WorldWideScience

Sample records for vinyl acetate polymerization

  1. Controlled free radical polymerization of vinyl acetate with cobalt ...

    Indian Academy of Sciences (India)

    The polymerization of vinyl acetate with the complex catalyst of cobalt acetoacetonate [Co (acac)2] and DMF ligand with benzoyl peroxide initiator has been successfully carried out in bulk and in solution. The bulk polymerization has been used in a new route consisting of a one-step polymer formation in a fine capillary tube ...

  2. Controlled free radical polymerization of vinyl acetate with cobalt ...

    Indian Academy of Sciences (India)

    this polymer is biodegradable and have found many applications in coatings, paper, and drug industries. In recent years, polyvinyl acetate with a well defined struc- ture has been reported to be used in block copolymers and in the controlled radical polymerizations (CRP). In this process the unreacted vinyl acetate monomer ...

  3. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.05 of the em...... to that of vinyl chloride. The linearity of the conversion-versus-time curve is explained as being due partly to a decrease in the desorption rate of radicals from the polymer particles and partly to a decrease in the termination rate constant....

  4. Emulsion polymerization of vinyl acetate initiated by intermittent. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sundardi, F.

    1979-08-15

    The reaction kinetics of emulsion polymerization of vinyl acetate (VAc) monomer have been studied by using intermittent ..gamma.. radiation. The purpose of this technique is to take advantage of the polymerization reaction which still continues after the radiation production has been stopped, as expected by the Smith-Ewart rate theory. Tween 20 (polyoxyethylene sorbitan monolaurate), was used as the emulsifier. The polymer conversion was determined by using the dilatometric method. The polymerization rate R/sub p/ decreased with increase in emulsifier content. The Smith-Ewart rate theory cannot explain the experimental evidence satisfactorily. The average polymerization rate anti R/sub p/ between 20% and 80% conversion is a function of irradiation dose rate and can be written anti R/sub p/ = a/sub 1/I/sup a2/ where a/sub 1/ and a/sub 2/ is a constant in which the value depends on the emulsifier content in the emulsion and I is the irradiation dose rate.

  5. Organometallic mediated radical polymerization of vinyl acetate using bis(imino)pyridine vanadium trichloride complexes.

    Science.gov (United States)

    Perry, Mitchell R; Allan, Laura E N; Decken, Andreas; Shaver, Michael P

    2013-07-07

    The synthesis and characterization of one novel proligand and six novel vanadium(III) trichloride complexes is described. The controlled radical polymerization activity towards vinyl acetate of these, and eight other bis(imino)pyridine vanadium trichloride complexes previously reported, is investigated. Those complexes possessing variation at the N-aryl para-position with no steric protection offered by ortho-substituents (4 examples) result in poor control over poly(vinyl acetate) polymerization. Control is improved with increasing steric bulk at the ortho-position of the N-aryl substituent (4 examples) although attempts to increase steric bulk past isopropyl were unsuccessful. Synthesizing bis(imino)pyridine vanadium trichloride complexes with substituted imine backbones restores polymerization control when aliphatic substituents are used (4 examples) but ceases to make any drastic improvements on catalyst lifetime. Modification of the polymerization conditions is also investigated, in an attempt to improve the catalyst lifetime. Expansion of the monomer scope to include other vinyl esters, particularly those derived from renewable resources, shows promising results.

  6. Synthesis of poly(vinyl acetate-methyl methacrylate) copolymer microspheres using suspension polymerization.

    Science.gov (United States)

    Islam, Md Shahidul; Yeum, Jeong Hyun; Das, Ajoy Kumar

    2012-02-15

    Poly(vinyl acetate-methyl methacrylate) (VAc-MMA) copolymer microspheres were prepared using suspension polymerization at low temperature initiated with 2,2'-azobis(2,4-dimethyl valeronitrile) (ADMVN). The poly(VAc-MMA) copolymer microspheres can be used over a large area where homopolymers, polyvinyl acetate (PVAc) and methyl methacrylate (PMMA) microspheres are capable of being put to use. The prepared microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Obtained copolymer microspheres which have 200 μm average diameter and higher thermal stability than those of homopolymer. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  7. Poly(vinyl acetate)–clay hybrids prepared via emulsion polymerization, assisted by a nonionic surfactant

    NARCIS (Netherlands)

    Corobea, M.C.; Uricanu, V.I.; Donescu, D.; Radovici, C.; Serban, S.; Garea, S.; Iovu, H.

    2007-01-01

    Hybrid materials containing poly(vinyl acetate) and montmorillonite (MMT) were prepared using an one-batch emulsion polymerization recipe, assisted by a nonionic surfactant. To explain the results of our experiments, a thorough investigation of the specific interactions between the compounds was

  8. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    OpenAIRE

    Sayer C.; Palma M.; Giudici R.

    2002-01-01

    A new reactor, the pulsed sieve plate column (PSPC), was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA) emulsion polymerization reactions performed in this PSPC. Therefore, both experimental ...

  9. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2002-01-01

    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  10. Synthesis and photostabilizing performance of a polymeric HALS based on 1,2,2,6,6-pentamethylpiperidine and vinyl acetate

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2015-01-01

    Full Text Available Abstract Polymeric hindered amine light stabilizers (polymeric HALS have been extensively studied because they combine a high ability to protect the polymers against harmful effects of weathering with minimum physical loss. In this study a new polymeric N-methylated HALS was synthesized by the radical copolymerization of a cyclic tertiary amine with vinyl acetate (VAc. 4-Acryloyloxy-1,2,2,6,6-pentamethylpiperidine (APP, the cyclic tertiary amine, was prepared by the initial conversion of 2,2,6,6-tetramethyl-4-piperidinol derivatives via two different routes. The APP/VAc copolymer synthesized was characterized by size exclusion chromatography (SEC, Fourier transform infrared spectroscopy (FTIR and carbon-13 nuclear magnetic resonance (13C NMR. The photostabilizing performance, particularly the induction period of polypropylene (PP films containing different concentrations of APP/VAc copolymer, when exposed to accelerated aging, was comparable to that of PP films compounded with commercial polymeric HALS.

  11. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  12. The Emulsion Polymerization of Each of Vinyl Acetate and Butyl Acrylate Monomers Using bis (2-ethylhexyl Maleate for Improving the Physicomechanical Properties of Paints and Adhesive Films

    Directory of Open Access Journals (Sweden)

    K. A. Shaffei

    2009-01-01

    Full Text Available Improving the water sensitivity of polyvinyl acetate PVAc films as well as pressure sensitivity, adhesion and washability of polybutyl acrylate were achieved by using bis (2-ethylhexyl maleate (BEHM. The emulsion polymerization kinetics of vinyl acetate and butyl acrylate in presence of BEHM was studied. The order of the polymerization reaction with respect to the BEHM in presence of each of vinyl acetate and butyl acrylate was studied. The physicomechanical properties of the polyvinyl acetate films and vinyl acetate-butyl acrylate copolymer films were studied in presence of BEHM and the obtained results were matched with those prepared in the presence of pluronic F 108 and showed superior values. The obtained mean average molecular weights were found to be smaller in presence of BEHM assuring the presence of chain transfer reaction.

  13. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  14. Dissolution of paracetamol crystallized in the presence of poly(vinyl acetate-co-maleic anhydride)

    OpenAIRE

    Raval D; Parikh D; Patel V

    2006-01-01

    Copolymer of vinyl acetate and maleic anhydride, poly (vinyl acetate-co-maleic anhydride) was prepared by precipitation polymerization and characterized. Paracetamol was crystallized in presence of different concentrations of poly (vinyl acetate-co-maleic anhydride). Crystals were characterized by sieve analysis, solubility and dissolution study. Crystallization of paracetamol in presence of poly (vinyl acetate-co-maleic anhydride) caused a marked enhancement in its dissolution rate with incr...

  15. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid

    Directory of Open Access Journals (Sweden)

    Hongzhu Liu

    2017-01-01

    Full Text Available Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE, vinyl acetate (VAc, n-butyl acrylate (BA, Veova 10, and acrylic acid (AA. The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  16. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    Science.gov (United States)

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  17. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  18. RAFT Polymerization of Vinyl Esters: Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Simon Harrisson

    2014-05-01

    Full Text Available This article is the first comprehensive review on the study and use of vinyl ester monomers in reversible addition fragmentation chain transfer (RAFT polymerization. It covers all the synthetic aspects associated with the definition of precision polymers comprising poly(vinyl ester building blocks, such as the choice of RAFT agent and reaction conditions in order to progress from simple to complex macromolecular architectures. Although vinyl acetate was by far the most studied monomer of the range, many vinyl esters have been considered in order to tune various polymer properties, in particular, solubility in supercritical carbon dioxide (scCO2. A special emphasis is given to novel poly(vinyl alkylates with enhanced solubilities in scCO2, with applications as reactive stabilizers for dispersion polymerization and macromolecular surfactants for CO2 media. Other miscellaneous uses of poly(vinyl esters synthesized by RAFT, for instance as a means to produce poly(vinyl alcohol with controlled characteristics for use in the biomedical area, are also covered.

  19. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  20. Neodymium Catalyst for the Polymerization of Dienes and Polar Vinyl Monomers.

    Science.gov (United States)

    Kularatne, Ruvanthi N; Yang, Annie; Nguyen, Hien Q; McCandless, Gregory T; Stefan, Mihaela C

    2017-10-01

    Ziegler-Natta catalysts have played a major role in industry for the polymerization of dienes and vinyl monomers. However, due to the deactivation of the catalyst, this system fails to polymerize polar vinyl monomers such as vinyl acetate, methyl methacrylate, and methyl acrylate. Herein, a catalytic system composed of NdCl 3 ⋅3TEP/TIBA is reported, which promotes a quasi-living polymerization of dienes and is also active for the homopolymerization of polar vinyl monomers. Additionally, this catalytic system generates polymyrcene-b-polyisoprene and poly(myrcene)-b-poly(methyl methacrylate) diblock copolymers by sequential monomer addition. To encourage the replacement of petroleum-based polymers by environmentally benign biobased polymers, polymerization of β-myrcene is demonstrated with a catalytic activity of ≈106 kg polymer mol Nd -1 h -1 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation and characterization of film of poly vinyl acetate ethylene copolymer emulsion

    Science.gov (United States)

    Zhang, Yanhua; Gu, Jiyou; Tan, Haiyan; Shi, Junyou; Di, Mingwei; Zuo, Yingfeng; Qiu, Si

    2013-07-01

    In order to improve the storage modulus and water resistance of poly (vinyl acetate), the vinyl acetate and poly (vinyl alcohol) (PVA) were respectively used as monomers and protective colloid to prepare a new kind of polyvinyl acetate emulsion adhesive by continuous emulsion polymerization. The dynamic mechanics, particle distribution, glass transition temperature, polymer emulsion structure of both polymerized and copolymerized emulsion were analyzed by SEM, DMA and XPS, respectively. The results indicated that the copolymerized emulsion has the appropriate particle size and the uniform particle distribution, the glass transition temperature increased from 50 °C to 70 °C, compared with poly (vinyl acetate). It could be seen from XPS spectra of copolymerized emulsion that key characteristic peak of Cdbnd O was still existent. X-ray photoelectron spectra revealed that the addition of EVA did not generate the new bond, whereas the maximum percentage increases in ester was determined in the composite film with the introduction of EVA of 25%, which indicated that the composite film has copolymer structure. The storage modulus and water resistance of poly (vinyl acetate) were improved due to the introduction of the EVA.

  2. Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers

    Science.gov (United States)

    Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.

    2017-04-01

    FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.

  3. Zinc Acetate Immobilized on Mesoporous Materials by Acetate Ionic Liquids as Catalysts for Vinyl Acetate Synthesis

    Directory of Open Access Journals (Sweden)

    Hang Xu

    2015-01-01

    Full Text Available Ionic liquid containing active ingredient Zn(CH3COO2 was loaded in mesoporous silica gel to form supported ionic liquids catalyst (SILC which was used to synthesize vinyl acetate monomer (VAM. SILC was characterized by 1HNMR, FT-IR, TGA, BET, and N2 adsorption/desorption and the acetylene method was used to evaluate SILC catalytic activity and stability in fixed reactor. The result shows that 1-allyl-3-acetic ether imidazole acetate ionic liquid is successfully fixed within mesoporous channel of silica gel. The average thickness of ionic liquid catalyst layer is about 1.05 nm. When the catalytic temperature is 195°C, the acetic acid (HAc conversion is 10.9% with 1.1 g vinyl acetate yield and 98% vinyl acetate (VAc selectivity. The HAc conversion is increased by rise of catalytic temperature and molar ratio of C2H2 : HAc and decreased by mass space velocity (WHSV. The catalyst activity is not significantly reduced within 7 days and VAc selectivity has a slight decrease.

  4. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    National Research Council Canada - National Science Library

    Bui, Nhi Dinh; Vu, Ngo Dinh; Minh, Thao Thi; Dam, Huong Thi Thanh; Spiridonova, Regina Romanovna; Sirotkin, Semenovich Alexandr

    2016-01-01

    .... Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10-14 wt.%) has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21-30 wt...

  5. Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly (vinyl acetate) and poly (vinyl acetate-co-butyl acrylate)

    CSIR Research Space (South Africa)

    Vargha, V

    2005-04-01

    Full Text Available Wheat starch was reacted with poly (vinyl acetate) and with poly (vinyl acetate-co-butyl acrylate) in an internal mixer at 150 _C in the absence of catalyst, and in the presence of sodium carbonate, zinc-acetate and titanium (IV) but oxide...

  6. Surfactantes reativos não-iônicos em polimerização em emulsão de látices de acetato de vinila - vinil neodecanoato: influência nas propriedades de barreira à água Nonionic reactive surfactants in emulsion polymerization of vinyl acetate - vinyl neodecanoate latexes: influence on the water barrier properties

    Directory of Open Access Journals (Sweden)

    Jorge M. de Oliveira

    2009-01-01

    during the film formation. In this work vinyl acetate - vinyl neodecanoate (VeoVa 10® latexes, stabilized with conventional and reactive nonionic surfactant, were prepared and the performance of these films was evaluated. It was noted that latexes stabilized with nonionic polymerizable surfactants can bring, under certain conditions, better barrier properties.

  7. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Yuki [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)]. E-mail: wada.yuki@jaea.go.jp; Seko, Noriaki [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Nagasawa, Naotsugu [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Tamada, Masao [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kasuya, Ken-ichi [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Mitomo, Hiroshi [Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)

    2007-06-15

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  8. Interacting Blends of Novel Unsaturated Polyester Amide Resin with Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    H. S. Patel

    2004-01-01

    Full Text Available Novel unsaturated poly (ester- amide resins (UPEAs were prepared by the reaction between an epoxy resin, namely diglycidyl ether of bisphenol–A (DGEBA and unsaturated aliphatic bisamic acids using a base catalyst. These UPEAs were then blended with a vinyl monomer namely, Vinyl acetate (VA to produce a homogeneous resin syrup. The curing of these UPEAs-VA resin blends was carried out by using benzoyl peroxide (BPO as an initiator for the radical polymerization and was monitored by using a differential scanning calorimeter (DSC. The glass fibre reinforced composites (i.e. laminates of these UPEA-VA resin blends were fabricated using the DSC data. The chemical, mechanical and electrical properties of the glass fibre composites have also been evaluated. The unreinforced cured samples of the UPEA-VA resin blends were also analyzed by thermogravimetry (TGA.

  9. Synthesis of light-selective poly(ethylene-co-vinyl acetate) nanofilms in supercritical carbon dioxide

    Science.gov (United States)

    Xu, William (Zhiming)

    Due to the increased requirements of environmental protection, significant effort has been made to develop new "green" chemistry and engineering methods. Two effective approaches for "green" processes are: (1) to employ routes with fewer synthetic and separation steps, and (2) to replace volatile organic solvents with environmentally friendly solvents. Supercritical carbon dioxide (scCO2) has emerged as such a viable "green" alternative to organic solvents for several applications including extraction, polymerization, and nanotechnology, etc. In addition, it is an enabling solvent, allowing new types of chemistry and materials to be formed. In order to effectively utilize scCO2, it is required to study its effect on the relevant chemical process. This thesis focuses on the copolymerization of ethylene and vinyl acetate in scCO2, and the application of scCO2 in the synthesis of novel poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (PEVA) nanocomposites. Firstly, the kinetics of the process was investigated. The thermal decomposition of the free-radical initiator diethyl peroxydicarbonate (DEPDC) was monitored by in situ attenuate total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in heptane, and in scCO2. The rate constant and activation energy of the thermal decomposition of DEPDC in scCO2 were determined, and a decomposition mechanism was proposed. Further, with a knowledge of the initiator kinetics, in situ ATR-FTIR was employed to monitor the initial formation of copolymers of ethylene and vinyl acetate during polymerization in scCO2. The reactivity ratios for the copolymerization of ethylene and vinyl acetate in scCO2 were determined using both the Kelen-Tudos and the non-linear least-squares methods. The potential of scCO2 was further examined to synthesize advanced and novel nanomaterials based on an understanding of the polymerization mechanism. A novel one-step synthesis route was developed for making silica

  10. Negative-tone resist system using vinyl cyclic acetal crosslinker

    Science.gov (United States)

    Huang, Wu-Song; Lee, Kim Y.; Chen, K. Rex; Schepis, Dominic

    1996-06-01

    Most high performance negative tone resists are chemically amplified systems. The chemistry involves a creation of acid during photo-exposure and subsequent crosslinking of the polymer matrix during post-exposure bake. The commonly used crosslinkers are epoxies, melamines, benzyl alcohol and benzyl acetates. In light of the high reactivity of vinyl group on vinyl ether type compounds, literature has suggested that photochemical addition reaction of a polymer- bearing pendant vinyl ether with various thiol compounds can potentially be highly sensitive negative-type photoresists. Recently, bis-dihydropyrane derivative has been used for the first time to develop high performance negative tone resists for DUV, E-beam and x-ray applications. A cyclic acetal system based on acetal blocked aromatic aldehyde has also been demonstrated to be a good crosslinker for negative DUV resist. In order to take advantage of the above chemistries, we have investigated a crosslinker, 3,9-divinylspirobi(M-dioxane) (DVSDO), which contains both cyclic acetal groups and vinyl groups. Different loadings of DVSDO from 8% to 17% were formulated in combination with triphenyl sulfonyl triflate and N-sulfonyl triflate derivatives in polyhydroxystyrene matrix. One composition contains 8% N- sulfonyloxy derivative, 12% DVSDO in 20% solid of polyhydroxystyrene has shown resolution to 0.35 micrometer from Canon 0.37 NA DUV stepper. It also shows promising resolution in E-beam lithography. Varying the post apply bake (PAB) temperatures and post exposure bake temperatures (PEB) demonstrate a great dependency of sensitivity to baking temperature. The sensitivity increases with decreasing PAB, while decreases with decreasing PEB. Insufficient baking time (less than 4 - 5 minutes) at lower PEB temperature 90 degrees Celsius causes significant film loss after development in 0.14N TMAH for 60 - 75s. On the other hand, when the PEB temperature is too high (greater than 120 degrees Celsius), the resist

  11. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    Science.gov (United States)

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  12. Methyl internal rotation in the microwave spectrum of vinyl acetate.

    Science.gov (United States)

    Nguyen, Ha Vinh Lam; Jabri, Atef; Van, Vinh; Stahl, Wolfgang

    2014-12-26

    The rotational spectrum of vinyl acetate, CH3(CO)OCH═CH2, was measured using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Large splittings up to 2 GHz occurred due to the internal rotation of the acetyl methyl group CH3CO with a V3 potential of 151.492(34) cm(-1), much larger than the barrier of approximately 100 cm(-1) often found in acetates. The torsional transitions were fitted using three different programs XIAM, ERHAM, and BELGI-Cs, whereby the rotational constants, centrifugal distortion constants, and the internal rotation parameters could be determined with very high accuracy. The experimental results were supported by quantum chemical calculations. For a conformational analysis, potential energy surfaces were calculated.

  13. Preparação e caracterização de microesferas poliméricas magnéticas à base de estireno, divinilbenzeno e acetato de vinila Preparation and characterization of magnetic polymeric microspheres based on styrene, divinylbenzene and vinyl acetate

    Directory of Open Access Journals (Sweden)

    Jacira A. Castanharo

    2012-01-01

    Full Text Available Microesferas poliméricas magnéticas à base de estireno (STY, divinilbenzeno (DVB, acetato de vinila (VAc e ferro foram preparadas via polimerização em suspensão e semi-suspensão. Foram estudadas as influências da concentração de VAc adicionado na polimerização e da presença de ferro sobre as características das partículas poliméricas. Estas foram caracterizadas por espectroscopia vibracional na região do infravermelho por transformada de Fourier (FT-IR, análise termogravimétrica (TGA/DTGA, microscopia óptica por reflexão (MO, microscopia eletrônica de varredura (SEM e magnetometria de amostra vibrante (VSM. Foram obtidas com sucesso microesferas poliméricas com propriedades magnéticas à base de estireno, divinilbenzeno e acetato de vinila. Estes materiais apresentaram bom controle morfológico esférico e partículas de ferro aglomeradas por toda a superfície da microesfera. O maior rendimento de microesferas magnéticas foi encontrado na faixa de 288 μm. Apresentaram também boas propriedades magnéticas (22,62 a 73,75 emu.g-1 com comportamento próximo de materiais superparamagnéticos e boa estabilidade térmica (444 °C.Magnetic polymeric microspheres based on styrene (STY, divinylbenzene (DVB, vinyl acetate (VAc and iron were prepared through suspension and semi-suspension polymerization. An investigation was made of the influence from the concentration of VAc added to the polymerization and the presence of iron on the properties of the polymeric particles. These particles were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA/DTGA, reflection optical microscopy (OM, scanning electron microscopy (SEM and vibrating sample magnetometry (VSM. Polymeric microspheres with magnetic properties based on styrene, divinylbenzene and vinyl acetate were obtained. These materials showed good control of the spheres morphology and aggregated iron particles throughout the microsphere

  14. 40 CFR 721.8658 - Modified polymer of vinyl acetate and quaternary ammonium compound (generic).

    Science.gov (United States)

    2010-07-01

    .... (1) The chemical substance identified generically as modified polymer of vinyl acetate and quaternary... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified polymer of vinyl acetate and... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  15. Tailor-made starch-based conjugates containing well-defined poly(vinyl acetate and its derivative poly(vinyl alcohol

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Reversible addition-fragmentation chain transfer (RAFT polymerization was adopted to synthesize starch-based conjugates that possessed controllable architecture and properties. Starch-based xanthate agent was prepared and applied as chain transfer agent to conduct the living/controlled polymerization (LCP of vinyl acetate, which generated tailor-made conjugates of starch and well-defined poly(vinyl acetate (SVAc. The relevant derivatives, conjugates of starch and chain length-controlled poly(vinyl alcohol (SVA, were obtained subsequently. Various characterizations such as Fourier transform infrared spectra (FTIR, ultraviolet-visible spectroscopy (UV, proton nuclear magnetic resonance (1H NMR, gel permeation chromatography (GPC, X-ray diffraction (XRD, Thermogravimetric analysis (TGA, and dynamic mechanical thermal analysis (DMTA were performed to examine the structure of intermediates and the starch-based conjugates. Static contact angle measurements revealed that the hydrophilic character of starch-based conjugates was tunable. Well-defined SVAc was amphiphilic and it was able to self-assemble into size controllable micelles, which was verified by contact angles, transmission electron microscopy (TEM and dynamic light scattering (DLS tests. SVA exhibited much higher capability to form physically cross-linked hydrogel than starch did. Both the characteristic of SVAc and SVA were chain length-dependent.

  16. Effect of Acetate Group Content in Ethylene-Vinyl Acetate Copolymer on Properties of Composite Based on Low Density Polyethylene and Polyamide-6

    Directory of Open Access Journals (Sweden)

    Nhi Dinh Bui

    2016-01-01

    Full Text Available The effect of the content of vinyl acetate groups in ethylene-vinyl acetate copolymer on the properties of polymer composite based on low density polyethylene and polyamide-6 was studied. Ethylene-vinyl acetate copolymer containing less vinyl acetate groups (10–14 wt.% has a positive compatibility effect on polymer composite than ethylene-vinyl acetate copolymer containing 21–30 wt.% vinyl acetate groups. The polymer composites of LDPE, PA-6, and EVA containing 10–14 wt.% vinyl acetate groups possess the ability of biodegradation. The physical-mechanical properties of sample and molecular mass reduce after 28 days of incubation.

  17. Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends

    Science.gov (United States)

    Ucar, I. O.; Doganci, M. D.; Cansoy, C. E.; Erbil, H. Y.; Avramova, I.; Suzer, S.

    2011-09-01

    In this study, we prepared thin films by blending ethylene vinyl acetate copolymers (EVA) containing 12-33 (wt.%) vinyl acetate (VA) with polyvinyl acetate (PVAc) and high density polyethylene homopolymers. Large area micropatterns having controlled protrusion sizes were obtained by phase-separation especially for the PVAc/EVA-33 blends using dip coating. These surfaces were characterized by XPS and contact angle measurements. A reasonably linear relation was found between the VA content on the surface (wt.%) obtained from XPS analysis and the VA content in bulk especially for PVAc/EVA-33 blend surfaces. PE segments were more enriched on the surface than that of the bulk for pure EVA copolymer surfaces similar to previous reports and VA enrichment was found on the EVA/HDPE blend surfaces due to high molecular weight of HDPE. Water θ decreased with the increase in the VA content on the blend surface due to the polarity of VA. A good agreement was obtained between γs- and atomic oxygen surface concentration with the increase of VA content. The applicability of Cassie-Baxter equation was tested and found that it gave consistent results with the experimental water contact angles for the case where VA content was lower than 55 wt.% in the bulk composition.

  18. Lipase Mediated Isoamyl Acetate Synthesis in Solvent-Free System Using Vinyl Acetate as Acyl Donor

    Directory of Open Access Journals (Sweden)

    Annapurna Kumari

    2009-01-01

    Full Text Available Synthesis of isoamyl acetate, a flavour ester extensively used in food industry, has been carried out in a solvent-free system. In the present study, an attempt has been made to enhance the isoamyl acetate synthesis yield by transesterification of isoamyl alcohol with vinyl acetate using immobilized Rhizopus oryzae NRRL 3562 lipase. In the present synthesis, substrates had no inhibitory effect on immobilized lipase. The effects of various reaction parameters on isoamyl acetate synthesis were studied and maximum conversion was achieved at 16 % (by mass per volume of immobilized lipase, 40 °C and 200 rpm. Under these conditions, 8-hour reaction time was sufficient to reach a high ester conversion of 95 % with 0.5 mol/L of isoamyl alcohol. The structure of the transesterified product was confirmed by infrared and nuclear magnetic resonance spectroscopic studies. Immobilized lipase had Km and vmax values of 306.53 mmol/L and 99 µmol/(h·g respectively, for isoamyl acetate synthesis in a solvent-free system.

  19. Acetyl substitution patterns of amylose and amylopectin populations in cowpea starch modified with acetic anhydride and vinyl acetate

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Klaver, R.; Jin, Z.; Voragen, A.G.J.

    2007-01-01

    To study the effect of reagent type on the distribution pattern of acetyl groups in acetylated cowpea starch, amylose and amylopectin populations were isolated from the starch granules after modification to a low degree of substitution (DS <0.1) with acetic anhydride and vinyl acetate,

  20. Optimal control of batch emulsion polymerization of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Damslora, Andre Johan

    1998-12-31

    The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.

  1. Homogeneity characterization of ethylene-co-vinyl acetate copolymer (EVA) and hydrophobic silica nanocomposite by low field NMR; Caracterizacao da homogeneidade de nanocomposito do copolimero etileno acetato de vinila (EVA) e silica hidrofobica atraves de ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Observatorio Nacional, Rio de Janeiro, RJ (Brazil). Dept. de Geofisica (DGE)]. E-mail: stael@on.br; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2005-07-01

    This project proposes the characterization of a polymeric matrix composite material using nanometric scale hydrophobic silica as charge element, with the ethylene-vinyl acetate (EVA), by using the spin-lattice relaxation time measurement applying the low field NMR.

  2. Determination of vinyl acetate content in ethylene-vinyl acetate copolymer through thermogravimetric analysis; Determinacao do teor de acetato de vinila em copolimero de etileno-acetato de vinila (EVA) por termogravimetrica

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Adelaide Ribeiro Guimaraes; Ficara, Maria Luisa G. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Tavares, R.M. [Partime (Brazil)

    1991-04-01

    This paper presents a methodology to get vinyl acetate contents of EVA (Ethylene Vinyl Acetate) samples by thermogravimetric analysis. Analytical procedures, curves and graphic concerning to the thermogravimetric analysis procedures, calculations and conclusions about the methodology are also presented 3 refs., 1 fig., 1 tab.

  3. Investigation of free-radical copolymerization propagation kinetics of vinyl acetate and methyl methacrylate.

    Science.gov (United States)

    Dossi, Marco; Liang, Kun; Hutchinson, Robin A; Moscatelli, Davide

    2010-04-01

    The free-radical copolymerization propagation kinetics of vinyl acetate (VAc) and methyl methacrylate (MMA) at 50 degrees C were investigated through an experimental study combined with a computational analysis based on quantum chemistry. Copolymer composition data, obtained using pulsed laser polymerization followed by size exclusion chromatography (PLP-SEC) and proton nuclear magnetic resonance (NMR), were well represented by the terminal model using monomer reactivity ratios obtained with the computational approach (r(VAc) = 0.001 and r(MMA) = 27.9). Concerning the composition-averaged copolymerization propagation rate coefficient k(p,cop), the differences between the terminal model and the implicit penultimate unit effect (IPUE) model (s(MMA) = 0.544 and s(VAc) = 0.173) are small for VAc/MMA, with the terminal model sufficient to describe the experimental k(p,cop) data measured by PLP-SEC. Monomer and radical charge distributions determined computationally are used to explain the reactivity exhibited by the VAc/MMA system.

  4. High-speed living polymerization of polar vinyl monomers by self-healing silylium catalysts.

    Science.gov (United States)

    Zhang, Yuetao; Lay, Frank; García-García, Pilar; List, Benjamin; Chen, Eugene Y-X

    2010-09-10

    This contribution describes the development and demonstration of the ambient-temperature, high-speed living polymerization of polar vinyl monomers (M) with a low silylium catalyst loading (≤ 0.05 mol % relative to M). The catalyst is generated in situ by protonation of a trialkylsilyl ketene acetal ((R)SKA) initiator (I) with a strong Brønsted acid. The living character of the polymerization system has been demonstrated by several key lines of evidence, including the observed linear growth of the chain length as a function of monomer conversion at a given [M]/[I] ratio, near-precise polymer number-average molecular weight (M(n), controlled by the [M]/[I] ratio) with narrow molecular weight distributions (MWD), absence of an induction period and chain-termination reactions (as revealed by kinetics), readily achievable chain extension, and the successful synthesis of well-defined block copolymers. Fundamental steps of activation, initiation, propagation, and catalyst "self-repair" involved in this living polymerization system have been elucidated, chiefly featuring a propagation "catalysis" cycle consisting of a rate-limiting C--C bond formation step and fast release of the silylium catalyst to the incoming monomer. Effects of acid activator, catalyst and monomer structure, and reaction temperature on polymerization characteristics have also been examined. Among the three strong acids incorporating a weakly coordinating borate or a chiral disulfonimide anion, the oxonium acid [H(Et(2)O)(2)](+)[B(C(6)F(5))(4)](-) is the most effective activator, which spontaneously delivers the most active R(3)Si(+), reaching a high catalyst turn-over frequency (TOF) of 6.0×10(3) h(-1) for methyl methacrylate polymerization by Me(3)Si(+) or an exceptionally high TOF of 2.4×10(5) h(-1) for n-butyl acrylate polymerization by iBu(3)Si(+), in addition to its high (>90 %) to quantitative efficiencies and a high degree of control over M(n) and MWD (1.07-1.12). An intriguing

  5. Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sarıtaş, Sevilay; Eşsiz, Serpil; Sarı, Bekir, E-mail: bsari@gazi.edu.tr

    2017-07-01

    Highlights: • In this study, ternary composite/nanocomposite films were synthesized. • Magnetic field-sensitive folding films were prepared without any elastomer. • Morphological studies show that all composite films have a smooth surface. • The ternary composites/nanocomposite show improved thermal stability compared to the pure PF. - Abstract: In this study, polyfuran and poly(vinyl acetate)/poly(vinyl chloride)/polyfuran ternary composites were synthesized via the chemical polymerization method. The temperature and magnetic field–sensitive novel composites and the nanocomposite were obtained in the form of powders and films. It was observed that the prepared novel conductive films have superior properties at a certain temperature range (25–50 °C) such as bending and folding. The structural properties, thermal behavior, surface morphology, internal structure, and surface roughness of the prepared samples were investigated by various characterization techniques. The conductivities of the samples were measured at room temperature and different temperatures by the four-point technique. X-ray Diffraction analysis results demonstrated that the PF and composites have an amorphous structure, whereas the nanocomposite is in crystalline form. The saturation magnetization (Ms) values of the magnetite and nanocomposite were found to be 58.9 and 5.3 emu g{sup −1}, respectively. It was found that magnetite-doped nanocomposite has superparamagnetic properties at room temperature.

  6. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol and poly (vinyl alcohol/silica using indigenous electrospinning set up

    Directory of Open Access Journals (Sweden)

    K. Sasipriya

    2013-01-01

    Full Text Available Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol and poly (vinyl alcohol/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol and poly (vinyl alcohol/silica sol fibers were characterized by Scanning electron microscopy (SEM, Atomic force microscopy (AFM and Fourier transform infra red spectroscopy (FTIR. According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up.

  7. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up

    Energy Technology Data Exchange (ETDEWEB)

    Sasipriya, K.; Suriyaprabha, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [Centre for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tamil Nadu (India)

    2013-11-01

    Indigenous design and fabrication horizontal of electrospinning set up was developed to facilitate with double drum conveyor belt system to make ease in harvesting nanofibers rapidly. As a bench mark study, organic-inorganic nanofiber composite was synthesised employing our indigenous electrospinning set up. The aqueous solution of poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol were employed to produce nanofiber mats in order to vary the experimental parameters such as voltage, solvent effect and the effect of catalyst. The synthesised pure electro spun poly (vinyl alcohol) and poly (vinyl alcohol)/silica sol fibers were characterized by Scanning electron microscopy (SEM), Atomic force microscopy (AFM) and Fourier transform infra red spectroscopy (FTIR). According to the results, the fine polymeric nanofibers were achieved in the size range of 100-500 nm for pure poly (vinyl alcohol) fiber and 100-700 nm for polyvinyl alcohol/silica and the constitution of silica in rendering better fiber mats with this double drum set up. (author)

  8. Kinetics and Mechanism of Bulk Polymerization of Vinyl Chloride in a Polymerization Reactor

    Directory of Open Access Journals (Sweden)

    A. S. Ibrahim

    2015-12-01

    Full Text Available Polyvinyl chloride (PVC is the third most commonly produced polymer and is important because of its mechanical characteristics. The most common method of PVC manufacturing is the process of suspension. Although, there are several benefits associated with suspension, this study will focus on the bulk polymerization of vinyl chloride; highlight the physical and chemical properties of PVC, which can be changed through an estimation of the optimum ratio that exists between the hydrophilic and hydrophobic parts of the polymer’s surface, and propose a new mathematical model which will be helpful for the conversion of PVC into a useful form. The result will be the proposal of a new dynamic mathematical model for the three-phase structure model. All particles have been taken into account in the proposed model, which helped contribute to the reaction in gel, solid, and liquid phases, emphasizing the use of mercury (Hg as a catalyst. The proposed mathematical model considers the heat and mass transfer between the liquid, gel, and solid phases with chemical reactions that occur between the liquid and solid phases, and between the gel and solid phases. The effect of the catalyst and volumetric flow rates of vinyl chloride monomer (VCM on the system have been evaluated through the proposed mathematical model. Furthermore, the study’s experimental data have been compared with the findings of the suggested model in the context of concentration and temperature reaction. Obtained results show good agreement between the proposed mathematical model and the actual plant data.

  9. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    Science.gov (United States)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária

    2015-02-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.

  10. Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil. Oil viscosity, pour point and phase behavior of organic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Andre L.C.; Lucas, Elizabete F. [Labratorio de Macromoleculas e Coloides na Industria de Petroleo/Instituto de Macromoleculas, Universidade Federal do Rio de Janeiro, P.O. Box 68525, 21945-970 Rio de Janeiro (Brazil); Gonzalez, Gaspar [Petrobras Research Center, Cidade Universitaria, Q.7, RJ 21949-900 Rio de Janeiro (Brazil)

    2001-12-29

    Several techniques have been used to minimize the problems caused by the wax deposition, and the continuous addition of polymeric inhibitors is considered an attractive technological alternative. The addition of copolymers like polyacrylates, polymethacrylates or poly(ethylene-co-vinyl acetate) (EVA) permit to inhibit the deposition phenomenon; nonetheless, this effect is specific, i.e. similar copolymers present different performance depending on their physical-chemical properties in solution. In this work, the influence of the EVA vinyl acetate content on the viscosity and the pour point of a Brazilian crude oil were evaluated. A correlation between both results was also obtained. The phase behavior and the solubility parameter of EVA copolymers, with different vinyl acetate contents, were investigated in various solvents together with an evaluation of the efficiency of these copolymers as pour point depressants for two different samples of crude oil. EVA copolymers containing 20, 30, 40 and 80 wt.% of vinyl acetate were used and tests with the crude oil were carried out using 50, 500, 1000 and 5000 ppm of EVA as additive. The results obtained from viscosity measurements showed that only below the temperature at which wax crystals start forming did the copolymer exhibit a strong influence in the reduction of oil viscosity, at an optimum concentration. The pour point results revealed EVA 30 to be the most efficient. The results obtained from both experiments showed that the viscosity and the pour point behaviors do not show good correlation. Not only the solubility parameter and the vinyl acetate content, but also the molecular weight and polydispersity have an important influence on both phase behavior and pour point depression. Furthermore, it was confirmed that the additive must present a reduced solubility at a temperature close to the crude oil cloud point. This, however, is not the only factor that determines the efficiency of the additive as paraffin

  11. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  12. Controlled radical polymerization of vinyl acetate in presence of ...

    Indian Academy of Sciences (India)

    nomenclature (Chokendoff and Nimantsverdrief 2007). It is worthy to note that adsorption and desorption isotherm curves of MCM-41 were superimposed completely, indi- cating that in this process, adsorption–desorption have the same energy. The same effect has been considered as a po- ssible and known mechanism in ...

  13. Controlled radical polymerization of vinyl acetate in presence of ...

    Indian Academy of Sciences (India)

    The heterogeneous TiCl4 catalysts supported on mesoporous mobile composition of matter (MCM-41) and mesoporous silicone particles synthesized from block copolymer of PPG–PEG–PPG (SPB) complexed with dimethyl formamide (DMF) ligand were used in a controlled free radical reaction with benzoyl peroxide ...

  14. Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate-Poly(dimethyl siloxane-Poly(methyl acrylate Block Copolymer/Poly(vinyl acetate Blend Membranes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2015-03-01

    Full Text Available Structure of polymeric materials is of the most important factors in determination of the characteristics and properties of the membranes. Various research and developments on polymeric membranes confirm the direct correlation between structure-properties of polymeric membranes. In this research, the structural outcome of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate/poly(vinyl acetate blend membranes and its relationship with gas permeation behavior of the blends were investigated. The flexible block copolymer of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate (PMA-PDMS-PMA was synthesized via atom transfer radical polymerization. Morphology and chemical structure of the synthesized block copolymer was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, X-ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. Blend membranes of PMA-PDMS-PMA and poly(vinyl acetate (PVAc were prepared by solution casting method in different compositions. By adding poly(vinyl acetate to PMA-PDMS-PMA block copolymer, the selectivity of the membranes for carbon dioxide/methane pair gases were increased by 55%. Fractional free volume (an indication of chain packing efficiency in blend membranes and dielectric constant (an indication of the molar volume and molar polarization of the blend membranes were obtained as the factors reflected the microstructural effect of PMA-PDMS-PMA and PVAc blend membranes. The efforts were directed toward expressing more precise structure-properties relationship of PMA-PDMS-PMA/PVAc blend membranes. The experimental permeability values of the blend membranes reported in this research were compared with the modified logarithmic model. The modified logarithmic model was evaluated for other blend membranes.

  15. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...

  16. IMPROVING OF RECLAIMED ASPHALT PAVEMENTS USING VINYL ACETATE-BUTYL ACRYLATE POLYMER

    OpenAIRE

    Nasser, A M; Abd El-Wahab

    2017-01-01

    According to the most recent surveys, the European area produced 265 mil tons of asphalt for road applications in 2014, while the amount of available Reclaimed Asphalt Pavement (RAP) was more than 50 mil tons. The use of RAP in new blended mixes reduces the need of neat bitumen, making RAP recycling economically attractive. This study investigates the potential use of vinyl acetate-bacrylate polymer and extracted Reclaimed Asphalt Pavement (RAP) in Hot Mix Asphalt (HMA) with different percent...

  17. Fabrication and Properties of Ethylene Vinyl Acetate-Carbon Nanofiber Nanocomposites

    OpenAIRE

    George, JinuJacob; Bhowmick, Anil K

    2008-01-01

    Abstract Carbon nanofiber (CNF) is one of the stiffest materials produced commercially, having excellent mechanical, electrical, and thermal properties. The reinforcement of rubbery matrices by CNFs was studied in the case of ethylene vinyl acetate (EVA). The tensile strength was greatly (61%) increased, even for very low fiber content (i.e., 1.0 wt.%). The surface modification of the fiber by high energy electron beam and gamma irradiation led to better dispersion in the rubber matrix. This ...

  18. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    Science.gov (United States)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  19. Effects of the addition of poly-vinyl-acetate to the copolymer of vinyl-ethylene-acetate, studied by solid state NMR; Efeito da adicao de poli(acetato de vinila) ao copolimero de etileno-acetado de vinila por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Claudia M.G. de; Tavares, Maria Ines B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1997-12-31

    This work presents an attempt to obtain vinyl ethylene-acetate copolymers with high concentration of vinyl acetate by several mixtures of this copolymer with poly(vinyl acetate). NMR was chosen as structural characterization technique as well as compatibility evaluation tool. Results are presented 8 refs., 2 tabs.

  20. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  1. Unique Curing Properties through Living Polymerization in Crosslinking Materials: Polyurethane Photopolymers from Vinyl Ether Building Blocks.

    Science.gov (United States)

    Kirschbaum, Stefan; Landfester, Katharina; Taden, Andreas

    2015-05-04

    Photopolymers with unique curing capabilities were produced by combining living cationic polymerization with network formation and restricted polymer motion. A vinyl ether diol was synthesized as a functional building block and reacted with isophorone diisocyanate to form a highly functionalized vinyl ether polyurethane as a model system with high crosslinking ability. When using a cationic photoinitiator, fast polymerization is observed upon short UV irradiation. Curing proceeds in the absence of light and under ambient conditions without oxygen inhibition. Cationic active sites become trapped dormant species upon network-induced vitrification and surprisingly remain living for several days. The polymerization can be reactivated by additional UV irradiation and/or raised temperature. The curing behavior was studied in detail by using UV and FT-NIR coupled rheology and photo-DSC to simultaneously study spectroscopic and mechanical information, as well as thermal effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hybrid polymerization of iso-butyl vinyl ether

    Science.gov (United States)

    Jiang, Bo; Yang, Lixing; Zhou, Yong; Huang, Guanglin; Lin, Libin

    2002-03-01

    The radiation-induced hybrid polymerization in the presence of the N-alkoxypyridinium salt having relatively stable nonnucleophilic anion (PF 6-) has been investigated in the paper. Based on the analysis of experimental data and the GPC spectrum, the onium salts not only oxidize α-alkoxyalkyl radicals, produced from IBVE in dichloromethane by irradiation, to the corresponding cations, but also give nonnucleophilic anions PF 6- for the polymerization system. The experimental results clearly demonstrate that free radical and cationic polymerization mechanisms occurred simultaneously in IBVE/EMP +PF 6-/CH 2Cl 2 systems on irradiation with γ-ray.

  3. Coverage effects on the palladium-catalyzed synthesis of vinyl acetate: comparison between theory and experiment.

    Science.gov (United States)

    Calaza, Florencia; Stacchiola, Dario; Neurock, Matthew; Tysoe, Wilfred T

    2010-02-24

    The high adsorbate coverages that form on the surfaces of many heterogeneous catalysts under steady-state conditions can significantly lower the activation energies for reactions that involve the coupling of two adsorbed intermediates while increasing those which result in adsorbate bond-breaking reactions. The influence of the surface coverage on the kinetics of metal-catalyzed reactions is often ignored in theoretical and even in some ultrahigh vacuum experimental studies. Herein, first principle density functional theoretical calculations are combined with experimental surface titration studies carried out over well-defined Pd(111) surfaces to explicitly examine the influence of coverage on the acetoxylation of ethylene to form vinyl acetate over Pd. The activation energies calculated for elementary steps in the Samanos and Moiseev pathways for vinyl acetate synthesis carried out on acetate-saturated palladium surfaces reveal that the reaction proceeds via the Samanos mechanism which is consistent with experimental results carried out on acetate-saturated Pd(111) surfaces. The rate-limiting step involves a beta-hydride elimination from the adsorbed acetoxyethyl intermediate, which proceeds with an apparent calculated activation barrier of 53 kJ/mol which is in very good agreement with the experimental barrier of 55 +/- 4 kJ/mol determined from kinetic measurements.

  4. Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available Starch-g-poly(maleic anhydride-co-vinyl acetate (SMV was synthesized via the esterification reaction of starch with the copolymer of maleic anhydride and vinyl acetate. The carboxylic unit percentage (CUP of SMV was tailored with reaction conditions, and it ranged from 29.8 to 46.9%. The structure and the morphology of the copolymers were characterized with Fourier Transform Infrared spectroscopy and X-ray diffraction analysis. It was found that SMV could form complex with some metal cations such as Ca2+, Pb2+ and Hg2+ or cationic polyelectrolyte chitosan, and precipitate from the solution. The weight of precipitation increases with an increase of the CUP of SMV. In addition, a physically cross-linked hydrogel of SMV/poly(vinyl alcohol (PVA was obtained by freeze/thaw technique. Scanning electron microscopy exhibited the hydrogel was uniform. The gel exhibited pH-responsive re-swelling. The maximum swelling-ratio values of SMV/PVA (9:1, wt/wt gel were 3.29 and 5.34 in HCl (pH 1.0 and phosphate-buffer saline (PBS (pH 12 respectively.

  5. Photoinitiated polymerization of new hybrid monomer containing vinyl ether and (methyl) acryloyl groups

    Science.gov (United States)

    Diao, Cuimei; Zou, Yingquan

    2011-04-01

    The photopolymerization kinetics of 4-(vinyloxy)butyl methacrylate containing cationic and free radical polymerizable vinyl groups was studied by real-time Fourier transform infrared spectra (RT-FTIR) .The cationic polymerizable vinyl ether moieties(Vc) of the hybrid monomer in solution polymerized rapidly by exposure to UV light in presence of a cationic photoinitiator such as an iodonium salt or suflonium salt .High conversions, of 90%, were obtained for most of the systems investigated. The efficiency of the cationic photoinitiators in initiating the polymerization of the vinyl ether moieties (Vc) of the hybrid monomer was in the order: suflonium salt > iodonium salt . The free radical polymerizable methacrylate groups (Vr) of the hybrid monomer in solution polymerized by exposure to UV light in presence of a radical photoinitiator such as 2,4,6-trimethyl benzoyl diphenylphoshine oxide (TPO), 2-isopropyl thioxanthone (ITX) , Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (Irgaure 819), 2-Methyl-4'-(methylthio)-2-morpholinopropiophenone (Irgaure 907). Among the photoinitiators , the best effect in initiating the polymerization of methacrylate groups (Vr) of the hybrid monomer is initiator Irgaure 907.

  6. Bis(formylphenolatocobalt(II-Mediated Alternating Radical Copolymerization of tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    Sanjib Banerjee

    2017-12-01

    Full Text Available The organometallic-mediated radical polymerization (OMRP of vinyl acetate (VAc and its OMR copolymerization (OMRcoP with tert-butyl 2-trifluoromethylacrylate (MAF-TBE mediated by Co(SAL2 (SAL = 2-formylphenolato or deprotonated salicylaldehyde produced relatively well-defined PVAc and poly(VAc-alt-MAF-TBE copolymers at moderate temperature (<40 °C in bulk. The resulting alternating copolymer was characterized by 1H-, 13C- and 19F-nuclear magnetic resonance (NMR spectroscopies, and by size exclusion chromatography. The linear first-order kinetic plot, the linear evolutions of the molar mass with total monomer conversion, and the relatively low dispersity (Đ~1.55 of the resulting copolymers suggest that this cobalt complex provides some degree of control over the copolymerization of VAc and MAF-TBE. Compared to the previously investigated cobalt complex OMRP mediators having a fully oxygen-based first coordination sphere, this study emphasizes a few peculiarities of Co(SAL2: a lower ability to trap radical chains as compared to Co(acac2 and the absence of catalytic chain transfer reactions, which dominates polymerizations carried in the presence of 9-oxyphenalenone cobalt derivative.

  7. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengchang; Liu, Pengqing, E-mail: liupq@scu.edu.cn; Zhao, Xiangsen; Xu, Jianjun, E-mail: xujj@scu.edu.cn

    2017-02-28

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  8. Evaluation of the vinyl acetate elimination process in methanogenic sludge with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Duran, U.; Monroy, O.; Rendon, B.; Gomez, J.; Ramirez, F.

    2009-07-01

    The vinyl acetate (AV) is a volatile toxic used in the painting manufacture, causing serious problems of contamination in grounds, air and natural bodies of water. Under methanogenic conditions the complete mineralization of the AV has not been obtained, but evidences exist suggesting that with the addition of low oxygen concentrations to methanogenic sludge the elimination of this compound is possible. In this work was studied the respiratory process of elimination of the AV methano genesis and methano genesis with oxygen (1 mg/L-d). (Author)

  9. Optimization of Solar Module Encapsulant Lamination by Optical Constant Determination of Ethylene-Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    Bing-Mau Chen

    2015-01-01

    Full Text Available This investigation elucidates the physical properties of ethylene-vinyl acetate (EVA used in the lamination process of module encapsulation and the module performance from the optical transmission to the photoelectric power. In module encapsulation, the effects of the lamination parameters on the module performance, transmittance, and stack adhesion have been considered as they were found to influence the reliability of the module. The determination of the optical constants of EVA may serve as a nondestructive analytical method for optimizing the module encapsulation, on the basis of its effects on the optical transmittance, gel content, peel strength, and performance power.

  10. Determination of gelation dose of poly(vinyl acetate) by a spectrophotometric method

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Yigit, Fatma

    1986-01-01

    The gelation point is an important property of polymers undergoing crosslinking when subjected to high energy radiation. This point is generally determined by viscometric and solubility methods or by mechanical measurements. When crosslinking and discoloration take place simultaneously, gelation doses can be determined spectrophotometrically. In this work it is demonstrated that the gelation dose of poly (vinyl acetate) can be determined by simply recording the u.v.-vis. spectra of the solutions of ..gamma..-irradiated polymer. The reliability of the method is verified by viscometric and solubility measurements.

  11. Oral drug delivery system based on interpolymer complex formation between poly(acrylic acid) and poly(vinyl pyrrolidone-co-vinyl acetate)

    CSIR Research Space (South Africa)

    Germishuizen, A

    2005-07-01

    Full Text Available as it passes through the acidic medium of the stomach (pH 1-2) square4 The drug is released upon entering the basic medium of the lower intestines (pH 6.2-7.4) square4 The delivery system should thus be pH- sensitive square4 A system based on inter... system based on interpolymer complex formation between poly(acrylic acid) and poly(vinyl pyrrolidone-co-vinyl acetate) 13 July 2005 André Germishuizen Supporting the Manufacturing and Materials Industry in its quest for global competitiveness CSIR...

  12. Morphology and interfacial action of nanocomposites formed from ethylene-vinyl acetate copolymers and organoclays.

    Science.gov (United States)

    Zhang, Qilu; Ma, Xiaoyan; Wang, Yifei; Kou, Kaichang

    2009-09-03

    The effect of the polarity of modifier and polymer matrixes on the morphology and interfacial action of nanocomposites was studied by molecular dynamics (MD) and inverse gas chromatography (IGC) based on ethylene-vinyl acetate (EVA) /organic montmorillonite (OMMT), where vinyl acetate (VA) concentrations are 9.3 and 18 wt %, respectively. It is found that EVA with higher VA concentration displays a higher surface energy than that with lower VA concentration. Modifier with two long alkyl tails will lower the surface energy of montmorillonite (MMT) more effectively. Combined with transmission electron microscopy (TEM) photography of EVA/OMMT nanocomposites, it is found that the surface energies of organic montmorillonite and EVAs make great contributions to the dispersion of the OMMT in polymer matrixes. OMMT modified by two long alkyl tails displays weaker acid and base properties which will have a better interaction with EVAs through acid-base interaction. Molecular simulation (MD) proved that nonpolar interaction determines the binding between EVAs and organoclays, otherwise electrostatic interaction in polar polymer/organoclay systems. Binding energies were calculated by MD, and the results show stronger interaction between 20A (organoclay made from two long alkyl tails surfactant) and EVA. Interfacial action between filler and polymer matrix should be accountable for the mechanical properties of the nanocomposite.

  13. Fire-retardant and fire-barrier poly(vinyl acetate composites for sealant application

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available Fire-retardant ceramifying poly(vinyl acetate (PVAc sealants have been prepared. The degradation of PVA was integrated with the action of the fire retardants to reduce flammable gases, produce carbonaceous char and convert the fillers into a self-supporting ceramic barrier. PVA is readily degraded by elimination of acetic acid, yielding a char that provides a transitory phase as the filler particles fuse into a ceramic mass. Acetic acid is eliminated at similar temperature to the release of water from magnesium hydroxide fire-retardant, thereby diluting flammable acetic acid. The residual oxide from the fire-retardant filler and structural filler are fused by a flux, zinc borate. The degradative and ceramifying processes were characterised using thermogravimetry, infrared spectroscopy, scanning electron microscopy and ceramic strength. Thermogravimetry of the composites was compared with additive mass loss curves calculated from the components. Deviations between the experimental and additive curves revealed interactions between the components in the composites. The modulus of the PVAc composites and the strength of their ceramic residues after combustion were determined.

  14. Synthesize and polymerization of novel photocurable vinyl ether monomers containing perfluorinated aromatic units

    Science.gov (United States)

    Li, Wei; Zou, Ying Quan

    2012-03-01

    A series of novel UV-curable vinyl ether monomers with perfluorinated aromatic units for photoresist had been designed and synthesized. Perfluorinated vinyl ether monomer I-1was prepared from the reactions of 2-vinyloxy ethanol and hexafluorobenzene in the presence of sodium hydride in DMF. And perfluorinated vinyl ether monomer I-2 was prepared from the reactions of I-1 and 2,2,2-trifluoroethanol in the presence of sodium carbonate in DMF. The photocrosslinked perfluorinated polymers obtained by PAG201 (a kind of cationic photo-initiator) initiating. When PAG201 was introduced into the monomers, the conversion of vinyl ether double bond increased sharply. The final conversion was close to 90%, and when the light intensity was 478μW/cm2, at 25 sec, the polymerization achieved maximum. Generally, the UV-curing performance of monomers with 3wt.% PAG201 concentration is superior to 2wt.% PAG201 concentration. And their physical and chemical properties satisfied the material requirements for photoresist or UV imaging materials.

  15. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  16. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  17. Influence of the degree of hydrolysis of poly(styrene-alt-maleic anhydride) on miscibility with poly(vinyl acetate)

    NARCIS (Netherlands)

    Bosma, M.; Vorenkamp, E.J.; Brinke, G. ten; Challa, G.

    1988-01-01

    The influence of the hydrolysis of anhydride groups in poly(styrene-alt-maleic anhydride) (PSMA) on its miscibility with poly(vinyl acetate) (PVAc) is investigated. The cloudpoint curves of these blends are determined as a function of the degree of hydrolysis. The miscibility is shown to improve

  18. Thermal properties of ethyl vinyl acetate (EVA/montmorillonite (MMT nanocomposites for biomedical applications

    Directory of Open Access Journals (Sweden)

    Alakrach A.M.

    2016-01-01

    Full Text Available The viability of nanocomposites comprising Ethyl Vinyl Acetate (EVA filled montmorillonite (MMT nanoclay as candidate materials of biomedical devices was investigated. EVA/MMT nanocomposites were prepared by incorporating the ratios 0, 1, 3 and 5% of organoclay MMT to EVA copolymer. In vitro biostability of the neat EVA and EVA nanocomposites was compared and assessed by exposing the materials to oxidizing and hydrolytic agents for 4 weeks at 37°C. The thermal properties of the neat EVA and EVA nanocomposites nanoclay filled were studied by using thermogravimetric analysis (TGA. TGA results indicate that the EVA nanocomposite sample containing 1 wt% MMT exhibits higher Tonset and significant reduction in the rate of mass loss as compared to the neat EVA and other nanocomposites.

  19. Fabrication and Properties of Ethylene Vinyl Acetate-Carbon Nanofiber Nanocomposites

    Directory of Open Access Journals (Sweden)

    George JinuJacob

    2008-01-01

    Full Text Available Abstract Carbon nanofiber (CNF is one of the stiffest materials produced commercially, having excellent mechanical, electrical, and thermal properties. The reinforcement of rubbery matrices by CNFs was studied in the case of ethylene vinyl acetate (EVA. The tensile strength was greatly (61% increased, even for very low fiber content (i.e., 1.0 wt.%. The surface modification of the fiber by high energy electron beam and gamma irradiation led to better dispersion in the rubber matrix. This in turn gave rise to further improvements in mechanical and dynamic mechanical properties of EVA. The thermal conductivity also exhibited improvements from that of the neat elastomer, although thermal stability of the nanocomposites was not significantly altered by the functionalization of CNFs. Various results were well supported by the morphological analysis of the nanocomposites.

  20. Fabrication and properties of ethylene vinyl acetate-carbon nanofiber nanocomposites.

    Science.gov (United States)

    George, Jinujacob; Bhowmick, Anil K

    2008-10-25

    Carbon nanofiber (CNF) is one of the stiffest materials produced commercially, having excellent mechanical, electrical, and thermal properties. The reinforcement of rubbery matrices by CNFs was studied in the case of ethylene vinyl acetate (EVA). The tensile strength was greatly (61%) increased, even for very low fiber content (i.e., 1.0 wt.%). The surface modification of the fiber by high energy electron beam and gamma irradiation led to better dispersion in the rubber matrix. This in turn gave rise to further improvements in mechanical and dynamic mechanical properties of EVA. The thermal conductivity also exhibited improvements from that of the neat elastomer, although thermal stability of the nanocomposites was not significantly altered by the functionalization of CNFs. Various results were well supported by the morphological analysis of the nanocomposites.

  1. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA in a photovoltaic thermal collector

    Directory of Open Access Journals (Sweden)

    J. Allan

    2016-03-01

    Full Text Available Samples of Ethylene-Vinyl Acetate (EVA were doped with particles of Boron Nitride (BN in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC technique. The thermal conductivity of parent EVA was increased from 0.24W/m ⋅ K to 0.80W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  2. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J., E-mail: james.p.allan14@gmail.com [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom); ChapmanBDSP, Saffron House, 6-10 Kirby Street, London, EC1N 8EQ (United Kingdom); Pinder, H.; Dehouche, Z. [School of Engineering and Design, Brunel University, London, UB8 3PH (United Kingdom)

    2016-03-15

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24 W/m ⋅ K to 0.80 W/m ⋅ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  3. Optical Study on Poly(methyl methacrylate/Poly(vinyl acetate Blends

    Directory of Open Access Journals (Sweden)

    R. M. Ahmed

    2009-01-01

    Full Text Available Transparent films of poly(methyl methacrylate/poly(vinyl acetate blend with different concentrations were prepared by using solution-cast technique. FT-IR transmission spectra were carried for the samples to detect the influence of UV radiation. In addition, optical absorption measurements were carried out for the samples at room temperature across the 190–900 nm wavelength regions before and after exposure to UV and filtered radiation using xenon arc lamp. The study has been also extended to include the changes in the optical parameters including the band tail width and band gap energies for the samples. Moreover, the refractive index was calculated for the samples from specular reflection and absorption spectrum before and after exposure to UV and filtered radiation.

  4. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole

    2011-01-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are...

  5. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  6. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.

    Science.gov (United States)

    Zhang, Dong-Hao; Peng, Li-Juan; Wang, Yun; Li, Ya-Qiong

    2015-05-01

    Poly(vinyl acetate-acrylamide) microspheres with an average diameter of 2-4μm were successfully prepared and characterized via SEM and FTIR. Then the microspheres were modified with epoxy groups through reacting with epichlorohydrin and used as carriers to covalently immobilize Candida rugosa lipase. The results revealed that agitation played an important role on epoxy activation and the immobilization ratio increased with the increase of the epoxy density. On the other hand, the specific activity of the immobilized lipase as well as the activity recovery declined gradually with the increase in the immobilization ratio from 72% to 93%, which were attributed to the steric hindrance effects caused by enzyme overloading. When epoxy density was 76μmol/g microsphere, the activity recovery reached the maximum at 47.5%, and the activity of the immobilized lipase was 261.3U/g microsphere. Moreover, the thermal stability of the immobilized lipase was much better than that of the free one, which indicated potential applications of the immobilized lipase. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  8. Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Polypropylene (PP was blended with ethylene vinyl acetate copolymer (EVA to form PP/EVA polymer blends. Wood powder (WP was mixed into these blends at different weight fractions (50/50/0, 45/45/10, 40/40/20, 35/35/30 w/w PP/EVA/WP to form PP/EVA/WP blend composites. The morphology, as well as thermal and mechanical properties, of these composites were investigated. The scanning electron microscopy (SEM and differential scanning calorimetry (DSC results confirm the immiscibility of EVA and PP in the blends, and show that WP is primarily concentrated in the EVA phase. DSC results further show that the EVA crystallization behaviour is significantly influenced by the presence of WP. Dynamic mechanical analysis (DMA results confirm immiscibility of PP and EVA, as well as an interaction between EVA and WP. Interaction between EVA and WP was further confirmed by Fourier-Transform infrared spectroscopy (FTIR. TGA results show that the blend composite degradation was also influenced by the presence of WP.

  9. Development and Characterization of Poly(1-vinylpyrrolidone-co-vinyl acetate) Copolymer Based Polymer Electrolytes

    Science.gov (United States)

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  10. Synergistic flame retardant effects between sepiolite and magnesium hydroxide in ethylene-vinyl acetate (EVA matrix

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available Some customers are reluctant to change, because the halogen-free solutions may have higher cost. This is one of the reasons that the synergistic effect is always the subject for researchers to pursue. The synergy between sepiolite and magnesium hydroxide (MH in halogen-free flame retardant ethylene-vinyl acetate (EVA copolymer was investigated in the paper through some common facilities, such as limiting oxygen index (LOI, UL-94 test, thermogravimetric analysis (TGA, differential thermal analysis (DTA and cone calorimeter test (CCT. In the wake of the positive results from the LOI and UL-94 tests, the CCT data indicated not only the reduction of heat release rate (HRR and mass loss rates (MLR, but also prolonged ignition time (TTI and depressed smoke release (SR were observed during combustion. Simultaneously, the tensile strength and Young’s modulus of the system were also much better improved with the increase of sepiolite added due to the hydrogen bonds between silanol groups attached to the sepiolite molecules and the ester groups of EVA. The synergistic mechanism has been discussed in the paper in terms of the barrier mechanism in the condensed phase.

  11. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    Science.gov (United States)

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  12. Enhanced dissolution rate of dronedarone hydrochloride via preparation of solid dispersion using vinylpyrrolidone-vinyl acetate copolymer (Kollidone® VA 64)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyuck Jun; Kang, Myung Joo [College of Pharmacy, Dankook University, Cheonan (Korea, Republic of); Han, Sang Duk [Dong-A ST Rese arch Institute, Pharmaceutical Product Research Laboratories, Yongin (Korea, Republic of)

    2015-09-15

    Solid dispersion (SD) systems have been widely used to increase the dissolution rate and oral absorption of poorly water-soluble compounds. In order to enhance the dissolution rate of dronedarone hydrochloride (DRN), a recent antiarrhythmic agent, SDs of DRN were formulated using conventional solvent evaporation method with amorphous polymers including hydroxypropyl methyl cellulose (HPMC), poly(vinyl pyrrolidone) (PVP), and vinylpyrrolidone-vinyl acetate copolymer (VA64). The prepared SDs were characterized in terms of drug crystallinity, morphology, and in vitro dissolution profile in aqueous medium. The physical characterization using differential scanning calorimetry and X-ray powder diffraction revealed that the active compound was molecularly dispersed in all polymeric carriers tested, in a stable amorphous form in drug to polymer ratios ranging from 1:0.5 to 1:2. The dissolution rates of DRN in all SDs were much higher than those from the corresponding physical mixture and drug powder alone. In particular, the greatest dissolution enhancement was obtained from the VA64-based SD in a drug to polymer weight ratio of 1:1, achieving almost complete drug release after 120 min at pH 1.2. Thus, VA64-based SD with higher drug dissolution rate along with a simple preparation process is suggested as an alternative for the oral formulation of the benzofuran derivative.

  13. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    Science.gov (United States)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  14. Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.

    Science.gov (United States)

    Marqués, Enrique; Mancha, Pedro J

    2018-02-05

    The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the

  15. PROPRIEDADES DE ARGAMASSAS COM EVA (ETHYLENE VINYL ACETATE EM SUBSTITUIÇÃO PARCIAL AO AGREGADO

    Directory of Open Access Journals (Sweden)

    Cleidson Carneiro Guimarães

    2017-03-01

    Full Text Available RESUMO: O setor da construção civil apresenta grande potencial para aproveitamento de vários tipos de resíduos industriais. A incorporação dos resíduos, principalmente nas argamassas e concretos, produtos com vasta aplicabilidade no setor, tem se mostrado como uma ótima alternativa na diversificação das matérias-primas e para a economia de recursos naturais. Esse trabalho avaliou as propriedades das argamassas, no estado fresco e endurecido, produzidas com substituição parcial da areia por resíduo de EVA (Ethylene Vinyl Acetate. Para isso, foram preparadas argamassas com teores de substituição do agregado 0% (referência, 5%, 10% e 15%, em massa. A relação água/cimento, para cada traço, foi determinada empiricamente e mantida constante para as argamassas com substituição. Os resultados apontam que as argamassas produzidas com agregado de EVA apresentam menor absorção de água e também um decréscimo da resistência mecânica. Desta forma, a produção de argamassas utilizando EVA em substituição ao agregado natural é viável, todavia é necessário avaliar os parâmetros mínimos de aplicação para cada finalidade. Dessa forma, o trabalho apresenta contribuição ao servir de suporte a gestores de empresas de argamassas ou gestores de obra a tomarem decisões acerca da inserção do resíduo de EVA na produção de argamassa. ABSTRACT: The construction sector has great potential for use of various types of industrial waste. The incorporation of waste, especially in mortar and concrete products with wide applicability in the industry, has proven to be a great alternative for diversification of raw materials and the economy of natural resources. This study evaluated the properties of mortars in fresh and hardened state, made with partial replacement of sand by waste EVA (Ethylene Vinyl Acetate. For this, mortars were prepared with substitution aggregate content 0%(reference, 5%, 10% and 15% by weight. The water

  16. Effect of Saponification Condition on the Morphology and Diameter of the Electrospun Poly(vinyl acetate Nanofibers for the Fabrication of Poly(vinyl alcohol Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2016-10-01

    Full Text Available Novel poly(vinyl alcohol (PVA nanofiber mats were prepared for the first time through heterogeneous saponification of electrospun poly(vinyl acetate (PVAc nanofibers. The effect of varying the saponification conditions, including temperature, time, and concentration of the alkaline solution, on the morphology of the saponified PVA fibers were evaluated by field-emission scanning electron microscopy. At 25 °C, the saponified PVA fibers exhibited a broad diameter distribution. The average fiber diameter, however, was found to decrease with increasing saponification temperature. When the saponification time was increased from 6 to 30 h, the average fiber diameter decreased gradually from 1540 to 1060 nm. In addition, the fiber diameter and morphology were also affected by the concentration of the alkaline saponification solution. The most optimal conditions for fabrication of thin, uniform, and smooth PVA nanofibers corresponded to an alkaline solution containing 10 g each of NaOH, Na2SO4, and methanol per 100 g of water, a temperature of 25 °C, and a saponification time of 24 h.

  17. Comparative study on the effect of electron beam irradiation on the physical properties of ethylene-vinyl acetate copolymer composites

    Science.gov (United States)

    Wang, Bibo; Hong, Ningning; Shi, Yongqian; Wang, Biao; Sheng, Haibo; Song, Lei; Tang, Qinbo; Hu, Yuan

    2014-04-01

    Ethylene-vinyl acetate copolymer (EVA) flame retarded by a combination of cellulose acetate butyrate (CAB) microencapsulated ammonium polyphosphate (MCAPP) and polyamide-6 (PA-6) have been crosslinked by high energy electron beam irradiation. The effect of high energy electron beam irradiation on the crosslinking degree, mechanical, electrical and thermal properties of EVA/MCAPP/PA-6 cable material was studied by gel content, heat extention test, mechanical test, dynamic mechanical analysis, high-insulation resistance meter and thermogravimetric analysis. The gel content and heat extention test results showed that the EVA/MCAPP/PA-6 composites can be easily crosslinked by electron beam irradiation. The tensile strength of EVA composites was drastically increased from 16.2 to maximum 26.2 MPa as the electron beam irradiation dose increases from 0 to 160 kGy. The volatilized products of EVA/MCAPP/PA-6 composites were analyzed and compared by thermogravimetric analysis/infrared spectrometry (TG-FTIR).

  18. Kinetic Monte Carlo study of vinyl acetate synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100)

    Science.gov (United States)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-11-01

    On the basis of the activation barriers and reaction energies from DFT calculations, kinetic Monte Carlo (kMC) simulations of vinyl acetate (VA) synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100) were carried out. Through kMC simulation, it was found that VA synthesis from ethylene acetoxylation proceeds via Moiseev mechanism on both Pd(100) and Pd/Au(100). The addition of Au into Pd can suppress ethylene dehydrogenation while it can promote acetic acid dehydrogenation, which can eventually facilitate VA synthesis as a whole. The addition of Au into Pd can further improve the conversion and selectivity of VA synthesis from ethylene acetoxylation. When the reaction network is analyzed, besides the energetics of each elementary reaction, the surface coverage of each species and the occupancy of the surface sites on the catalyst should also be taken into consideration.

  19. A NOVEL POLYACRYLAMIDE-BASED HYDROGEL CROSSLINKED WITH CELLULOSE ACETATE AND PREPARED BY PRECIPITATION POLYMERIZATION

    OpenAIRE

    Muñoz-García, Rubén O.; Hernández, María E.; Ortiz, Genaro G.; Víctor V. A. Fernández; Arellano,Martín R.; Sánchez-Díaz,Juan C.

    2015-01-01

    The synthesis of polyacrylamide-cellulose acetate hydrogels by precipitation polymerization in acetone solution is reported herein. These hydrogels exhibit smaller swelling ratios and larger compression moduli than homo polyacrylamide hydrogels. For cellulose acetate concentrations above 20 wt.%, hydrogels with N,N'-methylenebisacrylamide as a crosslinker exhibit swelling ratios and compression moduli similar to those of the hydrogels without the crosslinker. A possible explanation for this b...

  20. Effect of UV aging on degradation of Ethylene-vinyl Acetate (EVA) as encapsulant in photovoltaic (PV) modules

    Science.gov (United States)

    Badiee, Amir; Wildman, Ricky; Ashcroft, Ian

    2014-10-01

    A lifetime of 20-30 years is generally regarded as necessary for photovoltaic modules to achieve economic break even. As a consequence, understanding how to improve the durability and reliability of the modules is becoming a necessity. Photovoltaic modules are exposed to extremely harsh conditions of heat, humidity, and ultraviolet (UV) radiation which affect the properties of the encapsulant material and cause yellowing, delamination and degradation of the material, which knock on effects on the performance and the long-term reliability of photovoltaic modules. This study addresses the impact of UV on the photochemical degradation of Ethylene-vinyl Acetate (EVA). Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance (FTIR-ATR) mode was performed on aged samples. The samples were exposed to UV light from a xenon lamp at 0.68 W/m2 at 340 nm with exposure up to 1000 hours. The FTIR-ATR measurement shows significant changes in the absorption at 1740 cm-1, 1720 cm-1 and 910 cm-1 which correspond to acetate, carboxylic acid and vinyl group respectively. It is shown that the UV exposure is the most significant aging factor. The rate of the photooxidation of EVA is compared by measuring the changes of absorbance at 1720 cm-1 with the UV irradiation time.

  1. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe......This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP....../VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min...... with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and 0...

  2. Non-isothermal crystallization kinetics of partially miscible ethylene-vinyl acetate copolymer/low density polyethylene blends

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available The non-isothermal crystallization kinetics of ethylene-vinyl acetate copolymer (EVA, 14 wt% vinyl acetate content, low density polyethylene (LDPE and their binary blends with different blending ratio were investigated via differential scanning calorimetry. Jeziorny theory and Mo’s method were utilized in evaluating the crystallization behavior of both neat materials successfully. In the primary crystallization stage both EVA and LDPE had three-dimensional spherulitic growth mechanism. Apparently the crystallization rate of LDPE was faster than that of EVA at a low cooling rate. Increase in cooling rate limited the spherulites’ growth, which narrowed their rate difference. Influences from blending on the crystallization kinetics of each component in EVA/LDPE mixture were evaluated by Kissinger’s activation energy (∆E and Khanna’s crystallization rate coefficient (CRC. Inter-molecular interaction in the melt increased the ∆E of both EVA and LDPE components at the beginning of cooling. During the primary crystallization stage of LDPE, dilution effect from EVA facilitated the crystal growth in LDPE. Co-crystallization between EVA component and the secondary crystallization stage of LDPE component also increased the CRC of EVA. In blend of EVA/LDPE = 7/3, LDPE obtained the maximal CRC value of 174.2 h–1. Results obtained from various approaches accorded well with each other, which insured the rationality of conclusion.

  3. A NOVEL POLYACRYLAMIDE-BASED HYDROGEL CROSSLINKED WITH CELLULOSE ACETATE AND PREPARED BY PRECIPITATION POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    Rubén O. Muñoz-García

    2015-09-01

    Full Text Available The synthesis of polyacrylamide-cellulose acetate hydrogels by precipitation polymerization in acetone solution is reported herein. These hydrogels exhibit smaller swelling ratios and larger compression moduli than homo polyacrylamide hydrogels. For cellulose acetate concentrations above 20 wt.%, hydrogels with N,N'-methylenebisacrylamide as a crosslinker exhibit swelling ratios and compression moduli similar to those of the hydrogels without the crosslinker. A possible explanation for this behavior is that cellulose acetate crosslinks polyacrylamide via free-radical reaction. The hydrogels obtained without the N,N'-methylenebisacrylamide crosslinker exhibit compression moduli up to 1.7 MPa, making them suitable for tissue engineering applications such as cartilage replacement.

  4. Characterization of plasma-polymerized 4-vinyl pyridine with silver nanoparticies on poly(ethylene terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, J.; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2006-01-01

    on the poly(4-vinyl pyridine) coating by UV irradiation in Silver nitride water solution, in order to enhance the anti-microbial properties. Different kinds of modified PET films were tested for anti-microbial properties against yeast (Debaryomyces hansenii) by using microbiological analyser mu-4200......4-vinyl pyridine was polymerized on poly(ethylene terephthalate) (PET) film by using lower energy pulsed AC plasma under low pressure in Ar atmosphere. The plasma polymerized coating was characterized by ATR Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), field emission...

  5. Chemical modification of the ethylene-co-vinyl acetate copolymer (EVA) for testing like additive for lubrication oil; Modificacao quimica de copolimero de etileno-coacetato de vinila (EVA) para ser testado como aditivo para oleo lubrificante

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Claudia R.E.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: celias@ima.ufrj.br; elucas@ima.ufrj.br; Alvares, Dellyo R.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: dellyo@cenpes.petrobras.com.br

    2003-07-01

    One of the most widely used techniques for solving the drawback caused by the deposition of paraffin crystals as observed in the petroleum industry is the use of organic deposition inhibitors - ODI's. This work aims at the development of polymeric materials to be employed as ODI's for crudes and middle distillate petroleum oils, such as lube oils. To this purpose, commercial ethylene-co-vinyl acetate (EVA) copolymers were submitted to chemical modifications involving esterification reactions with long chain organic acid chlorides, the amount of which being varied in order to obtain materials of different side chain contents. The resulting products were tested as lube oil additives, and the oils had their pour points assessed. Results showed that the chemically modified copolymers had a more pronounced influence in the paraffin crystallization process, leading to a more accentuated decrease in the lube oil pour point, than the non-modified EVA commercial sample. (author)

  6. Synthesis and characterization of poly(methyl methacrylate-co-vinyl acetate) and its evaluation as filtrate reducer; Sintese e caracterizacao de poli(metacrilato de metila-co-acetato de vinila) e sua avaliacao como redutor de filtrado

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rita de Cassia P.; Pires, Renata V.; Segtovich, Iuri V.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, (UFRJ), RJ (Brazil)], e-mail: repires@ima.ufrj.br

    2011-07-01

    The drilling of petroleum well is extremely important and requires the use of suitable drilling fluids in order to ensure an efficient operation without causing rock damage. Specific polymers have been used in controlling infiltration during drilling, ensuring the operation success. In this work, spherical microparticles of poly(methyl methacrylate-co-vinyl acetate) (PMMA-VAc), prepared by suspension polymerization, were evaluated in terms of their performance in controlling filtrate loss of aqueous fluids. A filter press test with ceramic disc, simulating the rock, was used. The performance of the synthesized materials was compared to that of commercial polymers. It was observed that the performance of the material is directly associated to the relation between particle size and pore size of rock specimen. Furthermore, when the particle size is suitable, the rubbery characteristic of the material produces a more efficient filter cake, for filtrate control. (author)

  7. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  8. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV)-Vanillin Redox System

    OpenAIRE

    M. Palanivelu; K. E. N. Nalla Mohamed; T. Hidayathulla Khan; M. Prem Nawaz

    2012-01-01

    The kinetics of polymerization of methyl methacrylate initiated by Ce(IV)-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp) and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and...

  9. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  10. Photo-Fries rearrangements of 1-naphthyl (R-2-phenylpropanoate in poly(vinyl acetate and ethyl acetate: influence of medium polarity and polymer relaxation on motions of singlet radical pairs

    Directory of Open Access Journals (Sweden)

    Xu Jinqi

    2006-01-01

    Full Text Available Both the regio- and stereo-chemistries of the photoreactions of 1-naphthyl (R-2-phenylpropanoate have been investigated in poly(vinyl acetate films in their glassy (at 5masculineC and melted (at 50masculineC states and in ethyl acetate. These results are compared with those from irradiations in polyethylene films and in n-hexane. The regioselectivity of the intermediate 1-naphthoxy/(R-2-phenylpropanoyl radical pair combinations is much higher in both the melt and glassy states of poly(vinyl acetate films than that in the melt state of completely amorphous polyethylene films, but the stereoselectivity of intermediate prochiral 1-naphthoxy/1-phenylethyl radical pair combinations is much lower in poly(vinyl acetate. The results emphasize the need to control the ratio between the rates of radical tumbling and translation, as well as the ratio between the rates of in-cage motions and cage-escape, if high stereo- and regio-selectivities of combination products are to be achieved. A mechanistic picture of how the radicals of the intermediate pairs are affected by and interact with the various media is advanced.

  11. Effect of rare Earth ions on the properties of composites composed of ethylene vinyl acetate copolymer and layered double hydroxides.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available BACKGROUND: The study on the rare earth (RE-doped layered double hydroxides (LDHs has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. METHODOLOGY/PRINCIPAL FINDINGS: The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA/LDHs composites were also explored in detail. CONCLUSIONS/SIGNIFICANCE: S-Ni₀.₁MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni₀.₁MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites.

  12. Simultaneous Determination of Furan and Vinyl Acetate in Vapor Phase of Mainstream Cigarette Smoke by GC-MS

    Directory of Open Access Journals (Sweden)

    AIFEI XU

    Full Text Available ABSTRACT A simple and sensitive method for simultaneous determination of furan and vinyl acetate (VA in vapor phase of mainstream cigarette smoke with cold trap and gas chromatography-mass spectrometry (GC-MS was developed. A Cambridge filter pad (CFP was placed in front of the impingers of smoking machine to remove the particle phase from cigarette smoke. Furan and VA in vapor phase of mainstream cigarette smoke were collected in two impingers connected in series by filled with methanol at -78°C. The solutions were added with deuterium-labeled furan-d4 and VA-d6 as internal standards and analyzed by GC-MS. The results showed that the calibration curves for furan and VA were linear (r2 > 0.9995 over the studied concentration range. The intra- and inter-day precision values for furan and VA were <7.07% and <9.62%, respectively. The extraction recoveries of furan and VA were in the range of 94.5-97.7% and 92.3-94.9%, respectively. Moreover, the limits of detection for furan and VA were 0.028 µg mL-1 and 1.3 ng mL-1, respectively. The validated method has been successfully applied to determine the emissions of furan and VA in the vapor phase of mainstream cigarette smoke under International Organization for Standardization (ISO and Canadian Intense (CI smoking regimen.

  13. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride nanofiber mats

    Directory of Open Access Journals (Sweden)

    Bethwel Tarus

    2016-09-01

    Full Text Available Cellulose Acetate (CA and Poly (Vinyl Chloride (PVC nanofiber mats were electrospun into nanofibers. The morphology and mechanical properties of nanofiber mats were evaluated versus different solution concentrations. Solutions were prepared in mixed solvent systems of 2:1 (w/w Acetone/N,N-Dimethylacetamide (DMAc and 3:2 (w/w Acetone/N,N-Dimethylformamide (DMF for CA and 1:1 (w/w Tetrahydrofuran/DMF for PVC. Scanning electron microscopy (SEM images revealed that a beaded fibrous structure could be electrospun beginning at 10% CA in both Acetone/DMAc and Acetone/DMF solvent systems. The experimental results showed that smooth fibers were achievable at 14% CA in Acetone/DMAc and at 16% CA in Acetone/DMF solvent systems. For PVC, beaded fibers were formed at 12% PVC and smooth fibers were formed beginning at 14% PVC. Tensile strength tests showed that mechanical properties of the nonaligned nanofiber mats were influenced by solution concentration. With increasing solution concentration, the tensile strengths, break strains and initial moduli of the CA nanofiber mats increased. The effect of solution concentration on the tensile strengths of nanofiber mats was quite significant while it did not have any considerable effect on the tensile properties of the cast films.

  14. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV-Vanillin Redox System

    Directory of Open Access Journals (Sweden)

    M. Palanivelu

    2012-01-01

    Full Text Available The kinetics of polymerization of methyl methacrylate initiated by Ce(IV-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and decreases at higher temperature (>60°C. The overall activation energy (Ea was found to be 36.7 kJ/mol. A suitable kinetic scheme has been proposed.

  15. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  16. Preparation and Study of some Physical Properties of (Polystyrene/Ethel vinyl acetate Blend Nanofibers

    Directory of Open Access Journals (Sweden)

    Hanaa J. Khadhim

    2017-07-01

    Full Text Available This search aims to fabricate immiscible nanofibers (Polystyrene/Ethyl phenyl acetate blends with different average porous for different applications by electrospinning technique. PS and EVA were mixed by (50/50 to prepare 0.1 (w/v con.%, each polymer dissolved in (Tetra hydro furan . Resulting nanofibers morphology was studied by Atomic force microscopy (AFM and high optical resolution microscope (HORM , Contact angle between the water and the surface of nanofibers by contact angle analyzer also studied for (hydrophilic or hydrophopic behavior . FTIR test for checking the emergence or not of new bonds in the nanofibers blend was performed. AFM Results show that the prepared blends of (PS+EVA have homogenous needle structures (nanofibers at three dimensions , while the results of (HORM shows the nonwoven structures contain intermediates pours structure , Contact angle results show that decrease of the contact angle after adding the EVA polymer to PS, and this refers to the (EVA/PS nanofibers blends have hydrophilic behavior.

  17. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Thevy Ratnam, Chantara [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Kamaruddin, Nur Hasiba [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia)

    2017-04-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  18. Effect of dynamic crosslinking on phase morphology and mechanical properties of polyamide 6,12/ethylene vinyl acetate copolymer blends

    Directory of Open Access Journals (Sweden)

    Fabrício Bondan

    2015-03-01

    Full Text Available The dynamic crosslinking of polyamide 6,12 and ethylene vinyl acetate (PA6,12/EVA blends in the mixing chamber of a torque rheometer was investigated. EVA was selectively crosslinked within the PA6,12 phase through free radical reactions using dycumil peroxide. The degree of EVA crosslinking in the PA12,6/EVA materials was estimated based on the gel content (insoluble EVA fraction. The PA6,12/EVA phase morphology was investigated by scanning electron microscopy. The mechanical properties were investigated by determining the tensile strength and hardness. The half-life time ( for homolytic scission of the dcumil peroxide (DCP was ~6s, and this time is longer than the dispersion time of the DCP in the blends. The addition of DCP resulted in increased torque values due to specific crosslinking in the EVA phase. For the pure EVA and its blends with PA6,12 the stabilized torque values increased proportionally with the amount of DCP in the system, due to a higher degree of crosslinking of the elastomeric phase. The gel content of the dynamically crosslinked blends increased with the amount of DCP incorporated until 4 phr. At 1 phr the gel content value was 2.6wt.%, while at 4 phr it was 17wt.%. For the polymer blend with 8 phr of DCP a lubricating effect contributed to reducing the gel content. The dynamically crosslinked blends, regardless of the amount of DCP added, showed a reduction in the mechanical properties, which is related to the morphological features of the system due to the low mechanical fragmentation during melt processing.

  19. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl Methylcellulose Acetate Succinate Composite for Site-Specific Oral Drug Delivery.

    Science.gov (United States)

    Kerdsakundee, Nattha; Li, Wei; Martins, João Pedro; Liu, Zehua; Zhang, Feng; Kemell, Marianna; Correia, Alexandra; Ding, Yaping; Airavaara, Mikko; Hirvonen, Jouni; Wiwattanapatapee, Ruedeekorn; Santos, Hélder A

    2017-10-01

    An advanced oral drug delivery system that can effectively deliver drugs with poor oral bioavailability is strongly desirable. Herein, a multifunctional nano-in-micro structured composite is developed by encapsulation of the mucoadhesive poly(methyl vinyl ether-co-maleic acid) modified halloysite nanotubes (HNTs) with the pH-responsive hydroxypropyl methylcellulose acetate succinate by the microfluidics to control the drug release, increase cell-particle interaction, and improve drug absorption. The microparticles show spherical shape, homogeneous particle size distribution (58 ± 1 µm), and pH-responsive dissolution behavior at pH > 6, and they prevent the premature release of curcumin in simulated pH conditions of the stomach and immediately release the curcumin in simulated pH conditions of the small intestine. The surface modification of HNT with mucoadhesive poly(methyl vinyl ether-co-maleic acid) significantly enhances its interactions with the intestinal Caco-2/HT29-MTX cells and the mouse small intestines, and increases the permeability of curcumin across the co-cultured Caco-2/HT29-MTX cell monolayers by about 13 times compared to the free curcumin. Therefore, the developed multifunctional nanotube-mucoadhesive poly(methyl vinyl ether-co-maleic acid)@hydroxypropyl methylcellulose acetate succinate composite is a promising oral drug delivery system for drugs with poor oral bioavailability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simultaneous radiation induced graft polymerization of N-vinyl-2-pyrrolidone onto polypropylene non-woven fabric for improvement of blood compatibility

    Science.gov (United States)

    Li, Rong; Wang, Hengdong; Wang, Wenfeng; Ye, Yin

    2013-07-01

    In this study, N-vinyl-2-pyrrolidone (NVP) was grafted onto polypropylene non-woven fabric (PPNWF) through a simultaneous irradiation induced graft polymerization technique. Effect of the parameters of graft polymerization, i.e., monomer concentration, absorbed dose and dose rate, on the degree of grafting (DG) was investigated. The graft polymerization of NVP was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). A contact angle goniometry was used to test water contact angle (WCA) of original PPNWF and modified samples. The in vitro blood compatibility, including hemolysis, protein adsorption, platelet adhesion and activated partial thromboplastin time (APTT) of tested specimens, was evaluated. The results demonstrated that the hemocompatibility of PPNWF was improved via graft polymerization of NVP.

  1. Photoinduced charge-carrier modulation of inkjet-printed carbon nanotubes via poly(vinyl acetate) doping and dedoping for thermoelectric generators

    Science.gov (United States)

    Horike, Shohei; Fukushima, Tatsuya; Saito, Takeshi; Koshiba, Yasuko; Ishida, Kenji

    2018-01-01

    Here, we studied the charge-carrier modulation of single-walled carbon nanotubes (SWCNTs) via poly(vinyl acetate) (PVAc) doping and dedoping under ultraviolet (UV) light irradiation with the aim of pairing several p- and n-type SWCNTs as thermoelectric (TE) elements. The Seebeck coefficient of the SWCNTs was first made negative by doping with PVAc and then made positive again through UV-induced PVAc dedoping. A possible TE module configuration and the process for its fabrication are proposed, wherein prints and photopatterns can be obtained without the use of additional electrodes. Our findings enable the fabrication of fine TE modules using simple materials and techniques.

  2. Substituent Effects on Regioselectivity of the Diels-Alder Reactions: Reactions of 10-Allyl-1,8-dichloroanthracene with 2-Chloroacrylonitrile, 1-Cyanovinyl Acetate and Phenyl Vinyl Sulfone

    Directory of Open Access Journals (Sweden)

    Mujeeb A. Sultan

    2016-01-01

    Full Text Available Diels-Alder reaction of 10-allyl-1,8-dichloroanthracene (3 with 2-chloroacrylonitrile (4 and 1-cyanovinyl acetate (5 gives exclusively the ortho isomer while its reaction with phenyl vinyl sulfone (10 yields a mixture of two isomeric adducts with priority to ortho isomer. The reactions proceeded under microwave condition in xylene. Configurations of these isomers have been assigned with the help of NMR spectra. The results indicated that the steric effect is dominating toward the isomer regioselectivity in the Diels-Alder reaction of the present compounds.

  3. Block copolymers of poly(vinyl ethers) and poly(ethylene glycol) by means of the living cationic polymerization of vinyl ethers

    NARCIS (Netherlands)

    Loontjens, Ton; Derks, Frank; Kleuskens, Engelien

    1992-01-01

    If living poly(vinyl ethers) are terminated with a large excess of methanol, containing aqueous ammonia, well-defined products are obtained. If only a slight excess of methanol is used, aldehydes and coupling products are formed. However, termination with an excess of a hydroxy terminated polymer is

  4. Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate.

    Science.gov (United States)

    Pang, Jinhui; Liu, Xin; Yang, Jun; Lu, Fachuang; Wang, Bo; Xu, Feng; Ma, Mingguo; Zhang, Xueming

    2016-09-20

    In the present study, we describe a novel one-step method to prepare water-soluble cellulose acetate (WSCA) with higher degree of polymerization values (DP = 650-680) by in situ activation of carboxyl group in ionic liquid. First of all, cellulose was dissolved in 1-ethyl-3-methylimidazolium acetate (EmimAc) and reacted with dichloroacetyl chloride (Cl2AcCl) in order to make cellulose dichloroacetate. Under various conditions, a series of water soluble products were produced. Elemental analysis and NMR results confirmed that they were cellulose acetate with DS (degree of substitution) values in the range from 0.30 to 0.63. NMR studies demonstrated that Cl2AcCl reacted with acetate anion of EmimAc producing a mixed anhydride that acetylated cellulose. Other acylating reagents such as benzoyl chloride, chloroacetyl chloride can also work similarly. 2D NMR characterization suggested that 6-mono-O-acetyl moiety, 3,6-di-O-acetylcellulose and 2,6-di-O-acetyl cellulose were all synthesized and the reactivity of hydroxyl groups in anhydro-glucose units was in the order C-6>C-3>C-2. This work provides an alternative way to make WSCA, meanwhile, also services as a reminder that the activity of EmimAc toward carbohydrate as acylating reagents could be a problem, because the expected acylated products may not be resulted and recycling of this ionic liquid could also be difficult.

  5. Production and Characterization of 3-Methacryloxypropyltrimethoxysilane Modified Polyvinyl Acetate Dispersion

    Directory of Open Access Journals (Sweden)

    Mindaugas Dubininkas

    2016-03-01

    Full Text Available Semi-continuous vinyl acetate (VAc radical emulsion polymerization in water with 3-methacryloxypropyltrimethoxysilane (GF31 co-monomer was performed using protective colloid PVA and surface-active compound. The impact of GF31 on polyvinyl acetate (PVAc dispersion physicochemical and production parameters were determined. Even low quantities of GF31 (up to 1.5 % of VAc mass had crucial impact on PVAc dispersion and dispersion film’s parameters.

  6. Effect of the addition of poly-saccharide in rejected (vinyl - ethylene - acetate) copolymer studied by solid state NMR; Efeito da adicao de polissacarideo em copolimero (etileno-acetato de vinila) rejeito por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Mothe, Cheila G. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica; Tavares, Maria Ines B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1997-12-31

    The solid state NMR study of vinyl-ethylene-acetate with and without starch has as main objective to obtain biodegradable materials. The biodegradation is affected by environmental conditions, but mainly by the type of polymer. In order to obtain more information concerning this process, several instrumental techniques were used. Results are presented 6 refs., 1 fig., 1 tab.

  7. Radiation processed ethylene vinyl acetate-multiple walled carbon nanotube nano-composites: Effect of MWNT addition on the gel content and crosslinking density

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available Different compositions of ethylene vinyl acetate (EVA/multiple walled carbon nanotube (MWNT nano-composites were prepared by melt mixing and subjected to different doses of gamma radiation. The efficiency of radiation vulcanization was analyzed by sol-gel analysis, Charlesby-Pinner parameter estimation and crosslinking density measurements. Gamma radiation induced crosslinking was found to increase with MWNT fraction in EVA-MWNT nano-composites (p0/q0 in the range: 1.15–0.98. These results ruled out the possibility of a significant neutralization of single ionization spurs by MWNT addition. The incorporation of MWNT also resulted in increased hardness and higher density of the nano-composite matrix. The efficiency of multifunctional acrylates as crosslinking aid in the radiation-induced vulcanization of EVA-MWNT nano-composites was also investigated. The results established lower efficiency of methacrylates than of acrylates in the radiation vulcanization process.

  8. Effect of homopolymer poly(vinyl acetate on compatibility and mechanical properties of poly(propylene carbonate/poly(lactic acid blends

    Directory of Open Access Journals (Sweden)

    J. Gao

    2012-11-01

    Full Text Available A small amount of homopolymer poly(vinyl acetate (PVAc is used to compatibilize the biodegradable blends of poly(propylene carbonate (PPC and poly(lactic acid (PLA. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC results show that PVAc is selectively localized in the PLA phase and at the interface between PPC and PLA phases. As a result, these interface-localized PVAc layers act as not only a compatibilizer to improve the phase dispersion significantly but also a bridge to increase the interfacial adhesion between PPC and PLA phases dramatically. Both of them are believed to be responsible for the enhancement in mechanical properties. This work provides a simple avenue to fabricate eco-friendly PPC/PLA blends with high performance, and in some cases, reducing the demand for petroleumbased plastics such as polypropylene.

  9. MALDI SpiralTOF high-resolution mass spectrometry and Kendrick mass defect analysis applied to the characterization of poly(ethylene-co-vinyl acetate) copolymers.

    Science.gov (United States)

    Fouquet, Thierry; Nakamura, Sayaka; Sato, Hiroaki

    2016-04-15

    Poly(ethylene-co-vinyl acetate) copolymers - usually referred to as EVA - are first class industrial polymers used for applications ranging from padding to photovoltaics as encapsulant for the silicon solar cells. Various techniques have been used for their characterization but the analysis of intact EVA chains using mass spectrometry (MS) has not been reported so far. Three copolymers containing 18, 25 and 40 wt% vinyl acetate (VA) have been characterized using an off-line coupling of size-exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization (MALDI) spiral-time-of-flight (TOF) high-resolution mass spectrometry (HRMS). The representativeness of those results for the entire samples has been checked using (13) C NMR spectroscopy. Lastly, Kendrick mass defect analysis has been proposed as an alternative and user-friendly data treatment method. The shortest chains isolated by SEC fractionation and mass-analyzed by HRMS have been thoroughly described in terms of end-groups (found to be hydrogens) and co-monomeric composition. The VA content was successfully derived from the peak assignments in MS spectra for the EVA 40 wt% and 25 wt% while it tended to be overestimated for the latest EVA 18 wt% (increasing poly(ethylene) character). Similar results have been found using a faster data treatment method relying on the Kendrick mass defect analysis of the MS data. EVA low molecular weight intact oligomers have been extensively characterized by MS for the first time and the structural features confidently extended to the full sample according to NMR data. The Kendrick mass analysis finally constituted an efficient method for a fast evaluation of their VA content with no need for manual assignment. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  10. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  11. Organic acids as efficient catalysts for group transfer polymerization of N,N-disubstituted acrylamide with silyl ketene acetal : polymerization mechanism and synthesis of diblock copolymers

    OpenAIRE

    Kikuchi, Seiya; Chen, Yougen; Kitano, Kodai; Takada, Kenji; Satoh, Toshifumi; Kakuchi, Toyoji

    2015-01-01

    The group transfer polymerization (GTP) of N,N-diethylacrylamide (DEAA) was studied using various combinations of an organic acid of N-(trimethylsilyl) bis-(trifluoromethanesulfonyl) imide (Me3SiNTf2), 1-(2,3,4,5,6-pentafluorophenyl)-1,1-bis(trifluoromethanesulfonyl) methane (C6F5CHTf2), and tris(pentafluorophenyl) borane (B(C6F5)(3)) and a silyl ketene acetal (SKA) of 1-methoxy-1-(trimethylsiloxy)-2-methyl-1-propene (MeSKA), 1-methoxy-1-(triethylsiloxy)-2-methyl-1-propene (EtSKA), 1-methoxy1...

  12. Significant effects of sodium acetate, an impurity present in poly(vinyl alcohol) solution on the radiolytic formation of silver nanoparticle

    Science.gov (United States)

    Shin, Junhwa; Kim, Yunhye; Lee, Kiwon; Lim, Youn Mook; Nho, Young Chang

    2008-07-01

    A silver nanoparticle (AgNPs) stabilizer, polyvinyl alcohol (PVA) generally contains a relatively large amount of sodium acetate (NaOAc) as an impurity (up to several weight percentages) as a result of a base-catalyzed hydrolysis of poly(vinyl acetate) (PVAc). In this study, the effects of NaOAc on the radiolytic formation of AgNPs in PVA solutions were studied by using UV/vis spectroscopy. Several AgNPs were prepared by γ-ray irradiation using 60Co source at various doses in the presence of various amounts of NaOAc. The UV data of the AgNPs observed at around 410 nm show that more AgNPs are generally produced as the NaOAc concentration in the PVA solution increases. Furthermore, no significant absorption band of the AgNPs was observed when the purified PVA containing a very small amount of NaOAc (less than 3×10 -4 M) was applied with 1×10 -3 M AgNO 3 up to 10 kGy. These results reveal that NaOAc present as an impurity in PVA, plays an important role in the radiolytic formation of AgNPs.

  13. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Toward living radical polymerization.

    Science.gov (United States)

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2008-09-01

    tertiary cyanoalkyl trithiocarbonate is suited to (meth)acrylate, (meth)acrylamide, and styrenic monomers, while a cyanomethyl xanthate or dithiocarbamate works with vinyl monomers, such as vinyl acetate or N-vinylpyrrolidone. With the appropriate choice of reagents and polymerization conditions, these reactions possess most of the attributes of living polymerization. We have used these methods in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, including microgels and polymer brushes. Applications of these polymers include novel surfactants, dispersants, coatings and adhesives, biomaterials, membranes, drug-delivery media, electroactive materials, and other nanomaterials.

  15. The adsorption of methyl methacrylate and vinyl acetate polymers on α-quartz surface: A molecular dynamics study

    Science.gov (United States)

    Yan, Lijing; Yang, Yan; Jiang, Hui; Zhang, Bingjian; Zhang, Hui

    2016-01-01

    The molecular dynamics simulation was used to investigate the adsorption of polymethyl methacrylate (PMMA) and polyvinyl acetate (PVA), the commonly used surface coating materials, on α-quartz surface. The objective is to understand the interactions between quartz surface and polymers. The results clearly show adsorption of both polymers onto the quartz surface. Carbonyl group plays a significant role in the adsorption process. The adsorption energies of PMMA and PVA on α-quartz surface did not show significant difference, however, more hydrogen bonds were observed on the PVA/quartz system than PMMA/quartz. These observations might offer some insights on the polymer-quartz adhesion and its failure mechanism.

  16. Exchange of organic radicals with organo-cobalt complexes formed in the living radical polymerization of vinyl acetate

    NARCIS (Netherlands)

    Li, S.; de Bruin, B.; Peng, C.-H.; Fryd, M.; Wayland, B.B.

    2008-01-01

    Exchange of organic radicals between solution and organo-cobalt complexes is experimentally observed and the reaction pathway is probed through DFT calculations. Cyanoisopropyl radicals from AIBN (2,2'-azobisisobutyronitrile) enter solutions of cobalt(II) tetramesityl porphyrin ((TMP)Co-II center

  17. Effect of oxidation agent on wood biomass in ethylene vinyl acetate conductive polymer: tensile properties, tensile fracture surface and electrical properties

    Science.gov (United States)

    Hanif, M. P. M.; Supri, A. G.; Rozyanty, A. R.; Tan, S. J.

    2017-10-01

    The wood fiber (WF) type of Pulverised Wood Filler obtained by combustion process at temperature under 700 °C for 3 hours was characterized and coated with ferric chloride (FeCl3) by ethanol solution. Both carbonized wood fiber (CWF) and carbonized wood fiber-ferric chloride (CWF-FeCl3) were used as filler in ethylene vinyl acetate (EVA) conductive polymer. The filler was coated with FeCl3 to enhance the properties of the CWF to achieve progressive mechanical and electrical properties. The CWF and CWF-FeCl3 loading were varied from 2.5 to 10.0 wt%. EVA/CWF and EVA/CWF-FeCl3 conductive polymer were processed by using Brabender Plasticoder at 160 °C with 50 rpm rotor speed for 10 min. The mechanical properties were investigated by tensile testing and the tensile fractured surface of conductive polymers was analyzed by scanning electron microscopy (SEM) analysis. Then, the electrical conductivity of conductive polymer was determined by four-point probe I-V measurement system. The EVA/CWF-FeCl3 conductive polymer showed greater electrical conductivity and tensile strength but lower elongation at break than EVA/CWF conductive polymer. SEM morphology displayed rougher surface between CWF-FeCl3 and EVA phases compared to EVA/CWF conductive polymer.

  18. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    Science.gov (United States)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-04-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.

  19. Effect of Zeolite Modification via Cationic Exchange Method on Mechanical, Thermal, and Morphological Properties of Ethylene Vinyl Acetate/Zeolite Composites

    Directory of Open Access Journals (Sweden)

    N. D. Zaharri

    2013-01-01

    Full Text Available In this research, organozeolite filled ethylene vinyl acetate (EVA composites were prepared in a melt-mixing process and followed by compression molding using hot press machine according to standard test specimen. Prior to mixing process, zeolite was modified via cationic exchange of alkylammonium ions. The effect of zeolite or organozeolite loading from 5 up to 25 volume percentages on the properties of EVA/zeolite composites was evaluated. A combination of Fourier Transform Infrared Radiation (FTIR and scanning electron microscopy (SEM coupled with energy dispersive X-ray (EDX analysis were done to characterize the resultant organoclay. Tensile test was performed in order to study the mechanical properties of the composites. EVA filled with organozeolite showed better tensile properties compared to EVA filled with unmodified zeolite, which might be an indication of enhanced dispersion of organophilic clay in the composites. Meanwhile, morphological study using SEM revealed the fibrillation effect of organozeolite. Besides, thermal properties of the composites were also characterized by using thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the application of the cation exchange treatment increases both decomposition and melting temperature of EVA/zeolite composites.

  20. Post thermoforming dimensional changes of ethylene vinyl acetate used in custom-made mouthguards for trauma prevention--a pilot study.

    Science.gov (United States)

    Geary, Julian Lindsay; Kinirons, Martin James

    2008-06-01

    It is important that mouthguards have an adequate thickness of material if they are to be effective in the prevention of trauma. The aim of this study was to quantify dimensional changes that occur on thermoforming ethylene vinyl acetate (EVA) sheets used in the construction of mouthguards. Fourteen batches of 3 mm thick sheet EVA were thermoformed over dental models under a number of common processing conditions including, model height, inclination, shape and model temperature, model position on thermoforming platform, plasticizing time and evacuation method. Thickness of thermoformed material was determined at anterior and posterior sites and measurements were compared to determine the magnitude and patterns of stretching collectively and within each processing condition. Overall, sheets of 3-mm EVA stretched by 52% during the thermoforming conditions tested. Incisal/cuspal sites were found to be significantly thinner when compared with all other locations measured. A number of thermoforming conditions were demonstrated to have a significant effect on the degree to which the EVA material stretched. For the combination of materials and equipment tested in this study, current thermoforming practices may cause excessive thinning of EVA in critical areas including incisal edges and cusp tips, thereby reducing the protective effect for professionally made mouthguards. To optimize protection in vulnerable areas, it is important that clinicians distinguish between EVA sheet thickness and the cross-sectional dimensions achieved in the finished mouthguards. They need to be specific in their prescription of the thickness of material they require especially in critical areas.

  1. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2016-05-01

    Full Text Available The effects of transition metals on the hydrophobicity of nano–structured layered double hydroxides (LDHs and the compatibility of LDHs/ethylene vinyl acetate (EVA composites have seldom been reported. NiMgAl–LDHs slightly surface–modified with stearate and doped with transition metal cations (Mn2+, Co2+, Cu2+, Zn2+ are investigated. Compared to the pure EVA, not only were the maximal degradation–rate temperatures (Tmax of the ethylene–based chains enhanced, but also the smoke production rate (SPR and the production rate of CO (COP were sharply decreased for all the composites. Most importantly, a new flame retardant mechanism was found, namely the peak heat release rate (pk-HRR time, which directly depends on the peak production rate of CO2 (pk-CO2 time for EVA and all composites by cone calorimeter test. Moreover, the Mn–doped LDH S–NiMgAl–Mn shows more uniform dispersion and better interfacial compatibility in the EVA matrix. The cone calorimetric residue of S–NiMgAl–Mn/EVA has the intumescent char layer and the compact metal oxide layer. Therefore, S–NiMgAl–Mn/EVA shows the lowest pk-HRR and the longest pk-HRR time among all the composites.

  2. Assisted heterogeneous multinucleation and bubble growth in semicrystalline ethylene-vinyl acetate copolymer/expanded graphite nanocomposite foams: Control of morphology and viscoelastic properties

    Directory of Open Access Journals (Sweden)

    O. Yousefzade

    2015-10-01

    Full Text Available Nanocomposite foams of ethylene-vinyl acetate copolymer (EVA reinforced by expanded graphite (EG were prepared using supercritical nitrogen in batch foaming process. Effects of EG particle size, crosslinking of EVA chains and foaming temperature on the cell morphology and foam viscoelastic properties were investigated. EG sheet surface interestingly provide multiple heterogeneous nucleation sites for bubbles. This role is considerably intensified by incorporating lower loadings of EG with higher aspect ratio. The amorphous and non-crosslinked domains of EVA matrix constitute denser bubble areas. Higher void fraction and more uniform cell structure is achieved for non-crosslinked EVA/EG nanocomposites foamed at higher temperatures. With regard to the structural variation, the void fraction of foam samples decreases with increasing the EG content. Storage and loss moduli were analyzed to study the viscoelastic properties of nanocomposite foams. Surprisingly, the foaming process of EVA results in a drastic reduction in loss and storage moduli regardless of whether the thermoplastic matrix contains EG nanofiller or not. For the EVA/EG foams with the same composition, the nanocomposite having higher void fraction shows relatively lower loss modulus and more restricted molecular movements. The study findings have verified that the dynamics of polymer chains varies after foaming EVA matrix in the presence of EG.

  3. Effect of fibre treatments on tensile properties of ethylene vinyl acetate/natural rubber/mengkuang leaf fibre (EVA/NR/MLF) thermoplastic elastomer composites

    Science.gov (United States)

    Hashim, Faiezah; Ismail, Hanafi; Rusli, Arjulizan

    2017-07-01

    Nowadays, a great attention has been dedicated to natural fibers as reinforcement for polymer composites. Natural fibers, compared to glass fibers, exhibit better mechanical properties, such as stiffness, impact strength, flexibility and modulus. However, certain drawbacks, such as the incompatibility between fibers and polymer matrices, the tendency to form aggregates during processing and the poor resistance to moisture, reduce the use of these natural fibers as reinforcements in polymers. Several treatments and modifications are being used to improve the adhesion between fibre and matrix. In this work, the effect of bleaching treatments using hydrogen peroxide in the Mengkuang leaf fibre (MLF) was evaluated on tensile properties of Ethylene Vinyl Acetate (EVA)/Natural Rubber (NR)/MLF composites. Treated MLF were mixed with the EVA/NR blend in Haake internal mixer at 120 °C and rotor speed of 50 rpm for 10 minutes. Fibre morphology and the fibre/matrix interface ware further characterized by scanning electron microscopy (SEM). The tensile strength was increased by about 8% as compared to the composites with untreated fibers. The increased adhesion between fiber and matrix was also observed by SEM. Thus, EVA/NR/MLF composites reinforced with the treated fibres exhibited better tensile properties than untreated EVA/NR/MLF composites.

  4. Compression Effects on the Phase Behaviour of Miconazole-Poly (1-Vinylpyrrolidone-Co-Vinyl Acetate) Solid Dispersions-Role of Pressure, Dwell Time, and Preparation Method.

    Science.gov (United States)

    Singh, Abhishek; De Bisschop, Cathérine; Schut, Henk; Van Humbeeck, Jan; Van Den Mooter, Guy

    2015-10-01

    Compression of miconazole-poly (1-vinylpyrrolidone-co-vinyl acetate) (PVPVA64) solid dispersions prepared by spray drying and hot-melt extrusion was performed to gain insights into effect of compression pressure, dwell time, and preparation method on compression-dependent phase behavior. The solid dispersions prepared by spray drying were initially phase-separated showing two glass transition temperature (Tg), whereas the extruded samples showed one single Tg indicating better mixing. Compression caused mixing of spray-dried solid dispersions at high compression pressures and especially high dwell times. The extruded systems showed no statistically significant differences. However, physical mixtures made up from extruded samples containing 20% and 40% of active pharmaceutical ingredient underwent mixing upon compression. Coincidence Doppler measurements were performed to quantify the free volume of PVPVA64 which is a major contributor to the free volume in the solid dispersion matrix. A small but significant difference was found between the open free volume of the pure polymer subjected to varied manufacturing processes. Compression-induced plastic deformation and plastic flow enhances molecular mobility leading to mixing of different domains in solid dispersions. Different manufacturing methods may result in products with similar free volume, thereby showing similar molecular mobility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer.

    Science.gov (United States)

    Osman, Azlin F; M Fitri, Tuty Fareyhynn; Rakibuddin, Md; Hashim, Fatimah; Tuan Johari, Syed Ahmad Tajudin; Ananthakrishnan, Rajakumar; Ramli, Rafiza

    2017-05-01

    Polymer-clay based nanocomposites are among the attractive materials to be applied for various applications, including biomedical. The incorporation of the nano sized clay (nanoclay) into polymer matrices can result in their remarkable improvement in mechanical, thermal and barrier properties as long as the nanofillers are well exfoliated and dispersed throughout the matrix. In this work, exfoliation strategy through pre-dispersing process of the organically modified montmorillonite (organo-MMT) nanofiller was done to obtain ethyl vinyl acetate (EVA) nanocomposite with improved flexibility, toughness, thermal stability and biostability. Our results indicated that the degree of organo-MMT exfoliation affects its cytotoxicity level and the properties of the resulting EVA nanocomposite. The pre-dispersed organo-MMT by ultrasonication in water possesses higher degree of exfoliation as compared to its origin condition and significantly performed reduced cytotoxicity level. Beneficially, this nanofiller also enhanced the EVA flexibility, thermal stability and biostability upon the in vitro exposure. We postulated that these were due to plasticizing effect and enhanced EVA-nanofiller interactions contributing to more stable chemical bonds in the main copolymer chains. Improvement in copolymer flexibility is beneficial for close contact with human soft tissue, while enhancement in toughness and biostability is crucial to extend its life expectancy as insulation material for implantable device. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate elastomer composites with surface modified BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingyi; Xie Liyuan; Jiang Pingkai; Wang Genlin; Liu Fei, E-mail: xyhuang@sjtu.edu.c, E-mail: pkjiang@sjtu.edu.c [Shanghai Key Lab of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-12-21

    In this study, we investigated the influence of the surface modified BaTiO{sub 3} nanoparticles on the electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate (EVM) vulcanizates. Gamma-aminopropyl triethoxysilane was used as a silane coupling agent for the surface treatment of the BaTiO{sub 3} nanoparticles. It was found that the incorporation of surface modified BaTiO{sub 3} nanoparticles into the EVM matrix not only increased the permittivity, thermal conductivity and the mechanical strength but also showed a comparative dielectric loss tangent with pure EVM vulcanizates. In particular, the nanocomposites exhibit relatively high dielectric strength and good ductility even at the loading level of 50 vol%. The improved properties not only originate from the homogeneous dispersion of BaTiO{sub 3} nanoparticles but also should be ascribed to the strong interfacial interaction between the surface modified BaTiO{sub 3} nanoparticles and EVM matrix. We also investigated the dielectric relaxation behaviour of the BaTiO{sub 3} filled EVM nanocomposites by using Jonscher's theory of universal dielectric response.

  7. Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won; Choi, Myung Chan; Chang, Young-Wook; Noh, Si-Tae [Hanyang University, Ansan (Korea, Republic of); Kwon, Soon Kil [Agency for Defense Development, Daejeon (Korea, Republic of)

    2015-02-15

    A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were investigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with Br{sub 2} and subsequent nucleophilic substitution reaction of the brominated PBD with NaN{sub 3}. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.

  8. The reactivity of linseed and soybean oil with different epoxidation degree towards vinyl acetate and impact of the resulting copolymer on the wood durability

    Directory of Open Access Journals (Sweden)

    M. Jebrane

    2017-05-01

    Full Text Available Linseed (LO and soybean oil (SO were in–situ epoxidized with peracetic acid to produce different degree of epoxidized LO and epoxidized SO. For comparison purpose, commercial epoxidized linseed oil (ELO® and epoxidized soybean oil (ESO® were also included in the study. The effect of epoxidation degree on the copolymerization reaction between epoxidized oils and vinyl acetate (VAc was investigated. Results showed that a copolymer can be formed between VAc and epoxidized LO with high epoxy content, while no reaction occurred between VAc and SO or its epoxidized derivatives. As the most reactive monomer among the studied oils, the epoxidized LO with highest epoxy content (i.e. ELO® was mixed with VAc and then impregnated into the wood using three different ELO®/VAc formulations either as solution or as emulsions. After curing, the impact of the resulting copolymer issued from the three tested formulations on the wood durability was evaluated. Results showed that the formulation comprising VAc, ELO®, H2O, K2S2O8 and alkaline emulsifier (Formulation 3 can significantly improve wood’s durability against white rot- (Trametes versicolor and brown rot fungi (Postia placenta and Coniophora puteana. Treated wood of 8% weight percentage gain (WPG was sufficient to ensure decay resistance against the test fungi with less than 5% mass loss.

  9. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    Science.gov (United States)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  10. Facile Synthesis of Multiblock Copolymers Containing Sequence-Controlled Peptides and Well-Defined Vinyl Polymers by Nitroxide-Mediated Polymerization.

    Science.gov (United States)

    Nishimura, Shin-Nosuke; Higashi, Nobuyuki; Koga, Tomoyuki

    2017-08-10

    Precisely incorporating a wide range of structural and functional multiblocks along a polymer backbone is a significant challenge in polymer chemistry and offers promising opportunities to design highly ordered materials, including controlled polymer folding. Herein, a facile and versatile strategy for preparing functional multiblock copolymers composed of sequential peptides and well-defined vinyl polymers with a narrow polydispersity is reported. Cyclic oligopeptides have been developed that contain an alkoxyamine bond in the framework. By using this type of cyclic initiator, peptide-containing multiblock copolymers are successfully synthesized by nitroxide-mediated polymerization of styrene. To demonstrate the versatility of this method, radical (co)polymerizations were carried out for different monomers (p-chlorostyrene, 4-vinylpyridine, and styrene/acrylonitrile) and by three different cyclic peptide initiators with specific amino acid sequences. The resultant multiblock copolymer is foldable through intramolecular interactions between peptide blocks. It is believed that this approach will significantly advance the field of controlled polymer synthesis for complex structures and single-chain folding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  12. STUDY OF THE INFLUENCE OF MAGNESIUM HYDROXIDE ON THE COMBUSTIBILITY PERFORMANCE OF POLYMER COMPOSITIONS BASED ON ETHYLENE VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    E.V. Chuleyeva

    2017-04-01

    Full Text Available Purpose. To obtain the flame retardants polymer compositions for cables tested the effect of use EVA compositions with magnesium hydroxide, on indicators combustibility polymer. Methodology. We used the method of differential scanning calorimetry and defined heat flux dependence on the test time for each composition at temperatures from 20 °C to 600 °C rate of temperature rise: 50 °C/min, 75 °C/min, 100 °C/min. Using the model of free kinetics we determined dependence of the activation energy from the conversion, a dependence of the conversion on the time of the test, the dependence of the time of the conversion from the temperature for each concentration. To comparison of these parameters for each composition we plotted the dependence of the time of the conversion from the temperature and the dependence the degree of conversion from the time of temperature exposure during the combustion of each of the compositions. Results. We obtained the kinetic characteristics, allowing to determine the composition, which provided the best results to reducing the kinetic parameters of flammability of polymeric compositions. Originality. For the first time we used the DSC and model-free kinetics to determine the effect properties of ingredients of the polymer compositions on the combustibility performance. Practical use. The research results can be used to develop polymer compositions for cable products.

  13. Preparation of semi-IPN (BA–VAc–VAE) by emulsion polymerization ...

    Indian Academy of Sciences (India)

    ethylene (VAE) and butyl acrylate (BA), as well as vinyl acetate (VAc), was prepared through emulsion polymerization with the help of self-made dispersant and diethylene glycol diacrylate (DEGDA), the cross-linking agent. Both the dispersant and ...

  14. Preparation and characterization of highly electrically and thermally conductive polymeric nanocomposites

    OpenAIRE

    I. Tavman; V. Çeçen; Özdemir, I.; A. Turgut; I. Krupa; Omastova, M.; Novak, I

    2009-01-01

    Purpose: The conducting polymers and polymeric composites have attracted considerable attention in recent years because of their potential applications in advanced technologies, for example, in antistatic coatings, electromagnetic shielding.Design/methodology/approach: In this study the conductive fillers were expanded graphite (EG) and untreated graphite (UG), the base material was ethylene- vinyl acetate copolymer (EVA). Nanocomposites containi...

  15. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang, E-mail: zhangpolyu@aliyun.com

    2016-06-10

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC{sub m}E{sub n}VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 1}VE), ethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 1}VE), diethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 2}VE) and diethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 2}VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are in a hexagonal lattice, and the onset temperatures for melting of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC{sub 16}E{sub 1}VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 300 °C; on the contrary, it’s 283 °C for PC{sub 16}E{sub 1}VE. Using a weak polarity, flexible alkyl ether chain (-OCH{sub 2}CH{sub 2}O-) as a spacer to link the main chain and side chain

  16. Functional polyolefins prepared by group 4 diamide complexes through tandem ring-opening metathesis/vinyl insertion polymerization

    OpenAIRE

    Xu, Guangjuan

    2014-01-01

    Since the intense exploration and commercialization of new polymerization technologies based on single-site and metallocene catalysts, polyolefins with new and innovative properties are produced on a multibillion pound scale per year. Although the saturated structure of polyolefins offers many merits, the non-polar nature of polyolefins limits their applications. Unsaturated copolymers hold great potential in materials chemistry, as they allow for the synthesis of functional polyolefins witho...

  17. Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization.

    Science.gov (United States)

    Chun, Myung Kwan; Cho, Chong Su; Choi, Hoo Kyun

    2002-06-17

    To develop a new mucoadhesive drug carrier, poly(vinyl pyrrolidone) (PVP)/poly(acrylic acid) (PAA) interpolymer complexes were prepared by the template polymerization of acrylic acid using PVP as a template polymer. Fourier transform infrared results showed that the interpolymer complexes were formed by hydrogen bonds between the carboxyl groups of PAA and the carbonyl groups of PVP. The adhesive forces of the PVP/PAA interpolymer complexes were higher than that of commercial Carbopol 971. Moreover, the adhesive force and the release rate can be controlled by changing the mole ratios of PVP and PAA. The release rates of ketoprofen from the PVP/PAA interpolymer complexes showed pH-dependency, and were slower at lower pH. The release rate of ketoprofen from the complex seemed to be mainly controlled by the dissolution rate of the complex above a pK(a) of PAA (4.75) and by the diffusion rate below the pK(a). The prepared complex appears to be an adequate carrier for the mucoadhesive drug delivery system.

  18. Facile "living" radical polymerization of methyl methacrylate in the presence of iniferter agents: homogeneous and highly efficient catalysis from copper(II) acetate.

    Science.gov (United States)

    Jiang, Hongjuan; Zhang, Lifen; Jiang, Xiaowu; Bao, Xiaoguang; Cheng, Zhenping; Zhu, Xiulin

    2014-08-01

    A facile homogeneous polymerization system involving the iniferter agent 1-cyano-1-methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2 ) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0 /[MANDC]0 /[Cu(OAc)2 ]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical "living"/controlled features of "living" radical polymerization, even with ppm level catalyst Cu(OAc)2 , first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. (1) H NMR spectra and chain-extension experiments further confirm the "living" characteristics of this process. A plausible mechanism is discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2014-01-01

    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  20. Effect of the addition of sugar cane bagasse fibers in the composite with the copolymer vinyl ethylene-acetate (EVA) by solid state NMR; Efeito da adicao de fibras do bagaco de cana-de-acucar no composito com o copolimero de etileno-acetato de vinila (EVA) por ressonancia magnetica nuclear no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Universidade Estadual Norte Fluminense, Campos dos Goytacazes, RJ (Brazil); D`Almeida, Jose Roberto Moraes [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Menezes, Sonia M.C. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Tavares, Maria Ines Bruno [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1997-12-31

    Natural fibers composites obtained form sugar cane bagasse and ethylene-vinyl-acetate copolymer were prepared with different compositions and analysed by solid state Carbon-13 NMR aiming the observation of molecular mobility, compatibility, and chemical structure of the different obtained composites. One objective of this work was to enable the future commercial application of these materials 12 refs., 2 figs., 3 tabs.

  1. Poly (aniline-co-m-aminobenzoic acid) deposited on poly (vinyl ...

    Indian Academy of Sciences (India)

    vinyl alcohol) (PVA) by in situ polymerization. The polymerization was effected within maleic acid (MA) cross-linked PVA hydrogel. The copolymer was obtained by oxidative polymerization of aniline hydrochloride and -aminobenzoic acid using ...

  2. Kinetics of deactivation of catalysts for vinyl acetate synthesis in the fluidized-bed reactor: The optimal loading and distribution of zinc acetate in the porous structure of a support

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, S.V.; Makhlin, V.A. [Karpov Institute of Physical Chemistry, Moscow (Russian Federation)

    1995-03-01

    The deactivation of a catalyst (zinc acetate on activated carbon) including a change of the phase state of the active component is considered. The mechanism and relevant kinetic model of the deactivation are presented. A degree of thermal decomposition of zinc acetate controls the deactivation rate, which depends on the loading and distribution of zinc acetate in the porous structure of a support. A modeling of the process in an industrial reactor is performed with regard to the deactivation, attrition, and loss of a catalyst. Each carbon support has an optimal loading of zinc acetate (equal to the critical value), which provides both a high activity and stability of catalyst operation. The reasons behind the fast deactivation of the commercial catalyst are revealed. The possibility is demonstrated of extending the life time of a catalyst on available carbon supports by a factor of {approximately}2.5, due to the optimal loading and distribution of the active component in the porous support structure.

  3. Preparation of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 powders by microwave-induced poly(vinyl alcohol) solution polymerization

    Science.gov (United States)

    Zhai, Yuling; Ye, Chang; Xia, Feng; Xiao, Jianzhong; Dai, Lei; Yang, Yifan; Wang, Yongqian

    A new and simple chemical route, named microwave-induced poly(vinyl alcohol) (PVA) solution polymerization, has been used to prepare fine, homogeneous and high-density pellets of purer La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (denoted as LS 0.2GM 0.17). The effect of different contents of PVA as the polymeric carrier, was studied and we obtained an optimal amount of PVA (1.65:1 ratio of positively charged valences of the cations (Me n+) to negatively charged hydroxyl (-OH -) groups of the organics), which could ensure homogenous distribution of the metal ions in the polymeric network structure and inhibit segregation. The behavior of the powder after calcination at different temperatures was studied. The PVA solution process consumed less organic material compared with the Pechini process, and consequently PVA was a more effective carrier in the preparation of LSGM. Higher heating rate and a more homogenous heating manner without thermal gradients in the microwave oven resulted in fewer secondary phases in the LS 0.2GM 0.17 powder after calcination at 1400 °C for 9 h and a smaller pellet grain size (2-3 μm) without segregation. The density of LS 0.2GM 0.17 pellet sintered at 1400 °C for 9 h was 6.19 g cm -3.

  4. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Directory of Open Access Journals (Sweden)

    Zong-Cheng Chen

    2014-09-01

    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  5. Improved photostability and cytotoxic effect of coenzyme Q10 by its association with vitamin E acetate in polymeric nanocapsules.

    Science.gov (United States)

    Pegoraro, Natháli S; Mattiazzi, Juliane; da Silveira, Elita F; Azambuja, Juliana H; Braganhol, Elizandra; Cruz, Letícia

    2017-06-07

    The present study showed the development of nanocapsules containing the association of the coenzyme Q10 and vitamin E acetate and the evaluation of their effect on in vitro cells culture of malignant glioma and melanoma. In order to investigate if nanocapsules are able to protect coenzyme Q10 from degradation under UVC radiation, a photostability study was carried out. For this, three concentrations of vitamin E acetate were evaluated (1%, 2%, or 3%). Nanocapsules presented suitable physicochemical characteristics and were able to protect coenzyme Q10 from photodegradation. In addition, this protection was influenced by higher vitamin E acetate concentrations, attributing to this oil an important role on coenzyme Q10 photostabilization. Regarding to in vitro citotoxicity assay, nanocapsules containing coenzyme Q10 and 2% vitamin E significantly reduced glioma and melanoma cell viability in 61% and 66%, respectively. In this sense, these formulations represent interesting platforms for the delivery of coenzyme Q10 and vitamin E acetate, presenting effect on the reduction of malignant cells viability.

  6. Vinyl Record

    DEFF Research Database (Denmark)

    Bartmanski, Dominik; Woodward, Ian

    2018-01-01

    In this paper, we use the case of the vinyl record to show that iconic objects become meaningful via a dual process. First, they offer immersive engagements which structure user interpretations through various material experiences of handling, use, and extension. Second, they always work via enta...

  7. Effect of adding TiO{sub 2} to ethylene vinyl acetate copolymer on the latter's thermal properties and crystallinity; Efeito da adicao de TIO{sub 2} nas propriedades termicas e na cristalinidade do copolimero de etileno/acetato de vinila

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, Ana Claudia S.; Tavares, Maria Ines Bruno; Silva, Emerson Oliveira da, E-mail: eos@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano

    2014-04-15

    We investigated the effect of adding titanium dioxide nanoparticles (TiO{sub 2}) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO{sub 2} containing 0.25%–1% TiO{sub 2}, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO{sub 2} to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization. (author)

  8. In situ generation of silver nanoparticles in poly(vinyl alcohol)/poly(acrylic acid) polymer membranes in the absence of reducing agent and their effect on pervaporation of a water/acetic acid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhard, Shvshankar; Kwon, Yong Sung; Moon, MyungJun; Shon, Min Young [Dept. of Industrial Chemistry, Pukyong National University, Busan (Korea, Republic of); Park, You In; Nam, Seung Eun [Center for membranes, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2016-12-15

    The in situ generation of silver nanoparticles in a poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) polymer matrix in the absence of any additional reducing agent is reported and tends to the membrane fabrication using solution-casting. Its effect on the separation of a water/acetic acid mixture by pervaporation is described. The results of UV spectroscopy, scanning electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy analyses showed that the silver nanoparticles were successfully prepared and well dispersed in the polymer matrix. The increased hydrophilicity of the PVA/PAA membrane due to the presence of silver nanoparticles was confirmed by Fourier transform infrared spectroscopy, contact angle measurements, and membrane absorption studies. Pervaporation data for composite membranes showed a three-fold increase in the flux value, while the initially decreased separation factor subsequently showed a constant value. Overall, the pervaporation data suggested that the presence of silver nanoparticles benefited the dehydration process.

  9. Cementos óseos acrílicos modificados con hidroxiapatita/acetato de vinilo: caracterización mecánica, termoanálitica y bioactividad in vitro Acrylic bone cement modified whit hydroxiapatyte/vinyl acetate: mechanical, thermoanalytical characterization and in vitro bioactivity

    Directory of Open Access Journals (Sweden)

    Nayrim B. Guerra

    2010-06-01

    Full Text Available Los cementos óseos se han convertido en los últimos años en biomateriales de gran utilidad en la fijación de prótesis y en la reconstrucción del hueso. El objetivo de este trabajo es evaluar las propiedades termoanalíticas tales como temperatura máxima de polimerización y tiempo de fraguado en cementos óseos acrílicos modificados con hidroxiapatita/acetato de vinilo, determinar la resistencia a la compresión axial y realizar ensayos de bioactividad in vitro. Diferentes contenidos de acetato de vinilo fueron incorporados en cementos óseos acrílicos cargados todos con un 30 % de hidroxiapatita CORALINA® HAP-200. Las propiedades mecánicas y los parámetros de curado fueron evaluados cumpliendo lo establecido en la Norma ISO 5833 descrita para cementos óseos acrílicos. Se determinaron los parámetros termoanalíticos, obteniéndose tiempos de fraguados entre 3 y 6 minutos y los valores de temperaturas máximas de polimerización oscilan entre 66 y 88 °C. Se obtuvo formulaciones con valores de resistencia a la compresión superiores a lo establecido en la Norma ISO 5833. Se demostró la bioactividad de las formulaciones mediante la inmersión de las muestras en fluido biológico simulado, observándose en la superficie de las mismas la nucleación y el crecimiento de cristales con morfología similar a las apatitas biológicas.Bone cements have become biomaterials of great utility in the prosthesis fixation and as substitutes to the bone. The objective of this study is to evaluate the thermo analytical properties such as setting time and peak temperature of polymerization of acrylic bone cement modified with hydroxyapatite/vinyl acetate, to determine the compression strengths and perform in vitro bioactivity tests. Amounts of vinyl acetate component were incorporated in different percentages in acrylic bone cements, all loaded with 30 % of hydroxyapatite CORALINA® HAP-200. Curing parameters and mechanical properties were

  10. Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol-disulfide exchange reaction

    NARCIS (Netherlands)

    Peng, Huan; Rübsam, Kristin; Huang, Xiaobin; Jakob, Felix; Karperien, Marcel; Schwaneberg, Ulrich; Pich, Andrij

    2016-01-01

    Herein, we report the synthesis of a series of novel pyridyl disulfide (PDS)-functionalized statistical reactive copolymers that enable facile access to complex polymeric architectures through highly selective thiol-disulfide exchange reaction with thiol-containing ligands or proteins. Functional

  11. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 19. Synthesis and Characterization of Poly(2-(4-Biphenyloxy) ethyl Vinyl Etherby.

    Science.gov (United States)

    1992-03-27

    weight was controlled by the monomer/mitiator ([M]o/[I]o) ratio. After quenching the polymerization with ammoniacal methanol, the reaction mixture was...in Figure 1. The resonances of the expected methoxy chain end which are formed by quenching the living chain end with ammoniacal methanol can be

  12. The Effect of Montmorillonite Clay on the Crystallinity of Poly(vinyl alcohol) Nanocomposites Obtained by Solution Intercalation and In Situ Polymerization.

    Science.gov (United States)

    Antonio de Pádua C B, Cunha; Maria Inês Bruno, Tavares; Emerson Oliveira, Silva; Soraia, Zaioncz

    2015-04-01

    In this study, PVAL/sodic clay nanocomposite materials were obtained using different clay ratios. The nanocomposites were prepared by solution and in situ polymerization. They were characterized through proton relaxometry and X-ray diffraction, the latter technique used to determine the crystallinity of the PVAL matrix in the nanocomposites through the addition of unmodified montmorillonite clay. The relaxation data for the nanocomposite films obtained by solution intercalation showed a decrease in the proton spin-lattice relaxation values with increased clay proportion, forming a nanostructured material with high exfoliation degree, as a result of two phenomena: the higher molecular mobility of the polymer chains around the clay layers and the presence of paramagnetic metals in the clay layers, which accelerates the hydrogen relaxation process, causing a decrease in the relaxation value. The samples obtained through in situ polymerization were mixed nanocomposites (partly exfoliated and partly intercalated). The NMR relaxation data for the systems analyzed showed the solution intercalation process was more efficient than in situ polymerization in relation to the generation of nanostructured polymers with higher degree of exfoliated clay.

  13. Proposal of a synthetic ethylene-vinyl acetate bench model for surgical foundations learning: suture training Modelo de bancada sintético de etileno vinil acetato para a aprendizagem das bases da cirurgia: treinamento de suturas

    Directory of Open Access Journals (Sweden)

    Érika Malheiros Bastos

    2011-04-01

    Full Text Available Due to ethical and legal aspects involved in the handling of cadavers and animals the synthetic simulators are an alternative for learning how to suture technique plus the practice of various procedures such as incision and surgical flap. In this context, this paper describes and propose the use of a synthetic model manufactured from plates of ethylene-vinyl acetate (EVA to teach primary surgical skills in medical students with no previous exposure to surgery. The model that provides the convenience of being easily reproducible, allowing the students in training can thus improve their skills before applying the technique in clinical practice.Devido aos aspectos éticos e legais envolvidos no manuseio de cadáveres e animais, os simuladores sintéticos surgem como alternativa para o ensino-aprendizagem de técnicas de sutura e simulação de procedimentos, como a confecção de incisões e retalhos cirúrgicos. Neste âmbito é proposto e descrito um modelo de bancada sintético confeccionado a partir de etileno vinil acetato (EVA para o ensino de habilidades cirúrgicas básicas, em estudantes de medicina sem exposição prévia a cirurgia. O modelo fornece a praticidade de ser reprodutível, barato e de fácil aquisição, possibilitando que o acadêmico em formação possa, portanto, aperfeiçoar suas habilidades antes de aplicar a técnica na prática clínica.

  14. Differences in the thickness of mouthguards fabricated from ethylene vinyl acetate copolymer sheets with differently arranged v-shaped grooves: part 2 - effect of shape on the working model.

    Science.gov (United States)

    Takahashi, Mutsumi; Koide, Kaoru; Mizuhashi, Fumi

    2014-12-01

    The aim of this study was to evaluate the change in thickness of a working model mouthguard sheet due to different shape. Mouthguards were fabricated with ethylene vinyl acetate (EVA) sheets (4.0 mm thick) using a vacuum-forming machine. Two shapes of the sheet were compared: normal sheet or v-shaped groove 10-40 mm from the anterior end. Additionally, two shapes of the working model were compared; the basal plane was vertical to the tooth axis of the maxillary central incisor (condition A), and the occlusal plane was parallel to the basal plane (condition B). Sheets were heated until they sagged 15 mm below the clamp. Postmolding thickness was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface). Differences in the change in thickness due to the shape of the sheets and model were analyzed using two-way anova followed by a Bonferroni's multiple comparison tests. The thickness of the mouthguard sheet with v-shaped grooves was more than that of the normal sheet at all measuring points under condition A and condition B (P thickness of condition B was less than that of condition A, there the incisal portion in the normal sheet and the incisal edge in the sheet with v-shaped grooves (P thickness after molding was secured by the use of the sheet with v-shaped grooves. In particular, the model with the undercut on the labial surface may be clinically useful. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A polymeric prodrug of 5-fluorouracil-1-acetic acid using a multi-hydroxyl polyethylene glycol derivative as the drug carrier.

    Science.gov (United States)

    Li, Man; Liang, Zhen; Sun, Xun; Gong, Tao; Zhang, Zhirong

    2014-01-01

    Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo. PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively. The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors. This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives.

  16. Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Jiang, Hao; Yuan, Huiming; Qu, Yanyan; Liang, Yu; Jiang, Bo; Wu, Qi; Deng, Nan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    In this study, a novel kind of amide functionalized hydrophilic monolith was synthesized by the in situ photo-polymerization of N-vinyl-2-pyrrolidinone (NVP), acrylamide (AM), and N, N'-methylenebisacrylamide (MBA) in a UV transparent capillary, and successfully applied for hydrophilic interaction chromatography (HILIC) based enrichment of N-linked glycopeptides. With 2 μg of the tryptic digests of IgG as the sample, after enrichment, 18 glycopeptides could be identified by MALDI-TOF/TOF MS analysis. Furthermore, with the mixture of BSA and IgG digests (10,000:1, m/m) as the sample, 6 N-linked glycopeptides were unambiguously identified after enrichment, indicating the high selectivity and good specificity of such material. Moreover, such a monolithic capillary column was also applied for the N-glycosylation sites profiling of 6 μg protein digests from HeLa cells and 1 μL human serum. In total, 530 and 262 unique N-glycosylated peptides were identified, respectively, corresponding to 282 and 124N-glycoproteins, demonstrating its great potential for the large scale glycoproteomics analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cohort mortality study of vinyl chloride exposed workers in Porto Marghera during production, polymerization and bagging; Indagine epidemiologica sui lavoratori di Porto Marghera esposti a cloruro di vinile nelle fasi di produzione, polimerizzazione e insacco

    Energy Technology Data Exchange (ETDEWEB)

    Pirastu, R. [Rome, Univ. (Italy). Dipt di Biologia Umana e Animale; Chellini, E. [Centro per lo Studio e la Prevenzione Oncologica, Florence (Italy); Carnevale, F. [Unita` Sanitaria Locale 10, Florence (Italy). Servizio di Prevenzione, Igiene e Sicurezza nei Luoghi di Lavoro; De Santis, M.; Comba, P. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale; Bracci, C. [CGIL Lazio, Rome (Italy). Sindacato Pensionati Italiani

    1997-09-01

    The aim of the study is to investigate cause specific mortality among workers employed in vinyl chloride manufacture, polymerization and bagging in Porto Marghera between start of operation and June 30, 1995. The cohort includes 1.658 subjects employed by the companies running the petrochemical plant in Porto Marghera (Montedison and Enichem) and 272 members of three cooperatives of baggers who operated in the plant. The study detected an increased mortality from liver cancer, especially among autoclave workers, and an increase in lung cancer among baggers. In the whole study period, in the Montedison-Enichem cohort, 11 deaths from liver cancer were observed versus 5.7 expected; among autoclave workers 6 deaths were observed versus 0.8 expected. Four further cases were detected by `Best Evidence` procedures. Altogether 5 cases were angiosarcomas, 5 hepato-carcinomas, 3 cases of liver cancer occurred in cirrhotic subjects and in 2 cases histology was not known. The increase in lung cancer risk among baggers is present both in the Montedison-Enichem cohort and among the members of the cooperatives. The results of the present study will soon be supplemented with those concerning the cohorts in the plants located in Ferrara, Ravenna, Rosignano, Terni and Brindisi.

  18. Copolymers of Vinyl-Containing Benzoxazine with Vinyl Monomers as Precursors for High Performance Thermosets

    Directory of Open Access Journals (Sweden)

    Tsutomu Takeichi

    2015-04-01

    Full Text Available A benzoxazine containing a vinyl group (P-4va was prepared by the reaction of phenol, 4-vinylaniline, and paraformaldehyde. A differential scanning calorimetry (DSC study revealed that ring-opening polymerization of the benzoxazine and chain polymerization of the vinyl group occurred in the same temperature range. When 2,2'-azobisisobutyronitrile was added as a radical initiator to P-4va, however, only the vinyl groups were polymerized at lower temperature, giving oligo(P-4va that contains pendent benzoxazine units. Radical copolymerization of P-4va with various vinyl monomers such as styrene, methyl methacrylate (MMA, and n-butyl acrylate (BuA was examined. The chemical structure of the copolymers was confirmed by FT-IR and 1H-NMR to be one of polyolefins bearing benzoxazine units as the pendant groups. The weight-average molecular weights of the copolymers determined by size exclusion chromatography were to be in the range of 1900–51,500 depending on the comonomers. DSC of the copolymers showed that the maxima of the exothermic peaks corresponding to the ring-opening polymerization of the pendent benzoxazine units were observed in the temperature range of 229–250 °C. Thermal cure up to 240 °C of the copolymer films afforded homogenous transparent films with improved thermal properties. Tough cured film was obtained by the copolymerization with MMA, while a tough and flexible film was obtained by the copolymerization with BuA.

  19. Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers

    KAUST Repository

    Bouchekif, Hassen

    2015-01-01

    A series of novel, well-defined triblock (PnBVE-b-PCEVE-b-PSiDEGVE) and pentablock (PSiDEGVE-b-PCEVE-b-PnBVE-b-PCEVE-b-PSiDEGVE) terpolymers of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiEGVE) were synthesized by sequential base-assisted living cationic polymerization. The living character of the homopolymerization of the three VE monomers and the crossover reaction resulting in the formation of well-defined block copolymers were investigated in various solvents (toluene, dichloromethane and n-hexane) using either a monofunctional [nBVE-acetic acid adduct (nBEA), CEVE-acetic acid adduct (CEEA) and SiDEGVE-acetic acid adduct (SiDEGEA)] or a difunctional [1,4-cyclohexane-1,4-diyl bis(2-methoxyethyl acetate) (cHDMEA)] initiator. All initiators are structurally equivalent to the dormant species of the corresponding monomers in order to achieve fast initiation. The optimal conditions of polymerization were achieved in n-hexane at -20 °C, in the presence of 1 M AcOEt (base). Good control over the number average molecular weight (Mn) and the polydispersity index (PDI) was obtained only at [Et3Al2Cl3]0 = [Chain-end]0 ≤ 10 mM. 2,6-Di-tert-butylpyridine (DtBP) was used as a non-nucleophilic proton trap to suppress any protonic initiation from moisture (i.e., Et3Al2Cl3·H2O). Well-defined PnBVEn-b-PCEVEp-b-PSiDEGVEq and PSiDEGVEq-b-PCEVEp-b-PnBVEn-b-PCEVEp-b-PSiDEGVEq terpolymers with a high crossover efficiency, no PCEVE-induced physical gelation, and predictable Mn and PDI < 1.15 were synthesized successfully provided that the targeted DPCEVE/DPnBVE ratio (i.e., p/n) did not exceed 2 and 0.2, respectively. The quantitative desilylation of the PSiEGVE by n-Bu4N+F- in THF at 0 °C led to triblock and pentablock terpolymers in which the PCEVE is the central block and the polyalcohol is the outer block. The thermal properties of the synthesized materials were examined by differential scanning

  20. Caracterização de resíduos de copolímeros de etileno-acetato de vinila - EVA Characterization of ethylene-vinyl acetate copolymer (EVA residues

    Directory of Open Access Journals (Sweden)

    Ademir J. Zattera

    2005-03-01

    Full Text Available O poli[(etileno-co-(acetato de vinila] (EVA possui grande aplicação na indústria calçadista, sendo utilizado na confecção de placas expandidas para posterior corte de palmilhas e entressolas. Estudos realizados na região sul do Brasil mostraram que os resíduos gerados pela indústria calçadista foram superiores a 200 toneladas/mês em 2001, sendo o maior volume oriundo de recortes de placas expandidas. Por isso, o objetivo deste trabalho foi o de caracterizar resíduos de EVA de chapas expandidas, visando à reciclagem mecânica desse material. Análises em MEV demonstraram que o resíduo de EVA apresenta uma morfologia microcelular que é destruída após o processo de moagem. O resíduo de EVA moído apresenta duas fases, uma reticulada (matriz e uma não-reticulada (dispersa. O resíduo de EVA apresentou teor de gel de aproximadamente 75% em massa, cerca de 20% em massa de acetato de vinila (VAc, fora processado a partir de EVA com aproximadamente 28% de VAc e possui teor de carga inorgânica de 20% em massa, segundo análises em TGA. O EVA resíduo apresentou maiores valores de módulo elástico e de dureza, e menores valores de elongação na ruptura e de resistência ao impacto Izod. O custo energético da moagem do resíduo de EVA foi calculado como sendo inferior a 5% do valor do EVA virgem.Poly[(ethylene-co-(vinyl acetate] (EVA has large application in the shoes industries, especially as expanded sheets, in order to produce insoles and innersoles. Studies carried out in the south region of Brazil in 2001 have demonstrated that the residues generated by shoes industries were higher than 200 ton/month, the major part of which is composed by EVA expanded sheets. With this in mind, the objective of this work was to characterize the residues of expanded EVA and also to analyze the milling cost in order to make the recycling possible. The EVA residues presented originally a microcellular structure, which was destroyed after milling

  1. Copolimerização em emulsão de acetato de vinila e acrilato de butila com alto teor de sólidos High solid contents semi-batch emulsion copolymerization of vinyl acetate and butyl acrylate

    Directory of Open Access Journals (Sweden)

    Mauri Palma

    2006-12-01

    Full Text Available Neste trabalho foi investigada a influência da concentração de uma mistura dos emulsificantes nonilfenol etoxilado e sulfato sódico de nonilfenol etoxilado (não iônico e iônico, respectivamente e concentração de protetor coloidal, poli (álcool vinílico na estabilidade coloidal de látices do copolímero acetato de vinila (AV/acrilato de butila (AB com alto teor de sólidos. Foram determinados o teor de sólidos e o tamanho médio das partículas ao longo da reação e foram obtidas as viscosidades das emulsões finais. Os ensaios foram realizados de acordo com um projeto fatorial com 3 níveis de concentração de emulsificantes e de protetor coloidal. Foi verificado que são necessárias maiores quantidades relativas de emulsificantes e de protetor coloidal pela massa total de monômeros para se obter látices estáveis com teores de sólidos de 70 e 73% (m/m. Os tamanhos médios das partículas no final de cada ensaio foram relativamente elevados (800 a 1000 nm e as viscosidades a 20°C relativamente baixas (500 mPa.s para teor de sólidos de 67% (m/m; para teor de sólidos de 70% (m/m as viscosidades variaram de 5.000 a 10.000 mPa.s e para teor de sólidos de 73% (m/m a viscosidade foi de 365.000 mPa.s.In this work the influence of the concentration of ionic (alkyl phenol polyglycol ether sodium sulfate, and non-ionic (alkyl phenol polyglycol ether, surfactants mixture and of protective colloid (polyvinyl alcohol on the colloidal stability of high solid contents butyl acrylate/vinyl acetate copolymers latexes was investigated. Solid contents and particle diameter were determined along the reaction and, at the end of each run, also the emulsion viscosity. The experiments were carried out according to a factorial design with three levels of surfactant and protective colloid concentrations. Higher amounts of surfactant and protective colloid per total monomers were required for the colloidal stability of emulsions with total solid

  2. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  3. Vinyl Monomers Double as UV Stabilizers: 179th ACS Meeting Houston.

    Science.gov (United States)

    Chemical and Engineering News, 1980

    1980-01-01

    Synthesis and polymerization of vinyl monomers that double as stabilizers against degradation of plastics by ultraviolet light has been accomplished. Potential applications include protection of photovoltaic cells in solar power plants. (Author/RE)

  4. ENVIRONMENTAL EXPOSURE TO VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-09-01

    Full Text Available Vinyl chloride (VC monomer is a wellknown carcinogenic and mutagenic substance causes liver damages, angiosarcoma of the liver, acro – osteolysis, sclerodermalike changes in workers chronically exposed to this gas. There are following VC emitors to the environment: VC production plants, polymerization facilities and planes where polyvinyl products are fabricated. Because of that, the general population is coming into VC contact through polluted air, food and water. VC concentration in all mentioned sites is very low, often not detectable. There was found any health risk for the general population. The VC air concentration in the vicinity to antropogenic emitors is always higher. Such a situation may causes undesirable health effect for residents living in the neighbourhood. Epidemiological studies are performed to detect the adverse VC effect in selected cohorts. Non of the study did not confirmed cases of angiosarcoma among residents living near a vinyl chloride sites. VC production is growing permanently, so VC emission will be higher. Because of that health monitoring of general population and especially of selected groups seems to be necessary in the future.

  5. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  6. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinglei Zhai

    2017-12-01

    Full Text Available The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX prodrug micelles based on functionalized poly(ethylene glycol-poly(ε-caprolactone (mPEG-PCL diblock polymer with an acid-cleavable acetal (Ace linkage (mPEG-PCL-Ace-PTX. The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

  7. 21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-lauryl vinyl ether copolymers. 177...-lauryl vinyl ether copolymers. The vinyl chloride-lauryl vinyl ether copolymers identified in paragraph... section vinyl chloride-lauryl vinyl ether copolymers consist of basic copolymers produced by the...

  8. Influence of natural or organophilic bentonite for flammable of the poly(ethylene-co-vinyl acetate); Influencia da bentonita natural ou organofilica na inflamabilidade do poli(etileno-co-acetato de vinila)

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, Eduardo T.; Kloss, Juliana R.; Morita, Reinaldo Y., E-mail: yomorita1@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba,PR (Brazil). Departamento de Quimica e Biologia; Caetano, Elenice H.; Andrade, Andre Vitor C. de [Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR (Brazil); Barbosa, Ronilson V. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica

    2015-07-01

    The manufacture polymeric applied in electrical sector in general use additives which act as flame retardants, for example, some borates, phosphates, and halogenated hydroxides. An alternative material for this purpose frequently reported in the literature because the flame resistance or flame retardancy is organoclay. Thus, the objective of this study is to evaluate the flammability of mixtures of EVA/natural bentonite and EVA/organoclay containing modifier as a species free of quaternary ammonium ions. The natural bentonite and organoclay were characterized by X-ray diffraction and scanning electron microscopy and materials were evaluated by X-ray diffraction and the flammability test. Regarding the combustion rate values, there was a reduction of flame propagation in EVA/natural bentonite (3.0%), showing that in this case the clay without modifier acted as a physical barrier and promoted retardant action of flame. (author)

  9. Controlled chemical and morphological surface modifications via pulsed plasma polymerizations: Synthesis of ultrahydrophobic surfaces

    Science.gov (United States)

    Qiu, Haibo

    The RF plasma polymerization of saturated linear and cyclic perfluoroalkane monomers and vinyl acetic acid were studied in this dissertation. Film chemical compositions, deposition rates, surface wettabilities and morphologies were characterized as functions of various plasma processing conditions. Large progressive changes in chemical compositions with sequential variations in plasma duty cycle were demonstrated in polymerization of both perfluoroalkane and vinyl acetic acid monomers. As anticipated, polymer films obtained from the perfluorocarbon monomers exhibited a general trend towards more linear structures with decreasing plasma duty cycles. However, completely unexpectedly, ultrahydrophobic films were obtained from some of these monomers under restricted duty cycle and power input conditions. SEM and XPS characterizations revealed that a rough, fibrous-like surface morphology is responsible for this ultrahydrophobicity, as opposed to unusual chemical compositions. The growth of the fibrous surface is believed to arise from nucleation and hillock-like growth patterns on selectively activated sites of the growing polymer film. Surface mobility of plasma generated reactive species apparently plays an important role in the growth of the fibrous ultrahydrophobic surfaces, as shown by substrate temperature studies. Additionally, the present study revealed a number of interesting new observations of significant differences in the chemical compositions and deposition rates of polymer films obtained from the diverse range of perfluorocarbon monomers employed in this work. The ultrahydrophobic fluorocarbon films discovered in this investigation were evaluated for use in several biomaterial applications. The results obtained show excellent marine antifouling properties for these surfaces, as documented in ocean testing experiments. These surfaces have also been shown to be useful in controlling protein and peptide surface adsorptions, as well as in the inflammatory

  10. Amphiphilic conjunct of methyl cellulose and well-defined polyvinyl acetate.

    Science.gov (United States)

    Xiao, Congming; Xia, Cunping

    2013-01-01

    Tailor-made conjunct of methyl cellulose (MC) and polyvinyl acetate (PVAc) was synthesized through the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene click reaction. MC was firstly transferred into unsaturated MC (UMC), and then covalently connected with well-defined PVAc obtained by RAFT polymerization of vinyl acetate. The structure of the conjunct polymer (MCV) was confirmed with Fourier transform infrared spectra (FTIR) and proton nuclear magnetic resonance ((1)H NMR). Well-defined MCV was amphiphilic and able to self-assemble into size controllable micelles, which was verified with transmission electron microscopy (TEM) and size distribution analysis. It was found that the mean diameters of the micelles in aqueous solution were 105.6, 96.0 and 75.9 nm when the number average molecular weights of PVAc segments of MCV were 49,300, 32,500 and 18,200, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    Science.gov (United States)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna; Muñoz, Rodrigo Alonso Esparza

    2015-03-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted.

  12. Extremely long latency time of hepatic angiosarcoma in a vinyl chloride autoclave worker

    OpenAIRE

    Bolt, Hermann M.

    2009-01-01

    Vinyl chloride is a human carcinogen. The characteristic tumour is the hepatic angiosarcoma, first observed in the 1970s in vinyl/polyvinyl chloride workers, especially in polymerization autoclave workers. Recent epidemiological studies demonstrate a dependence of the tumour incidence on both the duration and cumulative quantity of exposure. However, there is only limited data concerning the possible tumour latency times. Here, a case of hepatic angiosarcoma is presented that had been exposed...

  13. Synthesis and biocidal activity of modified poly(vinyl alcohol)

    OpenAIRE

    El-Refaie Kenawy; Mohamed H. El-Newehy; Fouad I. Abdel-Hay; Abd El-Raheem R. El-Shanshoury

    2014-01-01

    Functionalized polymers and their polymer nature give them more advantages than the corresponding small molecules. In this respect, polymeric ammonium and phosphonium salts were prepared by chemical modifications of poly(vinyl alcohol) (PVA) aiming to explore their antimicrobial activities against pathogenic bacteria and fungi. The modifications were performed by chloroacetylation with chloroacetyl chloride. Incorporation of the ammonium and phosphonium salts was conducted by the reaction of ...

  14. Exploring release and recovery of nanomaterials from commercial polymeric nanocomposites

    Science.gov (United States)

    Busquets-Fité, Martí; Fernandez, Elisabet; Janer, Gemma; Vilar, Gemma; Vázquez-Campos, Socorro; Zanasca, R.; Citterio, C.; Mercante, L.; Puntes, Víctor

    2013-04-01

    Much concern has been raised about the risks associated with the broad use of polymers containing nanomaterials. Much is known about degradation and aging of polymers and nanomaterials independently, but very few studies have been done in order to understand degradation of polymeric nanocomposites containing nanomaterials and the fate of these nanomaterials, which may occur in suffering many processes such as migration, release and physicochemical modifications. Throughout the UE funded FP7 project NANOPOLYTOX, studies on the migration, release and alteration of mechanical properties of commercial nanocomposites due to ageing and weathering have been performed along with studies on the feasibility of recovery and recycling of the nanomaterials. The project includes the use as model nanocomposites of Polyamide-6 (PA), Polypropylene (PP) and Ethyl Vinyl Acetate (EVA) as polymeric matrix filled with a 3% in mass of a set of selected broadly used nanomaterials; from inorganic metal oxides nanoparticles (SiO2, TiO2 and ZnO) to multi-walled carbon nanotubes (MWCNT) and Nanoclays. These model nanocomposites were then treated under accelerated ageing conditions in climatic chamber. To determine the degree of degradation of the whole nanocomposite and possible processes of migration, release and modification of the nanofillers, nanocomposites were characterized by different techniques. Additionally, recovery of the nanomaterials fro m the polymeric matrix was addressed, being successfully achieved for PA and PP based nanocomposites. In the case of PA, dissolution of the polymeric matrix using formic acid and further centrifugation steps was the chosen approach, while for PP based nanocomposites calcination was performed.

  15. Synthesis of polymeric materials and their use as wax deposition inhibitors of crude oil and its medium distillates; Sintese de materiais polimericos para serem utilizados como inibidores de deposicao de parafinas em petroleo e em seus destilados medios

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Claudia R.E.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mails: celias@ima.ufrj.br, elucas@ima.ufrj.br; Gonzalez, Gaspar; Alvarez, Dellyo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: gaspar@cenpes.petrobras.com.br; dellyo@cenpes.petrobras.com.br

    2003-07-01

    This work aims at the development of polymeric materials to be employed as organic deposition inhibitors - ODI's for petroleum and middle distillate of petroleum, such as lube oils. The additives were obtained by chemical modifications involving esterification reactions of commercial ethylene-co-vinyl acetate (EVA) copolymers and poly(vinyl alcohol) (PVA) with long chain organic acid chlorides. The materials efficiency was tested by pour point measurements of the model system containing commercial paraffin. Data show that chemically modified copolymers had a reasonable performance as pour point reducing agents of the model system used. Moreover, the products were also tested as lube oil additives, and the results showed that the chemically modified copolymers presented a more pronounced influence on the paraffin crystallization process than the non-modified EVA commercial sample. (author)

  16. Measurement of atmospheric vinyl chloride.

    Science.gov (United States)

    Lande, S S

    1979-02-01

    Methods for atmospheric vinyl chloride measurement have been reviewed. The lowest detection limits and most specific measurement are achieved by scrubbing atmospheric samples with activated charcoal, desorbing the vinyl chloride, and assaying it by gas chromatography (GC). NIOSH currently recommends collecting samples using tubes packed with 150 mg of coconut shell charcoal, desorbing with carbon disulfide, and analyzing by GC equipped with flame-ionization detection (FID); the method is capable of detecting less than 1 ppm vinyl chloride and has an apparent recovery of abo the ppb level with no loss of accuracy or precision. Some field methods, such as infrared analysis and conductivity measurement, are capable of detecting 1 ppm or lower but are subject to interferences by other contaminants; th-y could be useful for evaluating sources of vinyl chloride leaks and for continuous monitoring. Permeation tubes are superior to gravimetric or volumetric methods for generating atmospheres of known vinyl chloride concentration.

  17. by treatment with crotonic acid and vinyl acetic acid

    Indian Academy of Sciences (India)

    Silverstein R M, Bassler G C and Morrill T C 1991 Spectro- metric identification of organic compounds (United States of. America: John Wiley & Sons, Inc.) 5th ed, p 117. 14. Dyer J R 1991 Application of absorption spectroscopy of organic compounds (United States of America: Prentice-Hall. International, Inc.) 8th ed, p 38.

  18. Laser induced augmentation of silver nanospheres to nanowires in ethanol fostered by Poly Vinyl Pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Suneetha, E-mail: sunikutty@gmail.com; Linslal, C.L.; Vallabhan, C.P.G.; Nampoori, V.P.N.; Radhakrishnan, P.; Kailasnath, M.

    2014-11-30

    Highlights: • Silver nanospheres are synthesised in ethanol containing Poly Vinyl Pyrrolidone which acts as a polymeric capping agent to nanoparticles thus improving its stability. • Laser irradiation onto the colloidal solution of silver nanoparticles produced well defined nanowires through ripening mechanism promoted by Poly Vinyl Pyrrolidone. • Nanowires so formed are having an average length of 8.7 μm and width of 160 nm. - Abstract: Stable uniform silver nanospheres having an average diameter of 45 nm are synthesised in ethanol containing Poly Vinyl Pyrrolidone using Laser Ablation in Liquid technique. Further irradiation of the nanocolloidal solution by focussed laser beam produced stable well defined silver nanowires through ripening mechanism fostered by the presence of Poly Vinyl Pyrrolidone. Confirmation of the mechanism is obtained from Transmission Electron Microscopic images of the nanocolloidal solution irradiated for different time durations.

  19. New insight into the formation of structural defects in poly(vinyl chloride)

    NARCIS (Netherlands)

    Purmova, J; Pauwels, KFD; van Zoelen, W; Vorenkamp, EJ; Schouten, AJ; Coote, ML; Pauwels, Kim F.D.; Coote, Michelle L.

    2005-01-01

    The monomer conversion dependence of the formation of the various types of defect structures in radical suspension polymerization of vinyl chloride was examined via both H-1 and C-13 NMR spectrometry. The rate coefficients for model propagation and intra- and intermolecular hydrogen abstraction

  20. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  1. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  2. Selective Cross-Coupling of Organic Halides with Allylic Acetates

    Science.gov (United States)

    Anka-Lufford, Lukiana L.; Prinsell, Michael R.

    2012-01-01

    A general protocol for the coupling of haloarenes with a variety of allylic acetates is presented. Strengths of the method are a tolerance for electrophilic (ketone, aldehyde) and acidic (sulfonamide, trifluoroacetamide) substrates and the ability to couple with a variety of substituted allylic acetates. Secondary alkyl bromides can also be allylated under slightly modified conditions, demonstrating the generality of the approach. Finally, the coupling of a reactive vinyl halide could be achieved by the use of a very hindered ligand and more reactive, branched allylic acetates. PMID:23095043

  3. Microbial reductive dehalogenation of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  4. Microbial reductive dehalogenation of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  5. Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization

    OpenAIRE

    Silva Tilana B.; Spulber Mariana; Kocik Marzena K.; Seidi Farzad; Charan Himanshu; Rother Martin; Sigg Severin J.; Renggli Kasper; Kali Gergely; Bruns Nico

    2013-01-01

    Hemoglobin (Hb) is a promiscuous protein that not only transports oxygen but also catalyzes several biotransformations. A novel in vitro catalytic activity of Hb is described. Bovine Hb and human erythrocytes were found to display ATRPase activity i.e. they catalyzed the polymerization of vinyl monomers under conditions typical for atom transfer radical polymerization (ATRP). N isopropylacrylamide (NIPAAm) poly(ethylene glycol) methyl ether acrylate (PEGA) and poly(ethylene glycol) methyl eth...

  6. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; D' Alessandro, D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, Lorenzo; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl

  7. Synthesis and biocidal activity of modified poly(vinyl alcohol

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Functionalized polymers and their polymer nature give them more advantages than the corresponding small molecules. In this respect, polymeric ammonium and phosphonium salts were prepared by chemical modifications of poly(vinyl alcohol (PVA aiming to explore their antimicrobial activities against pathogenic bacteria and fungi. The modifications were performed by chloroacetylation with chloroacetyl chloride. Incorporation of the ammonium and phosphonium salts was conducted by the reaction of chloroacetylated poly(vinyl alcohol (CPVA with triethylamine (TEA, triphenylphosphine (TPP, and tributylphosphine (TBP. The antimicrobial activity of the polymers against variety of test microorganisms was examined by the cut plug and viable cell counting methods of shake cultures of 10 times dilute nutrient broth and Sabouraud’s media, seeded with the test microorganisms. It was found that the immobilized polymers exhibited antimicrobial activity against the Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella sp. and Salmonella typhi and Gram positive bacteria (Bacillus subtilis and B. cereus and the dermatophyte fungus (Trichophyton rubrum. The growth inhibition of the test microorganisms (ratio of surviving cell number, M/C varied according to the composition of the active group in the polymer and the test organism. It increased by increasing the concentration of the polymer. Triphenyl phosphonium salt of the modified poly(vinyl alcohol exhibited the most biocidal activity against both Gram-negative and Gram-positive bacteria after 24 h.

  8. Condensation Polymerization

    Indian Academy of Sciences (India)

    Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more ...

  9. Multi-stage Mass Spectrometry of Poly(vinyl pyrrolidone) and Its Vinyl Succinimide Copolymer Formed upon Exposure to Sodium Hypochlorite.

    Science.gov (United States)

    Fouquet, Thierry; Torimura, Masaki; Sato, Hiroaki

    2016-01-01

    The degradation routes of poly(vinyl pyrrolidone) (PVP) exposed to sodium hypochlorite (bleach) have been previously investigated using chemical analyses such as infrared spectroscopy. So far, no reports have proposed mass spectrometry (MS) as an alternative tool despite its capability to provide molecular and structural information using its single stage electrospray (ESI) or matrix assisted laser desorption ionization (MALDI) and multi stage (MS (n) ) configurations, respectively. The present study thus reports on the characterization of PVP after its exposure to bleach by high resolution MALDI spiralTOF-MS and Kendrick mass defect analysis providing clues as to the formation of a vinyl pyrrolidone/vinyl succinimide copolymeric degradation product. A thorough investigation of the fragmentation pathways of PVP adducted with sodium and proton allows one main route to be described-namely the release of the pyrrolidone pendant group in a charge remote and charge driven mechanism, respectively. Extrapolating this fragmentation pathway, the oxidation of vinyl pyrrolidone into vinyl succinimide hypothesized from the single stage MS is validated by the detection of an alternative succinimide neutral loss in lieu of the pyrrolidone release in the ESI-MS (n) spectra of the aged PVP sample. It constitutes an example of application of multi-stage mass spectrometry for the characterization of the degradation of polymeric samples at a molecular level.

  10. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Abstract. Polymer-clay nanocomposites were synthesized by solution polymerization method using advanced functionalized clay and vinyl benzyl trimethyl ammonium chloride as monomer. First stage con- sisted in the silylation of a commercial organo-modified clay-Cl 20A using alkoxysilanes with different chain lengths.

  11. Polymer-clay nanocomposites obtained by solution polymerization ...

    Indian Academy of Sciences (India)

    Abstract. Polymer-clay nanocomposites were synthesized by solution polymerization method using advanced functionalized clay and vinyl benzyl trimethyl ammonium chloride as monomer. First stage consisted in the silylation of a commercial organo-modified clay-Cl 20A using alkoxysilanes with different chain lengths.

  12. Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone)

    NARCIS (Netherlands)

    Wienk, I.M.; Wienk, I.M.; Meuleman, E.E.B.; Meuleman, E.E.B.; Borneman, Zandrie; van den Boomgaard, Anthonie; Smolders, C.A.; Smolders, C.A.

    1995-01-01

    Sodium hypochlorite solutions are used to treat membranes prepared from a polymeric blend containing poly(vinyl pyrrolidone) (PVP) to increase their water permeability. Sodium hypochlorite affects the membrane material in such a way that PVP is selectively removed from the membrane matrix. The

  13. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  14. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    Science.gov (United States)

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.

  15. Pathology of angiosarcoma of the liver among vinyl chloride-polyvinyl chloride workers.

    Science.gov (United States)

    Thomas, L B; Popper, H

    1975-01-31

    We described the histologic features of 13 hepatic angiosarcomas which developed in workers engaged in the polymerization of vinyl chloride to polyvinyl chloride. Although the histologic features varied considerably in different portions of the angiosarcoma in the same liver and in the angiosarcomas of the liver from different patients, many features were similar such as sinusoidal, papillary, and cavernous growth patterns coincident with the precursor lesions of proliferation and atypia of sinusoidal lining cells.

  16. Graft Copolymerization of Styrene from Poly(vinyl alcohol via RAFT Process

    Directory of Open Access Journals (Sweden)

    Gholam Ali Koohmareh

    2011-01-01

    Full Text Available Polystyrene, PS, was grafted from poly(vinyl alcohol, PVA, backbone by reversible addition-fragmentation chain transfer (RAFT polymerization. The hydroxyl groups of the PVA were converted into aromatic dithioester RAFT agent and polymerization began in the presence of this agent. The structure of compounds was confirmed by FT-IR and 1HNMR spectroscopy. The graft copolymer was characterized by thermogravimetric analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Grafted polystyrene chains were cleaved from the PVA backbone by acidic hydrolysis of the PVA-g-PS, and its polydispersity index, PDI, was determined by gel permeation chromatography (GPC showing narrow molecular weight distribution.

  17. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  18. Levels of CEA among vinyl chloride and polyvinyl chloride exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.A. (City Univ. of New York, NY); Snyder, J.; Lewinson, T.; Woo, C.; Lilis, R.; Selikoff, I.J

    1978-09-01

    In 1974, vinyl chloride exposed workers were found to have an increased risk of malignant disease (hemangiosarcoma of the liver). We have examined 1,147 workers exposed to vinyl chloride monomer in three VC/PVC polymerization plants, and 269 workers from a PVC extrusion plant manufacturing PVC textile leather, exposed to much lower concentrations of vinyl chloride. Included among the comprehensive clinical and laboratory studies conducted was the CEA titer. We obtained, respectively, 1,115 and 248 CEA titers. Multiple factors were demonstrated which affected the distribution of CEA titers. Cigarette use had the greatest effect, followed by history of specific past illnesses and alcohol intake history. After removing these possible confounding effects, the distribution of CEA titers among the polymerization workers was significantly different from the extrusion plant group and from an unexposed comparison group. Of the six job categories analyzed, only production and maintenance workers had CEA titer distributions significantly different from the comparison group and the extrusion workers. The investigation demonstrates that occupational exposures in VC/PVC polymerization plants can cause elevations in the CEA titers of otherwise healthy individuals. Prospective follow-up is necessary before conclusions can be drawn concerning the usefulness of the CEA titer as a predictive indicator of possible increased risk.

  19. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    Science.gov (United States)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  20. Carcinogenic, mutagenic and teratogenic risks associated with vinyl chloride.

    Science.gov (United States)

    Infante, P F; Wagoner, J K; Waxweiler, R J

    1976-11-01

    The data presented demonstrate clearly that vinyl chloride (VC) is related to a significant excess of mortality from cancer of the liver, lung and brain among workers occupationally exposed to VC. The risk of dying from cancer of the lymphatic and hematopoietic system also appears to increase with an increase in latency. These cancer sites could have been predicted by the animal bioassay conducted by Maltoni. With regard to the liver, even the histophthologic type of cancer (angiosarcoma) was observed first in experimental animals. A study of cancer mortality among populations residing proximate to VC polymerization facilities also demonstrated an increased risk of dying from CNS and lymphatic cancer. These latter findings raise cause for concern about out-plant emmissions of VC, but without further study these cancers obviously cannot be interpreted as being related to out-plant exposure to VC. Various test systems now have elicited a positive mutagenic response to VC. Thus, our observations of a significant excess of fetal mortality among the wives of males, who were occupationally exposed to VC, raise public health concern that VC may be mutagenic in humans. With regard to the teratogenicity of VC, observations of a significant excess of children born with birth defects were reported among populations residing proximate to VC polymerization facilities. Additional epidemiologic study is needed to determine whether a repeated pattern of excessive numbers of children born with birth defects can be observed in other communities with VC polymerization facilities.

  1. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  2. (Jacq) Benth (Mimosaceae) root: Hemoglobin polymerization ...

    African Journals Online (AJOL)

    Results: All the solvent-partitioned fractions of C. portoricensis showed a high percentage inhibition of hemoglobin polymerization at 5 mg/mL with the ethyl acetate fraction showing the highest percentage inhibition of 98.97 ± 1.62 % The pooled chromatographic fraction C3 containing two compounds (Rf value: 0.71, 0.83); ...

  3. Obtaining of inulin acetate

    OpenAIRE

    Khusenov, Arslonnazar; Rakhmanberdiev, Gappar; Rakhimov, Dilshod; Khalikov, Muzaffar

    2014-01-01

    In the article first obtained inulin ester inulin acetate, by etherification of inulin with acetic anhydride has been exposed. Obtained product has been studied using elementary analysis and IR spectroscopy.

  4. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  5. Synthesis of MnO2 nanoparticles and their effective utilization as UV protectors for outdoor high voltage polymeric insulators used in power transmission lines.

    Science.gov (United States)

    Ghosh, Dipankar; Bhandari, Subhendu; Khastgir, Dipak

    2016-12-07

    Polymeric outdoor insulators derived from polydimethyl siloxane (PDMS) are replacing conventional ceramic insulators in high voltage power transmission lines because of their improved electrical, mechanical and hydrophobic performance. Major impediments like failure of polymeric insulators due to natural aging by UV radiation from sunlight and electrical tracking have limited their usage. Herein, it is demonstrated about the usage of manganese dioxide based nanoparticles as an effective agent to prevent the UV accelerated aging of polymeric insulators. MnO2 nanoparticles of different shapes and dimension were synthesized using a single step wet chemical reaction between KMnO4 and methyl acetate. Namely, 2D δ-MnO2 nanosheets, 1D α-MnO2 nanowires and 3D α-MnO2 nanorods were formed. These nanoparticles were extensively characterized by various techniques. In the scope of the study, the δ-MnO2 (10-5 S cm-1; 1 MHz) nanosheet demonstrated the lowest electrical AC conductivity and a higher band gap compared to the 1D (10-4 S cm-1; 1 MHz) and 3D variety (10-4 S cm-1; 1 MHz). Owing to the lower electrical conductivity of the δ-MnO2 nanosheet, it was further incorporated at different filler volumes in the polymeric matrix (blend of polydimethyl siloxane/ethylene vinyl acetate) as a UV protector material for the polymer based high voltage composite polymeric insulator. The UV protection ability, induced by the δ-MnO2 nanosheet, was achieved without adversely affecting other properties of the formulated insulator compound material. The optimum properties of the composite were found to be obtained at 3 phr (three parts of δ-MnO2 nanosheet per hundred parts of polymer) loading of the nanosheet. The current work will promise to pave a new pathway for the generation of UV resistant high voltage power transmission line insulator materials. It would be interesting in the future to study the effect of incorporation of manganese dioxide based nanosheets on the UV resistant

  6. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  7. Pallidol hexa-acetate ethyl acetate monosolvate.

    Science.gov (United States)

    Mao, Qinyong; Taylor, Dennis K; Ng, Seik Weng; Tiekink, Edward R T

    2013-01-01

    The entire mol-ecule of pallidol hexa-acetate {systematic name: (±)-(4bR,5R,9bR,10R)-5,10-bis-[4-(acet-yloxy)phen-yl]-4b,5,9b,10-tetra-hydro-indeno-[2,1-a]indene-1,3,6,8-tetrayl tetra-acetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate mol-ecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009 ▶). Acta Cryst. D65, 148-155]; the crystallographic data take into account the presence of the solvent. In pallidol hexa-acetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å) is 54.73 (6)°, indicating a significant fold in the mol-ecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5)° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C-O(carb-oxy)-C-C torsion angles = -70.24 (14), -114.43 (10) and -72.54 (13)°]. In the crystal, a three-dimensional architecture is sustained by C-H⋯O inter-actions which encompass channels in which the disordered ethyl acetate mol-ecules reside.

  8. INFLUENCE OF POLYMERIC ADDITIVES ON CRYSTALLIZATION OF CALCIUM SULPHATE DIHYDRATE

    Directory of Open Access Journals (Sweden)

    Ustinova Yulia Valer’evna

    2013-04-01

    Full Text Available Currently, functional additives are widely spread in the production of inorganic dry mixtures. However, their impact on the microstructure of products, generated in the process of hardening of inorganic binders, is understudied. In this context, the goal of the work is the study of calcium sulfate dihydrate (CaSO •2H O crystallization. Super plasticizer based on sulfonated melamine-formaldehyde resin, methylcellulose and vinyl acetate, ethylene and vinyl chloride copolymer powder were selected for studies. First, pure calcium sulfate dihydrate crystals were synthesized. Then, synthesized calcium sulfate dihydrate crystals were exposed to the X-ray analysis to determine the nature of influence of polymer additives on the shape and dimensions of crystals. Possible combinations of simple forms of CaSO •2H O were identified by the X-ray analysis and the special software. Electronic microscopy analysis was performed to validate models of calcium sulfate dihydrate crystals. All plasticizers influence the crystallization of calcium sulfate dihydrate. The influence of additives on the shape and dimensions of crystals of calcium sulfate dihydrate can be explained by the fact that molecules of sulfonated melamine-formaldehyde resins, methylcellulose, and copolymers of vinyl acetate, ethylene and vinyl chloride are absorbed by crystal faces. It is proven that the method of X-ray analysis can be used to predict the shape and habitus of crystals.

  9. Study of the compatibility of the polymeric mixture of poly (vinyl pyrrolidone) with poly(ethylene oxide) by solid state NMR; Estudo da compatibilidade da mistura polimerica da polivinilpirrolidona com o poli(oxido de etileno) por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edemilson P. da [Universidade Estadual Norte Fluminense, Campo dos Goitacases, RJ (Brazil). CCT; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Tavares, Maria Ines B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1997-12-31

    The study of the polymeric mixture compatibility by nuclear magnetic resonance was performed aiming to evaluate the molecular mobility of the title system and its compatibility. It was observed that the system is compatible up to 60% weigh/weigh proportion 11 refs., 1 tab.

  10. Design, characterization, and evaluation of meloxicam gel prepared by suspension and solution polymerization using solubility parameter as the basis for development.

    Science.gov (United States)

    Jain, Deepika; Pathak, Kamla

    2010-03-01

    Meloxicam gel was designed based on the matching of the solubility parameter (delta) of the drug with that of the polymer and subsequently with skin for improved dermal delivery of meloxicam. The delta of meloxicam (11.48 (cal/cm(3))(0.5)) determined by solubility measurement was matched statistically to the solubility parameter of monomers, n-vinyl-2-pyrrolidone, polyvinyl alcohol (PVA), hydroxyl ethyl methacrylate, ethylene glycol methacrylate (EGMA) determined by intrinsic viscosity measurement. Consequently gels were formulated by polymerization in selected solvent blend of water/ethyl acetate (20:80) in which the drug showed maximum solubility. Thus, F1-F16 formulations designed were evaluated for physicochemical properties, textural analysis, and in vitro drug release. On the basis of optimum characteristics, F2 (PVA, delta = 16.96 (cal/cm(3))(0.5)) and F8 (EGMA, delta = 18.35 (cal/cm(3))(0.5)) formulated by suspension polymerization were selected and subjected to skin irritation and topical anti-inflammatory studies. The formulation F8 demonstrated significant (p < 0.05) of anti-inflammatory activity in comparison to marketed piroxicam gel and was free from irritation.

  11. Novel Alkyd-Type Coating Resins Produced Using Cationic Polymerization [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Bret; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2014-04-07

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(vinyl ether)s provide several advantages. These advantages include miler, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimmers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerable as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  12. Rise and Fall: Poly(phenyl vinyl ketone) Photopolymerization and Photodegradation under Visible and UV Radiation.

    Science.gov (United States)

    Reeves, Jennifer A; Allegrezza, Michael L; Konkolewicz, Dominik

    2017-07-01

    Vinyl ketone polymers, including phenyl vinyl ketone (PVK), are an important class of polymers due to their ability to degrade upon irradiation with ultraviolet light which makes them useful for a variety of applications. However, traditional radical methods for synthesizing PVK polymers give rise to poor control or are unable to produce block copolymers. This work uses reversible addition-fragmentation chain transfer polymerization (RAFT) and photochemistry to polymerize PVK. When visible blue radiation of 440 ± 10 nm is used as the light source for the photopolymerization, rapid polymerization and well-defined polymers are created. This RAFT method uses PVK as both monomer and radical initiator, exciting the PVK mono-mer by 440 ± 10 nm irradiation to avoid the use of an additional radical initiator. Once the poly-mer is synthesized, it is stable against degradation by blue light (440 ± 10 nm), but upon exposure to ultraviolet (UV) radiation (310 ± 20 nm) significant decrease in molecular weight is observed. The degradation is observed for all poly(PVK) materials synthesized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fluoride rearrangement reactions of polyphenyl- and polyvinylsilsesquioxanes as a facile route to mixed functional phenyl, vinyl T10 and T12 silsesquioxanes.

    Science.gov (United States)

    Asuncion, M Z; Laine, R M

    2010-03-24

    Polyphenylsilsesquioxane [PhSiO(1.5)](n) (PPS) and polyvinylsilsesquioxane [vinylSiO(1.5)](n) (PVS) are polymeric byproducts of the syntheses of the related T(8) octamers [PhSiO(1.5)](8) and [vinylSiO(1.5)](8). Here we demonstrate that random-structured PPS and PVS rearrange in the presence of catalytic amounts of Bu(4)N(+)F(-) in THF to form mixed-functionality polyhedral T(10) and T(12) silsesquioxane (SQ) cages in 80-90% yields. Through control of the initial ratio of starting materials, we can statistically tailor the average values for x for the vinyl(x)Ph(10-x)T(10) and vinyl(x)Ph(12-x)T(12) products. Metathetical coupling of x approximately = 2 vinyl cages with 4-bromostyrene produces SQs with an average of two 4-bromostyrenyl substituents. These products can be reacted via Heck coupling with vinylSi(OEt)(3) to produce SQs with vinylSi(OEt)(3) end-caps. Alternately, Heck coupling with the originally produced x approximately = 2 vinyl SQs leads to "beads on a chain" SQ oligomers joined by conjugated organic tethers. The functionalized T(10) and T(12) cages, metathesis, and Heck compounds were characterized by standard analytical methods (MALDI-TOF MS, (1)H and (13)C NMR spectroscopy, TGA, and GPC). MALDI confirms the elaboration of the cages after each synthetic step, and GPC verifies the presence of higher molecular weight SQ oligomers. TGA shows that all of these compounds are thermally stable in air (>300 degrees C). The UV-vis absorption and emission behavior of the Heck oligomers reveals exceptional red-shifts (> or = 60 nm) compared to the vinylSi(OEt)(3) end-capped model compounds, suggesting electronic interactions through the SQ silica cores. Such phenomena may imply 3-D conjugation through the cores themselves.

  14. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy

    Science.gov (United States)

    Jabri, Atef; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Van, Vinh; Stahl, Wolfgang

    2016-06-01

    The Fourier transform microwave spectra of the E and the Z isomer of butadienyl acetate have been measured in the frequency range from 2 to 26.5 GHz under molecular beam conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with results from quantum chemical calculations. The barrier to internal rotation of the acetyl methyl group was found to be 149.1822(20) cm-1 and 150.2128(48) cm-1 for the E and the Z isomer, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotations, the rho axis method (using the program BELGI-Cs) and combined axis method (using the program XIAM), is also performed. Since several years we study the barriers to internal rotation of the acetyl methyl group in acetates, CH3-COOR. Currently, we assume that all acetates can be divided into three classes. Class I contains α,β saturated acetates, where the torsional barrier is always close to 100 cm-1. Examples are a series of alkyl acetates such as methyl acetate and ethyl acetate. Class II contains α,β-unsaturated acetates where the C=C double bond is located in the COO plane. This is the case of vinyl acetate and butadienyl acetate. Finally, in class III with isopropenyl acetate and phenyl acetate as two representatives, α,β-unsaturated acetates, in which the double bond is not located in the COO plane, are collected. There, we observed a barrier height around 135 cm-1. This observation will be discussed in details. B. Velino, A. Maris, S. Melandri, W. Caminati, J. Mol. Spectrosc. 2009, 256, 228 H. V. L. Nguyen, A. Jabri, V. Van, and W. Stahl, J. Phys. Chem. A, 2014, 118, 12130.

  15. Poly(1-vinyl-1,2,4-triazolium) poly(ionic liquid)s: synthesis and the unique behavior in loading metal ions

    OpenAIRE

    Zhang, Weiyi; Yuan, Jiayin

    2016-01-01

    Herein we report the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s either via straightforward free radical polymerization of their corresponding ionic liquid monomers, or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers were first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The ...

  16. 40 CFR 721.3140 - Vinyl epoxy ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  17. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-propylene copolymers. 177.1980... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1980 Vinyl chloride-propylene copolymers. The vinyl chloride-propylene copolymers identified in paragraph (a) of this section may be safely...

  18. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  19. Carbon : Desktop Vinyl Lathe Recapturing Value In Recorded Music

    OpenAIRE

    Wright, Christopher

    2015-01-01

    Vinyl records have re-emerged as the preferred format for music fans and artists alike. The problem is that producing vinyl records is slow and expensive; this makes it difficult for up-and-coming artists to release their music on vinyl. What if you could make your own records at home?

  20. Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application

    Science.gov (United States)

    Hatamie, Shadie; Ahadian, Mohammad Mahdi; Rashidi, Alimoradeh; Karimi, Ali; Akhavan, Omid

    2017-05-01

    In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer-Emmett-Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer-Tropsch synthesize, which showed a high catalyst selectivity to C2-C4 hydrocarbons.

  1. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    Science.gov (United States)

    Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2013-10-15

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DSMMA)s of VP≥~10mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP=ca. 10-40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5-20 nm), however. The appearance of such a "miscibility window" was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Intramolecular crosslinking of poly(vinyl alcohol)

    NARCIS (Netherlands)

    Gebben, Bert; van den Berg, J.W.A.; Bargeman, Dick; Smolders, C.A.

    1985-01-01

    Poly(vinyl alcohol) is crosslinked in dilute solution (c=0.1 wt%) with glutaraldehyde. The reaction product is characterized by viscometry and gel permeation chromatography (g.p.c.). The intrinsic viscosity decreases with increasing degree of crosslinking and does not depend on temperature. G.p.c.

  3. Atmospheric fate of methyl vinyl ketone

    DEFF Research Database (Denmark)

    Praske, Eric; Crounse, John D; Bates, Kelvin H

    2015-01-01

    First generation product yields from the OH-initiated oxidation of methyl vinyl ketone (3-buten-2-one, MVK) under both low and high NO conditions are reported. In the low NO chemistry, three distinct reaction channels are identified leading to the formation of (1) OH, glycolaldehyde, and acetyl p...

  4. Vinyl Ester Oligomer Crosslinked Porous Polymers Prepared via Surfactant-Free High Internal Phase Emulsions

    Directory of Open Access Journals (Sweden)

    Yun Zhu

    2012-01-01

    Full Text Available Using vinyl ester resin (VER containing styrene (or methyl methacrylate and vinyl ester oligomer (VEO as external phase, Pickering high internal phase emulsions (Pickering HIPEs having internal phase volume fraction of up to 95 vol% were prepared with copolymer particles as sole stabilizer. Polymerizing the external phase of these Pickering HIPEs led to porous polymers (poly-Pickering-HIPEs. Compared to the polystyrene- (PS- based poly-Pickering-HIPEs which were prepared with mixture of styrene and divinylbenzene (DVB as crosslinker, the poly-Pickering-HIPEs herein showed much higher elastic modulus and toughness. The elastic modulus of these poly-Pickering-HIPEs increased with increasing the VEO concentration in the external phase, while it decreased with increasing internal phase volume fraction. Increasing VEO concentration in the external phase also resulted in a decrease in the average void diameter as well as a narrow void diameter distribution of the resulting poly-Pickering-HIPEs. In addition, there were many small pores in the voids surface caused by the volume contraction of VER during the polymerization, which suggests a new method to fabricate porous polymers having a well-defined hierarchical pore structure.

  5. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels

    Directory of Open Access Journals (Sweden)

    Malana Muhammad A

    2013-01-01

    Full Text Available Abstract Background and the purpose of the study Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. Methods Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. Results and major conclusion Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1 showing swelling controlled mechanism. The mechanical strength and controlled

  6. The Release Behavior and Kinetic Evaluation of Tramadol HCl from Chemically Cross Linked Ter Polymeric Hydrogels

    Directory of Open Access Journals (Sweden)

    Muhammad A Malana

    2013-01-01

    Full Text Available Background and the purpose of the study: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels.MethodsTer-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol % EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism.Results and major conclusion: Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n>0.5>1 showing swelling controlled mechanism. The mechanical strength and controlled release capability of

  7. Ulipristal acetate versus leuprolide acetate for uterine fibroids.

    Science.gov (United States)

    Donnez, Jacques; Tomaszewski, Janusz; Vázquez, Francisco; Bouchard, Philippe; Lemieszczuk, Boguslav; Baró, Francesco; Nouri, Kazem; Selvaggi, Luigi; Sodowski, Krzysztof; Bestel, Elke; Terrill, Paul; Osterloh, Ian; Loumaye, Ernest

    2012-02-02

    The efficacy and side-effect profile of ulipristal acetate as compared with those of leuprolide acetate for the treatment of symptomatic uterine fibroids before surgery are unclear. In this double-blind noninferiority trial, we randomly assigned 307 patients with symptomatic fibroids and excessive uterine bleeding to receive 3 months of daily therapy with oral ulipristal acetate (at a dose of either 5 mg or 10 mg) or once-monthly intramuscular injections of leuprolide acetate (at a dose of 3.75 mg). The primary outcome was the proportion of patients with controlled bleeding at week 13, with a prespecified noninferiority margin of -20%. Uterine bleeding was controlled in 90% of patients receiving 5 mg of ulipristal acetate, in 98% of those receiving 10 mg of ulipristal acetate, and in 89% of those receiving leuprolide acetate, for differences (as compared with leuprolide acetate) of 1.2 percentage points (95% confidence interval [CI], -9.3 to 11.8) for 5 mg of ulipristal acetate and 8.8 percentage points (95% CI, 0.4 to 18.3) for 10 mg of ulipristal acetate. Median times to amenorrhea were 7 days for patients receiving 5 mg of ulipristal acetate, 5 days for those receiving 10 mg of ulipristal acetate, and 21 days for those receiving leuprolide acetate. Moderate-to-severe hot flashes were reported for 11% of patients receiving 5 mg of ulipristal acetate, for 10% of those receiving 10 mg of ulipristal acetate, and for 40% of those receiving leuprolide acetate (Pulipristal acetate vs. leuprolide acetate). Both the 5-mg and 10-mg daily doses of ulipristal acetate were noninferior to once-monthly leuprolide acetate in controlling uterine bleeding and were significantly less likely to cause hot flashes. (Funded by PregLem; ClinicalTrials.gov number, NCT00740831.).

  8. Efficient Synthesis of Molecular Precursors for Para-Hydrogen-Induced Polarization of Ethyl Acetate-1-(13) C and Beyond.

    Science.gov (United States)

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Manzanera Esteve, Isaac V; Chekmenev, Eduard Y

    2016-05-10

    A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  10. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  11. Pemanfaatan limbah kopolimer ethyene vinyl acetateuntuk komposit karet

    Directory of Open Access Journals (Sweden)

    Dwi Wahini Nurhajati

    2008-12-01

    Full Text Available A new composite of natural rubber blend with ethylene vinyl acetate (EVA waste obtained from footwear industry hase been made. EVA waste from footwear industry is crosslinked materials which is able to be used as a filler in composite rubber. Potency of EVA waste in the form of powder from the footwear industry in Indonesia is more than 50kg/day, while in the form of solid is about 75,000 ton/ year and is hasn’t yet utilized. The aim of this research is to study influence of EVA waste on the physical properties of natural rubber composite filled with EVA waste. Natural rubber, EVA waste, and addives were mixed by a two-roll mills machine. The amounts of EVA waste were varied from 0 to 100 phr with range of 20 phr. The results of physical properties test showed that the maximum addition of EVA waste, which performed highest tensile strength, and tear resistance was found for 60 phr, and which contributed to an increase in higher elongation at break, hardness, 50% permanent set, and density was found for 100 phr. The addition of EVA waste resulted in a reduction of the abrasion resistance. All of the resulted composites there were no crack detected on the flex cracking test at 150 kcs.

  12. Surface studies of microcrystalline chitosan/poly(vinyl alcohol) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Katarzyna, E-mail: reol@chem.uni.torun.pl [Nicolaus Copernicus University, Faculty of Chemistry, Chair of Chemistry and Photochemistry of Polymers, 7 Gagarin Street, 87-100 Torun (Poland)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The surface properties were investigated by AFM, SEM and FTIR. Black-Right-Pointing-Pointer The AFM images showed the lamellar structure of PVA in the blend. Black-Right-Pointing-Pointer SEM microscopy confirmed the existence of microphase separation of components. Black-Right-Pointing-Pointer FTIR analysis showed the existence of a weak interaction. - Abstract: In the present study, the surface properties of microcrystalline chitosan (MCCh), poly(vinyl alcohol) (PVA) and MCCh/PVA blends (made from acetic acid solutions with the MCCh concentration ranging from 20% to 80%) have been studied by the tapping-mode atomic force microscopy (AFM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The changes of topography images are considered by determining the root mean square (RMS, R{sub q}) deviation in the image data. For PVA samples, the transition between adjacent lamellae occurs through holes, islands, and bicontinuous structures. The AFM images showed also the lamellar structure of PVA in the blend. The crystalline topography of MCCh/PVA film surface suggests the presence of PVA on the top surface. The FTIR spectra of film blends, in the amide I and II region of MCCh and the hydroxyl stretching bands of PVA have been analyzed. FTIR analysis showed the existence of a weak interaction of the hydroxyl or amino groups of microcrystalline chitosan with hydroxyl groups of PVA.

  13. Claisen rearrangements of benzyl vinyl ethers: theoretical investigation of mechanism, substituent effects, and regioselectivity.

    Science.gov (United States)

    Krenske, Elizabeth H; Burns, Jed M; McGeary, Ross P

    2017-09-26

    Recently we reported the aromatic Claisen rearrangements of benzyl ketene acetals, which form one of the few examples of aromatic Claisen rearrangements involving benzyl vinyl ethers (as opposed to allyl aryl ethers, which are the usual substrates for aromatic Claisen rearrangements). Theoretical calculations predict that these rearrangements proceed via a concerted [3,3]-sigmatropic transition state, which is similar in geometry to the TS for the Claisen rearrangement of an allyl aryl ether but has a 4 kcal mol-1 higher barrier. The effects of donor (OMe) and acceptor (CN) substituents on the kinetics of the [3,3]-rearrangement mirror those reported for allyl vinyl ethers: the largest substituent effects are seen for 1-OMe, 2-OMe, 2-CN, and 4-CN substituents, which lower the barrier by 5-9 kcal mol-1. Substituents on the aromatic ring have smaller effects on the barrier (≤2 kcal mol-1). The regioselectivities of Claisen rearrangements of meta-substituted benzyl ketene acetals favour 1,2,3-trisubstituted products in preference to the less sterically congested 1,2,4-isomers due to favourable orbital interactions in the 1,2,3 transition state.

  14. Performance Evaluation of Vinyl Replacement Windows.

    Science.gov (United States)

    1980-07-15

    VINYL REPLACEMENT WINDOWS P. B. SHEPHERD JOHNS-MANVILLE SALES CORPORATION LEU ! RESEARCH & DEVELOPMENT CENTER CLE 0 KEN- CARYL RANCH DENVER, COLORADO...AE OKUI UBR Research & Development Center i 0010 Ken- Caryl Ranch, Denver, Colorado 80217(W II. CONTROLLING OFFICE NAME AND ADDRESS 12 5CPORT DATE U.S...The letter sent to manufacturers is reproduced on the following page. The source of manufacturers solicited was the Thomas Register I0 and all firms

  15. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization.

    Science.gov (United States)

    Kahveci, Muhammet U; Acik, Gokhan; Yagci, Yusuf

    2012-02-27

    A new synthetic approach for the preparation of block copolymers by mechanistic transformation from atom transfer radical polymerization (ATRP) to visible light-induced free radical promoted cationic polymerization is described. A series of halide end-functionalized polystyrenes with different molecular weights synthesized by ATRP were utilized as macro-coinitiators in dimanganese decacarbonyl [Mn(2) (CO)(10) ] mediated free radical promoted cationic photopolymerization of cyclohexene oxide or isobutyl vinyl ether. Precursor polymers and corresponding block copolymers were characterized by spectral, chromatographic, and thermal analyses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. EFFECT OF LEAD ACETATE

    African Journals Online (AJOL)

    MICROSOFT

    The project was conducted to evaluate the effect of lead administered as lead acetate at different dosage levels via drinking water in broiler chicks. Thirty-five healthy chicks were divided into seven groups (five chicks each) and one group was kept as un-medicated control. Groups A, B, C, D, E and F were medicated with ...

  17. furfural and acetic acid

    African Journals Online (AJOL)

    Investigating the effects of two lignocellulose degradation by-products (furfural and acetic acid) on ethanol fermentations by six ethanologenic yeast strains. ... Among the tested yeast strains, 1300 exhibited the highest growth rate, thus can be a promising candidate for mass production of bioethanol. Three important ...

  18. Synthesis and characterization of UV photocrosslinkable hydrogels with poly(N-vinyl-2-pyrrolidone): Determination of the network mesh size distribution

    DEFF Research Database (Denmark)

    Marizza, Paolo; Abrami, M.; Keller, Stephan Sylvest

    2016-01-01

    Hydrogels of poly(n-vinyl-2-pyrrolidone) were produced by UV irradiation of aqueous solutions of the polymer in presence of hydrogen peroxide, used as initiator. The mechanical and the nanostructural properties of the gels were characterized by a combination of experimental techniques including r...... of the gel polymeric network. Moreover, a novel correlation model was developed based on Chui and Scherer theories for the interpretation of LF-NMR dataset of polymer solutions and networks....

  19. Metabolic activation and mutagenicity of 4 vinylic monomers (vinyl chloride, styrene, acrylonitrile, butadiene).

    Science.gov (United States)

    Duverger, M; Lambotte, M; Malvoisin, E; de Meester, C; Poncelet, F; Mercier, M

    1981-05-01

    The mutagenic activity and the metabolism of four vinylic monomers; vinyl chloride, styrene, acrylonitrile and butadiene are reviewed. Those chemicals are converted by the mixed function oxidases system of the endoplasmic reticulum into reactive intermediates which can interact with macromolecules within the cell. In order to examine the mutagenic activity of these compounds and their metabolites, different mutagenicity testing systems have been used: tests with S. typhimurium, E. coli, Schizosaccharomyces pombe, Saccharomyces cerevisiae, V79 Chinese Hamster cells, CHO cells, Drosophila melanogaster as well as evaluations of chromosome aberrations.

  20. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  1. Ulipristal acetate: in uterine fibroids.

    Science.gov (United States)

    Croxtall, Jamie D

    2012-05-28

    Ulipristal acetate, a selective progesterone-receptor modulator, inhibits the proliferation and induces apoptosis of leiomyoma cells in vitro. It also modulates the expression of vascular endothelial growth factors and hormone receptors and modulates extracellular matrix breakdown in leiomyoma cells but not in myometrial cells. In two randomized, double-blind, multinational phase III trials of 13 weeks' duration in women aged 18-50 years with uterine fibroids, a once-daily regimen of oral ulipristal acetate 5 mg/day controlled excessive uterine bleeding (primary endpoint) in ≥90% of patients. Ulipristal acetate 5 mg/day was more effective than placebo and was shown to be noninferior to intramuscular leuprolide acetate 3.75 mg once monthly in controlling uterine bleeding. Uterine bleeding was rapidly controlled by ulipristal acetate. Approximately half of recipients of ulipristal acetate 5 mg/day became amenorrhoeic within the first 10 days of treatment. Furthermore, uterine bleeding was controlled significantly more rapidly for recipients of ulipristal acetate than recipients of leuprolide acetate. A significantly greater median reduction from baseline in total fibroid volume was observed for recipients of ulipristal acetate 5 mg once daily than recipients of placebo following 13 weeks' treatment (coprimary endpoint). For patients who did not undergo surgery, the volume reduction was maintained for at least 6 months after discontinuing treatment. Ulipristal acetate was generally well tolerated in women with uterine fibroids. The incidence of hot flush occurred with a significantly lower frequency for recipients of ulipristal acetate than for recipients of leuprolide acetate.

  2. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  3. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium.

    Science.gov (United States)

    Tomke, Prerana D; Rathod, Virendra K

    2015-11-01

    Cinnamyl acetate is known for its use as flavor and fragrance material in different industries such as food, pharmaceutical, cosmetic etc. This work focuses on ultrasound assisted lipase (Novozym 435) catalyzed synthesis of cinnamyl acetate via transesterification of cinnamyl alcohol and vinyl acetate in non-aqueous, solvent free system. Optimization of various parameters shows that a higher yield of 99.99% can be obtained at cinnamyl alcohol to vinyl acetate ratio of 1:2 with 0.2% of catalyst, at 40°C and 150 rpm, with lower ultrasound power input of 50 W (Ultrasound intensity 0.81 W/cm(2)), at 25 kHz frequency, 50% duty cycle. Further, the time required for the maximum conversion is reduced to 20 min as compared to 60 min of conventional process. Similarly, the enzyme can be successfully reused seven times without loss of enzyme activity. Thus, ultrasound helps to enhance the enzyme catalyzed synthesis of flavors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In-situ polymerization of monoethylenically unsaturated monomers with secondary amines

    OpenAIRE

    Detrembleur, Christophe; Gross, Thomas; Meyer, Rolf-Volker

    2003-01-01

    PROBLEM TO BE SOLVED: To provide a novel process for producing a homopolymer, a random copolymer, or a block copolymer having a controlled molecular weight, a narrow molecular weight distribution, a high monomer conversion ratio, and a controlled structure. ; SOLUTION: The polymer having a controlled molecular weight, a narrow polydispersibility, a high monomer conversion ratio, and a controlled structure is produced by polymerizing a vinyl monomer during the formation of a mixture of a hinde...

  5. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    Science.gov (United States)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  6. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  7. Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-10-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO{sub 2} and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO{sub 2}/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO{sub 2} was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2} nanocomposite hydrogels. Both TiO{sub 2} and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO{sub 2} and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water.

  8. Step-Growth Polymerization.

    Science.gov (United States)

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  9. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  10. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  11. Studies of Poly(vinyl chloride) Based Endotracheal Tubes From the Microscopic to Macroscopic Scale

    Science.gov (United States)

    Brodie, Kristin; Ortiz, Christine

    2003-03-01

    The endotracheal tube (ET) is a polymeric conduit that forms a closed system of pulmonary ventilation that is most often used to allow delivery of air to critically ill patients via intubation. Currently used ETs cause a wide variety of clinical problems including laryngeal edema (inflammation), severe morbidity, and occasionally death. To investigate the origins of this behavior, mechanical, chemical, morphological, and biocompatibility characterization of injection-molded (Endotrol) tubes of poly(vinyl chloride) (PVC) containing 35 wtplasticizer was conducted. Experiments included fourier-transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, accelerated solvent extraction, uniaxial tensile testing, high-resolution force spectroscopy, atomic force microscopy, and plasticizer leaching. We intend for these studies to form the basis for future ET materials selection and design.

  12. Copolymerization of Tris(methoxyethoxyvinyl Silane with N-Vinyl Pyrrolidone: Synthesis, Characterization, and Reactivity Relationships

    Directory of Open Access Journals (Sweden)

    Ameen Hadi Mohammed

    2015-01-01

    Full Text Available Copolymer of tris(methoxyethoxyvinyl silane (TMEVS with N-vinyl pyrrolidone (NVP was synthesized by free radical polymerization in dry benzene at 70°C using benzoyl peroxide (BPO as initiator. The copolymer was characterized by viscometer, FTIR, and 1H-NMR and its thermal properties were studied by DSC and TGA. The copolymer composition was determined by elemental analysis. The monomer reactivity ratios were calculated by linearization methods proposed by Fineman-Ross and Kelen-Tudos. The intersection method was proposed by Mayo-Lewis and nonlinear method was proposed by curve-fitting procedure. The microstructure of copolymer and sequence distribution of monomers in the copolymer were calculated by statistical method.

  13. Effects of sterilization on Poly(Vinyl Alcohol) (PVAl) hydrogels matrices

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Jose A.; Rodrigues, Kiriaki M.S.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: mariajhho@yahoo.com.br

    2007-07-01

    The poly(vinyl alcohol) (PVAl) is a polymer of great interest for new materials development due to its specific characteristics particularly for biomedical applications. PVAl with polyethylene glycol (PEG) 300 was processed using freezing-thawing sequence of thermal cycles for hydrogel preparation. The samples were evaluated by gel fraction (%), water uptake (%) and thermogravimetry analysis (TGA). The hydrogel was sterilized under ionizing radiation from Cobalt-60 source at 25 kGy dose and the effects of the radiation on the hydrogel properties was discussed in this work. The results of swelling, gel fraction and thermal stability are in part influenced by the sterilization method. The presence of PEG in PVAl hydrogels forms less dense hydrogels under freeze/thawing cycles. The swelling in the sterilized hydrogels is higher than the not sterilized hydrogel in consequence of chain scissions in the polymeric structure due to the radiation process. (author)

  14. Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics.

    Science.gov (United States)

    Shi, Kun; Liu, Zhuang; Yang, Chao; Li, Xiao-Ying; Sun, Yi-Min; Deng, Yi; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2017-07-05

    Poly(N-vinyl caprolactam) (PVCL) hydrogels usually suffer from the imporous structure and poor mechanical characteristics as well as the toxicity of cross-linkers, although PVCL itself is biocompatible. In this paper, novel biocompatible thermoresponsive poly(N-vinyl caprolactam)/clay nanocomposite (PVCL-Clay) hydrogels with macroporous structure and improved mechanical characteristics are developed for the first time. The macroporosity in the hydrogel is introduced by using Pickering emulsions as templates, which contain N-vinyl caprolactam (VCL) monomer as dispersed phase and clay sheets as stabilizers at the interface. After polymerization, macropores are formed inside the hydrogels with the residual unreacted VCL droplets as templates. The three-dimensional PVCL polymer networks are cross-linked by the clay nanosheets. Due to the nanocomposite structure, the hydrogel exhibits better mechanical characteristics in comparison to the conventional PVCL hydrogels cross-linked by N,N'-methylene diacrylamide (BIS). The prepared PVCL-Clay hydrogel possesses remarkable temperature-responsive characteristics with a volume phase transition temperature (VPTT) around 35 °C, and provides a feasible platform for cell culture. With macroporous structure and good mechanical characteristics as well as flexible assembly performance, the proposed biocompatible thermoresponsive PVCL-Clay nanocomposite hydrogels are ideal material candidates for biomedical, analytical, and other applications such as entrapment of enzymes, cell culture, tissue engineering, and affinity and displacement chromatography.

  15. Waterborne Polymeric Films.

    Science.gov (United States)

    1979-12-01

    in the preparation of synthetic rubber for tires. Even in the modern world the term SBR rubber is a common phrase. Since the styrene-butadiene...homopolymers (TgI . . Tan).12 For applications requiring toughness and moisture barrier properties, it is frequently desirable to incorporate styrene (12a...acrylic or styrenated acrylics. Other applications may require features attributed to other vinyl containing compounds such as halides (12b), ethers

  16. A study of poly(vinyl alcohol thermal degradation by thermogravimetry and differential thermogravimetry

    Directory of Open Access Journals (Sweden)

    Julián Esteban Barrera

    2010-04-01

    Full Text Available The thermal degradation of poly(vinyl alcohol (PVA having different degrees of hydrolysis and molecular weights was studied by thermogravimetry (TGA and differential thermogravimetry (DTGA. Four degradation events were identified whose intensity was related to the degree of hydrolysis. It was verified that the solid-state degradation mechanism for high hydrolysis degrees corresponded to eliminating water-forming side groups in stoichiometric amounts. The presence of acetate groups and lower melting points delayed the polymer’s thermal decomposition at lower hydrolysis degrees. There was no direct correlation in these samples between weight-loss during the first degradation event and the stoichiometric quantities which would be produced by eliminating the side groups. Reaction order and energy activation value qualitative coincidence was found by evaluating experimental data by using Freeman-Carroll and Friedman kinetic models.

  17. A study of poly(vinyl alcohol thermal degradation by thermogravimetry and differential thermogravimetry

    Directory of Open Access Journals (Sweden)

    Julián Esteban Barrera

    2007-05-01

    Full Text Available The thermal degradation of poly(vinyl alcohol (PVA having different degrees of hydrolysis and molecular weights was studied by thermogravimetry (TGA and differential thermogravimetry (DTGA. Four degradation events were identified whose intensity was related to the degree of hydrolysis. It was verified that the solid-state degradation mechanism for high hydrolysis degrees corresponded to eliminating water-forming side groups in stoichiometric amounts. The presence of acetate groups and lower melting points delayed the polymer’s thermal decomposition at lower hydrolysis degrees. There was no direct correlation in these samples between weight-loss during the first degradation event and the stoichiometric quantities which would be produced by eliminating the side groups. Reaction order and energy activation value qualitative coincidence was found by evaluating experimental data by using Freeman-Carroll and Friedman kinetic models.

  18. Eletrofiação do poli (álcool vinílico via solução aquosa Electrospinning of aqueous solution of poly (vinyl alcohol

    Directory of Open Access Journals (Sweden)

    Lilia M. Guerrini

    2006-12-01

    Full Text Available Neste trabalho foi sintetizado o poli(álcool vinílico (PVOH através da hidrólise alcalina do poli (acetato de vinila. As mantas nanofibrílicas de PVOH foram processadas através da eletrofiação das soluções de PVOH/água e PVOH/água/cloreto de alumínio, ambos na concentração de 12,4% m/v. A morfologia das fibras foi analisada através da microscopia eletrônica de varredura (MEV. O grau de cristalinidade dos materiais foi medido por calorimetria exploratória diferencial (DSC e difração raios x de alto ângulo (WAXD. Os efeitos da tensão elétrica aplicada e da presença de cloreto de alumínio foram verificados na morfologia e no diâmetro médio das fibras de PVOH. Os resultados obtidos mostraram que as fibras de PVOH na ausência do cloreto de alumínio apresentaram diâmetros maiores do que na presença do cloreto de alumínio devido à diferença observada na condutividade elétrica das soluções. Variando-se a tensão de 15 a 18 kV foi observado um decréscimo 140 nm no diâmetro médio das fibras. A cristalinidade das fibras eletrofiadas com sal e sem sal é menor do que para o PVOH isotrópico.Poly(vinyl alcohol (PVOH was prepared by solution polymerization of vinyl acetate. PVOH nanofibers were produced by electrospinning in aqueous solution of 12.4% w/v with and without 1% v/v of aluminum chloride. The nanofiber morphology was observed using a scanning electron microscope (SEM. The degree of cristallinity was measured by differential scanning calorimetry (DSC and wide-angle x ray diffraction (WAXD. The effects of electric voltage and the addition of aluminum chloride were verified on the morphology and average fiber diameter. The results showed that the PVOH nanofibers without aluminum chloride had diameters higher than the nanofibers prepared with the salt due to the different electrical conductivity of the solutions. A decrease of 140 nm on the average diameter fibers was observed when the voltage varied from 15 to

  19. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  20. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  1. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  2. 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    investigated previously include alkyl pyrocarbonates. Those additives help to improve low-temperature performances by giving rise to the formation of SEIs having desired properties. The formation of the SEIs is believed to be facilitated by products (e.g., CO2) of the decomposition of these additives. These decomposition products are believed to react to form Li2CO3-based films on the carbon electrodes. The present additive, 4-vinyl-1,3-dioxolane-2-one, also helps to improve lowtemperature performance by contributing to the formation of SEIs having desired properties, but probably in a different manner: It is believed that, as part of the decomposition process, the compound polymerizes on the surfaces of carbon electrodes.

  3. PVP/PEG/Carrageenan/Silver acetate hydrogels by {gamma}-ray

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Youn Mook; Youn, Young; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    In recent day, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinifectant and biocidal material against coliforms and viruses. In this study, hydrogels containing silver acetate as antibacterial agent have been prepared using gamma rays irradiation. The hydrogels are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG), carrageenan and silver acetate. The concentration of solution was 9 wt%. The ratio of PVP: PEG: carrageenan was 6:1:2. The concentration of the silver acetate were 0,0.01, 0.03, 0.05 and 0.07% and Gamma irradiation dose was 25 kGy. The Gamma irradiation dose in hydrogels with 0.01% silver acetate were 20 kGy, 35 kGy, 50 kGy, 65 kGy, and 80 kGy. The results showed that 0.01% silver acetate concentration of hydrogels by 25 kGy irradiation dose showed the highest antibacterial activity against E. coli and Staphylococcus aureus. Moreover, antibacterial activity of various Gamma irradiation dose in hydrogels treated 0.01% silver acetate showed highest 35 kGy irradiation dose against Staphylococcus aureus.

  4. Drug-loaded Cellulose Acetate and Cellulose Acetate Butyrate Films ...

    African Journals Online (AJOL)

    The purpose of this research work was to evaluate the contribution of formulation variables on release properties of matrix type ocular films containing chloramphenicol as a model drug. This study investigated the use of cellulose acetate and cellulose acetate butyrate as film-forming agents in development of ocular films.

  5. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  6. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  7. The effect of protein structural conformation on nanoparticle molecular imprinting of ribonuclease A using miniemulsion polymerization.

    Science.gov (United States)

    Tan, Chau Jin; Tong, Yen Wah

    2007-02-27

    One of the major difficulties faced in the molecular imprinting of proteins is the inherently fragile and flexible nature of the protein template which makes it incompatible with most polymerization systems. Miniemulsion polymerization is a possible approach for preparing molecularly imprinted nanoparticles, and in this study, the method of initiation, the high-shear homogenization, and the surfactant used for the polymerization reaction had been considered as possible factors that can denature the template protein, ribonuclease A (RNase A). The conformation of the protein in a miniemulsion was studied using circular dichroism (CD). It was found that redox initiation was more suitable for protein imprinting and that the addition of poly(vinyl alcohol) (PVA) as a co-surfactant had proved to be effective in preserving the template protein structural integrity. On the basis of the results of the study, polymeric nanoparticles imprinted with RNase A were prepared via miniemulsion polymerization using methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as the functional and cross-linker monomers, respectively, with the conditions of the polymerization system optimized to best preserve the integrity of the protein template. In the subsequent investigation for the recognition properties of the prepared nanoparticles through batch and competitive rebinding tests, the imprinted nanoparticles prepared through the conventional (nonoptimized) miniemulsion polymerization lacked the target specificity as displayed by those prepared under the optimized conditions. This illustrated the importance of protein structural integrity in protein imprinting.

  8. Acetate metabolism in Methanothrix soehngenii

    NARCIS (Netherlands)

    Jetten, M.S.M.

    1991-01-01

    Acetate is quantitatively the most important intermediate in the anaerobic degradation of soluble organic matter. The conversion rate of acetate by methanogenic bacteria is proposed to be the rate limiting step in this degradation The study of acetoclastic methanogens, therefore is of

  9. (VI) oxide in acetic acid

    African Journals Online (AJOL)

    The oxidation of cyclohexene by chromium (VI) oxide in aqueous and acetic media was studied. The reaction products were analysed using infra red (IR) and gas chromatography coupled with mass (GC/MS) spectroscopy. The major products of the oxidation reaction in acetic acid medium were cyclohexanol, ...

  10. Effects of Preparation Conditions on the Yield and Embedding Ratio of Vinyl Silicone Oil Microcapsules

    Directory of Open Access Journals (Sweden)

    Aijie MA

    2016-05-01

    Full Text Available Self-healing materials could repair themselves without external influences when they are damaged. In this paper, microcapsules are prepared by in-situ polymerization method with vinyl silicone oil as core material, polyurea formaldehyde (PUF as wall material and polyvinyl alcohol as dispersants. The morphology and structure of the microcapsules are tested with scanning electron microscopy (SEM, polarizing microscope(PM)and laser particle analyzer(LPA. Effect of the reaction temperature, stirring speed and PVA concentration on the yield, embedding ratio, particle size and distribution of the microcapsules are studied. Results show that the microcapsules can be successfully prepared by in situ polymerization method. When the reaction temperature was 60℃, the stirring speed 1000 r/min, dispersant concentration 0.1%, the yield and embedding ratio of the microcapsule are 52.5% and 50.1%. The microcapsules prepared have smooth surface, well dispersibility, narrow particle size distribution and the average particle size is 13 μm.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.13026

  11. Assessment of vinyl polysiloxane as an innovative injection material for the anatomical study of vasculature.

    Science.gov (United States)

    Dargaud, Jacques; Chalvet, Laurane; Del Corso, Marco; Cerboni, Elsa; Feugier, Patrick; Mertens, Patrick; Simon, Emile

    2016-04-01

    There are numerous injection materials for the study of vasculature in anatomical specimens, each having its own advantages and disadvantages. Latex and resins are the most widely used injection materials but need several days to set. The development of new materials taking shorter time to polymerize might be very useful to improve anatomic specimen study conditions. The aim of the present study was to evaluate vinyl polysiloxane (VPS), a silicon material widely used for dental impressions with the advantage to set very rapidly, as an injection material. We assessed the preparation, use, diffusion and setting time of the product in different anatomical regions (central nervous system, external carotid/jugular, lower limb) to observe its behavior in variably sized vessels. Our results suggest that VPS might be of interest for the study of vessels in anatomical specimens. The main strengths of the product are represented by (1) simplicity of use, as it is a ready-to-use material, (2) very rapid polymerization, (3) availability in a range of viscosities making easier the exploration of small vessels, (4) its better elasticity compared to resins, (5) and finally its availability in a range of colors making it a material of choice for vascular system dissections including those with very small caliber vessels.

  12. Catalytic Effect of Pd Clusters in the Poly(N-vinyl-2-pyrrolidone) Combustion.

    Science.gov (United States)

    Schiavo, L; De Nicola, S; Carotenuto, G

    2018-01-11

    Pd(0) is able to catalyze oxygen-involving reactions because of its capability to convert molecular oxygen to the very reactive atomic form. Consequently, the embedding of a little amount of Pd(0) clusters in polymeric phases can be technologically exploited to enhance the incineration kinetic of these polymers. The effect of nanostructuration on the Pd(0) catalytic activity in the polymer incineration reaction has been studied using poly(N-vinyl-2-pyrrolidone) ([Formula: see text] = 10,000 gmol-1) as polymeric model system. A change in the PVP incineration kinetic mechanism with significant increase in the reaction rate was experimentally found. The kinetic of the Pd(0)-catalyzed combustion has been studied by isothermal thermogravimetric analysis. After a short induction time, the combustion in presence of Pd(0) clusters shifted to a zero-order kinetic from a second-order kinetic control, which is operative in pure PVP combustion reaction. In addition, the activation energy resulted much lowered compared to the pure PVP incineration case (from 300 to 260 kJ/mol).

  13. Viscometric Studies of Poly(ethylene glycol), Poly(vinyl alcohol) and Poly(vinyl chloride) and Their Mixtures in Water and Chlorobenzene

    OpenAIRE

    Ur Rashid, Harun

    1989-01-01

    Absolute viscosities of semi-dilute solutions of polytethylene. glycol) and poly(vinyl alcohol) and their mixtures in water and of poly(ethylene glycol) and poly(vinyl chloride) and the ir mixtures in chlorobenzene have been measured at 30 C C. The viscosities of poly(vinyl alcohol) and poly(vinyl chloride) increase sharply with concentration. The plots of viscosity of polymer mixtures against composition deviate from linearity. The effect of total polymer content on the ...

  14. Research Needs: Glass Solar Reflectance and Vinyl Siding

    OpenAIRE

    Hart, Robert

    2012-01-01

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and fact...

  15. Ulipristal acetate for emergency contraception.

    Science.gov (United States)

    Russo, J A; Creinin, M D

    2010-09-01

    Ulipristal acetate is a progesterone receptor modulator. As an emergency contraceptive, a 30-mg micronized formulation is effective for use up to 120 h from unprotected sexual intercourse. Ulipristal acetate acts as an antagonist of the progesterone receptor at the transcriptional level and a competitive antagonist of glucocorticoid receptor function. In contrast to other contraceptives, it has little effect on sex hormone-binding globulin. Although a single small study demonstrated some potential endometrial effects after ulipristal acetate administration, the clinical relevance of these findings is unclear. The incidence of adverse events in clinical trials for emergency contraception has typically been minimal, with one study showing a higher than expected incidence of nausea upon ulipristal acetate use. Ulipristal acetate, like other emergency contraceptive products, can lengthen the time to the next expected menstruation. Ulipristal acetate may have several advantages over currently approved emergency contraceptives. When compared to levonorgestrel, ulipristal acetate maintains its efficacy for a full 120 h, whereas levonorgestrel formulations have declining efficacy over that time frame. Moreover, although the copper intrauterine device (IUD) is highly effective as an emergency contraceptive, accessibility is an issue since the IUD requires a skilled provider for insertion. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  16. Chemoselective Lewis pair polymerization of renewable multivinyl-functionalized γ-butyrolactones

    Science.gov (United States)

    Gowda, Ravikumar R.; Chen, Eugene Y.-X.

    2017-07-01

    Multivinyl-functionalized γ-butyrolactones, γ-vinyl-γ-methyl-α-methylene-γ-butyrolactone (γVMMBL) and γ-allyl-γ-methyl-α-methylene-γ-butyrolactone (γAMMBL), have been synthesized from biorenewable ethyl levulinate and effectively polymerized by Lewis pairs consisting of an organic N-heterocyclic carbene Lewis base and a strong organo-Lewis acid E(C6F5)3 (E = Al, B). This Lewis pair polymerization is quantitatively chemoselective, proceeds exclusively via polyaddition across the conjugated α-methylene double bond without participation of the γ-vinyl or γ-allyl double bond, and produces high-molecular-weight functionalized polymers with unimodal molecular-weight distributions. The Al-based Lewis pair produces a polymer with approximately 5.5 times higher molecular weight than that produced by the B-based Lewis pair. The resulting vinyl-functionalized polymers are soluble in common organic solvents and stable at room temperature, and can be thermally cured into crosslinked materials. This article is part of the themed issue 'Frustrated Lewis pair chemistry'.

  17. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2014-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  18. Application of the Ion Beam Graft Polymerization Method to the Thin Film Diagnosis

    Science.gov (United States)

    Taniike, Akira; Nakamura, Raito; Kusaka, Syugo; Hirooka, Yuya; Nakanishi, Noriaki; Furuyama, Yuichi

    The ion beam graft polymerization (IBGP) method was applied to diagnosis of thin film of several tens μm or less thickness. After a sample stacked on polyethylene film was irradiated with proton beam, polyethylene was graft-polymerized with acrylic acid monomer. From observation of the graft-polymerized polyethylene, information inside the sample are obtained. Demonstrations of the diagnosis method were conducted for a leaf sample and a polyvinyl acetate film contained some voids. Using imitation samples made of metal and polymer sheets, some characteristics of this method was obtained. This method is useful for diagnosis for voids in thin film.

  19. Hemoglobin and red blood cells catalyze atom transfer radical polymerization.

    Science.gov (United States)

    Silva, Tilana B; Spulber, Mariana; Kocik, Marzena K; Seidi, Farzad; Charan, Himanshu; Rother, Martin; Sigg, Severin J; Renggli, Kasper; Kali, Gergely; Bruns, Nico

    2013-08-12

    Hemoglobin (Hb) is a promiscuous protein that not only transports oxygen, but also catalyzes several biotransformations. A novel in vitro catalytic activity of Hb is described. Bovine Hb and human erythrocytes were found to display ATRPase activity, i.e., they catalyzed the polymerization of vinyl monomers under conditions typical for atom transfer radical polymerization (ATRP). N-isopropylacrylamide (NIPAAm), poly(ethylene glycol) methyl ether acrylate (PEGA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were polymerized using organobromine initiators and the reducing agent ascorbic acid in acidic aqueous solution. In order to avoid chain transfer from polymer radicals to Hb's cysteine residues, the accessible cysteines were blocked by a reaction with a maleimide. The formation of polymers with bromine chain ends, relatively low polydispersity indices (PDI), first order kinetics and an increase in the molecular weight of poly(PEGA) and poly(PEGMA) upon conversion indicate that control of the polymerization by Hb occurred via reversible atom transfer between the protein and the growing polymer chain. For poly(PEGA) and poly(PEGMA), the reactions proceeded with a good to moderate degree of control. Sodium dodecyl sulfate (SDS) gel electrophoresis, circular dichroism spectroscopy, and time-resolved ultraviolet-visible (UV-vis) spectroscopy revealed that the protein was stable during polymerization, and only underwent minor conformational changes. As Hb and erythrocytes are readily available, environmentally friendly, and nontoxic, their ATRPase activity is a useful tool for synthetic polymer chemistry. Moreover, this novel activity enhances the understanding of Hb's redox chemistry in the presence of organobromine compounds.

  20. Transfer coating by electron initiated polymerization

    Science.gov (United States)

    Nablo, Sam V.

    The high speed and depth of cure possible with electron initiated monomer/oligomer coating systems provide many new opportunities for approaches to product finishing. Moreover, the use of transfer or cast coating using films or metallic surfaces offers the ability to precisely control the surface topology of liquid film surfaces during polymerization. Transfer coating such as with textiles has been a commercial process for many years and the synergistic addition of EB technology permits the manufacture of unusual new products. One of these, the casting paper used in the manufacture of vinyl and urethane fabrics, is the first EB application to use a drum surface for pattern replication in the coating. In this case the coated paper is cured against, and then released from, an engraved drum surface. Recent developments in the use of plastic films for transfer have been applied to the manufacture of transfer metallized and coated paper and paperboard products for packaging. Details of these and related processes will be presented as well as a discussion of the typical product areas (e.g. photographic papers, release papers, magnetic media) using this high speed transfer technology.

  1. Fluoroantimonic acid hexahydrate (HSbF6-6H2O) catalysis: The ring-opening polymerization of epoxidized soybean oil

    Science.gov (United States)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by a super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO) were characterized by using infrared (IR...

  2. Antibiofilm Properties of Acetic Acid

    Science.gov (United States)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus

    2015-01-01

    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378

  3. Methanogenesis from acetate: enrichment studies.

    Science.gov (United States)

    Baresi, L; Mah, R A; Ward, D M; Kaplan, I R

    1978-01-01

    An acetate enrichment culture was initiated by inoculating anaerobic sludge from a mesophilic methane digestor into a mineral salts medium with calcium acetate as the sole carbon and energy source. This enrichment was maintained indefinitely by weekly transfer into medium of the same composition. A study of this enrichment disclosed an unexpected age-dependent inhibition of methanogenesis by H2 and formate which apparently differed from the inhibition by chloroform and benzyl viologen. This age-dependent inhibition indicated that microbial interactions of the mixed enrichment population may play a regulatory role in methane formation. Futhermore, stimulation of methanogenesis in the acetate enrichment by addition of yeast extract showed a nutrient limitation which indicated that syntrophic interactions leading to formation of growth factors may also occur. A model is presented to illustrate the possible interrelationships between methanogenic and nonmethanogenic bacteria in their growth and formation of methane and carbon dioxide from acetate. Images PMID:697356

  4. Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde.

    Science.gov (United States)

    Albert, Carolyn J; Thukkani, Arun K; Heuertz, Rita M; Slungaard, Arne; Hazen, Stanley L; Ford, David A

    2003-03-14

    Plasmalogens are a subclass of glycerophospholipids that are enriched in the plasma membrane of many mammalian cells. The vinyl ether bond of plasmalogens renders them susceptible to oxidation. Accordingly, it was hypothesized that reactive brominating species, a unique oxidant formed at the sites of eosinophil activation, such as in asthma, might selectively target plasmalogens for oxidation. Here we show that reactive brominating species produced by the eosinophil peroxidase system of activated eosinophils attack the vinyl ether bond of plasmalogens. Reactive brominating species produced by eosinophil peroxidase target the vinyl ether bond of plasmalogens resulting in the production of a neutral lipid and lysophosphatidylcholine. Chromatographic and mass spectrometric analyses of this neutral lipid demonstrated that it was 2-bromohexadecanal (2-BrHDA). Reactive brominating species produced by eosinophil peroxidase attacked the plasmalogen vinyl ether bond at acidic pH. Bromide was the preferred substrate for eosinophil peroxidase, and chloride was not appreciably used even at a 1000-fold molar excess. Furthermore, 2-BrHDA production elicited by eosinophil peroxidase-derived reactive brominating species in the presence of 100 microM NaBr doubled with the addition of 100 mM NaCl. The potential physiological significance of this pathway was suggested by the demonstration that 2-BrHDA was produced by phorbol myristate acetate-stimulated eosinophils and by the demonstration that 2-BrHDA is a phagocyte chemoattractant. Taken together, the present studies demonstrate the targeting of the vinyl ether bond of plasmalogens by the reactive brominating species produced by eosinophil peroxidase and by activated eosinophils, resulting in the production of brominated fatty aldehydes.

  5. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  6. Polymeric coordination compounds

    Indian Academy of Sciences (India)

    Administrator

    Metal coordination polymers with one- and two-dimensional structures are of current interest due to their possible relevance to material science 1. In continuation of our previous studies 2,3, several new polymeric compounds are reported here. Among the complexes of silver with aminomethyl pyridine (amp) ...

  7. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  8. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  9. Viscoelastic and shock response of nanoclay and graphite platelet reinforced vinyl ester nanocomposites

    Science.gov (United States)

    Almagableh, Ahmad Mohammad

    The focus of ongoing research at University of Mississippi is to develop stronger, safer and more cost-effective structural materials for the new generation naval ships with an emphasis on lightweight nanoparticle reinforced glass/carbon polymeric based composites and structural foams for blast, shock and impact mitigation. Brominated 510A-40 vinyl ester nanocomposite resin systems are planned to be used in the composite face sheets of sandwich structures with fire-resistant foam layered in between to further reduce flammability along with optimal flexural rigidity, vibration damping and enhanced energy absorption. In this work, the viscoelastic and dynamic performance of brominated nanoclay and graphite platelet reinforced vinyl ester nanocomposites for blast (shock) loading applications are studied. The Dynamic Mechanical Analyzer (DMA Q800) was used to obtain the viscoelastic properties, modulus (stiffness), creep/ stress relaxation, and damping (energy dissipation), of 1.25 and 2.5 wt. percent nanoclay and exfoliated graphite nanoplatelet (xGnP) reinforced brominated vinyl ester. Effects of frequency (time) on the viscoelastic behavior were investigated by sweeping the frequency over three decades: 0.01, 0.1, 1 and 10 Hz, and temperature range from 30-150°C at a step rate of 4°C per minute. Master curves were generated by time-temperature superpositioning of the experimental data at a reference temperature. Bromination of vinyl ester resin was found to significantly increase the glass transition temperature (Tg) and damping for all nanocomposites. The nano reinforced composites, however showed a drop in initial storage modulus with bromination. Nanocomposites with 1.25 and 2.5 M. percent graphite had the highest storage modulus along with the lowest damping among brominated specimens. In this research, a shock Tube, servo-hydraulic Material Testing System (MTS) and Split-Hopkinson Pressure Bar (SHPB) are used to characterize the mechanical response and energy

  10. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  11. A novel polymeric catalyst for the one-pot synthesis of 2, 4, 5-triaryl ...

    Indian Academy of Sciences (India)

    An efficient synthesis of 2,4,5-trisubstituted imidazoles is achieved by three component cyclocondensation of benzil or benzoin, aldehyde and ammonium acetate by using novel polymeric catalyst [poly(AMPS-co-AA)] under solvent-free conditions. The key advantages of this process are high yields, shorter reaction times, ...

  12. A novel polymeric catalyst for the one-pot synthesis of 2,4,5-triaryl ...

    Indian Academy of Sciences (India)

    Abstract. An efficient synthesis of 2,4,5-trisubstituted imidazoles is achieved by three component cyclo- condensation of benzil or benzoin, aldehyde and ammonium acetate by using novel polymeric catalyst. [poly(AMPS-co-AA)] under solvent-free conditions. The key advantages of this process are high yields, shorter.

  13. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp.

    NARCIS (Netherlands)

    Pronk, M.; Neu, Thomas R.; van Loosdrecht, Mark C.M.; Lin, Y.

    2017-01-01

    A new acid soluble extracellular polymeric substance (acid soluble EPS) was extracted from an acetate fed aerobic granular sludge reactor operated at 35 °C. Acid soluble EPS dominated granules exhibited a remarkable and distinctive tangled tubular morphology. These granules are dominated by

  14. (Acetato-κObis(1,10-phenanthroline-κ2N,N′copper(II acetate heptahydrate

    Directory of Open Access Journals (Sweden)

    Buqin Jing

    2011-04-01

    Full Text Available In the title complex, [Cu(CH3CO2(C12H8N22](CH3CO2·7H2O, the central CuII ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water molecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010. The cations are linked to this layer via O—H...O hydrogen bonds between one of the water molecules and the coordinated acetate anion.

  15. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization.

    Science.gov (United States)

    Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof

    2008-09-24

    High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For

  16. 27 CFR 21.107 - Ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl acetate. 21.107....107 Ethyl acetate. (a) 85 percent ester: (1) Acidity (as acetic acid). Not more than 0.015 percent by...); for incorporation by reference, see § 21.6(b).) When 100 ml of ethyl acetate are distilled by this...

  17. 21 CFR 173.228 - Ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and..., Lubricants, Release Agents and Related Substances § 173.228 Ethyl acetate. Ethyl acetate (CAS Reg. No. 141-78... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are...

  18. Inorganic acid-catalyzed tautomerization of vinyl alcohol to acetaldehyde

    Science.gov (United States)

    Karton, Amir

    2014-01-01

    The vinyl alcohol-acetaldehyde tautomerization reaction has recently received considerable attention as a potential route for the formation of organic acids in the troposphere (Andrews et al., 2012 [7]). We examine the catalytic effect of inorganic acids in the troposphere (e.g. HNO3, H2SO4 and HClO4) on the vinyl alcohol-acetaldehyde tautomerization reaction, by means high-level thermochemical procedures. We show that H2SO4 and HClO4 catalysts lead to near-zero reaction barrier heights for the vinyl alcohol → acetaldehyde reaction, and to low reaction barrier heights in the reverse direction (ΔH298‡ = 40.6and 39.5kJmol-1 , respectively).

  19. Research Needs: Glass Solar Reflectance and Vinyl Siding

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  20. Self Organization via Frontal Polymerization

    Science.gov (United States)

    Pojman, John

    2007-03-01

    There are three modes of frontal polymerization: Isothermal, Photo and Thermal Isothermal frontal polymerization (IFP) is a directional polymerization that utilizes the Norish-Trommsdorff effect, to produce optical gradient materials. When a solution of methyl methacrylate and thermal initiator contacts a polymer seed (a small piece of poly(methyl methacrylate), a viscous region is formed in which the polymerization rate is faster than in the bulk solution. PhotoFP is driven by a continuous input of light. Thermal frontal polymerization is the propagation of a localized reaction zone through the coupling of thermal transport with the Arrhenius dependence of the kinetics of an exothermic polymerization. We will examine IFP and its use in making Gradient Optical Materials (GRIN) and our work on elucidating the mechanism. We will consider how thermal frontal polymerization can be used rapid rapid repair, making gradient materials and to study interesting nonlinear modes of thermal front propagation.

  1. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer, so...

  2. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride, vinyl chloride, and/or polyvinyl chloride plant shall comply with the requirements of this section. (a...

  3. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... chloride plastics. 178.3790 Section 178.3790 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this... semirigid and rigid vinyl chloride plastic food-contact articles prepared from vinyl chloride homopolymers...

  4. Thermally bisignate supramolecular polymerization

    Science.gov (United States)

    Venkata Rao, Kotagiri; Miyajima, Daigo; Nihonyanagi, Atsuko; Aida, Takuzo

    2017-11-01

    One of the enticing characteristics of supramolecular polymers is their thermodynamic reversibility, which is attractive, in particular, for stimuli-responsive applications. These polymers usually disassemble upon heating, but here we report a supramolecular polymerization that occurs upon heating as well as cooling. This behaviour arises from the use of a metalloporphyrin-based tailored monomer bearing eight amide-containing side chains, which assembles into a highly thermostable one-dimensional polymer through π-stacking and multivalent hydrogen-bonding interactions, and a scavenger, 1-hexanol, in a dodecane-based solvent. At around 50 °C, the scavenger locks the monomer into a non-polymerizable form through competing hydrogen bonding. On cooling, the scavenger preferentially self-aggregates, unlocking the monomer for polymerization. Heating also results in unlocking the monomer for polymerization, by disrupting the dipole and hydrogen-bonding interactions with the scavenger. Analogous to 'upper and lower critical solution temperature phenomena' for covalently bonded polymers, such a thermally bisignate feature may lead to supramolecular polymers with tailored complex thermoresponsive properties.

  5. Developments in polymerization lamps.

    Science.gov (United States)

    Jiménez-Planas, Amparo; Martín, Juan; Abalos, Camilo; Llamas, Rafael

    2008-02-01

    Polymerization shrinkage of composite resins and the consequent stress generated at the composite-tooth interface continue to pose a serious clinical challenge. The development of high-intensity halogen lamps and the advent of curing units providing higher energy performance, such as laser lamps, plasma arc units, and, most recently, light-emitting diode (LED) curing units, have revolutionized polymerization lamp use and brought major changes in light-application techniques. A comprehensive review of the literature yielded the following conclusions: (1) the most reliable curing unit for any type of composite resin is the high-density halogen lamp, fitted with a programming device to enable both pulse-delay and soft-start techniques; (2) if any other type of curing unit is used, information must be available on the compatibility of the unit with the composite materials to be used; (3) polymerization lamp manufacturers need to focus on the ongoing development of LED technology; (4) further research is required to identify the most reliable light-application techniques.

  6. Fabrication and characterization of a novel hydrophobic CaCO{sub 3} grafted by hydroxylated poly(vinyl chloride) chains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Lixia [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); School of Chemical Science and Technology, Yunnan University (China); Yang, Simei; Luo, Xin [School of Chemical Science and Technology, Yunnan University (China); Lei, Jingxin [State Key Laboratory of Polymer Materials Engineering, Sichuan University (China); Cao, Qiue [School of Chemical Science and Technology, Yunnan University (China); Wang, Jiliang, E-mail: jlwang@ynu.edu.cn [School of Chemical Science and Technology, Yunnan University (China)

    2015-12-01

    Highlights: • Hydroxylated poly(vinyl chloride) (PVC-OH) with different molecular weight and hydroxyl value was successfully prepared by the suspension copolymerization. • PVC-OH was grafted onto the surface of CaCO{sub 3} particles by the urethane formation reaction. • The modified CaCO{sub 3} particles show excellent hydrophobicity. - Abstract: The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO{sub 3} was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the −OH groups both in the PVC-OH chains and on the surface of pristine CaCO{sub 3} particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO{sub 3} particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO{sub 3} had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO{sub 3} particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO{sub 3} particles, respectively. The change of specific surface area implying surface modification was investigated as well.

  7. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    Science.gov (United States)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  8. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability.

    Science.gov (United States)

    Yan, Jiajie; Huang, Yunpeng; Miao, Yue-E; Tjiu, Weng Weei; Liu, Tianxi

    2015-01-01

    Free-standing poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) membranes with polydopamine (PDA) coating were prepared based on the combination of electrospinning and self-polymerization of dopamine. This is a facile, mild, controllable, and low-energy consumption process without any rigorous restriction to reactive conditions. Benefiting from the high specific surface area of electrospun membranes and the abundant "adhesive" functional groups of polydopamine, the as-prepared membranes exhibit efficient adsorption performance towards methyl blue with the adsorption capacity reaching up to 1147.6 mg g(-1). Moreover, compared to other nanoparticle adsorbents, the as-prepared self-standing membrane is highly flexible, easy to operate and retrieve, and most importantly, easy to elute, and regenerate, which enable its potential applications in wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of gamma radiation on the poly(vinyl alcohol); Efeito da radiacao gama no poli(vinil alcool)

    Energy Technology Data Exchange (ETDEWEB)

    Terence, M.C. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Dept. de Engenharia de Materiais; Guedes, S.M.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: mterence@usp.br

    2000-07-01

    The poly(vinyl alcohol) (PVAL) is a polymer used as bio material. The PVAL was used as ocular insert and may be used as a drug delivery system (DDS) for pair PVAL/gancyclovir, where the last one is used for treatment of people with retinitis caused by cytomegalovirus. These inserts are crosslinked systems. The crosslink was induced by gamma radiation applied in polymer. The samples of PVAL was irradiated by gamma rays with doses in the range 0 to 100 kGy. On irradiated PVAL samples was observed a low yellowness, attributed to the formation of polymeric radicals that are stable in the structure of the polymer, from radiolysis of PVAL. (author)

  10. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  11. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)]. E-mail: ha_rehim@hotmail.com; Hegazy, E.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Khalil, F.H. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt); Hamed, N.A. [National Center for Radiation Research and Technology, Poymer, 3-Ahmed El-Zomor, P.O. Box 29, Cairo, Naser City (Egypt)

    2007-01-15

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a pK {sub a} of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  12. A Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Yousefi

    2014-07-01

    Full Text Available Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. The influence of Mg(OH2 nanostructures on the thermal stability and flame retardancy of the poly vinyl alcohol (PVA matrix was studied using thermogravimetric analysis (TGA and UL-94 respectively. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability and flame retardancy of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  13. 5-(Chloromethylquinolin-8-yl acetate

    Directory of Open Access Journals (Sweden)

    Ling-Qian Kong

    2008-08-01

    Full Text Available The title compound, C12H10ClNO2, crystallizes with two independent molecules in the asymmetric unit; these are approximate mirror images of each other. In each molecule, the chloromethyl and acetate groups lie on the same side of the quinoline ring system, with dihedral angles between the ring plane and the plane of the acetate group of 82.0 (1 and −79.2 (1°. The C—C—C—Cl torsion angles for the chloromethyl groups of the two molecules are 80.9 (2 and −83.1 (2°.

  14. Alternating copolymerization by nitroxide-mediated polymerization and subsequent orthogonal functionalization.

    Science.gov (United States)

    Tesch, Matthias; Hepperle, Johannes A M; Klaasen, Henning; Letzel, Matthias; Studer, Armido

    2015-04-20

    A novel method for the preparation of functionalized alternating copolymers is presented. Nitroxide-mediated polymerization of hexafluoroisopropyl acrylate with 7-octenyl vinyl ether provides the corresponding alternating polymer, which can be chemically modified using two orthogonal polymer-analogous reactions. A thiol-ene click reaction followed by amidation provides dual-functionalized alternating copolymers. The potential of this method is illustrated by the preparation of a small library (15 examples) of functionalized alternating copolymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis, Characterization and Catalytic Polymerization of N-Methyl Imidazolium Phosphotungstic Catalyst

    Directory of Open Access Journals (Sweden)

    Dianyu Chen

    2015-11-01

    Full Text Available N-methyl imidazolium phosphotungstic salt has been synthesized and used as a special catalyst for photopolymerization of vinyl monomers. This is a fast and smooth reaction, and high molecular weight polymers with narrow polydispersity are obtained within 60 min. The compound was structurally characterized by elemental analysis, IR spectroscopy, and 1H NMR spectroscopy. The electrochemical property is determined on a CHI 660 electrochemistry workstation. The polymerization initiated by N-methyl imidazolium phosphotungstic salt showed controlling characteristics, the catalyst can be easily isolated from polymer product, and reused for at least 10 times.

  16. Synthesis and characterization of monoazathiacrown ethers as ionophores for polymeric membrane silver-selective electrodes.

    Science.gov (United States)

    Zhang, Jun; Ding, Jiawang; Yin, Tanji; Hu, Xuefeng; Yu, Shunyang; Qin, Wei

    2010-05-15

    Nine monoazathiacrown ethers have been synthesized and explored as ionophores for polymeric membrane Ag(+)-selective electrodes. Potentiometric responses reveal that the ion-selective electrodes (ISEs) based on 2,2'-thiodiethanethiol derivatives can exhibit excellent selectivities toward Ag(+). The plasticized poly(vinyl chloride) membrane electrode using 22-membered N(2)S(5)-ligand as ionophore has been characterized and its logarithmic selectivity coefficients for Ag(+) over most of the interfering cations have been determined as <-8.0. Under optimal conditions, a lower detection limit of 2.2x10(-10)M can be obtained for the membrane Ag(+)-ISE.

  17. Biotransformation of ferulic acid to 4-vinyl guaiacol by Lactobacillus ...

    African Journals Online (AJOL)

    Continuously growing demand for natural flavors has led to a tremendous increase in biotransformation process employing microorganisms of different genera using ferulic acid (FA) as the precursor. In this study, potential of Lactobacillus farciminis (ATCC 29644) for biotransformation of FA to 4-vinyl guaiacol (4VG) was ...

  18. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct ...

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  19. Methyl vinyl glycolate as a diverse platform molecule

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Taarning, Esben; Madsen, Robert

    2016-01-01

    Methyl vinyl glycolate (methyl 2-hydroxybut-3-enoate, MVG) is available by zeolite catalyzed degradation of mono- and disaccharides and has the potential to become a renewable platform molecule for commercially relevant catalytic transformations. This is further illustrated here by the development...

  20. Synthesis of boron nitride from boron containing poly (vinyl alcohol ...

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  1. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; Heijblom, M.; Steenbergen, Wiendelt; van Leeuwen, Ton; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F–T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  2. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  3. Lead and Cadmium in Vinyl Children's Products. A Greenpeace Expose.

    Science.gov (United States)

    Di Gangi, Joseph

    Polyvinyl chloride (vinyl or PVC) is a substance widely used in children's products. Because children in contact with these products may ingest substantial quantities of potentially harmful chemicals during normal play, especially when they chew on the product, this Greenpeace study examined the levels of lead and cadmium in a variety of consumer…

  4. APPLICATION OF TRITON X-100 COATED POLY VINYL ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. A selective, sensitive and efficient method for preconcentration of trace amounts of Cu(II), Fe(II) and Zn(II) ions based on the uptake of their complexes with 3-((indolin-3-yl)(phenyl)methyl)indoline (IYPMI) loaded on Triton X-100 coated poly vinyl chloride has been reported. The influences of the analytical ...

  5. ALMA detection and astrobiological potential of vinyl cyanide on Titan

    Science.gov (United States)

    Palmer, Maureen Y.; Cordiner, Martin A.; Nixon, Conor A.; Charnley, Steven B.; Teanby, Nicholas A.; Kisiel, Zbigniew; Irwin, Patrick G. J.; Mumma, Michael J.

    2017-07-01

    Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with >4σ confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of ≥200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 × 10^13 to 1.4 × 10^14 cm-2. The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form ~10^7 cell membranes/cm3 in Titan's sea Ligeia Mare.

  6. Desmopressin Acetate in Intracranial Haemorrhage

    Directory of Open Access Journals (Sweden)

    Thomas Kapapa

    2014-01-01

    Full Text Available Introduction. The secondary increase in the size of intracranial haematomas as a result of spontaneous haemorrhage or trauma is of particular relevance in the event of prior intake of platelet aggregation inhibitors. We describe the effect of desmopressin acetate as a means of temporarily stabilising the platelet function. Patients and Methods. The platelet function was analysed in 10 patients who had received single (N=4 or multiple (N=6 doses of acetylsalicylic acid and 3 patients (control group who had not taken acetylsalicylic acid. All subjects had suffered intracranial haemorrhage. Analysis was performed before, half an hour and three hours after administration of desmopressin acetate. Statistical analysis was performed by applying a level of significance of P≤0.05. Results. (1 Platelet function returned to normal 30 minutes after administration of desmopressin acetate. (2 The platelet function worsened again after three hours. (3 There were no complications related to electrolytes or fluid balance. Conclusion. Desmopressin acetate can stabilise the platelet function in neurosurgical patients who have received acetylsalicylic acid prior to surgery without causing transfusion-related side effects or a loss of time. The effect is, however, limited and influenced by the frequency of drug intake. Further controls are needed in neurosurgical patients.

  7. Crystalline organomercuric acetates via organoboranes

    Energy Technology Data Exchange (ETDEWEB)

    Kunda, S.A.; Varma, R.S.; Kabalka, G.W.

    1984-01-01

    It is shown that the organomercuric acetates (OMA) can be synthesized rapidly using organomercury derivatives as intermediates. The OMAs can be readily prepared as crystalline solids. The reactions proceed with sufficient rapidity to make the synthesis useful for isotopic labelling of physiologically active compounds.

  8. Laser Spectroscopy of Vinyl Alcohol Embedded in Helium Droplets

    Science.gov (United States)

    Bunn, Hayley; Raston, Paul; Douberly, Gary E.

    2017-06-01

    Vinyl alcohol has two rotameric forms, known as syn- and anti-vinyl alcohol, where syn is the most stable. While both have been investigated by microwave and far-infrared spectroscopy, only the syn rotamer has been investigated by mid-infrared spectroscopy. This is due to the low anti rotamer population (15%) at room temperature, in addition to the closeness in proximity of the mid-infrared bands between the rotamers; this results in overlapping bands that are dominated by syn-vinyl alcohol absorptions. In this investigation we increase the anti-vinyl alcohol population to 40% by using a high temperature "pyrolysis" source, and eliminate the spectral overlap by recording the spectra at low temperature in helium nanodroplets. We observe a number of bands of both rotamers in the OH, CH, and CO stretching regions that display rotational substructure. A highlight of this work is the observation of a Fermi dyad in the OH stretching region of anti-vinyl alcohol. Anharmonic frequency calculations suggest that this is due to a near degeneracy of the OH stretching state (νb{1}) with a triple combination involving νb{7}, νb{8}, and νb{9}. M. Rodler, J. Mol. Spec. 114, 23 (1985);S. Saito, Chem. Phys. Lett. 42, 3 (1976) H. Bunn, R. Hudson, A. S. Gentleman, and P. L. Raston, ACS Earth Space Chem. DOI: 10.1021/acsearthspacechem.6b00008 (2017) D-L Joo, A. J. Merer, D. J. Clouthier, J. Mol. Spec. 197, 68 (1999)

  9. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.

    2015-07-01

    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  10. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  11. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  12. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  13. Bioinert membranes prepared from amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Patel, Madhumita [Department of Life Science, Dongguk University-Seoul, 3–26 Phil-dong, Chung-gu, Seoul 100-715 (Korea, Republic of); Ahn, Sung Hoon [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Sung, Yong Kiel [ReSEAT Program, Korea Institute of Science and Technology Information, 206-9 Cheongyangni-dong, Dongdaemun-gu, Seoul 130-742 (Korea, Republic of); Lee, Hyung-Keun [Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Dae-jeon 305-343 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Sung, Jung-Suk, E-mail: sungjs@dongguk.edu [Department of Life Science, Dongguk University-Seoul, 3–26 Phil-dong, Chung-gu, Seoul 100-715 (Korea, Republic of)

    2013-04-01

    Poly(vinyl chloride) (PVC) membrane was hydrophilically modified by grafting with poly(oxyethylene methacrylate) (POEM) using atom transfer radical polymerization (ATRP). The successful grafting of PVC main chain by POEM was characterized by Fourier transform infrared spectroscopy (FT-IR). The molecular weight and hydrophilicity of membranes increased with the amount of POEM grafting, as characterized by gel permeation chromatography (GPC) and contact angle measurement, respectively. Transmission electron microscope (TEM) and small angle X-ray scattering (SAXS) analysis revealed the microphase-separated structure of PVC-g-POEM and the domain spacing increased from 59.3 to 86.1 nm with increasing grafting degree. Scanning electron microscopy (SEM) was used for the direct visualization of the mouse embryonic fibroblast (MEF) cell and bacteria adhesion on the membrane surface. Protein adsorption and eukaryotic and prokaryotic cell adhesion tests showed that the bioinert properties of membranes were significantly increased with POEM content. Highlights: ► TEM and SAXS analysis revealed the microphase-separated structure of graft copolymer membranes. ► Protein adsorption and eukaryotic and prokaryotic cell adhesion tests were performed on graft copolymer membranes. ► Boinert properties of membranes were significantly increased with POEM content.

  14. Influence of the volumes of bis-acryl and poly(methyl methacrylate) resins on their exothermic behavior during polymerization.

    Science.gov (United States)

    Ha, Jung-Yun; Kim, Sung-Hun; Kim, Kyo-Han; Kwon, Tae-Yub

    2011-01-01

    This study aimed to evaluate the influence of the volumes of a bis-acryl resin (Luxatemp) and a poly(methyl methacrylate) resin (Jet) on their exothermic behaviors during polymerization based on vinyl group conversion. The number of vinyl groups reacted and exotherm were determined based on weight percent of methacrylate groups using FTIR spectroscopy. Temperature changes during polymerization at 23°C were recorded for 20 minutes using a multiple cavity mold overlying a thermocouple. The number of vinyl groups reacted and exotherm of Luxatemp were consistently lower than those of Jet at each resin volume. Mean peak temperature rises of Luxatemp and Jet were in the range of 2.0-6.6°C and 4.2-11.6°C respectively, with Luxatemp and Jet taking 2 and 10 minutes respectively to reach their peak temperatures. As their resin volumes increased, their peak temperatures and total peak areas were also observed to increase significantly (p<0.01).

  15. ’Living’ Radical Polymerization. 1. Possibilities and Limitations

    Science.gov (United States)

    1994-06-30

    initiation with "aged" chromium acetate (Cr2 +) and benzoyl peroxide ( BPO ), suggesting that a "living" polymerization occurs at temperatures below 300C 25. An...molecule with low thermal stability ( peroxide , diazo, or organometallic compounds); kd᝺-5 s-1, I-I k.Ž)2 I kd (3a) -relatively fast reaction of primary...transfer must be much faster than the propagation rate constants. Brief Review of Reported Living Radical Systems This section does not pretend to be

  16. 21 CFR 184.1721 - Sodium acetate.

    Science.gov (United States)

    2010-04-01

    ... synthetically by the neutralization of acetic acid with sodium carbonate or by treating calcium acetate with...(n)(43) of this chapter. (e) Prior sanctions for this ingredient different from the uses established...

  17. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    adsorption and bacteria attachment/colonization. This is emphasized by the fact that long dwelling urinary catheters, which is a typical silicone medical device, causes 5% per day incidence of urinary tract infection [1,2]. A demand therefore exists for surface modifications providing the silicone material......Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber...

  18. Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems

    Science.gov (United States)

    Nair, Devatha P.

    2011-12-01

    The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1

  19. 21 CFR 582.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetic acid. 582.1005 Section 582.1005 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1005 Acetic acid. (a) Product. Acetic acid. (b) Conditions of use. This substance is generally...

  20. Pallidol hexaacetate ethyl acetate monosolvate

    Directory of Open Access Journals (Sweden)

    Qinyong Mao

    2013-07-01

    Full Text Available The entire molecule of pallidol hexaacetate {systematic name: (±-(4bR,5R,9bR,10R-5,10-bis[4-(acetyloxyphenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å is 54.73 (6°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carboxy—C—C torsion angles = −70.24 (14, −114.43 (10 and −72.54 (13°]. In the crystal, a three-dimensional architecture is sustained by C—H...O interactions which encompass channels in which the disordered ethyl acetate molecules reside.

  1. Effect of phosphorous-containing modified poly(vinyl alcohol on the mechanical and flame retardant properties of polypropylene

    Directory of Open Access Journals (Sweden)

    S. Sauca

    2015-04-01

    Full Text Available Blends of polypropylene (PP and different phosphorous-modified poly(vinyl alcohol (PVA derivatives synthesized on purpose, were prepared by both solvent and melt mixing, and fully characterized. Thermogravimetric analysis showed that the addition of the phosphorous-modified PVAs significantly increased thermal stability and charring of PP, probably due to their dehydration and the subsequent formation of a protective layer onto PP. SEM analysis demonstrated poor phase compatibility between PP and the polymeric additives, however acceptable dispersion of the polymeric additives was obtained. It was also observed that grafting of the modified PVA on PP occurred due to radical reactions arising during melt processing. Mechanical characterization showed that the elastic behavior of the blends was not altered with respect to neat PP, while ductility was reduced; on the other hand, impact resistance was considerably improved by blending. Slightly higher LOI values were obtained for the blends even with phosphorous content as small as 1 wt%; reduced dripping was also observed during the burning tests for the blend samples. Moreover, cone calorimeter test results showed that heat release rate, total heat release, and fire growth rate decreased compared with PP, in particular for the blends containing residual –OH groups on the PVA backbone. Therefore, these blends can find application where the combination of toughness and fire retardancy is required, such as in the automotive industry.

  2. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  3. Study of polymeric hydrogels with inorganic nanoparticles of clay; Estudo de hidrogeis polimericos com nanoparticulas inorganicas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Jose A. de; Parra, Duclerc F.; Lugao, Ademar B., E-mail: mariajhho@yahoo.com.br, E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP/CQMA), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente; Amato, Valdir S. [Universidade de Sao Paulo (HC/FMUSP), Sao Paulo, SP (Brazil). Hospital de Clinicas. Divisao de Clinica de Molestias Infecciosas e Parasitarias

    2011-07-01

    Nanoscience has been applied in research of intelligent systems for drug delivery. The use of biodegradable synthetic polymers and in diagnostics and therapy has stimulated the application of nanotechnology in polymeric systems with new structures and new materials composing among these materials are hydrogels. Hydrogel with dispersed clay is a new class of materials that combine flexible and permeability of the hydrogels with the high efficiency of the clay to adsorb different substances. We evaluated the behaviour of swelling, gel fraction and thermal stability among the hydrogels obtained by poly (vinyl alcohol) (PVAl) with clay and poly (N-2-vinyl-pyrrolidone) (PVP) with clay. While, observed that the hydrogels showed swelling clay PVAl meaningful, the clay PVP hydrogels showed swelling more consistent after four hours of testing.

  4. Incidence of cancer among vinyl chloride and polyvinyl chloride workers.

    Science.gov (United States)

    Heldaas, S S; Langård, S L; Andersen, A

    1984-01-01

    The results of a follow up study of the incidence of cancer and the mortality in a cohort of 454 male workers producing vinyl chloride and polyvinyl chloride are presented. The study population was restricted to employees with more than one year's work experience in the study plant between 1950 and 1969 and the cohort was followed up from 1953 to the end of 1979. Twenty three new cases of cancer were observed compared with 20.2 expected; one case of liver angiosarcoma was found. Five cases of lung cancer were found (2.8 expected) and four cases of malignant melanoma of the skin were observed (0.8 expected). The possibility of a causal relationship between exposure to vinyl chloride and the development of malignant melanomas is discussed. PMID:6691932

  5. Effects of Polymeric Additives on the Crystallization and Release Behavior of Amorphous Ibuprofen

    Directory of Open Access Journals (Sweden)

    Su Yang Lee

    2013-01-01

    Full Text Available Some polymeric additives were studied to understand their effects on the amorphous phase of ibuprofen (IBU, used as a poorly water soluble pharmaceutical model compound. The amorphous IBU in bulk, as well as in nanopores (diameter ~24 nm of anodic aluminum oxide, was examined with the addition of poly(acrylic acid, poly(N-vinyl pyrrolidone, or poly(4-vinylphenol. Results of bulk crystallization showed that they were effective in limiting the crystal growth, while the nucleation of the crystalline phase in contact with water was nearly instantaneous in all cases. Poly(N-vinyl pyrrolidone, the most effective additive, was in specific interaction with IBU, as revealed by IR spectroscopy. The addition of the polymers was combined with the nanoscopic confinement to further stabilize the amorphous phase. Still, the IBU with addition of polymeric additives showed sustained release behavior. The current study suggested that the inhibition of the crystal nucleation was probably the most important factor to stabilize the amorphous phase and fully harness its high solubility.

  6. Sustainable, Green Vinyl Ester Resin (VER) from Renewable Resources

    Science.gov (United States)

    2017-04-02

    most important building blocks of today’s plastics industry. Many plastics such as polycarbonates, epoxy resins, and vinyl ester resins are synthesized...the reaction was performed in a reactor sealed with a plastic cork. Several reactions were performed, mainly by varying phenol-to-acetone ratio...wastes of cooked oil, rice straw , vegetable oil mixtures of cottonseed, soybean and castor oils, jatropha oil, and crude palm oil. Biodiesel is

  7. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  8. Polymeric Films Loaded with Vitamin E and Aloe vera for Topical Application in the Treatment of Burn Wounds

    Directory of Open Access Journals (Sweden)

    Gabriela Garrastazu Pereira

    2014-01-01

    Full Text Available Burns are serious traumas related to skin damage, causing extreme pain and possibly death. Natural drugs such as Aloe vera and vitamin E have been demonstrated to be beneficial in formulations for wound healing. The aim of this work is to develop and evaluate polymeric films containing Aloe vera and vitamin E to treat wounds caused by burns. Polymeric films containing different quantities of sodium alginate and polyvinyl alcohol (PVA were characterized for their mechanical properties and drug release. The polymeric films, which were produced, were thin, flexible, resistant, and suitable for application on damaged skin, such as in burn wounds. Around 30% of vitamin E acetate was released from the polymeric films within 12 hours. The in vivo experiments with tape stripping indicated an effective accumulation in the stratum corneum when compared to a commercial cream containing the same quantity of vitamin E acetate. Vitamin E acetate was found in higher quantities in the deep layers of the stratum corneum when the film formulation was applied. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of burns.

  9. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations.

    Science.gov (United States)

    Almeida, A; Saerens, L; De Beer, T; Remon, J P; Vervaet, C

    2012-12-15

    The aim of the present work was to evaluate drug release and quality of EVA/drug matrices at different PEO 7M concentrations (5 and 15%), manufactured using two different hot-melt extruders: a lab-scale mini extruder and a pilot-scale extruder. The process parameters used on both extruders (temperature and screw speed) and drug release from the matrices were compared. On the lab-scale extruder all formulations were extruded at 90 °C, whereas on the pilot-scale extruder the temperature of the die was adjusted to 100 °C in order to achieve a constant pressure at the extrusion die, hence constant material flow through the die to yield smooth extrudates. Screw speed was also adjusted from 60 rpm (lab-scale extruder) to 90 rpm (pilot-scale extruder) in order to obtain a balance between feeding rate and screw speed. Drug release from the obtained matrices on both extruders was also assessed. Despite the differences in diameter (diameter of 2 and 3mm for the lab-scale extruder and pilot-scale extruder, respectively), temperature and screw speed, drug release per surface area was similar. DSC analysis of a formulation [EVA40/MPT (50/50, w/w) with 5% PEO] indicated small changes in its solid state after extrusion on both extruders: drug crystallinity was reduced by max. 20%, PEO recrystallized after cooling and EVA remained semi-crystalline. Extrusion experiments on the pilot-scale extruder of EVA/MPT, 50/50 (w/w) formulations were also monitored in-line using Raman and NIR spectroscopy in order to evaluate the material behavior at a molecular level in the extrusion barrel as function of the process settings (extrusion temperature: 90, 110 and 140 °C; screw speed: 90 and 110 rpm). At 90 and 110 °C the crystallinity of the drug was reduced, but the majority of MPT remained in its crystalline state as specific peaks in the Raman spectra of the drug became broader. These differences were accentuated when extrusion was performed at 140 °C as the drug completely melted. Peak shifts to lower frequencies [(CO) groups of the drug and (CH(3)COO) groups of EVA] were registered at all extrusion temperatures, with maximum effect at 140 °C indicating molecular interactions. Increasing the screw speed did not result in peak shifts of Raman spectra. NIR confirmed these observations and showed an additional peak in the spectra characteristic of (OH) bounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Syntheses of Enantiopure Aliphatic Secondary Alcohols and Acetates by Bioresolution with Lipase B from Candida antarctica

    Directory of Open Access Journals (Sweden)

    Richele P. Severino

    2012-07-01

    Full Text Available The lipase B from Candida antarctica (Novozym 435®, CALB efficiently catalyzed the kinetic resolution of some aliphatic secondary alcohols: (±-4-methylpentan-2-ol (1, (±-5-methylhexan-2-ol (3, (±-octan-2-ol (4, (±-heptan-3-ol (5 and (±-oct-1-en-3-ol (6. The lipase showed excellent enantioselectivities in the transesterifications of racemic aliphatic secondary alcohols producing the enantiopure alcohols (>99% ee and acetates (>99% ee with good yields. Kinetic resolution of rac-alcohols was successfully achieved with CALB lipase using simple conditions, vinyl acetate as acylating agent, and hexane as non-polar solvent.

  11. VizieR Online Data Catalog: Rotational spectrum of vinyl formate (CH2=CHOCHO) (Alonso+,

    Science.gov (United States)

    Alonso, E. R.; Kolesnikova, L.; Tercero, B.; Cabezas, C.; Alonso, J. L.; Cernicharo, J.; Guillemin, J.-C.

    2017-02-01

    Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360GHz and analyzed in terms of Watson's semirigid rotor Hamiltonian. Two thousand six hundred transitions within J=3-88 and Ka=0-28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided. (1 data file).

  12. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization.

    Science.gov (United States)

    Lligadas, Gerard; Grama, Silvia; Percec, Virgil

    2017-04-10

    Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.

  13. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides

    Science.gov (United States)

    2015-01-01

    Decarboxylative cross-coupling of alkyl carboxylic acids with vinyl halides has been accomplished through the synergistic merger of photoredox and nickel catalysis. This new methodology has been successfully applied to a variety of α-oxy and α-amino acids, as well as simple hydrocarbon-substituted acids. Diverse vinyl iodides and bromides give rise to vinylation products in high efficiency under mild, operationally simple reaction conditions. PMID:25521443

  14. Enantioselective α-Vinylation of Aldehydes Via the Synergistic Combination of Copper and Amine Catalysis

    Science.gov (United States)

    Skucas, Eduardas; MacMillan, David W. C.

    2012-01-01

    The enantioselective α-vinylation of aldehydes using vinyl iodonium triflate salts has been accomplished via the synergistic combination of copper and chiral amine catalysis. These mild catalytic conditions provide a direct route for the enantioselective construction of enolizable α-formyl vinylic stereocenters without racemization or olefin transposition. These high-value coupling adducts are readily converted into a variety of useful olefin synthons. PMID:22616631

  15. Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid-Based Resins

    Science.gov (United States)

    2005-12-01

    1) (1). Epon 828 , 834, 836, 1001F, 1004F, 1007F, and 1009F (Miller- Stephenson, Danbury, CT) were used as the source of DGEBA. To determine the...Figure 1. The reaction of methacrylic acid with Epon to form vinyl-ester monomer. Pure vinyl ester was prepared via methacrylation of Epon 828 ...resins prepared. Bimodal blends of vinyl-ester monomers (BM-VE) were prepared by methacrylation of blends of Epon 828 , used as the low molecular weight

  16. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  17. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  18. Kinetics of silica polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  19. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  20. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  1. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation of...

  2. Stabilization of nano-TiO2 aqueous dispersions with poly(ethylene glycol)-b-poly(4-vinyl pyridine) block copolymer and their incorporation in photocatalytic acrylic varnishes

    OpenAIRE

    Monteiro, S.; Angela Dias; Mendes, A.; Mendes, J.; Serra, A.; Rocha, N.; Coelho, J.; Magalhães, F.

    2014-01-01

    In this work, TiO2 nanoparticles were dispersed and stabilized in water using a novel type of dispersant based on tailor-made amphiphilic block copolymers of poly(ethylene glycol)-block-poly(4-vinyl pyridine) (mPEG-b-P4VP) prepared by atom transfer radical polymerization (ATRP). The performance of this new block copolymer as dispersant was compared to a polyelectrolyte dispersant commonly used for TiO2, sodium salt of polyacrylic acid (Na-PAA). The effect of dispersion technique and type and ...

  3. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  4. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  5. Development of a sampling and analysis method for 4-vinyl-1-cyclohexene in air.

    Science.gov (United States)

    Kongtip, Pornpimol; Tangprakorn, Bantoon; Yoosook, Witaya; Chantanakul, Suttinun

    2008-01-01

    The purpose of this research was to develop an applicable sampling and analytical method to determine airborne 4-vinyl-1-cyclohexene concentrations which are usually found in the atmosphere of polybutadiene factories. A solid sorbent tube, containing two sections (100 mg in the front and 50 mg in the back) of activated coconut-shell charcoal was chosen for sampling 4-vinyl-1-cyclohexene vapor. The 4-vinyl-1-cyclohexene in the charcoal samples was desorbed with carbon disulfide and analyzed by gas chromatography equipped with a flame ionization detector. The suitable air flow rate, adsorption capacity, sample storage stability, desorption efficiency and reliability of the method for sampling and analysis of 4-vinyl-1-cyclohexene were evaluated. The method was applied to sampling and analysis of 4-vinyl-1-cyclohexene in the rubber industry. The results indicated a suitable air flow rate of 0.3 to 1.5 l/min. The adsorption capacity of 4-vinyl-1-cyclohexene on 100 mg of charcoal was 0.2134 mg. The 4-vinyl-1-cyclohexene adsorbed on the charcoal was stable for 7 d at room temperature or 21 d in a refrigerated condition. The average percent desorption efficiency of 4-vinyl-1-cyclohexene ranged from 90.45% to 97.04% with the loaded amount ranging from 0.412 to 8.250 microg using 1 ml carbon disulfide. The limit of detection of 4-vinyl-1-cyclohexene was 0.044 ng. The average percent recoveries (n=6) of 4-vinyl-1-cyclohexene adsorbed on charcoal ranging from 0.46 to 8.87 microg were 96.78-102.87% with relative standard deviations (RSDs) of 0.34-1.92%, respectively. The concentrations of 4-vinyl-1-cyclohexene ranged from 0.011 to 0.105 mg/m(3) in the working environment of a polybutadiene factory.

  6. Amphiphilic polymeric micelle as pseudostationary phase in electrokinetic chromatography for analysis of eight corticosteroids in cosmetics.

    Science.gov (United States)

    Xu, Xiaojin; Ni, Xinjiong; Cao, Yuhua; Zhuo, Xiaolu; Yang, Xiaoxiao; Cao, Guangqun

    2014-03-01

    Amphiphilic polymeric micelle, as a novel pseudostationary phase in EKC was used to determine eight kinds of corticosteroids namely hydrocortisone, prednisolone, hydrocortisone acetate, prednisone, cortisone acetate, prednisolone acetate, dexamethasone, and triamcinolone acetonide in cosmetics. Amphiphilic random copolymer poly(methyl methacrylate-co-methacrylic acid) (P(MMA-co-MAA)) was micellizated via neutralization in alkaline aqueous solution. The influences of the molar ratio of monomer MMA to MAA, the concentration of polymer and pH on the polymeric micelle microstructure and EKC performances were investigated. As molar ratio of MMA to MAA in P(MMA-co-MAA) increased, both CMC and environmental polarity of the inner core in polymeric micelle decreased dramatically. With increasing monomer ratio, the size of polymeric micelles increased firstly, and then decreased, finally increased again. ζ potential of the micelle had a slight decline trend. As increment of polymer concentration, the size of the polymeric micelle increased steadily. By optimizing the monomer ratio, the polymer concentration, and pH of the running buffer, as well as operation conditions such as separation voltage and temperature, the eight analytes could be separated within 16.5 min using 7.5 mg/mL polymer with the monomer ratio of 7:3 dissolved in pH 9.2 borax buffer as the running buffer. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for eight analytes were between 85.9 and 106%. This method was of accuracy, repeatability, pretreatment simplicity, and could be applied to the quality control of cosmetics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enhanced Anti-Ultraviolet and Thermal Stability of a Pesticide via Modification of a Volatile Organic Compound (VOC-Free Vinyl-Silsesquioxane in Desert Areas

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2016-08-01

    Full Text Available Due to the effect of severe environmental conditions, such as intense heat, blowing sand, and ultraviolet light, conventional pesticide applications have repeatedly failed to adequately control mosquito and sandfly populations in desert areas. In this study, a vinyl silsesquioxane (VS was added to a pesticide (citral to enhance residual, thermal and anti-ultraviolet properties via three double-bond reactions in the presence of an initiator: (1 the connection of VS and citral, (2 a radical self-polymerization of VS and (3 a radical self-polymerization of citral. VS-citral, the expected and main product of the copolymerization of VS and citral, was characterized using standard spectrum techniques. The molecular consequences of the free radical polymerization were analyzed by MALDITOF spectrometry. Anti-ultraviolet and thermal stability properties of the VS-citral system were tested using scanning spectrophotometry (SSP and thermogravimetric analysis (TGA. The repellency of VS-citral decreased over time, from 97.63% at 0 h to 72.98% at 1 h and 60.0% at 2 h, as did the repellency of citral, from 89.56% at 0 h to 62.73% at 1 h and 50.95% at 2 h.

  8. Facile synthesis of thick films of poly(methyl methacrylate), poly(styrene), and poly(vinyl pyridine) from Au surfaces.

    Science.gov (United States)

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2011-08-01

    Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO(2) substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO(2) stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO(2) under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from noncross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ∼100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 h. At temperatures >100 °C, the polymer brush layers delaminate as large area films.

  9. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan

    2016-10-04

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  10. Composite scaffold of poly(vinyl alcohol and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery

    Directory of Open Access Journals (Sweden)

    Marie Francene Arnobit Cutiongco

    2015-02-01

    Full Text Available Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol hydrogel (PVA. Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight, with lysozyme showing near-linear release for 1 month. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell metabolic activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft

  11. Interaction of vinyl chloride monomer exposure and hepatitis B viral infection on liver cancer.

    Science.gov (United States)

    Wong, Ruey-Hong; Chen, Pau-Chung; Wang, Jung-Der; Du, Chung-Li; Cheng, Tsun-Jen

    2003-04-01

    Vinyl-chloride monomer (VCM), a human carcinogen, has caused angiosarcoma of the liver. Recent studies have shown that VCM exposure is associated with hepatocellular cancer. In Taiwanese studies, the majority of VCM-exposed workers with liver cancer had history of hepatitis B virus (HBV) infection. To determine the role of HBV on the development of liver cancer in the VCM-exposed workers, we conducted a case-control study from a previously established polyvinyl chloride (PVC) cohort consisting of 4096 male workers from six PVC polymerization plants. A total of 18 patients with liver cancer, and 68 control subjects matched for age and specific plant of employment were selected. Detailed history of the participants that included alcohol consumption status, cigarette use, occupation, and family history of chronic liver disease were obtained using an interviewer-administered questionnaire. When the HBV surface antigen (HBsAg)-negative subjects without history of tank-cleaning were used as the reference, the HBsAg-negative subjects with history of tank-cleaning demonstrated a 4.0-fold greater risk of liver cancer (95% confidence interval: 95% CI = 0.2-69.1). The HBsAg carriers without history of tank-cleaning revealed a 25.7-fold greater risk of liver cancer (95% CI = 2.9-229.4). Whereas the HBsAg carriers with history of tank-cleaning revealed the greatest risk (matched odds ratio (ORm) 396.0, 95% CI = 22.6 -infinity) of developing liver cancer among subjects with different VCM-exposure status and HBsAg status categories. Further analysis showed the interaction term was significant (P < .01). Therefore, our results suggest an interaction between occupational VCM exposure and HBV infection for the development of liver cancer.

  12. Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors.

    Science.gov (United States)

    Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-08-15

    We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state voltammetric ion sensors. The Huisgen cycloaddition ("click chemistry") was found to be a simple and efficient method for ferrocene attachment. A degree of PVC modification with ferrocene groups between 1.9 and 6.1 mol % was achieved. The chemical modification of the PVC backbone does not significantly affect the ion-selective properties (selectivity, mobility, and solvent casting ability) of potentiometric sensing membranes applying this polymer. Importantly, the presence of such ferrocene groups may eliminate the need for an additional redox-active layer between the membrane and the inner electric contact in all solid state sensor designs. Electrochemical doping of this system was studied in a symmetrical sandwich configuration: glassy carbon electrode |FcPVC| glassy carbon electrode. Prior electrochemical doping from aqueous solution, resulting in a partial oxidation of the ferrocene groups, was confirmed to be necessary for the sandwich configuration to pass current effectively. The results suggest that only approximately 2.3 mol % of the ferrocene groups are electrochemically accessible, likely due to surface confined electrochemical behavior in the polymer. Indeed, cyclic voltammetry of aqueous hexacyanoferrate (III) remains featureless at cathodic potentials (down to -0.5 V). This indicates that the modified membrane is not responsive to redox-active species in the sample solution, making it possible to apply this polymer as a traditional, single membrane. Yet, the redox capacity of the electrode modified with this type of membrane was more than 520 microC considering a 20 mm(2) active electrode area, which appears to be sufficient for numerous practical ion voltammetric applications. The electrode was observed to operate reproducibly, with 1

  13. Polymeric surfactant vesicles. Synthesis and characterization by nuclear magnetic resonance spectroscopy and dynamic laser light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kippenberger, D. (Texas A and M Univ., College Station); Rosenquist, K.; Odberg L.; Tundo, P.; Fendler, J.H.

    1983-03-09

    (CH/sub 3/(CH/sub 2/)/sub 15/)(CH/sub 2/==CH(CH/sub 2/)/sub 8/CONH(CH/sub 2/)/sub 6/)(CH/sub 3/)/sub 2/N/sup +/Br/sup -/(1),(CH/sub 3/(CH/sub 2/)/sub 14/CO/sub 2/(CH/sub 2/)/sub 2/)/sub 2/(CH/sub 3/)(CH/sub 2/CH==CH/sub 2/)N/sup +/Br/sup -/(2),(CH/sub 3/(CH/sub 2/)/sub 14/CO/sub 2/(CH/sub 2/)/sub 2/)/sub 2/NCOCH==CHCO/sub 2/H(3), and (CH/sub 3/(CH/sub 2/)/sub 17/)NCOCH==CHCO/sub 2/H(4) have been synthesized. Sonication of these surfactants led to the formation of vesicles. Vesicles could be polymerized by exposure to ultraviolet radiation or by the use of azoisobutyronitrile (AIBN) as an initiator. Vesicles prepared from 1 polymerized in their bilayers. Vesicles prepared from 2, 3, and 4 have double bonds on their headgroups and could, therefore, potentially polymerize both at the inner and outer surfaces or separately at either surface. Polymerization of vesicles prepared from 2, 3, and 4 by ultraviolet radiation resulted in the closing of both surfaces. Conversely, addition of AIBN to a solution of these vesicles and subsequent incubation at 80/sup 0/ led to the selective ''zipping-up'' of the outer surface only. Following the loss of vinyl protons of the surfactant vesicles by /sup 1/HNMR spectroscopy provided evidence for polymerization. Presence of vesicles has been demonstrated by substrate entrapment, gel filtration, and dynamic laser light scattering. Increasing the sonication time led to smaller and less polydisperse vesicles. On polymerization, vesicles maintaned the sizes of their nonpolymeric counterparts. Polymeric vesicles were found to be appreciably more stable than their unpolymerized analogues. Polymeric vesicles retained the fluidities of vesicles and underwent thermotropic phase transitions. Addition of KCl led to the growth of both unpolymerized and polymeric surfactant vesicles.

  14. Spectroscopic detection and mapping of vinyl cyanide on Titan

    Science.gov (United States)

    Cordiner, Martin; Yukiko Palmer, Maureen; Lai, James; Nixon, Conor A.; Teanby, Nicholas; Charnley, Steven B.; Vuitton, Veronique; Kisiel, Zbigniew; Irwin, Patrick; Molter, Ned; Mumma, Michael J.

    2017-10-01

    The first spectroscopic detection of vinyl cyanide (otherwise known as acrylonitrile; C2H3CN) on Titan was obtained by Palmer et al. (2017), based on three rotational emission lines observed with ALMA at millimeter wavelengths (in receiver band 6). The astrobiological significance of this detection was highlighted due to the theorized ability of C2H3CN molecules to combine into cell membrane-like structures under the cold conditions found in Titan's hydrocarbon lakes. Here we report the detection of three additional C2H3CN transitions at higher frequencies (from ALMA band 7 flux calibration data). We present the first emission maps for this gas on Titan, and compare the molecular distribution with that of other nitriles observed with ALMA including HC3N, CH3CN, C2H5CN and HNC. The molecular abundance patterns are interpreted based on our understanding of Titan's high-altitude photochemistry and time-variable global circulation. Similar to the short-lived HC3N molecule, vinyl cyanide is found to be most abundant in the vicinity of the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. The vertical abundance profile of C2H3CN (from radiative transfer modeling), as well as its latitudinal distribution, are consistent with a short photochemical lifetime for this species. Complementary results from our more recent (2017) nitrile mapping studies at higher spatial resolution will also be discussed.REFERENCES:Palmer, M. Y., Cordiner, M. A., Nixon, C. A. et al. "ALMA detection and astrobiological potential of vinyl cyanide on Titan", Sci. Adv. 2017, 3, e1700022

  15. Chemical Modification of Poly(Vinyl Alcohol in Water

    Directory of Open Access Journals (Sweden)

    Houssein Awada

    2015-10-01

    Full Text Available Partial chemical modification of poly(vinyl alcohol (PVA was performed through tosylation followed by azidation. Amine functional PVA was also prepared by grafting propargylamine using click chemistry reaction. Through this approach, a tosyl group (a good leaving group, azide group (a group used in click chemistry and amine group (a group used for amidation were attached to PVA polymer chains. The three chemical modifications were performed in water. FTIR and XPS analysis confirmed the chemical modification after each step. Thermogravimetric analysis (TGA was used to study the thermal stability of the modified PVA.

  16. Enhancement of OCT images with vinyl polysiloxane (VPS)

    Science.gov (United States)

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Several studies have shown that optical coherence tomography (OCT) can be used to measure the remaining enamel thickness and detect the location of subsurface lesions hidden under the sound enamel. Moreover studies have shown that high refractive index liquids can be used to improve the visibility of subsurface lesions in OCT images. In this study, we demonstrate that vinyl polysiloxane (VPS) impression materials which are routinely used in dentistry can be used to enhance the detection of dentinal lesions on tooth occlusal surfaces. Lesion presence was confirmed with polarized light microscopy and microradiography.

  17. Polymerization of UDMA using zinc particles and 4-META with and without BPO.

    Science.gov (United States)

    Wanichacheva, N; Miyagawa, Y; Ogura, H

    2000-06-01

    The polymerization phenomena of zinc particles moistened with a small amount of water, 4-META, and UDMA without amine in the presence and absence of BPO were investigated. The effects of 4-META and BPO on the setting time and the degree of conversion (DC) were studied. Moreover, the effect of zinc ion amount on the setting time was investigated. As-received zinc particles could induce the polymerization either with or without BPO. A higher concentration of 4-META shortened the setting time and increased DC when BPO was absent. However, the presence of BPO generally retarded the setting time and decreased DC, although its effect was dependent on the 4-META concentration. A higher amount of zinc ion retarded the setting reaction in the presence of 4-META. The zinc particles mixed with 10% zinc sulfate and acetic acid solutions could induce the polymerization of UDMA containing BPO when the amine and 4-META were absent.

  18. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.

    Science.gov (United States)

    Maymó-Gatell, X; Tandoi, V; Gossett, J M; Zinder, S H

    1995-11-01

    We have been studying an anaerobic enrichment culture which, by using methanol as an electron donor, dechlorinates tetrachloroethene (PCE) to vinyl chloride and ethene. Our previous results indicated that H2 was the direct electron donor for rductive dechlorination of PCE by the methanol-PCE culture. Most-probable-number counts performed on this culture indicated low numbers ( or equal to 10(6)/ml)) of sulfidogens, methanol-utilizing acetogens, fermentative heterotrophs, and PCE dechlorinators using H2. An anaerobic H2-PCE enrichment culture was derived from a 10(-6) dilution of the methanol-PCE culture. This H2-PCE culture used PCE at increasing rates over time when transferred to fresh medium and could be transferred indefinitely with H2 as the electron donor for the PCE dechlorination, indicating that H2-PCE can serve as an electron donor-acceptor pair for energy conservation and growth. Sustained PCE dechlorination by this culture was supported by supplementation with 0.05 mg of vitamin B12 per liter, 25% (vol/vol) anaerobic digestor sludge supernatant, and 2 mM acetate, which presumably served as a carbon source. Neither methanol nor acetate could serve as an electron donor for dechlorination by the H2-PCE culture, and it did not produce CH4 or acetate from H2-CO2 or methanol, indicating the absence of methanogenic and acetogenic bacteria. Microscopic observatios of the pruified H2-PCE culture showed only two major morphotypes: irregular cocci and small rods.

  19. Specific adhesion model for bonding hot-melt polyamides to vinyl

    Science.gov (United States)

    Charles R. Frihart

    2004-01-01

    Hot-melt polyamides are an important market for the dimer acid made from the tall oil fatty acids liberated during the Kraft pulping process. These polyamides bond well to many substrates, but not to polyvinyl chloride (PVC), commonly called vinyl. Dimer-based polyamides made from secondary amines such as piperazine bond well to vinyl. No model for this unique adhesion...

  20. Photochemical Generation of Six- and Five-Membered Cyclic Vinyl Cations

    NARCIS (Netherlands)

    Slegt, M.; Gronheid, R.; Vlugt, van der D.; Ochiai, M.; Okuyama, T.; Zuilhof, H.; Overkleeft, H.S.; Lodder, G.

    2006-01-01

    [GRAPHICS] The photochemical solvolyses of 4-tert-butylcyclohex-1-enyl(phenyl)iodonium tetrafluoroborate (1) and cyclopent-1-enyl(phenyl)iodonium tetrafluoroborate (2) in methanol yield vinylic ethers and vinylic cycloalkenyliodoberizenes and cycloalkenylbenzene, which are the trapping products of

  1. Photochemical generation of a primary vinyl cation from (E)-bromostyrene: Mechanisms of formation and reaction

    NARCIS (Netherlands)

    Gronheid, R.; Zuilhof, H.; Hellings, M.G.

    2003-01-01

    The photochemistry of (E)-bromostyrene was investigated to determine the nature of the product-forming intermediates and to clarify the mechanism of formation of vinylic cations and vinylic radicals. Both a cation- and a radical-derived product are formed, and the ionic origin of the former product

  2. Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants

    NARCIS (Netherlands)

    Junistia, Laura; Sugih, Asaf K.; Manurung, Robert; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2008-01-01

    This paper describes the synthesis of long-chain fatty esters of corn starch (starch laurate and starch stearate) with a broad range in degree of substitution (DS = 0.24-2.96). The fatty esters were prepared by reacting the starch with vinyl laurate or vinyl stearate in the presence of basic

  3. 21 CFR 178.2650 - Organotin stabilizers in vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Organotin stabilizers in vinyl chloride plastics... plastics. The organotin chemicals identified in paragraph (a) of this section may be safety used alone or... mercaptoacetate is derived from oxo process primary octyl alcohols. (b) The vinyl chloride plastic containers...

  4. Needs for public health intervention and needs for new research on vinyl halides and their polymers: a public policy perspective.

    OpenAIRE

    Hattis, D

    1981-01-01

    Consideration of needs for public health interventions and new research requires comparative assessments of the health benefits that are likely to result from alternative uses of limited regulatory and technical resources. This paper briefly examines regulatory and research priorities in the light of recent information on the carcinogenic hazards of vinyl chloride and alkyl and vinyl halides related to vinyl chloride, the respiratory-system hazards of poly (vinyl chloride), and the reproducti...

  5. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  6. Graft copolymer (chitosan-g-N-vinyl formamide): Synthesis and study of its properties like swelling, metal ion uptake and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D.K.; Tripathy, J.; Srivastava, A.; Mishra, M.M.; Behari, K. [University of Allahabad, Allahabad (India). Dept. of Chemistry

    2008-11-04

    A graft copolymer of chitosan and N-vinyl formamide has been synthesized by free radical polymerization using bromate/cyclohexanone redox in an inert atmosphere. The grafting ratio, add on, and efficiency increase continuously with increase in concentration of N-vinyl formamide from 9 x 10{sup -2} mol dm{sup -3} to 41 x 10{sup -2} mol dm{sup -3}, bromate ion from 0.4 x 10{sup -2} mol dm{sup -3} to 2.4 x 10{sup -2} mol dm{sup -3} and chitosan from 0.6 g dm{sup -3} to 1.4 g dm{sup -3}. Grafting parameters decrease with increase in concentration of hydrogen ion from 2 x 10{sup -3} mol dm{sup -3} to 10 x 10{sup -3} mol dm{sup -3}. Experimental results also show that these parameters i.e. grafting ratio, add on, and efficiency increase with increase in cyclohexanone concentration from 0.4 x 10{sup -2} mol dm{sup -3} to 1.2 x 10{sup -2} mol dm{sup -3}, but beyond this cited range, these parameters decrease. Maximum grafting i.e. 189.5% has been found at 120 min and 40{sup o}C. The swelling, metal ion sorption and flocculation capability have been studied, respectively. The flocculation capability of chitosan and chitosan-g-N-vinyl formamide in both coking and non-coking coals has been studied for the treatment of coal mine waste water. The graft copolymer has been characterized by infra red (IR) spectroscopy and thermogravimetric analysis.

  7. Manufacturing Ethyl Acetate From Fermentation Ethanol

    Science.gov (United States)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  8. Mechanical and Thermal Properties of Unsaturated Polyester/Vinyl Ester Blends Cured at Room Temperature

    Science.gov (United States)

    Ardhyananta, H.; Puspadewa, F. D.; Wicaksono, S. T.; Widyastuti; Wibisono, A. T.; Kurniawan, B. A.; Ismail, H.; Salsac, A. V.

    2017-05-01

    Unsaturated polyester (UP) resin containing aromatic ring was blended with vinyl ester (VE) at wide range composition (10, 20, 30, 40,and 80 wt.%) using mechanical blending method. The blends were cured at room temperature using methyl ethyl ketone peroxide (MEKP) (4 wt.%) as catalyst initiator without the presence of catalystaccelerator. The effect of vinyl ester composition on theenhancement of mechanical and thermal properties of unsaturated polyester/vinyl ester blends was investigated. The polymer blends were characterized by Fourier Transform Infra Red (FTIR)spectroscopy, tensile testing, hardness testing, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). IR spectra showed UP and VE peaks. The curing copolymerization reactionoccurred at vinyl (C=C) bonds. The addition of vinyl esters enhanced mechanical and thermal properties. The UP/VE blends showed homogeneous morphology, transparent and copolymer thermoset blend.

  9. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  10. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    Science.gov (United States)

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10(6) g mol(-1) ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  12. Poly(methyl vinyl ether-alt-maleic acid) and ethyl monoester as building polymers for drug-loadable electrospun nanofibers.

    Science.gov (United States)

    Mira, Amalia; Mateo, C Reyes; Mallavia, Ricardo; Falco, Alberto

    2017-12-08

    New biomaterials are sought for the development of bioengineered nanostructures. In the present study, electrospun nanofibers have been synthesized by using poly(methyl vinyl ether-alt-maleic acid) and poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-Ac and PMVEMA-ES, respectively) as building polymers for the first time. To further functionalize these materials, nanofibers of PMVEMA-Ac and PMVEMA-ES containing a conjugated polyelectrolyte (HTMA-PFP, blue emitter, and HTMA-PFNT, red emitter) were achieved with both forms maintaining a high solid state fluorescence yield without altered morphology. Also, 5-aminolevulinic acid (5-ALA) was incorporated within these nanofibers, where it remained chemically stable. In all cases, nanofiber diameters were less than 150 nm as determined by scanning and transmission electron microscopy, and encapsulation efficiency of 5-ALA was 97 ± 1% as measured by high-performance liquid chromatography. Both polymeric matrices showed rapid release kinetics in vertical cells (Franz cells) and followed Higuchi kinetics. In addition, no toxicity of nanofibers, in the absence of light, was found in HaCaT and SW480 cell lines. Finally, it was shown that loaded 5-ALA was functional, as it was internalized by cells in nanofiber-treated cultures and served as a substrate for the generation of protoporphyrin IX, suggesting these pharmaceutical vehicles are suitable for photodynamic therapy applications.

  13. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    Science.gov (United States)

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles. © 2014 Wiley Periodicals, Inc.

  14. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong, E-mail: pengchaorong_siae@163.com

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  15. Far-infrared Spectroscopic Characterization of Anti-vinyl Alcohol

    Science.gov (United States)

    Bunn, Hayley; Soliday, Rebekah M.; Sumner, Isaiah; Raston, Paul L.

    2017-09-01

    We report a detailed analysis of the high-resolution far-infrared spectrum of anti-vinyl alcohol, which has been previously identified toward Sagittarius B2(N). The ν 15 OH torsional fundamental investigated here is more than 200 cm-1 removed from the next nearest vibration, making it practically unperturbed and ideal to help refine the ground state rotational constants that were previously determined from 25 microwave lines. We assigned 1335 lines within the ν 15 fundamental centered at 261.5512 cm-1, with J and K a ranges of 1-59 and 0-16, respectively. The microwave and far-infrared line positions were fit with Watson-type A- and S-reduced Hamiltonians, with the inclusion of quartic and select sextic distortion terms. This resulted in a significant refinement of the ground state constants, in addition to the determination of the {ν }15=1 state constants for the first time. The spectroscopic parameters are in good agreement with the results from anharmonic coupled-cluster calculations, and should be useful in searches for rotationally and/or vibrationally warm anti-vinyl alcohol in interstellar molecular clouds.

  16. Rubber-like poly(vinyl alcohol) gel

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Masao (Nippon Oil Co. Ltd., Yokohama (Japan). Central Technical Research Lab.)

    1990-09-01

    Anomalous poly (vinyl alcohol) gel has been found in our laboratory since 1980. The gel is prepared by repeated freezing (or freeze-dehydration) of aqueous poly (vinyl alcohol). Experiments establish the fact that anomalous gel is never produced in the course of freezing, but during sustained thawing the gelation does occur. Moreover, it was found that the softening point of the gel increases at 37degC. It is assumed that crystal nuclei are generated on freezing, then on thawing, some of them grow to very fine crystals which act as polymer network-knots (cross-linking). Additional freezing provide other seeds, which grow similarly, and these are accumulated until rubber-like gel is produced. The gel was always water-resistant at 37degC, and the potassium permanganate consumption of the extracted water layer remained far below the official restricted value for medical materials. The gel can be sterilized with gamma-rays or chlorhexidine. Moreover, it satisfies the official standards of acute toxicity, pyrogen, intracutaneous reaction, hemolyzation, and intracorporeal implantation, respectively. Applications to adhesion-preventing membrane (for joint or pericardium), tamponade (for jaw defects), electrode (for electroretinogram or artificial inner ear), artificial denture base and phantoms for magnetic resonance imaging were examined. (author) 54 refs.

  17. Transition-metal-free chemo- and regioselective vinylation of azaallyls

    Science.gov (United States)

    Li, Minyan; Gutierrez, Osvaldo; Berritt, Simon; Pascual-Escudero, Ana; Yeşilçimen, Ahmet; Yang, Xiaodong; Adrio, Javier; Huang, Georgia; Nakamaru-Ogiso, Eiko; Kozlowski, Marisa C.; Walsh, Patrick J.

    2017-10-01

    Direct C(sp3)-C(sp2) bond formation under transition-metal-free conditions offers an atom-economical, inexpensive and environmentally benign alternative to traditional transition-metal-catalysed cross-coupling reactions. A new chemo- and regioselective coupling protocol between 3-aryl-substituted-1,1-diphenyl-2-azaallyl derivatives and vinyl bromides has been developed. This is the first transition-metal-free cross-coupling of azaallyls with vinyl bromide electrophiles and delivers allylic amines in excellent yields (up to 99%). This relatively simple and mild protocol offers a direct and practical strategy for the synthesis of high-value allylic amine building blocks that does not require the use of transition metals, special initiators or photoredox catalysts. Radical clock experiments, electron paramagnetic resonance studies and density functional theory calculations point to an unprecedented substrate-dependent coupling mechanism. Furthermore, an electron paramagnetic resonance signal was observed when the N-benzyl benzophenone ketimine was subjected to silylamide base, supporting the formation of radical species upon deprotonation. The unique mechanisms outlined herein could pave the way for new approaches to transition-metal-free C-C bond formations.

  18. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate)/poly(N-vinyl-2-pyrrolidone)/multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Guoqin, Liu; Wei, Miao [College of Material Science and Engineering, Henan University of Technology (China); Lin-Jian, Shangguan, E-mail: mikepolymer@126.com [School of Mechanical Engineering, North China University of Water Conservancy and Electric Power (China)

    2014-06-01

    Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) was prepared in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and multi-walled carbon nanotubes (MWNTs) via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA)/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM) revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA)/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased. (author)

  19. Investigation of nanocomposites made with poly(methacrylic acid-co-methyl methacrylate/poly(N-vinyl-2-pyrrolidone/multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Guoqin

    2014-01-01

    Full Text Available Poly(methacrylic acid-co-methyl methacrylate (P(MAA-co-MMA was prepared in the presence of poly(N-vinyl-2-pyrrolidone (PVP and multiwalled carbon nanotubes (MWNTs via ultrasonic assisted solution free radical polymerization, i.e., P(MAA-co-MMA/PVP/MWNTs nanocomposites. The morphology, glassy-state storage modulus, thermal behavior and swelling characteristics of P(MAA-co-MMA/PVP/MWNTs nanocomposites were investigated. Scanning electron micrographs (SEM revealed that MWNTs at low concentration could be uniformly dispersed into P(MAA-co-MMA/PVP blends. With increasing MWNTs weight fraction, the average glassy-state modulus, glass transition temperatures and decomposition temperature of the nanocomposites increased, but their swelling characteristics decreased.

  20. Preparation and characterization of electrically conductive composites of poly(vinyl alcohol–g–poly(acrylic acid hydrogels impregnated with polyaniline (PANI

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available Novel electrically conducting composite materials consisting of poly(aniline (PANI nanoparticles dispersed in a poly(vinyl alcohol (PVA-g-poly(acrylic acid (PAA hydrogels were prepared within the polymer matrix by in situ polymerization of aniline. The conversion yield of aniline into PANI particles was determined gravimetrically while structural confirmation of the synthesized polymer was sought by Fourier Transform Infrared (FTIR, UV-visible analysis and X-ray diffraction (XRD technique. Morphology and dimension of PANI particles embedded into the colored optically semi-transparent hydrogels were evaluated by Scanning Electron Microscopy (SEM analysis. Electrical conductivity of composite hydrogels of different composition was determined by LCR meter while electroactive behavior of composite hydrogels swollen in electrolyte solution was investigated by Effective Bend Angle (EBA measurements.

  1. Effects of the gamma radiation on the molecular structure of the poly(vinyl alcohol); Efeitos da radiacao gama na estrutura molecular do poli(alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)

    Terence, Mauro C. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Dept. de Engenharia de Materiais]. E-mail: mterence@usp.br; Guedes, Selma M.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2002-07-01

    The poly(vinyl alcohol) (PVAL) is a polymer used as biomaterial. The PVAL was used as ocular insert and may be used as a drug delivery system for pair PVAL/dihidroxipropoxymethyl guanine, where the last one is used for treatment of people with retinite caused by cytomegalovirus. These inserts are crosslinked systems. The crosslink was induced by gamma radiation applied in polymer. The samples of PVAL was irradiated by gamma rays with doses in the range 0 to 200 kGy. On irradiated PVAL samples was observed a low yellowness, attributed to the formation of polymeric radicals that are stable in the structure of the polymer, from radiolysis of PVAL. (author)

  2. Palladium Nanoparticles Immobilized on Poly(vinyl chloride-Supported Pyridinium as an Efficient and Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2011-01-01

    Full Text Available The palladium nanoparticles immobilized on the polymeric surface of poly(vinyl chloride-supported pyridinium (PVC-Py-Pd0 were achieved by a simple procedure by applying the corresponding functionalized polymer and palladium chloride in ethanol solution. The as-prepared catalyst (PVC-Py-Pd0 was found to be air and moisture stable and exhibits significant catalytic activity for Suzuki-Miyaura cross-coupling reaction of various aryl halides and phenylboronic acid under milder operating conditions. The procedure presented here showed several merits such as short reaction time, simple experimental and isolated procedure and excellent yields of products. Furthermore, the catalyst can be easily recovered and reused for at least six times with consistent activities.

  3. Toolbox of Nonmetallocene Lanthanides: Multifunctional Catalysts in Group-Transfer Polymerization.

    Science.gov (United States)

    Adams, Friederike; Machat, Martin R; Altenbuchner, Peter T; Ehrmaier, Johannes; Pöthig, Alexander; Karsili, Tolga N V; Rieger, Bernhard

    2017-08-21

    Herein, we present a fundamental study of isostructural 2-methoxyethylamino-bis(phenolate)-lanthanide complexes [(ONOO)(R)M(X)(THF)] (M = Lu, Y; R = (t)Bu, CMe2Ph, X = CH2TMS, collidine; THF = tetrahydrofuran; TMS = trimethylsilyl) for rare-earth metal-mediated group-transfer polymerization (GTP). This analysis includes the differentiation of electron-donating and nondonating vinyl monomers and two metal centers with regard to the ionic radius (yttrium and lutetium). In addition, highly nucleophilic alkyl initiators are compared with electron-donating heteroaromatic initiators. Our examinations include the impact of these parameters on the activity, initiator efficiency, and tacticity of the obtained polymers. Density functional theory calculations and proposed catalyst structure determinations via X-ray analysis support these investigations. This facilitates the selection of the best metal and initiator combination to address efficient and stereospecific polymerization of a broad range of Michael monomers. [(ONOO)(tBu)Lu(X)(THF)] shows the highest activity of 2220 h(-1) (normalized turnover frequency) for the polymerization of 2-vinylpyridine due to the higher Lewis-acidity of lutetium. Through C(sp(3))-H bond activation, catalysts with higher initiator efficiency in N,N'-dimethylacrylamide (DMAA) and diethylvinylphosphonate polymerization were synthesized. Remarkably, [(ONOO)(tBu)Y(collidine)(THF)] was capable of stereospecifically polymerizing DMAA to highly isotactic poly(DMAA) (Pm = 0.94). Overall, the kinetics studies reveal a living-type GTP mechanism for all of the tested catalysts, enabling precise molecular-weight predeterminations with narrow molecular weight distributions (Đ ≤ 1.06).

  4. A highly selective fluorescent sensor for Cu{sup 2+} based on 2-(2'-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaobing [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Peng Jing [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); He Chunlian [Medical college, Hunan Normal University, Changsha 410006 (China); Shen Guoli [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yu Ruqin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)]. E-mail: rqyu@hnu.cn

    2006-05-17

    This paper describes a copper selective optical chemical sensor based on static quenching of the fluorescence of 2-(2'-hydroxyphenyl)benzoxazole entrapped in a poly(vinyl chloride) (PVC) membrane. The effect of the composition of the sensing membrane was studied, and experimental conditions were optimized. The sensors exhibit stable response over the concentration range from 4.0 x 10{sup -8} M to 5.0 x 10{sup -5} M Cu{sup 2+} at pH 4.0-6.5, and a high selectivity. The response time for Cu{sup 2+} with concentration {<=}5 x 10{sup -6} M is less than 7 min. The optode can be regenerated using 0.1 M HCl and acetate buffer solution. The sensor has been used for direct measurement of copper content in river water samples with a relative error less than 4% with reference to that obtained by atomic absorption spectrometry.

  5. Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier.

    Science.gov (United States)

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2017-05-01

    In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

  6. Ulipristal acetate in emergency contraception.

    Science.gov (United States)

    Goldstajn, Marina Sprem; Baldani, Dinka Pavicić; Skrgatić, Lana; Radaković, Branko; Vrbić, Hrvoje; Canić, Tomislav

    2014-03-01

    Despite the widespread availability of highly effective methods of contraception, unintended pregnancy is common. Unplanned pregnancies have been linked to a range of health, social and economic consequences. Emergency contraception reduces risk of pregnancy after unprotected intercourse, and represents an opportunity to decrease number of unplanned pregnancies and abortions. Emergency contraception pills (ECP) prevent pregnancy by delaying or inhibiting ovulation, without interfering with post fertilization events. If pregnancy has already occurred, ECPs will not be effective, therefore ECPs are not abortificants. Ulipristal acetate (17alpha-acetoxy-11beta-(4N-N,N-dymethilaminophenyl)-19-norpregna--4,9-diene-3,20-dione) is the first drug that was specifically developed and licensed for use as an emergency contraceptive. It is an orally active, synthetic, selective progesterone modulator that acts by binding with high affinity to the human progesterone receptor where it has both antagonist and partial agonist effects. It is a new molecular entity and the first compound in a new pharmacological class defined by the pristal stem. Up on the superior clinical efficacy evidence, UPA has been quickly recognized as the most effective emergency contraceptive pill, and recently recommended as the first prescription choice for all women regardless of the age and timing after intercourse. This article provides literature review of UPA and its role in emergency contraception.

  7. Characterization of Plasma-Polymerized 4-vinyl pyridine on Poly(Ethylene Terephthalate) film for anti-microbial properties

    DEFF Research Database (Denmark)

    Jiang, Juan; Winther-Jensen, Bjørn; Kjær, Erik Michael

    2005-01-01

    . The mechanical strength of the bond between the substrate and the surface layer has been tested by several methods, and the antibacterial effect of the surface layer with and without silver nano particles has been estimated by measuring electrical resistance as a function of time. The bacteria investigated were...

  8. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  9. Crystal structures of two solvates of (18-crown-6potassium acetate

    Directory of Open Access Journals (Sweden)

    Phil Liebing

    2016-12-01

    Full Text Available The crystal and molecular strutures of two solvated forms of [K(18c6]OAc (18c6 = 18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane and OAc = acetate were determined by single-crystal X-ray diffraction, namely (acetato-κ2O,O′(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6Opotassium dihydrate, [K(CH3COO(C12H24O6]·2H2O (1 and (acetato-κ2O,O′aqua(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6Opotassium acetic acid monosolvate [K(CH3COO(C12H24O6(H2O]·CH3COOH (2. In both compounds, the acetate anion is bonded to the potassium ion in a chelating fashion and the metal atom is consequently slightly displaced from the O6 plane of the crown ether. In the crystals, O—H...O hydrogen bonds lead to a polymeric ladder structure in the dihydrate 1, while the acetic acid hydrate 2 features inversion dimers.

  10. Hydrothermal synthesis of different morphologies of MgFe{sub 2}O{sub 4} and magnetic cellulose acetate nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbari, Davood; Salavati-Niasari, Masoud [University of Kashan, Kashan (Iran, Islamic Republic of)

    2015-05-15

    MgFe{sub 2}O{sub 4} nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic, anionic and polymeric on the morphology of the product was investigated. Magnetic nanoparticles were added to cellulose acetate (CA) to make magnetic nanocomposite. Nanoparticles appropriately enhanced flame retardant property of the CA matrix. Application of the most conventional flame retardants is limited with respect to the environmental requirements. The most important novelty of this work is the preparation of a nontoxic magnetic and flame retardant cellulose acetate nanocomposite. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents flame and oxygen from reaching the sample during decomposition of the polymer. In the presence of flame, magnetic nanoparticles remain together (show resistance to drop falling) and build a barrier. Also, distribution of the magnetic nanoparticles into cellulose acetate matrix increases the coercivity.

  11. (Acetato-κO)bis-(1,10-phenanthroline-κN,N')copper(II) acetate hepta-hydrate.

    Science.gov (United States)

    Jing, Buqin; Li, Lianzhi; Dong, Jianfang; Xu, Tao

    2011-04-01

    In the title complex, [Cu(CH(3)CO(2))(C(12)H(8)N(2))(2)](CH(3)CO(2))·7H(2)O, the central Cu(II) ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water mol-ecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010). The cations are linked to this layer via O-H⋯O hydrogen bonds between one of the water mol-ecules and the coordinated acetate anion.

  12. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  13. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment...

  14. Needs for public health intervention and needs for new research on vinyl halides and their polymers: a public policy perspective.

    Science.gov (United States)

    Hattis, D

    1981-10-01

    Consideration of needs for public health interventions and new research requires comparative assessments of the health benefits that are likely to result from alternative uses of limited regulatory and technical resources. This paper briefly examines regulatory and research priorities in the light of recent information on the carcinogenic hazards of vinyl chloride and alkyl and vinyl halides related to vinyl chloride, the respiratory-system hazards of poly (vinyl chloride), and the reproductive hazards of vinyl chloride. Specific suggestions are made for relatively promising types of efforts in these areas.

  15. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artificial...... solutions for the plasticized poly(vinyl chloride) used in the study was found. In addition, a specific method to tailor cleaning mixtures for plasticized poly(vinyl chloride) objects was developed by means of Hildebrand solubility parameters and the formulation of a Plasticizer Index calculated...... cleaning methods for plasticized poly(vinyl chloride) objects....

  16. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    Science.gov (United States)

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  17. Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]-Colistin Prodrugs through Copper-Mediated Photoinduced Living Radical Polymerization.

    Science.gov (United States)

    Zhu, Chongyu; Schneider, Elena K; Nikolaou, Vasiliki; Klein, Tobias; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Wilson, Paul; Kempe, Kristian; Velkov, Tony; Haddleton, David M

    2017-07-19

    Through the recently developed copper-mediated photoinduced living radical polymerization (CP-LRP), a novel and well-defined polymeric prodrug of the antimicrobial lipopeptide colistin has been developed. A colistin initiator (Boc5-col-Br2) was synthesized through the modification of colistin on both of its threonine residues using a cleavable initiator linker, 2-(2-bromo-2-methylpropanoyloxy) acetic acid (BMPAA), and used for the polymerization of acrylates via CP-LRP. Polymerization proceeds from both sites of the colistin initiator, and through the polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA480), three water-soluble polymer-colistin conjugates (col-PPEGA, having degrees of polymerization of 5, 10, and 20) were achieved with high yield (conversion of ≥93%) and narrow dispersities (Đ colistin was observed during the synthesis, and most of the active colistin can be recovered from the conjugates in vitro within 2 days. Furthermore, in vitro biological analyses including disk diffusion, broth microdilution, and time-kill studies suggested that all of the conjugates have the ability to inhibit the growth of multidrug-resistant (MDR) Gram-negative bacteria, of which col-PPEGA DP5 and DP10 showed similar or better antibacterial performance compared to the clinically relevant colistin prodrug CMS, indicating their potential as an alternative antimicrobial therapy. Moreover, considering the control over the polymerization, the CP-LRP technique has the potential to provide an alternative platform for the development of polymer bioconjugates.

  18. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  19. Polymeric materials for corrosion control

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, R.A.; Floyd, F.L. (eds.)

    1986-01-01

    This volume of 31 typescript chapters is concerned with polymeric coatings. The papers originated in a symposium held in Chicago in 1985 and are divided into three categories: Evaluation of Material Performance; Adhesion and Interfacial Aspects of Corrosion Protection; and Materials for Corrosion Protection. An extensive subject index is included.

  20. Novel ionic polymeric hydraulic actuators

    Science.gov (United States)

    Shahinpoor, Mohsen; Kim, Kwang J.

    2001-07-01

    It is now well recognized that a strip of ionic polymer- metal composite (IPMC) exhibits a spontaneous bending capability under the influence of an electric potential. A key observation is the appearance and disappearance of water on the expansion and contraction surfaces of the strip, respectively. Such water appearing/disappearing activities occur near the permeable metal electrodes. The imposition of en elctric field causes the mobile cations that are conjugated to the polymeric anions to undergo electrophoretic dynamic migration that can result in local deformation of the material. Such an electrophoretic behavior of the IPMC causes the water to leak out of the permeable electroded boundary so as to lower the actuation performance. This situation is similar to a leaking hydraulic actuator (hydraulic jack), which has the highest force density notwithstanding the compressor unit weight. Herein, a new category of actuators as ionic polymeric hydraulic actuators (IPHA's) is defined. The IPMC is a good example of such ionic polymeric hydraulic actuators. The advantage of ionic polymeric hydraulic actuators is their potential to generate substantially high force densities, theoretically better than current hydraulic actuators. Based upon this ionic polymer hydraulic actuator concept, a certain manufacturing technique was developed to increase the force density of the conventional IPMC's by a factor of two (100% improvement in force). This technology and associated experimental results are presented in this paper.

  1. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  2. Vinyl chloride exposure and cirrhosis: a systematic review and meta-analysis.

    Science.gov (United States)

    Frullanti, Elisa; La Vecchia, Carlo; Boffetta, Paolo; Zocchetti, Carlo

    2012-09-01

    It has been proposed that vinyl chloride exposure is associated with increased risk of death from cirrhosis, although epidemiologic evidence is limited. We analyzed the risk of death from cirrhosis by occupational vinyl chloride exposure by conducting a meta-analysis on seven available studies, including more than 40,000 workers exposed to vinyl chloride mostly in North America and Europe, with a total of 203 deaths from cirrhosis. All epidemiological studies on vinyl chloride exposure and risk of death from cirrhosis resulted in an overall relative risk of 0.73 (95% confidence interval 0.61-0.87). Thus, the epidemiologic evidence does not suggest an excess mortality from cirrhosis in vinyl chloride-exposed workers; this is consistent with histopathological observations in livers of angiosarcoma patients and of vinyl chloride-exposed rodents revealing no signs of cirrhosis. Overall, our findings indicate the absence of increased risk of death from cirrhosis in vinyl chloride-exposed workers. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  4. Conversion to eslicarbazepine acetate monotherapy

    Science.gov (United States)

    French, Jacqueline; Jacobson, Mercedes P.; Pazdera, Ladislav; Gough, Mallory; Cheng, Hailong; Grinnell, Todd; Blum, David

    2016-01-01

    Objective: To assess the efficacy and safety of eslicarbazepine acetate (ESL) monotherapy. Methods: This post hoc pooled analysis of 2 randomized double-blind studies (093-045 and -046) included adults with partial-onset seizures medically uncontrolled by 1 or 2 antiepileptic drugs (AEDs). Following the baseline period (8 weeks), eligible patients were randomized 2:1 to receive ESL 1,600 mg or 1,200 mg once daily for 18 weeks; the primary endpoint was study exit by meeting predefined exit criteria (signifying worsening seizure control). In each study, treatment was considered effective if the upper 95% confidence limit for exit rate was lower than the historical control threshold (65.3%). Results: Pooled exit rates were as follows: ESL 1,600 mg = 20.6% (95% confidence interval: 15.6%–26.8%); ESL 1,200 mg = 30.8% (23.0%–40.5%). Use of 2 baseline AEDs or rescue medication, US location, epilepsy duration ≥20 years, and higher maximum baseline seizure frequency were associated with higher exit risks. Median percent reductions in standardized seizure frequency between baseline and the 18-week double-blind period were as follows: ESL 1,600 mg = 43.2%; ESL 1,200 mg = 35.7%; baseline carbamazepine use was associated with smaller reductions. Safety profiles were similar between ESL doses. Conclusions: Exit rates for ESL monotherapy (1,600 mg and 1,200 mg once daily) were lower than the historical control threshold, irrespective of baseline AED use and region, with no additional safety concerns identified. Clinical factors and location clearly influence treatment responses in conversion-to-monotherapy trials. Classification of evidence: This pooled analysis provides Class IV evidence that for adults with medically uncontrolled partial-onset seizures, ESL monotherapy is well tolerated and effective. PMID:26911639

  5. Thermal Polymerization of N-Butyl Acrylate

    Science.gov (United States)

    Ingham, J. D.

    1982-01-01

    Simple new polymerization method enables production of n-butyl acrylate polymer of desired high molecular weight, without disadvantages that usually attend more conventional methods. Process, which is hybrid of thermal, solution, and emulsion polymerization methods, involves controlled thermal polymerization of monomer at moderate temperatures without use of catalysts or additives.

  6. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  7. Functionalization at the central position of vinyl polymer chains: highly associable multipoint hydrogen bonds for complementary self-assemblies.

    Science.gov (United States)

    Lee, Sang-Ho; Ouchi, Makoto; Sawamoto, Mitsuo

    2014-02-01

    This paper deals with the precision introduction of a multiple hydrogen-bonding site of a high association constant at the central position of a vinyl polymer chain for complementary self-assemblies. The interactive site consists of an array of hydrogen donors (D) and acceptors (A) to induce a multiple and highly associable interaction with a complementary counterpart. A bifunctional initiator (Cl-DADDAD-Cl) for metal-catalyzed living radical polymerization is thus designed and synthesized to embed a "Hamilton receptor" (DADDAD) between two terminal chlorides (Cl). In the presence of a ruthenium complex, the dichloride gives controlled polymers (Cl∼∼∼DADDAD∼∼∼Cl, ∼ ∼ ∼: polymer backbone) of narrow molecular weight distributions (Mw/Mn MMA). The receptor-decorated polystyrene recognizes complementary associable molecules and polymers carrying an ADADA unit (ADADA-Anthracene and ADADA-PMMA) to form self-assemblies where the association constant is as high as K(ass) ≈ 8000 m(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite beads - A promising antimicrobial material.

    Science.gov (United States)

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-11-01

    In this paper, we report the immobilization of borate-stabilized silver nanoparticles (AgNPs) as nanofillers in dual-crosslinked polymers comprised of poly(vinyl alcohol) (PVA) and sodium alginate (SA) at different ratios. Ionic-crosslinking using Ca(2+) ions and physical-crosslinking by freeze-thawing were used to entrap silver nanoparticles in the prepared PVA/SA/AgNPs nanocomposite beads. These polymeric nanocomposites were characterized by UV-Vis, XRD, FE-SEM, FT-IR, TGA, and using rheological and swelling properties. The antibacterial activities of these PVA/SA/AgNPs nanocomposites were evaluated against Escherichia coli O157: H7, which causes escherichiosis through contaminated food and water. The results obtained indicated that PVA/SA/AgNPs nanocomposite formed with a ratio 10/90 of PVA to SA (formulation F5) exhibited high bactericidal activity, with entrapment of AgNPs and had excellent rheological and thermal stabilities. Due to the low cost and effectiveness of these antimicrobial nanocomposites, they have potential as an active food-packaging material for food safety and to extend shelf-life of packaged foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Novel Research on Behavior of Zinc Ferrite Nanoparticles in Different Concentration of Poly(vinyl pyrrolidone (PVP

    Directory of Open Access Journals (Sweden)

    Halimah Mohamed Kamari

    2014-04-01

    Full Text Available Zinc ferrite nanocrystals were prepared from an aqueous solution containing metal nitrates and various of concentrations of poly(vinyl pyrrolidone (PVP, i.e., 0, 15, 40, and 55 g/L, as a capping agent. To stabilize the particles, they were thermally treated at 873 K, as an optimum calcination temperature. The behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry (TG and derivative thermo-gravimetry analyses (DTG. The presence of the crystalline phase in each sample was confirmed by X-ray diffraction (XRD analysis. The average particle size and the morphology of the nanoparticles were determined by transmission electron microscopy (TEM, and these parameters were found to differ at various concentrations of PVP. Fourier transform infrared spectroscopy (FT-IR confirmed the presence of metal oxide bands for all the PVP concentrations and confirmed the absence of organic bands for PVP concentrations less than 55 g/L. Measurements of the magnetization value of the zinc ferrite nanoparticles were obtained at room temperature by using a vibrating sample magnetometer (VSM, which showed that, in the absence of PVP, the sample exhibited a paramagnetic behavior while, in the presence of PVP, samples have a super-paramagnetic behavior.

  10. Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly (Vinyl Alcohol Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2017-05-01

    Full Text Available Perovskite LaFeO3 nanofillers (0.1% are incorporated into a quaternized poly(vinyl alcohol (QPVA matrix for use as hydroxide-conducting membranes in direct alkaline methanol fuel cells (DAMFCs. The as-synthesized LaFeO3 nanofillers are amorphous and functionalized with cetyltrimethylammonium bromide (CTAB surfactant. The annealed LaFeO3 nanofillers are crystalline without CTAB. The QPVA/CTAB-coated LaFeO3 composite membrane shows a defect-free structure while the QPVA/annealed LaFeO3 film has voids at the interfaces between the soft polymer and rigid nanofillers. The QPVA/CTAB-coated LaFeO3 composite has lower methanol permeability and higher ionic conductivity than the pure QPVA and QPVA/annealed LaFeO3 films. We suggest that the CTAB-coated LaFeO3 provides three functions to the polymeric composite: increasing polymer free volume, ammonium group contributor, and plasticizer to enhance the interfacial compatibility. The composite containing CTAB-coated LaFeO3 results in superior cell performance. A maximum power density of 272 mW cm−2 is achieved, which is among the highest power outputs reported for DAMFCs in the literature.

  11. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends

    Energy Technology Data Exchange (ETDEWEB)

    Kowalonek, Jolanta [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 street, 87-100 Torun (Poland); Kaczmarek, Halina, E-mail: halina@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 street, 87-100 Torun (Poland); Dabrowska, Aldona [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 street, 87-100 Torun (Poland)

    2010-10-15

    Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation ({lambda} = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied. The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification. It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.

  12. A study on poly (N-vinyl-2-pyrrolidone covalently bonded NiTi surface for inhibiting protein adsorption

    Directory of Open Access Journals (Sweden)

    Hongyan Yu

    2016-12-01

    Full Text Available Near equiatomic NiTi alloys have been extensively applied as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. It has been demonstrated that surfaces capable of preventing plasma protein adsorption could reduce the reactivity of biomaterials with human blood. This motivated a lot of researches on the surface modification of NiTi alloy. In the present work, following heat and alkaline treatment and silanization by trichlorovinylsilane (TCVS, coating of poly (N-vinyl-2-pyrrolidone (PVP was produced on the NiTi alloy by gamma ray induced chemical bonding. The structures and properties of modified NiTi were characterized and in vitro biocompatibility of plasma protein adsorption was investigated. The results indicated that heat treatment at 823 K for 1 h could result in the formation of a protective TiO2 layer with “Ni-free” zone on NiTi surface. It was found that PVP was covalently bonded on NiTi surface to create a hydrophilic layer for inhibiting protein adsorption on the surface. The present work offers a green approach to introduce a bioorganic surface on metal and other polymeric or inorganic substrates by gamma irradiation.

  13. Synthesis of PNVP-Based Copolymers with Tunable Thermosensitivity by Sequential Reversible Addition–Fragmentation Chain Transfer Copolymerization and Ring-Opening Polymerization

    Directory of Open Access Journals (Sweden)

    Yi-Shen Huang

    2017-06-01

    Full Text Available Through the reversible addition–fragmentation chain transfer (RAFT copolymerization of 3-ethyl-1-vinyl-2-pyrrolidone (C2NVP and N-vinylpyrrolidone (NVP, a series of well-defined P(C2NVP-co-NVP copolymers were synthesized (Mn = ca. 8000 to 16,000 and Mw/Mn <1.5 by using a difunctional chain transfer agent, S-(1-methyl-4-hydroxyethyl acetate O-ethyl xanthate (MHEX. Copolymerizing kinetics and different monomer ratio in feeds were conducted to study the apparent monomer reaction rate and reactivity ratios of NVP and C2NVP, which indicated similar reaction rates and predominantly ideal random copolymers for the two monomers. The Tgs of the obtaining P(C2NVP-co-NVP copolymers significantly corresponded to not only molecular weights MWs but also copolymer compositions. These copolymers presented characteristic lower critical solution temperatures (LCST behavior. We then studied the cloud points (CPs of the copolymers with varying MWs and compositions. With different MWs, the CPs were linearly decreased from ca. 51 to 45 °C. With different compositions, the CPs of the copolymers decreased from ca. 48 to 29 °C with C2NVP content (i.e., from 60.8 to 89.9 mol %. Fitting the CPs by the theoretical equation, the result illustrated that the introduction of more hydrophobic units of C2NVP suppressed the hydrophilic interaction between the polymer chain and water. We then successfully proceeded the chain extension through the ring-opening polymerization (ROP of ε-caprolactone (CL to the synthesis of a novel P(C2NVP-co-NVP-b-PCL amphiphilic block copolymer (Mn,NMR = 14,730 and Mw/Mn = 1.59. The critical micelle concentration (CMC of the block copolymer had a value of ca. 1.46 × 10−4 g/L. The block copolymer micelle was traced by dynamic light scattering (DLS, obtaining thermosensitive behaviors with a particle size of ca. 240 nm at 25 °C and ca. 140 nm at 55 °C, respectively.

  14. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  15. Myoglobin entrapment in poly(vinyl alcohol dense membranes

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2014-09-01

    Full Text Available Our goal in this study was the immobilization of myoglobin in poly(vinyl alcohol dense membranes. Glutaraldehyde was investigated both as the crosslinking agent, aiming to increase the membrane stability in aqueous medium, and as the vehicle to bind myoglobin and PVA. Reaction and membrane synthesis were carried simultaneously in mild operating conditions in order to maintain the native protein folding. Membrane characterization comprised the water swelling degree, DSC, TGA, UV-visible spectroscopy, FTIR analysis and oxygen transport in a dialysis cell. The incorporation of myoglobin in the film decreased the water swelling degree and improved the membrane thermal properties compared to unmodified PVA membrane. The reduction of ferric iron in the prosthetic group of the protein to the ferrous form was observed. The increased affinity between oxygen and the immobilized myoglobin did not favor the release of this solute from the biocarrier.

  16. Polyphosphates as Inhibitors for Poly(vinyl Chloride Photodegradation

    Directory of Open Access Journals (Sweden)

    Dina S. Ahmed

    2017-10-01

    Full Text Available Three polyphosphates were used as inhibitors for poly(vinyl chloride (PVC photodegradation. The polyphosphates were added to PVC at a concentration of 0.5% by weight. The PVC films (40 µm thickness were irradiated at room temperature with ultraviolet (UV light for up to 300 h. The changes in PVC films after irradiation were monitored by Fourier transform infrared spectroscopy, weight loss, viscosity-average molecular weight determination, and atomic force microscopy. These changes were very noticeable in the blank PVC films compared to the ones obtained when additives were used. The polyphosphates can inhibit the PVC photodegradation through direct absorption of UV light, interactions with PVC chains, and acting as radical scavengers.

  17. Stimuli Responsive Poly(Vinyl Caprolactam Gels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Kummara Madhusudana Rao

    2016-01-01

    Full Text Available Poly(vinyl caprolactam (PNVCL is one of the most important thermoresponsive polymers because it is similar to poly(N-isopropyl acrylamide. PNVCL precipitates from aqueous solutions in a physiological temperature range (32–34 °C. The use of PNVCL instead of PNIPAM is considered advantageous because of the assumed lower toxicity of PNVCL. PNVCL copolymer gels are sensitive to external stimuli, such as temperature and pH; which gives them a wide range of biomedical applications and consequently attracts considerable scientific interest. This review focuses on the recent studies on PNVCL-based stimuli responsive three dimensional hydrogels (macro, micro, and nano for biomedical applications. This review also covers the future outlooks of PNVCL-based gels for biomedical applications, particularly in the drug delivery field.

  18. Tetrachloroethylene contamination of drinking water by vinyl-coated asbestos-cement pipe

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S.G.; Davis, A.C.; Witt, R.T.; Tripp, B.W.; Frew, N.M.

    1980-10-01

    Drinking water transported in vinyl-coated asbestos-cement pipes often contains elevated concentrations of tetrachloroethylene, which is used as solvent during application of the vinyl coating. Tetrachloroethylene contamination of drinking waters flowing in vinyl-coated asbestos-cement pipes in Falmouth, Mass., is assessed. Problems encountered in trying to reduce this potential health hazard are reviewed. Flushing of the pipe sometimes leads to a reduced tetrachloroethylene level in that pipe, but after flushing is terminated, the level of contamination will gradually increase. (1 diagram, 17 references, 2 tables)

  19. Studies on poly (vinyl chloride/silica dioxide composite hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Mei Shuo

    2016-01-01

    Full Text Available Poly (vinyl chloride/silica dioxide composite hollow fiber membranes were prepared by using the method of immersion-precipitation process. The influences of stretching ratio on the formation of the interfacial microporous of poly (vinyl chloride/silica dioxide composite hollow fiber membranes were specifically investigated by scanning electron microscope, dynamic mechanical analysis, and finite element method. Results show that with the stretching ratio increasing, numerous IFM appear on the surface of membranes. Finite element method actually reflects the dynamic change of microporous structure of poly (vinyl chloride/silica dioxide composite hollow fiber membranes.

  20. Cross-metathesis reaction of α- and β-vinyl C-glycosides with alkenes

    Directory of Open Access Journals (Sweden)

    Ivan Šnajdr

    2015-08-01

    Full Text Available Cross-metathesis of α- and β-vinyl C-deoxyribosides and α-vinyl C-galactoside with various terminal alkenes under different conditions was studied. The cross-metathesis of the former proceeded with good yields of the corresponding products in ClCH2CH2Cl the latter required the presence of CuI in CH2Cl2 to achieve good yields of the products. A simple method for the preparation of α- and β-vinyl C-deoxyribosides was also developed. In addition, feasibility of deprotection and further transformations were briefly explored.

  1. Degradation of Isotopic Lactate and Acetate

    Energy Technology Data Exchange (ETDEWEB)

    Aronoff, S.; Haas, V.A.; Fries, B.A.

    1948-02-24

    A scheme of glucose degradation has been validated by the use of intermediates of known isotopic composition. In this scheme: glucose {yields} lactic acid {yields} CO{sub 2} (C-3,4) + acetic acid {yields} CO{sub 2} (C-2,5) + acetone {yields} iodoform (C-1,6) + acetate (C-1,6; 2,5), it was found that (a) in the oxidation of lactic acid, approximately 4.7% of the acetic acid was oxidized to CO{sub 2}; and (b) under the conditions prescribed, BaCO{sub 3} from the degradation of Ba acetate contained approximately 1.5% of the activity of the methyl group.

  2. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  3. Methanogenesis from acetate: a nonmethanogenic bacterium from an anaerobic acetate enrichment.

    Science.gov (United States)

    Ward, D M; Mah, R A; Kaplan, I R

    1978-06-01

    A methanogenic acetate enrichment was initiated by inoculation of an acetate-mineral salts medium with domestic anaerobic digestor sludge and maintained by weekly transfer for 2 years. The enrichment culture contained a Methanosarcina and several obligately anaerobic nonmethanogenic bacteria. These latter organisms formed varying degrees of association with the Methanosarcina, ranging from the nutritionally fastidious gram-negative rod called the satellite bacterium to the nutritionally nonfastidious Eubacterium limosum. The satellite bacterium had growth requirements for amino acids, a peptide, a purine base, vitamin B12, and other B vitamins. Glucose, mannitol, starch, pyruvate, cysteine, lysine, leucine, isoleucine, arginine, and asparagine stimulated growth and hydrogen production. Acetate was neither incorporated nor metabolized by the satellite organism. Since acetate was the sole organic carbon source in the enrichment culture, organism(s) which metabolize acetate (such as the Methanosarcina) must produce substrates and growth factors for associated organisms which do not metabolize acetate.

  4. Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization

    Science.gov (United States)

    Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.

    2017-02-01

    Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.

  5. Plastic-based organic thin-film transistors with thermally cured polymeric gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi-Heon; Yoon, Sung-Min; Kim, Chul-Am; Baek, Kyu-Ha; You, In-Kyu; Kang, Seong-Youl; Ahn, Seong-Deok; Suh, Kyung-Soo [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2006-09-15

    In this investigation, we synthesized thermally curable polymers by mixing poly(vinyl phenol) (PVP) and a thermal-crosslinking agent (a methylated melamine-formaldehyde, MMF). These polymeric insulating films exhibit good chemical, physical, and electrical properties as dielectrics. Their insulating and dielectric properties depend on the MMF concentration. We fabricated plastic-based organic thin-film transistors (OTFTs) with these dielectric layers to investigate the relationship between the performance of the OTFT and the electrical/chemical properties of these insulating films. The OTFT showed good electrical performance; the field-effect mobility was 1.1 cm{sup 2}V{sup -1}s{sup -1}. A dielectric layer with a relatively low dielectric constant was found to give a higher field-effect mobility.

  6. Hemo-De as substitute for ethyl acetate in formalin-ethyl acetate concentration technique.

    OpenAIRE

    Neimeister, R; Logan, A L; Gerber, B; Egleton, J H; Kleger, B

    1987-01-01

    In comparative studies, Hemo-De (PMP Medical Industries, Inc., Irving, Tex.) was found to be a suitable replacement for ethyl acetate in the Formalin-ethyl acetate concentration technique. With essentially equivalent recovery rates for both procedures, the Formalin-Hemo-De concentration technique is considered to be the preferred technique because Hemo-De is less toxic and less flammable and does not present disposal problems, and its cost is approximately one-fourth that of ethyl acetate.

  7. Mechanistic insights into polar monomer insertion polymerization from acrylamides.

    Science.gov (United States)

    Friedberger, Tobias; Wucher, Philipp; Mecking, Stefan

    2012-01-18

    N-Isopropyl acrylamide (NIPAM), N,N-dimethyl acrylamide (DMAA), and 2-acetamidoethyl acrylate (AcAMEA) were copolymerized with ethylene employing [(P^O)PdMe(DMSO)] (1-DMSO; P^O = κ(2)-P,O-Ar(2)PC(6)H(4)SO(2)O with Ar = 2-MeOC(6)H(4)) as a catalyst precursor. Inhibition studies with nonpolymerizable polar additives show that reversible κ-O-coordination of free amide retards polymerization significantly. Retardation of polymerization increases in the order ethyl acetate ≪ methyl ethyl sulfone DMAA DMAA into the Pd-Me bond of a [(P^O)PdMe] fragment occur to afford a ca. 4:1 mixture of chelates [(P^O)Pd{κ(2)-C,O-C(CH(2)CH(3))C(O)NMe(2)}] (3) and [(P^O)Pd{κ(2)-C,O-CH(2)C(CH(3))C(O)NMe(2)}] (4). The four-membered chelate of 3 is opened by coordination of 2,6-lutidine (3 + 2,6-lutidine ⇌ 3-LUT) with ΔH° = -41.8(10.5) kJ and ΔS° = -115(37) J mol(-1) K(-1). © 2011 American Chemical Society

  8. Polymeric Nanofibers in Tissue Engineering

    Science.gov (United States)

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  9. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  10. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  11. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification

    Science.gov (United States)

    Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.

    2017-06-01

    In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.

  12. Cutaneous haemangioendothelioma: a possible link with chronic exposure to vinyl chloride.

    OpenAIRE

    Davies, M F; Curtis, M; Howat, J M

    1990-01-01

    A patient who worked with polyvinyl chloride developed a malignant haemangioendothelioma of a toe. This rare tumour is more commonly found in the liver where it has been reported to arise in association with exposure to the vinyl chloride monomer.

  13. Pharmacokinetic Evaluation of Intranasally Administered Vinyl Polymer-Coated Lorazepam Microparticles in Rabbits

    National Research Council Canada - National Science Library

    Zhao, Yanjun; Brown, Marc B; Khengar, Rajeshree H; Traynor, Matthew J; Barata, Pedro; Jones, Stuart A

    2012-01-01

    .... The aim of this study was to understand how the in situ self-assembly of a mucoretentive delivery system, formed by the dissolution of vinyl polymer-coated microparticles in the nasal mucosa, would...

  14. Diastereoselective synthesis of nitroso acetals from (S,E-γ-aminated nitroalkenes via multicomponent [4 + 2]/[3 + 2] cycloadditions promoted by LiCl or LiClO4

    Directory of Open Access Journals (Sweden)

    Leandro Lara de Carvalho

    2013-04-01

    Full Text Available Chiral nonracemic aminated nitroso acetals were synthesized via diastereoselective multicomponent [4 + 2]/[3 + 2] cycloadditions employing new (S,E-γ-nitrogenated nitroalkenes 5a–c as heterodienes, ethyl vinyl ether (EVE as a dienophile, and selected electron-deficient alkenes as 1,3-dipolarophiles. The employment of different organic solutions of LiClO4 or LiCl as promoter systems provided the respective nitroso acetals with yields from 34–72% and good levels of diastereoselectivity. In addition, the nitroso acetal 9c was transformed to the pyrrolizidin-3-one derivative 14c, proving the usefulness of the route in the synthesis of an interesting chiral compound. The elucidation of the stereostructures was based on 2D COSY, NOESY and HSQC NMR experiments as well as an X-ray diffraction experiment.

  15. Electroactive Polymeric Materials for Supercapacitors

    Science.gov (United States)

    2017-06-16

    solvent resistant (SR) polymers that are insoluble, while retaining high redox activity, in both organic and aqueous electrolytes. The polymers are...FINAL REPORT Electroactive Polymeric Materials for Supercapacitors N00014-14-1-0399 John R. Reynolds School of Chemistry and Biochemistry...program was directed to the use of conjugated and highly electroactive polymers (EAPs) as the active redox materials in electrochemical supercapacitors

  16. Two Photon Polymerization of Ormosils

    Science.gov (United States)

    Matei, A.; Zamfirescu, M.; Jipa, F.; Luculescu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2010-10-01

    In this work, 3D structures of hybrid polymers—ORMOSILS (organically modified silicates) were produced via Two Photon Polymerization (2PP) of hybrid methacrylates based on silane derivates. Synthetic routes have been used to obtain series of hybrid monomers, their structure and purity being checked by NMR Spectroscopy and Fourier Transform Infrared Spectroscopy. Two photon polymerization method (a relatively new technology which allows fast micro and nano processing of three-dimensional structures with application in medical devices, tissue scaffolds, photonic crystals etc) was used for monomers processing. As laser a Ti: Sapphire laser was used, with 200 fs pulse duration and 2 kHz repetition rate, emitting at 775 nm. A parametric study on the influence of the processing parameters (laser fluence, laser scanning velocity, photo initiator) on the written structures was carried out. The as prepared polymeric scaffolds were tested in mesenchymal stem cells and fibroblasts cell cultures, with the aim of further obtaining bone and dermal grafts. Cells morphology, proliferation, adhesion and alignment were analyzed for different experimental conditions.

  17. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  18. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp.

    Science.gov (United States)

    Pronk, M; Neu, T R; van Loosdrecht, M C M; Lin, Y M

    2017-10-01

    A new acid soluble extracellular polymeric substance (acid soluble EPS) was extracted from an acetate fed aerobic granular sludge reactor operated at 35 °C. Acid soluble EPS dominated granules exhibited a remarkable and distinctive tangled tubular morphology. These granules are dominated by Defluviicoccus Cluster II organisms. Acetic acid instead of the usually required alkaline extraction medium was needed to dissolve the granules and solubilise the polymeric matrix. The extracted acid soluble EPS was analysed and identified using various instrumental analysis including 1H and 13C Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy and Raman spectroscopy. In addition, the glycoconjugates were characterized by fluorescence lectin-binding analysis. The acid soluble EPS is α-(1 → 4) linked polysaccharide, containing both glucose and galactose as monomers. There are OCH3 groups connected to the glucose monomer. Transmission and scanning electron microscopy (TEM, SEM) as well as confocal laser scanning microscopy (CLSM) showed that the acid soluble EPS was present as a tightly bound capsular EPS around bacterial cells ordered into a sarcinae-like growth pattern. The special granule morphology is decided by the acid soluble EPS produced by Defluviicoccus Cluster II organisms. This work shows that no single one method can be used to extract all possible extracellular polymeric substances. Results obtained here can support the elucidation of biofilm formation and structure in future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    OpenAIRE

    Sugimura, Kazuki; Teramoto, Yoshikuni; NISHIO, Yoshiyuki

    2013-01-01

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DS

  20. Separation of Aqueous Isopropanol Through Chitosan/Poly (Vinyl Alcohol) Blended Membranes by Pervaporation

    OpenAIRE

    S. H. Tan, A. L. Ahmad; M. G. Mohd. Nawawi and H. Hassan

    2012-01-01

    Blend membranes consisting of chitosan/poly (vinyl alcohol) (CS/PVA) were prepared from a solution casting method and characterized via the pervaporation separation of isopropanol-water mixtures.  The solution of pure chitosan was blended with poly(vinyl alcohol) at different compositions. The miscibility of the blended polymers was determined.  Criteria for miscibility was based on the clarity of the blend and the transparency of the membrane obtained.  The effects of feed con...

  1. High Performance Fatty Acid-Based Vinyl Ester Resin for Liquid Molding

    Science.gov (United States)

    2007-07-01

    novolac epoxy, and Epon 828 , a diglycidyl ether of bisphenol A (DGEBA), were purchased from Hexion Specialty Chemicals and was used to synthesize vinyl...with Epon 160 (n=0.5) and Epon 828 (n=0.098) to produce VE 160 and VE 828 , respectively (Figure 1). The reaction was catalyzed by 1 wt% AMC-2...PROCEDURE 2.1 Materials Derakane 470HT-400 vinyl ester resin was obtained from Ashland and was used without modification. Epon Resin 160, a

  2. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200... Ethyl alcohol containing ethyl acetate. The feed additive ethyl alcohol containing ethyl acetate meets... having had added the equivalent of 4.25 gallons of 100 percent ethyl acetate. It is used in accordance...

  3. Vinyl flooring in the home is associated with children's airborne butylbenzyl phthalate and urinary metabolite concentrations.

    Science.gov (United States)

    Just, Allan C; Miller, Rachel L; Perzanowski, Matthew S; Rundle, Andrew G; Chen, Qixuan; Jung, Kyung Hwa; Hoepner, Lori; Camann, David E; Calafat, Antonia M; Perera, Frederica P; Whyatt, Robin M

    2015-01-01

    Prior studies have shown that vinyl flooring as well as the vinyl-softening plasticizers butylbenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) are associated with asthma and airway inflammation. Although DEHP exposure is primarily dietary, whether home vinyl flooring contributes to indoor air and urinary metabolite concentrations for these two phthalates is unclear. Exposures to BBzP and DEHP were examined in a prospective birth cohort of New York City children (n=239) using: (i) visual observation of potential phthalate containing flooring, (ii) a 2-week home indoor air sample, and (iii) concurrent urinary metabolites in a subset (n=193). The category "vinyl or linoleum" flooring was observed in 135 (56%) of monitored rooms; these rooms had statistically significantly higher indoor air geometric mean concentrations of BBzP (23.9 ng/m(3)) than rooms with wood or carpet flooring (10.6 ng/m(3)). Children from homes with "vinyl or linoleum" flooring also had significantly higher urinary BBzP metabolite concentrations than other children. Indoor air BBzP and urinary metabolite concentrations were correlated positively (Spearman's rho 0.40). By contrast, indoor air DEHP was not associated with flooring type nor with its urinary metabolite concentrations. Vinyl flooring in the home may be an important source of children's exposure to BBzP via indoor air.

  4. Different cerebrovascular effects of medroxyprogesterone acetate and norethisterone acetate in the New Zealand White rabbit

    DEFF Research Database (Denmark)

    Pedersen, S H; Pedersen, N G; Dalsgaard, T

    2004-01-01

    of different progestins on cerebrovascular reactivity in an animal model. METHODS: Fifty-six ovariectomized New Zealand White rabbits were randomized into seven groups receiving hormone treatment for 4 weeks: medroxyprogesterone acetate (MPA) (10 mg/day); norethisterone acetate (NETA) (3 mg/day); conjugated...

  5. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  6. Fluorescence quenching of etilefrine by acetate anion

    Science.gov (United States)

    Quintero Osso, B.; Carazo Rodríguez, F. M.; Morales Domingo, J. J.; Cabeza González, M. C.; Thomas Gómez, J.

    1999-02-01

    Acid dissociation in the excited state of antihypotensor drug etilefrine [2-(ethylamino1-3-hydroxyphenyl)ethanol] is studied. Fluorescence of etilefrine decreases at pH7. Analyses of the absorption and fluorescence spectra of aqueous solutions of etilefrine in the presence of acetate anions have been made. Considering the existence of an equilibrium in the excited state the values of 3.47×10 -9 and 0.216×10 -9 M -1 s -1 have been obtained for the rate constants for direct and inverse reactions, respectively. Moreover, the lifetime ( τ0'=0.58×10 -9 s) and quantum yield (0.01) of non-protonated etilefrine have been determined. Our results seem to support the existence of a dynamic quenching process based on a proton transfer mechanism induced by acetate anions. This process could represent a serious inconvenience in analytical fluorimetric techniques taking into account that the acetic acid/acetate pair is commonly used as a buffer. Additional fluorescence quenching by H + ions could be involved in acid aqueous mediums. At high concentrations of acetic acid, a value of 2.98×10 -9 M -1 s -1 for the bimolecular constant for the quenching by H + has been calculated.

  7. (Acetato-κO)bis­(1,10-phenanthroline-κ2 N,N′)copper(II) acetate hepta­hydrate

    OpenAIRE

    Buqin Jing; Lianzhi Li; Jianfang Dong; Tao Xu

    2011-01-01

    In the title complex, [Cu(CH3CO2)(C12H8N2)2](CH3CO2)·7H2O, the central CuII ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water molecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010). The cations are linked to this layer via O—H...O hydrogen bonds between one of the water mo...

  8. Polymerization and polymerization shrinkage stress: fast cure versus conventional cure.

    Science.gov (United States)

    Strydom, C

    2005-07-01

    Dentists nowadays have a choice of conventional halogen lights, halogen lights with more sophisticated curing cycles (step-cure, rapid-cure, ramp-cure & pulse-cure), fast halogen lights, laser lights, plasma arc lights (PAC) and, lately, LED lights. While the manufacturers of some of the curing units try to improve on the operational reliability of their lights with a slower initial rate of cure, other manufacturers simply wish to offer as fast a curing time as possible. The conventional approach to cure accepts that sufficient light intensity of at least 400 mW/cm2 at a wavelength of 400-500 nm, and an exposure time of at least 40 seconds is needed to cure a 2-mm layer of composite. When a halogen light with higher or very high intensity is used, alternative curing strategies provide for an initial slower cure to allow flow, and after that a higher-intensity cure to improve the degree of cure. In contrast, in the fast-cure or rapid-cure approach it is suggested that a layer of composite can be cured for only 5- 10 seconds at >2000 mW/cm2. Some go so far as to say that an exposure time of 3 seconds per layer may be enough. This contradictory approach is compounded by the fact that this support for fast cure does not seem to consider the negative consequences. Therefore, to address these concerns, this review discusses the possible effects of a fast cure approach compared to a more conventional approach in polymerization and polymerization shrinkage, and the consequences there-off. Other factors that play an influencing role in polymerization shrinkage stress are also included in the discussion.

  9. Influence of ultrasonic condition on phase transfer catalyzed radical polymerization of methyl methacrylate in two phase system - A kinetic study.

    Science.gov (United States)

    Marimuthu, Elumalai; Murugesan, Vajjiravel

    2017-09-01

    An ultrasonic condition assisted phase transfer catalyzed radical polymerization of methyl methacrylate was investigated in an ethyl acetate/water two phase system at 60±1°C and 25kHz, 300W under inert atmosphere. The influence of monomer, initiator, catalyst and temperature, volume fraction of aqueous phase on the rate of polymerization was examined in detail. The reaction order was found to be unity for monomer, initiator and catalyst. Generally, the reaction rate was relatively fast in two phase system, when a catalytic amount of phase transfer catalyst was used. The combined approach, use of ultrasonic and PTC condition was significantly enhances the rate of polymerization. An ultrasonic and phase transfer catalyzed radical polymerization of methyl methacrylate has shown about three fold enhancements in the rate compared with silent polymerization of MMA using cetyltrimethylammonium bromide as PTC. The resultant kinetics was evaluated with silent polymerization and an important feature was discussed. The activation energy and other thermodynamic parameters were computed. Based on the obtained results an appropriate radical mechanism has been derived. TGA showed the polymer was stable up to 150°C. The FT-IR and DSC analysis validates the atactic nature of the obtained polymer. The XRD pattern reveals the amorphous nature of polymer was dominated. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ulipristal acetate: An update for Australian GPs.

    Science.gov (United States)

    Mazza, Danielle

    2017-01-01

    In Australia, use and understanding of emergency contraception among women remains relatively low. This is despite the introduction of levonorgestrel emergency contraceptive pills (ECPs) more than a decade ago. In April 2016, a new ECP with the active ingredient ulipristal acetate became available in Australia. The aims of this article are to increase understanding of the recently introduced ulipristal acetate ECP, including its safety profile, effi-cacy and special considerations; dispel common myths and misconceptions about emergency contraception; and to provide guidance on emergency contraceptive management in general practice, considering the recent advances. Women are more receptive to information about emergency contraception that has been provided by a general practitioner (GP). As such, the availability of the ulipristal acetate ECP in Australia provides an important opportunity for GPs to help women prevent unplanned pregnancies.

  11. Polymeric slot waveguide for photonics sensing

    Science.gov (United States)

    Chovan, J.; Uherek, F.

    2016-12-01

    Polymeric slot waveguide for photonics sensing was designed, simulated and studied in this work. The polymeric slot waveguide was designed on commercial Ormocer polymer platform and operates at visible 632.8 nm wavelength. Designed polymeric slot waveguide detects the refractive index change of the ambient material by evanescent field label-free techniques. The motivation for the reported work was to design a low-cost polymeric slot waveguide for sensing arms of integrated Mach-Zehnder interferometer optical sensor with reduced temperature dependency. The minimal dimensions of advanced sensing slot waveguide structure were designed for researcher direct laser writing fabrication by nonlinear two-photon polymerization. The normalized effective refractive index changes of TE and TM fundamental modes in polymeric slot waveguide and slab waveguides were compared. The sensitivity of the normalized effective refractive index changes of TE and TM fundamental modes on refractive index changes of the ambient material was investigated by glucose-water solutions.

  12. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  13. Acetic acid mediated interactions between alumina surfaces

    Science.gov (United States)

    Sato, Kimiyasu; Yılmaz, Hüseyin; Ijuin, Atsuko; Hotta, Yuji; Watari, Koji

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  14. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    Science.gov (United States)

    Zha, Zhengbao; Ma, Yan; Yue, Xiuli; Liu, Meng; Dai, Zhifei

    2009-11-01

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe 3+/Hep and DS/Fe 3+/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe 3+/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe 3+/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  15. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zha Zhengbao; Ma Yan; Yue Xiuli; Liu Meng [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China); Dai Zhifei, E-mail: zhifei.dai@hit.edu.cn [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-15

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe{sup 3+}/Hep and DS/Fe{sup 3+}/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe{sup 3+}/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe{sup 3+}/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  16. Degree of vinyl conversion in experimental amorphous calcium phosphate composites

    Science.gov (United States)

    Tarle, Z.; Knežević, A.; Matošević, D.; Škrtić, D.; Ristić, M.; Prskalo, K.; Musić, S.

    2009-04-01

    An experimental dental composite, based on amorphous calcium phosphate (ACP) with the potential to arrest caries development and regenerate mineral-deficient tooth structures has recently been developed. The aim of this study was to assess the degree of vinyl conversion (DVC) attained in experimental composites based on zirconia-modified ACP. Photo-activated resins were based on ethoxylated bisphenol A dimethacrylate (EBPADMA) [ETHM series with varying EBPADMA/triethylene glycol dimethacrylate (TEGDMA) molar ratios assigned 0.5-ETHM I, 0.85-ETHM II and 1.35-ETHM III], or 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]-propane (Bis-GMA) [BTHZ series]. To asses a possible effect of filler particle size on DVC, composites containing 60 mass % resin and 40 mass % of either milled ACP (mACP; median diameter d m = 0.9 μm) or coarse ACP (cACP; d m = 6.0 μm) were prepared, and irradiated with LED curing unit for 40 s. The DVC was calculated as the % change in the ratio of the integrated peak areas between the aliphatic and aromatic absorption bands determined by Fourier transform infrared spectroscopy (FTIR). The highest DVCs values were attained in mACP-BTHZ, cACP-BTHZ and mACP-ETHM III formulations. DVC of tested ACP composites (on average (76.76 ± 4.43)%) compares well with or exceeds DVCs values reported for the majority of commercial materials.

  17. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    Science.gov (United States)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  18. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    Science.gov (United States)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  19. Time domain NMR evaluation of poly(vinyl alcohol xerogels

    Directory of Open Access Journals (Sweden)

    Elton Jorge da Rocha Rodrigues

    Full Text Available Abstract Poly(vinyl alcohol (PVA-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO2, were obtained and characterized mainly through time domain NMR experiments (TD-NMR. Fourier-transform infrared (FT-IR and wide angle X-ray diffraction (WAXD analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO2 does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO2. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials.

  20. The response of poly (vinyl alcohol) to humidity

    CERN Document Server

    Spindura, J

    2000-01-01

    material that swells, although it has been shown that not all the amorphous material swells to the same extent. The glass transition temperature (T sub g) could not be followed with DSC as the semicrystalline nature of the samples masked this transition and hence DMA was used to follow the changes in T sub g with both annealing and moisture content. A decrease in T sub g with increasing humidity was clearly observed. An interesting observation was the increase in T sub g for films exposed to humidity and then dried before analysis as XRD showed no corresponding increase in crystallinity. For fibre samples the crystallinity was found to be greatly increased by the orientation processes which gave rise to very large melting enthalpies in the DSC suggesting that there is more and/or stronger bonding opportunities within the fibre samples. This thesis aims to investigate the effects of heat treatments, humidity and hydrogen bonding on thin film and fibre samples of poly (vinyl alcohol). A number of different tech...