecological traits of borderline and isolated populations differ from those living in the core area of the distribution range of the species, and might be subjected to higher risks of stochastic extinction and higher differentiation rates (Mayr, 1970. For example, meadow vipers (Vipera ursinii show a highly fragmented distribution, many of isolated groups being different subspecies (Nilson & Andrén, 1997b, 2001.

  9. Occurrence of European Adder (Vipera berus, Viperidae, Ophidia on Vlasina Plateau (Southeastern Serbia

    Directory of Open Access Journals (Sweden)

    Crnobrnja-Isailović, J.

    2011-09-01

    Full Text Available The European adder (Vipera berus is among the most widespread reptile species in Europe, but it’s distribution at the Balkan Peninsula seems to be scarce and fragmented. As going toward the south, specimens were more frequently found in the vegetational zone of boreal forests and high alpine pastures. In the South-eastern Serbia, recent occurrence of European adder was confirmed on the Vlasina Plateau, in June 2010, in a mosaic-complex of peat bogs and marsh vegetation. Recent engagement of ecology students from University of Niš in mapping actual local distribution of adder will help locating key spots for its conservation in this area.

  10. Are ticks venomous animals?

    OpenAIRE

    Cabezas-Cruz, Alejandro; Valdés, James J

    2014-01-01

    [Introduction]: As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that m...

  11. Systématique et répartition de Vipera ursinii (Bonaparte, 1835) (Reptilia, Viperidae), en Roumanie

    NARCIS (Netherlands)

    Vancea, St.; Saint Girons, H.; Fuhn, I.E.; Stugren, B.

    1985-01-01

    Analysis of geographical distribution and comparative morphology in Vipera ursinii from Romania leads to the following results: 1. The population from Fînaţele Clujului, which does not exist anymore, belonged to the subspecies V. ursinii rakosiensis. 2. Populations from Moldavia show a mixture of

  12. The venom optimization hypothesis revisited.

    Science.gov (United States)

    Morgenstern, David; King, Glenn F

    2013-03-01

    Animal venoms are complex chemical mixtures that typically contain hundreds of proteins and non-proteinaceous compounds, resulting in a potent weapon for prey immobilization and predator deterrence. However, because venoms are protein-rich, they come with a high metabolic price tag. The metabolic cost of venom is sufficiently high to result in secondary loss of venom whenever its use becomes non-essential to survival of the animal. The high metabolic cost of venom leads to the prediction that venomous animals may have evolved strategies for minimizing venom expenditure. Indeed, various behaviors have been identified that appear consistent with frugality of venom use. This has led to formulation of the "venom optimization hypothesis" (Wigger et al. (2002) Toxicon 40, 749-752), also known as "venom metering", which postulates that venom is metabolically expensive and therefore used frugally through behavioral control. Here, we review the available data concerning economy of venom use by animals with either ancient or more recently evolved venom systems. We conclude that the convergent nature of the evidence in multiple taxa strongly suggests the existence of evolutionary pressures favoring frugal use of venom. However, there remains an unresolved dichotomy between this economy of venom use and the lavish biochemical complexity of venom, which includes a high degree of functional redundancy. We discuss the evidence for biochemical optimization of venom as a means of resolving this conundrum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Varespladib (LY315920 Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation

    Directory of Open Access Journals (Sweden)

    Matthew Lewin

    2016-08-01

    Full Text Available Snakebite remains a neglected medical problem of the developing world with up to 125,000 deaths each year despite more than a century of calls to improve snakebite prevention and care. An estimated 75% of fatalities from snakebite occur outside the hospital setting. Because phospholipase A2 (PLA2 activity is an important component of venom toxicity, we sought candidate PLA2 inhibitors by directly testing drugs. Surprisingly, varespladib and its orally bioavailable prodrug, methyl-varespladib showed high-level secretory PLA2 (sPLA2 inhibition at nanomolar and picomolar concentrations against 28 medically important snake venoms from six continents. In vivo proof-of-concept studies with varespladib had striking survival benefit against lethal doses of Micrurus fulvius and Vipera berus venom, and suppressed venom-induced sPLA2 activity in rats challenged with 100% lethal doses of M. fulvius venom. Rapid development and deployment of a broad-spectrum PLA2 inhibitor alone or in combination with other small molecule inhibitors of snake toxins (e.g., metalloproteases could fill the critical therapeutic gap spanning pre-referral and hospital setting. Lower barriers for clinical testing of safety tested, repurposed small molecule therapeutics are a potentially economical and effective path forward to fill the pre-referral gap in the setting of snakebite.

  14. On the issue of taxonomical status of steppe viper (Vipera renardi in Right-bank Ukraine

    Directory of Open Access Journals (Sweden)

    A. L. Baybuz

    2011-07-01

    Full Text Available Data on morphologic variability of the steppe viper in the Kirovograd region (Right-bank Ukraine are given firstly. Tentative estimation of the similaritylevel of the local population and the populations from the Left-bank Ukraine and the Crimea was carried out using methods of the multivariate statistics. Morphological data in line with the results of mitochondrial DNA analysis show that the population in the Kirovograd region belongs to widespread Eurasian species Vipera renardiand morphologically most close to the original populations of the lowland Crimea, Sivash and Forest-Steppe of the Left-bank Ukraine. This could indicate the complicated history of the Right-bank Ukraine colonization by the steppe viper and possible influence of environmental conditions on the vipers’ morphology

  15. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I.; Jenner, Ronald A.

    2014-01-01

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms. PMID:25533518

  16. Quo vadis venomics? A roadmap to neglected venomous invertebrates.

    Science.gov (United States)

    von Reumont, Bjoern Marcus; Campbell, Lahcen I; Jenner, Ronald A

    2014-12-19

    Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  17. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates

    Directory of Open Access Journals (Sweden)

    Bjoern Marcus von Reumont

    2014-12-01

    Full Text Available Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.

  18. Data on the reproduction of a Caucasian Viper, Vipera kaznakovi Nikolsky, 1909 (Serpentes: Viperidae from Hopa (Northeastern Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Bayram Göçmen

    2013-12-01

    Full Text Available In the current study we report an observation of a Caucasian Viper, Vipera kaznakovi from Hopa (Artvin, Turkey giving birth. During our field studies, we captured a female Vipera kaznakovi on July 21, 2012 from Esenkıyı village, Hopa (Artvin, Turkey, it was brought to the laboratory and kept in a terrarium for a period until May 28, 2013. The female (SVL= 483 mm, total length, TL = 541 mm gave birth to eight young (mean SVL= 146 mm, mean TL= 161.4 mm, range= 155 – 172 mm; mean weight, W= 3.11 g, range= 2.6 – 3.4 g on August 11, 2012. In six and a half months, the juvenile snakes had reached 163 mm SVL, 187 mm TL and 5.1g W and increased their size by approximately 15%.

  19. Reproductive cycle of free-living male Saharan sand vipers, Cerastes vipera (Viperidae) in the Negev desert, Israel.

    Science.gov (United States)

    Sivan, Jaim; Kam, Michael; Hadad, Shlomo; Allan Degen, A; Rozenboim, Israel; Rosenstrauch, Avi

    2012-11-01

    The Saharan sand viper, Cerastes vipera (Linnaeus, 1758), is distributed in all Saharan countries, being confined to sand and dune systems. This relatively small snake, up to 35 cm, is nocturnal, is active from spring to autumn (April to October) and hibernates during the winter (November to March). We predicted that C. vipera would have peak plasma testosterone concentration at mating and that the vas deferens would contain abundant spermatozoa at that time. To test our predictions, we collected information on the time of mating and measured monthly testosterone concentration, testes size and testicular activity in free-living male C. vipera during its active period from April to October. Mating occurred only during spring. The pattern of plasma testosterone concentration, testes volume, seminiferous tubule diameter and spermatogenesis all followed the general pattern of high values in autumn and spring and low values in early summer. Our predictions were partially supported. There was a high plasma testosterone concentration at mating in spring and the vas deferens contained abundant spermatozoa, as predicted, but there was also a high plasma testosterone concentration in autumn without mating. We concluded that: (1) males are both aestival in that they produce spermatozoa in autumn, which they store over the winter hibernation period, and vernal in that they produce spermatozoa in spring prior to mating; (2) matings are associated with spermatogenesis; and (3) the high plasma testosterone concentration is concomitant with both matings and spermatogenesis in spring and with spermatogenesis in autumn. We propose that C. vipera has a single peak of testicular activity and plasma testosterone concentration which start in autumn and end in spring. We also propose that spermatogenesis is prior to spring mating and, consequently, is prenuptial. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Blood coagulation induced by the venom of Bothrops atrox. 2. Identification, purification, and properties of two factor X activators.

    Science.gov (United States)

    Hofmann, H; Bon, C

    1987-02-10

    We have characterized and purified the two components of the venom of Bothrops atrox that activate the coagulation factor X. Activator 1 and activator 2 were separated by ion-exchange chromatography but otherwise presented similar characteristics. They consist of a heavy polypeptide of Mr 59,000 and either one or two light chains forming a doublet of Mr 14,000-15,000. They are inactive on synthetic substrates and on prothrombin or fibrinogen and thus appear to act specifically on factor X. They are not sensitive to inhibitors of serine proteases or thiol esterases. The activation of factor X is activated by Ca2+ ions with a Hill coefficient of 2.4 and is inhibited by Hg2+, Ba2+, and Cd2+. Its pH dependency suggests that the activity depends on the ionization of a group with an apparent pK of 6.9. We studied the cleavage of purified bovine factor X by B. atrox activators and compared it to that obtained with the factor X activator from Vipera russelli venom. Like the physiological activators, the venom's activators cleave the heavy chain of factor X, producing the activated factor Xa alpha. They produce however two other cleavages: one near the N-terminal end of the heavy chain of factor X, generating factor Xmu, and a second one located at one extremity of the heavy chain of factor Xa alpha, generating factor Xav.

  1. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  2. The adder (Vipera berus in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position

    Directory of Open Access Journals (Sweden)

    Shaopeng Cui

    2016-08-01

    Full Text Available As the most widely distributed snake in Eurasia, the adder (Vipera berus has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder’s southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains’ elevation gradient, but the population abundance declines gradually due to a drying climate.

  3. Individual Growth Rates of Nikolsky’s Viper, Vipera berus nikolskii (Squamata, Viperidae

    Directory of Open Access Journals (Sweden)

    Bondarenko Z. S.

    2016-02-01

    Full Text Available Capture-mark-recapture data was used to infer growth rates of the Nikolsky’s viper, Vipera berus nikolskii (Vedmederja, Grubant et Rudaeva, 1986, in the Eastern Ukraine. We have found that growth rate is negatively correlated with age. The difference in growth rates before maturation is not significant between different sexes. Growth rates decrease rapidly after maturation in males and females, however adult males retain significantly higher average growth rates. There is large dispersion of growth rates in the group of adult females, which is caused, probably, by alteration of complete arrest of growth in the years with reproduction and more intensive growth in the years without it. Asymptotic snout-ventral length estimated after Von Bertalanffy model was 680 mm in females and 630 mm in males. Females mature after fifth and males mature after fourth hibernation. The larger females in vipers can not be the result of higher growth rates in females, but are the outcome of a combination of other factors including different maturation time and size (older and being larger, and, perhaps, longer life span due to lower mortality. Growth rates of the Nikolsky’s viper in the nature are higher than in other species in the group of small Eurasian vipers.

  4. Nuove segnalazioni di Zootoca vivipara Jaquin e di Vipera berus Linnaeus, in Piemonte, Italia nord-occidentale (Novitates Herpetologicae Pedemontanae II

    Directory of Open Access Journals (Sweden)

    Samuele Ghielmi

    2006-01-01

    Full Text Available Vengono forniti nuovi dati distributivi di Zootoca vivipara e di Vipera berus in Piemonte (Italia nordoccidentale. La prima viene segnalata nelle valli Bognanco (VB, Sessera (BI, Mastallone (VC, Rimella (VC e Strona (VB. Il Marasso viene invece segnalato per le valli Sorba (VC e Strona (VB. I nuovi dati distributivi vengono commentati brevemente.

  5. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  6. Venomous animals: clinical toxinology.

    Science.gov (United States)

    White, Julian

    2010-01-01

    Venomous animals occur in numerous phyla and present a great diversity of taxa, toxins, targets, clinical effects and outcomes. Venomous snakes are the most medically significant group globally and may injure >1.25 million humans annually, with up to 100 000 deaths and many more cases with long-term disability. Scorpion sting is the next most important cause of envenoming, but significant morbidity and even deaths occur following envenoming with a wide range of other venomous animals, including spiders, ticks, jellyfish, marine snails, octopuses and fish. Clinical effects vary with species and venom type, including local effects (pain, swelling, sweating, blistering, bleeding, necrosis), general effects (headache, vomiting, abdominal pain, hypertension, hypotension, cardiac arrhythmias and arrest, convulsions, collapse, shock) and specific systemic effects (paralytic neurotoxicity, neuroexcitatory neurotoxicity, myotoxicity, interference with coagulation, haemorrhagic activity, renal toxicity, cardiac toxicity). First aid varies with organism and envenoming type, but few effective first aid methods are recommended, while many inappropriate or frankly dangerous methods are in widespread use. For snakebite, immobilisation of the bitten limb, then the whole patient is the universal method, although pressure immobilisation bandaging is recommended for bites by non-necrotic or haemorrhagic species. Hot water immersion is the most universal method for painful marine stings. Medical treatment includes both general and specific measures, with antivenom being the principal tool in the latter category. However, antivenom is available only for a limited range of species, not for all dangerous species, is in short supply in some areas of highest need, and in many cases, is supported by historical precedent rather than modern controlled trials.

  7. Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment.

    Directory of Open Access Journals (Sweden)

    Rachel B Currier

    Full Text Available Venom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR directly from venom enables real-time dynamic studies of gene expression in the same animals because it circumvents the conventional requirement to sacrifice snakes to extract mRNA from dissected venom glands. Using qPCR and proteomic analysis, we show that gene expression and protein re-synthesis triggered by venom expulsion peaks between days 3-7 of the cycle of venom replenishment, with different protein families expressed in parallel. We demonstrate that venom re-synthesis occurs very rapidly following depletion of venom stores, presumably to ensure venomous snakes retain their ability to efficiently predate and remain defended from predators. The stability of mRNA in venom is biologically fascinating, and could significantly empower venom research by expanding opportunities to produce transcriptomes from historical venom stocks and rare or endangered venomous species, for new therapeutic, diagnostic and evolutionary studies.

  8. Bioactive Components in Fish Venoms

    Science.gov (United States)

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  9. Nuclear markers support the mitochondrial phylogeny of Vipera ursinii-renardi complex (Squamata: Viperidae) and species status for the Greek meadow viper.

    Science.gov (United States)

    Mizsei, Edvárd; Jablonski, Daniel; Roussos, Stephanos A; Dimaki, Maria; Ioannidis, Yannis; Nilson, Göran; Nagy, Zoltán T

    2017-01-31

    Meadow vipers (Vipera ursinii-renardi complex) are small-bodied snakes that live in either lowland grasslands or montane subalpine-alpine meadows spanning a distribution from France to western China. This complex has previously been the focus of several taxonomic studies which were based mainly on morphological, allozyme or immunological characters and did not clearly resolve the relationships between the various taxa. Recent mitochondrial DNA analyses found unexpected relationships within the complex which had taxonomical consequences for the detected lineages. The most surprising was the basal phylogenetic position of Vipera ursinii graeca, a taxon described almost 30 years ago from the mountains of Greece. We present here new analyses of three nuclear markers (BDNF, NT3, PRLR; a first for studies of meadow and steppe vipers) as well as analyses of newly obtained mitochondrial DNA sequences (CYT B, ND4).Our Bayesian analyses of nuclear sequences are concordant with previous studies of mitochondrial DNA, in that the phylogenetic position of the graeca clade is a clearly distinguished and distinct lineage separated from all other taxa in the complex. These phylogenetic results are also supported by a distinct morphology, ecology and isolated distribution of this unique taxon. Based on several data sets and an integrative species concept we recommend to elevate this taxon to species level: Vipera graeca Nilson & Andrén, 1988 stat. nov.

  10. SAFETY OF VENOMENHAL® VENOM IN MAINTENANCE HYMENOPTERA VENOM IMMUNOTHERAPY

    Directory of Open Access Journals (Sweden)

    Mitja Košnik

    2001-10-01

    Full Text Available Background. Venomenhal® (V is a new brand ofHymenoptera venom allergen for diagnosis and immunotherapyof venom allergy. We studied the safety of switching thepatients treated with other brands of venom to V. Methods. We performed duplicate skin prick tests with V andALK Reless® (R venom extract (100 μg/ml in 68 patients (50males, 42 ± 15 years on maintenance immunotherapy withhoney bee (26 or wasp (42 venom. On two consecutive maintenanceinjection days 53 patients received in random ordereither 100 μg of R or V venom. Results. Weal diameter in skin prick tests (mean ± st.dev. were3.9 ± 1.1 mm (V and 4.1 ± 1.0 mm (R for bee venom (NSand 3.4 ± 1.0 mm (V and 3.9 ± 1.2 mm (R for wasp venom (p< 0.01. Local reaction 30 minutes after maintenance injectionwere 6.1 ± 1.7 cm (V and 5.4 ± 2.5 cm (R for bee venom(NS and 5.1 ± 1.8 cm (V and 6.1 ± 1.8 cm (R for wasp venom(p < 0.05.Late local reactions (LLR and tiredness (T on the day of injectionand 24 hours after injection were equally distributedamong both groups and were mild (LLR on the day of injection:38% of patients [V] vs. 43% [R]. LLR after 24 hours: 28%[V] vs. 28% [R]. T on the day of injection: 21% [V] vs. 23% [R].T after 24 hours: 0% [V] vs. 6% [R]. Conclusions. V was at least as safe as A. There were no adversereactions due to switching from one brand to another. Slightlybut significantly smaller weal in skin prick tests and immediatelocal reactions might be due to lesser potency or betterpurification of V wasp extract.

  11. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Preclinical testing of Peruvian anti-bothropic anti-venom against Bothrops andianus snake venom.

    Science.gov (United States)

    Schneider, Francisco S; Starling, Maria C; Duarte, Clara G; Machado de Avila, Ricardo; Kalapothakis, Evanguedes; Silva Suarez, Walter; Tintaya, Benigno; Flores Garrido, Karin; Seraylan Ormachea, Silvia; Yarleque, Armando; Bonilla, César; Chávez-Olórtegui, Carlos

    2012-11-01

    Bothrops andianus is a venomous snake found in the area of Machu Picchu (Peru). Its venom is not included in the antigenic pool used for production of the Peruvian anti-bothropic anti-venom. B. andianus venom can elicit many biological effects such as hemorrhage, hemolysis, proteolytic activity and lethality. The Peruvian anti-bothropic anti-venom displays consistent cross-reactivity with B. andianus venom, by ELISA and Western Blotting and is also effective in neutralizing the venom's toxic activities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters)

    OpenAIRE

    Ivan Koludarov; Jackson, Timothy N. W.; Kartik Sunagar; Amanda Nouwens; Iwan Hendrikx; Bryan G. Fry

    2014-01-01

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of thr...

  14. Novel venom gene discovery in the platypus

    OpenAIRE

    Mitreva, Makedonka; Papenfuss, Antony T.; Whittington, Camilla M.; Locke, Devin P.; Mardis, Elaine; Wilson, Richard K.; Abubucker, Sahar; Wong, Emily SW; Hsu, Artur; Kuchei, Philip W.; Belov, Katherine; Warren, Wesley

    2010-01-01

    Background: To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components. Results: We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores)...

  15. Snake venom instability | Willemse | African Zoology

    African Journals Online (AJOL)

    Egyptian cobra Naja haje haje) and puffadder (Bills arietans). Considerable differences in electrophoretic characteristics were found between fresh venom and commercial venom samples from the same species of snake. These differences could be attributed partly to the instability of snake venom under conditions of drying ...

  16. Does the administration of pilocarpine prior to venom milking influence the composition of Micrurus corallinus venom?

    Science.gov (United States)

    Morais-Zani, Karen de; Serino-Silva, Caroline; Galizio, Nathália da Costa; Tasima, Lídia Jorge; Pagotto, Josias Falararo; Rocha, Marisa Maria Teixeira da; Marcelino, José Roberto; Sant'Anna, Sávio Stefanini; Tashima, Alexandre Keiji; Tanaka-Azevedo, Anita Mitico; Grego, Kathleen Fernandes

    2018-03-01

    Considering that the scarcity of venom represents a huge challenge for biochemical and functional studies of Micrurus species (coral snakes), in this report we describe for the first time the influence of pilocarpine administration prior to venom milking on the yield and protein composition of Micrurus corallinus venom. The administration of pilocarpine resulted in an increase of about 127% in the volume of venom milked, with similar protein content. Venoms showed similar protein bands distribution and intensity by SDS-PAGE and equivalents RP-HPLC profiles. Our proteomic analysis showed that venoms milked in the presence and absence of pilocarpine presented comparable protein profiles, in terms of protein composition and relative abundance. The toxins identified were assigned to 13 protein families and represent the most complete M. corallinus venom proteome described so far, in terms of number of protein families identified. Our data indicate that the administration of pilocarpine prior to venom milking increases the venom yield and does not change significantly the venom composition of M. corallinus. The employment of pilocarpine represents a useful approach to increase the yield of venom not only for Micrurus species, but also for other genera of snakes with limitations regarding the amount of venom available. In this report, we evaluated the influence of pilocarpine administration prior to venom milking in the overall composition of M. corallinus venom. We showed that the use of pilocarpine 10min before M. corallinus venom milking increases venom yield by ~127%. Not only the volume of venom obtained is higher, but also the protein concentration of both venoms is similar, opposing the idea that a more diluted venom is obtained as a result of pilocarpine administration, observed in non-front-fanged snakes. Shotgun proteomics analysis revealed that venom milked with and without the use of this drug showed similar overall protein composition and relative abundances

  17. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    National Research Council Canada - National Science Library

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-01-01

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype...

  18. Diagnosis of Hymenoptera venom allergy.

    Science.gov (United States)

    Biló, B M; Rueff, F; Mosbech, H; Bonifazi, F; Oude-Elberink, J N G

    2005-11-01

    The purpose of diagnostic procedure is to classify a sting reaction by history, identify the underlying pathogenetic mechanism, and identify the offending insect. Diagnosis of Hymenoptera venom allergy thus forms the basis for the treatment. In the central and northern Europe vespid (mainly Vespula spp.) and honeybee stings are the most prevalent, whereas in the Mediterranean area stings from Polistes and Vespula are more frequent than honeybee stings; bumblebee stings are rare throughout Europe and more of an occupational hazard. Several major allergens, usually glycoproteins with a molecular weight of 10-50 kDa, have been identified in venoms of bees, vespids. and ants. The sequences and structures of the majority of venom allergens have been determined and several have been expressed in recombinant form. A particular problem in the field of cross-reactivity are specific immunoglobulin E (IgE) antibodies directed against carbohydrate epitopes, which may induce multiple positive test results (skin test, in vitro tests) of still unknown clinical significance. Venom hypersensitivity may be mediated by immunologic mechanisms (IgE-mediated or non-IgE-mediated venom allergy) but also by nonimmunologic mechanisms. Reactions to Hymenoptera stings are classified into normal local reactions, large local reactions, systemic toxic reactions, systemic anaphylactic reactions, and unusual reactions. For most venom-allergic patients an anaphylactic reaction after a sting is very traumatic event, resulting in an altered health-related quality of life. Risk factors influencing the outcome of an anaphylactic reaction include the time interval between stings, the number of stings, the severity of the preceding reaction, age, cardiovascular diseases and drug intake, insect type, elevated serum tryptase, and mastocytosis. Diagnostic tests should be carried out in all patients with a history of a systemic sting reaction to detect sensitization. They are not recommended in subjects with

  19. Immunological Studies of Brown Recluse Spider Venom

    Science.gov (United States)

    Elgert, Klaus D.; Ross, Milton A.; Campbell, Benedict J.; Barrett, James T.

    1974-01-01

    Polyacrylamide gel electrophoresis of Loxosceles reclusa venom demonstrated that only one of seven or eight major (plus three or four minor) protein components caused necrosis in guinea pig skin. Sephadex gel filtration separated the venom into three major peaks, the second peak of which contained the dermonecrotic activity. Hyperimmunization of rabbits with increasing doses of venom from L. reclusa produced potent precipitating antisera, and the rabbits became resistant to lesion development. Ouchterlony-type immunodiffusion and immunoelectrophoretic studies revealed six to seven distinct precipitation lines, one of which stained intensely for esterase activity. Immunohistochemical techniques failed to detect any protease, lipase, catalase, acid phosphatase, alkaline phosphatase, or amylase activity in the venom. The spreading activity of recluse spider venom in guinea pig skin was inhibited as much as 71% by antivenom. Venom preincubated with antivenom was unable to incite lesions in guinea pig skin. Passive immunization of guinea pigs 18 h before an injection of venom conferred venom resistance upon the animals. Local injections of antivenom immediately after intradermal injections of venom markedly reduced the dermal lesion. Heparin reduced the local and systemic effects of venom when preincubated with whole venom or when administered systemically before an intradermal injection of venom. Treatment of whole venom with the chelating agent ethylenediaminetetraacetate did not inhibit its necrotic activity. Transfer studies from a 24-h lesion indicated that the necrotic activity was localized and remained active in tissue for at least 24 h but not for 5 days. No lesions developed when high concentrations of venom were intradermally injected into the skin of sacrificed guinea pigs, indicating that an interaction of body constituents and venom is essential for the development of a lesion. Images PMID:4140161

  20. Venom on ice: first insights into Antarctic octopus venoms.

    Science.gov (United States)

    Undheim, E A B; Georgieva, D N; Thoen, H H; Norman, J A; Mork, J; Betzel, C; Fry, B G

    2010-11-01

    The venom of Antarctic octopus remains completely unstudied. Here, a preliminary investigation was conducted into the properties of posterior salivary gland (PSG) extracts from four Antarctica eledonine (Incirrata; Octopodidae) species (Adelieledone polymorpha, Megaleledone setebos, Pareledone aequipapillae, and Pareledone turqueti) collected from the coast off George V's Land, Antarctica. Specimens were assayed for alkaline phosphatase (ALP), acetylcholinesterase (AChE), proteolytic, phospholipase A(2) (PLA(2)), and haemolytic activities. For comparison, stomach tissue from Cirroctopus sp. (Cirrata; Cirroctopodidae) was also assayed for ALP, AChE, proteolytic and haemolytic activities. Dietary and morphological data were collected from the literature to explore the ecological importance of venom, taking an adaptive evolutionary approach. Of the incirrate species, three showed activities in all assays, while P. turqueti did not exhibit any haemolytic activity. There was evidence for cold-adaptation of ALP in all incirrates, while proteolytic activity in all except P. turqueti. Cirroctopus sp. stomach tissue extract showed ALP, AChE and some proteolytic activity. It was concluded that the AChE activity seen in the PSG extracts was possibly due to a release of household proteins, and not one of the secreted salivary toxins. Although venom undoubtedly plays an important part in prey capture and processing by Antarctica eledonines, no obvious adaptations to differences in diet or morphology were apparent from the enzymatic and haemolytic assays. However, several morphological features including enlarged PSG, small buccal mass, and small beak suggest such adaptations are present. Future studies should be conducted on several levels: Venomic, providing more detailed information on the venom compositions as well as the venom components themselves; ecological, for example application of serological or genetic methods in identifying stomach contents; and behavioural

  1. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery.

    Science.gov (United States)

    Robinson, Samuel D; Undheim, Eivind A B; Ueberheide, Beatrix; King, Glenn F

    2017-10-01

    Animal venoms are complex chemical arsenals. Most venoms are rich in bioactive peptides with proven potential as research tools, drug leads and drugs. Areas covered: We review recent advances in venom-peptide discovery, particularly the adoption of combined transcriptomic/proteomic approaches for the exploration of venom composition. Expert commentary: Advances in transcriptomics and proteomics have dramatically altered the manner and rate of venom-peptide discovery. The increasing trend towards a toxin-driven approach, as opposed to traditional target-based screening of venoms, is likely to expedite the discovery of venom-peptides with novel structures and new and unanticipated mechanisms of action. At the same time, these advances will drive the development of higher-throughput approaches for target identification. Taken together, these approaches should enhance our understanding of the natural ecological function of venom peptides and increase the rate of identification of novel venom-derived pharmacological tools, drug leads and drugs.

  2. Snake venom metalloproteinases.

    Science.gov (United States)

    Markland, Francis S; Swenson, Stephen

    2013-02-01

    Recent proteomic analyses of snake venoms show that metalloproteinases represent major components in most of the Crotalid and Viperid venoms. In this chapter we discuss the multiple activities of the SVMPs. In addition to hemorrhagic activity, members of the SVMP family also have fibrin(ogen)olytic activity, act as prothrombin activators, activate blood coagulation factor X, possess apoptotic activity, inhibit platelet aggregation, are pro-inflammatory and inactivate blood serine proteinase inhibitors. Clearly the SVMPs have multiple functions in addition to their well-known hemorrhagic activity. The realization that there are structural variations in the SVMPs and the early studies that led to their classification represents an important event in our understanding of the structural forms of the SVMPs. The SVMPs were subdivided into the P-I, P-II and P-III protein classes. The noticeable characteristic that distinguished the different classes was their size (molecular weight) differences and domain structure: Class I (P-I), the small SVMPs, have molecular masses of 20-30 kDa, contain only a pro domain and the proteinase domain; Class II (P-II), the medium size SVMPs, molecular masses of 30-60 kDa, contain the pro domain, proteinase domain and disintegrin domain; Class III (P-III), the large SVMPs, have molecular masses of 60-100 kDa, contain pro, proteinase, disintegrin-like and cysteine-rich domain structure. Another significant advance in the SVMP field was the characterization of the crystal structure of the first P-I class SVMP. The structures of other P-I SVMPs soon followed and the structures of P-III SVMPs have also been determined. The active site of the metalloproteinase domain has a consensus HEXXHXXGXXHD sequence and a Met-turn. The "Met-turn" structure contains a conserved Met residue that forms a hydrophobic basement for the three zinc-binding histidines in the consensus sequence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Arthropod venom citrate inhibits phospholipase A2.

    Science.gov (United States)

    Fenton, A W; West, P R; Odell, G V; Hudiburg, S M; Ownby, C L; Mills, J N; Scroggins, B T; Shannon, S B

    1995-06-01

    Citrate has been identified as a major component of honey bee (Apis mellifera) venom by gas liquid chromatography-mass spectrometry. A citrate concentration of 9% was found for dried bee venom by a coupled enzyme assay, aconitase-isocitric dehydrogenase. A liquid honey bee venom would contain 140 mM citrate concentration (if the solids content were 30%). Bee venom phospholipase was inhibited at a 43% level with a citrate concentration of 20 mM and calcium ion at 3 mM with the enzyme assay. Citrate was also found in the venoms of bumble bee, Bombus fervidus, 7%; yellow jacket, Vespula maculifrons, 4%; scorpion, Centruroides sculpturatus, 8%; tarantula, Grammastola cala, 8% and brown recluse spider venom gland extract, Loxoceles reclusa, 1.5% based on dried venom solids. Citrate may serve as an endogenous inhibitor of divalent metal ion-dependent enzymes in arthropod venoms as described by Francis et al. (1992, Toxicon 30, 1239-1246). Many arthropod venoms contain calcium-dependent phospholipases. A direct effect of citrate as a venom component may be possible. The presence of citrate in venoms must be considered in research on receptors, ion channels and divalent ion-dependent toxins.

  4. Therapeutical Potential of Venom Peptides

    Directory of Open Access Journals (Sweden)

    İlker Kelle

    2006-01-01

    Full Text Available The term of pharmazooticals is known as a few amount of drugs derived from natural sources such as plants, venomous species of snakes, spiders, scorpions, frogs, lizards and cone snails. Peptide components of venoms are directed against wide variety of pharmacological targets such as ion channels and receptors. At the beginning, a number of these peptides have been used in experimental studies for defining the physiological, biochemical and immunological activities of organisms like mammalians. In recent studies, it has been shown that venom peptides can be valuable in treatment of acute and chronic pain, autoimmune and cardiovascular diseases, neurological disorders and chronic inflammatory and tumoral processes. Therefore particularly in clinical approaches, these peptide molecules or their synthetic analogues are considered as alternative agents that can be used instead of classical drugs for many clinical disorders due to their potent activity besides very few side effects.

  5. Colubrid Venom Composition: An -Omics Perspective.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Campos, Pollyanna F; Ching, Ana T C; Mackessy, Stephen P

    2016-07-23

    Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.

  6. Anaphylaxis to Insect Venom Allergens

    DEFF Research Database (Denmark)

    Ollert, Markus; Blank, Simon

    2015-01-01

    Anaphylaxis due to Hymenoptera stings is one of the most severe consequences of IgE-mediated hypersensitivity reactions. Although allergic reactions to Hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, diagnostic tests are still hampered......, and to contribute to the understanding of the immunological mechanisms elicited by insect venoms....

  7. Diagnosis of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Bilo, BM; Rueff, F; Mosbech, H; Bonifazi, F; Oude Elberink, JNG

    2005-01-01

    The purpose of diagnostic procedure is to classify a sting reaction by history, identify the underlying pathogenetic mechanism, and identify the offending insect. Diagnosis of Hymenoptera venom allergy thus forms the basis for the treatment. In the central and northern Europe vespid (mainly Vespula

  8. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah)

    OpenAIRE

    Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong

    2015-01-01

    Background The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Results Transcriptomic results reveal high redundancy of tox...

  9. Kinins in ant venoms--a comparison with venoms of related Hymenoptera

    NARCIS (Netherlands)

    Piek, T.; Schmidt, J. O.; de Jong, J. M.; Mantel, P.

    1989-01-01

    1. Venom preparations have been made of six ant, one pompilid wasp, two mutillid wasp, and four social wasp species. 2. The venoms were analysed pharmacologically in order to detect kinin-like activity. 3. Due to the small amounts of venoms available only a cascade of smooth muscle preparation could

  10. Snake venom antibodies in Ecuadorian Indians.

    Science.gov (United States)

    Theakston, R D; Reid, H A; Larrick, J W; Kaplan, J; Yost, J A

    1981-10-01

    Serum samples from 223 Waorani Indians, a tribe in eastern Ecuador, were investigated by enzyme-linked immunosorbent assay for antibodies to snake venom. Seventy-eight per cent were positive, confirming the highest incidence and mortality from snake bite poisoning yet recorded in the world. Most samples were positive for more than one venom antibody. Antibodies were found to venoms of Bothrops viper in 60% of positive cases, of Micrurus coral snake in 21%, and of the bushmaster, Lachesis muta, in 18%. Further studies are needed to determine whether high venom-antibody levels afford protection against further snake envenoming.

  11. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  12. Cytotoxicity of Southeast Asian snake venoms

    Directory of Open Access Journals (Sweden)

    A Jamunaa

    2012-01-01

    Full Text Available Cytotoxicity of venoms from eleven medically important snakes found in Southeast Asia (Naja kaouthia, Naja siamensis, Naja sumatrana, Ophiophagus hannah, Bungarus candidus, Bungarus fasciatus, Enhydrina schistosa, Calloselasma rhodostoma, Trimeresurus purpureomaculatus and Tropidolaemus sumatranus was determined, based on the MTS cytotoxicity assay, which determines the survival of viable cells in monolayer MDCK and Vero cell cultures upon exposure to the snake venoms. Snake venom toxicity was expressed as the venom dose that killed 50% of the cells (CTC50 under the assay conditions. Venoms of C. rhodostoma (2.6 µg/mL, 1.4 µg/mL and O. hannah were the most cytotoxic (3.8 µg/mL, 1.7 µg/mL whereas N. siamensis venom showed the least cytotoxicity (51.9 µg/mL, 45.7 µg/mL against Vero and MDCK cells, respectively. All the viper venoms showed higher cytotoxic potency towards both Vero and MDCK cell lines, in comparison to krait and cobra venoms. E. schistosa did not cause cytotoxicity towards MDCK or Vero cells at the tested concentrations. The cytotoxicity correlates well with the known differences in the composition of venoms from cobras, kraits, vipers and sea snakes.

  13. Snake venom toxins: toxicity and medicinal applications.

    Science.gov (United States)

    Chan, Yau Sang; Cheung, Randy Chi Fai; Xia, Lixin; Wong, Jack Ho; Ng, Tzi Bun; Chan, Wai Yee

    2016-07-01

    Snake venoms are complex mixtures of small molecules and peptides/proteins, and most of them display certain kinds of bioactivities. They include neurotoxic, cytotoxic, cardiotoxic, myotoxic, and many different enzymatic activities. Snake envenomation is a significant health issue as millions of snakebites are reported annually. A large number of people are injured and die due to snake venom poisoning. However, several fatal snake venom toxins have found potential uses as diagnostic tools, therapeutic agent, or drug leads. In this review, different non-enzymatically active snake venom toxins which have potential therapeutic properties such as antitumor, antimicrobial, anticoagulating, and analgesic activities will be discussed.

  14. The Biochemical Toxin Arsenal from Ant Venoms.

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-20

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  15. Prevention of anaphylaxis with ant venom immunotherapy.

    Science.gov (United States)

    Brown, Simon G A; Heddle, Robert J

    2003-12-01

    Worldwide, eight genera of ants have been associated with sting allergy. Until recently only whole ant body extracts have been used for immunotherapy. The purpose of this review is to examine recent advances in the understanding of ant venom allergy and treatment using venom immunotherapy. Public health problems due to severe ant sting anaphylaxis are not confined to the imported fire ant of North America. Pachycondyla sennaarensis (samsum ant), Pachycondyla chinensis, and Myrmecia pilosula (jack jumper ant) also appear to pose notable threats. The risk to humans from a particular species probably depends on complex interactions between likelihood of human contact, insect aggression, efficiency of the venom delivery apparatus, and venom allergenicity. The highest population prevalence of clinical ant sting allergy so far (3.0%) was reported from south-eastern Australia, due mainly to M. pilosula. Prospective follow-up of untreated people suggests that those older than 30 years with a history of severe reactions (respiratory compromise or hypotension) will benefit most from venom immunotherapy. Whereas the efficacy of ant whole body extract immunotherapy remains to be proven, ant venom immunotherapy has been demonstrated to reduce the risk of systemic reactions to M. pilosula from 72% to 3%. Although a simple method of venom extraction has been developed, small market size means that the treatment may never become widely available. Ant venom immunotherapy is feasible and highly efficacious. However, the limited geographical distribution of each species presents a major challenge to making venom extracts available for clinical use.

  16. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis.

    Science.gov (United States)

    Cooper, Allen M; Kelln, Wayne J; Hayes, William K

    2014-12-01

    Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.

  17. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  18. Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China.

    Science.gov (United States)

    Xu, Ning; Zhao, Hong-Yan; Yin, Yin; Shen, Shan-Shan; Shan, Lin-Lin; Chen, Chuan-Xi; Zhang, Yan-Xia; Gao, Jian-Fang; Ji, Xiang

    2017-04-21

    We conducted an omics-analysis of the venom of Naja kaouthia from China. Proteomics analysis revealed six protein families [three-finger toxins (3-FTx), phospholipase A2 (PLA2), nerve growth factor, snake venom metalloproteinase (SVMP), cysteine-rich secretory protein and ohanin], and venom-gland transcriptomics analysis revealed 28 protein families from 79 unigenes. 3-FTx (56.5% in proteome/82.0% in transcriptome) and PLA2 (26.9%/13.6%) were identified as the most abundant families in venom proteome and venom-gland transcriptome. Furthermore, N. kaouthia venom expressed strong lethality (i.p. LD50: 0.79μg/g) and myotoxicity (CK: 5939U/l) in mice, and showed notable activity in PLA2 but weak activity in SVMP, l-amino acid oxidase or 5' nucleotidase. Antivenomic assessment revealed that several venom components (nearly 17.5% of total venom) from N. kaouthia could not be thoroughly immunocaptured by commercial Naja atra antivenom. ELISA analysis revealed that there was no difference in the cross-reaction between N. kaouthia and N. atra venoms against the N. atra antivenom. The use of commercial N. atra antivenom in treatment of snakebites caused by N. kaouthia is reasonable, but design of novel antivenom with the attention on enhancing the immune response of non-immunocaptured components should be encouraged. The venomics, antivenomics and venom-gland transcriptome of the monocoled cobra (Naja kaouthia) from China have been elucidated. Quantitative and qualitative differences are evident when venom proteomic and venom-gland transcriptomic profiles are compared. Two protein families (3-FTx and PLA2) are found to be the predominated components in N. kaouthia venom, and considered as the major players in functional role of venom. Other protein families with relatively low abundance appear to be minor in the functional significance. Antivenomics and ELISA evaluation reveal that the N. kaouthia venom can be effectively immunorecognized by commercial N. atra antivenom

  19. Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus.

    Science.gov (United States)

    Corrêa-Netto, Carlos; Junqueira-de-Azevedo, Inácio de L M; Silva, Débora A; Ho, Paulo L; Leitão-de-Araújo, Moema; Alves, Maria Lúcia M; Sanz, Libia; Foguel, Débora; Zingali, Russolina Benedeta; Calvete, Juan J

    2011-08-24

    The venom proteomes of Micrurus altirostris and M. corallinus were analyzed by combining snake venomics and venom gland transcriptomic surveys. In both coral snake species, 3FTx and PLA(2) were the most abundant and diversified toxin families. 33 different 3FTxs and 13 PLA(2) proteins, accounting respectively for 79.5% and 13.7% of the total proteins, were identified in the venom of M. altirostris. The venom of M. corallinus comprised 10 3FTx (81.7% of the venom proteome) and 4 (11.9%) PLA(2) molecules. Transcriptomic data provided the full-length amino acid sequences of 18 (M. altirostris) and 10 (M. corallinus) 3FTxs, and 3 (M. altirostris) and 1 (M. corallinus) novel PLA(2) sequences. In addition, venom from each species contained single members of minor toxin families: 3 common (PIII-SVMP, C-type lectin-like, L-amino acid oxidase) and 4 species-specific (CRISP, Kunitz-type inhibitor, lysosomal acid lipase in M. altirostris; serine proteinase in M. corallinus) toxin classes. The finding of a lipase (LIPA) in the venom proteome and in the venom gland transcriptome of M. altirostris supports the view of a recruitment event predating the divergence of Elapidae and Viperidae more than 60 Mya. The toxin profile of both M. altirostris and M. corallinus venoms points to 3FTxs and PLA(2) molecules as the major players of the envenoming process. In M. altirostris venom, all major, and most minor, 3FTxs display highest similarity to type I α-neurotoxins, suggesting that these postsynaptically acting toxins may play the predominant role in the neurotoxic effect leading to peripheral paralysis, respiratory arrest, and death. M. corallinus venom posesses both, type I α-neurotoxins and a high-abundance (26% of the venom proteome) protein of subfamily XIX of 3FTxs, exhibiting similarity to bucandin from Malayan krait, Bungarus candidus, venom, which enhances acetylcholine release presynaptically. This finding may explain the presynaptic neurotoxicity of M. corallinus venom

  20. Rush Venom Immunotherapy in Children.

    Science.gov (United States)

    Confino-Cohen, Ronit; Rosman, Yossi; Goldberg, Arnon

    Rush venom immunotherapy (VIT) is highly effective in Hymenoptera venom allergy. Still, specific data regarding its safety and efficiency in children are rather sparse. The objective of this study was to better evaluate the safety and efficiency of rush VIT in this specific age group. Children younger than 16 years with systemic reaction to insect sting involving, at least, one body system other than skin and children aged 16-18 years with any kind of systemic reaction were offered conventional or rush VIT with a build-up phase that lasted 3 days. Eighty-four of 127 children together with their caregivers chose to receive rush VIT. Seventy of them were allergic to bee venom only. There was no difference between the children receiving rush or conventional VIT in the incidence of systemic reactions during the build-up phase (19% and 23.2%, respectively), nor was there any difference in regard to the severity of these reactions. Efficiency was improved with rush VIT, as reflected by a higher number of patients achieving the 100 mcg maintenance dose with the primary protocol (83 of 84 patients, 98.8%, and 39 of 43, 90.7%, for rush and conventional, respectively, P = .04). Rush VIT in children is as safe as and more efficient than conventional VIT. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. In-vitro diagnostics of Hymenoptera venom allergy

    NARCIS (Netherlands)

    Rueff, F.; Vos, B.; Przybilla, B.

    In-vitro diagnostics of Hymenoptera venom allergy Patients with a history of anaphylactic sting reactions require an allergological work-up (history, in-vitro tests, and skin tests) to clarify indications on venom immunotherapy and on the type of venom to be used. To demonstrate a venom

  2. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  3. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  4. Tears of Venom: Hydrodynamics of Reptilian Envenomation

    Science.gov (United States)

    Young, Bruce A.; Herzog, Florian; Friedel, Paul; Rammensee, Sebastian; Bausch, Andreas; van Hemmen, J. Leo

    2011-05-01

    In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal’s gland to the prey’s tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey’s tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.

  5. Identification of bradykinins in solitary wasp venoms.

    Science.gov (United States)

    Konno, Katsuhiro; Palma, Mario Sergio; Hitara, Izaura Yoshico; Juliano, Maria Aparecida; Juliano, Luiz; Yasuhara, Tadashi

    2002-03-01

    Bradykinins were identified in three solitary wasp venoms. Purification and characterization of the venom extract of the scoliid wasp Megacampsomeris prismatica led to the identification of bradykinin and threonine(6)-bradykinin as the major peptide components. The survey of a number of extracts from solitary wasp venom by MALDI-TOF MS revealed that the venoms of two other scoliid wasps, Campsomeriella annulata annulata and Carinoscolia melanosoma fascinata, also contained Thr(6)-BK as one of the major components. Thus, this study showed the presence of bradykinins in some of the solitary wasp venoms. Moreover, it indicated that these peptides play a major role in their paralyzing action for prey capture because these bradykinins have been shown to block the synaptic transmission of the nicotinic acetylcholine receptor in the insect central nervous system.

  6. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies.

    Science.gov (United States)

    Romano, Joseph D; Tatonetti, Nicholas P

    2015-11-24

    Animal venoms have been used for therapeutic purposes since the dawn of recorded history. Only a small fraction, however, have been tested for pharmaceutical utility. Modern computational methods enable the systematic exploration of novel therapeutic uses for venom compounds. Unfortunately, there is currently no comprehensive resource describing the clinical effects of venoms to support this computational analysis. We present VenomKB, a new publicly accessible knowledge base and website that aims to act as a repository for emerging and putative venom therapies. Presently, it consists of three database tables: (1) Manually curated records of putative venom therapies supported by scientific literature, (2) automatically parsed MEDLINE articles describing compounds that may be venom derived, and their effects on the human body, and (3) automatically retrieved records from the new Semantic Medline resource that describe the effects of venom compounds on mammalian anatomy. Data from VenomKB may be selectively retrieved in a variety of popular data formats, are open-source, and will be continually updated as venom therapies become better understood.

  7. Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon

    Science.gov (United States)

    Lomonte, Bruno; Tsai, Wan-Chih; Ureña-Diaz, Juan Manuel; Sanz, Libia; Mora-Obando, Diana; Sánchez, Elda E.; Fry, Bryan G.; Gutiérrez, José María; Gibbs, H. Lisle; Sovic, Michael G.; Calvete, Juan J.

    2015-01-01

    We report a genus-wide comparison of venom proteome variation across New World pit vipers in the genus Agkistrodon. Despite the wide variety of habitats occupied by this genus and that all its taxa feed on diverse species of vertebrates and invertebrate prey, the venom proteomes of copperheads, cottonmouths, and cantils are remarkably similar, both in the type and relative abundance of their different toxin families. The venoms from all the eleven species and subspecies sampled showed relatively similar proteolytic and PLA2 activities. In contrast, quantitative differences were observed in hemorrhagic and myotoxic activities in mice. The highest myotoxic activity was observed with the venoms of A. b. bilineatus, followed by A. p. piscivorus, whereas the venoms of A. c. contortrix and A. p. leucostoma induced the lowest myotoxic activity. The venoms of Agkistrodon bilineatus subspecies showed the highest hemorrhagic activity and A. c. contortrix the lowest. Compositional and toxicological analyses agree with clinical observations of envenomations by Agkistrodon in the USA and Central America. A comparative analysis of Agkistrodon shows that venom divergence tracks phylogeny of this genus to a greater extent than in Sistrurus rattlesnakes, suggesting that the distinct natural histories of Agkistrodon and Sistrurus clades may have played a key role in molding the patterns of evolution of their venom protein genes. Biological significance A deep understanding of the structural and functional profiles of venoms and of the principles governing the evolution of venomous systems is a goal of venomics. Isolated proteomics analyses have been conducted on venoms from many species of vipers and pit vipers. However, making sense of these large inventories of data requires the integration of this information across multiple species to identify evolutionary and ecological trends. Our genus-wide venomics study provides a comprehensive overview of the toxic arsenal across

  8. Seasonal biotic and abiotic factors affecting hunting strategy in free-living Saharan sand vipers, Cerastes vipera.

    Science.gov (United States)

    Horesh, Sefi J A; Sivan, Jaim; Rosenstrauch, Avi; Tesler, Itay; Degen, A Allan; Kam, Michael

    2017-02-01

    Sit-and-wait ambushing and active hunting are two strategies used by predators to capture prey. In snakes, hunting strategy is conserved phylogenetically; most species employ only one strategy. Active hunters encounter and capture more prey but invest more energy in hunting and have higher risks of being predated. This trade-off is important to small predators. The small Cerastes vipera employs both modes of hunting, which is unlike most viperids which use only sit-and wait ambushing. This species hibernates in October and emerges in April. Energy intake should be high prior to hibernation to overcome the non-feeding hibernation period and for reproduction on their emergence. We predicted that more individuals would hunt actively towards hibernation and an abiotic factor would trigger this response. Furthermore, since more energy is required for active hunting, we predicted that snakes in good body condition would use active hunting to a greater extent than snakes in poor body condition. To test our predictions, we tracked free-living snakes year round and determined their hunting strategy, estimated their body condition index (BCI), and calculated circannual parameters of day length as environmental cues known to affect animal behaviour. Two novel findings emerged in this study, namely, hunting strategy was affected significantly by 1) the circannual change in day length and 2) by BCI. The proportion of active hunters increased from 5% in April to over 30% in October and BCI of active foragers was higher than that of sit-and-wait foragers and, therefore, our predictions were supported. The entrainment between the proportion of active hunting and the abiotic factor is indicative of an adaptive function for choosing a hunting strategy. A trend was evident among life stages. When all life stages were present (September-October), the proportion of active foragers increased with age: 0.0% among neonates, 18.2% among juveniles and 31.4% among adults. We concluded that

  9. [Venomous and poisonous animals. IV. Envenomations by venomous aquatic vertebrates].

    Science.gov (United States)

    Bédry, R; De Haro, L

    2007-04-01

    Epidemiological information on marine envenomation is generally less extensive in Europe than in tropical regions where these injuries are more severe and the need for medical advice is more frequent. For these reasons use of regional Poison Control Centers in the area where the injury occurs must be encouraged. The purpose of this review is to describe envenomation by bony fish (lion fish, stone fish, and catfish), cartilaginous fish (stingrays and poisonous sharks), or other venomous aquatic vertebrates (moray-eels and marine snakes). Understanding of these envenomation syndromes is important not only in tropical areas but also in Europe where importation of dangerous species has increased in recent years.

  10. The effect of a single dose of prednisolone in dogs envenomated by Vipera berus--a randomized, double-blind, placebo-controlled clinical trial.

    Science.gov (United States)

    Brandeker, Erika; Hillström, Anna; Hanås, Sofia; Hagman, Ragnvi; Holst, Bodil Ström

    2015-02-26

    Treatment with glucocorticoids after snakebite in dogs is controversial and randomized clinical studies are missing. The objective of this study was to investigate the effect of a single dose of prednisolone in dogs envenomated by Vipera berus in a double-blind placebo-controlled study, after exclusion of dogs treated with antivenom. The two treatment groups were compared regarding clinical status and clinicopathological test results. A total of 75 dogs bitten by Vipera berus within the previous 24 hours were included. Clinical assessment, blood sampling and measurement of the bitten body part were done at admission (Day 1), after 24 hours (Day 2) and at a re-examination (Re-exam) after 10-28 days. Dogs were given prednisolone 1 mg/kg bodyweight (PRED) or saline (PLACEBO) subcutaneously in a randomized, double-blind clinical trial. Dogs were examined clinically and mental status and extent of edema were described. Furthermore, appetite, vomiting, diarrhea, cardiac arrhythmia and death were recorded. Concentrations of C-reactive protein (CRP) and high sensitivity cardiac Troponin I (cTnI), hematology variables and Prothrombin time (PT) were determined. Systemic inflammation was defined as present if CRP > 35 mg/l. None of the dogs died during the study period. The mental status was reduced in 60/75 (80%) of dogs on Day 1, compared to 19/75 (25%) on Day 2. The proportion of dogs with no or only mild edema increased significantly from Day 1 to Day 2. About one-third of the dogs developed gastrointestinal signs during the study period. Cardiac arrhythmia was uncommon. Clinicopathological changes included increased total leucocyte count, CRP and troponin concentration on Day 2. The cTnI concentration was increased in dogs with systemic inflammation, compared to dogs without systemic inflammation. A single dose of prednisolone did not significantly affect any of the clinical or clinicopathological parameters studied, except for a higher monocyte count on Day 2 in

  11. Kinetic studies on the activation of human factor X. The role of metal ions on the reaction catalyzed by the venom coagulant protein of Viper russelli.

    Science.gov (United States)

    Morris, S; Robey, F A; Kosow, D P

    1978-07-10

    The effect of Ca2+, Mg2+, and Mn2+ on the initial rate of activation of human Factor X by the venom coagulant protein of Vipera russelli has been investigated. Neither Mg2+ nor Mn2+ alone support the reaction. Ca2+ is an essential activator and exhibits cooperative kinetics. Both Mg2+ and Mn2+ enhance the reaction cooperatively when Ca2+ is present at suboptimal concentrations. Similarly, Ca2+ quenches the intrinsic fluorescence of human Factor X in a cooperative manner. While neither Mg2+ nor Mn2+ by themselves affect the fluorescence of human Factor X, they decrease the cooperativity of the Ca2+ binding to the protein as judged by Hill plots of the Ca2+ -induced fluoresence quenching. EPR measurements indicate that there are three high affinity Mn2+ binding sites on human Factor X which can also bind Ca2+. Positive cooperativity was not observed for Mn2+ binding. These data indicate that Ca2+ can cause a conformational change of the Factor X molecule which allows the activation reaction to proceed. We propose that Mn2+ does not support the activation of human Factor X because it cannot induce a necessary conformational change in the absence of Ca2+.

  12. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  13. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  14. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.

    Science.gov (United States)

    Rodríguez-Acosta, Alexis; Sánchez, Elda E; Márquez, Adriana; Carvajal, Zoila; Salazar, Ana M; Girón, María E; Estrella, Amalid; Gil, Amparo; Guerrero, Belsy

    2010-11-01

    In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of A alpha and B beta chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of A alpha and B beta chains at 5 min and of gamma chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm(2)/microg, respectively using 25 microg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD(50) of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 microg protein, showed that B. isabelae venom contained higher

  15. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    Science.gov (United States)

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms.

    Science.gov (United States)

    Debono, Jordan; Cochran, Chip; Kuruppu, Sanjaya; Nouwens, Amanda; Rajapakse, Niwanthi W; Kawasaki, Minami; Wood, Kelly; Dobson, James; Baumann, Kate; Jouiaei, Mahdokht; Jackson, Timothy N W; Koludarov, Ivan; Low, Dolyce; Ali, Syed A; Smith, A Ian; Barnes, Andrew; Fry, Bryan G

    2016-07-08

    Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis) were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.

  17. SNAKE VENOMICS OF Crotalus tigris: THE MINIMALIST TOXIN ARSENAL OF THE DEADLIEST NEARTIC RATTLESNAKE VENOM

    Science.gov (United States)

    CALVETE, Juan J.; PÉREZ, Alicia; LOMONTE, Bruno; SÁNCHEZ, Elda E.; SANZ, Libia

    2012-01-01

    We report the proteomic and antivenomic characterization of Crotalus tigris venom. This venom exhibits the highest lethality for mice among rattlesnakes and the simplest toxin proteome reported to date. The venom proteome of C. tigris comprises 7–8 gene products from 6 toxin families: the presynaptic β-neurotoxic heterodimeric PLA2, Mojave toxin, and two serine proteinases comprise, respectively, 66% and 27% of the C. tigris toxin arsenal, whereas a VEGF-like protein, a CRISP molecule, a medium-sized disintegrin, and 1–2 PIII-SVMPs, each represents 0.1–5% of the total venom proteome. This toxin profile really explains the systemic neuro- and myotoxic effects observed in envenomated animals. In addition, we found that venom lethality of C. tigris and other North American rattlesnake type II venoms correlates with the concentration of Mojave toxin A-subunit, supporting the view that the neurotoxic venom phenotype of crotalid type II venoms may be described as a single-allele adaptation. Our data suggest that the evolutionary trend towards neurotoxicity, which has been also reported for the South American rattlesnakes, may have resulted by paedomorphism. The ability of an experimental antivenom to effectively immunodeplete proteins from the type II venoms of C. tigris, C. horridus, C. oreganus helleri, C. scutulatus scutulatus, and S. catenatus catenatus, indicated the feasibility of generating a pan-American anti-Crotalus type II antivenom, suggested by the identification of shared evolutionary trends among South American and North American Crotalus. PMID:22181673

  18. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms

    Directory of Open Access Journals (Sweden)

    Jordan Debono

    2016-07-01

    Full Text Available Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.

  19. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  20. Preliminary evaluation of total protein concentration and electrophoretic protein fractions in fresh and frozen serum from wild Horned Vipers (Vipera ammodytes ammodytes).

    Science.gov (United States)

    Proverbio, Daniela; de Giorgi, Giada Bagnagatti; Della Pepa, Alessandra; Baggiani, Luciana; Spada, Eva; Perego, Roberta; Comazzi, Carlo; Belloli, Angelo

    2012-12-01

    Determination of the health status of reptiles is based on physical examination and evaluation of hematologic and biochemical values. Evaluation of serum total protein (TP) concentration and protein fractions plays an important role in health assessment; however, little is known about references value for these analytes in wild viperoid snakes. In addition, studies evaluating the stability of proteins in frozen viperoid serum are lacking. The aims of this study were to establish preliminary reference values for concentrations of TP and protein fractions in serum from wild vipers and to evaluate the stability of serum proteins in frozen serum samples from viperoid snakes. Blood samples were collected from wild Horned Vipers (Vipera ammodytes ammodytes). Using fresh serum, TP concentrations were determined using the biuret method and protein fractions were analyzed using agarose gel electrophoresis (AGE); albumin/globulin ratios were calculated. Analyses were also performed on serum frozen at -20°C for 70 days and then thawed. Pre- and post-storage results were compared using the Mann-Whitney U-test. Five adult wild Horned Vipers were sampled and comprised 4 males and 1 female. The female snake had higher TP concentrations than the male snakes. The electrophoretic patterns demonstrated 6 protein fractions that were similar for all 5 snakes. There were no significant changes in the concentrations of the 6 protein fractions post-storage; the percentage of the alpha-1 fraction was increased in frozen/thawed serum. Total protein concentrations in serum from Vipera ammodytes ammodytes were in agreement with published reference intervals for healthy reptiles and viperoid snakes. Serum protein fractions were easy to identify using AGE electrophoresis. © 2012 American Society for Veterinary Clinical Pathology.

  1. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    Science.gov (United States)

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Monotremes (echidna and platypus are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna "venom" may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.

  3. Moving pieces in a venomic puzzle

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Dutra, Alexandre A A; León, Ileana R

    2013-01-01

    Besides being a public health problem, scorpion venoms have a potential biotechnological application since they contain peptides that may be used as drug leads and/or to reveal novel pharmacological targets. A comprehensive Tityus serrulatus venom proteome study with emphasis on the phosphoproteome...... and N-glycoproteome was performed to improve our knowledge on the molecular diversity of the proteinaceous toxins. We combined two peptide identification methodologies, i.e., database search and de novo sequencing, to achieve a more comprehensive overview of the molecular diversity of the venoms...... to be a common post-translational modification in the venom since 80% of the identified molecules were, in fact, products of toxins proteolysis....

  4. [Therapy control of specific hymenoptera venom allergy].

    Science.gov (United States)

    Aust, W; Wichmann, G; Dietz, A

    2010-12-01

    In Germany anaphylactic reactions after insect stings are mostly caused by honey bee (Apis mellifera) and wasp (Vespula vulgaris, Vespula germanica). In the majority of cases venom immunotherapy is a successful therapy and protects patients from recurrent systemic anaphylactic reaction. In some patients persistent severe reactions after insect sting can even occur in spite of venom therapy, as a sign of therapy failure. It is important to identify these patients, who do not benefit from venom immunotherapy, in an early stage of therapy. In this case dose rate of venom immunotherapy must be adjusted for a successful therapy outcome. Up to now skin prick tests, specific IgE-antibodies and in vitro diagnostics are not suitable for detecting therapy failure. Patients with treatment failure can be diagnosed by insect sting test and almost all of them will become fully protected by increasing the maintenance dose. © Georg Thieme Verlag KG Stuttgart · New York.

  5. South american rattlesnake venom: its hemolytic power

    Directory of Open Access Journals (Sweden)

    Édimo Garcia de Lima

    1989-12-01

    Full Text Available The hemolytic power of rattlesnake venom (Crotalus durissus terrificus was Studied. A high percentage of sample with negative hemolytic power was detected when sheep red blood cells were used. A large number of venoms with hemolytic power, though with a low hemolysis percentage, were detected when liquid, recently extracted venom was used. When crystallized venom was used under the same experimental conditions, a higher percentage ofpositivityfor hemolysis was obtained. When the results obtained on agar plates were compared to those obtained in test tubes, a large number of animals with a higher percentage of hemolysis were detected, though this value was not proportional to the number of animals showing positive plate hemolysis. When the hemolytic power of these venoms was tested on human red blood cells, a large percentage of animals with venoms having a low hemolytic power was also detected. Hemolytic power was much greater when human red blood cells were tested with crystallized venom. The preparation of red blood cells also had an important effect and the use of red blood cells from defibrinated blood is recommended. We conclude that rattlesnake venom has hemolytic power that increases when the venom is crystallized. Red blood cells should be properly preparedfor the lysis reactions. We suggest that the lytic power of the venom is related to venom concentration and to the purity of its fractions.Foi estudado o poder hemolitico do veneno da cascavel (Crotalus durissus terrificus. Encontrou-se grande número de suas frações sem capacidade de hemolisar eritrócitos de carneiro. O veneno "in natura", recentemente extraído, e em estado líquido tem pouca atividade litica. A cristalização do veneno aumenta sua concentração e poder lítico. Os resultados de hemólise do sangue de carneiro obtidos em placas e tubos foram comparados evidenciando um grande número de animais com venenos com alto poder hemolítico. Os valores não foram

  6. Snake oil and venoms for medical research

    Science.gov (United States)

    Wolpert, H. D.

    2011-04-01

    Some think that using derivatives of snake venom for medical purposes is the modern version of snake oil but they are seriously misjudging the research potentials of some of these toxins in medicines of the 2000's. Medical trials, using some of the compounds has proven their usefulness. Several venoms have shown the possibilities that could lead to anticoagulants, helpful in heart disease. The blood clotting protein from the taipan snake has been shown to rapidly stop excessive bleeding. The venom from the copperhead may hold an answer to breast cancer. The Malaysian pit viper shows promise in breaking blood clots. Cobra venom may hold keys to finding cures for Parkinson's disease and Alzheimer's. Rattlesnake proteins from certain species have produced blood pressure medicines. Besides snake venoms, venom from the South American dart frog, mollusks (i.e. Cone Shell Snail), lizards (i.e. Gila Monster & Komodo Dragon), some species of spiders and tarantulas, Cephalopods, mammals (i.e. Platypus & Shrews), fish (i.e. sting rays, stone fish, puffer fish, blue bottle fish & box jelly fish), intertidal marine animals (echinoderms)(i.e. Crown of Thorn Star Fish & Flower Urchin) and the Honeybee are being investigated for potential medical benefits.

  7. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola.

    Science.gov (United States)

    Kazuma, Kohei; Masuko, Keiichi; Konno, Katsuhiro; Inagaki, Hidetoshi

    2017-10-13

    Ants (hymenoptera: Formicidae) have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  8. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    Science.gov (United States)

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  9. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola

    Directory of Open Access Journals (Sweden)

    Kohei Kazuma

    2017-10-01

    Full Text Available Ants (hymenoptera: Formicidae have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  10. Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades.

    Science.gov (United States)

    Jesupret, Clémence; Baumann, Kate; Jackson, Timothy N W; Ali, Syed Abid; Yang, Daryl C; Greisman, Laura; Kern, Larissa; Steuten, Jessica; Jouiaei, Mahdokht; Casewell, Nicholas R; Undheim, Eivind A B; Koludarov, Ivan; Debono, Jordan; Low, Dolyce H W; Rossi, Sarah; Panagides, Nadya; Winter, Kelly; Ignjatovic, Vera; Summerhayes, Robyn; Jones, Alun; Nouwens, Amanda; Dunstan, Nathan; Hodgson, Wayne C; Winkel, Kenneth D; Monagle, Paul; Fry, Bryan Grieg

    2014-06-13

    For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as

  11. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Fung, Shin Yee; Tan, Nget Hong

    2015-09-10

    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors

  12. Shortage of Bee, Wasp Venom Stings Those with Allergies

    Science.gov (United States)

    ... news/fullstory_167081.html Shortage of Bee, Wasp Venom Stings Those With Allergies Facing expected season-long ... News) -- A shortage of honeybee, wasp and hornet venom extract has allergists concerned. The extract treats people ...

  13. Microvesicles in the venom of Crotalus durissus terrificus (Serpentes, Viperidae).

    Science.gov (United States)

    Carneiro, Sylvia Mendes; Fernandes, Wilson; Sant'Anna, Sávio Stefanini; Yamanouye, Norma

    2007-01-01

    Microvesicles with electron-dense content are consistently observed by transmission electron microscopy on the luminal face of secretory cells of venom glands of viperid snakes. In this work, we evaluated their presence in Crotalus durissus terrificus venom glands and also in freshly collected venom. Microvesicles were found in the venom glands mainly in regions of exocytosis. They ranged from 40 to 80 nm in diameter. Freeze-fracture replicas of the glands revealed particles on the cytoplasmic leaflet (P-face) of these vesicles, suggesting that they carry transmembrane proteins. Vesicles separated by ultracentrifugation from cell-free venom were similar in size and structure to the microvesicles observed in the glands. A fine fuzzy coat surrounded each microvesicle. The function of these venom vesicles is still unknown, but they may contribute to inactivation of stored venom components, or their activation after the venom is released.

  14. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  15. Neutralization of cobra venom by cocktail antiserum against venom proteins of cobra (Naja naja naja).

    Science.gov (United States)

    Venkatesan, C; Sarathi, M; Balasubramanaiyan, G; Vimal, S; Madan, N; Sundar Raj, N; Mohammed Yusuf Bilal, S; Nazeer Basha, A; Farook, M A; Sahul Hameed, A S; Sridevi, G

    2014-01-01

    Naja naja venom was characterized by its immunochemical properties and electrophoretic pattern which revealed eight protein bands (14 kDa, 24 kDa, 29 kDa, 45 kDa, 48 kDa, 65 kDa, 72 kDa and 99 kDa) by SDS-PAGE in reducing condition after staining with Coomassie Brilliant Blue. The results showed that Naja venom presented high lethal activity. Whole venom antiserum or individual venom protein antiserum (14 kDa, 29 kDa, 65 kDa, 72 kDa and 99 kDa) of venom could recognize N. naja venom by Western blotting and ELISA, and N. naja venom presented antibody titer when assayed by ELISA. The neutralization tests showed that the polyvalent antiserum neutralized lethal activities by both in vivo and in vitro studies using mice and Vero cells. The antiserum could neutralize the lethal activities in in-vivo and antivenom administered after injection of cobra venom through intraperitoneal route in mice. The cocktail antiserum also could neutralize the cytotoxic activities in Vero cell line by MTT and Neutral red assays. The results of the present study suggest that cocktail antiserum neutralizes the lethal activities in both in vitro and in vivo models using the antiserum against cobra venom and its individual venom proteins serum produced in rabbits. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Factors underlying the natural resistance of animals against snake venoms

    Directory of Open Access Journals (Sweden)

    H. Moussatché

    1989-01-01

    Full Text Available The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.

  17. Diversity, phylogenetic distribution, and origins of venomous catfishes.

    Science.gov (United States)

    Wright, Jeremy J

    2009-12-04

    The study of venomous fishes is in a state of relative infancy when compared to that of other groups of venomous organisms. Catfishes (Order Siluriformes) are a diverse group of bony fishes that have long been known to include venomous taxa, but the extent and phylogenetic distribution of this venomous species diversity has never been documented, while the nature of the venoms themselves also remains poorly understood. In this study, I used histological preparations from over 100 catfish genera, basic biochemical and toxicological analyses of fin spine extracts from several species, and previous systematic studies of catfishes to examine the distribution of venom glands in this group. These results also offer preliminary insights into the evolutionary history of venom glands in the Siluriformes. Histological examinations of 158 catfish species indicate that approximately 1250-1625+ catfish species should be presumed to be venomous, when viewed in conjunction with several hypotheses of siluriform phylogeny. Maximum parsimony character optimization analyses indicate two to three independent derivations of venom glands within the Siluriformes. A number of putative toxic peptides were identified in the venoms of catfish species from many of the families determined to contain venomous representatives. These peptides elicit a wide array of physiological effects in other fishes, though any one species examined produced no more than three distinct putative toxins in its venom. The molecular weights and effects produced by these putative toxic peptides show strong similarities to previously characterized toxins found in catfish epidermal secretions. Venom glands have evolved multiple times in catfishes (Order Siluriformes), and venomous catfishes may outnumber the combined diversity of all other venomous vertebrates. The toxic peptides found in catfish venoms may be derived from epidermal secretions that have been demonstrated to accelerate the healing of wounds, rather

  18. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal

    National Research Council Canada - National Science Library

    Ma, Yibao; Zhao, Ruiming; He, Yawen; Li, Songryong; Liu, Jun; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2009-01-01

    .... However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki...

  19. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components

    National Research Council Canada - National Science Library

    Ruiming, Zhao; Yibao, Ma; Yawen, He; Zhiyong, Di; Yingliang, Wu; Zhijian, Cao; Wenxin, Li

    2010-01-01

    .... In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared...

  20. Analyses of venom spitting in African cobras (Elapidae: Serpentes ...

    African Journals Online (AJOL)

    The venom spat by four spitting cobras (Naja nigricollis, N. pallida, N. mossambica and Hemachatus haemachatus) was caught using perspex plates. Densiometric analysis of the spat venom revealed low levels of variation in volume among successive spits. The dispersal patterns formed by the spat venom were divided ...

  1. 21 CFR 864.8950 - Russell viper venom reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Russell viper venom reagent. 864.8950 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8950 Russell viper venom reagent. (a) Identification. Russell viper venom reagent is a device used to determine the cause of an...

  2. Some Neuropharmacological Effects of the Crude Venom Extract of ...

    African Journals Online (AJOL)

    This study reports some neuropharmacological effects of the crude venom extract of Conus musicus (family Conidae) in mice using various experimental models. The crude venom was found to significantly increase tail flick reaction time in mice. The effects of the venom on the central nervous system were studied by ...

  3. Detection of Loxosceles species venom in dermal lesions: a comparison of 4 venom recovery methods.

    Science.gov (United States)

    Krywko, Diann M; Gomez, Hernan F

    2002-05-01

    Loxosceles species spider envenomations may produce necrotic, disfiguring dermal inflammatory lesions resembling neutrophilic dermatoses. With definitive treatment options lacking, clinicians are reluctant to obtain invasive biopsy specimens for diagnostic analysis. We compared less invasive venom collection methods and determined the time limit after inoculation for feasible venom recovery in an animal model. Nine New Zealand rabbits were randomized to 1 of 3 groups (n=3). Groups 1 and 2 were inoculated intradermally with 3 microg of L reclusa venom at 5 inoculation sites per rabbit. Albumin (3 microg) was injected intradermally in each rabbit as a negative control. Hair (group 1) and aspirate samples (group 2) were collected (1 time per site) over a 1-week period after inoculation. Group 3 was inoculated with 3 microg of Loxosceles species venom on 1 flank and 3 microg of albumin on the opposite flank. Daily serum specimens were collected over a 7-day period. On day 7, dermal punch biopsy specimens were taken from the venom and control inoculation sites. Hair, aspirate, biopsy, and serum specimens were assayed for venom by using an enzyme-linked immunosorbent assay. A generalized linear model was fit with the generalized estimating equation method to estimate the mean differences between groups. Venom was detected in hair, aspirate, and biopsy specimens on all days of the study period. Hair samples yielded venom recovery on day 1 (median 0.062 ng/100 microL; mean difference 0.054 ng/100 microL; 95% confidence interval [CI] 0.048 to 0.059) through day 7 (median 0.020 ng/100 microL; mean difference 0.020 ng/100 microL; 95% CI 0.013 to 0.027). Aspirates were positive for venom recovery on day 1 (median 0.275 ng/100 microL; mean difference 0.231 ng/100 microL; 95% CI 0.192 to 0.271) through day 7 (median 0.0 ng/100 microL; mean difference 0.032 ng/100 microL; 95% CI -0.18 to 0.078). The highest venom yield was from the biopsy specimens (median 1.75 ng/100 micro

  4. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Hymenoptera venom proteins and peptides for diagnosis and treatment of venom allergic patients.

    Science.gov (United States)

    Müller, Ulrich R

    2011-10-01

    Stings by insects of the order Hymenoptera cause systemic, sometimes life threatening allergic reactions in 1 - 5% of the population in Europe and North America. Responsible for these reactions is an IgE mediated sensitization to proteins of the venoms injected during the stings of social Hymenoptera species, mainly the honey bee (Apis mellifera), vespids like Vespula sp., Polistes sp. and ants, in southern US and central America Solenopsis invicta and in Australia Myrmecia pilosula. The venoms of these insects are composed of low molecular weight substances like biogenic amines, cytotoxic and neurotoxic peptides like melittin, apamin, MCD-peptide and mastoparan, and proteins, mostly enzymes like phospholipase A and hyaluronidase, which are major venom allergens. Immunotherapy with Hymenoptera venoms has been shown to protect 80 to over 95% of patients with a history of systemic allergic sting reaction from further systemic reactions after re-stings. The procedure, safety and efficacy of this treatment and the immune mechanisms involved are discussed. Since ancient times honey bee venom has been used for the treatment of chronic inflammatory disease, especially arthritis. Anti-inflammatory effects of bee venom have been documented in animal experiments. Most clinical studies suggest an antiinflammatory effect as well, but are uncontrolled. The only few controlled studies could not confirm efficacy of treatment with bee venom so far.

  6. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.

    Science.gov (United States)

    Hill, R E; Mackessy, S P

    2000-12-01

    R.E. Hill and S.P. Mackessy. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon XX, xx-yy, 2000. - Venomous colubrids, which include more than 700 snake species worldwide, represent a vast potential source of novel biological compounds. The present study characterized venom (Duvernoy's gland secretion) collected from twelve species of opisthoglyphous (rear-fanged) colubrid snakes, an extremely diverse assemblage of non-venomous to highly venomous snakes. Most venoms displayed proteolytic activity (casein), though activity levels varied considerably. Low phosphodiesterase activity was detected in several venoms (Amphiesma stolata, Diadophis punctatus, Heterodon nasicus kennerlyi, H. n. nasicus and Thamnophis elegans vagrans), and acetylcholinesterase was found in Boiga irregularis saliva and venom, but no venoms displayed hyaluronidase, thrombin-like or kallikrein-like activities. High phospholipase A(2) (PLA(2)) activity was found in Trimorphodon biscutatus lambda venom, and moderate levels were detected in Boiga dendrophila and D. p. regalis venoms as well as B. dendrophila and H. n. nasicus salivas. Non-reducing SDS-PAGE revealed 7-20 protein bands (3.5 to over 200 kD, depending on species) for all venoms analyzed, and electrophoretic profiles of venoms were typically quite distinct from saliva profiles. Components from A. stolata, Hydrodynastes gigas, Tantilla nigriceps and T. e. vagrans venoms showed protease activity when run on gelatin zymogram gels. N-terminal protein sequences for three 26 kD venom components of three species (H. gigas, H. torquata, T. biscutatus) and one 3.5 kD component (T. nigriceps) were also obtained, and the 3.5 kD peptide showed apparent sequence homology with human vascular endothelial growth factor; these data represent the first sequences of colubrid venom components. Protease, phosphodiesterase and PLA(2) activities are also common to elapid

  7. Scorpion Venom and the Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2010-01-01

    Full Text Available Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.

  8. Snake venoms in science and clinical medicine. 2. Applied immunology in snake venom research.

    Science.gov (United States)

    Theakston, R D

    1989-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a very important tool for studying both the epidemiology and clinical effects of snake bite in man. For epidemiology ELISA depends on the development and persistence of specific humoral venom antibody in previous snake bite victims. In the Nigerian savanna 63% of previous bite victims possessed specific venom antibodies against Echis carinatus venom; in Ecuador, where there is a 5% annual mortality due to snake bite in a population of Waorani Indians, venom antibodies against a wide range of different venoms were identified in previous bite victims using ELISA. In certain areas it is often not possible, using the symptoms of envenoming, to determine which species of snake has bitten the patient. Field studies using ELISA in Nigeria and Thailand have been successful in establishing the species responsible for envenoming. Current studies are in progress on the development of a rapid immunoassay which should be capable of detecting the biting species within 5-10 min of sampling from the admission patient. This will be useful for the clinician as it will enable the rapid detection of the species responsible for envenoming and, therefore, the use of the correct antivenom. Experimental work on the development of new methods of antivenom production includes immunization of experimental animals with venom/liposome preparations, the preparation of venom antigens using monoclonal antibodies on affinity columns, and recombinant deoxyribonucleic acid technology. Liposomal immunization requires only a single injection of venom to obtain a rapid, high level and protective immune response. Venom liposomes may also be given orally resulting in a serum immunoglobulin G immune response in experimental animals. Use of such a system may eventually result in immunization of man in areas of high snake bite incidence and mortality.

  9. Pharmacological effects of various venoms on cutaneous capillary leakage.

    Science.gov (United States)

    Burnett, J W; Calton, G J

    1986-01-01

    Studies to counteract the cutaneous vasopermeability actions of a wasp (Vespa orientalis), an anemone (Bolocera tuediae) and three jellyfish (Chironex fleckeri, Chrysaora quinquecirrha and Physalia physalis) venoms were conducted by using various pharmacological antagonists. Piripost (a leukotriene inhibitor) reduced vasopermeability if administered 5 min prior to challenge with the jellyfish venoms. Methysergide counteracted the vasopermeability of three of four coelenterate venoms, whereas indomethacin was effective against capillary leakage induced by Chironex venom. These studies indicate that anti-dermonecrotic therapy against various venoms will have to be species-specific.

  10. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.

    Science.gov (United States)

    O'Leary, M A; Maduwage, K; Isbister, G K

    2013-01-01

    Immunoturbidimetry studies the phenomenon of immunoprecipitation of antigens and antibodies in solution, where there is the formation of large, polymeric insoluble immunocomplexes that increase the turbidity of the solution. We used immunoturbidimetry to investigate the interaction between commercial snake antivenoms and snake venoms, as well as cross-reactivity between different snake venoms. Serial dilutions of commercial snake antivenoms (100μl) in water were placed in the wells of a microtitre plate and 100μl of a venom solution (50μg/ml in water) was added. Absorbance readings were taken at 340nm every minute on a BioTek ELx808 plate reader at 37°C. Limits imposed were a 30minute cut-off and 0.004 as the lowest significant maximum increase. Reactions with rabbit antibodies were carried out similarly, except that antibody dilutions were in PBS. Mixing venom and antivenom/antibodies resulted in an immediate increase in turbidity, which either reached a maximum or continued to increase until a 30minute cut-off. There was a peak in absorbance readings for most Australian snake venoms mixed with the corresponding commercial antivenom, except for Pseudonaja textilis venom and brown snake antivenom. There was cross-reactivity between Naja naja venom from Sri Lanka and tiger snake antivenom indicated by turbidity when they were mixed. Mixing rabbit anti-snake antibodies with snake venoms resulted in increasing turbidity, but there was not a peak suggesting the antibodies were not sufficiently concentrated. The absorbance reading at pre-determined concentrations of rabbit antibodies mixed with different venoms was able to quantify the cross-reactivity between venoms. Indian antivenoms from two manufacturers were tested against four Sri Lankan snake venoms (Daboia russelli, N. naja, Echis carinatus and Bungarus caeruleus) and showed limited formation of immunocomplexes with antivenom from one manufacturer. The turbidity test provides an easy and rapid way to compare

  11. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa

    Science.gov (United States)

    Aird, Steven D.; da Silva, Nelson Jorge; Qiu, Lijun; Villar-Briones, Alejandro; Saddi, Vera Aparecida; Pires de Campos Telles, Mariana; Grau, Miguel L.; Mikheyev, Alexander S.

    2017-01-01

    Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A2 (PLA2s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species

  12. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa

    Directory of Open Access Journals (Sweden)

    Steven D. Aird

    2017-06-01

    Full Text Available Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs and phospholipases A2 (PLA2s comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0% are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%. Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen

  13. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.

    Science.gov (United States)

    Modahl, Cassandra M; Mackessy, Stephen P

    2016-06-01

    Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides

  14. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Md Abdul Hakim

    2015-11-01

    Full Text Available Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.

  16. Tracing Monotreme Venom Evolution in the Genomics Era

    Science.gov (United States)

    Whittington, Camilla M.; Belov, Katherine

    2014-01-01

    The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves. PMID:24699339

  17. Comparative studies on Egyptian elapid venoms.

    Science.gov (United States)

    Hassan, F; Seddik, S

    1980-12-01

    The immunological properties of Naja haje from Western Desert, Naja haje of the Nile Delta, Naja nigricollis from Upper Egypt and Walternnesia aegyptia from Sinai Desert were compared using horse serum antivenin prepared from the Delta Naja haje venom. All elapid venoms showed very similar precipitin lines with immunodiffusion or immunoelectrophoresis on agar gel. Results of cellulose-acetate electrophoresis showed either different concentration of certain similar protein components or the absence of some major protein fractions. However, different migration and localization of protein components were observed. LD50 of the 4 elapids and their degree of lethality was determined. Naja haje (Delta) antivenin had different degree of neutralization capacity on the investigated elapid venoms. No correlation between immunodiffusion similarities and the degree of neutralization could be deducted.

  18. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.

    Science.gov (United States)

    von Reumont, Björn M; Blanke, Alexander; Richter, Sandy; Alvarez, Fernando; Bleidorn, Christoph; Jenner, Ronald A

    2014-01-01

    Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, and Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes, and hymenopterans. Surprisingly, despite their great diversity of body plans, there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind, and cave-dwelling remipede crustaceans are venomous and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a nontoxin paralog of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin and underlines the importance of incorporating data derived from nonvenom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions, and spiders and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.

  20. Toxicokinetics of Naja sputatrix (Javan spitting cobra) venom following intramuscular and intravenous administrations of the venom into rabbits.

    Science.gov (United States)

    Yap, Michelle Khai Khun; Tan, Nget Hong; Sim, Si Mui; Fung, Shin Yee

    2013-06-01

    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. King cobra (Ophiophagus hannah) bites in Myanmar: venom antigen levels and development of venom antibodies.

    Science.gov (United States)

    Tun-Pe; Aye-Aye-Myint; Warrell, D A; Tin-Myint

    1995-03-01

    Venom, venom IgG and IgM antibody and total serum IgG levels following king cobra bites in two reptile handlers were measured by enzyme immunoassay. The patient in case 1 received antivenom while the patient in case 2 did not. Case 1 made a complete recovery following the bite and produced a high titre short-lived antibody. Venom antigen was not detected in the sample taken 11 hr after antivenom. Case 2 had experienced two recent minor king cobra bites and had received traditional immunization 4 weeks before the accident reported here. He had developed only local swelling and suffered no neurological symptoms. Venom antigen measured at 1.45 hr after the bite was 132 ng/ml; this rapidly fell to 45 ng/ml over the next 30 min, and was no longer detectable 14 hr after the bite. The pattern of venom IgG and IgM antibody responses in both cases was comparable, except that in case 2 the venom IgG peak was maintained for 13 days, compared with 1 day in case 1; in case 2 it subsequently fell to low levels 8 weeks after the bite. Venom IgM appeared 1 day after the bite, peaked at day 7-9, rapidly tailed off on day 12-16 and was then undetectable from day 20 onwards in both. Total IgG level remained within normal limits in both. It is possible that previous bites and recent immunization contributed to the boosting of the venom IgG response in case 2.

  2. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    Science.gov (United States)

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the

  3. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters)

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N. W.; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G.

    2014-01-01

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation. PMID:25533521

  4. Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and Gila Monsters

    Directory of Open Access Journals (Sweden)

    Ivan Koludarov

    2014-12-01

    Full Text Available Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum. Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences. While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  5. Outcome survey of insect venom allergic patients with venom immunotherapy in a rural population.

    Science.gov (United States)

    Roesch, Alexander; Boerzsoenyi, Julia; Babilas, Philipp; Landthaler, Michael; Szeimies, Rolf-Markus

    2008-04-01

    Hymenoptera venom anaphylaxis is a frightening event that affects physical and psychical functioning. Retrospective survey of 182 Hymenoptera venom allergic patients living in a rural area using a questionnaire targeting on patients' satisfaction during therapy, fear of anaphylactic recurrences and changes in lifestyle before and after venom immunotherapy (VIT). Additionally, patients' self-assessment of quality of life, daily outdoor time and re-sting rate were recorded. 146 patients returned the questionnaire (58.9% male, 41.1% female, 25.3% honey bee allergic, 67.8% wasp allergic, 41.1% re-sting rate, mean follow-up time 6.5 years). Measurement of the parameters fear, satisfaction and changes in lifestyle revealed a significant improvement after VIT. This correlated with the patients'self-assessment of quality of life,when 89.7% declared an improvement after VIT. Although the improvement was higher in patients with re-stings, also patients without re-stings clearly benefited from VIT. Interestingly, females were significantly more affected by Hymenoptera venom allergy than males,whereas both genders showed a similar improvement after VIT. Patients with Hymenoptera venom sting allergy significantly benefit from VIT in regard to both biological and psychological outcome. VIT should still be provided to all Hymenoptera venom allergic patients as standard of care.

  6. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters).

    Science.gov (United States)

    Koludarov, Ivan; Jackson, Timothy N W; Sunagar, Kartik; Nouwens, Amanda; Hendrikx, Iwan; Fry, Bryan G

    2014-12-22

    Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.

  7. Immunoreactivity and two-dimensional gel-electrophoresis characterization of Egyptian cobra venom proteome

    National Research Council Canada - National Science Library

    Almehdar, Hussein Abduelrahman; Adel-Sadek, Mahmoud Abass; Redwan, Elrashdy Moustafa

    2015-01-01

    .... It was used to separate and identify cobra venom proteome. The importance of characterizing venom proteins contents from the Egyptian elapidae, specifically neurotoxins, is based on the need to produce effective anti-venom...

  8. Sexual dimorphism in venom of Bothrops jararaca(Serpentes: Viperidae).

    Science.gov (United States)

    Furtado, M F D; Travaglia-Cardoso, S R; Rocha, M M T

    2006-09-15

    Bothrops jararaca is an abundant snake in Brazil, and its venom has been studied exhaustively. The species exhibits adult size dimorphism in which female are larger. We registered the growth in Snout-Vent Length and weight of one litter (with 11 females and 12 males). We compared growth curves and venom profile between male and female of B. jararaca in order to establish the relationship of those characters and sex. Their venoms were analyzed when they were 36 months old, concerning SDS PAGE, protein content, proteolytic, hyaluronidasic, phospholipasic, blood-clotting, edematogenic, hemorrhagic, myotoxic activities, and lethality. Differences in the growth curves of the females and the males were significantly different after the 12th month of age, with the females growing faster. Females produced five times more venom than males. The electrophoretic patterns were variable: the venom from males had more protein bands than females. Venom composition varied significantly between males and females. Venom from females is more potent for hyaluronidasic, hemorrhagic, and lethality activities, whereas venom from males is more potent for coagulant, phospholipasic, and myotoxic activities. The variability of proteolytic and edematogenic activities were not significant. The important sexual dimorphism in body size and mass, amount of venom produced, and venom composition in B. jararaca may reflect a divergence in niche partitioning.

  9. Simplification of intradermal skin testing in Hymenoptera venom allergic children.

    Science.gov (United States)

    Cichocka-Jarosz, Ewa; Stobiecki, Marcin; Brzyski, Piotr; Rogatko, Iwona; Nittner-Marszalska, Marita; Sztefko, Krystyna; Czarnobilska, Ewa; Lis, Grzegorz; Nowak-Węgrzyn, Anna

    2017-03-01

    The direct comparison between children and adults with Hymenoptera venom anaphylaxis (HVA) has never been extensively reported. Severe HVA with IgE-documented mechanism is the recommendation for venom immunotherapy, regardless of age. To determine the differences in the basic diagnostic profile between children and adults with severe HVA and its practical implications. We reviewed the medical records of 91 children and 121 adults. Bee venom allergy was exposure dependent, regardless of age (P venom allergic group, specific IgE levels were significantly higher in children (29.5 kUA/L; interquartile range, 11.30-66.30 kUA/L) compared with adults (5.10 kUA/L; interquartile range, 2.03-8.30 kUA/L) (P venom were higher in bee venom allergic children compared with the wasp venom allergic children (P venom. At concentrations lower than 0.1 μg/mL, 16% of wasp venom allergic children and 39% of bee venom allergic children had positive intradermal test results. The median tryptase level was significantly higher in adults than in children for the entire study group (P = .002), as well as in bee (P = .002) and wasp venom allergic groups (P = .049). The basic diagnostic profile in severe HVA reactors is age dependent. Lower skin test reactivity to culprit venom in children may have practical application in starting the intradermal test procedure with higher venom concentrations. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Categorization of venoms according to bonding properties: An immunological overview.

    Science.gov (United States)

    Ibrahim, Nihal M; El-Kady, Ebtsam M; Asker, Mohsen S

    2016-02-01

    In this report, we present a study on the antigenic cross-reactivity of various venoms from the most dangerous Egyptian snakes and scorpions belonging to families Elapidae, Viperidae and Buthidae. The study was carried out with special reference to bonding properties between venoms and antivenoms and their involvement in the formation of specific and/or cross-reactive interactions. The homologous polyclonal antivenoms showed high reactivity to the respective venoms and cross-reacted with varying degrees to other non-homologous venoms. Assorting the antivenoms according to their susceptibility to dissociation by different concentrations of NH4SCN revealed that most of the antibodies involved in homologous venom-antivenom interactions were highly avid; building up strong venom-antivenom bonding. Whereas cross-reactions due to heterologous interactions were mediated by less avid antibodies that ultimately led to the formation of venom-antivenom bonding of different power strengths depending on the antigenic similarity and hence on the phylogenetic relationship of the tested venom. A new parameter evaluating high and low avid interactions, designated as H/L value, for each antigen-antibody bonding was initiated and used as an indicator of bonding strength between different venom-antivenom partners. H/L values were many folds higher than 1 for homologous and closely related venoms, 1 or around 1 for cross-reactive venoms, whereas venoms from unrelated remote sources recorded H/L values far less than 1. Using well defined polyclonal antivenoms, H/L value was successfully used to assign eight unknown venoms to their animal families and the results were confirmed by species-specific ELISA and immunoblotting assays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is

  12. Venom Evolution-Genetic and External Factors

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Venom Evolution - Genetic and External Factors. Ema Fatima. Research News Volume 18 Issue 3 March 2013 pp 287-288. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/03/0287-0288 ...

  13. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines on Allergen Immunotherapy (AIT) for the management of insect venom allergy. To inform this process, we sought to assess the effectiveness, cost-effectiveness and safety...

  14. Mediterranean Jellyfish Venoms: A Review on Scyphomedusae

    Science.gov (United States)

    Mariottini, Gian Luigi; Pane, Luigi

    2010-01-01

    The production of natural toxins is an interesting aspect, which characterizes the physiology and the ecology of a number of marine species that use them for defence/offence purposes. Cnidarians are of particular concern from this point of view; their venoms are contained in specialized structures–the nematocysts–which, after mechanical or chemical stimulation, inject the venom in the prey or in the attacker. Cnidarian stinging is a serious health problem for humans in the zones where extremely venomous jellyfish or anemones are common, such as in temperate and tropical oceanic waters and particularly along several Pacific coasts, and severe cases of envenomation, including also lethal cases mainly induced by cubomedusae, were reported. On the contrary, in the Mediterranean region the problem of jellyfish stings is quite modest, even though they can have anyhow an impact on public health and be of importance from the ecological and economic point of view owing to the implications on ecosystems and on some human activities such as tourism, bathing and fishing. This paper reviews the knowledge about the various aspects related to the occurrence and the stinging of the Mediterranean scyphozoan jellyfish as well as the activity of their venoms. PMID:20479971

  15. Mediterranean Jellyfish Venoms: A Review on Scyphomedusae

    Directory of Open Access Journals (Sweden)

    Gian Luigi Mariottini

    2010-04-01

    Full Text Available The production of natural toxins is an interesting aspect, which characterizes the physiology and the ecology of a number of marine species that use them for defence/offence purposes. Cnidarians are of particular concern from this point of view; their venoms are contained in specialized structures–the nematocysts–which, after mechanical or chemical stimulation, inject the venom in the prey or in the attacker. Cnidarian stinging is a serious health problem for humans in the zones where extremely venomous jellyfish or anemones are common, such as in temperate and tropical oceanic waters and particularly along several Pacific coasts, and severe cases of envenomation, including also lethal cases mainly induced by cubomedusae, were reported. On the contrary, in the Mediterranean region the problem of jellyfish stings is quite modest, even though they can have anyhow an impact on public health and be of importance from the ecological and economic point of view owing to the implications on ecosystems and on some human activities such as tourism, bathing and fishing. This paper reviews the knowledge about the various aspects related to the occurrence and the stinging of the Mediterranean scyphozoan jellyfish as well as the activity of their venoms.

  16. [Immunotherapy in patients allergic to bee venom].

    Science.gov (United States)

    Angeles, Martin Becerril

    2010-01-01

    to review the main features about honey-bee venom desensitization in patients with adverse reactions to honey-bee stings. a non-systematic search was performed in the main internet medical data base looking for relevant papers related to honeybee venom allergy, patients' selection for honey-bee venom immunotherapy (HBVIT), the most effective immunotherapy, the time of application and the protection obtained by HBVIT. of a total of 1,656 articles found, 18 documents were selected and revised, with the following findings: the HBVIT is indicated in patients with a clinical history and diagnostic confirmatory tests of allergy to bee venom and with the knowledge of the natural history of the disease. The protection against systemic reactions caused by new bee stings using HBVIT is over 90%. It is advisible to apply HBVIT for continuos periods of 5 years in order to develop a long-lasting immunologic tolerance. HBVIT has well defined clinical indications, and its adequate application offers protection in the long term against new bee stings.

  17. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    Science.gov (United States)

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we

  19. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): transcriptome, venomics and function.

    Science.gov (United States)

    Diego-García, Elia; Peigneur, Steve; Clynen, Elke; Marien, Tessa; Czech, Lene; Schoofs, Liliane; Tytgat, Jan

    2012-01-01

    Venom from the scorpion Pandinus cavimanus was obtained by electrical stimulation of the telson (stinger). Total venom was toxic to crickets at 7-30 μg and a paralysis or lethal effect was observed at 30 μg of venom (death at 1.5 μg/mg of cricket). Electrophysiological analyses showed cytolytic activity of total venom on oocytes at 7 μg. HPLC allowed separation of the venom components. A total of 38 fractions from total venom were tested on voltage-gated Na(+) and K(+) channels. Some fractions block K(+) currents in different degrees. By using MS analysis, we obtained more than 700 different molecular masses from telson and venom fractions (by LC-MS/MS and MALDI-TOF MS analyses). The number of disulfide bridges of the telson components was determined. A cDNA library from P. cavimanus scorpion was constructed and a random sequencing screening of transcripts was conducted. Different clones were obtained and were analyzed by bioinformatics tools. Our results reveal information about new genes related to some cellular processes and genes involved in venom gland functions (toxins, phospholipases and antimicrobial peptides). Expressed sequence tags from venom glands provide complementary information to MS and reveal undescribed components related to the biological activity of the venom. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Protective Effect of Tetracycline against Dermal Toxicity Induced by Jellyfish Venom: e57658

    National Research Council Canada - National Science Library

    Changkeun Kang; Yeung Bae Jin; Jeongsoo Kwak; Hongseok Jung; Won Duk Yoon; Tae-Jin Yoon; Jong-Shu Kim; Euikyung Kim

    2013-01-01

      Background Previously, we have reported that most, if not all, of the Scyphozoan jellyfish venoms contain multiple components of metalloproteinases, which apparently linked to the venom toxicity...

  1. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  2. Human antibody fragments specific for Bothrops jararacussu venom reduce the toxicity of other Bothrops sp. venoms.

    Science.gov (United States)

    Roncolato, Eduardo Crosara; Pucca, Manuela Berto; Funayama, Jaqueline Carlos; Bertolini, Thaís Barboza; Campos, Lucas Benício; Barbosa, José Elpidio

    2013-01-01

    Approximately 20,000 snakebites are registered each year in Brazil. The classical treatment for venomous snakebite involves the administration of sera obtained from immunized horses. Moreover, the production and care of horses is costly, and the use of heterologous sera can cause hypersensitivity reactions. The production of human antibody fragments by phage display technology is seen as a means of overcoming some of these disadvantages. The studies here attempted to test human monoclonal antibodies specific to Bothrops jararacussu against other Bothrops sp. venoms, using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Using the Griffin.1 phage antibody library, this laboratory previously produced scFvs capable of inhibiting the phospholipase and myotoxic activities of Bothrops jararacussu venom. The structural and functional similarities of the various forms of phospholipase A2 (PLA₂) in Bothrops venom served as the basis for the present study wherein the effectiveness of those same scFvs were evaluated against B. jararaca, B. neuwiedi, and B. moojeni venoms. Each clone was found to recognize all three Bothrops venoms, and purified scFvs partially inhibited their in vitro phospholipase activity. In vivo assays demonstrated that the scFv clone P2B7 reduced myotoxicity and increased the survival of animals that received the test venoms. The results here indicate that the scFv P2B7 is a candidate for inclusion in a mixture of specific antibodies to produce a human anti-bothropic sera. This data demonstrates that the human scFv P2B7 represents an alternative therapeutic approach to heterologous anti-bothropic sera available today.

  3. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty

    OpenAIRE

    Kae Yi Tan; Choo Hock Tan; Lawan Chanhome; Nget Hong Tan

    2017-01-01

    Background The monocled cobra (Naja kaouthia) is a medically important venomous snake in Southeast Asia. Its venom has been shown to vary geographically in relation to venom composition and neurotoxic activity, indicating vast diversity of the toxin genes within the species. To investigate the polygenic trait of the venom and its locale-specific variation, we profiled and compared the venom gland transcriptomes of N. kaouthia from Malaysia (NK-M) and Thailand (NK-T) applying next-generation s...

  5. Functional and proteomic comparison of Bothrops jararaca venom from captive specimens and the Brazilian Bothropic Reference Venom.

    Science.gov (United States)

    Farias, Iasmim Baptista de; Morais-Zani, Karen de; Serino-Silva, Caroline; Sant'Anna, Sávio S; Rocha, Marisa M T da; Grego, Kathleen F; Andrade-Silva, Débora; Serrano, Solange M T; Tanaka-Azevedo, Anita M

    2018-03-01

    Snake venom is a variable phenotypic trait, whose plasticity and evolution are critical for effective antivenom production. A significant reduction of the number of snake donations to Butantan Institute (São Paulo, Brazil) occurred in recent years, and this fact may impair the production of the Brazilian Bothropic Reference Venom (BBRV). Nevertheless, in the last decades a high number of Bothrops jararaca specimens have been raised in captivity in the Laboratory of Herpetology of Butantan Institute. Considering these facts, we compared the biochemical and biological profiles of B. jararaca venom from captive specimens and BBRV in order to understand the potential effects of snake captivity upon the venom composition. Electrophoretic analysis and proteomic profiling revealed few differences in venom protein bands and some differentially abundant toxins. Comparison of enzymatic activities showed minor differences between the two venoms. Similar cross-reactivity recognition pattern of both venoms by the antibothropic antivenom produced by Butantan Institute was observed. Lethality and neutralization of lethality for B. jararaca venom from captive specimens and BBRV showed similar values. Considering these results we suggest that the inclusion of B. jararaca venom from captive specimens in the composition of BBRV would not interfere with the quality of this reference venom. Snakebite envenomation is a neglected tropical pathology whose treatment is based on the use of specific antivenoms. Bothrops jararaca is responsible for the majority of snakebites in South and Southeastern Brazil. Its venom shows individual, sexual, and ontogenetic variability, however, the effect of animal captivity upon venom composition is unknown. Considering the reduced number of wild-caught snakes donated to Butantan Institute in the last decades, and the increased life expectancy of the snakes raised in captivity in the Laboratory of Herpetology, this work focused on the comparative

  6. Modern trends in animal venom research - omics and nanomaterials.

    Science.gov (United States)

    Utkin, Yuri N

    2017-02-26

    Animal venom research is a specialized investigation field, in which a number of different methods are used and this array is constantly expanding. Thus, recently emerged omics and nanotechnologies have already been successfully applied to venom research. Animal venoms have been studied for quite a long time. The traditional reductionist approach has been to isolate individual toxins and then study their structure and function. Unfortunately, the characterization of the venom as a whole system and its multiple effects on an entire organism were not possible until recent times. The development of new methods in mass spectrometry and sequencing have allowed such characterizations of venom, encompassing the identification of new toxins present in venoms at extremely low concentrations to changes in metabolism of prey organisms after envenomation. In particular, this type of comprehensive research has become possible due to the development of the various omics technologies: Proteomics, peptidomics, transcriptomics, genomics and metabolomics. As in other research fields, these omics technologies ushered in a revolution for venom studies, which is now entering the era of big data. Nanotechnology is a very new branch of technology and developing at an extremely rapid pace. It has found application in many spheres and has not bypassed the venom studies. Nanomaterials are quite promising in medicine, and most studies combining venoms and nanomaterials are dedicated to medical applications. Conjugates of nanoparticles with venom components have been proposed for use as drugs or diagnostics. For example, nanoparticles conjugated with chlorotoxin - a toxin in scorpion venom, which has been shown to bind specifically to glioma cells - are considered as potential glioma-targeted drugs, and conjugates of neurotoxins with fluorescent semiconductor nanoparticles or quantum dots may be used to detect endogenous targets expressed in live cells. The data on application of omics and

  7. Snake venomics: from the inventory of toxins to biology.

    Science.gov (United States)

    Calvete, Juan J

    2013-12-01

    A deep understanding of the composition of venoms and of the principles governing the evolution of venomous systems is of applied importance for exploring the enormous potential of venoms as sources of chemical and pharmacological novelty but also to fight the dire consequences of snakebite envenomings. This goal is now within the reach of "omic" technologies. A central thesis developed in this essay is the view that making sense of the huge inventory of data gathered through "omic" approaches requires the integration of this information across the biological system. Key to this is the identification of evolutionary and ecological trends; without the evolutionary link, systems venomics is relegated to a set of miscellaneous facts. The interplay between chance and adaptation plays a central role in the evolution of biological systems (Monod, 1970). However, the evolution of venomous species and their venoms do not always follow the same course, and the identification of structural and functional convergences and divergences among venoms is often unpredictable by a phylogenetic hypothesis. Toxins sharing a structural fold present in venoms from phylogenetically distant snakes often share antigenic determinants. The deficit of antivenom supply in certain regions of the world can be mitigated in part through the optimized use of existing antivenoms, and through the design of novel broad-range polyspecific antivenoms. Proteomics-guided identification of evolutionary and immunoreactivity trends among homologous and heterologous venoms may aid in the replacement of the traditional geographic- and phylogenetic-driven hypotheses for antivenom production strategies by a more rationale approach based on a hypothesis-driven systems venomics approach. Selected applications of venomics and antivenomics for exploring the chemical space and immunological profile of venoms will illustrate the author's views on the impact these proteomics tools may have in the field of toxinology

  8. Widespread Chemical Detoxification of Alkaloid Venom by Formicine Ants.

    Science.gov (United States)

    LeBrun, Edward G; Diebold, Peter J; Orr, Matthew R; Gilbert, Lawrence E

    2015-10-01

    The ability to detoxify defensive compounds of competitors provides key ecological advantages that can influence community-level processes. Although common in plants and bacteria, this type of detoxification interaction is extremely rare in animals. Here, using laboratory behavioral assays and analyses of videotaped interactions in South America, we report widespread venom detoxification among ants in the subfamily Formicinae. Across both data sets, nine formicine species, representing all major clades, used a stereotyped grooming behavior to self-apply formic acid (acidopore grooming) in response to fire ant (Solenopsis invicta and S. saevissima) venom exposure. In laboratory assays, this behavior increased the survivorship of species following exposure to S. invicta venom. Species expressed the behavior when exposed to additional alkaloid venoms, including both compositionally similar piperidine venom of an additional fire ant species and the pyrrolidine/pyrroline alkaloid venom of a Monomorium species. In addition, species expressed the behavior following exposure to the uncharacterized venom of a Crematogaster species. However, species did not express acidopore grooming when confronted with protein-based ant venoms or when exposed to monoterpenoid-based venom. This pattern, combined with the specific chemistry of the reaction of formic acid with venom alkaloids, indicates that alkaloid venoms are targets of detoxification grooming. Solenopsis thief ants, and Monomorium species stand out as brood-predators of formicine ants that produce piperidine, pyrrolidine, and pyrroline venom, providing an important ecological context for the use of detoxification behavior. Detoxification behavior also represents a mechanism that can influence the order of assemblage dominance hierarchies surrounding food competition. Thus, this behavior likely influences ant-assemblages through a variety of ecological pathways.

  9. Hepatotoxicity and oxidative stress induced by Naja haje crude venom

    OpenAIRE

    Al-Quraishy, Saleh; Dkhil, Mahamed A; Abdel Moneim, Ahmed Esmat

    2014-01-01

    Background Snake venoms are synthesized and stored in venom glands. Most venoms are complex mixtures of several proteins, peptides, enzymes, toxins and non-protein components. In the present study, we investigated the oxidative stress and apoptosis in rat liver cells provoked by Naja haje crude injection (LD50) after four hours. Methods Wistar rats were randomly divided into two groups, the control group was intraperitoneally injected with saline solution while LD50-dose envenomed group was i...

  10. A pharmacological and biochemical characterisation of Australian box jellyfish venoms

    OpenAIRE

    Winter, Kelly Lee

    2017-01-01

    Box jellyfish are found throughout the northern tropical waters of Australia and are responsible for considerable morbidity and mortality. Chironex fleckeri is arguably the most venomous creature in the world and has been responsible for over 70 deaths. Despite considerable research, the mechanisms of action of these venoms have yet to be elucidated. The current study investigated the pharmacological and biochemical characteristics of venom from the following species of box jellyfish: C. flec...

  11. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  12. Anti-arthritic effects of microneedling with bee venom gel

    Directory of Open Access Journals (Sweden)

    Mengdi Zhao

    2016-10-01

    Conclusions: Bee venom can significantly suppress the occurrence of gouty arthritis inflammation in rats and mice LPS inflammatory reaction. Choose the 750 μm microneedle with 10N force on skin about 3 minutes, bee venom can play the optimal role, and the anti-inflammatory effect is obvious. Microneedles can promote the percutaneous absorption of the active macromolecules bee venom gel.

  13. Antibacterial activity of Rhynocoris marginatus (Fab. and Catamirus brevipennis (Servile (Hemiptera: reduviidae venomS against human pathogens

    Directory of Open Access Journals (Sweden)

    K. Sahayaraj

    2006-01-01

    Full Text Available The reduviid predators Rhynocoris marginatus (Fab. and Catamirus brevipennis (Servile use their venoms to paralyze their preys. We detected the antibacterial activity of R. marginatus and C. brevipennis venoms against seven Gram-negative and four Gram-positive bacteria by using the disc diffusion method. Rhynocoris marginatus venom exhibited antibacterial activity against four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimurium and one Gram-positive (Streptococcus pyogenes. Catamirus brevipennis venom showed antibacterial activity against six Gram-negative (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and Salmonella typhimurium and three Gram-positive (Bacillus subtilis, Staphylococcus aureus, and Bacillus sphaericus bacteria. Both C. brevipennis (90.91% and R. marginatus (45.45% venoms were more effective against Gram-negative bacteria (80% and 70% for R. marginatus and C. brevipennis, respectively. The venoms of both reduviid predators are composed of low molecular weight proteins (7-33 kD.

  14. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  15. Duration of Loxosceles reclusa Venom Detection by ELISA from Swabs

    Science.gov (United States)

    McGLASSON, DAVID L; GREEN, JONATHON A; STOECKER, WILLIAM V; BABCOCK, JAMES L; CALCARA, DAVID A

    2011-01-01

    BACKGROUND Diagnosis of Loxosceles reclusa envenomations is currently based upon clinical presentation. An enzyme-linked immunosorbent assay (ELISA) can detect surface Loxosceles venom at the envenomation site, allowing diagnostic confirmation. The length of time that venom on the skin is recoverable non-invasively is unknown. MATERIALS AND METHODS To investigate duration of recoverable venom antigen, whole venom and fractionated sphingomyelinase D venom aliquots were injected subcutaneously in New Zealand White rabbits. Cotton and Dacron swabs were compared for venom recovery over a 21-day period using a surface swab technique. RESULTS Significant amounts of Loxosceles reclusa antigen were found on the surface of rabbit skin after experimental injection of whole venom and sphingomyelinase D. The duration of recoverable antigen using this experimental model appears to be at least two weeks and as long as 21 days in some cases. CONCLUSIONS Because the duration of the recoverable antigen is seen to be at least two weeks, the ELISA venom test appears capable of detecting venom on most patients presenting with Loxosceles envenomations. This detection system will allow the physician more accurate determination of whether the lesion is from a brown recluse spider or some other agent that can cause this type of necrotic ulcer. PMID:19967916

  16. Diversity of peptide toxins from stinging ant venoms.

    Science.gov (United States)

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Duration of Loxosceles reclusa venom detection by ELISA from swabs.

    Science.gov (United States)

    McGlasson, David L; Green, Jonathon A; Stoecker, William V; Babcock, James L; Calcara, David A

    2009-01-01

    Diagnosis of Loxosceles reclusa envenomations is currently based upon clinical presentation. An enzyme-linked immunosorbent assay (ELISA) can detect surface Loxosceles venom at the envenomation site, allowing diagnostic confirmation. The length of time that venom on the skin is recoverable non-invasively is unknown. To investigate duration of recoverable venom antigen, whole venom and fractionated sphingomyelinase D venom aliquots were injected subcutaneously in New Zealand White rabbits. Cotton and Dacron swabs were compared for venom recovery over a 21-day period using a surface swab technique. Significant amounts of Loxosceles reclusa antigen were found on the surface of rabbit skin after experimental injection of whole venom and sphingomyelinase D. The duration of recoverable antigen using this experimental model appears to be at least two weeks and as long as 21 days in some cases. Because the duration of the recoverable antigen is seen to be at least two weeks, the ELISA venom test appears capable of detecting venom on most patients presenting with Loxosceles envenomations. This detection system will allow the physician more accurate determination of whether the lesion is from a brown recluse spider or some other agent that can cause this type of necrotic ulcer.

  18. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  19. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani.

    Science.gov (United States)

    Liu, Zi-Chao; Zhang, Rong; Zhao, Feng; Chen, Zhong-Ming; Liu, Hao-Wen; Wang, Yan-Jie; Jiang, Ping; Zhang, Yong; Wu, Ying; Ding, Jiu-Ping; Lee, Wen-Hui; Zhang, Yun

    2012-12-07

    Centipedes have venom glands in their first pair of limbs, and their venoms contain a large number of components with different biochemical and pharmacological properties. However, information about the compositions and functions of their venoms is largely unknown. In this study, Scolopendra subspinipes dehaani venoms were systematically investigated by transcriptomic and proteomic analysis coupled with biological function assays. After random screening approximately 1500 independent clones, 1122 full length cDNA sequences, which encode 543 different proteins, were cloned from a constructed cDNA library using a pair of venom glands from a single centipede species. Neurotoxins, ion channel acting components and venom allergens were the main fractions of the crude venom as revealed by transcriptomic analysis. Meanwhile, 40 proteins/peptides were purified and characterized from crude venom of S. subspinipes dehaani. The N-terminal amino acid sequencing and mass spectrum results of 29 out of these 40 proteins or peptides matched well with their corresponding cDNAs. The purified proteins/peptides showed different pharmacological properties, including the following: (1) platelet aggregating activity; (2) anticoagulant activity; (3) phospholipase A(2) activity; (4) trypsin inhibiting activity; (5) voltage-gated potassium channel activities; (6) voltage-gated sodium channel activities; (7) voltage-gated calcium channel activities. Most of them showed no significant similarity to other protein sequences deposited in the known public database. This work provides the largest number of protein or peptide candidates with medical-pharmaceutical significance and reveals the toxin nature of centipede S. subspinipes dehaani venom.

  20. Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators*

    Science.gov (United States)

    Yang, Shilong; Liu, Zhonghua; Xiao, Yao; Li, Yuan; Rong, Mingqiang; Liang, Songping; Zhang, Zhiye; Yu, Haining; King, Glenn F.; Lai, Ren

    2012-01-01

    Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications. PMID:22595790

  1. A simple protocol for venom peptide barcoding in scorpions

    Directory of Open Access Journals (Sweden)

    Stephan Schaffrath

    2014-06-01

    Full Text Available Scorpion venoms contain many species-specific peptides which target ion channels in cell membranes. Without harming the scorpions, these peptides can easily be extracted and detected by MALDI-TOF mass spectrometry. So far, only few studies compared the venom of different species solely for taxonomic purposes. Here, we describe a very simple protocol for venom extraction and mass fingerprinting that was developed for peptide barcoding (venom code for species identification and facilitates reproducibility if sample preparation is performed under field conditions. This approach may serve as suitable basis for a taxonomy-oriented scorpion toxin database that interacts with MALDI-TOF mass spectra.

  2. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    Directory of Open Access Journals (Sweden)

    Khin Than Yee

    2016-12-01

    Full Text Available Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs: RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation.

  3. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome.

    Science.gov (United States)

    Sanggaard, Kristian W; Dyrlund, Thomas F; Thomsen, Line R; Nielsen, Tania A; Brøndum, Lars; Wang, Tobias; Thøgersen, Ida B; Enghild, Jan J

    2015-03-18

    The archetypical venomous lizard species are the helodermatids, the gila monsters (Heloderma suspectum) and the beaded lizards (Heloderma horridum). In the present study, the gila monster venom proteome was characterized using 2D-gel electrophoresis and tandem mass spectrometry-based de novo peptide sequencing followed by protein identification based on sequence homology. A total of 39 different proteins were identified out of the 58 selected spots that represent the major constituents of venom. Of these proteins, 19 have not previously been identified in helodermatid venom. The data showed that helodermatid venom is complex and that this complexity is caused by genetic isoforms and post-translational modifications including proteolytic processing. In addition, the venom proteome analysis revealed that the major constituents of the gila monster venom are kallikrein-like serine proteinases (EC 3.4.21) and phospholipase A2 (type III) enzymes (EC 3.1.1.4). A neuroendocrine convertase 1 homolog that most likely converts the proforms of the previously identified bioactive exendins into the mature and active forms was identified suggesting that these peptide toxins are secreted as proforms that are activated by proteolytic cleavage following secretion as opposed to being activated intracellularly. The presented global protein identification-analysis provides the first overview of the helodermatid venom composition. The helodermatid lizards are the classical venomous lizards, and the pharmacological potential of the venom from these species has been known for years; best illustrated by the identification of exendin-4, which is now used in the treatment of type 2 diabetes. Despite the potential, no global analyses of the protein components in the venom exist. A hindrance is the lack of a genome sequence because it prevents protein identification using a conventional approach where MS data are searched against predicted protein sequences based on the genome sequence

  5. Functional and Structural Diversification of the Anguimorpha Lizard Venom System*

    Science.gov (United States)

    Fry, Bryan G.; Winter, Kelly; Norman, Janette A.; Roelants, Kim; Nabuurs, Rob J. A.; van Osch, Matthias J. P.; Teeuwisse, Wouter M.; van der Weerd, Louise; Mcnaughtan, Judith E.; Kwok, Hang Fai; Scheib, Holger; Greisman, Laura; Kochva, Elazar; Miller, Laurence J.; Gao, Fan; Karas, John; Scanlon, Denis; Lin, Feng; Kuruppu, Sanjaya; Shaw, Chris; Wong, Lily; Hodgson, Wayne C.

    2010-01-01

    Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight

  6. [Bufadienolides from venom of Bufo bufo gargarizans].

    Science.gov (United States)

    Zhang, Peng-Wei; Jiang, Ren-Wang; Ye, Wen-Cai; Tian, Hai-Yan

    2014-03-01

    Twelve compounds were isolated from the venom of Bufo bufo gargarizans. On the basis of their physical and chemical properties and spectral data, their structures were identified as resibufagenin (1), bufotalin (2), desacetylcinobufagin (3), 19-oxodesacetylcinobufotalin (4), cinobufotalin (5), 1beta-hydroxylbufalin (6), 12alpha-hydroxybufalin (7), bufotalinin (8), Hellebrigenin (9), telocinobufagin (10), hellebrigenol (11) and cinobufagin-3-hemisuberate methyl ester (12), respectively. Compounds 7 and 12 are new natural products.

  7. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms.

  8. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    Science.gov (United States)

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  9. Histology of the venom gland of the puff-adder ( Bitis arietans ) | King ...

    African Journals Online (AJOL)

    The histology of the venom gland of the puff-adder (Bitis arietans) has been investigated in the resting and stimulated state. No accessory venom gland was found to be associated with the main venom gland or duct in the same position as has been reported for other snakes. In the resting state the parenchyma of the venom ...

  10. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis.

    Science.gov (United States)

    González-Morales, Lidia; Pedraza-Escalona, Martha; Diego-Garcia, Elia; Restano-Cassulini, Rita; Batista, Cesar V F; Gutiérrez, Maria del Carmen; Possani, Lourival D

    2014-12-05

    This communication reports the results of proteomic, transcriptomic, biochemical and electrophysiological analysis of the soluble venom and venom glands of the Mexican centipede Scolopendra viridis Say (here thereafter abbreviated S. viridis). Separation of the soluble venom permitted to obtain 54 different fractions, from which a mass finger printing analysis permitted the identification of at least 86 components, where 70% of the molecules have low molecular masses. Two-dimensional electrophoretic separation of this venom revealed the presence of about forty proteins with molecular weights ranging from 17 to 58kDa. The novo sequencing of 149 peptides obtained by LC-MS/MS from the 2D-gels showed the presence of proteins with amino acid sequences similar to several enzymes and venom allergens type 3. Furthermore, a total of 180 sequences were obtained from a cDNA library prepared with two venomous glands. From this, 155 sequences correspond to complete genes containing more than 200 base pairs each. Comparative sequence analyses of these sequences indicated the presence of different types of enzymes and toxin-like genes. Two proteins with molecular weights around 37,000 and 42,000Da were shown to contain hyaluronidase activity. Electrophysiological assays performed with soluble venom show that it decreases mammalian sodium channel currents. Animal venoms of Scolopendra species have been scarcely studied, although they have been reported to contain several bioactive compounds, some of which with potential therapeutic interest. The Mexican centipede S. viridis contains a powerful venom, capable of inflicting immediate effects on their preys. This communication is focused on the identification and description of a proteomic and transcriptomic analysis of the protein components of this venom. Several amino acid sequences similar to reported enzymes are the principal components in the S. viridis venom, but also a low number of toxins were identified. This knowledge

  11. Single venom-based immunotherapy effectively protects patients with double positive tests to honey bee and Vespula venom.

    Science.gov (United States)

    Stoevesandt, Johanna; Hofmann, Bernd; Hain, Johannes; Kerstan, Andreas; Trautmann, Axel

    2013-09-02

    Referring to individuals with reactivity to honey bee and Vespula venom in diagnostic tests, the umbrella terms "double sensitization" or "double positivity" cover patients with true clinical double allergy and those allergic to a single venom with asymptomatic sensitization to the other. There is no international consensus on whether immunotherapy regimens should generally include both venoms in double sensitized patients. We investigated the long-term outcome of single venom-based immunotherapy with regard to potential risk factors for treatment failure and specifically compared the risk of relapse in mono sensitized and double sensitized patients. Re-sting data were obtained from 635 patients who had completed at least 3 years of immunotherapy between 1988 and 2008. The adequate venom for immunotherapy was selected using an algorithm based on clinical details and the results of diagnostic tests. Of 635 patients, 351 (55.3%) were double sensitized to both venoms. The overall re-exposure rate to Hymenoptera stings during and after immunotherapy was 62.4%; the relapse rate was 7.1% (6.0% in mono sensitized, 7.8% in double sensitized patients). Recurring anaphylaxis was statistically less severe than the index sting reaction (P = 0.004). Double sensitization was not significantly related to relapsing anaphylaxis (P = 0.56), but there was a tendency towards an increased risk of relapse in a subgroup of patients with equal reactivity to both venoms in diagnostic tests (P = 0.15). Single venom-based immunotherapy over 3 to 5 years effectively and long-lastingly protects the vast majority of both mono sensitized and double sensitized Hymenoptera venom allergic patients. Double venom immunotherapy is indicated in clinically double allergic patients reporting systemic reactions to stings of both Hymenoptera and in those with equal reactivity to both venoms in diagnostic tests who have not reliably identified the culprit stinging insect.

  12. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  13. Venom gland components of the ectoparasitoid wasp, Anisopteromalus calandrae

    Science.gov (United States)

    The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that develop inside grain kernels, and is thus a potential insect control tool. The components of the venom have not been studied, but venom peptides from other organisms have been identified ...

  14. Embriotoxic effects of maternal exposure to Tityus serrulatus scorpion venom

    Directory of Open Access Journals (Sweden)

    A. A. S. Barão

    2008-01-01

    Full Text Available Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg. The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10. The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.

  15. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    May 2, 2007 ... An in vitro study was conducted by mixing small amounts of green pit viper venom with blood and observing changes. At a concentration of 10 µg crude venom, red blood cells (RBC) osmotic fragility slightly increased. RBC morphology changed to spherical shape which was compatible with what was.

  16. Propolis and bee venom in diabetic wounds; a potential approach ...

    African Journals Online (AJOL)

    Conclusion: There is sound rationality and scientific data for using propolis and bee venom in diabetic wound healing. We believe that topical application of propolis in addition to bee venom might have a place in repairing damaged tissues and accelerating the healing of diabetic wounds. Keywords: Honey, propolis, wound ...

  17. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    An in vitro study was conducted by mixing small amounts of green pit viper venom with blood and observing changes. At a concentration of 10 mg crude venom, red blood cells (RBC) osmotic fragility slightly increased. RBC morphology changed to spherical shape which was compatible with what was observed in scanning ...

  18. Protein pattern of the honeybee venoms of Egypt | Zalat | Egyptian ...

    African Journals Online (AJOL)

    The venom composition of the Egyptian honeybee Apis mellifera lamarckii, the Carniolan honeybee Apis mellifera carnica and a hybrid with unknown origin were analyzed using electrophoresis (SDS-PAGE). All venoms shared six bands with molecular weights of 97.400, 67.400, 49.000, 45.000, 43.000 and 14.000D.

  19. Immunological cross-reactivity of venoms from some Egyptian ...

    African Journals Online (AJOL)

    The immunological cross-reactivity among the Elapidae, Viperidae and Buthidae venoms was detected in dot blot and western blot assays and quantified in ELISA as percentage of absorbance of heterologous versus homologous reaction. Mutual cross-reactivity between the Elapidae and Viperidae venoms was ...

  20. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    CONCLUSIONS:The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  1. Proteomic Characterization of the Venom of Five Bombus (Thoracobombus Species

    Directory of Open Access Journals (Sweden)

    Nezahat Pınar Barkan

    2017-11-01

    Full Text Available Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp. is largely unknown. The Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE images of each species’ venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS. We have identified 47 proteins for Bombus humilis, 32 for B. pascuorum, 60 for B. ruderarius, 39 for B. sylvarum, and 35 for B. zonatus. Moreover, we illustrated that intensities of 2DE protein spots corresponding to putative venom toxins vary in a species-specific manner. Our analyses provide the primary proteomic characterization of five bumble bee species’ venom composition.

  2. tory Activity of Bee venom in Lipopolysaccharide Stimulated RAW ...

    African Journals Online (AJOL)

    Erah

    Purpose: Bee venom (BV) is traditionally used in many inflammatory chronic conditions but its mechanism of action at molecular level is not fully understood. This study was undertaken to elucidate the mechanism of action of bee venom at the molecular level. Methods: We used lipopolysaccharide (LPS) stimulation in Raw ...

  3. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms

    OpenAIRE

    Sanz, Libia; Pla, Davinia; P?rez, Alicia; Rodr?guez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J.

    2016-01-01

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%)...

  4. Antimicrobial peptides from the venoms of Vespa bicolor Fabricius.

    Science.gov (United States)

    Chen, Wenhu; Yang, Xinbo; Yang, Xiaolong; Zhai, Lei; Lu, Zekuan; Liu, Jingze; Yu, Haining

    2008-11-01

    Hornets possess highly toxic venoms, which are rich in toxins, enzymes and biologically active peptides. Many bioactive substances have been identified from wasp venoms. Vespa mastoparan (MP-VBs) and Vespa chemotatic peptide presenting antimicrobial action (VESP-VBs) were purified and characterized from the venom of the wasp, Vespa bicolor Fabricius. The precursors encoding VESP-VBs and MP-VBs were cloned from the cDNA library of the venomous glands. Analyzed by FAB-MS, the amino acid sequence and molecular mass for VESP-VB1 were FMPIIGRLMSGSL and 1420.6, for MP-VB1 were INMKASAAVAKKLL and 1456.5, respectively. The primary structures of these peptides are homologous to those of chemotactic peptides and mastoparans isolated from other vespid venoms. These peptides showed strong antimicrobial activities against bacteria and fungi and induced mast cell degranulation, but displayed almost no hemolytic activity towards human blood red cells.

  5. Ontogenesis, gender, and molting influence the venom yield in the spider Coremiocnemis tropix (Araneae, Theraphosidae)

    OpenAIRE

    Herzig, Volker

    2010-01-01

    The demand for spider venom increases along with the growing popularity of venoms-based research. A deeper understanding of factors that influence the venom yield in spiders would therefore be of interest to both commercial venom suppliers and research facilities. The present study addresses the influence of several factors on the venom yield by systematically analyzing the data obtained from 1773 electrical milkings of the Australian theraphosid spider Coremiocnemis tropix. Gender and ontoge...

  6. Influence of ionizing radiation on Cobra (Naja haje) and Cerastes cerastes venoms: Toxicological and immunological aspects

    OpenAIRE

    Esmat A. Shaban

    2003-01-01

    The effect of gamma irradiation (15 KGy) on the Cobra Naja haje and Cerastes cerastes venoms toxicity and immunogenicity was evaluated. Irradiated venoms were at least 28.1% less toxic than non-irradiated venoms. However the antigenic response was not changed as judged by the capacity of irradiated venoms to react with polyvalent antivenom horse serum. The immunodiffusion method showed identity between irradiated and non-irradiated samples. The effect of gamma radiation on some venom enzymes ...

  7. Kinetics of venom and antivenom serum levels, clinical evaluation and therapeutic effectiveness in dogs inoculated with Crotalus durissus terrificus venom

    Directory of Open Access Journals (Sweden)

    F. Sangiorgio

    2008-01-01

    Full Text Available This work evaluated the clinical and therapeutic aspects as well as serum levels of venom and antivenom IgG by enzyme-linked immunosorbent assay (ELISA in experimental envenomation of dogs with Crotalus durissus terrificus venom. Twenty-eight mixed breed adult dogs were divided into four groups of seven animals each, Group I: only venom; Group II, venom + 50 ml of anti-bothropic-crotalic serum (50mg + fluid therapy; Group III, venom + 50 ml of anti-bothropic-crotalic serum + fluid therapy + urine alkalination; Group IV, 50 ml of anti-bothropic-crotalic serum. The lyophilized venom of Crotalus durissus terrificus was reconstituted in saline solution and subcutaneously inoculated at the dose of 1mg/kg body weight. The dogs presented clinical signs of local pain, weakness, mandibular ptosis, mydriasis, emesis and salivation. The venom levels detected by ELISA ranged from 0 to 90ng/ml, according to the severity of the clinical signs. Serum antivenom ranged from 0 to 3ug/ml and was detected for up to 138h after treatment. ELISA results showed the effectiveness of the serum therapy for the venom neutralization.

  8. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  9. Cross-reactivity between Anisakis spp. and wasp venom allergens.

    Science.gov (United States)

    Rodríguez-Pérez, Rosa; Monsalve, Rafael I; Galán, Agustin; Perez-Piñar, Teresa; Umpierrez, Ana; Lluch-Bernal, Magdalena; Polo, Francisco; Caballero, María Luisa

    2014-01-01

    Anisakiasis is caused by the consumption of raw or undercooked fish or cephalopods parasitized by live L3 larvae of nematode Anisakis spp. Larvae anchor to stomach mucosa releasing excretion/secretion products which contain the main allergens. It has been described that nematode larvae release venom allergen-like proteins among their excretion/secretion products. We investigated potential cross-reactivity between Anisakis and wasp venom allergens. Two groups of 25 patients each were studied: wasp venom- and Anisakis-allergic patients. Sera from patients were tested by ImmunoCAP, dot-blotting with recombinant Anisakis allergens and ADVIA-Centaur system with Hymenoptera allergens. Cross-reactivity was assessed by IgE immunoblotting inhibition assays. Role of cross-reactive carbohydrate determinants (CCDs) was studied by inhibition with bromelain and periodate treatment. A total of 40% of wasp venom-allergic patients had specific IgE to Anisakis simplex and 20% detected at least one of the Anisakis recombinant allergens tested. Likewise, 44% of Anisakis-allergic patients had specific IgE to Vespula spp. venom and 16% detected at least one of the Hymenoptera allergens tested. Wasp venom-allergic patients detected CCDs in Anisakis extract and peptide epitopes on Anisakis allergens rAni s 1 and rAni s 9, whereas Anisakis-allergic patients only detected CCDs on nVes v 1 allergen from Vespula spp. venom. The only Anisakis allergen inhibited by Vespula venom was rAni s 9. This is the first time that cross-sensitization between wasp venom and Anisakis is described. CCDs are involved in both cases; however, peptide epitopes are only recognized by wasp venom-allergic patients. © 2014 S. Karger AG, Basel.

  10. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.

    Science.gov (United States)

    Rokyta, Darin R; Wray, Kenneth P; Margres, Mark J

    2013-06-12

    Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented detail the rapid evolution of

  11. Mastocytosis and insect venom allergy : diagnosis, safety and efficacy of venom immunotherapy

    NARCIS (Netherlands)

    Niedoszytko, M.; de Monchy, J.; van Doormaal, J. J.; Jassem, E.; Oude Elberink, J. N. G.

    The most important causative factor for anaphylaxis in mastocytosis are insect stings. The purpose of this review is to analyse the available data concerning prevalence, diagnosis, safety and effectiveness of venom immunotherapy (VIT) in mastocytosis patients. If data were unclear, authors were

  12. Venom immunotherapy improves health-related quality of life in patients allergic to yellow jacket venom

    NARCIS (Netherlands)

    Elberink, JNGO; de Monchy, JGR; van der Heide, S; Guyatt, GH; Dubois, AEJ

    Background: Venom immunotherapy (VIT) is effective in preventing anaphylactic reactions after insect stings. The effect of VIT on health-related quality of life (HRQL) was studied to evaluate whether this treatment is of importance to patients. Objective: We compared HRQL outcomes measured with a

  13. Hymenoptera venom allergy: work disability and occupational impact of venom immunotherapy.

    Science.gov (United States)

    Paolocci, Giulia; Folletti, Ilenia; Torén, Kjell; Muzi, Giacomo; Murgia, Nicola

    2014-08-06

    Little is known about the Hymenoptera venom allergy impact on work ability and the effect of venom immunotherapy (VIT) on work. The objective of this study was to evaluate the prevalence and predictors of work disability in patients treated with VIT and the effects of VIT on occupational functioning. 181 patients, aged 18-71 years, treated with VIT while working, were investigated by questionnaire. Participants were classified into employed and self-employed and, based on work exposure to Hymenoptera, into three risk categories: high risk, occasionally high risk and low risk. Work disability was defined as having to have changed jobs/tasks and/or suffered economic loss because of Hymenoptera venom allergy. Predictors of work disability were assessed in logistic regression models. 31 (17%) patients reported work disability. Being self-employed and having the severe reaction at work were associated with work disability (pallergy could determine work disability. Patients with Hymenoptera venom allergy having a high-risk job for exposure to Hymenoptera seem to have higher risk of work disability and refer more frequently a positive effect of VIT on work. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Insect sting allergy with negative venom skin test responses.

    Science.gov (United States)

    Golden, D B; Kagey-Sobotka, A; Norman, P S; Hamilton, R G; Lichtenstein, L M

    2001-05-01

    In our 1976 controlled venom immuno rapy trial, 33% of 182 patients with a history of systemic reactions to insect stings were excluded because of negative venom skin test responses. There have been reports of patients with negative skin test responses who have had severe reactions to subsequent stings. Our aim is to increase awareness about the patient with a negative skin test response and insect sting allergy and to determine the frequency and significance of negative skin test responses in patients with a history of systemic reactions to insect stings. We prospectively examined the prevalence of negative venom skin test responses in patients with a history of systemic reactions to stings. In patients who gave informed consent, we analyzed the outcome of retesting and sting challenge. Of 307 patients with positive histories screened for our sting challenge study, 208 (68%) had positive venom skin test responses (up to 1 microg/mL concentration), and 99 (32%) had negative venom skin test responses. In 36 (36%) of the 99 patients with negative skin test responses, the venom RAST result was a low positive (1-3 ng/mL), or repeat venom skin test responses were positive; another 7 (7%) patients had high venom-specific IgE antibody levels (4-243 ng/mL). Notably, 56 (57%) of 99 patients with positive histories and negative skin test responses had negative RAST results. In patients with positive skin test responses, sting challenges were performed in 141 of 196 patients, with 30 systemic reactions. Sting challenges were performed on 37 of 43 patients with negative skin test responses and positive venom-specific IgE and in 14 of 56 patients with negative skin test responses and negative RAST results. There were 11 patients with negative skin test responses who had systemic reactions to the challenge sting: 2 had negative RAST results, and 9 had positive RAST results at 1 ng/mL. The frequency of systemic reaction was 21% in patients with positive skin test responses and 22

  15. Detection of nerve growth factor (NGF) in venoms from diverse source: isolation and characterization of NGF from the venom of honey bee (Apis melifera).

    Science.gov (United States)

    Lipps, B V

    2000-02-01

    Pearce (1973) reported the absence of NGF in the venoms of bees, scorpions, spiders, and toads. Contrary to the negative findings in the past, results of this research prove the presence of NGF in bee and scorpion venoms. Venoms from various species of snake, bee, scorpion, and toad were screened by two methods: immunological test ELISA using antibodies versus mouse NGF and venom NGF and the biological test of neurite outgrowth, the characteristic of NGF on PC cells. The presence of NGF was detected in snake, bee, and scorpion venoms, but not in toad venom by these tests. NGF was isolated from bee venom by HPLC fractionation using ion exchange chromatography. The molecular weight of bee NGF was found to be 14.0 kDa resolving into a single band by PAGE. The biological activity of bee NGF on PC12 cells was found to be 1/10 of the venom NGF.

  16. Chironex fleckeri (Box Jellyfish) Venom Proteins

    Science.gov (United States)

    Brinkman, Diane L.; Konstantakopoulos, Nicki; McInerney, Bernie V.; Mulvenna, Jason; Seymour, Jamie E.; Isbister, Geoffrey K.; Hodgson, Wayne C.

    2014-01-01

    The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg−1) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml−1) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective. PMID:24403082

  17. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia.

    Science.gov (United States)

    Tan, Kae Yi; Tan, Choo Hock; Fung, Shin Yee; Tan, Nget Hong

    2015-04-29

    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to

  18. Role of the inflammasome in defense against venoms

    Science.gov (United States)

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  19. Minor snake venom proteins: Structure, function and potential applications.

    Science.gov (United States)

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  20. Micrurus snake venoms activate human complement system and generate anaphylatoxins.

    Science.gov (United States)

    Tanaka, Gabriela D; Pidde-Queiroz, Giselle; de Fátima D Furtado, Maria; van den Berg, Carmen; Tambourgi, Denise V

    2012-01-16

    The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  1. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity.

    Science.gov (United States)

    Lee, Hyunkyoung; Jung, Eun-sun; Kang, Changkeun; Yoon, Won Duk; Kim, Jong-Shu; Kim, Euikyung

    2011-09-01

    The present study, for the first time, comparatively investigated the enzymatic activities (proteases and hyaluronidases) in the venoms of four Scyphozoan jellyfish species, including Nemopilema nomurai, Rhopilema esculenta, Cyanea nozakii, and Aurelia aurita. For this, various zymographic analyses were performed using assay specific substrates. Interestingly, all the four jellyfish venoms showed gelatinolytic, caseinolytic, and fibrinolytic activities, each of which contains a multitude of enzyme components with molecular weights between 17 and 130 kDa. These four jellyfish venoms demonstrated a huge variation in their proteolytic activities in quantitative and qualitative manner depending on the species. Most of these enzymatic activities were disappeared by the treatment of 1,10-phenanthroline, suggesting they might be belonged to metalloproteinases. Toxicological significance of these venom proteases was examined by comparing their proteolytic activity and the cytotoxicity in NIH 3T3 cells. The relative cytotoxic potency was C. nozakii > N. nomurai > A. aurita > R. esculenta. The cytotoxicity of jellyfish venom shows a positive correlation with its overall proteolytic activity. The metalloproteinases appear to play an important role in the induction of jellyfish venom toxicities. In conclusion, the present report proposes a novel finding of Scyphozoan jellyfish venom metalloproteinases and their potential role in the cytotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A Study on the Stability of Diluted Bee Venom Solution

    Directory of Open Access Journals (Sweden)

    Mi-Suk Kang

    2003-06-01

    Full Text Available Objective : The purpose of this study was to investigate the stability of bee venom according to the keeping method and period. Method : The author observed microbial contamination of bee venom in nutrient agar, broth, YPD agar and YPD media and antibacterial activity for S. aureus, E. coli manufactured 12, 6 and 3 months ago as the two type of room temperature and 4℃ cold storage. Result : 1. 1:3,000 and 1:4,000 diluted bee venom solution did not show microbial contamination both room temperature and cold storage within twelve months. 2. There was antibacterial activity of diluted bee venom for S. aureus in cold storage within twelve months and there was no antibacterial activity of diluted bee venom for S. aureus in twelve months, room temperature storage. 3. We could not observe the zone of inhibition around paper disc of all for E.coli. in 1:3,000, 1:30,000 and 1:3,000,000 diluted bee venom solution, respectively. According to results, we expect that diluted bee venom solution is stable both cold and room temperature storage within twelve months.

  3. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    Directory of Open Access Journals (Sweden)

    Tanaka Gabriela D

    2012-01-01

    Full Text Available Abstract Background The genus Micrurus, coral snakes (Serpentes, Elapidae, comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  4. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) against Russell's viper venom: characterization of piperine as active principle.

    Science.gov (United States)

    Shenoy, P A; Nipate, S S; Sonpetkar, J M; Salvi, N C; Waghmare, A B; Chaudhari, P D

    2013-05-20

    Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. To examine the ability of ethanolic extract of fruits of Piper longum L., Piperaceae (PLE) and piperine, one of the main active principles of Piper longum, to inhibit the Russell's viper (Doboia russelii, Viperidae) snake venom activities. Anti-snake venom activities of ethanolic extract of fruits of Piper longum L. (Piperaceae) and piperine against Russell's viper venom was studied in embryonated fertile chicken eggs, mice and rats by using various models as follows: inhibition of venom lethal action, inhibition of venom haemorrhagic action (in vitro), inhibition of venom haemorrhagic action (in vivo), inhibition of venom necrotizing action, inhibition of venom defibrinogenating action, inhibition of venom induced paw edema, inhibition of venom induced mast cell degranulation, creatine kinase assay and assay for catalase activity. PLE was found to inhibit the venom induced haemorrhage in embryonated fertile chicken eggs. Administration of PLE and piperine significantly (p<0.01) inhibited venom induced lethality, haemorrhage, necrosis, defibrinogenation and inflammatory paw edema in mice in a dose dependent manner. PLE and piperine also significantly (p<0.01) reduced venom induced mast cell degranulation in rats. Venom induced decrease in catalase enzyme levels in mice kidney tissue and increase in creatine kinase enzyme levels in mice serum were significantly (p<0.01) reversed by administration of both PLE and piperine. PLE possesses good anti-snake venom properties and piperine is one of the compounds responsible for the effective venom neutralizing ability of the plant. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. EAACI Guidelines on Allergen Immunotherapy: Hymenoptera venom allergy.

    Science.gov (United States)

    Sturm, Gunter J; Varga, Eva-Maria; Roberts, Graham; Mosbech, Holger; Bilò, M Beatrice; Akdis, Cezmi A; Antolín-Amérigo, Darío; Cichocka-Jarosz, Ewa; Gawlik, Radoslaw; Jakob, Thilo; Kosnik, Mitja; Lange, Joanna; Mingomataj, Ervin; Mitsias, Dimitris I; Ollert, Markus; Oude Elberink, Joanna N G; Pfaar, Oliver; Pitsios, Constantinos; Pravettoni, Valerio; Ruëff, Franziska; Sin, Betül Ayşe; Agache, Ioana; Angier, Elizabeth; Arasi, Stefania; Calderón, Moises A; Fernandez-Rivas, Montserrat; Halken, Susanne; Jutel, Marek; Lau, Susanne; Pajno, Giovanni B; van Ree, Ronald; Ryan, Dermot; Spranger, Otto; van Wijk, Roy Gerth; Dhami, Sangeeta; Zaman, Hadar; Sheikh, Aziz; Muraro, Antonella

    2017-07-27

    Hymenoptera venom allergy is a potentially life-threatening allergic reaction following a honeybee, vespid or ant sting. Systemic allergic sting reactions have been reported in up to 7.5% of adults and up to 3.4% of children. They can be mild and restricted to the skin or moderate-to-severe with a risk of life-threatening anaphylaxis. Patients should carry an emergency kit containing an adrenaline autoinjector, H1 -antihistamines, and corticosteroids depending on the severity of their previous sting reaction(s). The only treatment to prevent further systemic sting reactions is venom immunotherapy. This guideline has been prepared by the European Academy of Allergy and Clinical Immunology's (EAACI) Taskforce on Venom Immunotherapy as part of the EAACI Guidelines on Allergen Immunotherapy initiative. The guideline aims to provide evidence-based recommendations for the use of venom immunotherapy, has been informed by a formal systematic review and meta-analysis and produced using the Appraisal of Guidelines for Research and Evaluation (AGREE II) approach. The process included representation from a range of stakeholders. Venom immunotherapy is indicated in venom allergic children and adults to prevent further moderate to severe systemic sting reactions. Venom immunotherapy is also recommended in adults with only generalized skin reactions as it results in significant improvements in quality of life compared to carrying an adrenaline auto-injector. This guideline aims to give practical advice on performing venom immunotherapy. Key sections cover general considerations before initiating venom immunotherapy, evidence-based clinical recommendations, risk factors for adverse events and for relapse of systemic sting reaction, and a summary of gaps in the evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution.

    Science.gov (United States)

    Skejic, Jure; Steer, David L; Dunstan, Nathan; Hodgson, Wayne C

    2015-11-06

    This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 μg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic β-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.

  7. Three Cases of Radial Nerve Palsy with Bee Venom Therapy

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Soo

    2004-06-01

    Full Text Available Objectives : The purpose of this study is to report the efficiency of Bee Venom Therapy by managering of radial nerve palsy patients. Methods : Three patients were treatmented by Bee Venom therapy and acupucture therapy. And We took pictures of someone's wrist and checked the power of muscles by the improving phase. Results : Almost cases shows the improvement in the movement of wrist and the numbness of hand. By using acuputure and Bee Venom therapy, the symptoms of radial nerv palsy was more fastly recovered.

  8. [Snake venom metalloproteinases: structure, biosynthesis and function(s)].

    Science.gov (United States)

    Limam, I; El Ayeb, M; Marrakchi, N

    2010-01-01

    The biochemical and the pharmacological characterization of snake venoms revealed an important structural and functional polymorphism of proteins which they contain. Among them, snake venom metalloproteases (SVMPs) constitute approximatively 20 to 60% of the whole venom proteins. During the last decades, a significant progress was performed against structure studies and the biosynthesis of the SVMPs. Indeed, several metalloproteases were isolated and characterized against their structural and pharmacological properties. In this review, we report the most important properties concerning the classification, the structure of the various domains of the SVMPs as well as their biosynthesis and their activities as potential therapeutic agents.

  9. Venomics of Bungarus caeruleus (Indian krait): Comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan.

    Science.gov (United States)

    Oh, Angeline Mei Feng; Tan, Choo Hock; Ariaranee, Gnanathasan Christeine; Quraishi, Naeem; Tan, Nget Hong

    2017-07-05

    The Indian krait (Bungarus caeruleus) is one of the "Big Four" venomous snakes widely distributed in South Asia. The present venomic study reveals that its venom (Sri Lankan origin) is predominated by phospholipases A 2 (64.5% of total proteins), in which at least 4.6% are presynaptically-acting β-bungarotoxin A-chains. Three-finger toxins (19.0%) are the second most abundant, comprising 15.6% κ-neurotoxins, the potent postsynaptically-acting long neurotoxins. Comparative chromatography showed that venom samples from Sri Lanka, India and Pakistan did not exhibit significant variation. These venoms exhibited high immunoreactivity toward VINS Indian Polyvalent Antivenom (VPAV). The Pakistani krait venom, however, had a relatively lower degree of binding, consistent with its moderate neutralization by VPAV (potency=0.3mg venom neutralized per ml antivenom) while the Sri Lankan and Indian venoms were more effectively neutralized (potency of 0.44 mg/ml and 0.48 mg/ml, respectively). Importantly, VPAV was able to neutralize the Sri Lankan and Indian venoms to a comparable extent, supporting its use in Sri Lanka especially in the current situation where Sri Lanka-specific antivenom is unavailable against this species. The findings also indicate that the Pakistani B. caeruleus venom is immunologically less comparable and should be incorporated in the production of a pan-regional, polyspecific antivenom. The Indian krait or blue krait, Bungarus caeruleus, is a highly venomous snake that contributes to the snakebite envenoming problem in South Asia. This is a less aggressive snake species but its accidental bite can cause rapid and severe neurotoxicity, in which the patient may succumb to paralysis, respiratory failure and death within a short frame of time. The proteomic analysis of its venom (sourced from Sri Lanka) unveils its content that well correlates to its envenoming pathophysiology, driven primarily by the abundant presynaptic and postsynaptic neurotoxins (

  10. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.

    Science.gov (United States)

    Laustsen, Andreas H; Gutiérrez, José María; Lohse, Brian; Rasmussen, Arne R; Fernández, Julián; Milbo, Christina; Lomonte, Bruno

    2015-06-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominated by three-finger toxins (77.5%; including 24.3% cytotoxins and 53.2% neurotoxins) and phospholipases A2 (13.5%). It also contains lower proportions of components belonging to nerve growth factor, ohanin/vespryn, cysteine-rich secretory protein, C-type lectin/lectin-like, nucleotidase, phosphodiesterase, metalloproteinase, l-amino acid oxidase, cobra venom factor, and cytidyltransferase protein families. Small amounts of three nucleosides were also evidenced: adenosine, guanosine, and inosine. The most relevant lethal components, categorized by means of a 'toxicity score', were α-neurotoxins, followed by cytotoxins/cardiotoxins. IgGs isolated from a person who had repeatedly self-immunized with a variety of snake venoms were immunoprofiled by ELISA against all venom fractions. Stronger responses against larger toxins, but lower against the most critical α-neurotoxins were obtained. As expected, no neutralization potential against N. kaouthia venom was therefore detected. Combined, our results display a high level of venom complexity, unveil the most relevant toxins to be neutralized, and provide prospects of discovering human IgGs with toxin neutralizing abilities through use of phage display screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analysis of Fang Puncture Wound Patterns in Isfahan Province’s, Iran, Venomous and Non-Venomous Snakes

    Directory of Open Access Journals (Sweden)

    Dehghani R.1 PhD,

    2015-01-01

    Full Text Available Aims Venomous snake bites are public health problems in different parts of the world. The most specific mainstay in the treatment of envenomation is anti-venom. To treat the envenomation, it is very important to identify the offending species. This study was designed to determine the penetrating pattern of fangs and teeth of some viper snakes. Materials & Methods This descriptive study was performed on live venomous and nonvenomous snakes from 2010 till 2011. All 47 sample snakes were collected from different regions of Isfahan province such as Kashan City, Ghamsar, Niasar, Mashhad Ardehal, Taher- Abad and Khozagh. Their mouths were inspected every two weeks and development of their fangs and teeth were recorded by taking clear digital photos. Fangs and teeth patterns of samples were drawn and the results were compared. Findings One or two wounds appeared as typical fang marks at the bite site of venomous snakes while non-venomous snakes had two carved rows of small teeth. Three different teeth and fang patterns were recognized in venomous snakes which were completely different. Conclusion The fang marks of venomous snakes do not always have a common and classic pattern and there are at least 3 different patterns in Isfahan province, Iran.

  12. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients with Hymenoptera venom allergy.

    Science.gov (United States)

    Gawlik, Radoslaw; Glück, Joanna; Jawor, Barbara; Rogala, Barbara

    2015-01-01

    Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Venom immunotherapy is a recommended treatment of insect allergy with still the mechanism not being completely understood. We decided to assess the serum CCL5/RANTES level in patients who experienced severe anaphylactic reaction to Hymenoptera venom and to find out changes in the course of immunotherapy. Twenty patients (9 men, 11 women, mean age: 31.91 ± 7.63 years) with history of anaphylactic reaction after insect sting were included into the study. Diagnosis was made according to sIgE and skin tests. All of them were enrolled into rush venom immunotherapy with bee or wasp venom extracts (Pharmalgen, ALK-Abello, Horsholm, Denmark). Serum levels of CCL5/RANTES were measured using a commercially available ELISA kit (R&D Systems, Minneapolis, MN). CCL5/RANTES serum concentration are higher in insect venom allergic patients than in healthy controls (887.5 ± 322.77 versus 387.27 ± 85.11 pg/ml). Serum concentration of CCL5/RANTES in insect venom allergic patient was significantly reduced in the course of allergen immunotherapy already after 6 days of vaccination (887.5 ± 322.77 versus 567.32 ± 92.16 pg/ml). CCL5/RANTES serum doesn't correlate with specific IgE. Chemokine CCL5/RANTES participates in allergic inflammation induced by Hymenoptera venom allergens. Specific immunotherapy reduces chemokine CCL5/RANTES serum level already after initial days of venom immunotherapy.

  13. Antineoplastic Effects of Honey Bee Venom

    Directory of Open Access Journals (Sweden)

    Mohammad Nabiuni

    2013-08-01

    Full Text Available Background: Bee venom (BV, like many other complementary medicines, has been used for thousands of years for the treatment of a range of diseases. More recently, BV is also being considered as an effective composition for the treatment of cancer. Cancer is a major worldwide problem. It is obvious that the identification of compounds that can activate apoptosis could be effective on the treatment of cancer. BV is a very complicated mixture of active peptides, enzymes, and biologically active amines. The two main components of BV are melittin and phospholipase A2 (PLA2. Of these two components, melittin, the major active ingredient of BV, has been identified to induce apoptosis and to possess anti-tumor effects. We tried to review antineoplastic effects of BV in this study. Materials and Methods: The related articles were derived from different data bases such as PubMed, Elsevier Science, and Google Scholar using keywords including bee venom, cancer, and apoptosis.Results: According to the results of this study, BV can induce apoptosis and inhibit tumor cell growth and metastasis. Results of in vivo experiments show that the anti-tumor effect of the BV is highly dependent on the manner of injection as well as the distance between the area of injection and the tumor cells.Conclusion: The results obtained from the reported studies revealed that BV has anti-cancer effects and can be used as an effective chemotherapeutic agent against tumors in the future.

  14. Some Neuropharmacological Effects of the Crude Venom Extract of ...

    African Journals Online (AJOL)

    Some Neuropharmacological Effects of the Crude Venom Extract of Conus musicus in Mice. Department of Pharmacy ... coordination and prolonged pentobarbitone-sleeping time. A liquid ..... Pharmacology, Academic Press, New. York and ...

  15. Component Analysis of Bee Venom from lune to September

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2007-06-01

    Full Text Available Objectives : The aim of this study was to observe variation of Bee Venom content from the collection period. Methods : Content analysis of Bee Venom was rendered using HPLC method by standard melittin Results : Analyzing melittin content using HPLC, 478.97mg/g at june , 493.89mg/g at july, 468.18mg/g at August and 482.15mg/g was containing in Bee Venom at september. So the change of melittin contents was no significance from June to September. Conclusion : Above these results, we concluded carefully that collecting time was not important factor for the quality control of Bee Venom, restricted the period from June to September.

  16. Venom proteome of the box jellyfish Chironex fleckeri

    National Research Council Canada - National Science Library

    Brinkman, Diane L; Aziz, Ammar; Loukas, Alex; Potriquet, Jeremy; Seymour, Jamie; Mulvenna, Jason

    2012-01-01

    .... The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening...

  17. Antibacterial Activity of Melittin Derived from Honey Bee Venom

    National Research Council Canada - National Science Library

    Mohsen Momenzadeh; Delavar Shahbazzadeh; Mohammad Dakhili; Mohammad Reza Zolfaghari; Kamran Pooshang Bagheri

    2014-01-01

    .... During the past decade, tracing for natural antimicrobial peptide is more considered. Among them, melittin has been extracted from honey bee venom and its antibacterial activity is being examined...

  18. Effects of Sweet Bee Venom and Bee Venom on the Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Yook Tae-Han

    2008-03-01

    Full Text Available Objective : In this study, we investigated the effects of Sweet Bee Venom(SBV and Bee Venom(BV at a acupoint, HT7(Shinmun on the Heart Rate Variability(HRV in the healthy man. And we tried to observe how Sweet Bee Venom and Bee Venom affects on the balance of the autonomic nervous system. Methods : We investigated on 22 heathy volunteers consisted of 10 subjects in SBV group and 12 subjects in BV group. Study form was a randomized, placebo-controlled, double-blind clinical trial. 22 subjects of each group were injected SBV and BV at HT7(Shinmun. And we measured HRV by QECG-3:LXC3203 (LAXTHA Inc. Korea on 7 times : before and after injection per 5minutes during 30minutes. Results : 1. After SBV injection, Mean-RR was significantly high from 0 to 10 minutes, Mean-HRV was significantly low from 0 to 10 minutes, SDNN was significantly high after 25minutes, Complexity was significantly high from 5 to 10minutes and RMSSD was significantly high from 5 to 10minutes. 2. Complexity of SBV Group significantly decreased from 20 to 25minutes, RMSSD of SBV Group significantly increased from 10 to 15minute and from 20~25minutes, SDSD of SBV Group significantly increased from 10 to 15 minute and from 20~25minutes compared with that of BV group. 3. After SBV injection, Ln(VLF was significantly from 25 to 30minutes. Conclusions : The results suggest that SBV in heathy adult man tend to activate the autonomic nervous system compared to BV within normal range.

  19. A review of neogene and quaternary snakes of Central and Eastern Europe. Part 11: natricinae, elapidae, viperidae

    Directory of Open Access Journals (Sweden)

    Szyndlar, Z.

    1991-08-01

    Full Text Available Remains of Neogene and Quaternary "natricine" colubrids, elapids and viperids, including snakes previously described and those undescribed yet, coming from Poland, Ukraine, Moldavia, Czechoslovakia, Austria, Hungary, Romania, Bulgaria, and Greece are discussed. The following taxa, including 11 extinct species, were recognized: "Natricinae": Neonatrix nova, Neonatrix sp., Palaeonatrix silesiaca, Palaeonatrix lehmani, Natrix longivertebrata, Natrix cf. N. longivertebrata, Natrix natrix, Natrix tesselata, Natrix cf. N. tesselata, Natrix sp., "Natricinae" indet.; Elapidae: Naja romani, Naja sp., cf. Naja sp.; Viperidae: Vipera platyspondyla, Vipera sarmatica, Vipera burgenlandica, Vipera gedulyi, Vipera kuchurganica, Vipera antiqua, Vipera cf. V. ammodytes, Vipera berus, Vipera sp ('Oriental vipers' group, Vipera sp. ('aspis' group, Vipera sp. ('berus' group, Vipera sp. . (status unknown. Taxonomic status of two other extinct species, Natrix parva and Laophis crotaloides, is uncertain. Modern species appeared fírst in Central and East Europe in the middle Pliocene (MN 15. Older snakes belonged to extinct species of either extinct or extant genera; taxonomic distinction of most extinct genera is, however, not fully demonstrated. Best recognized oldest snakes from the area (Elapidae, Viperidae, and sorne Colubridae are clearly referable to modern genera and intrageneric subdivisions occurring today are observed in oldest (Iower Miocene remains; closest living relatives of these fossils are presently distributed in the Oriental Realm.Se revisan y estudian los restos neógenos y cuaternarios de colúbridos «natricinos», elápidos y vipéridos, incluyendo tanto serpientes previamente descritas como- otras inéditas. Los materiales analizados proceden de Polonia, Ukrania, Moldavia, Checoslovaquia, Austria, Hungría, Rumania, Bulgaria y Grecia. Se reconocen los siguientes taxones, incluyendo 11 especies extinguidas: Natricinae: Neonatrix nova

  20. Peptidomic and transcriptomic profiling of four distinct spider venoms.

    Directory of Open Access Journals (Sweden)

    Vera Oldrati

    Full Text Available Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae, Poecilotheria formosa (Theraphosidae, Viridasius fasciatus (Viridasiidae and Latrodectus mactans (Theridiidae. This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins, revealed the presence of 14

  1. Immune and clinical response to honeybee venom in beekeepers.

    Science.gov (United States)

    Matysiak, Jan; Matysiak, Joanna; Bręborowicz, Anna; Kycler, Zdzisława; Dereziński, Paweł; Kokot, Zenon J

    2016-01-01

    The aim of the study was to assess immune response to honeybee venom in relation to the degree of exposure, time after a sting and clinical symptoms. Fifty-four volunteers were divided into 2 groups: beekeepers and a control group. The serum levels of total IgE (tIgE), bee venom-specific IgE (venom sIgE), phospholipase A2-specific IgE (phospholipase A2 sIgE), tryptase and venom-specific IgG4 (venom sIgG4) were determined. In beekeepers, diagnostic tests were performed within 3 hours following a sting and were repeated after a minimum of 6 weeks from the last sting. In individuals from the control group, the tests were performed only once, without a sting. The tests showed significant differences in venom sIgE (beekeepers' median = 0.34 kUA/l, control group median = 0.29 kUA/l), baseline serum tryptase (beekeepers' median = 4.25 µg/l, control group median = 2.74 µg/l) and sIgG4 (beekeepers' median = 21.2 mgA/l, control group median = 0.14 mgA/l), confirming higher levels of the tested substances in the beekeepers than in the control group. A significant positive correlation was observed between phospholipase A2 sIgE concentration and severity of clinical symptoms after a sting in the group of beekeepers. It was also demonstrated that the clinical symptoms after a sting became less severe with increasing age of the beekeepers. The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  2. Biological and enzymatic activities of Micrurus sp. (Coral) snake venoms.

    Science.gov (United States)

    Cecchini, Alessandra L; Marcussi, Silvana; Silveira, Lucas B; Borja-Oliveira, Caroline R; Rodrigues-Simioni, Léa; Amara, Susan; Stábeli, Rodrigo G; Giglio, José R; Arantes, Eliane C; Soares, Andreimar M

    2005-01-01

    The venoms of Micrurus lemniscatus carvalhoi, Micrurus frontalis frontalis, Micrurus surinamensis surinamensis and Micrurus nigrocinctus nigrocinctus were assayed for biological activities. Although showing similar liposome disrupting and myotoxic activities, M. frontalis frontalis and M. nigrocinctus nigrocinctus displayed higher anticoagulant and phospholipase A2 (PLA2) activities. The latter induced a higher edema response within 30 min. Both venoms were the most toxic as well. In the isolated chick biventer cervicis preparation, M. lemniscatus carvalhoi venom blocked the indirectly elicited twitch-tension response (85+/-0.6% inhibition after a 15 min incubation at 5 microg of venom/mL) and the response to acetylcholine (ACh; 55 or 110 microM), without affecting the response to KCl (13.4 mM). In mouse phrenic nerve-diaphragm preparation, the venom (5 microg/mL) produced a complete inhibition of the indirectly elicited contractile response after 50 min incubation and did not affect the contractions elicited by direct stimulation. M. lemniscatus carvalhoi inhibited 3H-L-glutamate uptake in brain synaptosomes in a Ca2+-, but not time, dependent manner. The replacement of Ca2+ by Sr2+ and ethylene glycol-bis(beta-aminoethyl ether) (EGTA), or alkylation of the venom with p-bromophenacyl bromide (BPB), inhibited 3H-L-glutamate uptake. M. lemniscatus carvalhoi venom cross-reacted with postsynaptic alpha-neurotoxins short-chain (antineurotoxin-II) and long-chain (antibungarotoxin) antibodies. It also cross-reacted with antimyotoxic PLA2 antibodies from M. nigrocinctus nigrocinctus (antinigroxin). Our results point to the need of catalytic activity for these venoms to exert their neurotoxic activity efficiently and to their components as attractive tools for the study of molecular targets on cell membranes.

  3. Identification and discrimination of snake venoms from Egyptian elapids.

    Science.gov (United States)

    Ibrahim, Nihal M; El-Kady, Ebtsam M; Katamesh, Rania A; El-Borei, Ibrahim H; Wahby, Ahmed F

    2013-03-01

    The avidity to the corresponding antigens is often higher than to the cross-reactive antigens. This was demonstrated with the highly cross-reactive elapid Egyptian snake venoms Naja haje (Nh), Naja nigricollis (Nn) and Walterinnesia aegyptia (Wa), and used for the differentiation among the three species in a simple ELISA-based assay. A three-step immuno-affinity protocol was followed and the titer and avidity of the different antibody (Ab) preparations were assessed and evaluated. The advantages offered by the avidity power of the venom specific antibodies (VS-Abs) obtained after one step purification, outweigh the specificity of the species-specific antibodies (SS-Abs) obtained after further purification. The efficiency of the VS-Abs as special immunodiagnostics was validated using 16 venom samples collected from individual snakes of different size and age at different time intervals. The avidities of the VS-Abs to the homologous venoms were 2.53 ± 0.4, 2.66 ± 0.31 and 2.8 ± 0.06 for Nh, Nn and Wa venoms respectively; whereas the avidity of the same Abs to the heterologous venoms could hardly exceed 1. Venom concentrations in the range between 10-1250 ng/well were detected with almost the same efficiency, an extra advantage that could be added to the assay to assure equal sensitivity allover the mentioned venom concentration range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Venom yields from Australian and some other species of snakes.

    Science.gov (United States)

    Mirtschin, Peter J; Dunstan, Nathan; Hough, Ben; Hamilton, Ewan; Klein, Sharna; Lucas, Jonathan; Millar, David; Madaras, Frank; Nias, Timothy

    2006-08-01

    The wet and dry venom yields for most Australian native dangerous snakes and a number of non-Australian species are presented. Snakes from the Pseudonaja genus yielded higher than previously published amounts and suggest reconsideration be given to increasing the volume of antivenom in each vial. Higher percentage solids were obtained from venoms from the 4 cobra species (Naja) and Pseudechis genus included in this series.

  5. Allergen-specific immunotherapy of Hymenoptera venom allergy

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Graessel, Anke; Ollert, Markus

    2017-01-01

    Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms...... on state of the art diagnostic and therapeutic options as well as on novel directions trying to improve therapy....

  6. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  7. Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa.

    Science.gov (United States)

    Moore, Eugene; Arvidson, Ryan; Banks, Christopher; Urenda, Jean; Duong, Elizabeth; Mohammad, Haroun; Adams, Michael E

    2018-01-19

    The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a seven to ten day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel alpha-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin-1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells (Trichoplusia ni).

  8. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms.

    Science.gov (United States)

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J

    2016-06-07

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A₂ (PLA₂s; seven isoforms, 4.1% of the venom proteome), 1-3 Kunitz-type proteins (1.6%), and 1-2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA₂-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA₂ dichotomy may be widely distributed among Elapidae venoms.

  9. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms

    Science.gov (United States)

    Sanz, Libia; Pla, Davinia; Pérez, Alicia; Rodríguez, Yania; Zavaleta, Alfonso; Salas, Maria; Lomonte, Bruno; Calvete, Juan J.

    2016-01-01

    The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A2 (PLA2s; seven isoforms, 4.1% of the venom proteome), 1–3 Kunitz-type proteins (1.6%), and 1–2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA2-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA2 dichotomy may be widely distributed among Elapidae venoms. PMID:27338473

  10. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms

    Directory of Open Access Journals (Sweden)

    Libia Sanz

    2016-06-01

    Full Text Available The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs constitute, both in number of isoforms (~30 and total abundance (93.6% of the venom proteome, the major protein family of the desert coral snake venom. Phospholipases A2 (PLA2s; seven isoforms, 4.1% of the venom proteome, 1–3 Kunitz-type proteins (1.6%, and 1–2 l-amino acid oxidases (LAO, 0.7% complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA2-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae venoms suggests that the 3FTx/PLA2 dichotomy may be widely distributed among Elapidae venoms.

  11. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Embryotoxicity following repetitive maternal exposure to scorpion venom

    Directory of Open Access Journals (Sweden)

    BN Hmed

    2012-01-01

    Full Text Available Although it is a frequent accident in a few countries, scorpion envenomation during pregnancy remains scarcely studied. In the present study, the effects of repetitive maternal exposure to Buthus occitanus tunetanus venom are investigated and its possible embryotoxic consequences on rats. Primigravid rats received a daily intraperitoneal dose of 1 mL/kg of saline solution or 300 µg/kg of crude scorpion venom, from the 7th to the 13th day of gestation. On the 21st day, the animals were deeply anesthetized using diethyl-ether. Then, blood was collected for chemical parameter analysis. Following euthanasia, morphometric measurements were carried out. The results showed a significant increase in maternal heart and lung absolute weights following venom treatment. However, the mean placental weight per rat was significantly diminished. Furthermore, blood urea concentration was higher in exposed rats (6.97 ± 0.62 mmol/L than in those receiving saline solution (4.94 ± 0.90 mmol/L. Many organs of venom-treated rat fetuses (brain, liver, kidney and spleen were smaller than those of controls. On the contrary, fetal lungs were significantly heavier in fetuses exposed to venom (3.2 ± 0.4 g than in the others (3.0 ± 0.2 g. Subcutaneous blood clots, microphthalmia and total body and tail shortening were also observed in venom-treated fetuses. It is concluded that scorpion envenomation during pregnancy potentially causes intrauterine fetal alterations and growth impairment.

  13. Unraveling the processing and activation of snake venom metalloproteinases.

    Science.gov (United States)

    Portes-Junior, José A; Yamanouye, Norma; Carneiro, Sylvia M; Knittel, Paloma S; Sant'Anna, Sávio S; Nogueira, Fabio C S; Junqueira, Magno; Magalhães, Geraldo S; Domont, Gilberto B; Moura-da-Silva, Ana M

    2014-07-03

    Snake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation. Using antibodies obtained by immunization with a recombinant prodomain, bands of zymogen molecular mass and prodomain peptides were detected mostly in gland extracts all along the venom production cycle and in the venom collected from the lumen at the peak of venom production. Prodomain was detected in secretory cells mostly in the secretory vesicles near the Golgi. We hypothesize that the processing of SVMPs starts within secretory vesicles and continues in the lumen of the venom gland just after enzyme secretion and involves different steps compared to ADAMs and MMPs but can be used as a model for studying the relevance of peptides resulting from prodomain processing and degradation for controlling the activity of metalloproteinases.

  14. Ancient Venom Systems: A Review on Cnidaria Toxins

    Directory of Open Access Journals (Sweden)

    Mahdokht Jouiaei

    2015-06-01

    Full Text Available Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or “venom” that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.

  15. Venom proteome of the box jellyfish Chironex fleckeri.

    Science.gov (United States)

    Brinkman, Diane L; Aziz, Ammar; Loukas, Alex; Potriquet, Jeremy; Seymour, Jamie; Mulvenna, Jason

    2012-01-01

    The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.

  16. Venom proteome of the box jellyfish Chironex fleckeri.

    Directory of Open Access Journals (Sweden)

    Diane L Brinkman

    Full Text Available The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis. The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.

  17. Systemic and local reactions of bee venom immunotherapy in Iran.

    Science.gov (United States)

    Bemanian, Mohammad Hassan; Farhoudi, Abolhassan; Pourpak, Zahra; Gharagozlou, Mohammad; Movahedi, Masoud; Nabavi, Mohammad; Mozafari, Habibeh; Mohammadzadeh, Iraj; Chavoshzadeh, Zahra; Shirkhoda, Zahra

    2007-12-01

    Severe allergic reactions during specific immunotherapy may occur in the treatment of hymenoptera sting allergy. The objective of the present study was to examine the characteristics of allergic reactions during specific immunotherapy in patients with allergy towards hymenoptera venom in the Iranian population. A prospective study was performed using the clinical reports of 27 patients with anaphylaxis to bee venom (Apis melifera, Geupes vespula and Geupes Polites). Ten patients treated with Cluster protocol during 2002 and 2006 After diagnosis of hymenoptera sting allergy according to history and intradermal tests, the patient were treated with Cluster protocol immunotherapy. The protocol lasted 6 weeks with an increase in the concentration of venom from 0.01 microg/ml to 100 microg/ml. None of the patient received premedication. All patients with hymenoptera venom allergy received 120 injections. Anaphylactic reactions were classified according to the Mueller-classification. The frequencies of systemic reactions during Cluster protocol were 8.33% and 5% for yellow jacket and honey bee venom respectively. No patient experienced severe systemic reaction. Cluster protocol for hymenoptera immunotherapy is a reliable method for the treatment of anaphylactic reactions to bee venom. It is safe with low cost and do not need hospitalization.

  18. Proteome and phosphoproteome of Africanized and European honeybee venoms.

    Science.gov (United States)

    Resende, Virgínia Maria Ferreira; Vasilj, Andrej; Santos, Keity Souza; Palma, Mario Sergio; Shevchenko, Andrej

    2013-09-01

    Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the (205) Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the (10) Thr and (18) Ser residues. (18) Ser phosphorylated melittin-the major of its two phosphorylated forms-was less toxic compared to the native peptide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Alexander Mikhailovich Zakharov and his works on the venom apparatus and venoms of some poisonous snakes

    Directory of Open Access Journals (Sweden)

    Cherlin Vladimir Alexandrovich

    2013-10-01

    Full Text Available The article gives brief biographical information about a very talented herpetologist Alexander M. Zakharov, and describes the general results of his works on the structure and function of venom glands of some poisonous snakes and their venoms. In his studies, he got the results, which are fundamentally different from the conventional concept of 30s - 70s of the XX century. Unfortunately, among physicians this concept has not changed up today. At that time it was thought that the poisons of Viperidae snakes are almost completely hemotoxic, and poisons of Elapidae (cobra are almost neurotoxic. But A.M.Zaharov found out, that poisons of both types of snakes (Viperidae and Elapidae include three groups of substances: hemotoxins, neurotoxins and non-toxic component – hyaluronidase. Each of these groups of substances is produced by independent part of venom glands and has its own special effect. Neurotoxins act on the central nervous system (mainly the respiratory center, but are greatly destroyed by means of the blood antigen properties and cannot pass through the hematoencephalic barrier. Hyaluronidase , connecting with neurotoxins, has an important property – to "smuggle" neurotoxins through the hematoencephalic barrier exactly into the target organ – the respiratory center in the central nervous system. In this case, neurotoxin enters the respiratory center not through the blood and lymph vessels, but directly through the nerve channel, through synapsis. The main function of hemotoxins is not to kill the victim, but to protect neurotoxins and hyaluronidase from the destructive activity of the victim's blood. Therefore, the target of the poisons of Viperidae and Elapidae snakes is the central nervous system of victims, but Elapidae has almost no hemotoxins. That’s why their striking effect can be achieved only by a strong increase in the amount of neurotoxins and hyaluronidase. Hemotoxins of Viperidae venoms permits to reduce the amount of

  20. Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): venom-induced neuromuscular depression and antivenom neutralization.

    Science.gov (United States)

    Tan, Kae Yi; Tan, Choo Hock; Sim, Si Mui; Fung, Shin Yee; Tan, Nget Hong

    2016-01-01

    The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization.

    Science.gov (United States)

    Tan, Nget Hong; Wong, Kin Ying; Tan, Choo Hock

    2017-03-22

    The venom proteome of Naja sputatrix (Javan spitting cobra) was elucidated through reverse-phase HPLC, nano-ESI-LCMS/MS and data mining. A total of 97 distinct protein forms belonging to 14 families were identified. The most abundant proteins are the three-finger toxins (3FTXs, 64.22%) and phospholipase A2 (PLA2, 31.24%), followed by nerve growth factors (1.82%), snake venom metalloproteinase (1.33%) and several proteins of lower abundance (cobra, Naja sputatrix is by itself a unique species and should not be confused as the equatorial and the Indochinese spitting cobras. The distinction among the spitting cobras was however unclear prior to the revision of cobra systematics in the mid-90's, and results of some earlier studies are now questionable as to which species was implicated back then. The current study successfully profiled the venom proteome of authenticated N. sputatrix, and showed that the venom is made up of approximately 64% three-finger toxins (including neurotoxins and cytotoxins) and 31% phospholipases A2 by total venom proteins. The findings verified that the paralyzing components in the venom i.e. neurotoxins are predominantly the short-chain subtype (SNTX) far exceeding the long-chain subtype (LNTX) which is more abundant in the venoms of monocled cobra and Indian common cobra. The neurotoxicity of N. sputatrix venom is hence almost exclusively SNTX-driven, and effective neutralization of the SNTX is the key to early reversal of paralysis. Unfortunately, as shown through a toxin-specific assay, the immunological neutralization of the SNTX using the Indonesian antivenom (SABU) was extremely weak, implying that SABU has limited therapeutic efficacy in treating N. sputatrix envenomation clinically. From the practical standpoint, actions need to be taken at all levels from laboratory to production and policy making to ensure that the shortcoming is overcome. Copyright © 2017. Published by Elsevier B.V.

  2. Assessment of immunogenic characteristics of Hemiscorpius lepturus venom and its cross-reactivity with venoms from Androctonus crassicauda and Mesobuthus eupeus.

    Science.gov (United States)

    Khanbashi, Shahin; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Pipelzadeh, Mohammad Hassan; Vazirianzadeh, Babak; Hosseinzadeh, Mohsen; Rahmani, Ali Hassan; Asmar, Akbar

    2015-01-01

    Hemiscorpius lepturus (H. lepturus), one of the most venomous scorpions in tropical and sub-tropical areas, belongs to the Hemiscorpiidae family. Studies of antibodies in sera against the protein component of the venom from this organism can be of great use for the development of engineered variants of proteins for eventual use in the diagnosis/treatment of, and prevention of reactions to, stings. In the present in vitro study, the proteins of H. lepturus venom, which could specifically activate the production of immunoglobulin G (IgG) in victims accidently exposed to the venom from this scorpion, were evaluated and their cross-reactivity with venoms from two other important scorpion species including Androctonus crassicauda and Mesobuthus eupeus assessed. H. lepturus venom was analyzed with respect to its protein composition and its antigenic properties against antibodies found in sera collected from victims exposed to the venom of this scorpion within a previous 2-month period. The cross-reactivity of the H. lepturus venom with those from A. crassicauda and M. eupeus was assessed using ELISA and immunoblotting. Electrophoretic analysis of the venom of H. lepturus revealed several protein bands with weights of 8-116 KDa. The most frequent IgG-reactive bands in the test sera had weights of 34, 50, and 116 kDa. A weak cross-reactivity H. lepturus of venom with venoms from A. crassicauda and M. eupeus was detected. The results of immunoblotting and ELISA experiments revealed that H. lepturus venom activated the host immune response, leading to the production of a high titer of antibodies. Clearly, a determination of the major immunogenic components of H. lepturus venom could be valuable for future studies and ultimately of great importance for the potential production of recombinant or hypo-venom variants of these proteins.

  3. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study.

    Science.gov (United States)

    Wong, Kin Ying; Tan, Choo Hock; Tan, Kae Yi; Quraishi, Naeem H; Tan, Nget Hong

    2017-12-24

    Naja naja is a medically important species that is distributed widely in South Asia. Its venom lethality and neutralization profile have been reported to vary markedly, but the understanding of this phenomenon has been limited without a comprehensive venom profile for the Pakistani N. naja. This study set to investigate the venom proteome of Pakistani N. naja applying reverse-phase HPLC, SDS-PAGE, mass spectrometry and data-mining approaches. The venom enzymatics and antigen binding activities were also studied. A total of 55 venom proteins comprising 11 toxin families were identified, with three-finger toxins (75.29%) being the predominant component, followed by phospholipase A2 (14.24%) and other proteins (naja venom is varied from that reported for N. naja venoms from other geographical origins. The venom exhibited high immunoreactivity toward Naja kaouthia monovalent antivenom (NKMAV), which was raised against the LNTX-predominated heterologous Thai N. kaouthia venom. Together, the findings show that the Pakistani N. naja venom is predominated by LNTX, and this unique property correlates with its high lethality and effective neutralization by the heterologous NKMAV. This study reveals the compositional details of the venom proteome of Pakistani spectacled cobra (Naja naja). The protein subtypes, proteoforms, and relative abundances of individual proteins were comprehensively revealed in this study, following a venom decomplexing proteomic approach. The Pakistani cobra venom is unique among the rest of the N. naja venom composition reported thus far, as it contains a high abundance of alpha-neurotoxins (predominated by long neurotoxins); these are highly potent post-synaptic neuromuscular blockers that cause paralysis and are principal toxins that account for the high lethality of the venom (LD50=0.2μg/g in mice). In contrast, previous reports showed that the N. naja venoms of India and Sri Lanka had a lower content of neurotoxins and a relatively higher value

  4. Biosynthesis, secretion and in vivo isotopic labelling of venom of the Egyptian cobra, Naja haje annulifera.

    Science.gov (United States)

    Kochva, E; Tönsing, L; Louw, A I; Liebenberg, N V; Visser, L

    1982-01-01

    The venom glands of Elapidae differ from those of the Viperidae by lacking an expanded central lumen; the venom is stored in the tubular lumina as well as inside the cells in densely packed secretion granules. Using isotope tracer techniques, it was found that in the Egyptian cobra (Naja haje annulifera) venom is secreted both from pre-existing and from newly-formed granules. The rate of protein biosynthesis peaks at 4-9 days after venom was extracted (milked) from the glands. Highly labelled toxins (1-10 mCi/mmole protein) were isolated in good yield from the venom of snakes chronically intubated and infused i.p. with (3H)-amino acids. Repeated Fluothane (Halothane) anaesthesias and venom collections had no ill effect on venom yield. The radioactive venom and its component toxins retained full biological potency.

  5. Activities of Venom Proteins and Peptides with Possible Therapeutic Applications from Bees and WASPS.

    Science.gov (United States)

    Ye, Xiujuan; Guan, Suzhen; Liu, Jiwen; Ng, Charlene C W; Chan, Gabriel H H; Sze, Stephen C W; Zhang, Kalin Y; Naude, Ryno; Rolka, Krzysztof; Wong, Jack Ho; Ng, Tzi Bun

    2016-01-01

    The variety of proteins and peptides isolated from honey bee venom and wasp venom includes melittin, adiapin, apamine, bradykinin, cardiopep, mast cell degranulating peptide, mastoparan, phospholipase A2 and secapin. Some of the activities they demonstrate may find therapeutic applications.

  6. Antiproliferative Activity of King Cobra (Ophiophagus hannah) Venom l‐Amino Acid Oxidase

    National Research Council Canada - National Science Library

    Li Lee, Mui; Chung, Ivy; Yee Fung, Shin; Kanthimathi, M.S; Hong Tan, Nget

    2014-01-01

    King cobra ( Ophiophagus hannah ) venom l ‐amino acid oxidase (LAAO), a heat‐stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms...

  7. Absence of phospholipase A(2) in most Crotalus horridus venom due to translation blockage: comparison with Crotalus horridus atricaudatus venom.

    Science.gov (United States)

    Wang, Ying-Ming; Parmelee, Jeffrey; Guo, Yaw-Wen; Tsai, Inn-Ho

    2010-08-01

    To investigate the peculiar absence of phospholipases A(2) (PLA(2)s) in most Crotalus horridus (CH) venom, we cloned and sequenced the venom PLA(2)s of three CH specimens from different regions. The results revealed that all the venom glands contained mRNAs that encoded an acidic PLA(2) (designated as either CH-E6 or CH-E6'). The predicted CH-E6 from the Iowan CH and CH-E6' from the South Carolinian CH differed by only one amino acid residue, while the PLA(2) cDNA cloned from the Kentuckian CH contained an early stop codon instead of a Tyr(22) codon. Only the individual South Carolinian CH venom was found to contain the CH-E6' protein whose mass was confirmed by MALDI-TOF analysis. Our results suggest that low PLA(2) expression levels in most CH venom can be attributed to translation blockage. We also purified two acidic PLA(2)s and canebrake toxin from the pooled venom of Crotalus horridus atricaudatus (neurotoxic CH subspecies). One of the acidic PLA(2)s was identical to CH-E6 and showed high lipolytic activity and weak anti-platelet activities. The possibility that C. h. atricaudatus could be a hybrid between CH and Crotalus scutulatus is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Venomic analyses of Scolopendra viridicornis nigra and Scolopendra angulata (Centipede, Scolopendromorpha): shedding light on venoms from a neglected group.

    Science.gov (United States)

    Rates, Breno; Bemquerer, Marcelo P; Richardson, Michael; Borges, Márcia H; Morales, Rodrigo A V; De Lima, Maria Elena; Pimenta, Adriano M C

    2007-05-01

    Centipedes are venomous arthropods responsible for a significant number of non-lethal human envenomations. Despite this, information about the composition and function of their venom contents is scarce. In this study, we have used a 'structure to function' proteomic approach combining two-dimensional chromatography (2D-LC), electrospray ionization quadrupole/time-of-flight mass spectrometry (ESI-Q-TOF/MS), N-terminal sequencing and similarity searching to better understand the complexities of the venoms from two Brazilian centipede species: Scolopendra viridicornis nigra and Scolopendra angulata. Comparisons between the LC profiles and the mass compositions of the venoms of the two species are provided. The observed molecular masses ranged from 3019.62 to 20996.94Da in S. viridicornis nigra (total: 62 molecular masses) and from 1304.73 to 22639.15Da in S. angulata (total: 65 molecular masses). Also, the N-termini of representatives of 10 protein/peptide families were successfully sequenced where nine of them showed no significant similarity to other protein sequences deposited in the Swiss-Prot database. A screening for insecto-toxic activities in fractions from S. viridicornis venom has also been performed. Six out of the 12 tested fractions were responsible for clear toxic effects in house flies. This work demonstrates that centipede venoms might be a neglected but important source of new bioactive compounds.

  9. Venoms and medicinal properties of cnidarians

    Directory of Open Access Journals (Sweden)

    Zahra Amini Khoei

    2015-09-01

    Full Text Available Marine organisms are rich sources of bioactive compounds and their biotechnological potential attracted the attention to biologists and chemists all over the world. During the first decade of the 21st century alone, over 2000 molecules from cnidarians were described. The phylum cnidaria (corals, sea pens, sea anemones, jellyfish and hydroids includes over 10,000 species living in aquatic habitats. Cnidarians are the oldest venomous animals. In this phylum, most toxicological studies have been done in Anthozoa. The Soft corals Alcyonacea and Gorgonacea orders of Anthozoa represent by far the highest number of species yielding promising compounds. Up to now, numerous chemical components have been isolated from cnidarians, including steroids, diterpenoids and sesquiterpenoids have been shown to exhibit biological properties such as antimicrobial, antitumor activities and cytotoxicity. In this review, we summarize some studies that focus on some of the most promising marine bioactive isolated from cindirians in last decade.

  10. Antivenom action on renal effects induced by Thalassophryne nattereri venom

    Directory of Open Access Journals (Sweden)

    AMC Martins

    2009-01-01

    Full Text Available Thalassophryne nattereri (niquim is a venomous fish responsible for numerous accidents involving fishermen in northern and northeastern Brazil. The aim of the present investigation was to evaluate the action of antivenom on renal effects caused by Thalassophryne nattereri venom. Isolated kidneys of Wistar rats were perfused with a previously dialyzed Krebs-Henseleit solution containing 6 g% bovine serum albumin. The antivenom action was studied through perfusion pressure (PP, renal vascular resistance (RVR, urinary flow (UF and glomerular filtration rate (GFR. The niquim venom (1 µg/mL, the antivenom alone (1 µg/mL or the venom incubated with antivenom were added to the system 30 minutes after the beginning of each perfusion. Previous works have shown venom induced-alterations of renal function parameters. In the isolated rat kidney, T. nattereri venom (1 µg/mL increased the perfusion pressure and renal vascular resistance at 60, 90 and 120 minutes. UF and GFR also increased at 60, 90 and 120 minutes when compared with the control group; however, no effects were observed on the percent of sodium (%TNa+control = 81.1 ±0.86; %TNa+60 = 78.04 ±1.18; %TNa+90 = 76.16 ±3.34; %TNa+120 = 79.49 ±0.87 and potassium (%TK+control = 72.29 ±1.12; %TK+60 = 75.41 ±0.65; %TK+90 = 71.23 ±2.55; %TK+120 = 76.62 ±1.04 tubular transport. The administration of the antivenom (1 µg/mL incubated with venom (1 µg/mL reduced the changes in PP, RVR, UF and GFR provoked by Thalassophryne nattereri venom. The group perfused with venom alone showed a moderate deposit of a proteinaceous material in the tubules and urinary space. The group perfused with the antivenom presented similar results to the control group. In conclusion, the antivenom was able to decrease the effects induced by T. nattereri venom in isolated rat kidney.

  11. Evaluation of effects of photooxidized Vespa orientalis venom on memory and learning in rats

    OpenAIRE

    Mukund, H; SP Gawade

    2011-01-01

    Wasp venom is mixture of complex proteins that have several physical and pharmacological properties. The photochemical detoxification of Vespa orientalis venom is expected to generate photooxidized venom sac extract (PVSE). Antigenically active PVSE is obtained by exposing the venom sac extract (VSE) of Vespa orientalis to ultraviolet radiation in the presence of methylene blue. The aim of the present work was to evaluate the effect of PVSE on learning and memory of rats. Detoxification of PV...

  12. Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom

    OpenAIRE

    Nekaris, K. Anne-Isola; Moore, Richard S; Rode, E. Johanna; Fry, Bryan G.

    2013-01-01

    Only seven types of mammals are known to be venomous, including slow lorises (Nycticebus spp.). Despite the evolutionary significance of this unique adaptation amongst Nycticebus, the structure and function of slow loris venom is only just beginning to be understood. Here we review what is known about the chemical structure of slow loris venom. Research on a handful of captive samples from three of eight slow loris species reveals that the protein within slow loris venom resembles the disulph...

  13. A new assay for the detection of Loxosceles species (brown recluse) spider venom.

    Science.gov (United States)

    Gomez, Hernan F; Krywko, Diann M; Stoecker, William V

    2002-05-01

    Dermal lesions from unrelated arthropod species and medical causes appear similar to Loxosceles species (brown recluse spider) bites. This may result in delayed diagnosis and treatment. We developed a sensitive Loxosceles species venom enzyme-linked immunosorbent assay (ELISA) and characterized the specificity of the assay by evaluating antigenic cross-reactivity from a variety of North American arthropod venoms. North American arthropod (14 spiders, 2 scorpions, and 1 bee) venoms were studied. Three venom amounts (diluted in 100 microL of ELISA buffer) were assayed: 16,000 ng, 2,000 ng, and 40 ng. The latter quantity was selected because this is the observed maximum amount of venom we detect when inoculating dermis with amounts likely to be deposited by a spider bite. The larger venom amounts are overwhelming quantities designed to test the limits of the assay for arthropod venom cross-reactivity. Similar amounts of Loxosceles species venom and bovine albumin served as positive and negative controls, respectively. At the lowest amount of venom tested (40 ng), the ELISA detected only the Loxosceles species positive control. When 2,000 ng was assayed, only Scytodes fusca and Kukulcania hibernalis arachnid venoms (in addition to Loxosceles species) cross-reacted to the assay. Finally, at 16,000 ng, the ELISA assay modestly detected Diguetia canities, Heteropoda venatoria, Tegenaria agrestis, Plectreurys tristes, Dolomedes tenebrosus, and Hadrurus arizonensis arachnid venoms. Cross-reactivity was observed in 8 of 17 North American arthropod venoms when large venom amounts were assayed with a Loxosceles species ELISA. By using a relevant quantity of venom, 40 ng, the assay was specific for Loxosceles species venom. The venom specificity of the ELISA may allow clinical application in Loxosceles species endemic regions of North America.

  14. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    OpenAIRE

    Vonk, F.J.; Casewell, N. R.; Henkel, C.V.; Heimberg, A. M.; Jansen, H.J.; McCleary, R.J.R.; Kerkkamp, H. M. E.; Vos, R. A.; Guerreiro, I.; Calvete, J. J.; Wüster, W; Woods, A E; Logan, J. M.; Harrison, R. A.; Castoe, T. A.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from ...

  15. Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: implications for the production of polyspecific snake antivenoms.

    Science.gov (United States)

    Dos-Santos, Maria Cristina; Arroyo, Cynthia; Solano, Sergio; Herrera, María; Villalta, Mauren; Segura, Alvaro; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo

    2011-02-01

    Antivenoms are preparations of immunoglobulins purified from the plasma of animals immunized with snake venoms. Depending on the number of venoms used during the immunization, antivenoms can be monospecific (if venom from a single species is used) or polyspecific (if venoms from several species are used). In turn, polyspecific antivenoms can be prepared by purifying antibodies from the plasma of animals immunized with a mixture of venoms, or by mixing antibodies purified from the plasma of animals immunized separately with single venom. The suitability of these strategies to produce polyspecific antibothropic-crotalic antivenoms was assessed using as models the venoms of Bothrops asper, Crotalus simus and Crotalus durissus ruruima. It was demonstrated that, when used as co-immunogen, C. simus and C. durissus ruruima venoms exert a deleterious effect on the antibody response towards different components of B. asper venom and in the neutralization of hemorrhagic and coagulant effect of this venom when compared with a monospecific B. asper antivenom. Polyspecific antivenoms produced by purifying immunoglobulins from the plasma of animals immunized with venom mixtures showed higher antibody titers and neutralizing capacity than those produced by mixing antibodies purified from the plasma of animals immunized separately with single venom. Thus, despite the deleterious effect of Crotalus sp venoms on the immune response against B. asper venom, the use of venom mixtures is more effective than the immunization with separate venoms for the preparation of polyspecific bothropic-crotalic antivenoms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae).

    Science.gov (United States)

    Santos, Pollyanna Pereira; Games, Patricia Dias; Azevedo, Dihego Oliveira; Barros, Edvaldo; de Oliveira, Leandro Licursi; de Oliveira Ramos, Humberto Josué; Baracat-Pereira, Maria Cristina; Serrão, José Eduardo

    2017-11-01

    The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10-ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata. © 2017 Wiley Periodicals, Inc.

  17. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Science.gov (United States)

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  18. Snake venomic of Crotalus durissus terrificus--correlation with pharmacological activities.

    Science.gov (United States)

    Georgieva, Dessislava; Ohler, Michaela; Seifert, Jana; von Bergen, Martin; Arni, Raghuvir K; Genov, Nicolay; Betzel, Christian

    2010-05-07

    The snake venomic of Crotalus durissus terrificus was analyzed by 2-D and 1-D electrophoresis and subsequent MS/MS and enzymatic assays. The venomic of the South American rattlesnake comprises toxins from seven protein families: phospholipases A(2), serine proteinases, ecto-5'-nucleotidases, metalloproteinases, nerve growth factors, phosphodiesterases, and glutaminyl cyclase. The venom toxin composition correlates with the clinical manifestation of the crotalinae snake bites and explains pathological effects of the venom such as neurotoxicity, systemic myonecrosis, hemostatic disorders, myoglobinuria, and acute renal failure. The vast majority of toxins are potentially involved in neurotoxicity, myotoxicity, and coagulopathy. The predominant venom components are neurotoxic phospholipases A(2) and serine proteinases. The venom is a rich source of 5'-nucleotidases (7.8% of the identified toxins) inducing hemostatic disorders. Analysis of the venom protein composition provided a catalogue for secreted toxins. The venomic composition of Crotalus d. terrificus and venom gland transcriptome of the synonymous subspecies Crotalus d. collilineatus show differences in the occurrence of protein families and in the abundance of toxins. Some of the venom components identified by the proteomic analysis were not reported in the transcriptome of the Crotalus d. collilineatus venom gland. Enzymatic activities of the Crotalus d. terrificus venom were determined and correlated with the proteomic composition.

  19. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis).

    Science.gov (United States)

    Smith, Matthew T; Ortega, Jason; Beaupre, Steven J

    2014-08-01

    Snakes demonstrate a great deal of variation in the amount of venom injected in both predatory and defensive strikes. There is some evidence that snakes can adaptively meter venom dosage. An underlying assumption in the evolution of venom metering is that the production of venom is energetically costly. To date there has been very little research that has quantified the metabolic costs associated with venom production. We used open-flow respirometry to test for significant differences between Prairie Rattlesnakes (Crotalus v. viridis) that had venom extracted and control snakes that did not. Although previous studies demonstrated high metabolic costs for venom production, we found that snakes that had venom extracted did not have significantly higher metabolic rates than control snakes. The pattern of metabolic deviation from baseline measurements was similar for both treatments, and on average snakes that had venom extracted only exhibited a 1.1% increase over baseline compared to a 2.5% increase in control snakes. Our data suggest that venom is not energetically costly to produce and that perhaps other costs associated with venom can better explain the variability in venom expenditure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    Directory of Open Access Journals (Sweden)

    Sebastián Estrada-Gómez

    2014-07-01

    Full Text Available We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation.

  1. Intraspecific Variation of Centruroides Edwardsii Venom from Two Regions of Colombia

    Science.gov (United States)

    Estrada-Gómez, Sebastián; Cupitra, Nelson Ivan; Arango, Walter Murillo; Vargas Muñoz, Leidy Johana

    2014-01-01

    We report the first description studies, partial characterization, and intraspecific difference of Centruroides edwardsii, Gervais 1843, venom. C. edwardsii from two Colombian regions (Antioquia and Tolima) were evaluated. Both venoms showed hemolytic activity, possibly dependent of enzymatic active phospholipases, and neither coagulant nor proteolytic activities were observed. Venom electrophoretic profile showed significant differences between C. edwardsii venom from both regions. A high concentration of proteins with molecular masses between 31 kDa and 97.4 kDa, and an important concentration close or below 14.4 kDa were detected. RP-HPLC retention times between 38.2 min and 42.1 min, showed bands close to 14.4 kDa, which may correspond to phospholipases. RP-HPLC venom profile showed a well conserved region in both venoms between 7 and 17 min, after this, significant differences were detected. From Tolima region venom, 50 well-defined peaks were detected, while in the Antioquia region venom, 55 well-defined peaks were detected. Larvicidal activity was only detected in the C. edwardsii venom from Antioquia. No antimicrobial activity was observed using complete venom or RP-HPLC collected fractions of both venoms. Lethally activity (carried out on female albino swiss mice) was detected at doses over 19.2 mg/kg of crude venom. Toxic effects included distress, excitability, eye irritation and secretions, hyperventilation, ataxia, paralysis, and salivation. PMID:25025710

  2. A study of ribonuclease activity in venom of vietnam cobra

    Directory of Open Access Journals (Sweden)

    Thiet Van Nguyen

    2017-09-01

    Full Text Available Abstract Background Ribonuclease (RNase is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. Methods Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. Results RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1–4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12–15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. Conclusions RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35 and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV.

  3. Hepatotoxicity and oxidative stress induced by Naja haje crude venom.

    Science.gov (United States)

    Al-Quraishy, Saleh; Dkhil, Mahamed A; Abdel Moneim, Ahmed Esmat

    2014-01-01

    Snake venoms are synthesized and stored in venom glands. Most venoms are complex mixtures of several proteins, peptides, enzymes, toxins and non-protein components. In the present study, we investigated the oxidative stress and apoptosis in rat liver cells provoked by Naja haje crude injection (LD50) after four hours. Wistar rats were randomly divided into two groups, the control group was intraperitoneally injected with saline solution while LD50-dose envenomed group was intraperitoneally injected with venom at a dose of 0.025 μg/kg of body weight. Animals were killed four hours after the injection. Lipid peroxidation, nitric oxide and glutathione levels were measured as oxidative markers in serum and liver homogenate. In addition, liver function parameters and activities of antioxidant enzymes were determined. N. haje crude venom (0.025 μg/kg of body weight) enhanced lipid peroxidation and nitric oxide production in both serum and liver with concomitant reduction in glutathione, catalase, glutathione reductase and glutathione-S-transferase activities. Superoxide dismutase and glutathione peroxidase activities were significantly increased in liver of envenomed rats. These findings were associated with apoptosis induction in the liver. In addition, N. haje crude venom caused hepatic injury as indicated by histopathological changes in the liver tissue with an elevation in total bilirubin, serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and alkaline phosphatase. Based on the present results, it can hypothesized that N. haje crude venom is a potent inducer of toxin-mediated hepatotoxicity associated with apoptosis in the liver.

  4. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies.

    Science.gov (United States)

    Castro, Edgar Neri; Lomonte, Bruno; del Carmen Gutiérrez, María; Alagón, Alejandro; Gutiérrez, José María

    2013-07-11

    The composition and toxicological profile of the venom of the rattlesnake Crotalus simus in Mexico was analyzed at the subspecies and individual levels. Venoms of the subspecies C. s. simus, C. s. culminatus and C. s. tzabcan greatly differ in the expression of the heterodimeric neurotoxin complex 'crotoxin', with highest concentrations in C. s. simus, followed by C. s. tzabcan, whereas the venom of C. s. culminatus is almost devoid of this neurotoxic PLA2. This explains the large variation in lethality (highest in C. s. simus, which also exerts higher myotoxicity). Coagulant activity on plasma and fibrinogen occurs with the venoms of C. s. simus and C. s. tzabcan, being absent in C. s. culminatus which, in turn, presents higher crotamine-like activity. Proteomic analysis closely correlates with toxicological profiles, since the venom of C. s. simus has high amounts of crotoxin and of serine proteinases, whereas the venom of C. s. culminatus presents higher amounts of metalloproteinases and crotamine. This complex pattern of intraspecies venom variation provides valuable information for the diagnosis and clinical management of envenoming by this species in Mexico, as well as for the preparation of venom pools for the production and quality control of antivenoms. This study describes the variation in venom composition and activities of the three subspecies of Crotalus simus from Mexico. Results demonstrate that there is a notorious difference in these venoms, particularly regarding the content of the potent neurotoxic phospholipase A2 complex 'crotoxin'. In addition, other differences were observed regarding myotoxic and coagulant activities, and expression of the myotoxin 'crotamine'. These findings have implications in, at least, three levels: (a) the adaptive role of variations in venom composition; (b) the possible differences in the clinical manifestations of envenomings by these subspecies in Mexico; and (c) the design of venom mixtures for the preparation of

  5. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties.

    Science.gov (United States)

    Dutta, Sumita; Chanda, Abhishek; Kalita, Bhargab; Islam, Taufikul; Patra, Aparup; Mukherjee, Ashis K

    2017-03-06

    The complex venom proteome of the eastern India (EI) spectacled cobra (Naja naja) was analyzed using tandem mass spectrometry of cation-exchange venom fractions. About 75% of EI N. naja venom proteins were naja venom with a percent composition of about 28.4% and 71.6% respectively were distributed over 15 venom protein families. The three finger toxins (63.8%) and phospholipase A2s (11.4%) were the most abundant families of non-enzymatic and enzymatic proteins, respectively. nanoLC-ESI-MS/MS analysis demonstrated the occurrence of acetylcholinesterase, phosphodiesterase, cholinesterase and snake venom serine proteases in N. naja venom previously not detected by proteomic analysis. ATPase, ADPase, hyaluronidase, TAME, and BAEE-esterase activities were detected by biochemical analysis; however, due to a limitation in the protein database depository they were not identified in EI N. naja venom by proteomic analysis. The proteome composition of EI N. naja venom was well correlated with its in vitro and in vivo pharmacological properties in experimental animals and envenomed human. Proteomic analysis reveals the complex and diverse protein profile of EI N. naja venom which collectively contributes to the severe pathophysiological manifestation upon cobra envenomation. The study has also aided in comprehending the compositional variation in venom proteins of N. naja within the Indian sub-continent. In addition, this study has also identified several enzymes in EI N. naja venom which were previously uncharacterized by proteomic analysis of Naja venom. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Venom immunotherapy improves health-related quality of life in patients allergic to yellow jacket venom.

    Science.gov (United States)

    Oude Elberink, Joanne N G; De Monchy, Jan G R; Van Der Heide, Sicco; Guyatt, Gordon H; Dubois, Anthony E J

    2002-07-01

    Venom immunotherapy (VIT) is effective in preventing anaphylactic reactions after insect stings. The effect of VIT on health-related quality of life (HRQL) was studied to evaluate whether this treatment is of importance to patients. We compared HRQL outcomes measured with a disease-specific instrument (Vespid Allergy Quality-of-Life Questionnaire [VQLQ]) in patients allergic to yellow jacket venom treated with VIT or with an adrenalin self-administration device (EpiPen) in an open-label, randomized, controlled trial. Consenting patients were block randomized to either VIT or EpiPen. Patients received uniform, standardized information, which specified the risk of their condition and the risks and benefits of both treatment options. HRQL measures took place before and after 1 year of treatment with VIT or EpiPen. Seventy-four patients agreed to be randomized, of whom 36 received VIT and 38 an EpiPen. The mean change in VQLQ score in the group randomized to VIT was 1.07 (95% CI, 0.68-1.46), and this improvement was statistically significant (P EpiPen, in which this change was -0.43 (95% CI, -0.71 to -0.16). These differences were seen in both men and women, persons with more or less general anxiety, and those stung recently and those stung more than a year before their outpatient department visit. The overall proportion of patients receiving benefit from VIT is 0.72, generating a number needed to treat of 1.4. VIT results in a clinically important improvement in HRQL in patients allergic to yellow jacket venom in all subgroups studied. Of every 3 patients treated with VIT, 2 patients experience an important improvement in their quality of life.

  7. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach.

    Science.gov (United States)

    Danneels, Ellen L; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C

    2015-10-30

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings.

  8. Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms.

    Science.gov (United States)

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Hodgson, Wayne C; Othman, Iekhsan

    2014-10-14

    Kraits (Bungarus spp.) are highly venomous elapids that are only found in Asia. In the current study, 103 and 86 different proteins were identified from Bungarus candidus and Bungarus fasciatus venoms, respectively. These proteins were classified into 18 different venom protein families. Both venoms were found to contain a high percentage of three finger toxins, phospholipase A2 enzymes and Kunitz-type inhibitors. Smaller number of high molecular weight enzymes such as L-amino acid oxidase, hyaluronidases, and acetylcholinesterase were also detected in the venoms. We also detected some unique proteins that were not known to be present in these venoms. The presence of a natriuretic peptide, vespryn, and serine protease families was detected in B. candidus venom. We also detected the presence of subunit A and B of β-bungarotoxin and α-bungarotoxin which had not been previously found in B. fasciatus venom. Understanding the proteome composition of Malaysian krait species will provide useful information on unique toxins and proteins which are present in the venoms. This knowledge will assist in the management of krait envenoming. In addition, these proteins may have potential use as research tools or as drug-design templates. This study has revealed the proteome composition of Malaysian B. candidus and B. fasciatus venoms, two medically important snake species in Asia. Information on the venom proteome of these species will provide useful information for krait bite management and aid in antivenom selection. Venom proteome profiles of these venoms showed that there are significant differences in the venom protein family compositions. Detection of proteins and peptides that have not been documented in these species such as natriuretic peptides, vespryn and serine proteases provides new knowledge on the composition of these venoms. The roles of these new proteins and peptides in krait envenoming are still unknown. Discovery of these proteins and peptides may also be

  9. Evaluation of the Venom Ex apparatus in the treatment of Egyptian cobra envenomation. A study in rabbits.

    Science.gov (United States)

    Reitz, C J; Goosen, D J; Odendaal, M W; Visser, L; Marais, T J

    1984-07-28

    The Venom Ex cutting and suction apparatus for the initial treatment of snakebite was evaluated. Rabbits were injected with radioactive Egyptian cobra venom, and treatment with the Venom Ex followed. The fluid obtained by suction was analysed. All 8 control animals died within 4 hours; Venom Ex treatment resulted in the recovery of 7 out of 8 rabbits, after double the lethal dose of venom, providing treatment was started early. However, if treatment was delayed or if the dose of venom was high, there was a marked increase in the mortality. The amount of venom extracted was insufficient to account for the recovery of the animals. In one group of rabbits trauma was applied to the injection site without lacerating the skin and without removal of venom. About half of these animals recovered. However, this was less efficient than the Venom Ex treatment. Trauma apparently retards absorption of venom and increases survival. The possible reasons for this novel finding are discussed.

  10. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism.

    Science.gov (United States)

    Núñez, Vitelbina; Cid, Pedro; Sanz, Libia; De La Torre, Pilar; Angulo, Yamileth; Lomonte, Bruno; Gutiérrez, José María; Calvete, Juan J

    2009-11-02

    The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA(2) molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA(2) molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil.

  11. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].

    Science.gov (United States)

    Calvete, Juan J; Pérez, Alicia; Lomonte, Bruno; Sánchez, Elda E; Sanz, Libia

    2012-02-03

    We report the proteomic and antivenomic characterization of Crotalus tigris venom. This venom exhibits the highest lethality for mice among rattlesnakes and the simplest toxin proteome reported to date. The venom proteome of C. tigris comprises 7-8 gene products from 6 toxin families; the presynaptic β-neurotoxic heterodimeric PLA(2), Mojave toxin, and two serine proteinases comprise, respectively, 66 and 27% of the C. tigris toxin arsenal, whereas a VEGF-like protein, a CRISP molecule, a medium-sized disintegrin, and 1-2 PIII-SVMPs each represent 0.1-5% of the total venom proteome. This toxin profile really explains the systemic neuro- and myotoxic effects observed in envenomated animals. In addition, we found that venom lethality of C. tigris and other North American rattlesnake type II venoms correlates with the concentration of Mojave toxin A-subunit, supporting the view that the neurotoxic venom phenotype of crotalid type II venoms may be described as a single-allele adaptation. Our data suggest that the evolutionary trend toward neurotoxicity, which has been also reported for the South American rattlesnakes, may have resulted by pedomorphism. The ability of an experimental antivenom to effectively immunodeplete proteins from the type II venoms of C. tigris, Crotalus horridus , Crotalus oreganus helleri, Crotalus scutulatus scutulatus, and Sistrurus catenatus catenatus indicated the feasibility of generating a pan-American anti-Crotalus type II antivenom, suggested by the identification of shared evolutionary trends among South and North American Crotalus species.

  12. Sex-related clinical aspects in insect venom anaphylaxis.

    Science.gov (United States)

    Nittner-Marszalska, Marita; Liebhart, Jerzy; Dor-Wojnarowska, Anna

    2015-06-01

    Experimental studies, epidemiological data, and clinical observations suggest that the gender factor is involved in the development and manifestation of IgE-dependent allergic diseases. We intend to answer the question if sex-related factors may play a role in Hymenoptera venom allergy (HVA). In the majority of recent studies the frequency of HVA symptoms with respect to both LL and SYS reactions is similar for men and women, while proven sensitization to insect venom is less frequent in women. Studies assessing clinical reactivity in HVA indicate that male sex and vespid venom allergy are factors increasing the risk of severe allergic reactions. Regarding the risk of adverse events associated with gender in the course of venom immunotherapy (VIT), the results of two large EAACI multicenter studies are discordant. In the first study, women showed increased risk of VIT adverse events. In the latter, systemic allergic side effects were not associated with gender. Despite theoretical premises and certain clinical observations indicating an important role of estrogens in allergic diseases, their influence on stinging insects' venom hypersensitivity is not unequivocal and remains still open. Further studies on the safety of VIT in females seem to be advisable. © The Author(s) 2015.

  13. Mechanisms of virus resistance and antiviral activity of snake venoms

    Directory of Open Access Journals (Sweden)

    JVR Rivero

    2011-01-01

    Full Text Available Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.

  14. Gamma irradiation of Egyptian Cobra (Naja haje) Venom.

    Science.gov (United States)

    Shaban, E A; Ahmed, A A; Ayobe, M H

    1996-01-01

    The aim of the present study was to prepare an effective and safe toxoid for the Egyptian Cobra (Naja haje) Venom by gamma irradiation. The effects of gamma irradiation (0.1-10 M rad) on the toxicity, as well as the antigen antibody complex formation reactivity was described. It appears from the results that the lethality of Naja haje venom irradiated in the dry form was not affected up to a dose of 10 M rad (100 KGy). On the other hand, the venom irradiated in the aqueous solution form showed a decrease in its lethality, and this was proportionately related to the dose of irradiation, while the ability of the venom antigens to react with its corresponding antibodies was retained up to irradiation dose of 5 M rad. The results of double immunodiffusion of non irradiated and the different dose levels of gamma irradiated venom (0.1-5 M rad) against a commercial Egyptian polyvalent antivenin, all showed similar patterns, the four visible lines obtained in the immunodiffusion reactions were identical and joined smoothly at the corners, indicating that there was no change in antigenic reactivity with antibodies determinants.

  15. A Review and Database of Snake Venom Proteomes

    Science.gov (United States)

    Tasoulis, Theo

    2017-01-01

    Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein families were identified, more than half were present in snake species studied and always in low abundance. The importance of these minor component proteins remains unknown. PMID:28927001

  16. Exon Shuffling and Origin of Scorpion Venom Biodiversity

    Directory of Open Access Journals (Sweden)

    Xueli Wang

    2016-12-01

    Full Text Available Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.

  17. [Understanding snake venoms: 50 years of research in Latin America].

    Science.gov (United States)

    Gutiérrez, José María

    2002-06-01

    As a tribute to Revista de Biología Tropical in its 50th anniversary, this review describes some of the main research efforts carried out in the study of the chemical composition and the mechanism of action of toxins present in the venoms of snakes distributed in Latin America. Venom proteins involved in neurotoxicity, coagulopathies, hemorrhage and muscle necrosis are discussed, together with a description of the inflammatory reactions elicited by these venoms and toxins. In addition, the search for inhibitory substances present in plants and animals that may be utilized in the neutralization of venoms is analyzed. Some of the clinical studies performed on snakebite envenomations in Latin America are also reviewed, together with the development of technologies aimed at improving the quality of antivenoms produced in the region. Toxinology has become a fruitful and stimulating research field in Latin America which has contributed to a better understanding of snake venoms as well as to an improved management of snake bitten patients.

  18. Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom

    Directory of Open Access Journals (Sweden)

    Cinthya Kimori Okamoto

    2017-03-01

    Full Text Available Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP. Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.

  19. Oxidative stress markers in patients with hymenoptera venom allergy.

    Science.gov (United States)

    Patella, Vincenzo; Incorvaia, Cristoforo; Minciullo, Paola Lucia; Oricchio, Carmine; Saitta, Salvatore; Florio, Giovanni; Saija, Antonella; Gangemi, Sebastiano

    2015-01-01

    Oxidative stress occurs in many allergic and immunologic disorders as a result of the imbalance between the endogenous production of free reactive oxygen species (ROS) and/or the reduction of antioxidant defense mechanisms. Advanced glycation end products (AGEs), advanced oxidation protein products (AOPPs), and nitrosylated proteins (NPs) can be used as markers of oxidative stress and inflammation. Our objective was to examine the serum levels of AGEs, AOPPs, and NPs in patients with allergic reactions to hymenoptera venom before and after ultrarush venom immunotherapy (VIT). The study included two groups of patients: 30 patients allergic to yellow jacket or honey bee venom and treated by aqueous preparation of Vespula spp (26 patients) or Apis mellifera (four patients) VIT, and 30 healthy donors as controls. Blood samples were collected to measure serum levels of AGEs, AOPPs, and NPs at baseline (T1), at the end of the incremental phase of the VIT protocol (T2), and after 15 days (T3). Serum AOPP levels at T1 were significantly higher in comparison with controls (p = 0.001), whereas serum levels of NPs at T1 were significantly lower than those in controls (p venom allergy (HVA) is characterized by isolated episodes of reactions to stinging insect venom and is not included among chronic inflammatory diseases, an oxidative stress status occurs in patients suffering from this kind of allergy. Furthermore, VIT does not modify serum levels of these oxidative stress biomarkers.

  20. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  1. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts.

    Science.gov (United States)

    Casewell, Nicholas R; Harrison, Robert A; Wüster, Wolfgang; Wagstaff, Simon C

    2009-11-30

    Venom variation occurs at all taxonomical levels and can impact significantly upon the clinical manifestations and efficacy of antivenom therapy following snakebite. Variation in snake venom composition is thought to be subject to strong natural selection as a result of adaptation towards specific diets. Members of the medically important genus Echis exhibit considerable variation in venom composition, which has been demonstrated to co-evolve with evolutionary shifts in diet. We adopt a venom gland transcriptome approach in order to investigate the diversity of toxins in the genus and elucidate the mechanisms which result in prey-specific adaptations of venom composition. Venom gland transcriptomes were created for E. pyramidum leakeyi, E. coloratus and E. carinatus sochureki by sequencing approximately 1000 expressed sequence tags from venom gland cDNA libraries. A standardised methodology allowed a comprehensive intra-genus comparison of the venom gland profiles to be undertaken, including the previously described E. ocellatus transcriptome. Blast annotation revealed the presence of snake venom metalloproteinases, C-type lectins, group II phopholipases A2, serine proteases, L-amino oxidases and growth factors in all transcriptomes throughout the genus. Transcripts encoding disintegrins, cysteine-rich secretory proteins and hyaluronidases were obtained from at least one, but not all, species. A representative group of novel venom transcripts exhibiting similarity to lysosomal acid lipase were identified from the E. coloratus transcriptome, whilst novel metallopeptidases exhibiting similarity to neprilysin and dipeptidyl peptidase III were identified from E. p. leakeyi and E. coloratus respectively. The comparison of Echis venom gland transcriptomes revealed substantial intrageneric venom variation in representations and cluster numbers of the most abundant venom toxin families. The expression profiles of established toxin groups exhibit little obvious association

  2. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus).

    Science.gov (United States)

    Segura, Álvaro; Herrera, María; Reta Mares, Francisco; Jaime, Claudia; Sánchez, Andrés; Vargas, Mariángela; Villalta, Mauren; Gómez, Aarón; Gutiérrez, José María; León, Guillermo

    2017-03-31

    The venom of the Mexican west-coast rattlesnake (Crotalus basiliscus) was characterized for its protein composition, toxicological profile and immunogenic properties. This venom is composed of 68% Zn 2+ -dependent metalloproteinases (SVMPs), 14% phospholipases A 2 (PLA 2 s), 11% serine proteinases, 4% SVMPs-inhibitor tripeptides (SVMP-ITs), 2% bradykinin-potentiating peptides (BPPs), 0.6% cysteine-rich secretory proteins (CRISPs), and 0.2% l-amino acid oxidases (LAAOs). SVMPs present in the venom are responsible for azocasein hydrolysis and hemorrhagic activity, but their contribution to the lethal activity of the venom in mice is masked by the neurotoxic activity of PLA 2 s, which in addition are also responsible for myotoxic activity. Despite its relatively high content of serine proteinases, the venom of C. basiliscus did not exert in vitro coagulant or in vivo defibrinogenating activities. The ability of antivenoms raised against the venoms of C. basiliscus and C. simus (from Costa Rica) to neutralize homologous and heterologous venoms revealed antigenic similarities between toxins of both venoms. Preclinical evaluation of an antivenom produced by using the venom of C. basiliscus as immunogen demonstrated that it is able to neutralize not only the most relevant toxic activities of C. basiliscus venom, but also those exerted by Costa Rican C. simus venom, including coagulant and defibrinogenating activities. The Central American rattlesnake (Crotalus simus) is widely distributed from Mexico to west central Costa Rica, and induces an important number of envenomations in this region. On the other hand, the immunogenic mixture used by Laboratorios de Biológicos y Reactivos de Mexico S.A. (Birmex) to produce the snake antivenom more frequently used in Mexico does not include the venom of C. simus. This immunogenic mixture is composed by the venoms of the Fer-de-lance (Bothrops asper) and the Mexican west-coast rattlesnake (Crotalus basiliscus). We studied the

  3. Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes.

    Science.gov (United States)

    Touchard, Axel; Labrière, Nicolas; Roux, Olivier; Petitclerc, Frédéric; Orivel, Jérôme; Escoubas, Pierre; Koh, Jennifer M S; Nicholson, Graham M; Dejean, Alain

    2014-09-01

    We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmex penetrator and Pseudomyrmex gracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Pharmacologic and enzymatic effects of snake venoms from Antioquia and Choco (Colombia)].

    Science.gov (United States)

    Otero, R; Guillermo Osorio, R; Valderrama, R; Augusto Giraldo, C

    1992-01-01

    We compared several pharmacological and enzymatic effects induced by 11 snake venoms from seven species, six of them from different geographic areas of Antioquia and Choco, north-west of Colombia, South America (Bothrops atrox, B. nasutus, B. schlegelii, B. punctatus, Lachesis muta, Micrurus mipartitus), and Crotalus durissus terrificus venom, from specimens captured in other provinces of the country (Tolima, Huila, Meta and Atlantico). Differences were observed in edema-forming, hemorrhage, defibrination, indirect hemolysis, myonecrosis, proteolysis and lethal activity between venoms from different genera or species, as well as according to the geographic area of origin in B. atrox and B. nasutus snake venoms. Bothrops venoms, in particular B. atrox and L. muta, produced major local effects. All of the venoms, including M. mipartitus, had myotoxic effects. The most defibrinating venoms were B. atrox, L. muta, B. punctatus and C. d. terrificus. All of the venoms had indirect hemolytic activity; the venom of M. mipartitus being greatest. The most lethal venoms were those of C. d. terrificus and M. mipartitus. Within Bothrops species, the venom of B. schlegelii was the least active in terms of local and systemic pathologic effects.

  5. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Directory of Open Access Journals (Sweden)

    Miriéle Cristina Ferraz

    2015-01-01

    Full Text Available We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL, but only partial blockade (~30% in EPSTA (3.6 mg/kg, i.m. after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations. Preincubation of venom with betulin (200 μg/mL markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite.

  6. The Triterpenoid Betulin Protects against the Neuromuscular Effects of Bothrops jararacussu Snake Venom In Vivo

    Science.gov (United States)

    Ferraz, Miriéle Cristina; de Oliveira, Jhones Luiz; de Oliveira Junior, Joel Reis; Cogo, José Carlos; dos Santos, Márcio Galdino; Franco, Luiz Madaleno; Puebla, Pilar; Ferraz, Helena Onishi; Ferraz, Humberto Gomes; da Rocha, Marisa Maria Teixeira; Hyslop, Stephen

    2015-01-01

    We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in PND (40 μg/mL), but only partial blockade (~30%) in EPSTA (3.6 mg/kg, i.m.) after 120 min. In PND, preincubation of venom with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15 min after venom also attenuated the blockade (by ~70% in both preparations). Preincubation of venom with betulin (200 μg/mL) markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20 mg, i.p., 15 min after venom) virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120 min after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful complementary measure to antivenom therapy for treating snakebite. PMID:26633987

  7. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling.

    Science.gov (United States)

    Touchard, Axel; Koh, Jennifer M S; Aili, Samira R; Dejean, Alain; Nicholson, Graham M; Orivel, Jérôme; Escoubas, Pierre

    2015-03-15

    Compared with other animal venoms, ant venoms remain little explored. Ants have evolved complex venoms to rapidly immobilize arthropod prey and to protect their colonies from predators and pathogens. Many ants have retained peptide-rich venoms that are similar to those of other arthropod groups. With the goal of conducting a broad and comprehensive survey of ant venom peptide diversity, we investigated the peptide composition of venoms from 82 stinging ant species from nine subfamilies using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). We also conducted an in-depth investigation of eight venoms using reversed-phase high-performance liquid chromatography (RP-HPLC) separation coupled with offline MALDI-TOFMS. Our results reveal that the peptide compositions of ant venom peptidomes from both poneroid and formicoid ant clades comprise hundreds of small peptides (4 kDa) are also present in the venom of formicoids. Chemical reduction revealed the presence of disulfide-linked peptides in most ant subfamilies, including peptides structured by one, two or three disulfide bonds as well as dimeric peptides reticulated by three disulfide bonds. The biochemical complexity of ant venoms, associated with an enormous ecological and taxonomic diversity, suggests that stinging ant venoms constitute a promising source of bioactive molecules that could be exploited in the search for novel drug and biopesticide leads. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Keeping venomous snakes in the Netherlands: a harmless hobby or a public health threat?

    Science.gov (United States)

    van Genderen, P J J; Slobbe, L; Koene, H; Mastenbroek, R D L; Overbosch, D

    2013-10-01

    To describe the incidence of venomous snakebites and the hospital treatment thereof (if any) amongst private individuals who keep venomous snakes as a hobby. Descriptive study. Private keepers of venomous snakes were invited via the social media Facebook, Hyves, Twitter, Google Plus, Linked In and two large discussion forums to fill in an online questionnaire on a purely voluntary and anonymous basis. In the period from 1 September 2012 to 31 December 2012, 86 questionnaires were completed by individuals who keep venomous snakes as a hobby. One-third of the venomous snake keepers stated that they had at some point been bitten by a venomous snake. Out of those, two-thirds needed hospital treatment and one-third of those bitten required at least one, sometimes more, doses of antiserum. The chances of being bitten increased the more venomous snakes a person kept. An inventory of the collections of venomous snakes being kept further revealed that no antiserum exists for 16 of the species, including for the most commonly held venomous snake, the coral cobra. Keeping venomous snakes as a hobby is not without danger. Although in the majority of snakebite cases no antiserum had to be administered, there is nevertheless a significant risk of morbidity and sequelae. Preventing snakebites in the first place remains the most important safety measure since there are no antiserums available for a substantial number of venomous snakes.

  9. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy

    Directory of Open Access Journals (Sweden)

    Naruo Yoshida

    2015-07-01

    Conclusions: The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan.

  10. The Effect of a Polyvalent Antivenom on the Serum Venom Antigen Levels of Naja sputatrix (Javan Spitting Cobra) Venom in Experimentally Envenomed Rabbits.

    Science.gov (United States)

    Yap, Michelle Khai Khun; Tan, Nget Hong; Sim, Si Mui; Fung, Shin Yee; Tan, Choo Hock

    2015-10-01

    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  11. Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms: preliminary identification of proteins from Cerastes cerastes venom which interact with the parasites.

    Science.gov (United States)

    Fernandez-Gomez, R; Zerrouk, H; Sebti, F; Loyens, M; Benslimane, A; Ouaissi, M A

    1994-08-01

    Venom from three different snake species was tested in vitro against the protozoan parasites Trypanosoma cruzi and Leishmania donovani infantum. Two of them, Cerastes cerastes and Naja haje, exerted a significant growth inhibition of T. cruzi and L. d. infantum parasites. Heating of the venoms abolished their activity, suggesting that the active factors are thermolabile. Incubation of parasites with 125I-labelled C. cerastes venom proteins allowed preliminary identification of components which interact preferentially with the pathogens.

  12. Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates.

    Science.gov (United States)

    Rode-Margono, Johanna E; Nekaris, K Anne-Isola

    2015-07-17

    Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery.

  13. Enhancement of adenosine 3',5'-monophosphate in human mononuclear and polymorphonuclear leukocytes by snake venoms.

    Science.gov (United States)

    Stolc, V

    1984-08-01

    Snake venoms contain compound(s) that enhanced cyclic AMP content in human mononuclear leukocytes maximally after 5 min of incubation at 37 degrees C. The effect was time- and dose-dependent. The half-maximal stimulation of cyclic AMP production by black cobra venom was found at 0.45 micrograms of venom/ml and the value of the Hill coefficient was 0.7. The black cobra venom enhanced the cyclic AMP content in the cells at 4, 22, and 37 degrees C. Similar increase in the cyclic AMP content by six snake venoms was found in human polymorphonuclear leukocytes. The most active venom was from puff adder (Bitis arietans). The data suggest that one of the effects of the snake venoms may be rapid enhancement of cyclic AMP level in the affected cells.

  14. Effects of the European hornet (Vespa crabro Linnaeus 1761) crude venom on its own species

    Science.gov (United States)

    2013-01-01

    Background Lethal dose 50% is a classical index of toxicity that usually employs small rodents as experimental animals. Therefore, scarce data are available on the effects of venom on invertebrates, particularly the impact of wasp venom on its own species. Findings In the present study, the lethality of Vespa crabro venom on its own species was studied. Lethal dose 50% values of crude venom on workers of hornet Vespa crabro were estimated to be 4.0 mg/kg of body weight. Conclusions Wasps can use their venom apparatus effectively when attacking foreign workers that appear in the immediate vicinity of their nest. The toxins released during stinging are potent enough to kill. The result of this study eliminates the popular myth that venomous animals can be resistant to their own venom. PMID:24499044

  15. Effects of the European hornet (Vespa crabro Linnaeus 1761) crude venom on its own species.

    Science.gov (United States)

    Nadolski, Jerzy

    2013-03-18

    Lethal dose 50% is a classical index of toxicity that usually employs small rodents as experimental animals. Therefore, scarce data are available on the effects of venom on invertebrates, particularly the impact of wasp venom on its own species. In the present study, the lethality of Vespa crabro venom on its own species was studied. Lethal dose 50% values of crude venom on workers of hornet Vespa crabro were estimated to be 4.0 mg/kg of body weight. Wasps can use their venom apparatus effectively when attacking foreign workers that appear in the immediate vicinity of their nest. The toxins released during stinging are potent enough to kill. The result of this study eliminates the popular myth that venomous animals can be resistant to their own venom.

  16. Characterization of the gila monster (Heloderma suspectum suspectum venom proteome

    Directory of Open Access Journals (Sweden)

    Kristian W. Sanggaard

    2015-06-01

    Full Text Available The data presented here is related to the research article entitled “Characterization of the gila monster (Heloderma suspectum suspectum venom proteome” by Sanggaard et al. in Journal of Proteomics [1]. The gila monster venom was collected, analyzed by 2D-gel electrophoresis and after Coomassie-Brilliant Blue staining the major spots were excised, subjected to in-gel trypsin digestion, and analyzed by LC–MS/MS. Subsequently, the venom proteins were identified based on de novo sequencing and homology searching. The mass spectrometry proteomics data have been deposited to the ProteomeXchange (dataset identifier PXD0001343, and in the present article we present an overview of the identified proteins. Protein identification failed for three of the selected spots, with the method described above. Instead, an iterative process, based on de novo sequencing, was employed.

  17. Inhibition of human complement components by Loxosceles reclusa venom.

    Science.gov (United States)

    Futrell, J M; Morgan, P N

    1978-01-01

    Venom from the brown recluse spider, Loxosceles reclusa, was capable of inactivation human C1-C7 in vitro. This inactivation occurred if venom was added to fresh adult human serum, human cord serum, or functionally pure specific human components. Optimal incubation conditions for the inactivation of each component were determined and were found generally to be in the range of 25 or 37 degrees C for 30-60 min. The alternative complement pathway did not appear to be involved, since C1, C4, and C2 were readily inactivated, and inactivation took place in sera depleted of factor B of the properdin system. Venom-induced inactivation appeared to require few, if any, serum cofactors, because, with the possible exception of C2, functionally pure components, as well as those in sera, were readily inactivated.

  18. A novel neurotoxin from venom of the spider, Brachypelma albopilosum.

    Directory of Open Access Journals (Sweden)

    Yunhua Zhong

    Full Text Available Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana and Tenebrio molitor (common mealbeetle. This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation.

  19. Evaluation of antivenoms in the neutralization of hyperalgesia and edema induced by Bothrops jararaca and Bothrops asper snake venoms

    Directory of Open Access Journals (Sweden)

    Picolo G.

    2002-01-01

    Full Text Available Neutralization of hyperalgesia induced by Bothrops jararaca and B. asper venoms was studied in rats using bothropic antivenom produced at Instituto Butantan (AVIB, 1 ml neutralizes 5 mg B. jararaca venom and polyvalent antivenom produced at Instituto Clodomiro Picado (AVCP, 1 ml neutralizes 2.5 mg B. aspar venom. The intraplantar injection of B. jararaca and B. asper venoms caused hyperalgesia, which peaked 1 and 2 h after injection, respectively. Both venoms also induced edema with a similar time course. When neutralization assays involving the independent injection of venom and antivenom were performed, the hyperalgesia induced by B. jararaca venom was neutralized only when bothropic antivenom was administered iv 15 min before venom injection, whereas edema was neutralized when antivenom was injected 15 min or immediately before venom injection. On the other hand, polyvalent antivenom did not interfere with hyperalgesia or edema induced by B. asper venom, even when administered prior to envenomation. The lack of neutralization of hyperalgesia and edema induced by B. asper venom is not attributable to the absence of neutralizing antibodies in the antivenom, since neutralization was achieved in assays involving preincubation of venom and antivenom. Cross-neutralization of AVCP or AVIB against B. jararaca and B. asper venoms, respectively, was also evaluated. Only bothropic antivenom partially neutralized hyperalgesia induced by B. asper venom in preincubation experiments. The present data suggest that hyperalgesia and edema induced by Bothrops venoms are poorly neutralized by commercial antivenoms even when antibodies are administered immediately after envenomation.

  20. Chain structure of cobra venom factor from Naja naja and Naja haje venom.

    Science.gov (United States)

    von Zabern, I; Przyklenk, H; Vogt, W

    1982-04-01

    The chain structure of cobra venom factor, whether isolated from Naja naja venom (CVFn) or from Naja Haje (CVFh) is similar. Both homologous proteins are composed of three disulphide-linked chains (A, B, and C) with apparent molecular weights of 72,000, 54,000, and 27,000-35,000 for CVFn and 68,000, 51,000 and 30,000-32,000 CVFh. That all three polypeptides are integral parts of CVF was demonstrated by investigation of the chain pattern after partial reduction. Reduction with 1-2 mM dithiothreitol under non-denaturing conditions yielded free B-chain, together with an intermediate product composed of disulphide-linked A- and C-chains. The C-chain was heterogenous when investigated by electrophoresis in polyacrylamide slab gels in the presence of SDS. Similarly, isoelectric focusing of CVFn and CVFh showed a multiplicity of bands in the pH range 5.2-6.4. Limited tryptic digestion resulted primarily in the fragmentation of the B-chain. CVFh is much more sensitive to tryptic attack than CVFn. In all our preparations of CVFh a partial, trypsin-like fragmentation of the B-chain was detectable to various extents.

  1. Purification and characterization of five snake venom metalloproteinases from Egyptian Echis pyramidum pyramidum venom.

    Science.gov (United States)

    Abdel-Aty, Azza M; Wahby, Ahmed F

    2014-08-01

    New five P-III snake venom metalloproteinases (SVMPs): EpyB2 (62 kDa), EpyB3 (62+23 kDa), EpyB4 (60 kDa), EpyB5 (67 kDa) and EpyB6 (66 kDa) of the most dangerous viper, Echis pyramidum pyramidum (Epy), were purified and characterized in a set of biochemical assays. The SVMPs were purified by applying a protocol of two successive chromatographic steps. Three purified SVMPs "EpyB2, EpyB4, and EpyB5" have hemorrhagic activity with MHDs, 7 μg, 7.6 μg and 15 μg, respectively; furthermore, they have high preference towards fibronectin, collagen, gelatin, fibrin and hemoglobin substrates compared with non-hemorrhagic SVMPs (EpyB3 and EpyB6). All the purified SVMPs showed remarkable thermal and pH stability, inhibited by metalloproteinase inhibitors and Zn(2+), Mn(2+), Ni(2+), Co(2+), Cu(2+), and Hg(2+). The purified SVMPs act as α-fibrinogenases, prothrombin activators and procoagulants. In conclusion, Epy venom has multiple SVMPs that are responsible for hemorrhagic events and thus represent a significant health hazard for victims of envenomation, however, they may be useful for treating diseases involving abnormal blood clot formation.

  2. Venomous snakebite in Thailand. II: Clinical experience.

    Science.gov (United States)

    Pochanugool, C; Wildde, H; Bhanganada, K; Chanhome, L; Cox, M J; Chaiyabutr, N; Sitprija, V

    1998-05-01

    We reviewed a total of 2,525 snakebite patients in Bangkok. Of these, 1,415 were bitten by venomous snakes, 91 by neurotoxic snakes of genus Naja or Bungarus and 1,324 by snakes of family Viperidae or Crotalidae. Seventy-one percent of bites were on the lower extremity. There were two fatal cobra bites; both patients were dead on arrival at the hospital. Bites from vipers caused morbidity but no deaths. Species-specific antivenins are effective in reversing respiratory failure from cobra bites and coagulopathies from bites by Viperidae and Crotalidae snakes. However, early respiratory and wound care will save lives even in the absence of specific cobra and krait antivenin. Care of a snakebite victim should consist of immobilization and bandaging of the bitten limb with elastic bandages during transport to the hospital, early surgical debridement of necrotic tissue, appropriate infusion of antivenin, aggressive respiratory support, management of shock and infection, and peritoneal dialysis or hemodialysis. Incision of bite wounds, suctioning, application of ice, and tourniquets are of no proven value and may be dangerous. All snakebite victims in southeast Asia should survive if they receive early competent care.

  3. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.

    Science.gov (United States)

    Smith, Cara Francesca; Mackessy, Stephen P

    2016-09-15

    Hybridization between divergent species can be analyzed to elucidate expression patterns of distinct parental characteristics, as well as to provide information about the extent of reproductive isolation between species. A known hybrid cross between two rattlesnakes with highly divergent venom phenotypes provided the opportunity to examine occurrence of parental venom characteristics in the F1 hybrids as well as ontogenetic shifts in the expression of these characters as the hybrids aged. Although venom phenotypes of adult rattlesnake venoms are known for many species, the effect of hybridization on phenotype inheritance is not well understood, and effects of hybridization on venom ontogeny have not yet been investigated. The current study investigates both phenomena resulting from the hybridization of a male snake with type I degradative venom, Crotalus oreganus helleri (Southern Pacific Rattlesnake), and a female snake with type II highly toxic venom, Crotalus scutulatus scutulatus (Mojave Rattlesnake). SDS-PAGE, enzymology, Western blot and reversed phase HPLC (RP-HPLC) were used to characterize the venom of the C. o. helleri male, the C. s. scutulatus female and their two hybrid offspring as they aged. In general, Crotalus o. helleri × C. s. scutulatus hybrid venoms appeared to exhibit overlapping parental venom profiles, and several different enzyme activity patterns. Both hybrids expressed C. o. helleri father-specific myotoxins as well as C. s. scutulatus mother-specific Mojave toxin. Snake venom metalloprotease activity displayed apparent sex-influenced expression patterns, while hybrid serine protease activities were intermediate to parental activities. The C. s. scutulatus × C. o. helleri hybrid male's venom profile provided the strongest evidence that type I and type II venom characteristics are expressed simultaneously in hybrid venoms, as this snake contained distinctive characteristics of both parental species. However, the possibility of

  4. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study.

    Science.gov (United States)

    Savi, Eleonora; Incorvaia, Cristoforo; Boni, Elisa; Mauro, Marina; Peveri, Silvia; Pravettoni, Valerio; Quercia, Oliviero; Reccardini, Federico; Montagni, Marcello; Pessina, Laura; Ridolo, Erminia

    2017-01-01

    Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.

  5. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex

    Science.gov (United States)

    Peixoto, Pedro S.; Bernardoni, Juliana L.; Oliveira, Sâmella S.; Portes-Junior, José Antonio; Mourão, Rosa Helena V.; Lima-dos-Santos, Isa; Sano-Martins, Ida S.; Chalkidis, Hipócrates M.; Valente, Richard H.; Moura-da-Silva, Ana M.

    2013-01-01

    In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted. PMID

  6. Pharmacological studies of the venom of an Australian bulldog ant (Myrmecia pyriformis).

    Science.gov (United States)

    Matuszek, M A; Hodgson, W C; Sutherland, S K; King, R G

    1994-01-01

    The purpose of this study was to examine some of the pharmacological actions of venom from the Australian bulldog ant Myrmecia pyriformis. M. pyriformis venom was prepared by extraction of venom sacs in distilled water and centrifugation to remove insoluble material. Venom (2 micrograms/ml) produced a biphasic response of isolated guinea-pig ileum, i.e., an initial rapid contraction followed by a slower prolonged contraction. The histamine antagonist mepyramine (0.1 microM) inhibited the first phase of this response by approximately 80%. In the isolated rat stomach fundus strip (histamine-insensitive), venom (2-4 micrograms/ml) produced only a single contraction. Responses to venom of egg-albumin-sensitized guinea-pig ileum, were not significantly different before and after an anaphylactic response induced in vitro by egg albumin (0.5 mg/ml). Fluorometric assay showed that histamine accounted for 3.5 +/- 0.5% of the dry weight of M. pyriformis venom. Both the lipoxygenase/cyclooxygenase inhibitor BW755C and the cyclooxygenase inhibitor indomethacin significantly inhibited the response to venom of guinea-pig ileum (second phase) and rat fundus strip. M. pyriformis venom caused hemolysis of guinea pig blood. The degree of hemolysis was reduced significantly when boiled venom was used. No evidence was found that the venom contains acetylcholine, bradykinin, or 5-hydroxytryptamine or that the venom releases histamine from guinea-pig ileum. However, the results indicate that the venom contains histamine-like activity. In addition the venom was found to cause the release of cyclooxygenase products and to contain a heat-sensitive hemolytic factor.

  7. Systemic pathological effects induced by cobra (Naja naja) venom from geographically distinct origins of Indian peninsula.

    Science.gov (United States)

    Shashidharamurthy, R; Mahadeswaraswamy, Y H; Ragupathi, L; Vishwanath, B S; Kemparaju, K

    2010-11-01

    Indian cobra (Naja naja) venom from different geographical locations varied in its composition and biochemical, pharmacological and immunological properties. Recently it has been shown that the variation in composition of venom from different geographical origin of Indian peninsula is due to the quantitative difference in the same components and also the presence of different biochemical entities with respect to their origin. This disparity in venom composition may be due to several environmental factors. However, very little is known about the systemic effects on vital organs caused by the venom due to regional variation. In the present investigation, the venom samples procured from eastern, western and southern regions were compared for histopathological effects on skeletal muscle and some vital organs (heart, lungs, liver and kidney) in the mouse model. All the three venom samples damaged vital organs such as cardiac muscle, gastrocnemius muscle, liver, lungs and kidneys; however, the extent of damage varied greatly. Eastern venom predominantly damaged cardiac muscle and kidney, western venom injured the liver and the southern venom affected the lung. In addition, the eastern venom caused the recruitment of a flux of inflammatory cells in the skeletal muscle unlike southern and western venom samples. These results suggest the diversity of target-specific toxins in all the three regional venoms. Thus, the study explores the possible variations in the pathological effects of cobra (Naja naja) venom samples on vital organs due to geographical distribution in the Indian subcontinent. It also emphasizes the importance of intra-specific variation of venom samples for the production of efficacious and region-specific therapeutic antivenom. Copyright © 2009. Published by Elsevier GmbH.

  8. [Standards and pitfalls of in-vitro diagnostics of Hymenoptera venom allergy].

    Science.gov (United States)

    Ruëff, F; Jappe, U; Przybilla, B

    2010-11-01

    In patients with a history of anaphylactic sting reactions, in-vitro tests are performed in order to demonstrate venom sensitization to the causative venom. Measurement of specific IgE-antibodies (sIgE) to the natural composite venom represents the standard in-vitro method to demonstrate venom sensitization. If sensitization to the composite venom cannot be demonstrated, one may determine sIgE to recombinant allergen compounds, in order to demonstrate sensitization to molecular venom allergens. Moreover, several cellular tests are available to confirm venom sensitization. Herein basophils, which carry cell-bound sIgE, can be used to produce a confirmatory response upon incubation with venom allergens. Reactions to both honey bee and vespid venom may either indicate true double sensitization or cross sensitization. The identification of antibodies cross-reacting to venoms and to other allergen sources does not exclude clinical relevance. Elevated baseline serum tryptase is a risk factor for severe systemic reactions after a field sting and during venom immunotherapy (VIT), the latter in particular for VIT with vespid venom. Serum tryptase measurement should, therefore, be included into routine diagnostics of venom allergy. The measurement of IgG-antibodies specific to venom is not recommended for routine work-up. None of the mentioned in-vitro tests, which may be used before, during or after VIT, allow, however, a precise prognosis with respect to future sting reactions, or to side effects and to the efficacy of VIT, respectively. To validate the reason for a VIT, one should also consider patient history and results of other tests.

  9. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.

    Science.gov (United States)

    Tan, Choo Hock; Tan, Kae Yi; Tan, Nget Hong

    2016-07-20

    Recent advances in proteomics enable deep profiling of the compositional details of snake venoms for improved understanding on envenomation pathophysiology and immunological neutralization. In this study, the venom of Australian tiger snake (Notechis scutatus) was trypsin-digested in solution and subjected to nano-ESI-LCMS/MS. Applying a relative quantitative proteomic approach, the findings revealed a proteome comprising 42 toxin subtypes clustered into 12 protein families. Phospholipases A2 constitute the most abundant toxins (74.5% of total venom proteins) followed by Kunitz serine protease inhibitors (6.9%), snake venom serine proteases (5.9%), alpha-neurotoxins (5.6%) and several toxins of lower abundance. The proteome correlates with N. scutatus envenoming effects including pre-synaptic and post-synaptic neurotoxicity and consumptive coagulopathy. The venom is highly lethal in mice (intravenous median lethal dose=0.09μg/g). BioCSL Sea Snake Antivenom, raised against the venoms of beaked sea snake (Hydrophis schistosus) and N. scutatus (added for enhanced immunogenicity), neutralized the lethal effect of N. scutatus venom (potency=2.95mg/ml) much more effectively than the targeted H.schistosus venom (potency=0.48mg/ml). The combined venom immunogen may have improved the neutralization against phospholipases A2 which are abundant in both venoms, but not short-neurotoxins which are predominant only in H. schistosus venom. A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the

  10. Comparative study of the venoms from three species of bees: effects on heart activity and blood.

    Science.gov (United States)

    Hussein, A A; Nabil, Z I; Zalat, S M; Rakha, M K

    2001-11-01

    Crude venoms from three highly evolved aculeate species: Apis mellifera (highly social bees), Bombus morrisoni (eusocial bees), and Anthophora pauperata (solitary bees), were used for conducting this study to compare the effects of honey bee, bumble bee, and solitary bee venom on toad cardiac muscle activity. In addition, these venoms were tested on rat whole blood in order to determine their ability to induce red blood cell haemolysis. The main toxic effects on isolated toad heart were monitored by ECG after perfusion with different concentrations of each bee venom, and are represented as a decrease in the heart rate (HR) accompanied by an elongation in the P-R interval. A gradual and progressive increase in R-wave amplitude was also noted. Several electrocardiographic changes were noted 5-30 min after envenomation with any of the bee venoms. The mechanism of action of the three bee venoms was determined by direct application of atropine, nicotine, or verapamil to the isolated toad hearts. Comparison of the three venoms revealed that Anthophora pauperata venom is the most effective venom in inducing bradycardia, and it has the strongest negative dromotropic effect. Apis mellifera venom demonstrates the most positive inotropic effect of the three venoms. The effects of bee venom on the blood indices of erythrocyte osmotic fragility (EOF) and plasma albumin levels were studied after incubation of rat blood with each venom. It was noticed that RBCs decreased while Hb content, HCT, MCV, MCH, and MCHC increased, although this change did fluctuate and was not significant. A nonsignificant decrease in EOF was noted after 60 min with any of the venoms used. Incubation of rat whole blood with 1 microg/ml of any of the bee venom solutions revealed a highly significant decrease in plasma albumin levels. It can be concluded that venoms from the three species of bees we tested have negative chronotropic and dromotropic effects on isolated toad heart, with Anthophora pauperata

  11. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Science.gov (United States)

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  12. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Directory of Open Access Journals (Sweden)

    Timothy N. W. Jackson

    2013-12-01

    Full Text Available Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka: short-chain, Type II (aka: long-chain and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2 ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel

  13. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Science.gov (United States)

    Duggan, Peter J.; Tuck, Kellie L.

    2015-01-01

    Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. PMID:26501323

  14. Bioactive Mimetics of Conotoxins and other Venom Peptides

    Directory of Open Access Journals (Sweden)

    Peter J. Duggan

    2015-10-01

    Full Text Available Ziconotide (Prialt®, a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties.

  15. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.Os autores estudaram a contaminação bacteriana do veneno dë cascavéis mantidas em cativeiro e das recentemente capturadas. Verificaram que os venenos dos animais cativos apresentaram alta incidência de contaminação e os tidos como recentemente capturados estavam com baixa contaminação aparente.

  16. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting.

    Science.gov (United States)

    Li, Rongfeng; Yu, Huahua; Xue, Wei; Yue, Yang; Liu, Song; Xing, Ronge; Li, Pengcheng

    2014-06-25

    Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A₂ (PLA₂), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA₂, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A₂, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of

  17. Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae).

    Science.gov (United States)

    Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Zamudio, Fernando Z; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2017-07-01

    The soluble venom from the Mexican scorpion Megacormus gertschi of the family Euscorpiidae was obtained and its biological effects were tested in several animal models. This venom is not toxic to mice at doses of 100 μg per 20 g of mouse weight, while being lethal to arthropods (insects and crustaceans), at doses of 20 μg (for crickets) and 100 μg (for shrimps) per animal. Samples of the venom were separated by high performance liquid chromatography and circa 80 distinct chromatographic fractions were obtained from which 67 components have had their molecular weights determined by mass spectrometry analysis. The N-terminal amino acid sequence of seven protein/peptides were obtained by Edman degradation and are reported. Among the high molecular weight components there are enzymes with experimentally-confirmed phospholipase activity. A pair of telsons from this scorpion species was dissected, from which total RNA was extracted and used for cDNA library construction. Massive sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 110,528 transcripts. From those, we were able to annotate 182, which putatively code for peptides/proteins with sequence similarity to previously-reported venom components available from different protein databases. Transcripts seemingly coding for enzymes showed the richest diversity, with 52 sequences putatively coding for proteases, 20 for phospholipases, 8 for lipases and 5 for hyaluronidases. The number of different transcripts potentially coding for peptides with sequence similarity to those that affect ion channels was 19, for putative antimicrobial peptides 19, and for protease inhibitor-like peptides, 18. Transcripts seemingly coding for other venom components were identified and described. The LC/MS analysis of a trypsin-digested venom aliquot resulted in 23 matches with the translated transcriptome database, which validates the transcriptome. The proteomic and transcriptomic analyses

  18. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Sasa, Mahmood; Acevedo, Manuel E; Dwyer, Quetzal; Durban, Jordi; Pérez, Alicia; Rodriguez, Yania; Lomonte, Bruno; Calvete, Juan J

    2017-01-30

    Bothriechis is a genus of eleven currently recognized slender and arboreal venomous snakes, commonly called palm-pitvipers that range from southern Mexico to northern South America. Despite dietary studies suggesting that palm-pitvipers are generalists with an ontogenetic shift toward endothermic prey, venom proteomic analyses have revealed remarkable divergence between the venoms of the Costa Rican species, B. lateralis, B. schlegelii, B. supraciliaris, and B. nigroviridis. To achieve a more complete picture of the venomic landscape across Bothriechis, the venom proteomes of biodiversity of the northern Middle American highland palm-pitvipers, B. thalassinus, B. aurifer, and B. bicolor from Guatemala, B. marchi from Honduras, and neonate Costa Rican B. lateralis and B. schlegelii, were investigated. B. thalassinus and B. aurifer venoms are comprised by similar toxin arsenals dominated by SVMPs (33-39% of the venom proteome), CTLs (11-16%), BPP-like molecules (10-13%), and CRISPs (5-10%), and are characterized by the absence of PLA2 proteins. Conversely, the predominant (35%) components of B. bicolor are D49-PLA2 molecules. The venom proteome of B. marchi is similar to B. aurifer and B. thalassinus in that it is rich in SVMPs and BPPs, but also contains appreciable amounts (14.3%) of PLA2s. The major toxin family found in the venoms of both neonate B. lateralis and B. schlegelii, is serine proteinase (SVSP), comprising about 20% of their toxin arsenals. The venom of neonate B. schlegelii is the only palm-pitviper venom where relative high amounts of Kunitz-type (6.3%) and γPLA2 (5.2%) inhibitors have been identified. Despite notable differences between their proteomes, neonate venoms are more similar to each other than to adults of their respective species. However, the ontogenetic changes taking place in the venom of B. lateralis strongly differ from those that occur in the venom of B. schlegelii. Thus, the ontogenetic change in B. lateralis produces a SVMP

  19. Unveiling the elusive and exotic: Venomics of the Malayan blue coral snake (Calliophis bivirgata flaviceps).

    Science.gov (United States)

    Tan, Choo Hock; Fung, Shin Yee; Yap, Michelle Khai Khun; Leong, Poh Kuan; Liew, Jia Lee; Tan, Nget Hong

    2016-01-30

    The venom proteome of the Malayan blue coral snake, Calliophis bivirgata flaviceps from west Malaysia was investigated by 1D-SDS-PAGE and shotgun-LCMS/MS. A total of 23 proteins belonging to 11 protein families were detected from the venom proteome. For the toxin proteins, the venom consists mainly of phospholipase A2 (41.1%), cytotoxin (22.6%), SVMPs (18.7%) and vespryns (14.6%). However, in contrast to the venoms of New World coral snakes and most elapids, there was no post-synaptic α-neurotoxin detected. The proteome also revealed a relatively high level of phosphodiesterase (1.3%), which may be associated with the reported high level of adenosine in the venom. Also detected were 5'-nucleotidase (0.3%), hyaluronidase (0.1%) and cysteine-type endopeptide inhibitor (0.6%). Enzymatic studies confirmed the presence of phospholipase A2, phosphodiesterase, 5'-nucleotidase and acetylcholinesterase activities but not l-amino acid oxidase activity. The venom exhibited moderate cytotoxic activity against CRL-2648 fibroblast cell lines (IC50=62.14±0.87 μg/mL) and myotoxicity in mice, presumably due to the action of its cytotoxin or its synergistic action with phospholipase A2. Interestingly, the venom lethality could be cross-neutralized by a neurotoxic bivalent antivenom from Taiwan. Together, the findings provide insights into the composition and functions of the venom of this exotic oriental elapid snake. While venoms of the New World coral snake have been extensively studied, literature pertaining to the Old World or Asiatic coral snake venoms remains lacking. This could be partly due to the inaccessibility to the venom of this rare species and infrequent cases of envenomation reported. This study identified and profiled the venom proteome of the Malayan blue coral snake (C. b. flaviceps) through SDS-PAGE and a high-resolution nano-LCMS/MS method, detailing the types and abundance of proteins found in the venom. The biological and toxic activities of the venom were

  20. Venom ophthalmia caused by venoms of spitting elapid and other snakes: Report of ten cases with review of epidemiology, clinical features, pathophysiology and management.

    Science.gov (United States)

    Chu, Edward R; Weinstein, Scott A; White, Julian; Warrell, David A

    2010-09-01

    Venom ophthalmia caused by venoms of spitting elapid and other snakes: report of ten cases with review of epidemiology, clinical features, pathophysiology and management. Chu, ER, Weinstein, SA, White, J and Warrell, DA. Toxicon XX:xxx-xxx. We present ten cases of ocular injury following instillation into the eye of snake venoms or toxins by spitting elapids and other snakes. The natural history of spitting elapids and the toxinology of their venoms are reviewed together with the medical effects and management of venom ophthalmia in humans and domestic animals including both direct and allergic effects of venoms. Although the clinical features and management of envenoming following bites by spitting elapids (genera Naja and Hemachatus) are well documented, these snakes are also capable of "spraying" venom towards the eyes of predators, a defensive strategy that causes painful and potentially blinding ocular envenoming (venom ophthalmia). Little attention has been given to the detailed clinical description, clinical evolution and efficacy of treatment of venom ophthalmia and no clear management guidelines have been formulated. Knowledge of the pathophysiology of ocular envenoming is based largely on animal studies and a limited body of clinical information. A few cases of ocular exposure to venoms from crotaline viperids have also been described. Venom ophthalmia often presents with pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Delay or lack of treatment may result in corneal opacity, hypopyon and/or blindness. When venom is "spat" into the eye, cranial nerve VII may be affected by local spread of venom but systemic envenoming has not been documented in human patients. Management of venom ophthalmia consists of: 1) urgent decontamination by copious irrigation 2) analgesia by vasoconstrictors with weak mydriatic activity (e.g. epinephrine) and limited topical administration of local anesthetics (e.g. tetracaine) 3) exclusion of corneal abrasions

  1. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    Science.gov (United States)

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2015-10-01

    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cross-reactivity and phospholipase A{sub 2} neutralization of anti-irradiated Bothrops jararaca venom antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.J.; Nascimento, N. do; Paula, R.A. de; Cardi, B.A.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The detoxified Bothrops jararaca venom, immunized rabbits with the toxoid obtained and investigated cross-reactivity of the antibodies obtained against autologous and heterelogous venoms was presented. It was also investigated the ability of the IgGs, purified by affinity chromatography, from those sera to neutralize phospholipase. A{sub 2}, an ubiquous enzyme in animal venoms. Results indicate that venom irradiation leads to an attenuation of toxicity of 84%. Cross-reactivity was investigated by ELISA and Western blot and all venoms were reactive to the antibodies. On what refers to phospholipase A{sub 2} activity neutralization, the antibodies neutralized autologous venoms efficiently and, curiously, other venoms from the same genus were not neutralized, while Lachesis muta venom, a remote related specier, was neutralized by this serum. These data suggest that irradiation preserve important epitopes for induction of neutralizing antibodies and that these epitopes are not shared by all venoms assayed. (author). 8 refs, 2 figs, 3 tabs.

  3. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

    Science.gov (United States)

    McCleary, Ryan J R; Sridharan, Sindhuja; Dunstan, Nathan L; Mirtschin, Peter J; Kini, R Manjunatha

    2016-07-20

    Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Inhibition of hemorrhagic and edematogenic activities of snake venoms by a broad-spectrum protease inhibitor, murinoglobulin; the effect on venoms from five different genera in Viperidae family.

    Science.gov (United States)

    Ribeiro Filho, Wilker; Sugiki, Masahiko; Yoshida, Etsuo; Maruyama, Masugi

    2003-08-01

    In order to obtain basic data on the effect of broad-spectrum protease inhibitor against local symptoms of Viperidae snake envenomation, inhibitory capacity of rat murinoglobulin on local hemorrhagic and edematogenic activities of venoms from Crotalus atrox, Bothrops jararaca, Lachesis muta muta, Trimeresurus flavoviridis and Echis carinatus sochureki were examined. Murinoglobulin, pre-incubated with the crude venoms at 37 degrees C for 15 min, inhibited hemorrhagic activity of all five venoms to various extents. The activity of C. atrox was almost completely inhibited at the murinoglobulin/venom ratio (w/w) of 20. The activity of B. jararaca, Lachesis muta muta and T. flavoviridis venoms was considerably inhibited at the ratio of 20 (77.2, 80.0 and 86.2% inhibition, respectively), however some of the activity still remained even at the ratio of 40 (84.2, 79.8 and 86.2% inhibition, respectively). Among the five venoms, E. c. sochureki venom is quite resistant to murinoglobulin treatment and statistically significant inhibition was only found at the ratio of 40 (64.1% inhibition). Fibrinolytic and gelatinase activities were more susceptible to murinoglobulin inhibition. The treatment at the ratios of 10 and 20 almost completely inhibited respectively the fibrinolytic and the gelatinase activities of all the venoms. Murinoglobulin treatment also significantly inhibited the edematogenic activity of L. muta muta, T. flavoviridis and Echis carinatus sochureki. The treatment of murinoglobulin at the ratio of 40 considerably suppressed the swelling up to 60 min after subcutaneous injection of L. muta muta and E. c. sochureki venoms, and up to 30 min after T. flavoviridis venom injection. Murinoglobulin is a potent inhibitor against local effects of multiple snake venoms in Viperidae family.

  5. Comparative studies of the venom of a new Taipan species, Oxyuranus temporalis, with other members of its genus.

    Science.gov (United States)

    Barber, Carmel M; Madaras, Frank; Turnbull, Richard K; Morley, Terry; Dunstan, Nathan; Allen, Luke; Kuchel, Tim; Mirtschin, Peter; Hodgson, Wayne C

    2014-07-02

    Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. temporalis venom and seeks to characterise and compare the neurotoxicity, lethality and biochemical properties of O. temporalis venom with other taipan venoms. Analysis of O. temporalis venom using size-exclusion and reverse-phase HPLC indicated a markedly simplified "profile" compared to other taipan venoms. SDS-PAGE and agarose gel electrophoresis analysis also indicated a relatively simple composition. Murine LD50 studies showed that O. temporalis venom is less lethal than O. microlepidotus venom. Venoms were tested in vitro, using the chick biventer cervicis nerve-muscle preparation. Based on t90 values, O. temporalis venom is highly neurotoxic abolishing indirect twitches far more rapidly than other taipan venoms. O. temporalis venom also abolished responses to exogenous acetylcholine and carbachol, indicating the presence of postsynaptic neurotoxins. Prior administration of CSL Taipan antivenom (CSL Limited) neutralised the inhibitory effects of all taipan venoms. The results of this study suggest that the venom of the O. temporalis is highly neurotoxic in vitro and may contain procoagulant toxins, making this snake potentially dangerous to humans.

  6. Hormone-like peptides in the venoms of marine cone snails.

    Science.gov (United States)

    Robinson, Samuel D; Li, Qing; Bandyopadhyay, Pradip K; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T; Purcell, Anthony W; Norton, Raymond S; Safavi-Hemami, Helena

    2017-04-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Individual variability in the venom proteome of juvenile Bothrops jararaca specimens.

    Science.gov (United States)

    Dias, Gabriela S; Kitano, Eduardo S; Pagotto, Ana H; Sant'anna, Sávio S; Rocha, Marisa M T; Zelanis, André; Serrano, Solange M T

    2013-10-04

    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.

  8. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  9. VENOM VARIATION IN HEMOSTASIS OF THE SOUTHERN PACIFIC RATTLESNAKE (Crotalus oreganus helleri): ISOLATION OF HELLERASE

    Science.gov (United States)

    Salazar, Ana Maria; Guerrero, Belsy; Cantu, Bruno; Cantu, Esteban; Rodríguez-Acosta, Alexis; Pérez, John C.; Galán, Jacob A.; Tao, Andy; Sánchez, Elda E.

    2009-01-01

    Envenomations by the Southern Pacific Rattlesnake (Crotalus oreganus helleri) are the most common snakebite accidents in southern California. Intraspecies venom variation may lead to unresponsiveness of antivenom therapy. Even in a known species, venom toxins are recognized as diverse in conformity with interpopulational, seasonal, ontogenetic and individual factors. Five venoms of individual C. o. helleri located in Riverside and San Bernardino counties of southern California were studied for their variation in their hemostasis activity. The results demonstrated that Riverside 2 and San Bernardino 1 venoms presented the highest lethal activity without hemorrhagic activity. In contrast, San Bernardino 2 and 3 venoms had the highest hemorrhagic and fibrinolytic activities with low lethal and coagulant activities. Riverside 1, Riverside 2 and San Bernardino 1 venoms presented a significant thrombin-like activity. San Bernardino 2 and 3 venoms presented an insignificant thrombin-like activity. In relation to the fibrinolytic activity, San Bernardino 3 venom was the most active on fibrin plates, which was in turn neutralized by metal chelating inhibitors. These results demonstrate the differences amongst C. o helleri venoms from close localities. A metalloproteinase, hellerase, was purified by anionic and cationic exchange chromatography from San Bernardino 3 venom. Hellerase exhibited the ability to break fibrin clots in vitro, which can be of biomedically importance in the treatment of heart attacks and strokes. PMID:18804187

  10. Snake venoms: A brief treatise on etymology, origins of terminology, and definitions.

    Science.gov (United States)

    Weinstein, Scott A

    2015-09-01

    The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  11. Enzymatic and immunological properties of Bungarus flaviceps (red-headed krait venom

    Directory of Open Access Journals (Sweden)

    NH Tan

    2010-01-01

    Full Text Available Bungarus flaviceps (red-headed krait venom presents an intravenous LD50 of 0.32 μg/g and exhibits enzymatic activities similar to other Bungarus toxins. ELISA cross-reactions between anti-Bungarus flaviceps and a variety of elapid and viperid venoms were observed in the current study. Double-sandwich ELISA was highly specific, since anti-B. flaviceps serum did not cross-react with any tested venom, indicating that this assay can be used for species diagnosis in B. flaviceps bites. In the indirect ELISA, anti-B. flaviceps serum cross-reacted moderately with three different Bungarus venoms (9-18% and Notechis scutatus venom, but minimally with other elapid and viperid toxins. The results indicated that B. flaviceps venom shares common epitopes with other Bungarus species as well as with N. scutatus. The lethality of the B. flaviceps venom was neutralized effectively by antiserum prepared against B. candidus and B. flaviceps toxins and a commercial bivalent elapid antivenom prepared against B. multicinctus and Naja naja atra venoms, but was not neutralized by commercial antivenoms prepared against Thai cobra, king cobra and banded krait. These data also suggested that the major lethal toxins of B. flaviceps venom are similar to those found in B. multicinctus and B. candidus venoms.

  12. The in vivo cardiovascular effects of an Australasian box jellyfish (Chiropsalmus sp.) venom in rats.

    Science.gov (United States)

    Ramasamy, Sharmaine; Isbister, Geoffrey K; Seymour, Jamie E; Hodgson, Wayne C

    2005-03-01

    Using a new technique to extract venom from the nematocysts of jellyfish, the in vivo cardiovascular effects of Chiropsalmus sp. venom were investigated in anaesthetized rats. Chiropsalmus sp. venom (150 microg/kg, i.v.) produced a transient hypertensive response (44+/-4 mmHg; n=6) followed by hypotension and cardiovascular collapse. Concurrent artificial respiration or pretreatment with Chironex fleckeri antivenom (AV, 3000 U/kg, i.v.) did not have any effect on the venom-induced hypertensive response nor the subsequent cardiovascular collapse. The cardiovascular response of animals receiving venom after the infusion of MgSO4 (50-70 mM @ 0.25 ml/min, i.v.; n=5) alone, or in combination with AV (n=5), was not significantly different from rats receiving venom alone. Prior administration of prazosin (50 microg/kg, i.v.; n=4) or ketanserin (1 mg/kg, i.v.; n=4) did not significantly attenuate the hypertensive response nor prevent the cardiovascular collapse induced by venom (50 microg/kg, i.v.). In contrast to previous work examining C. fleckeri venom, administration of AV alone, or in combination with MgSO4, was not effective in preventing cardiovascular collapse following the administration of Chiropsalmus sp. venom. This indicates that the venom of the two related box jellyfish contain different lethal components and highlights the importance of species identification prior to initiating treatment regimes following jellyfish envenoming.

  13. [Effects of venom from Sclerodermus sichuanensis Xiao on pupa of Tenebrio molitor].

    Science.gov (United States)

    Zhuo, Zhi-Hang; Yang, Wei; Qin, Huan; Yang, Chun-Ping; Yang, Hua; Xu, Dan-Ping

    2013-11-01

    To explore the regulatory mechanisms of parasitism of Sclerodermus sichuanensis on Tenebrio molitor, the methods of natural parasitism and venom injection were adopted to investigate the effects of the venom from S. sichuanensis on the pupa of T. molitor in the parasitic process. Under venom injection, the paralytic degree of the pupa had a positive correlation with the concentration of injected venom, and the number of recovered pupa had a negative correlation with the injected venom concentration. The T. molitor pupa was in slight and reversible paralysis when injected with 0.01 VRE (venom reservoir equivalent) of venom, and in non-reversible and complete paralysis when 0.2 VRE was injected. The pupa died massively and appeared a wide range of melanization when injected with soil bacterial suspension alone, but the melanization delayed and the mortality declined significantly when the mixed liquor of bacterium and venom was injected. The bacteriostasis of the venom on Staphylococcus aureus was significantly stronger than that on Escherichia coli. Within a definite range of temperature, the paralytic activity decreased significantly with increasing temperature, the bacteriostasis on S. aureus increased significantly, while that on E. coli was opposite. This study showed that the venom from S. sichuanensis had the effects of paralysis, bacteriostasis, inhibiting exuviations, and delaying melanization.

  14. Coral snake venoms: mode of action and pathophysiology of experimental envenomation

    Directory of Open Access Journals (Sweden)

    Oswald Vital Brazil

    1987-06-01

    Full Text Available Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins, M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect. The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.

  15. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico

    Science.gov (United States)

    Castañeda-Gaytán, Gamaliel; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca

    2018-01-01

    Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. PMID:29316683

  16. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails.

    Science.gov (United States)

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-05-28

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Neutralization of the pharmacological effects of Cobra and Krait venoms by chicken egg yolk antibodies.

    Science.gov (United States)

    Meenatchisundaram, S; Parameswari, G; Michael, A; Ramalingam, S

    2008-08-01

    Five-month-old white leghorn chickens were immunized with 50 microg of Common Cobra (Naja naja) and 30 microg of Krait venoms (Bungarus caeruleus) to generate antivenom antibodies against the venom antigen. Chickens received booster doses of increasing concentrations of venom at 14 days time intervals to raise the antivenom level in egg yolk. The antivenom from immunized chicken egg yolk was extracted by polyethylene glycol (PEG) and ammonium sulphate precipitation method which was further purified by DEAE cellulose ion exchange column chromatography. A high molecular weight protein of 180 kDa was detected by electrophoretic analysis which shows the purity of antivenom generated in chicken. Antibodies generated were specific and sensitive to the venom antigen. Various pharmacological activities of Cobra and Krait venoms were carried out by both in-vivo and in-vitro methods. The neutralization of lethality, hemorrhagic, edema, PLA(2) and procoagulant activity was evaluated in assays involving pre-incubation of venom and antivenom prior to testing. The antivenom was effective in neutralizing the toxic and enzymatic activities of venom. The LD(50) of venom for 18 g of mice was found to be 10 microg for Cobra and 3 microg for Krait venoms. The median effective dose (ED(50)) of anti-Cobra venom was 4.48 mg/5LD(50) and 1.0 ml neutralized 0.127 mg of Cobra venom and the median effective dose (ED(50)) of anti-Krait venom was 3.18 mg/5LD(50) and 1.0 ml neutralized 0.051 mg of Krait venom. The results indicate that antivenom generated in chicken could be used for therapeutic purposes in case of snakebite envenomation.

  18. An in vivo examination of the stability of venom from the Australian box jellyfish Chironex fleckeri.

    Science.gov (United States)

    Winter, K L; Isbister, G K; Seymour, J E; Hodgson, W C

    2007-05-01

    We have previously characterised the pharmacological activity of a number of jellyfish venoms with a particular emphasis on the profound cardiovascular effects. It has been suggested that jellyfish venoms are difficult to work with and are sensitive to pH, temperature and chemical changes. The current study aimed to examine the working parameters of the venom of the Australian box jellyfish Chironex fleckeri to enable fractionation and isolation of the toxins with cardiovascular activity. C. fleckeri venom was made up fresh each day and subjected to a number of different environments (i.e. a pH range of 5-9 and a temperature range of 4-30 degrees C). In addition, the effect of freeze drying and reconstituting the venom was investigated. Venom (50 microg/kg, i.v.) produced a transient hypertensive response followed by cardiovascular collapse in anaesthetised rats. This biphasic response was not significantly effected by preparation of the venom at a pH of 5, 7 or 9. Similarly, venom (50 microg/kg, i.v.) did not display a loss of activity when exposed to temperatures of 4, 20 or 30 degrees C for 1.5h. However, the cardiovascular activity was abolished by boiling the venom. Freeze drying, and then reconstituting, the venom did not significantly affect its cardiovascular activity. However, repeated freeze drying and reconstituting of extracted venom resulted in a significantly loss of activity. This study provides a more detailed knowledge of the parameters in which C. fleckeri venom can be used and, while supporting some previous studies, contradicts some of the perceived problems of working with the venom.

  19. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes.

    Science.gov (United States)

    Cooper, Allen M; Fox, Gerad A; Nelsen, David R; Hayes, William K

    2014-05-01

    Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes. We also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha. Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha, the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mechanism of action of honey bee (Apis mellifera L.) venom on different types of muscles.

    Science.gov (United States)

    Nabil, Z I; Hussein, A A; Zalat, S M; Rakha, M Kh

    1998-03-01

    1. The effect of crude honeybee (Apis mellifera) venom on the skeletal, smooth as well as cardiac muscles were studied in this investigation. 2. Perfusion of gastrocnemius-sciatic nerve preparation of frogs with 1 microgram/ml venom solution has weakened the mechanical contraction of the muscle without recovery. Blocking of nicotinic receptors with 3 micrograms/ml flaxedil before bee venom application sustained normal contraction of gastrocnemius muscle. 3. The electrical activity of duodenum rabbits was recorded before and after the application of 1 microgram/ml venom solution. The venom has depressed the amplitude of the muscle contraction after 15 min pretreatment with atropine nearly abolished the depressor effect of the venom on smooth muscle. 4. In concentrations from 0.5-2 micrograms/ml, bee venom caused decrease of heart rate of isolated perfused toad heart. This bradycardia was accompanied by elongation in the P-R interval. A gradual and progressive increase in the R-wave amplitude reflected a positive inotropism of the venom. Application of 5 micrograms/ml verapamil, a calcium channels blocking agent, abolished the noticed effect of the venom. 5. Marked electrocardiographic changes were produced within minutes of the venom application on the isolated perfused hearts, like marked injury current (elevation or depression of the S-T segment), atrioventricular conduction disturbances and sinus arrhythmias. Atropine and nicotine could decrease the toxic effect of the venom on the myocardium. 6. Results of the present work lead to the suggestion that bee venom is mediated through the peripheral cholinergic neurotransmitter system. General neurotoxicity of an inhibitory nature involving the autonomic as well as neuromuscular system are established as a result of the venom, meanwhile a direct effect on the myocardium membrane stabilization has been suggested.

  1. Cobra venom cytotoxins; apoptotic or necrotic agents?

    Science.gov (United States)

    Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein

    2015-12-15

    Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Predictors of clinical effectiveness of Hymenoptera venom immunotherapy

    NARCIS (Netherlands)

    Rueff, F.; Vos, Byrthe; Oude Elberink, J.; Bender, A.; Chatelain, R.; Dugas-Breit, S.; Horny, H. -P.; Kuechenhoff, H.; Linhardt, A.; Mastnik, S.; Sotlar, K.; Stretz, E.; Vollrath, R.; Przybilla, B.; Flaig, M.

    BackgroundTreatment failure during venom immunotherapy (VIT) may be associated with a variety of risk factors, of which the relative importance is unknown. ObjectiveOur aim was to evaluate the association of baseline serum tryptase concentration (BTC), mastocytosis in the skin (MIS) and of other

  3. Inhibition Effects of Scorpion Venom Extracts ( Buthus matensii karsch)

    African Journals Online (AJOL)

    Methods: Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell ...

  4. Anti-venom potentials of Friedelin isolated from hexane extract ...

    African Journals Online (AJOL)

    ... taenicidal, cough remedy, dysentery, cancer, diabetes mellitus, tuberculosis and snake bite remedy. In this report, an attempt has been made to evaluate the bioactive molecules in the plant that are anti-venom agents. Consequently, the stem bark was exhaustively extracted with hexane and subsequently with methanol.

  5. Hemolytic venoms from marine cnidarian jellyfish – an overview

    Science.gov (United States)

    Mariottini, Gian Luigi

    2014-01-01

    Cnidarian jellyfish are viewed as an emergent problem in several coastal zones throughout the world. Recurrent outbreaks pose a serious threat to tourists and bathers, as well as to sea-workers, involving health and economical aspects. As a rule, cnidarian stinging as a consequence of nematocyst firing induces merely local symptoms but cardiovascular or neurological complications can also occur. Hemolysis is a frequent effect of cnidarian stinging; this dangerous condition is known to be caused by several venoms and can sometimes be lethal. At present, the bulk of data concerning hemolytic cnidarian venoms comes from the study of benthic species, such as sea anemones and soft corals, but hemolytic factors were found in venoms of several siphonophore, cubozoan and scyphozoan jellyfish, which are mainly involved in the envenomation of bathers and sea-workers. Therefore, the aim of this paper is to review the scientific literature concerning the hemolytic venoms from cnidarian jellyfish taking into consideration their importance in human pathology as well as health implications and possible therapeutic measures. PMID:25386336

  6. EAACI Guidelines on Allergen Immunotherapy: Hymenoptera venom allergy

    NARCIS (Netherlands)

    Sturm, Gunter J.; Varga, Eva-Maria; Roberts, Graham; Mosbech, Holger; Bilò, M. Beatrice; Akdis, Cezmi A.; Antolín-Amérigo, Darío; Cichocka-Jarosz, Ewa; Gawlik, Radoslaw; Jakob, Thilo; Kosnik, Mitja; Lange, Joanna; Mingomataj, Ervin; Mitsias, Dimitris I.; Ollert, Markus; Oude Elberink, Joanna N. G.; Pfaar, Oliver; Pitsios, Constantinos; Pravettoni, Valerio; Ruëff, Franziska; Sin, Betül Ayşe; Agache, Ioana; Angier, Elizabeth; Arasi, Stefania; Calderón, Moises A.; Fernandez-Rivas, Montserrat; Halken, Susanne; Jutel, Marek; Lau, Susanne; Pajno, Giovanni B.; van Ree, Ronald; Ryan, Dermot; Spranger, Otto; van Wijk, Roy Gerth; Dhami, Sangeeta; Zaman, Hadar; Sheikh, Aziz; Muraro, Antonella

    2017-01-01

    Hymenoptera venom allergy is a potentially life-threatening allergic reaction following a honeybee, vespid or ant sting. Systemic allergic sting reactions have been reported in up to 7.5% of adults and up to 3.4% of children. They can be mild and restricted to the skin or moderate-to-severe with a

  7. Natural Inhibitors of Snake Venom Metalloendopeptidases: History and Current Challenges

    Science.gov (United States)

    Bastos, Viviane A.; Gomes-Neto, Francisco; Perales, Jonas; Neves-Ferreira, Ana Gisele C.; Valente, Richard H.

    2016-01-01

    The research on natural snake venom metalloendopeptidase inhibitors (SVMPIs) began in the 18th century with the pioneering work of Fontana on the resistance that vipers exhibited to their own venom. During the past 40 years, SVMPIs have been isolated mainly from the sera of resistant animals, and characterized to different extents. They are acidic oligomeric glycoproteins that remain biologically active over a wide range of pH and temperature values. Based on primary structure determination, mammalian plasmatic SVMPIs are classified as members of the immunoglobulin (Ig) supergene protein family, while the one isolated from muscle belongs to the ficolin/opsonin P35 family. On the other hand, SVMPIs from snake plasma have been placed in the cystatin superfamily. These natural antitoxins constitute the first line of defense against snake venoms, inhibiting the catalytic activities of snake venom metalloendopeptidases through the establishment of high-affinity, non-covalent interactions. This review presents a historical account of the field of natural resistance, summarizing its main discoveries and current challenges, which are mostly related to the limitations that preclude three-dimensional structural determinations of these inhibitors using “gold-standard” methods; perspectives on how to circumvent such limitations are presented. Potential applications of these SVMPIs in medicine are also highlighted. PMID:27571103

  8. Cysteine-free peptides in scorpion venom: geographical distribution ...

    African Journals Online (AJOL)

    channel, Ca2+-channel and ryanodine channel selective peptides. In 1993, the first cysteine-free peptide was isolated from scorpion venom. Within the last six years, cysteine-free peptides with and without antimicrobial activity have been isolated ...

  9. It is time for top-down venomics.

    Science.gov (United States)

    Melani, Rafael D; Nogueira, Fabio C S; Domont, Gilberto B

    2017-01-01

    The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.

  10. Venomous Snake Bite Injuries at Kitui District Hospital

    African Journals Online (AJOL)

    presentation patterns and treatments offered for snake bites at Kitui District Hospital, and to characterize the causative venomous snakes. Patients and methods. This was a prospective case series carried out over a period of 8 months. Patients presenting at the hospital with snake bites were included in the study. A pre set.

  11. SNAKE VENOM INSTABILITY • Department of Physiology, Medical ...

    African Journals Online (AJOL)

    It is generally accepted that the biological activities of snake venom dried in vacuum at room temperature remain unaltered (Christensen 1955). The possibility of an alteration in biochemical properties due to the method of drying has been demonstrated by Bjork &. Boman (1959), but this would not necessarily influence the ...

  12. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Gutiérrez, José María; Lohse, Brian

    2015-01-01

    The venom proteome of the monocled cobra, Naja kaouthia, from Thailand, was characterized by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses, yielding 38 different proteins that were either identified or assigned to families. Estimation of relative protein abundances revealed that venom is dominate...

  13. Bee Venom (Apis Mellifera an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains Bee Venom an Effective Potential for Bacteria

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2016-09-01

    Full Text Available Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera, is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has bee

  14. Isotachophoretic and immunological analysis of venoms from sea snakes (Laticauda semifasciata) and brown recluse spiders (Loxosceles reclusa) of different morphology, locality, sex, and developmental stages.

    Science.gov (United States)

    Kent, C G; Tu, A T; Geren, C R

    1984-01-01

    Sea snake venom: The venom compositions of sea snakes, Laticauda semifasciata, with different scale patterns were analyzed by isotachophoresis. The comparison showed quantitative rather than qualitative differences. Similarly, L. semifasciata venoms of Philippine and Japanese origins differed only in the quantity of certain proteins. Spider venom: 3. Loxosceles reclusa venom apparatus extract is rich in neutral and acidic proteins but contains relatively small quantities of basic proteins. Differences in venom apparatus extract composition between nymph and adult (male or female) were detected by isotachophoresis. The extracts of male and female venom apparatus were very similar. Extracts of venom apparatus of spiders collected in locations separated by 100 miles were the same.

  15. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps

    Science.gov (United States)

    Martinson, Ellen O.; Werren, John H.

    2016-01-01

    Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that—following envenomation—the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade. PMID:26715630

  16. Hormone-like peptides in the venoms of marine cone snails

    DEFF Research Database (Denmark)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.

    2017-01-01

    , paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules...... in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins......, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland...

  17. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques.

    Science.gov (United States)

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-12-13

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A₂ and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  18. Histopathological evaluation in experimental envenomation of dogs with Crotalus durissus terrificus venom

    Directory of Open Access Journals (Sweden)

    F. Sangiorgio

    2008-01-01

    Full Text Available The present work evaluated histopathological aspects in experimental envenomation of dogs with Crotalus durissus terrificus venom. Twenty-eight mixed breed adult dogs were divided into three groups of seven animals each: Group I - only venom; Group II - venom + 50ml antiophidic serum + fluid therapy; Group III - venom + 50ml antiophidic serum + fluid therapy + urine alkalization. Lyophilized venom of Crotalus durissus terrificus was reconstituted in saline solution and inoculated subcutaneously at the dose of 1mg/kg body weight. Three animals of each group were subjected to euthanasia, and their muscular tissue, brain, spleen, kidneys, heart, lungs, stomach, small and large intestines, and popliteal lymph node fragments were collected for histopathological evaluation. There was myonecrosis in the inoculated limb, renal tubular degeneration, lymphoid hyperplasia of spleen, and unspecific reactive hepatitis. These results show the antigenicity and action of the venom on the immune system.

  19. Efficacy of tannins from Mimosa pudica and tannic acid in neutralizing cobra (Naja kaouthia venom

    Directory of Open Access Journals (Sweden)

    FY Sia

    2011-01-01

    Full Text Available In the present study, the effectiveness of Mimosa pudica tannins (MPT in neutralizing the lethality of Naja kaouthia venom was compared with commercially derived tannins. Preincubation of MPT with N. kaouthia venom maintained 100% survival of mice after 24 hours. The mouse group in which there was no preincubation, no protection against the effects of the venom was observed. M. pudica tannin was found to be more effective in neutralizing the lethality of N. kaouthia venom when compared to commercial tannic acid. Two protein spots were missing in the two-dimensional gel electrophoresis (2-DE of the MPT treated mouse indicating the down-regulation of venom proteins. The results from this study indicated that tannins obtained from M. pudica are better than tannic acid in neutralizing the lethality of N. kaouthia venom in vitro. However, further investigations are required to establish that M. pudica has potential for treating N. kaouthia snakebites.

  20. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis.

    Science.gov (United States)

    Oliveira, Fabiana da Rocha; Noronha, Maria das Dores Nogueira; Lozano, Jorge Luis Lopez

    2017-01-01

    The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml) in mice.

  1. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis

    Directory of Open Access Journals (Sweden)

    Fabiana da Rocha Oliveira

    Full Text Available Abstract INTRODUCTION: The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. METHODS: Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. RESULTS AND CONCLUSIONS: Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml in mice.

  2. Cobra venom contains a pool of cysteine-rich secretory proteins.

    Science.gov (United States)

    Osipov, Alexey V; Levashov, Mikhail Yu; Tsetlin, Victor I; Utkin, Yuri N

    2005-03-04

    A large family of cysteine-rich secretory proteins (CRISPs) includes proteins of different origin, the function of the majority of CRISPs being unknown. For CRISPs isolated from snake venom, two types of activities were found: two proteins blocked cyclic nucleotide-gated ion channels, several others blocked potassium-stimulated smooth muscle contraction. Thus, snake CRISPs represent potentially valuable tools for studies of ion channels, which makes promising a search for new CRISPs. Here we report on the isolation of several novel CRISPs from the venoms of Asian cobra Naja kaouthia and African cobra Naja haje using a combination of different types of liquid chromatography. Four CRISP variants were identified in N. kaouthia venom and three proteins, one of them acidic, were found in N. haje venom. Acidic CRISP was found in a reptilian venom for the first time. Our data suggest that each cobra venom contains a pool of different CRISPs.

  3. Cardiotoxic effects of venom fractions from the Australian box jellyfish Chironex fleckeri on human myocardiocytes.

    Science.gov (United States)

    Saggiomo, Silvia L A; Seymour, Jamie E

    2012-09-01

    An investigation into the cardiotoxic effects in human cardiomyocytes of different fractions (as produced from an FPLC) of the venom from Chironex fleckeri showed that whole venom caused cardiac cell death in minutes, measured as cell detachment using xCELLigence technology. However, only one fraction of the venom was responsible for this effect. When all extracted venoms were recombined a similar result was seen for the toxic fraction, however these effects were slower than unfractionated venom alone even though the concentrations were similar. The difference in the results between fractioned and unfractionated venom may have been caused by compounds remaining in the FPLC column, which may interact with the toxic fraction to cause rapid cell detachment or death. Copyright © 2012. Published by Elsevier Ltd.

  4. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques

    Science.gov (United States)

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-01-01

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5′-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor. PMID:27983581

  5. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques

    Directory of Open Access Journals (Sweden)

    Aleksandra Bocian

    2016-12-01

    Full Text Available Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5′-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  6. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus.

    Science.gov (United States)

    Pla, Davinia; Sanz, Libia; Whiteley, Gareth; Wagstaff, Simon C; Harrison, Robert A; Casewell, Nicholas R; Calvete, Juan J

    2017-04-01

    Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Standardization of anti-lethal toxin potency test of antivenoms prepared from two different Agkistrodon halys venoms

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2006-01-01

    Full Text Available In Korea, antivenoms for the treatment of patients bitten by venomous snakes have been imported from Japan or China. Although there is cross-reactivity between these antibodies and venoms from snakes indigenous to Korea (e.g. Agkistrodon genus, protection is not optimal. Antivenoms specifically prepared to neutralize Korean snake venoms could be more effective, with fewer side effects. To this end, we established an infrastructure to develop national standards and created a standardized method to evaluate the efficacy of two horse-derived antivenoms using mouse lethal toxin test. Additionally, we determined the antivenoms neutralizing activity against lethal doses (LD50 of Agkistrodon halys (from Japan and Jiangzhe Agkistrodon halys (from China venoms. We also performed cross-neutralization tests using probit analysis on each pairing of venom and antivenom in order to check the possibility of using Jiangzhe A. halys venom as a substitute for A. halys venom, the current standard. Slope of A. halys venom with A. halys antivenom was 10.2 and that of A. halys venom with Jiangzhe A. halys antivenom was 9.6. However, Slope of Jiangzhe A. halys venom with A. halys antivenom was 4.7 while that of Jiangzhe A. halys venom with Jiangzhe A. halys antivenom was 11.5. Therefore, the significant difference in slope patterns suggests that Jiangzhe A. halys venom cannot be used as a substitute for the standard venom to test the anti-lethal toxin activity of antivenoms (p<0.05.

  8. Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae).

    Science.gov (United States)

    Walker, Andrew A; Madio, Bruno; Jin, Jiayi; Undheim, Eivind A B; Fry, Bryan G; King, Glenn F

    2017-04-01

    Assassin bugs (Hemiptera: Heteroptera: Reduviidae) are venomous insects, most of which prey on invertebrates. Assassin bug venom has features in common with venoms from other animals, such as paralyzing and lethal activity when injected, and a molecular composition that includes disulfide-rich peptide neurotoxins. Uniquely, this venom also has strong liquefying activity that has been hypothesized to facilitate feeding through the narrow channel of the proboscis-a structure inherited from sap- and phloem-feeding phytophagous hemipterans and adapted during the evolution of Heteroptera into a fang and feeding structure. However, further understanding of the function of assassin bug venom is impeded by the lack of proteomic studies detailing its molecular composition.By using a combined transcriptomic/proteomic approach, we show that the venom proteome of the harpactorine assassin bug Pristhesancus plagipennis includes a complex suite of >100 proteins comprising disulfide-rich peptides, CUB domain proteins, cystatins, putative cytolytic toxins, triabin-like protein, odorant-binding protein, S1 proteases, catabolic enzymes, putative nutrient-binding proteins, plus eight families of proteins without homology to characterized proteins. S1 proteases, CUB domain proteins, putative cytolytic toxins, and other novel proteins in the 10-16-kDa mass range, were the most abundant venom components. Thus, in addition to putative neurotoxins, assassin bug venom includes a high proportion of enzymatic and cytolytic venom components likely to be well suited to tissue liquefaction. Our results also provide insight into the trophic switch to blood-feeding by the kissing bugs (Reduviidae: Triatominae). Although some protein families such as triabins occur in the venoms of both predaceous and blood-feeding reduviids, the composition of venoms produced by these two groups is revealed to differ markedly. These results provide insights into the venom evolution in the insect suborder

  9. Thrombelastographic characterization of the thrombin-like activity of Crotalus simus and Bothrops asper venoms.

    Science.gov (United States)

    Nielsen, Vance G; Boyer, Leslie V; Redford, Daniel T; Ford, Paul

    2017-04-01

    : Annually, thousands suffer venomous snake-bite from Crotalus simus and Bothrops asper vipers in central and South America. The goals of the present study were to generally characterize the thrombin-like effects of venom from these snakes in human plasma with viscoelastic methods. Human plasma was exposed to the venom of three different C. simus subspecies and venoms obtained from B. asper vipers located in three different locations in Mexico. To characterize the factor X-activating and thrombin-like activity of these venoms, plasma (normal or factor XIII deficient) was pretreated with a variety of additives (e.g., heparin) in the absence or presence of calcium prior to exposure to 2.0 μg/ml of each viper's venom. These profiles were compared with plasma without venom that had contact activation of coagulation. Coagulation kinetics were determined with thrombelastography. All venoms had thrombin-like activity, with C. s. simus creating a slow growing, weak clot that was likely mediated by metalloproteinases. In contrast, B. asper venoms had rapid onset of coagulation and a high velocity of thrombus growth. Further, B. asper venom activity was calcium-independent, activated prothrombin, activated factor XIII, and independently polymerized fibrinogen. The viscoelastic methods used were able to differentiate subspecies of C. simus and specimens of B. asper, and provide insight into the mechanisms by which the venoms acted on plasma. These methods may be useful in the profiling of similar venoms and perhaps can assist in the assessment of interventions designed to treat envenomation (e.g., antivenom).

  10. Hematological parameters on the effect of the jellyfish venom Cassiopea andromeda in animal models

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2017-04-01

    Full Text Available For the first time, we previously recorded an enormous population of the Cassiopea andromeda jellyfish that had increased dramatically from Bushehr coasts of Iran. The sub-acute toxicity of the jellyfish venom in rat organs was correspondingly carried out. The data presented in this paper relate to the in vivo and in vitro hematological effects of this venomous species of jellyfish venom.

  11. Pharmacokinetics of Naja sumatrana (Equatorial Spitting Cobra) Venom and Its Major Toxins in Experimentally Envenomed Rabbits

    OpenAIRE

    Michelle Khai Khun Yap; Nget Hong Tan; Si Mui Sim; Shin Yee Fung; Choo Hock Tan

    2014-01-01

    Background The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular adm...

  12. Purification of the Immunogenic Fractions and Determination of Toxicity in Mesobuthus eupeus (Scorpionida: Buthidae Venom.

    Directory of Open Access Journals (Sweden)

    Mehdi Khoobdel

    2013-12-01

    Full Text Available Scorpions stings are a health problem in many parts of the world. Mesobuthus eupeus (Buthidae is the most prevalent species in the Middle East and Central Asia. Definition of toxicogenic and immunogenic characteristics of the venom is necessary to produce antidote. In this study, the noted properties of M. eupeus venom were evaluated.Venom was obtained by milking M. eupeus scorpions for lyophilization. Toxicity was determined after injecting the venom to albino mice and calculating LD50. Polyclonal antibodies against M. eupeus venom were obtained from immunized rabbits. The CH-Sepharose 4B column was used for isolating the specific antibodies. 10 mg of the affinity-purified antibodies were conjugated with a CH-Sepharose 4B column and M. eupeus venom was applied to the column. The bound fragments were eluted using hydrogen chloride (pH: 2.5. Crude venom and affinity-purified fractions of the venom were analyzed by SDS-PAGE technique.Lethal dose (LD was 8.75, 11.5 and 4.5 mg/kg for IP, SC and IV respectively. The LD50 of M. eupeus venom was 6.95 mg/kg. The crude venom had 12 detectable bands with molecular weights of 140, 70, 50, 33, 30, 27, 22, 18, 14, 10 kDa and two bands less than 5 kDa. The affinity-purified venom presented eight bands. The 27 kDa band was clearly sharper than other bands but 70, 18, 10 and one of the less than 5 kDa bands were not observed.Contrary to popular belief, which know scorpion venom as non-immunogenic composition, the current study was shown that the most fractions of the M. eupeus are immunogenic.

  13. Costs of venom production in the common death adder (Acanthophis antarcticus).

    Science.gov (United States)

    Pintor, Anna F V; Krockenberger, Andrew K; Seymour, Jamie E

    2010-11-01

    The utilization of venom in predatory and defensive contexts is associated with benefits regarding minimization of energetic expenditure on hunting, maximization of success in prey acquisition and avoidance of injury from dangerous prey and aggressors. Multiple characteristics suggest that venom is quite expensive to produce, thereby creating a tradeoff between advantages and disadvantages associated with its possession. The metabolic costs of venom production have rarely been studied and no information on the detailed metabolic processes during venom replenishment exists. Where costs of venom production have been studied they are often not in context with other components of the energy budget of the study organism. Using flow-through respirometry, we examined changes in metabolic rate in the Australian elapid Acanthophis antarcticus after venom expenditure and feeding as well as during preparation for shedding to establish a comparison of the magnitude of energetic expenditure during venom replenishment and other common physiological processes. We also defined the temporal pattern of metabolic processes during venom replenishment at a higher resolution than has previously been attempted in snakes. Our results suggest that total costs of venom replenishment are relatively small when compared to costs of digestion and shedding. We conclude that, in spite of the manifold factors suggesting a high cost of venom in snakes, its production is less energetically costly than often assumed. Until further research can clarify the reasons for this more caution should therefore be applied when assuming that costs of venom production exert strong selection pressures on the ecology, behavior and evolution of venomous taxa. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Hepatotoxicity and oxidative stress induced byNaja haje crude venom

    OpenAIRE

    Al-Quraishy, Saleh; Dkhil, Mahamed A; Moneim, Ahmed Esmat Abdel

    2014-01-01

    Background Snake venoms are synthesized and stored in venom glands. Most venoms are complex mixtures of several proteins, peptides, enzymes, toxins and non-protein components. In the present study, we investigated the oxidative stress and apoptosis in rat liver cells provoked by Naja haje crude injection (LD50) after four hours.Methods Wistar rats were randomly divided into two groups, the control group was intraperitoneally injected with saline solution while LD50-dose envenomed group was in...

  15. Effect of Iranian Honey bee (Apis mellifera) Venom on Blood Glucose and Insulin in Diabetic Rats

    OpenAIRE

    Seyyedeh Mahbubeh Mousavi; Sohrab Imani; Saeid Haghighi; Seyyedeh Elaheh Mousavi; Akbar Karimi

    2012-01-01

    Background: Diabetes is an important disease. This disease is a metabolic disorder characterized by hyperglycemia resulting from perturbation in insulin secretion, insulin action or both. Honey bee venom contains a wide range of polypeptide agents. The principle components of bee venom are mellitin and phospholipase A2. These components increase insulin secretion from the β-cells of pancreas. This study was conducted to show the hypoglycemic effect of honey bee venom on alloxan induced diabet...

  16. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    Science.gov (United States)

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama-Jr, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently

  17. Dietary breadth is positively correlated with venom complexity in cone snails.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N; Alfaro, Michael E

    2016-05-26

    Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that

  18. Two Cases of Benign Prostatic Hyperplasia with Bee Venom Pharmacopunture Therapy

    Directory of Open Access Journals (Sweden)

    Gang Hyeon Min

    2008-06-01

    Full Text Available Objective : The purpose of this study was to report the efficiency of Bee Venom Pharmacopunture Therapy by managering of Benign Prostatic Hyperplasia patients. Method : Two patients were treated with Bee Venom Pharmacopunture and another Korean Medicine therapy for six weeks and compared with I-PSS(International Prostate Symptom Score before and after. Results : After treated with Bee Venom Pharmacopunture Therapy, ‘I-PSS’ values decreased significantly all the patients. Conclusions : Bee Venom Pharmacopunture Therapy was shown fairly effective to Benign Prostatic Hyperplasia.

  19. Biological and Pathological Studies of Rosmarinic Acid as an Inhibitor of Hemorrhagic Trimeresurus flavoviridis (habu Venom

    Directory of Open Access Journals (Sweden)

    Masatake Niwa

    2010-10-01

    Full Text Available In our previous report, rosmarinic acid (RA was revealed to be an antidote active compound in Argusia argentea (family: Boraginaceae. The plant is locally used in Okinawa in Japan as an antidote for poisoning from snake venom, Trimeresurus flavoviridis (habu. This article presents mechanistic evidence of RA’s neutralization of the hemorrhagic effects of snake venom. Anti-hemorrhagic activity was assayed by using several kinds of snake venom. Inhibition against fibrinogen hydrolytic and collagen hydrolytic activities of T. flavoviridis venom were examined by SDS-PAGE. A histopathological study was done by microscopy after administration of venom in the presence or absence of RA. RA was found to markedly neutralize venom-induced hemorrhage, fibrinogenolysis, cytotoxicity and digestion of type IV collagen activity. Moreover, RA inhibited both hemorrhage and neutrophil infiltrations caused by T. flavoviridis venom in pathology sections. These results demonstrate that RA inhibited most of the hemorrhage effects of venom. These findings indicate that rosmarinic acid can be expected to provide therapeutic benefits in neutralization of snake venom accompanied by heat stability.

  20. Consequences of Androctonus mauretanicus and Buthus occitanus scorpion venoms on electrolyte levels in rabbits

    Directory of Open Access Journals (Sweden)

    Khadija Daoudi

    2017-01-01

    Full Text Available Androctonus mauretanicus (A. mauretanicus and Buthus occitanus (B. occitanus scorpions, which belong to the Buthidae family, are the most venomous scorpions in Morocco. For the first time, we investigated the effects of such scorpion venoms on serum electrolytes in subcutaneously injected rabbits. For this purpose, 3 groups of 6 albinos adult male rabbits (New Zealand were used in this experiment. Two of the groups were given a single subcutaneous injection of either crude Am venom (5 μg/kg or Bo venom (8 μg/kg whereas the third group (control group only received physiological saline solution (NaCl 0.9%. The blood samples were collected from injected rabbits via the marginal vein at time intervals of 30 min, 1 h, 2 h, 4 h, 6 h and 24 h after venom injection. The concentrations of electrolytes in the serum samples were measured. Our study indicates that scorpion envenomation in vivo, rabbit animal model, caused severe and persistent hypomagnesaemia and hypochloremia, which are accompanied of hypernatremia, hyperkalemia and hypercalcaemia. The intensity of electrolytes imbalance was clearly superior in the case of A. mauretanicus scorpion venom (although a lower quantity of venom was injected. This is coherent with the experimental data which indicate that A. mauretanicus venom is more toxic than B. occitanus venom.

  1. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  2. Cross neutralisation of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms.

    Science.gov (United States)

    Leong, Poh Kuan; Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui

    2012-12-01

    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  3. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    Directory of Open Access Journals (Sweden)

    Jeong Sun-Hee

    2000-07-01

    Full Text Available Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of the mice which were derived pain by injecting acetic acid into the abdomen, after stimulating Bee Venom aqua-acupuncture on Chungwan(CV12 and non acupuncture point on the backside were measured. Results:1. It showed that the writhing reflex were appeared on the groups which injected acetic acid only, and saline-acetic acid group(sample I, but not on the group bee venom-saline group(sample II. 2. The change of writhing reflex by Chungwan(CV12 Bee Venom aqua-acupuncture showed significant decrease in the order of Chungwan(CV12 Bee Venom aqua-acupuncture group III(2.5×10-3g/kg, II(2.5×10-4g/kg, and I(2.5×10-5g/kg, compared with control group. There were significant decrease of number of writhing reflex in 5~10, 10~15 and 15~20 minutes intervals of Chung wan(CV12 Bee Venom aqua-acupuncture group I, and in 0~5, 5~10, 10~15 and 15~20 minutes intervals of II and III, compared with control group. 3. The change of writhing reflex by non acupuncture point Bee Venom aqua-acupuncture showed significant decrease in the 0~5 and 5~10 minutes intervals and the total number of writhing reflex in 2.5×10-4g/kg group, compared with control group 4. The effects of writhing reflex of Chungwan(CV12 Bee Venom aqua-acupuncture group showed significant decrease, compared with non acupuncture point Bee Venom aqua-acupuncture group. Conclusion:This study shows that the Bee Venom aqua-acupuncture on Chungwan(CV12 decreases the numbers of writhing reflex. As the

  4. A Study on the Effects of Bee Venom Aqua-Acupuncture on Writhing Reflex

    OpenAIRE

    Jeong Sun-Hee; Koh Hyung-kyun; Park Dong-Suk

    2000-01-01

    Introduction:In spite of the use of Bee Venom aqua-acupuncture in the clinics, the scientific evaluation on effects is not enough. Bee Venom aqua-acupuncture is used according to the stimulation of acupuncture point and the chemical effects of Bee Venom. The aims of this study is to investigate the analgegic effects of the Bee Venom aqua-acupuncture, through the change of writhing reflex Materials and Methods:Pain animal model was used acetic acid method. The changes of writhing reflex of ...

  5. Venom variation during prey capture by the cone snail, Conus textile.

    Directory of Open Access Journals (Sweden)

    Cecilia A Prator

    Full Text Available Observations of the mollusc-hunting cone snail Conus textile during feeding reveal that prey are often stung multiple times in succession. While studies on the venom peptides injected by fish-hunting cone snails have become common, these approaches have not been widely applied to the analysis of the injected venoms from mollusc-hunters. We have successfully obtained multiple injected venom samples from C. textile individuals, allowing us to investigate venom compositional variation during prey capture. Our studies indicate that C. textile individuals alter the composition of prey-injected venom peptides during single feeding events. The qualitative results obtained by MALDI-ToF mass spectrometry are mirrored by quantitative changes in venom composition observed by reverse-phase high performance liquid chromatography. While it is unclear why mollusc-hunting cone snails inject prey multiple times prior to engulfment, our study establishes for the first time a link between this behavior and compositional changes of the venom during prey capture. Changes in venom composition during hunting may represent a multi-step strategy utilized by these venomous animals to slow and incapacitate prey prior to engulfment.

  6. Effects of the European hornet ( Vespa crabro Linnaeus 1761) crude venom on its own species

    OpenAIRE

    Nadolski, Jerzy

    2013-01-01

    Background Lethal dose 50% is a classical index of toxicity that usually employs small rodents as experimental animals. Therefore, scarce data are available on the effects of venom on invertebrates, particularly the impact of wasp venom on its own species. Findings In the present study, the lethality of Vespa crabro venom on its own species was studied. Lethal dose 50% values of crude venom on workers of hornet Vespa crabro were estimated to be 4.0 mg/kg of body weight. Conclusions Wasps can ...

  7. Biological and Enzymatic Characterization of Proteases from Crude Venom of the Ant Odontomachus bauri

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Silva

    2015-11-01

    Full Text Available Hymenoptera venoms constitute an interesting source of natural toxins that may lead to the development of novel therapeutic agents. The present study investigated the enzymatic and biological characteristics of the crude venom of the ant Odontomachus bauri. Its crude venom presents several protein bands, with higher staining for six proteins with gelatinolytic activity (17, 20, 26, 29, 43 and 48 kDa. The crude venom showed high proteolytic activity on azocasein at optimal pH 8.0 and 37 °C. In the presence of protease inhibitors as aprotinin, leupeptin and EDTA, the azocaseinolytic activity was reduced by 45%, 29% and 9%, respectively, suggesting that the enzymes present in the crude venom belong to the three classes of proteases, with the serine proteases in greater intensity. The crude venom degraded the fibrinogen α-chain faster than the β-chain, while the fibrinogen γ-chain remained unchanged. In biological assays, O. bauri venom showed hemolytic and coagulant activity in vitro, and defibrinating activity in vivo. In addition, the venom showed antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as antiparasitic activity on Toxoplasma gondii infection in vitro. In that sense, this study sheds perspectives for pharmacological applications of O. bauri venom enzymes.

  8. An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca.

    Science.gov (United States)

    Nicolau, Carolina A; Carvalho, Paulo C; Junqueira-de-Azevedo, Inácio L M; Teixeira-Ferreira, André; Junqueira, Magno; Perales, Jonas; Neves-Ferreira, Ana Gisele C; Valente, Richard H

    2017-01-16

    A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen

  9. Assessment of the Antimicrobial Activity of Few Saudi Arabian Snake Venoms

    Science.gov (United States)

    Al-Asmari, Abdulrahman K.; Abbasmanthiri, Rajamohamed; Abdo Osman, Nasreddien M.; Siddiqui, Yunus; Al-Bannah, Faisal Ahmed; Al-Rawi, Abdulgadir M.; Al-Asmari, Sarah A.

    2015-01-01

    Background Venoms of two cobras, four vipers, a standard antibiotic and an antimycotic, were evaluated comparatively, as antimicrobials. Methods: Six venom concentrations and three of the standard antibiotic and the antimycotic were run in micro-dilution and diffusion plates against the microorganisms. RESULTS: Echis pyramidum, Echis coloratus and Cerastes cerastes gasperettii highest venom concentrations gave significant growth inhibition zones (GIZ) with respect to a negative control, except Bitis arietans, whose concentrations were significant. The cobra Walterinnesia aegyptia had significant venom concentrations more than Naja haje arabica. The Staphylococcus aureus Methicillin Resistant (MRSA) bacterium was the most susceptible, with a highly (P venoms (P > 0.05). The antibiotic Vancomycin was more effective than snake venoms though, they were more efficient in inhibiting growth of the resistant Pseudomonas aeruginosa. This antibiotic was also inactive against the fungus, whilst its specific antifungal Fungizone was highly efficient with no antibacterial activity. Conclusions: These findings showed that snake venoms had antibacterial activity comparable to antibiotics, with a directly proportional relationship of venom concentration and GIZ, though, they were more efficient in combatting resistant types of bacteria. Both venoms and the standard antibiotic, showed no antifungal benefits. PMID:26668657

  10. Survey for potentially necrotizing spider venoms, with special emphasis on Cheiracanthium mildei.

    Science.gov (United States)

    Foradori, Matthew J; Smith, Samuel C; Smith, Elizabeth; Wells, Roger E

    2005-05-01

    It has proven difficult to identify those spiders which cause necrotic lesions. In an effort to design a simple, inexpensive screening method for identifying spiders with necrotizing venoms, we have examined the venom gland homogenates of a variety of spider species for their ability to cause red blood cell lysis. Those venoms which were positive were further examined for the presence of sphingomyelinase D, and their ability to evoke necrotic lesions in the skin of rabbits. Sphingomyelinase D is known to be the causative agent of necrosis and red blood cell lysis in the venom of the brown recluse spider (Loxosceles reclusa), and our assumption was that this would be the same agent in other spider venoms as well. This did not prove to be the case. Of 45 species examined, only the venom of L. reclusa and Cheiracanthium mildei lysed sheep red blood cells. Unlike L. reclusa venom, however, C. mildei venom did not possess sphingomyelinase D nor did it cause necrotic lesions in the skin of rabbits. We present evidence suggesting that a phospholipase A2 is the hemolytic agent in C. mildei venom.

  11. Within-clutch variation in venoms from hatchlings of Deinagkistrodon acutus (Viperidae).

    Science.gov (United States)

    Gao, Jian-Fang; Qu, Yan-Fu; Zhang, Xiu-Qin; Ji, Xiang

    2011-06-01

    We used 17 hatchling five-paced pit-vipers snakes (Deinagkistrodon acutus) to study within-clutch variation in snake venoms. We measured venom yield and total protein content, and examined the correlations between venom yield and hatchling size [snout-vent length (SVL) and body mass]. We also analyzed the electrophoretic profiles and enzymatic activities of venoms from hatchlings. Lyophilized venom mass was not correlated with SVL, nor with body mass. Liquid venom mass and total protein content were not correlated with body mass, but were positively correlated with SVL. Venom composition, as shown in SDS-PAGE chromatograms did vary among individuals but there were biochemical differences in activity which had to be due to subtle venom composition differences between the sexes. Female hatchlings showed higher esterolytic and fibrinogenolytic activities but lower proteolytic, collagenolytic, phosphomonoesterase and fibrinolytic activities than male hatchlings. We did not find sexual differences in 5' nucleotidase, phospholipase A(2) and hyaluronidase activities, and l-amino acid oxidase activities in either female or male hatchlings. Within-clutch variation in venoms from D. acutus hatchlings should be attributed to the individual-based differences in presence or absence, and the relative amount of the protein components, and might have a genetic basis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biochemical and biological characterization of the venoms of Bothriopsis bilineata and Bothriopsis taeniata (Serpentes: Viperidae).

    Science.gov (United States)

    Porto, Bárbara N; Telli, Caliandra A; Dutra, Tatiana P; Alves, Letícia S; Bozza, Marcelo T; Fin, Cyntia A; Thiesen, Flavia V; Renner, Márcia F

    2007-08-01

    Snake venom is a complex mixture containing diverse protein components with different structures and functions that are used for prey immobilization and death. Snake venoms from the family Viperidae cause pronounced local and systemic effects, such as pain, edema, hemorrhage and necrosis. Here, we investigated the enzymatic and biological activities of venoms from two Amazonian snakes, Bothriopsis bilineata and Bothriopsis taeniata. Both venoms presented high enzymatic activities for proteases kallikrein, thrombin and plasmin, low levels of trypsin, cathepsin C and leucine aminopeptidase activities, while lacked acetylcholinesterase activity. B. taeniata and B. bilineata crude venoms caused inflammation inducing neutrophil recruitment into peritoneal cavity of mice 4h after injection. Neutrophil recruitment induced by B. taeniata venom was accompanied by hemorrhage. EDTA treatment profoundly impaired neutrophil recruitment, suggesting the involvement of a metalloproteinase on venoms-induced neutrophil recruitment. Pretreatment with dexamethasone and zileuton, a 5-lipoxygenase inhibitor, significantly reduced neutrophil migration, but indomethacin and montelukast, a cysteinyl leukotriene receptor antagonist, had no effect, suggesting the involvement of lipoxygenase-derived metabolites, probably LTB(4). Together, these results show that B. bilineata and B. taeniata venoms induce a marked inflammatory reaction, with leukocyte recruitment, and hemorrhage, which parallels to a high proteolytic activity found in these venoms.

  13. Partial characterization of the venom of the Peruvian rattlesnake Crotalus durissus terrificus

    Directory of Open Access Journals (Sweden)

    César Remuzgo

    2014-06-01

    Full Text Available The venom of the rattlesnake Crotalus durissus terrificus from the region of Sandia, Puno, has been investigated for its protein content and some enzymatic activities, using for it the whole venom as well as the fractions obtained by gel filtration chromatography in Sephadex G-100. The protein percentage calculated by the method of Lowry was of 68,6% for the whole venom; 3 peaks were obtained during the fractionation; the first showed proteolytic activity, the second, amidolytic, clotting and phospholipase A2 activities, while the third, another proteolytic activity. Acetylcholinesterase activity was not found while L-aminoacid oxidase activity was found only in the whole venom.

  14. On a meeting between the Horn Viper and a Centipede in the Peloponnese, southern Greece  or the Biter, bit

    DEFF Research Database (Denmark)

    Tan, Kit; Kretzschmar, Horst

    2009-01-01

    Vipera ammodytes L., (the European Horn-Nosed Viper) is a small venomous snake occurring in southern L., (the European Horn-Nosed Viper) is a small venomous snake occurring in southern Europe. It was documented attacking Scolopendra cingulata Latreille (the venomous Mediterranean Banded Centipede...

  15. Improved sensitivity to venom specific-immunoglobulin E by spiking with the allergen component in Japanese patients suspected of Hymenoptera venom allergy.

    Science.gov (United States)

    Yoshida, Naruo; Hirata, Hirokuni; Watanabe, Mineaki; Sugiyama, Kumiya; Arima, Masafumi; Fukushima, Yasutsugu; Ishii, Yoshiki

    2015-07-01

    Ves v 5 and Pol d 5, which constitute antigen 5, are recognized as the major, most potent allergens of family Vespidae. Several studies have reported the diagnostic sensitivity of the novel recombinant (r)Ves v 5 and rPol d 5 allergens in routine clinical laboratory settings by analyzing a group of Vespula and Polistes venom-allergic patients. In this study, we analyzed the sensitivity to venom specific (s)IgE by spiking with rVes v 5 and rPol d 5 in Japanese patients suspected of Hymenoptera venom allergy. Subjects were 41 patients who had experienced systemic reactions to hornet and/or paper wasp stings. Levels of serum sIgE against hornet and paper wasp venom by spiking with rVes v 5 and rPold d 5, respectively, as improvement testing, compared with hornet and paper wasp venom, as conventional testing, were measured by ImmunoCAP. Of the 41 patients, 33 (80.5%) were positive (≥0.35 UA/ml) for hornet and/or paper wasp venom in conventional sIgE testing. sIgE levels correlated significantly (P venom (R = 0.78) in improvement testing and conventional testing. To determine specificity, 20 volunteers who had never experienced a Hymenoptera sting were all negative for sIgE against these venoms in both improvement and conventional testing. Improved sensitivity was seen in 8 patients negative for sIgE against both venoms in conventional testing, while improvement testing revealed sIgE against hornet or paper wasp venom in 5 (total 38 (92.7%)) patients. The measurement of sIgE following spiking of rVes v 5 and rPol d 5 by conventional testing in Japanese subjects with sIgE against hornet and paper wasp venom, respectively, improved the sensitivity for detecting Hymenoptera venom allergy. Improvement testing for measuring sIgE levels against hornet and paper wasp venom has potential for serologically elucidating Hymenoptera allergy in Japan. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Dracula's children: molecular evolution of vampire bat venom.

    Science.gov (United States)

    Low, Dolyce H W; Sunagar, Kartik; Undheim, Eivind A B; Ali, Syed A; Alagon, Alejandro C; Ruder, Tim; Jackson, Timothy N W; Pineda Gonzalez, Sandy; King, Glenn F; Jones, Alun; Antunes, Agostinho; Fry, Bryan G

    2013-08-26

    While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and

  17. Anti-scorpion venom activity of Andrographis paniculata: A combined and comparative study with anti-scorpion serum in mice

    Directory of Open Access Journals (Sweden)

    Ranjana S Kale

    2013-01-01

    Conclusions: Present study demonstrates that, both plant extract and ASV have their own scorpion venom neutralising ability in vivo and in vitro, but their combination is most effective in venom neutralizing ability.

  18. Venomics of Tropidolaemus wagleri, the sexually dimorphic temple pit viper: Unveiling a deeply conserved atypical toxin arsenal

    OpenAIRE

    Choo Hock Tan; Kae Yi Tan; Michelle Khai Khun Yap; Nget Hong Tan

    2017-01-01

    Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable in...

  19. Evaluation of different glycoforms of honeybee venom major allergen phospholipase A2 (Api m 1) produced in insect cells

    DEFF Research Database (Denmark)

    Blank, Simon; Seismann, Henning; Plum, Melanie

    2011-01-01

    Allergic reactions to hymenoptera stings are one of the major reasons for IgE-mediated anaphylaxis. However, proper diagnosis using venom extracts is severely affected by molecular cross-reactivity. In this study recombinant honeybee venom major allergen phospholipase A2 (Api m 1) was produced......-derived recombinant Api m 1 with defined CCD phenotypes might provide further insights into hymenoptera venom IgE reactivities and contribute to an improved diagnosis of hymenoptera venom allergy....

  20. Purification and antibacterial activities of an L-amino acid oxidase from king cobra (Ophiophagus hannah) venom

    OpenAIRE

    CS Phua; Vejayan, J; S Ambu; Ponnudurai, G; A Gorajana

    2012-01-01

    Some constituents of snake venom have been found to display a variety of biological activities. The antibacterial property of snake venom, in particular, has gathered increasing scientific interest due to antibiotic resistance. In the present study, king cobra venom was screened against three strains of Staphylococcus aureus [including methicillin-resistant Staphylococcus aureus (MRSA)], three other species of gram-positive bacteria and six gram-negative bacteria. King cobra venom was active ...

  1. The distribution and identification of dangerously venomous Australian terrestrial snakes.

    Science.gov (United States)

    Shea, G M

    1999-12-01

    The identification of dangerous Australian snakes is important in instituting therapy for envenomation. Despite the availability of a number of identification guides with varying degrees of generality, identification can be problematic for several reasons. These include a diversity of common names, many of which are inappropriate or regionally applied to different species, identification keys that focus on variable features, intraspecific variation and interspecific convergence in colouration, and recent changes in scientific nomenclature of species and genera. Geographic distribution of the dangerously venomous species can be a useful aid to identification, by limiting the range of options in a region. However, delineation of the limits of distribution relies on fine scale mapping beyond the resolution of most identification guides. This article provides a summary of the geographic limits of the dangerously venomous Australian snakes, with particular emphasis on major population centres, and clarifies some problems in identification, particularly among brown-coloured snakes.

  2. Antitumoral Potential of Tunisian Snake Venoms Secreted Phospholipases A2

    Directory of Open Access Journals (Sweden)

    Raoudha Zouari-Kessentini

    2013-01-01

    Full Text Available Phospholipases type A2 (PLA2s are the most abundant proteins found in Viperidae snake venom. They are quite fascinating from both a biological and structural point of view. Despite similarity in their structures and common catalytic properties, they exhibit a wide spectrum of pharmacological activities. Besides being hydrolases, secreted phospholipases A2 (sPLA2 are an important group of toxins, whose action at the molecular level is still a matter of debate. These proteins can display toxic effects by different mechanisms. In addition to neurotoxicity, myotoxicity, hemolytic activity, antibacterial, anticoagulant, and antiplatelet effects, some venom PLA2s show antitumor and antiangiogenic activities by mechanisms independent of their enzymatic activity. This paper aims to discuss original finding against anti-tumor and anti-angiogenic activities of sPLA2 isolated from Tunisian vipers: Cerastes cerastes and Macrovipera lebetina, representing new tools to target specific integrins, mainly, and integrins.

  3. Antitumoral Potential of Tunisian Snake Venoms Secreted Phospholipases A2

    Science.gov (United States)

    Zouari-Kessentini, Raoudha; Srairi-Abid, Najet; Bazaa, Amine; El Ayeb, Mohamed; Luis, Jose; Marrakchi, Naziha

    2013-01-01

    Phospholipases type A2 (PLA2s) are the most abundant proteins found in Viperidae snake venom. They are quite fascinating from both a biological and structural point of view. Despite similarity in their structures and common catalytic properties, they exhibit a wide spectrum of pharmacological activities. Besides being hydrolases, secreted phospholipases A2 (sPLA2) are an important group of toxins, whose action at the molecular level is still a matter of debate. These proteins can display toxic effects by different mechanisms. In addition to neurotoxicity, myotoxicity, hemolytic activity, antibacterial, anticoagulant, and antiplatelet effects, some venom PLA2s show antitumor and antiangiogenic activities by mechanisms independent of their enzymatic activity. This paper aims to discuss original finding against anti-tumor and anti-angiogenic activities of sPLA2 isolated from Tunisian vipers: Cerastes cerastes and Macrovipera lebetina, representing new tools to target specific integrins, mainly, α5β1 and αv integrins. PMID:23509718

  4. Animal venoms/toxins and the complement system.

    Science.gov (United States)

    Tambourgi, Denise V; van den Berg, Carmen W

    2014-10-01

    Nature is a wealthy source of agents that have been shown to be beneficial to human health, but nature is also a rich source of potential dangerous health damaging compounds. This review will summarise and discuss the agents from the animal kingdom that have been shown to interact with the human complement (C) system. Most of these agents are toxins found in animal venoms and animal secretions. In addition to the mechanism of action of these toxins, their contribution to the field of complement, their role in human pathology and the potential benefit to the venomous animal itself will be discussed. Potential therapeutic applications will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Electrophysiological Characterization of the Antarease Metalloprotease from Tityus serrulatus Venom.

    Science.gov (United States)

    Zornetta, Irene; Scorzeto, Michele; Mendes Dos Reis, Pablo Victor; De Lima, Maria E; Montecucco, Cesare; Megighian, Aram; Rossetto, Ornella

    2017-02-27

    Scorpions are among the oldest venomous living organisms and the family Buthidae is the largest and most medically relevant one. Scorpion venoms include many toxic peptides, but recently, a metalloprotease from Tityus serrulatus called antarease was reported to be capable of cleaving VAMP2, a protein involved in the neuroparalytic syndromes of tetanus and botulism. We have produced antarease and an inactive metalloprotease mutant in a recombinant form and analyzed their enzymatic activity on recombinant VAMP2 in vitro and on mammalian and insect neuromuscular junction. The purified recombinant antarease paralyzed the neuromuscular junctions of mice and of Drosophila melanogaster whilst the mutant was inactive. We were unable to demonstrate any cleavage of VAMP2 under conditions which leads to VAMP proteolysis by botulinum neurotoxin type B. Antarease caused a reduced release probability, mainly due to defects upstream of the synaptic vesicles fusion process. Paired pulse experiments indicate that antarease might proteolytically inactivate a voltage-gated calcium channel.

  6. Venomous snakebite in Thailand. I: Medically important snakes.

    Science.gov (United States)

    Chanhome, L; Cox, M J; Wilde, H; Jintakoon, P; Chaiyabutr, N; Sitprija, V

    1998-05-01

    Thailand has an abundance of venomous snakes. Among the neurotoxic family Elapidae, there are three species of the genus Naja (cobras), three of the genus Bungarus (kraits), and the king cobra of the genus Ophiophagus. Other Elapidae snakes in Thailand include sea snakes and Asian coral snakes of the genus Calliophis. They have potent venoms but rarely bite humans. Tissue and hemotoxic snakes are represented by family Viperidae, subfamilies Viperinae and Crotalinae. They remain an occupational hazard for farmers and rubber tappers, causing serious morbidity but only rare deaths, since competent treatment is now widely available throughout Thailand. Purified equine antivenin is manufactured locally for the monocled and Siamese spitting cobras (Naja kaouthia and N. siamensis), king cobra (Ophiophagus hannah), banded krait (Bungarus fasciatus), most green pit vipers (Trimeresurus sp.), Malayan pit viper (Calloselasma rhodostoma), and the Siamese Russell's viper (Daboia russelli siamensis).

  7. Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae).

    Science.gov (United States)

    Abt, Michael; Rivers, David B

    2007-02-01

    Crude venom isolated from the ectoparasitic wasp Nasonia vitripennis was found to possess phenoloxidase (PO) activity. Enzyme activity was detected by using a modified dot blot analysis approach in which venom samples were applied to nylon membranes and incubated with either L-DOPA or dopamine. Dot formation was most intense with dopamine as the substrate and no activators appeared to be necessary to evoke a melanization reaction. No melanization occurred when venom was incubated in Schneider's insect medium containing 10% fetal bovine serum or when using tyrosine as a substrate, but melanization did occur when larval or pupal plasma from the fly host, Sarcophaga bullata, was exposed to tyrosine. Only fly larval plasma induced an enzyme reaction with the Schneider's insect medium. The PO inhibitor phenylthiourea (PTU) and serine protease inhibitor phenylmethylsulfonylfluoride (PMSF) abolished PO activity in venom and host plasma samples, but glutathione (reduced) only inhibited venom PO. Elicitors of PO activity (sodium dodecyl sulfate and trypsin) had no or a modest effect (increase) on the ability of venom, or larval and pupal plasma to trigger melanization reactions. SDS-PAGE separation of crude venom followed by in-gel staining using L-DOPA as a substrate revealed two venom proteins with PO activity with estimated molecular weights of 68 and 160 kDa. In vitro assays using BTI-TN-5B1-4 cells were performed to determine the importance of venom PO in triggering cellular changes and evoking cell death. When cell monolayers were pre-treated with 10 mM PTU or PMSF prior to venom exposure, the cells were protected from the effects of venom intoxication as evidenced by no observable cellular morphological changes and over 90% cell viability by 24 h after venom treatment. Simultaneous addition of inhibitors with venom or lower concentrations of PMSF were less effective in affording protection. These observations collectively argue that wasp venom PO is unique from that

  8. Pharmacokinetics and pharmacodynamics of the myotoxic venom of Pseudechis australis (mulga snake) in the anesthetised rat.

    Science.gov (United States)

    Hart, A J; Hodgson, W C; O'Leary, M; Isbister, G K

    2014-07-01

    Myotoxicity is a common clinical effect of snake envenoming and results from either local or systemic myotoxins in snake venoms. Although numerous myotoxins have been isolated from snake venoms, there has been limited study on the relationship between the time course of venom concentrations (pharmacokinetics) and the time course of muscle injury measured as a rise in creatine kinase (CK) (pharmacodynamics). The aim of this study was to develop an in vivo model of myotoxicity to investigate the time course of myotoxicity and the effect of antivenom. Anesthetised rats were administered Pseudechis australis (mulga snake) venom either through i.v., i.m. or s.d. route, including a range of doses (5-100 μg/kg). Serial blood samples were collected for measurement of venom using enzyme immunoassay and measurement of CK and creatinine. Antivenom was administered before, 1 and 6 h after venom administration to investigate its effect on muscle injury. Plots of venom and CK versus time were made and the area under the curve (AUC) was calculated. There was a significant dose-dependent increase in CK concentration after administration of P. australis venom, which was greatest for i.v. administration. Timed measurement of venom concentrations showed a rapid absorption through s.d. and i.m. routes and a delayed rise in CK concentrations following any route. Antivenom prevented myotoxicity shown by a decrease in the CK AUC, which was most effective if given earliest. There was a rise in creatinine following i.v. venom administration. The study shows the delayed relationship between venom absorption and the rise in CK, consistent with the delayed onset of myotoxicity in human envenoming. Antivenom prevented myotoxicity more effectively if given earlier.

  9. Purification and characterization of an anti-hemorrhagic protein from Naja naja (Indian cobra) venom.

    Science.gov (United States)

    Suvilesh, K N; Yariswamy, M; Savitha, M N; Joshi, Vikram; Nanjaraj Urs, A N; Urs, Amog P; Choudhury, M; Velmurugan, D; Vishwanath, B S

    2017-12-15

    Snake venom Kunitz-type proteins are well known to inhibit serine proteases but a few studies have also shown matrix metalloproteases (MMPs) inhibition. In view of the fact that MMPs and snake venom metalloproteases (SVMPs) have similar catalytic site, inhibition of SVMP activity by Kunitz-type proteins remains to be studied. Recent proteomic studies of Naja naja (N. naja) venom revealed the abundance of Kunitz-type proteins. In this regard, present study aimed at purification of a protease inhibitor from N. naja venom that inhibits the toxicity of SVMPs rich Echis carinatus (E. carinatus) venom. N. naja venom effectively inhibited E. carinatus venom-induced hemorrhage. Purification of the active principle responsible for anti-hemorrhagic effect was achieved by fractionation of N. naja venom in three successive chromatographic steps. SDS-PAGE revealed that purified anti-hemorrhagic protein (NNAh) has an apparent molecular mass of ∼44 kDa and single peak in RP-HPLC demonstrated its homogeneity. NNAh also inhibited myonecrosis induced by E. carinatus venom and reduced activity of creatine kinase in NNAh treated animal sera substantiated the anti-myonecrotic effect. Hemorrhage and myonecrosis inhibitory effects of NNAh were further supported by inhibition of E. carinatus venom-mediated gelatinolysis and collagenolysis. NNAh falls into the category of Kunitz-type serine protease inhibitor as determined by peptide mass fingerprinting and shown to be a strong inhibitor of chymotrypsin. Collectively our data signify that NNAh is a Kunitz-type chymotrypsin inhibitor which also inhibited metalloprotease activities of E. carinatus venom. In future, complete sequence of NNAh and peptide region(s) responsible for inhibition will assist to deduce the mechanism of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Direct correlation between diffusion of Loxosceles reclusa venom and extent of dermal inflammation.

    Science.gov (United States)

    Gomez, H F; Greenfield, D M; Miller, M J; Warren, J S

    2001-04-01

    Envenomation by Loxosceles species (brown recluse) spiders results in large dermal inflammatory lesions. Venom-induced dermal inflammation occurs indirectly via soluble mediators of inflammation. This study aimed to explore whether the anatomic extent of dermonecrotic arachnidism is due to the cascade of soluble proinflammatory mediators elicited by venom deposited at the bite site, or due to diffusion of the venom per se. Three New Zealand white rabbits received intradermal L. reclusa venom (3-microg) injections in the flank. At the time of maximum dermal inflammation (24 hr), paired 4-mm dermal biopsies were obtained in 2-cm intervals extending 0 to 12 cm from the inoculation site. Normal dermal tissue was obtained from the opposite flank to serve as a negative control. One biopsy sample from each interval was homogenized and assayed for myeloperoxidase (MPO) activity and for the presence of venom via an enzyme immunoassay (EIA). The other paired dermal biopsy was sectioned, and examined for the presence of polymorphonuclear neutrophils (PMNs) by microscopy. Lesional areas were measured using digital images imported into imaging software. Mean +/- SD lesional diameter 24 hours post inoculation measured 9.18 +/- 0.64 cm. Venom was detected in biopsies 0 to 10 cm from the injection site. As expected, the highest venom concentrations were measured at the inoculation site (4.28 +/- 3.9 ng/4 mm). In addition, PMNs and MPO were detected up to 8 and 10 cm from the inoculation site, respectively. Neither PMNs nor MPO was detected in tissue absent of venom (kappa = 0.88, p Loxosceles venom diffuses from the envenomation site. The extent of dermal inflammation mirrors the extent of Loxosceles venom diffusion. This observation implies that the venom itself defines the extent and magnitude of tissue injury following Loxosceles envenomation.

  11. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

    Science.gov (United States)

    Freitas-de-Sousa, L A; Amazonas, D R; Sousa, L F; Sant'Anna, S S; Nishiyama, M Y; Serrano, S M T; Junqueira-de-Azevedo, I L M; Chalkidis, H M; Moura-da-Silva, A M; Mourão, R H V

    2015-11-01

    Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Hilger, Christiane; Eberlein, Bernadette

    2018-01-01

    Hymenoptera venom allergy can cause severe anaphylaxis in untreated patients. Polistes dominula is an important elicitor of venom allergy in Southern Europe as well as in the United States. Due to its increased spreading to more moderate climate zones, Polistes venom allergy is likely to gain imp...

  13. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  14. An efficient analytical platform for on line microfluidic profiling of neurotoxic snake venoms towards nicotinic receptor like affinity.

    NARCIS (Netherlands)

    Heus, F.A.H.; Vonk, F.; Otvos, R.A.; Bruyneel, B.; Smit, A.B.; Lingeman, H.; Richardson, M.; Niessen, W.M.A.; Kool, J.

    2013-01-01

    Venomous snakes have evolved their efficient venomous arsenals mainly to immobilize prey. The highly variable toxic peptides in these venoms target a myriad of neurotoxic and haemotoxic receptors and enzymes and comprise highly interesting candidates for drug discovery. Discovery of bioactive

  15. Regulatory T cells in children undergoing rush venom immunotherapy.

    Science.gov (United States)

    Ajduk, Jakov; Turkalj, Mirjana; Gagro, Alenka

    2012-01-01

    Venom immunotherapy (VIT) induces immune tolerance to Hymenoptera venom but the underlying mechanisms are not clarified. Regulatory T cells are thought to play an important role in tolerance induction during specific immunotherapy. Our objective was to determine the effects of rush VIT on the percentage of regulatory T cells and immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-beta) in children. Blood samples were collected from 18 children with a previous systemic allergic reaction to a Hymenoptera sting, with a positive skin test and positive specific IgE, before rush VIT, after 6 weeks and 6 months of rush VIT. Ten children with no history of venom allergy were studied as controls. Isolated peripheral blood mononuclear cells were stained with specific markers for regulatory T cells and analyzed by flow cytometry. The percentage of regulatory T cells did not change during rush VIT in children. No change was noticed in the percentage of IL-10 and TGF-beta secreting cells after 6 weeks or 6 months of VIT. No difference in expression of cytotoxic T-lymphocyte antigen 4 on CD4(+)CD25(+high) was found. Rush VIT is a safe and effective treatment for patients allergic to Hymenoptera venom. Although regulatory T cells are considered to be responsible for this effect; no significant changes in the percentage of these cells or immunosuppressive cytokines were noticed during rush VIT in children. Additional investigations are needed to clarify the role of regulatory T cells in the induction of tolerance during rush VIT in children.

  16. The venomous coral snakes (genus Micrurus) of Costa Rica

    OpenAIRE

    Savage, Jay M.; Vial, James L.

    2016-01-01

    Four species of venomous coral snakes (Micrurus) occur in Costa Rica. The single bicolor species, M. mipartitus has previously been defined as two subspecies; however, variations in diagnostic characters clemonstrate dinal shift that precludes recognition of geographic races.Presence of the tricolor M. clarki is concluded from but a single Costa Rican specimen, although the species is otherwise definitely known from adjacent areas in Panamá.Variation among tricolor coral snakes allied to M. n...

  17. Neuromuscular Activity of Micrurus laticollaris (Squamata: Elapidae Venom in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro Carbajal-Saucedo

    2014-01-01

    Full Text Available In this work, we have examined the neuromuscular activity of Micrurus laticollaris (Mexican coral snake venom (MLV in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations, the MLV induced an irreversible concentration- and time-dependent (1–30 µg/mL neuromuscular blockade, with 50% blockade occurring between 8 and 30 min. Muscle contractures evoked by exogenous acetylcholine were completely abolished by MLV, whereas those of KCl were also significantly altered (86% ± 11%, 53% ± 11%, 89% ± 5% and 89% ± 7% for one, three, 10 and 30 µg of venom/mL, respectively; n = 4; p < 0.05. In mouse phrenic nerve-diaphragm preparations, MLV (1–10 µg/mL promoted a slight increase in the amplitude of twitch-tension (3 µg/mL, followed by neuromuscular blockade (n = 4; the highest concentration caused complete inhibition of the twitches (time for 50% blockade = 26 ± 3 min, without exhibiting a previous neuromuscular facilitation. The venom (3 µg/mL induced a biphasic modulation in the frequency of miniature end-plate potentials (MEPPs/min, causing a significant increase after 15 min, followed by a decrease after 60 min (from 17 ± 1.4 (basal to 28 ± 2.5 (t15 and 12 ± 2 (t60. The membrane resting potential of mouse diaphragm preparations pre-exposed or not to d-tubocurarine (5 µg/mL was also significantly less negative with MLV (10 µg/mL. Together, these results indicate that M. laticollaris venom induces neuromuscular blockade by a combination of pre- and post-synaptic activities.

  18. Ugrizi strupenih kač: Bites by venomous snakes:

    OpenAIRE

    Grenc, Damjan

    2009-01-01

    Eight different species of non-venomous snakes of the Colubridae family, and three different species of poisonous snakes of the Viperidae family are native in Slovenia. In the period between 1999 and October of 2008, 39 snake bites were reported to the Poison Control Centre. The most common clinical findings in snake bite victims are discernible fang marks, rapidly progressive swelling, pain, ecchymosis, lymphangitis, and regional lymphadenitis. Systemic signs of envenomation can be delayed a...

  19. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri.

    Science.gov (United States)

    Brinkman, Diane L; Jia, Xinying; Potriquet, Jeremy; Kumar, Dhirendra; Dash, Debasis; Kvaskoff, David; Mulvenna, Jason

    2015-05-27

    The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming. More than 40,000,000 Illumina reads were used to de novo assemble ∼ 34,000 contiguous cDNA sequences and ∼ 20,000 proteins were predicted based on homology searches, protein motifs, gene ontology and biological pathway mapping. More than 170 potential toxin proteins were identified from the transcriptome on the basis of homology to known toxins in publicly available sequence databases. MS/MS analysis of C. fleckeri venom identified over 250 proteins, including a subset of the toxins predicted from analysis of the transcriptome. Potential toxins identified using MS/MS included metalloproteinases, an alpha-macroglobulin domain containing protein, two CRISP proteins and a turripeptide-like protease inhibitor. Nine novel examples of a taxonomically restricted family of potent cnidarian pore-forming toxins were also identified. Members of this toxin family are potently haemolytic and cause pain, inflammation, dermonecrosis, cardiovascular collapse and death in experimental animals, suggesting that these toxins are responsible for many of the symptoms of C. fleckeri envenomation. This study provides the first overview of a box jellyfish transcriptome which, coupled with venom proteomics data, enhances our current understanding of box jellyfish venom composition and the molecular structure and function of cnidarian toxins. The generated data represent a useful resource to guide future comparative studies, novel protein/peptide discovery and the development of more effective treatments for jellyfish stings in humans. (Length: 300).

  20. Activated entomopathogenic nematode infective juveniles release lethal venom proteins.

    Directory of Open Access Journals (Sweden)

    Dihong Lu

    2017-04-01

    Full Text Available Entomopathogenic nematodes (EPNs are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs of Steinernema carpocapsae (a well-studied EPN species release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products.

  1. An insecticidal toxin from Nephila clavata spider venom.

    Science.gov (United States)

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  2. TREATMENT FOR ACUTE INTOXICATIONS WITH VENOMS: COBRA SNAKEBITES

    Directory of Open Access Journals (Sweden)

    G. A. Livanov

    2015-01-01

    Full Text Available Objective: to study the specific features of the clinical course of acute intoxications with venoms due to the bites of Naja (cobra naja and Naja kaouthia and those of intensive therapy in patients with the severest forms of this condition. Subjects and methods. Two clinical cases of acute intoxications with venoms due to Naja naja and Naja kaouthia bites were examined. The specific features of their clinical picture over time, changes in clinical and biochemical indicators, blood gas composition, and acidbase balance, coagulogram readings, ECG and radiological findings were studied. Results. Acute intoxication with venoms due to serious cobrabites was found to be characterized by the development of toxicohypoxic encephalopathy, toxic myopathy with skeletal and respiratory muscle paresis to develop acute respiratory and cardiovascular failure, coagulopathy, and metabolic disorders. Specific therapy (with an anti-ophidic serum in one case resulted in drastically worsening health conditions as fulminant acute respiratory distress syndrome. A package of intensive therapy measures should include actions based on general resuscitation approaches — maintenance of life support systems (breathing, blood circulation, anti-sensitizing therapy, correction of metabolic disturbances with substrate antihypoxants (cytofavin, reamberin, and antimicrobial therapy. Conclusion. In the severest acute intoxications due to cobra snakebites, specific therapy methods (with anti-ophidic serum should be used with extreme caution and particular emphasis should be laid on the general resuscitation-based principles. 

  3. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    Science.gov (United States)

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2015-12-24

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.

  4. G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides

    Directory of Open Access Journals (Sweden)

    James T. Daniel

    2017-11-01

    Full Text Available Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.

  5. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  6. A Novel Factor Xa-Inhibiting Peptide from Centipedes Venom.

    Science.gov (United States)

    Kong, Yi; Shao, Yu; Chen, Hao; Ming, Xin; Wang, Jin-Bin; Li, Zhi-Yu; Wei, Ji-Fu

    2013-01-01

    Centipedes have been used as traditional medicine for thousands of years in China. Centipede venoms consist of many biochemical peptides and proteins. Factor Xa (FXa) is a serine endopeptidase that plays the key role in blood coagulation, and has been used as a new target for anti-thrombotic drug development. A novel FXa inhibitor, a natural peptide with the sequence of Thr-Asn-Gly-Tyr-Thr (TNGYT), was isolated from the venom of Scolopendra subspinipesmutilans using a combination of size-exclusion and reverse-phase chromatography. The molecular weight of the TNGYT peptide was 554.3 Da measured by electrospray ionization mass spectrometry. The amino acid sequence of TNGYT was determined by Edman degradation. TNGYT inhibited the activity of FXa in a dose-dependent manner with an IC50 value of 41.14 mg/ml. It prolonged the partial thromboplastin time and prothrombin time in both in vitro and ex vivo assays. It also significantly prolonged whole blood clotting time and bleeding time in mice. This is the first report that an FXa inhibiting peptide was isolated from centipedes venom.

  7. Scorpions from Mexico: From Species Diversity to Venom Complexity

    Directory of Open Access Journals (Sweden)

    Carlos E. Santibáñez-López

    2015-12-01

    Full Text Available Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.

  8. Crotalidae polyvalent immune Fab (ovine) antivenom is effective in the neutralization of South American viperidae venoms in a murine model.

    Science.gov (United States)

    Richardson, William H; Tanen, David A; Tong, Tri C; Betten, David P; Carstairs, Shaun D; Williams, Saralyn R; Cantrell, Frank L; Clark, Richard F

    2005-06-01

    Crotalidae polyvalent immune Fab (ovine) (CroFab; FabAV) is used in the treatment of symptomatic crotaline envenomations in North America. Unlike Antivenin (Crotalidae) Polyvalent, which is approved for treatment of crotaline envenomation in North and South America, FabAV is manufactured using only venoms from crotaline snakes native to the United States. This study was designed to evaluate the efficacy of FabAV in the neutralization of venom from 2 South American crotaline snakes: Crotalus durissus terrificus (tropical rattlesnake) and Bothrops atrox (fer-de-lance). A randomized, blinded, placebo-controlled murine model of intraperitoneal venom injection was used. Venom potency was determined in preliminary median lethal dose (LD 50) dosing studies. Study animals were then divided into 7 groups: (1) C durissus terrificus venom (Sigma-Aldrich Co.)+FabAV, (2) C durissus terrificus venom (Sigma-Aldrich Co.)+0.9% normal saline solution, (3) C durissus terrificus venom (Biotoxins Inc.)+FabAV, (4) C durissus terrificus venom (Biotoxins Inc.)+normal saline solution, (5) B atrox venom+FabAV, (6) B atrox venom+normal saline solution, and (7) FabAV+normal saline solution. Twice the estimated LD 50 was the chosen venom dose, and the amount of FabAV injected was 10 times the amount needed for venom