WorldWideScience

Sample records for vinci robotic system

  1. Malfunction of the da Vinci robotic system in urology.

    Science.gov (United States)

    Chen, Cheng-Che; Ou, Yen-Chuan; Yang, Cheng-Kuang; Chiu, Kun-Yuan; Wang, Shian-Shiang; Su, Chung-Kuang; Ho, Hao-Chung; Cheng, Chen-Li; Chen, Chuan-Shu; Lee, Jian-Ri; Chen, Wen-Min

    2012-08-01

    To analyze the incidence of malfunction of the da Vinci robotic system in a single center and to provide potential solutions. A total of 400 patients underwent da Vinci robotic urological surgery at Taichung Veterans General Hospital in Taichung, Taiwan, from December 2005 to April 2011. Episodes of malfunction of the robotic system were analyzed by period of operation, type of procedure, type of malfunction and management of the event. Overall, 14 cases of malfunction occurred (3.5% of the entire series). Among them, five (1.25%) occurred before the surgery and nine (2.25%) intraoperatively. Operative procedures included radical prostatectomy, bilateral pelvic lymph node dissection, dismembered pyeloplasty, partial nephrectomy, nephroureterectomy, and radical and partial cystectomies. Areas of malfunctions included the robotic arm system and joint (11/14), optical system (1/14), power system and connector (1/14), endoscopic instrument (1/14), and software (1/14). In 10 cases, the failure was recoverable, whereas in four cases there was a critical failure, requiring a conversion to standard laparoscopy in three of them, and the rescheduling of the surgery in one case. The da Vinci robotic system is extremely reliable for use in urology. Malfunction is rare and the risk of critical failure is very low. Managing mechanical failure before or during the surgery is the key to maintaining the safety of patients undergoing robotic surgical procedures. © 2012 The Japanese Urological Association.

  2. [Application of the da Vinci robotic system in thoracic surgery].

    Science.gov (United States)

    Ismail, M; Swierzy, M; Ulrich, M; Rückert, J C

    2013-08-01

    The latest technical developments of minimally invasive thoracic surgery are characterized by robotic-assisted operative procedures. Robotic-assisted thymectomy is the most advanced method in this field. A systematic literature search (PubMed, Medline) was carried out and the databank system of Intuitive Surgical (Sunnyvale, CA) was analysed. Target criteria were the analysis of the quantitative data over time, technical advantages and limiting factors of robotic-assisted thoracic surgery. The da Vinci robotic system has been used in thoracic surgery since 2001, and up to 2012 a total of 10,895 robotic-assisted lobotomies have been carried out worldwide. A total of 12 ectopic parathyroid glands in the mediastinum were resected and published. Furthermore, more than 3,500 cases of robotic-assisted thymectomy were performed. A rapid increase in the number of operations has occurred particularly for thymectomy and lung resections. Acceptance of robotic-assisted thymectomy for myasthenia and/or thymoma and mediastinal tumors is growing rapidly. For anatomic lung resection in lung cancer, robotic-assisted hilar and lymph node dissection due to this new quality are also comparable to open surgical techniques. The principles form the intrinsic technical advantages of the da Vinci robotic system.

  3. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  4. Mammary artery harvesting using the Da Vinci Si robotic system

    Directory of Open Access Journals (Sweden)

    Leonardo Secchin Canale

    2014-03-01

    Full Text Available Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system.

  5. Mammary artery harvesting using the Da Vinci Si robotic system

    Science.gov (United States)

    Canale, Leonardo Secchin; Bonatti, Johannes

    2014-01-01

    Internal mammary artery harvesting is an essential part of any coronary artery bypass operation. Totally endoscopic coronary artery bypass graft surgery has become reality in many centers as a safe and effective alternative to conventional surgery in selected patients. Internal mammary artery harvesting is the initial part of the procedure and should be performed equally safely if one wants to achieve excellence in patency rates for the bypass. We here describe the technique for mammary harvesting with the Da Vinci Si robotic system. PMID:24896171

  6. The da Vinci robot.

    Science.gov (United States)

    Moran, Michael E

    2006-12-01

    One might assume from the title of this paper that the nuances of a complex mechanical robot will be discussed, and this would be correct. On the other hand, the date of the design and possible construction of this robot was 1495, a little more than five centuries ago. The key point in the title is the lack of a trademarked name, as Leonardo was the designer of this sophisticated system. His notes from the Codex Altanticus represent the foundation of this report. English translations of da Vinci's notebooks are currently available. Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings. Such markings also occur in his Codex Atlanticus (the largest single collection of da Vinci's sheets, consisting of 1119 separate pages and 481 folios) along with a large number of other mechanical devices. Continuing research at the Instituto e Museo di Storia della Scienza in Florence has yielded a great deal of information about Leonardo's intentions with regard to his mechanical knight. It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight. It had a complex core of mechanical devices that probably was human powered. The robot had two independent operating systems. The first had three degree-of-freedom legs, ankles, knees, and hips. The second had four degrees of freedom in the arms with articulated shoulders, elbows, wrists, and hands. A mechanical analog-programmable controller within the chest provided the power and control for the arms. The legs were powered by an external crank arrangement driving the cable, which connected to key locations near each lower extremity's joints. Da Vinci also is known to have devised a programmable front-wheel-drive automobile with rack-and-pinion suspension mechanisms at age 26. He would recall this device again, when, at age 40, he is thought to have built a programmable automated

  7. [RESEARCH PROGRESS OF PERIPHERAL NERVE SURGERY ASSISTED BY Da Vinci ROBOTIC SYSTEM].

    Science.gov (United States)

    Shen, Jie; Song, Diyu; Wang, Xiaoyu; Wang, Changjiang; Zhang, Shuming

    2016-02-01

    To summarize the research progress of peripheral nerve surgery assisted by Da Vinci robotic system. The recent domestic and international articles about peripheral nerve surgery assisted by Da Vinci robotic system were reviewed and summarized. Compared with conventional microsurgery, peripheral nerve surgery assisted by Da Vinci robotic system has distinctive advantages, such as elimination of physiological tremors and three-dimensional high-resolution vision. It is possible to perform robot assisted limb nerve surgery using either the traditional brachial plexus approach or the mini-invasive approach. The development of Da Vinci robotic system has revealed new perspectives in peripheral nerve surgery. But it has still been at the initial stage, more basic and clinical researches are still needed.

  8. Da Vinci robot-assisted system for thymectomy: experience of 55 patients in China.

    Science.gov (United States)

    Jun, Yi; Hao, Li; Demin, Li; Guohua, Dong; Hua, Jing; Yi, Shen

    2014-09-01

    Da Vinci robot-assisted thymectomy has been used in the past several years in China, however, practical experience in performing this approach in China remains limited. Thus, the study aimed to evaluate the experience of da Vinci robot-assisted thymectomy in China. From June 2010 to December 2012, 55 patients with diseases of the thymus underwent thymectomy using the da Vinci surgical HD robotic system. The clinical data of the da Vinci robot-assisted thymectomies were compared with the data of video-assisted thoracoscopic thymectomies in the same period. All da Vinci robot operations were successful. This is a retrospective analysis which demonstrated that compared with video-assisted thoracoscopic thymectomy in the same period, the clinical outcomes of da Vinci robot-assisted thymectomy were not significantly different. The da Vinci robot-assisted thymectomy is a safe, minimally invasive, and convenient operation, and shows promise for general thoracic surgery in China. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems.

    Science.gov (United States)

    Sung, G T; Gill, I S

    2001-12-01

    To evaluate two currently available robotic surgical systems in performing various urologic laparoscopic procedures in an acute porcine model. Robotic laparoscopic surgery was performed in 14 swine. Data were compared between the da Vinci Robotic System and the Zeus Robotic System. During laparoscopic nephrectomy, the da Vinci System (n = 6) had a significantly shorter total operating room time (51.3 versus 71.6 minutes; P = 0.02) and actual surgical time (42.1 versus 61.4 minutes; P = 0.03) compared with the Zeus System (n = 5). However, the blood loss and adequacy of surgical dissection were comparable between the two groups. For laparoscopic adrenalectomy, the da Vinci System (n = 5) had a shorter actual surgical time (12.2 versus 26.0 minutes; P = 0.006) than did the Zeus System (n = 5). For laparoscopic pyeloplasty, the da Vinci System had a shorter total operating room time (61.4 versus 83.4 minutes; P = 0.10) and anastomotic time (44.7 versus 66.4 minutes; P = 0.11). During pyeloplasty anastomosis, the total number of suture bites per ureter was 13.0 for the da Vinci System (n = 6) and 10.8 for the Zeus System (n = 6). The complications included an adrenal parenchymal tear each during a da Vinci System-based left adrenalectomy and a Zeus System-based right adrenalectomy. An inferior vena caval tear during a Zeus System-based right adrenalectomy occurred in 1 case, which was suture-repaired telerobotically. Robotic laparoscopic procedures can be performed effectively using either the da Vinci or Zeus System. In this limited study, the learning curve and operative times were shorter and the intraoperative technical movements appeared inherently more intuitive with the da Vinci System. Additional clinical experience is necessary.

  10. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  11. The First Korean Experience of Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using the da Vinci System

    Science.gov (United States)

    Kang, Chang Moo; Chi, Hoon Sang; Hyeung, Woo Jin; Kim, Kyung Sik; Choi, Jin Sub; Kim, Byong Ro

    2007-01-01

    With the advancement of laparoscopic instruments and computer sciences, complex surgical procedures are expected to be safely performed by robot assisted telemanipulative laparoscopic surgery. The da Vinci system (Intuitive Surgical, Mountain View, CA, USA) became available at the many surgical fields. The wrist like movements of the instrument's tip, as well as 3-dimensional vision, could be expected to facilitate more complex laparoscopic procedure. Here, we present the first Korean experience of da Vinci robotic assisted laparoscopic cholecystectomy and discuss the introduction and perspectives of this robotic system. PMID:17594166

  12. [The beginnings of robotic surgery--from the roots up to the da Vinci telemanipulator system].

    Science.gov (United States)

    Dervaderics, János

    2007-12-09

    The history of the robotic surgery is only 22 years old. The article gives a short overview regarding the history of robotics, the surgical robots, the da Vinci telemanipulator system and some further commercial and experimental surgical robotic surgical simulation is also emphasized. Robotic surgery has its own place within the following concepts: 1. computer assisted surgery (CAS), 2. computer integrated surgery (CIS), 3. surgical automation, 4. surgical system integration and 5. artificial intelligence (AI). At the end of the paper there are some important sources of informations regarding robotic surgery.

  13. The Settings, Pros and Cons of the New Surgical Robot da Vinci Xi System for Transoral Robotic Surgery (TORS): A Comparison With the Popular da Vinci Si System.

    Science.gov (United States)

    Kim, Da Hee; Kim, Hwan; Kwak, Sanghyun; Baek, Kwangha; Na, Gina; Kim, Ji Hoon; Kim, Se Heon

    2016-10-01

    The da Vinci system (da Vinci Surgical System; Intuitive Surgical Inc.) has rapidly developed in several years from the S system to the Si system and now the Xi System. To investigate the surgical feasibility and to provide workflow guidance for the newly released system, we used the new da Vinci Xi system for transoral robotic surgery (TORS) on a cadaveric specimen. Bilateral supraglottic partial laryngectomy, hypopharyngectomy, lateral oropharyngectomy, and base of the tongue resection were serially performed in search of the optimal procedures with the new system. The new surgical robotic system has been upgraded in all respects. The telescope and camera were incorporated into one system, with a digital end-mounted camera. Overhead boom rotation allows multiquadrant access without axis limitation, the arms are now thinner and longer with grabbing movements for easy adjustments. The patient clearance button dramatically reduces external collisions. The new surgical robotic system has been optimized for improved anatomic access, with better-equipped appurtenances. This cadaveric study of TORS offers guidance on the best protocol for surgical workflow with the new Xi system leading to improvements in the functional results of TORS.

  14. Robotic laparoscopic distal gastrectomy: a comparison of the da Vinci and Zeus systems.

    Science.gov (United States)

    Kakeji, Y; Konishi, K; Ieiri, S; Yasunaga, T; Nakamoto, M; Tanoue, K; Baba, H; Maehara, Y; Hashizume, M

    2006-12-01

    The robotic surgical systems working on a master-slave principle have been developed and used in the worldwide in cardiac, urologic, and general surgery. The two robotic systems, the da Vinci and the Zeus Robotic Surgical System (Intuitive Surgical, Calif., USA), were compared with the aim of evaluating operative feasibility and technical efficacy in distal gastrectomy. During laparoscopic gastrectomy, the da Vinci System (n = 2) had a shorter total operative time (445 versus 656 minutes; p = 0.09) and less blood loss (65 versus 277 mL; p = 0.08) compared with the Zeus System (n = 3). The articulated instruments of both systems were useful in lymph node dissection, isolation of vessels in fat tissue, ligation of vessels, and intraabdominal anastomosis of the gastrointestinal tract. Robotic laparoscopic procedures can be performed effectively using either the da Vinci or Zeus System. In this limited study, the robotic instruments, especially those of da Vinci system, made it easier to complete tissue dissection including lymph nodes, complicated endoscopic anastomoses, and ligatures in a closed cavity. Copyright 2006 John Wiley & Sons, Ltd.

  15. The da Vinci robotic system for general surgical applications: a critical interim appraisal.

    Science.gov (United States)

    Bodner, Johannes; Augustin, Florian; Wykypiel, Heinze; Fish, John; Muehlmann, Gilbert; Wetscher, Gerold; Schmid, Thomas

    2005-11-19

    The recently introduced robotic surgical systems were developed to overcome the limitations of conventional minimally invasive surgery. We analyse the impact of the da Vinci robotic system on general surgery. The da Vinci operating robot is a telemanipulation system consisting of a surgical arm cart, a master console and a conventional monitor cart. Since its purchase in June 2001, 128 patients have undergone surgery using the da Vinci robot in our department. The mean age of the 78 female and 50 male patients was 52 (range 18-78) years. The procedures included 29 cholecystectomies, 16 partial fundoplications, 16 extended thymectomies, 14 colonic interventions, 10 splenectomies, 10 bariatric procedures, 7 hernioplasties, 6 oesophageal interventions, 5 adrenalectomies, 5 lower lobectomies, 4 neurinomectomies and 6 others. 122 of 128 procedures (95%) were completed successfully with the da Vinci robot. Open conversion proved necessary in 4 patients due to surgical problems, and two other procedures were completed by conventional laparoscopy due to robot system technical errors. 30-day mortality was 0%, one redo-operation was necessary and two lower complications not requiring surgical re-intervention occurred. The resection margins of all tumour specimens were histologically tumour free. Various general surgical procedures have proved feasible and safe when performed with the da Vinci robot. The advantage of the system is best seen in tiny areas difficult of access and when dissecting delicate, vulnerable anatomical structures. However, in view of longer operating times, higher costs and the lack of adequate instruments, robotic surgery does not at the moment represent a general alternative to conventional minimally invasive surgery.

  16. Malfunction of the Da Vinci robotic system during robot-assisted laparoscopic prostatectomy: an international survey.

    Science.gov (United States)

    Kaushik, Dharam; High, Robin; Clark, Curtis J; LaGrange, Chad A

    2010-04-01

    To determine how urologists manage technical malfunction of the Da Vinci robotic system during robot-assisted radical prostatectomy (RARP). A web-based survey was sent to urologists performing RARP. The survey questions were related to the stage of operation during which robotic malfunction occurred, management of malfunctions, and most common types of robotic malfunction. In addition, data were collected concerning surgical volume and training. One hundred (56.8%) of the 176 responding surgeons had experienced an irrecoverable intraoperative malfunction. Eighty respondents experienced mechanical failure before starting RARP, of which 46 (57.5%) rescheduled, 15 (18.8%) performed an open radical approach, 12 (15%) performed standard laparoscopic prostatectomy, and 4 (4.9%) docked another robot. Sixty-three respondents experienced mechanical failure before starting urethrovesical anastomosis, of which 26 (41.2%) converted to an open procedure, 20 (31.7%) converted to standard laparoscopy, 10 (15.8%) finished with one less arm, and 3 (4.7%) aborted the procedure. Thirty-two respondents experienced malfunction before completion of the anastomosis, of which 20 (62.5%) converted to standard laparoscopy, while 12 (37.5%) converted to open surgery. Fellowship trained surgeons were more likely to complete the prostatectomy using standard laparoscopy (P = 0.05). No significant differences existed between surgeons performing a high volume or low volume of prostatectomies in regard to management of malfunctions. Intraoperative breakdown of the Da Vinci robot is uncommon, but patients should be counseled preoperatively and a plan devised on how breakdown will be managed. Intracorporeal suturing skills allow conversion to a pure laparoscopic approach, if necessary. Consequently, standard laparoscopic suturing skills should remain in the residency curriculum.

  17. [Short-term efficacy of da Vinci robotic surgical system on rectal cancer in 101 patients].

    Science.gov (United States)

    Zeng, Dong-Zhu; Shi, Yan; Lei, Xiao; Tang, Bo; Hao, Ying-Xue; Luo, Hua-Xing; Lan, Yuan-Zhi; Yu, Pei-Wu

    2013-05-01

    To investigate the feasibility and safety of da Vinci robotic surgical system in rectal cancer radical operation, and to summarize its short-term efficacy and clinical experience. Data of 101 cases undergoing da Vinci robotic surgical system for rectal cancer radical operation from March 2010 to September 2012 were retrospectively analyzed. Evaluation was focused on operative procedure, complication, recovery and pathology. All the 101 cases underwent operation successfully and safely without conversion to open procedure. Rectal cancer radical operation with da Vinci robotic surgical system included 73 low anterior resections and 28 abdominoperineal resections. The average operative time was (210.3±47.2) min. The average blood lose was (60.5±28.7) ml without transfusion. Lymphadenectomy harvest was 17.3±5.4. Passage of first flatus was (2.7±0.7) d. Distal margin was (5.3±2.3) cm without residual cancer cells. The complication rate was 6.9%, including anastomotic leakage(n=2), perineum incision infection(n=2), pulmonary infection (n=2), urinary retention (n=1). There was no postoperative death. The mean follow-up time was(12.9±8.0) months. No local recurrence was found except 2 cases with distant metastasis. Application of da Vinci robotic surgical system in rectal cancer radical operation is safe and patients recover quickly The short-term efficacy is satisfactory.

  18. Laparoscopy-assisted Robotic Myomectomy Using the DA Vinci System

    Directory of Open Access Journals (Sweden)

    Shih-Peng Mao

    2007-06-01

    Conclusion: Minimally invasive surgery is the trend of the future. Robot-assisted laparoscopic surgery is a new technique for myomectomy. This robotic system provides a three-dimensional operative field and an easy-to-use control panel, which may be of great help when applying the suturing techniques and may shorten the learning curve. More experience with and long-term follow-up of robotic surgery may be warranted to further validate the role the robot-assisted approach in gynecologic surgery.

  19. Feasibility study of intraocular robotic surgery with the da Vinci surgical system.

    Science.gov (United States)

    Bourla, Dan H; Hubschman, Jean Pierre; Culjat, Martin; Tsirbas, Angelo; Gupta, Anurag; Schwartz, Steven D

    2008-01-01

    To assess the feasibility of performing intraocular robotic surgery with the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA). Using modified robotic instruments, 25-gauge pars plana vitrectomy, intraocular foreign body removal, and anterior capsulorhexis were performed with the da Vinci system on porcine eyes. We assessed the surgical system's ability to provide the control, dexterity, maneuverability, and visualization necessary for intraocular surgery. Control of the robotic wristlike instruments allowed for full range of movement. The dexterity of the robotic arms was excellent, with steady instrument motion. Controlling the robotic arms was not as intuitive as moving the wrist. A high stable point of rotation induced motion-related stress at the site of instrument insertion. Visualization of the external operative field during intraocular procedures required camera realignment, and absent retroillumination made anterior segment surgery hard to perform. The da Vinci Surgical System provided adequate dexterity for performing delicate intraocular manipulations. In the current design, the kinematics of the robotic arms was found to be insufficient for standard intraocular surgery. The system's endoscope did not did not yield the same detail acquired by an ophthalmic microscope.

  20. Load evaluation of the da Vinci surgical system for transoral robotic surgery.

    Science.gov (United States)

    Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kitano, Hiroya

    2015-12-01

    Transoral robotic surgery, performed with the da Vinci surgical system (da Vinci), is a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a 3-dimensional magnified view and ability to see and work around curves or angles. However, the current da Vinci surgical system does not provide haptic feedback. This is problematic because the potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury and mandibular fracture. To assess the potential for intraoperative injuries, we measured the load of the endoscope and the instrument of the da Vinci Si surgical system. We pressed the endoscope and instrument of the da Vinci Si against Load cell six times each and measured the dynamic load and the time-to-maximum load. We also struck the da Vinci Si endoscope and instrument against the Load cell six times each and measured the impact load. The maximum dynamic load was 7.27 ± 1.31 kg for the endoscope and 1.90 ± 0.72 for the instrument. The corresponding time-to-maximum loads were 1.72 ± 0.22 and 1.29 ± 0.34 s, but the impact loads were significantly lower than the dynamic load. It remains possible that a major load is exerted on adjacent structures by continuous contact with the endoscope and instrument of da Vinci Si. However, there is a minor delay in reaching the maximum load. Careful monitoring by an on-site assistant may, therefore, help prevent contiguous injury.

  1. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].

    Science.gov (United States)

    Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio

    2015-01-01

    The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  3. Robot-assisted laparoscopic colposacropexy and cervicosacropexy with the da Vinci® surgical system.

    Science.gov (United States)

    Matthews, Catherine A

    2010-10-01

    Colposacropexy is the gold standard operation for repair of apical vaginal support defects. Although it is feasible to perform this operation using conventional laparoscopic techniques, a limited number of surgeons have mastered the advanced minimally invasive skills that are required. Introduction of the da Vinci® robotic system (Intuitive Surgical, Sunnyvale, CA) with instruments that have improved dexterity and precision and a camera system with three-dimensional imaging presents an opportunity for more surgeons treating women with pelvic organ prolapse to perform the procedure laparoscopically. This chapter outlines a technique that is exactly modeled after the open procedure for completion of a robotic-assisted colpo- and cervicosacropexy using the da Vinci® surgical system.

  4. Raven surgical robot training in preparation for da vinci.

    Science.gov (United States)

    Glassman, Deanna; White, Lee; Lewis, Andrew; King, Hawkeye; Clarke, Alicia; Glassman, Thomas; Comstock, Bryan; Hannaford, Blake; Lendvay, Thomas S

    2014-01-01

    The rapid adoption of robotic assisted surgery challenges the pace at which adequate robotic training can occur due to access limitations to the da Vinci robot. Thirty medical students completed a randomized controlled trial evaluating whether the Raven robot could be used as an alternative training tool for the Fundamentals of Laparoscopic Surgery (FLS) block transfer task on the da Vinci robot. Two groups, one trained on the da Vinci and one trained on the Raven, were tested on a criterion FLS block transfer task on the da Vinci. After robotic FLS block transfer proficiency training there was no statistically significant difference between path length (p=0.39) and economy of motion scores (p=0.06) between the two groups, but those trained on the da Vinci did have faster task times (p=0.01). These results provide evidence for the value of using the Raven robot for training prior to using the da Vinci surgical system for similar tasks.

  5. Failure and malfunction of da Vinci Surgical systems during various robotic surgeries: experience from six departments at a single institute.

    Science.gov (United States)

    Kim, Won Tae; Ham, Won Sik; Jeong, Wooju; Song, Hyun Jung; Rha, Koon Ho; Choi, Young Deuk

    2009-12-01

    To analyze the mechanical failures and malfunctions of the da Vinci Surgical (S) System during various robotic surgeries in 6 different departments at our institute and also evaluated the solutions for the failures and malfunctions. From July 2005 to December 2008, a total of 1797 robotic surgeries were performed at our institute. The surgeries were performed using 4 da Vinci surgical systems (1 standard da Vinci system from July 2005 to July 2007 and 3 da Vinci S systems from July 2007 to December 2008). Mechanical failures or malfunctions occurred in 43 cases. We evaluated the robotic surgeries according to the type of surgery and the department. We analyzed the cases involving conversion to open or laparoscopic surgeries and those in which there was a malfunction with the instrument. There were 43 cases (2.4%) of mechanical failure with the da Vinci system from a total of 1797 robotic surgeries. This included 24 (1.3%) cases of mechanical failure or malfunction and 19 cases (1.1%) of instrument malfunction. The mechanical malfunction included 1 on/off failure, 5 console malfunctions, 6 robotic arm malfunctions, 2 optic system malfunctions, and 10 system errors. One open and 2 laparoscopic conversions (3 cases; 0.17%) were performed. Mechanical failure or malfunction occurred during robotic surgery in 43 cases (2.4%), and the open or laparoscopic conversion rate during surgery was very low (0.17%). We found the mechanical failure or malfunction to be rare.

  6. Precision in robotic rectal surgery using the da Vinci Xi system and integrated table motion, a technical note.

    Science.gov (United States)

    Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad

    2017-09-15

    Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.

  7. Surgical Outcomes of Congenital Atrial Septal Defect Using da VinciTM Surgical Robot System.

    Science.gov (United States)

    Kim, Ji Eon; Jung, Sung-Ho; Kim, Gwan Sic; Kim, Joon Bum; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2013-04-01

    Minimally invasive cardiac surgery has emerged as an alternative to conventional open surgery. This report reviews our experience with atrial septal defect using the da VinciTM surgical robot system. This retrospective study included 50 consecutive patients who underwent atrial septal defect repair using the da VinciTM surgical robot system between October 2007 and May 2011. Among these, 13 patients (26%) were approached through a totally endoscopic approach and the others by mini-thoracotomy. Nineteen patients had concomitant procedures including tricuspid annuloplasty (n=10), mitral valvuloplasty (n=9), and maze procedure (n=4). The mean follow-up duration was 16.9±10.4 months. No remnant interatrial shunt was detected by intraoperative or postoperative echocardiography. The atrial septal defects were mainly repaired by Gore-Tex patch closure (80%). There was no operative mortality or serious surgical complications. The aortic cross clamping time and cardiopulmonary bypass time were 74.1±32.2 and 157.6±49.7 minutes, respectively. The postoperative hospital stay was 5.5±3.3 days. The atrial septal defect repair with concomitant procedures like mitral valve repair or tricuspid valve repair using the da VinciTM system is a feasible method. In addition, in selected patients, complete port access can be helpful for better cosmetic results and less musculoskeletal injury.

  8. Is da Vinci Xi Better than da Vinci Si in Robotic Rectal Cancer Surgery? Comparison of the 2 Generations of da Vinci Systems.

    Science.gov (United States)

    Ozben, Volkan; Cengiz, Turgut B; Atasoy, Deniz; Bayraktar, Onur; Aghayeva, Afag; Erguner, Ilknur; Baca, Bilgi; Hamzaoglu, Ismail; Karahasanoglu, Tayfun

    2016-10-01

    We aimed to compare perioperative outcomes for procedures using the latest generation of da Vinci robot versus its previous version in rectal cancer surgery. Fifty-three patients undergoing robotic rectal cancer surgery between January 2010 and March 2015 were included. Patients were classified into 2 groups (Xi, n=28 vs. Si, n=25) and perioperative outcomes were analyzed. The groups had significant differences including operative procedure, hybrid technique and redocking (P>0.05). In univariate analysis, the Xi group had shorter console times (265.7 vs. 317.1 min, P=0.006) and total operative times (321.6 vs. 360.4 min, P=0.04) and higher number of lymph nodes harvested (27.5 vs. 17.0, P=0.008). In multivariate analysis, Xi robot was associated with a shorter console time (odds ratio: 0.09, P=0.004) with no significant differences regarding other outcomes. Both generations of da Vinci robot led to similar short-term outcomes in rectal cancer surgery, but the Xi robot allowed shorter console times.

  9. Robot-assisted cardiac surgery using the da vinci surgical system: a single center experience.

    Science.gov (United States)

    Kim, Eung Re; Lim, Cheong; Kim, Dong Jin; Kim, Jun Sung; Park, Kay Hyun

    2015-04-01

    We report our initial experiences of robot-assisted cardiac surgery using the da Vinci Surgical System. Between February 2010 and March 2014, 50 consecutive patients underwent minimally invasive robot-assisted cardiac surgery. Robot-assisted cardiac surgery was employed in two cases of minimally invasive direct coronary artery bypass, 17 cases of mitral valve repair, 10 cases of cardiac myxoma removal, 20 cases of atrial septal defect repair, and one isolated CryoMaze procedure. Average cardiopulmonary bypass time and average aorta cross-clamping time were 194.8±48.6 minutes and 126.1±22.6 minutes in mitral valve repair operations and 132.0±32.0 minutes and 76.1±23.1 minutes in myxoma removal operations, respectively. During atrial septal defect closure operations, the average cardiopulmonary bypass time was 128.3±43.1 minutes. The median length of stay was between five and seven days. The only complication was that one patient needed reoperation to address bleeding. There were no hospital mortalities. Robot-assisted cardiac surgery is safe and effective for mitral valve repair, atrial septal defect closure, and cardiac myxoma removal surgery. Reducing operative time depends heavily on the experience of the entire robotic surgical team.

  10. Robot-Assisted Cardiac Surgery Using the Da Vinci Surgical System: A Single Center Experience

    Directory of Open Access Journals (Sweden)

    Eung Re Kim

    2015-04-01

    Full Text Available Background: We report our initial experiences of robot-assisted cardiac surgery using the da Vinci Surgical System. Methods: Between February 2010 and March 2014, 50 consecutive patients underwent minimally invasive robot-assisted cardiac surgery. Results: Robot-assisted cardiac surgery was employed in two cases of minimally invasive direct coronary artery bypass, 17 cases of mitral valve repair, 10 cases of cardiac myxoma removal, 20 cases of atrial septal defect repair, and one isolated CryoMaze procedure. Average cardiopulmonary bypass time and average aorta cross-clamping time were 194.8±48.6 minutes and 126.1±22.6 minutes in mitral valve repair operations and 132.0±32.0 minutes and 76.1±23.1 minutes in myxoma removal operations, respectively. During atrial septal defect closure operations, the average cardiopulmonary bypass time was 128.3±43.1 minutes. The median length of stay was between five and seven days. The only complication was that one patient needed reoperation to address bleeding. There were no hospital mortalities. Conclusion: Robot-assisted cardiac surgery is safe and effective for mitral valve repair, atrial septal defect closure, and cardiac myxoma removal surgery. Reducing operative time depends heavily on the experience of the entire robotic surgical team.

  11. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  12. Early experience with the da Vinci® surgical system robot in gynecological surgery at King Abdulaziz University Hospital

    OpenAIRE

    Sait KH

    2011-01-01

    Khalid H SaitObstetrics and Gynecology Department, Faculty of Medicine, Gynecology Oncology Unit, King Abdulaziz University Hospital, Jeddah, Saudi ArabiaBackground: The purpose of this study was to review our experience and the challenges of using the da Vinci® surgical system robot during gynecological surgery at King Abdulaziz University Hospital.Methods: A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution betwe...

  13. A da Vinci robot system can make sense for a mature laparoscopic prostatectomy program.

    Science.gov (United States)

    Steinberg, Peter L; Merguerian, Paul A; Bihrle, William; Heaney, John A; Seigne, John D

    2008-01-01

    We sought to provide informed recommendations on transitioning from laparoscopic radical prostatectomy (LRP) to robotic-assisted radical prostatectomy (RAP) through a study of the da Vinci robot. We performed a cost-benefit analysis to determine the impact that purchasing a dollars 1.5 million da Vinci robot with a dollars 112,000 service contract per year and dollars 200 per case of disposables would have on profits of a mature laparoscopic prostatectomy program. Seventy-eight cases per year are needed to cover the costs of a purchased robot, while only 20 cases per year are needed if a robot is donated. Once robot costs are covered, increases in caseload lead to increased income. Profit is not feasible at centers performing fewer than 25 cases annually. A donated robot lessens costs and allows reasonable revenue without drastic increases in caseload. Our data suggest a high-volume LRP program can convert to RAP and maintain profits; however, the cost of the robot precludes equal income as that with LRP. Purchasing a robot is not fiscally viable in a low-volume program. Given comparable outcomes between LRP and RAP, hospitals need to decide whether market forces or the intangible benefits of robotics outweigh the expenses of obtaining and operating a robot.

  14. Error reporting from the da Vinci surgical system in robotic surgery: A Canadian multispecialty experience at a single academic centre

    Science.gov (United States)

    Rajih, Emad; Tholomier, Côme; Cormier, Beatrice; Samouëlian, Vanessa; Warkus, Thomas; Liberman, Moishe; Widmer, Hugues; Lattouf, Jean-Baptiste; Alenizi, Abdullah M.; Meskawi, Malek; Valdivieso, Roger; Hueber, Pierre-Alain; Karakewicz, Pierre I.; El-Hakim, Assaad; Zorn, Kevin C.

    2017-01-01

    Introduction The goal of the study is to evaluate and report on the third-generation da Vinci surgical (Si) system malfunctions. Methods A total of 1228 robotic surgeries were performed between January 2012 and December 2015 at our academic centre. All cases were performed by using a single, dual console, four-arm, da Vinci Si robot system. The three specialties included urology, gynecology, and thoracic surgery. Studied outcomes included the robotic surgical error types, immediate consequences, and operative side effects. Error rate trend with time was also examined. Results Overall robotic malfunctions were documented on the da Vinci Si systems event log in 4.97% (61/1228) of the cases. The most common error was related to pressure sensors in the robotic arms indicating out of limit output. This recoverable fault was noted in 2.04% (25/1228) of cases. Other errors included unrecoverable electronic communication-related in 1.06% (13/1228) of cases, failed encoder error in 0.57% (7/1228), illuminator-related in 0.33% (4/1228), faulty switch in 0.24% (3/1228), battery-related failures in 0.24% (3/1228), and software/hardware error in 0.08% (1/1228) of cases. Surgical delay was reported only in one patient. No conversion to either open or laparoscopic occurred secondary to robotic malfunctions. In 2015, the incidence of robotic error rose to 1.71% (21/1228) from 0.81% (10/1228) in 2014. Conclusions Robotic malfunction is not infrequent in the current era of robotic surgery in various surgical subspecialties, but rarely consequential. Their seldom occurrence does not seem to affect patient safety or surgical outcome. PMID:28503234

  15. [Anesthetic management for robot assisted off-pump construction of composite graft using the da Vinci surgical system].

    Science.gov (United States)

    Takanashi, Yoko; Hamano, Hiroko; Miyata, Kazuto; Matsumoto, Shouhei; Isshiki, Atushi

    2010-02-01

    Robot-assisted minimally invasive surgery has become common in recent years. We used the da Vinci surgical system and managed anesthesia in 6 cases of bilateral internal mammary artery dissection and construction of a composite graft using the radial artery. To ensure vision inside the thoracic cavity, endoscopic robotic surgery employs the inflation of the thoracic cavity with carbon dioxide, producing a pneumothorax and turning the thoracic cavity into a positive pressure chamber. Thus, marked acidosis and circulatory changes manifest during anesthetic management. Although robotic surgery is considered "minimally invasive, such surgery involves a number of problems in terms of anesthetic management, and these problems must be examined.

  16. The experience of totally endoscopic coronary bypass grafting with the robotic system «Da Vinci» in Russia

    Science.gov (United States)

    Efendiev, V. U.; Alsov, S. A.; Ruzmatov, T. M.; Mikheenko, I. L.; Chernyavsky, A. M.; Malakhov, E. S.

    2015-11-01

    A new technology - a thoracoscopic coronary bypass grafting with the use of Da Vinci robotic system in Russia is represented by the experience of NRICP. The technology was introduced in Russia in 2011. Overall, one hundred endoscopic coronary artery bypass procedures were performed. We have compared and analyzed results of coronary artery stenting vs minimally invasive coronary artery bypass grafting. According to the results, totally endoscopic coronary artery bypass grafting has several advantages over alternative treatment strategies.

  17. A Comparative Study of Da Vinci Robot System with Video-assisted Thoracoscopy in the Surgical Treatment of Mediastinal Lesions

    Directory of Open Access Journals (Sweden)

    Renquan DING

    2014-07-01

    Full Text Available Background and objective In recent years, Da Vinci robot system applied in the treatment of intrathoracic surgery mediastinal diseases become more mature. The aim of this study is to summarize the clinical data about mediastinal lesions of General Hospital of Shenyang Military Region in the past 4 years, then to analyze the treatment effect and promising applications of da Vinci robot system in the surgical treatment of mediastinal lesions. Methods 203 cases of mediastinal lesions were collected from General Hospital of Shenyang Military Region between 2010 and 2013. These patients were divided into two groups da Vinci and video-assisted thoracoscopic surgery (VATS according to the selection of the treatments. The time in surgery, intraoperative blood loss, postoperative drainage amount within three days after surgery, the period of bearing drainage tubes, hospital stays and hospitalization expense were then compared. Results All patients were successfully operated, the postoperative recovery is good and there is no perioperative death. The different of the time in surgery between two groups is Robots group 82 (20-320 min and thoracoscopic group 89 (35-360 min (P>0.05. The intraoperative blood loss between two groups is robot group 10 (1-100 mL and thoracoscopic group 50 (3-1,500 mL. The postoperative drainage amount within three days after surgery between two groups is robot group 215 (0-2,220 mL and thoracoscopic group 350 (50-1,810 mL. The period of bearing drainage tubes after surgery between two groups is robot group 3 (0-10 d and thoracoscopic group: 5 (1-18 d. The difference of hospital stays between two groups is robot group 7 (2-15 d and thoracoscopic group 9 (2-50 d. The hospitalization expense between two groups is robot group (18,983.6±4,461.2 RMB and thoracoscopic group (9,351.9±2,076.3 RMB (All P<0.001. Conclusion The da Vinci robot system is safe and efficient in the treatment of mediastinal lesions compared with video

  18. Roux-en-Y gastric bypass procedure performed with the da Vinci robot system: is it worth it?

    Science.gov (United States)

    Hubens, G; Balliu, L; Ruppert, M; Gypen, B; Van Tu, T; Vaneerdeweg, W

    2008-07-01

    The Roux-en-Y gastric bypass procedure (RYGBP) is in many countries the gold standard for obtaining long-lasting weight reduction and improvement of obesity-related comorbidities. However, performing this operation by standard laparoscopic techniques requires important surgical skills because of the anastomoses involved. The da Vinci surgical robot system with its enhanced degrees of freedom in motion and three-dimensional vision is designed to overcome the difficulties encountered in traditional laparoscopic surgery with suturing and delicate tissue handling. For this study, 45 patients (9 men) with a mean body mass index (BMI) of 44.2 (range, 35.1-55.4) underwent RYGBP with the aid of the da Vinci robot system. They were compared with 45 consecutive patients with a mean BMI of 43.9 (range, 35.1-56.2) who underwent a laparoscopic RYGBP by the same surgeon during the same period. Overall, the total operating time was shorter for the laparoscopic cases (127 vs 212 min; p robotic cases were performed in the same time span as the laparoscopic cases (136 vs 127 min). The total robotic setup time remained constant at about 30 min. There were no differences in postoperative complications between the two groups in terms of anastomotic leakage or stenosis. In the robotic group, more conversions to open surgery were noted. Early in the study, four patients (9%) had to undergo conversion to standard laparoscopic techniques due to inadequate setup of the robotic arms. Five patients (11%), however, had to undergo conversion to open surgery because of intestinal laceration during manipulation of the intestines with the robotic instruments. The costs were higher for robotic surgery than for standard laparoscopic RYGBP, mainly because of the extra equipment used, such as ultrasonic devices. The RYGBP procedure can be performed safely with the da Vinci robot after a learning curve of about 35 cases. At this writing, however, it is not clear whether the da Vinci system offers a

  19. The patterns and costs of the Da Vinci robotic surgery system in a large academic institution.

    Science.gov (United States)

    Prewitt, Rhonda; Bochkarev, Victor; McBride, Corrigan L; Kinney, Sonja; Oleynikov, Dmitry

    2008-05-01

    The da VinciRobotic System (dVRS) is the latest advancement in laparoscopic surgery allowing the surgeon more accurate and precise control of instrumentation with an added three-dimensional image. Technology comes with a price, $1.3 million. Due to charitable contributions from the Durham family, the University of Nebraska was the eighth Medical Center in the USA to obtain a dVRS in June 2000. UNMC analyzed 224 dVRS surgical procedures from July 2000 to February 2007. These procedures were designated by surgical service and further scrutinized for length of stay, and cost. We also reviewed trends in operative usage, academic and public relations components with this innovative technology. The dVRS was used for multiple other purposes that were beneficial including research with engineering graduate students, training for surgical residents, display and demos as a means for public relations. Primarily general and urologic surgeons utilized the dVRS. General surgeons were the early adopters of the new technology, the greatest growth and utilization of the equipment has been in urologic procedures, which has outpaced general surgery in the past year. Cost analysis shows a subtle benefit with a reduced length of stay by an average of 4 days. Average direct costs were found to be greater with the dVRS by $1,470. Overall, the effects of the dVRS are vast reaching and are fundamental to the growth of an academic institution and continued progress in minimally invasive surgery.

  20. Early experience with the da Vinci® surgical system robot in gynecological surgery at King Abdulaziz University Hospital

    Directory of Open Access Journals (Sweden)

    Sait KH

    2011-07-01

    Full Text Available Khalid H SaitObstetrics and Gynecology Department, Faculty of Medicine, Gynecology Oncology Unit, King Abdulaziz University Hospital, Jeddah, Saudi ArabiaBackground: The purpose of this study was to review our experience and the challenges of using the da Vinci® surgical system robot during gynecological surgery at King Abdulaziz University Hospital.Methods: A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution between January 2008 and December 2010. The patients were reviewed for indications, complications, length of hospital stay, and conversion rate, as well as console and docking times.Results: Over the three-year period, we operated on 35 patients with benign or malignant conditions using the robot for a total of 62 surgical procedures. The docking times averaged seven minutes. The mean console times for simple hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy were 125, 47, and 62 minutes, respectively. In four patients, laparoscopic procedures were converted to open procedures, giving a conversion rate of 6.5%. All of the conversions were among the first 15 procedures performed. The average hospital stay was 3 days. Complications occurred in five patients (14%, and none were directly related to the robotic system.Conclusion: Our early experience with the robot show that with proper training of the robotic team, technical difficulty with the robotic system is limited. There is definitely a learning curve that requires performance of gynecological surgical procedures using the robot.Keywords: da Vinci robot, gynecological surgery, laparoscopy

  1. Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system.

    Science.gov (United States)

    Gomez, Pedro Pablo; Willis, Ross E; Van Sickle, Kent R

    2015-08-01

    This study aimed to develop a training curriculum to evaluate the basic robotic skills necessary to reach an 80 % preset proficiency score and correlate the level of surgical experience with the overall performance obtained using the da Vinci Surgical Skills simulator. Twenty-two participants (4 faculty, 4 senior, and 14 junior residents) were enrolled in a 4-week robotic training curriculum developed at our institution. A set of seven robotic skills were selected based on the manufacturer's exercise primary endpoint. During their pretesting session, participants completed one trial of each of the seven simulated exercises. In two individual sessions over a 2 week period, trainees practiced a different set of exercises that evaluated the same basic robotic skills assessed during pretesting with the objective of reaching an overall score of 80 % on two consecutive attempts. If proficiency was not achieved, then a maximum of six trials per exercise was allowed before advancing to the next skill. During their fourth week of training, participants completed a post-testing session with the same set of exercises used during pretesting. Participants' overall performance and various metrics were recorded in an online database for further analysis. A significant skills gain from pre- to post-test was observed for each of the seven basic robotic skills regardless of participant's level of training (p virtual reality robotic training curriculum significantly improves the seven basic robotic surgical skills necessary to operate the da Vinci Si surgical console. Six training trials appear to be insufficient to reach proficiency levels on more advanced skills.

  2. Early experience with the da Vinci® surgical system robot in gynecological surgery at King Abdulaziz University Hospital

    Science.gov (United States)

    Sait, Khalid H

    2011-01-01

    Background: The purpose of this study was to review our experience and the challenges of using the da Vinci® surgical system robot during gynecological surgery at King Abdulaziz University Hospital. Methods: A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution between January 2008 and December 2010. The patients were reviewed for indications, complications, length of hospital stay, and conversion rate, as well as console and docking times. Results: Over the three-year period, we operated on 35 patients with benign or malignant conditions using the robot for a total of 62 surgical procedures. The docking times averaged seven minutes. The mean console times for simple hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy were 125, 47, and 62 minutes, respectively. In four patients, laparoscopic procedures were converted to open procedures, giving a conversion rate of 6.5%. All of the conversions were among the first 15 procedures performed. The average hospital stay was 3 days. Complications occurred in five patients (14%), and none were directly related to the robotic system. Conclusion: Our early experience with the robot show that with proper training of the robotic team, technical difficulty with the robotic system is limited. There is definitely a learning curve that requires performance of gynecological surgical procedures using the robot. PMID:21845067

  3. Early experience with the da Vinci surgical system robot in gynecological surgery at King Abdulaziz University Hospital.

    Science.gov (United States)

    Sait, Khalid H

    2011-01-01

    The purpose of this study was to review our experience and the challenges of using the da Vinci(®) surgical system robot during gynecological surgery at King Abdulaziz University Hospital. A retrospective study was conducted to review all cases of robot-assisted gynecologic surgery performed at our institution between January 2008 and December 2010. The patients were reviewed for indications, complications, length of hospital stay, and conversion rate, as well as console and docking times. Over the three-year period, we operated on 35 patients with benign or malignant conditions using the robot for a total of 62 surgical procedures. The docking times averaged seven minutes. The mean console times for simple hysterectomy, bilateral salpingo-oophorectomy, and bilateral pelvic lymphadenectomy were 125, 47, and 62 minutes, respectively. In four patients, laparoscopic procedures were converted to open procedures, giving a conversion rate of 6.5%. All of the conversions were among the first 15 procedures performed. The average hospital stay was 3 days. Complications occurred in five patients (14%), and none were directly related to the robotic system. Our early experience with the robot show that with proper training of the robotic team, technical difficulty with the robotic system is limited. There is definitely a learning curve that requires performance of gynecological surgical procedures using the robot.

  4. [A comparative study of Da Vinci robot system with video-assisted thoracoscopy in the surgical treatment of mediastinal lesions].

    Science.gov (United States)

    Ding, Renquan; Tong, Xiangdong; Xu, Shiguang; Zhang, Dakun; Gao, Xin; Teng, Hong; Qu, Jiaqi; Wang, Shumin

    2014-07-20

    In recent years, Da Vinci robot system applied in the treatment of intrathoracic surgery mediastinal diseases become more mature. The aim of this study is to summarize the clinical data about mediastinal lesions of General Hospital of Shenyang Military Region in the past 4 years, then to analyze the treatment effect and promising applications of da Vinci robot system in the surgical treatment of mediastinal lesions. 203 cases of mediastinal lesions were collected from General Hospital of Shenyang Military Region between 2010 and 2013. These patients were divided into two groups da Vinci and video-assisted thoracoscopic surgery (VATS) according to the selection of the treatments. The time in surgery, intraoperative blood loss, postoperative drainage amount within three days after surgery, the period of bearing drainage tubes, hospital stays and hospitalization expense were then compared. All patients were successfully operated, the postoperative recovery is good and there is no perioperative death. The different of the time in surgery between two groups is Robots group 82 (20-320) min and thoracoscopic group 89 (35-360) min (P>0.05). The intraoperative blood loss between two groups is robot group 10 (1-100) mL and thoracoscopic group 50 (3-1,500) mL. The postoperative drainage amount within three days after surgery between two groups is robot group 215 (0-2,220) mL and thoracoscopic group 350 (50-1,810) mL. The period of bearing drainage tubes after surgery between two groups is robot group 3 (0-10) d and thoracoscopic group: 5 (1-18) d. The difference of hospital stays between two groups is robot group 7 (2-15) d and thoracoscopic group 9 (2-50) d. The hospitalization expense between two groups is robot group (18,983.6±4,461.2) RMB and thoracoscopic group (9,351.9±2,076.3) RMB (All Pvideo-assisted thoracoscopic approach, even though its expense is higher.

  5. Adapter for contact force sensing of the da Vinci robot.

    Science.gov (United States)

    Shimachi, Shigeyuki; Hirunyanitiwatna, Surakij; Fujiwara, Yasunori; Hashimoto, Akira; Hakozaki, Yoshinori

    2008-06-01

    At present, the da Vinci surgical robot system does not provide haptic feedback. One of the authors has proposed a contact-force sensing method called the 'overcoat method', in which the instrument/driver is supported by force sensors. In the da Vinci robot, the instrument jaws are powered by a wire-pulley mechanism; thus, in order to apply the overcoat method to the da Vinci system, we must transfer the power through a frame that is supported by force sensors. The authors have attempted to add a force-sensor function to the Sterile Adapter of the da Vinci system. In developing a sensorized adapter, a new configuration of force sensors and a new axial-force-free (AFF) joint have been devised in order to obtain an independent 'axial force effect' from the drive torque fed from the da Vinci robot arm. The force-sensing errors of the present system have been measured to have a maximum value of approximately 0.2 N while driving the jaws, and a maximum value of approximately 0.2 N when the robot arm is inclined with some excitation. Some impact reference forces applied on to the ends of the jaws agree with the outputs of the sensorized adapter to within robot arm. In the case of the new adapter, the centre-line of the instrument shaft is shifted externally through approximately 3.5 mm from its original position. However, a new cannula for the da Vinci robot might solve this problem. The new configuration of force sensors and the new AFF joint work well in their basic functions. The total force-sensing error is estimated as approximately 0.5 N. One of the main reasons for the error appears to be the deformation of the adapter frame. (c) 2008 John Wiley & Sons, Ltd.

  6. First results after introduction of the four-armed da Vinci Surgical System in fully robotic laparoscopic cholecystectomy.

    Science.gov (United States)

    Heemskerk, Jeroen; van Dam, Ronald; van Gemert, Wim G; Beets, Gerard L; Greve, Jan Willem M; Jacobs, Michael J H M; Bouvy, Nicole D

    2005-01-01

    Laparoscopic cholecystectomy offers less post-operative pain, less complications, and faster recovery compared with open cholecystectomy. However, laparoscopic surgery can be demanding because of several technical drawbacks. Robotic surgery allows dexterity skills to be performed faster and shortens the learning curve, possibly leading to faster and safer laparoscopic surgery. In this paper, we report the results of our first 12 cases of fully robotic laparoscopic cholecystectomy using the da Vinci Surgical System, comparing them with 12 cases of conventional laparoscopic cholecystectomy. Using a fourth arm in robotic laparoscopy enables the surgeon to perform surgery without the use of a tableside assistant, leading to non-tiring, tremble-free assistance and reducing salary costs. Primary end points are operating time and costs. Secondary end points are operative complications and duration of admission. Fully robotic cholecystectomy was completed in all 12 cases without increased complication rate and without conversions. However, robotic assistance results in an increased overall operating room stay of 31 min and increased costs of EUR 1,180.62. Fully robotic laparoscopic cholecystectomy is safe and feasible but seems more expensive and time consuming at this moment. Copyright (c) 2005 S. Karger AG, Basel.

  7. [The da Vinci robot in the field of vascular surgery].

    Science.gov (United States)

    Štádler, P; Dvořáček, L; Vitásek, P; Matouš, P

    2017-01-01

    The aim of this study was to evaluate the clinical experience with 379 robot-assisted vascular procedures performed from November 2005 to December 2016 at our institution. A total of 366 cases (96.6%) were successfully completed using the robotic surgical systems da Vinci Standard and da Vinci Xi. Conversion was necessary in 13 patients (3.4%). The 30-day mortality was 0.26% and 2 (0.5%) late prosthetic infections occurred. From a practical point of view, the greatest advantage of robot-assisted procedures has been the speed and relative simplicity of vascular anastomosis construction. Our experience with robot-assisted surgery has demonstrated the safety and feasibility of this technique in different areas of vascular surgery.Key words: robotic vascular surgery aortic and non-aortic surgery.

  8. Mediastinal parathyroidectomy with the da Vinci robot.

    Science.gov (United States)

    Van Dessel, Els; Hendriks, Jeroen M H; Lauwers, Patrick; Ysebaert, Dirk; Ruyssers, Natacha; Van Schil, Paul E Y

    2011-07-01

    Mediastinal parathyroid glands are often located in a position which is inaccessible through a cervical approach. Because of the significant morbidity of open surgery, the need for minimal invasive approaches is high. More recently, robotic systems have been introduced to refine the dissection and optimize the view in the mediastinal region. We present two cases. The first case is a 34-year-old woman who was diagnosed with primary hyperparathyroidism. Because a bilateral neck dissection disclosed no parathyroid adenoma, we performed a parathyroid sestamibi scan and computed tomographic scan of neck and mediastinum to look for aberrant parathyroid glands. Both showed a parathyroid adenoma in the mediastinum on the left side. The second case is a 66-year-old man. A sestamibi scan showed a parathyroid adenoma of 3 cm in the superior mediastinum which was confirmed by and computed tomographic scan. In both cases, we performed a parathyroidectomy with the da Vinci robotic system through a left-sided approach. Three thoracoports were inserted around the mammary gland for the robot and a fourth auxiliary port was positioned in between. Single-lung ventilation was installed, and the mediastinum was entered by opening the parietal pleura along the left phrenic nerve. The upper margin for dissection was the left brachiocephalic vein that was followed until the right pleura. All the tissue in front of the pericardium was dissected en bloc. The sinking test of the nodule and a preoperative frozen section analysis confirmed the diagnosis of parathyroid adenoma, which was also proven by rapid parathyroid hormone analysis. The resection of a parathyroid adenoma from the aortopulmonary window represents an ideal case for robotic surgery.

  9. Da Vinci Xi Robot-Assisted Penetrating Keratoplasty.

    Science.gov (United States)

    Chammas, Jimmy; Sauer, Arnaud; Pizzuto, Joëlle; Pouthier, Fabienne; Gaucher, David; Marescaux, Jacques; Mutter, Didier; Bourcier, Tristan

    2017-06-01

    This study aims (1) to investigate the feasibility of robot-assisted penetrating keratoplasty (PK) using the new Da Vinci Xi Surgical System and (2) to report what we believe to be the first use of this system in experimental eye surgery. Robot-assisted PK procedures were performed on human corneal transplants using the Da Vinci Xi Surgical System. After an 8-mm corneal trephination, four interrupted sutures and one 10.0 monofilament running suture were made. For each procedure, duration and successful completion of the surgery as well as any unexpected events were assessed. The depth of the corneal sutures was checked postoperatively using spectral-domain optical coherence tomography (SD-OCT). Robot-assisted PK was successfully performed on 12 corneas. The Da Vinci Xi Surgical System provided the necessary dexterity to perform the different steps of surgery. The mean duration of the procedures was 43.4 ± 8.9 minutes (range: 28.5-61.1 minutes). There were no unexpected intraoperative events. SD-OCT confirmed that the sutures were placed at the appropriate depth. We confirm the feasibility of robot-assisted PK with the new Da Vinci Surgical System and report the first use of the Xi model in experimental eye surgery. Operative time of robot-assisted PK surgery is now close to that of conventional manual surgery due to both improvement of the optical system and the presence of microsurgical instruments. Experimentations will allow the advantages of robot-assisted microsurgery to be identified while underlining the improvements and innovations necessary for clinical use.

  10. A new application of the four-arm standard da Vinci® surgical system: totally robotic-assisted left-sided colon or rectal resection.

    Science.gov (United States)

    Koh, Dean Chi-Siong; Tsang, Charles Bih-Shou; Kim, Seon-Hahn

    2011-06-01

    The key to successful rectal cancer resection is to perform complete total mesorectal excision (TME). Laparoscopic TME can be challenging, especially in the narrow confines of the pelvis. Robotic-assisted surgery can overcome these limitations through superior three-dimensional (3-D) visualization and the increased range of movements provided by the endowrist function. To date, all totally robotic resections of the rectum have been described using da Vinci® S or Si systems. Due to the limitations of the standard system, only hybrid procedures have been described so far. To evaluate the feasibility and short-term outcomes of performing totally robotic-assisted laparoscopic colorectal resections using the standard da Vinci® system with a fourth arm extension. The standard system was docked from the patient's left hip. Four 8-mm robotic trocars were inserted. Upon completion of phase 1 (pedicle ligation, colonic mobilization, splenic flexure takedown), the two left-sided arms are repositioned to allow phase 2 (pelvic dissection), enabling the entire procedure except for the distal transection and anastomosis to be performed robotically. Twenty-one robotic procedures were performed from August 2008 to September 2009. The mean age of the patients was 61 years (13 males). The procedures performed included seven anterior resections, seven low anterior resections, five ultralow anterior resections, one abdominoperineal resection, and one resection rectopexy. The majority of the cases were performed in patients with colon or rectal cancer. Operative time ranged from 232 to 444 (mean 316) min. Postoperative morbidity occurred in three patients (14.3%) with no mortalities or conversions. Average hospital stay was 6.4 days. Mean lymph node yield for the cases with cancer was 17.8. The standard da Vinci® system with four arms can be used to perform totally robotic-assisted colorectal procedures for the left colon and rectum with short-term outcomes similar to those of

  11. Surgical outcomes of robot-assisted rectal cancer surgery using the da Vinci Surgical System: a multi-center pilot Phase II study.

    Science.gov (United States)

    Tsukamoto, Shunsuke; Nishizawa, Yuji; Ochiai, Hiroki; Tsukada, Yuichiro; Sasaki, Takeshi; Shida, Dai; Ito, Masaaki; Kanemitsu, Yukihide

    2017-12-01

    We conducted a multi-center pilot Phase II study to examine the safety of robotic rectal cancer surgery performed using the da Vinci Surgical System during the introduction period of robotic rectal surgery at two institutes based on surgical outcomes. This study was conducted with a prospective, multi-center, single-arm, open-label design to assess the safety and feasibility of robotic surgery for rectal cancer (da Vinci Surgical System). The primary endpoint was the rate of adverse events during and after robotic surgery. The secondary endpoint was the completion rate of robotic surgery. Between April 2014 and July 2016, 50 patients were enrolled in this study. Of these, 10 (20%) had rectosigmoid cancer, 17 (34%) had upper rectal cancer, and 23 (46%) had lower rectal cancer; six underwent high anterior resection, 32 underwent low anterior resection, 11 underwent intersphincteric resection, and one underwent abdominoperineal resection. Pathological stages were Stage 0 in 1 patient, Stage I in 28 patients, Stage II in 7 patients and Stage III in 14 patients. Pathologically complete resection was achieved in all patients. There was no intraoperative organ damage or postoperative mortality. Eight (16%) patients developed complications of all grades, of which 2 (4%) were Grade 3 or higher, including anastomotic leakage (2%) and conversion to open surgery (2%). The present study demonstrates the feasibility and safety of robotic rectal cancer surgery, as reflected by low morbidity and low conversion rates, during the introduction period.

  12. [History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].

    Science.gov (United States)

    Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H

    2007-03-01

    Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.

  13. Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system.

    Science.gov (United States)

    Yang, Moon Sool; Yoon, Do Heum; Kim, Keung Nyun; Kim, Hoon; Yang, Joong Won; Yi, Seong; Lee, John Y K; Jung, Woo Ju; Rha, Koon Ho; Ha, Yoon

    2011-01-15

    the use of the da Vinci Surgical System to perform an anterior lumbar interbody fusion in a swine model to identify the technical properties, processes, merits, demerits, and limitations of a video-assisted robotic surgical system. this study was designed to demonstrate the feasibility of using a robotic surgical system to perform spinal surgery. video-assisted laparoscopic anterior fusion was first reported in 1995 and afterward was spotlighted for several years. However, this technique has not become popular because of technical difficulties and complications associated with video-assisted procedures on the spine. As such, there is a demand for investigations to improve this technology. The da Vinci Surgical System provides 3-dimensional visualization as well as uniquely dexterous instruments that are remarkably similar to human hands. Video-assisted surgery with the da Vinci Surgical System robot has already provided great value to the fields of urology, cardiology, gynecology, and general surgery over the last decade. Preclinical studies for application of this system in spinal surgery have recently been conducted. a pig underwent anterior lumbar interbody fusion using da Vinci Surgical System assistance, with Tyche expandable cages used for preparation of endplates and cage placement. The setup time, operation time, amount of bleeding, and the number of complications associated with robotic manipulation were recorded. Before euthanasia, the animal underwent radiologic examination to confirm proper placement of cages. the total duration of the procedure took 6 hours, with some complications related to frozen armsand robotic arm collision. Even so, there was neither any significant nerve or vessel injury nor peritoneal organ damage. Furthermore, radiologic assessment confirmed proper position of the cage in the center of the disc space. use of the da Vinci Surgical System to perform an anterior spinal procedure was shown to be safe and effective in a swine

  14. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report.

    Science.gov (United States)

    Beutler, William J; Peppelman, Walter C; DiMarco, Luciano A

    2013-02-15

    Technique development to use the da Vince Robotic Surgical System for anterior lumbar interbody fusion at L5-S1 is detailed. A case report is also presented. To evaluate and develop the da Vinci robotic assisted laparoscopic anterior lumbar stand-alone interbody fusion procedure. Anterior lumbar interbody fusion is a common procedure associated with potential morbidity related to the surgical approach. The da Vinci robot provides intra-abdominal dissection and visualization advantages compared with the traditional open and laparoscopic approach. The surgical techniques for approach to the anterior lumbar spine using the da Vinci robot were developed and modified progressively beginning with operative models followed by placement of an interbody fusion cage in the living porcine model. Development continued to progress with placement of fusion cage in a human cadaver, completed first in the laboratory setting and then in the operating room. Finally, the first patient with fusion completed using the da Vinci robot-assisted approach is presented. The anterior transperitoneal approach to the lumbar spine is accomplished with enhanced visualization and dissection capability, with maintenance of pneumoperitoneum using the da Vinci robot. Blood loss is minimal. The visualization inside the disc space and surrounding structures was considered better than current open and laparoscopic techniques. The da Vinci robot Surgical System technique continues to develop and is now described for the transperitoneal approach to the anterior lumbar spine. 4.

  15. [Application of da Vinci robotic surgical system in radical resection of gastric and colorectal cancer: a report of 647 cases].

    Science.gov (United States)

    Tang, B; Zeng, D Z; Zhao, Y L; Qian, F; Shi, Y; Hao, Y X; Zhang, C; Luo, H X; Yu, P W

    2016-03-01

    To investigate the feasibility and safety of robotic-assisted radical resection of gastric and colorectal cancer. The clinical data of 305 patients who received radical resection of gastric cancer and 342 patients who received radical resection of colorectal cancer both accomplished by the da Vinci robotic surgical system at the Southwest Hospital, Third Military Medical University from March 2010 to December 2014 were retrospectively analyzed. In gastric cancer group, radical total gastrectomy were performed in 69 cases, proximal gastrectomy in 11 cases, distal gastrectomy in 213 cases and 12 cases of gastric stump cancer.In colorectal cancer group, radical resection of the right colon were performed in 6 cases, left colon in 4 cases, transverse colon in 1 case, sigmoid colon low anterior resection procedure in 24 cases, rectal low anterior resection procedure in 222 cases, abdominoperineal excision procedure in 79 cases and Hartmann procedure in 6 cases. All cases had robotic-assisted radical resection successfully. In gastric cancer group, the mean operation time was (226±62) minutes, the mean blood loss was (125±77) ml, the mean number of harvested lymph nodes was 34±10; the mean time for patients taking normal activity was (3.2±1.5) days, the mean time for gastrointestinal function recovery was (3.1±1.3) days, the mean time for taking liquid food was (3.5±1.9) days. The mean hospitalization was (7.9±3.7) days postoperatively. In colorectal group, the mean operation time was (181±61) minutes, the mean blood loss was (110±93) ml, the mean number of harvested lymph nodes was 19±6; the mean time for patients taking normal activity was (2.9±1.5) days, passage of first flatus was (2.7±1.7) days. The mean hospitalization was (7.1±1.6) days postoperatively. Surgical complications occurred in 28 patients (9.2%) of gastric cancer group and 30 patients (8.8%) of colorectal cancer group, all the cases were recovery before leaving hospital with non

  16. [Quality control in the implementation of new surgical procedures: Da Vinci robot-assisted systems].

    Science.gov (United States)

    Niegisch, G; Rabenalt, R; Albers, P

    2011-10-01

    Robot assistance in the surgical treatment of urological malignancies is gaining increasing importance. As is the case in already established surgical procedures, the quality of robot-assisted surgery needs to be controlled and evaluated by appropriate measures. Baseline-parameters of treated patients should be documented precisely. General and operation type-specific parameters should be evaluated in short- as well as in mid-term follow-up. Appropriate and validated instruments should be used. Only by using these measures will it be possible to compare robot-assisted procedures of different institutions and historical data of conventional surgery with regard to oncological and functional efficacy.

  17. Pancreatic enucleation using the da Vinci robotic surgical system: a report of 26 cases.

    Science.gov (United States)

    Shi, Yusheng; Peng, Chenghong; Shen, Baiyong; Deng, Xiaxing; Jin, Jiabin; Wu, Zhichong; Zhan, Qian; Li, Hongwei

    2016-12-01

    As a tissue-sparing procedure, pancreatic enucleation has become an alternative for benign or borderline pancreatic tumours; it has been proved to be safe and feasible. To date, a large sample size of robotic pancreatic enucleation has not been reported. This study aimed to discuss the clinical evaluation and postoperative complications after robotic pancreatic enucleation and compare it with open surgery. Patients who underwent robotic or open pancreatic enucleation during December 2010-December 2014 at Shanghai Ruijin Hospital, affiliated with the Shanghai Jiaotong University School of Medicine in China, were included. Clinical data were collected and analysed. Patients were divided into an open group and a robotic group: 26 patients underwent robotic pancreatic enucleation, of whom 13 patients were female. The mean age was 51.7 years, the operation time was 125.7 ± 58.8 min, blood loss was 49.4 ± 33.4 ml and mean tumour size was 18.8 ± 7.9 mm; 17 patients underwent open pancreatic enucleation, of whom 11 were female. The mean age was 54.6 ± 17.2 min, blood loss was 198.5 ± 70.7 ml and mean tumour size was 3.5 ± 1.9 cm. Pathology included insulinomas, intrapancreatic mucinous neoplasmas (IPMNs), pancreatic neuro-endocrine tumours (PNETs), solid pseudopapillary tumours (SPTs) and serous cystadenomas (SCAs). Robotic pancreatic enucleations were associated with less trauma, shorter operation time, less blood loss and faster wound recovery compared with open pancreatic enucleation. Pancreatic fistulas (PFs) were the main complication that occurred in the robotic group; infection also occurred in the open group. All patients recovered after effective drainage and the use of somatostatin. The mean follow-up time was 25 months. No recurrence was discovered, and one patient in the open group suffered endocrine insufficiency. Robotic pancreatic enucleation is a safe and effective surgical procedure for pancreatic benign and borderline tumours. It produces less

  18. Robot-assisted laparoendoscopic single-site pyeloplasty: technique using the da Vinci Si robotic platform.

    Science.gov (United States)

    Seideman, Casey A; Tan, Yung K; Faddegon, Stephen; Park, Samuel K; Best, Sara L; Cadeddu, Jeffrey A; Olweny, Ephrem O

    2012-08-01

    Conventional laparoscopic dismembered pyeloplasty (LP) is an established alternative to open pyeloplasty given equivalent intermediate-term outcomes and decreased morbidity. Laparoendoscopic single-site (LESS) pyeloplasty has the potential to further decrease the morbidity of LP, while yielding superior cosmesis. It is, however, technically very challenging even with the use of an accessory port, largely because of the difficulty of intracorporeal suturing through a single umbilical incision. Application of the da Vinci robotic surgical platform to LESS pyeloplasty (R-LESS) has the potential to overcome these limitations. We describe our technique for R-LESS pyeloplasty using the da Vinci Si robot. We have found that use of the robotic system in conjunction with certain technique modifications helps to reduce the technical difficulty of LESS pyeloplasty and to shorten the physical learning curve associated with the procedure.

  19. Possible role of DaVinci Robot in uterine transplantation

    National Research Council Canada - National Science Library

    Iavazzo, Christos; Gkegkes, Ioannis D

    2015-01-01

    ... surgery in uterine transplantation. (J Turk Ger Gynecol Assoc 2015; 16: 179-80) Keywords: Uterine transplantation, da Vinci® Robot, ethics, robotics Received: 13 March, 2015 Accepted: 05 May, 2015 Available Online Date: 14 July, 2015 Introduction The first human uterine transplantation was attempted in Saudi Arabia in 2002. However, necrosis of the graf...

  20. Use of fourth arm in da Vinci robot-assisted extraperitoneal laparoscopic prostatectomy: novel technique.

    Science.gov (United States)

    Esposito, Michael P; Ilbeigi, Pedram; Ahmed, Mutahar; Lanteri, Vincent

    2005-09-01

    The da Vinci robot-assisted laparoscopic radical prostatectomy is a relatively new approach that is revolutionizing the surgical treatment of localized prostate cancer. Since its introduction, several improvements have been made in the robot design model, as well as in the surgical technique for prostatectomy. One of the more recent advances in this technology has been the introduction of a four-arm robot model. This modified system allows the operating surgeon to use the fourth arm for key steps and maneuvers during the operation, thereby decreasing the reliance on advanced assistant laparoscopic skills. In this report, we describe our modifications for the extraperitoneal approach for laparoscopic removal of the prostate using the four-arm da Vinci surgical system. During a 24-month period, 154 consecutive patients with clinically localized prostate cancer underwent extraperitoneal robot-assisted laparoscopic radical prostatectomy using the four-arm da Vinci robot system. All cases were videotaped and subsequently reviewed. Important factors regarding extraperitoneal access, patient positioning, port placement, and assistant role with or without the fourth arm were defined. Our experience has revealed that the extraperitoneal approach allows for a more natural patient position during the operation and avoids intraperitoneal organ injury. The addition of the fourth arm to the da Vinci robot provides the operating surgeon with a great deal of independence, which facilitates all aspects of robot-assisted laparoscopic prostatectomy. It allows the operating surgeon to retract tissue during critical steps in this challenging operation and reduces the reliance on highly trained laparoscopic assistants.

  1. Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients.

    Science.gov (United States)

    Kang, Sang-Wook; Lee, Seung Chul; Lee, So Hee; Lee, Kang Young; Jeong, Jong Ju; Lee, Yong Sang; Nam, Kee-Hyun; Chang, Hang Seok; Chung, Woong Youn; Park, Cheong Soo

    2009-12-01

    Recently, robotic technology in the surgical area has gained wide popularity. However, in the filed of head and neck surgery, the applications of robotic instruments are problematic owing to spatial and technical limitations. The authors performed robot-assisted endoscopic thyroid operations in consecutive thyroid tumor patients using the newly introduced da Vinci S surgical system. Herein the authors describe the technique used and its utility for the operative management of thyroid tumors. From October 2007 to November 2008, 338 patients underwent robot-assisted endoscopic thyroid operations using a gasless, transaxillary approach. All procedures were successfully completed without conversion to an open procedure. Patient's clinicopathologic characteristics, operation types, operation times, the learning curve, and postoperative hospital stays and complications were evaluated. The mean patient age was 40 years (range, 16-69) and the male to female ratio was 1:16.8. Two hundred and thirty-four patients underwent less than total and 104 underwent bilateral total thyroidectomy. Ipsilateral central compartment node dissection was conducted in all malignant cases. Mean operation time was 144.0 minutes (range, 69-347) and mean postoperative hospital stay was 3.3 days (range, 2-7). No serious postoperative complication occurred; there were 3 cases of recurrent laryngeal nerve injury and 1 of Horner's syndrome. Our technique of robotic thyroid surgery using a gasless, transaxillary approach is feasible and safe in selected patients with a benign or malignant thyroid tumor.

  2. Surgical treatment of parietal defects with "da Vinci" surgical robot.

    Science.gov (United States)

    Vasilescu, D; Paun, S

    2012-06-12

    The robotic surgery has come through the development of telemedicine and minimally invasive surgery concepts, being developed in the military medicine by NASA during the years 1970-1980. The purpose of this paper is to briefly present our experience in the new field of the robotic surgery, by analyzing the results obtained over a lot of 20 patients operated with the "da Vinci" robot within the last 5 years in the Clinical Emergency Hospital Bucharest for various abdominal defects.

  3. [History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].

    Science.gov (United States)

    Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H

    2007-02-01

    Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.

  4. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery.

    Science.gov (United States)

    Mehrabi, A; Yetimoglu, C L; Nickkholgh, A; Kashfi, A; Kienle, P; Konstantinides, L; Ahmadi, M R; Fonouni, H; Schemmer, P; Friess, H; Gebhard, M M; Büchler, M W; Schmidt, J; Gutt, C N

    2006-09-01

    With the increasing use of the surgical robotic system in the clinical arena, appropriate training programs and assessment systems need to be established for mastery of this new technology. The authors aimed to design and evaluate a clinic-like training program for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Four trainees with different surgical levels of experience participated in this study using the da Vinci telemanipulator. Each participant started with an initial evaluation stage composed of standardized visceral and vascular operations (cholecystectomy, gastrotomy, anastomosis of the small intestine, and anastomosis of the aorta) in a porcine model. Then the participants went on to the training stage with the rat model, performing standardized visceral and vascular operations (gastrotomy, anastomosis of the large and small intestines, and anastomosis of the aorta) four times in four rats. The final evaluation stage was again identical to the initial stage. The operative times, the number of complications, and the performance quality of the participants were compared between the two evaluation stages to assess the impact of the training stage on the results. The operative times in the final evaluation stage were considerably shorter than in the initial evaluation stage and, except for cholecystectomies, all the differences reached statistical significance. Also, significantly fewer complications and improved quality for each operation in the final evaluation stage were documented, as compared with their counterparts in the initial evaluation stage. These improvements were recorded at each level of experience. The presented experimental small and large animal model is a standardized and reproducible training method for robotic surgery that allows evaluation of the surgical performance while shortening and optimizing the learning-curve.

  5. Tensile strength of surgical knots performed with the da Vinci surgical robot.

    Science.gov (United States)

    Reynisson, Pétur; Shokri, Ebi; Bendahl, Pär-Ola; Persson, Jan

    2010-01-01

    The objective of this study was to estimate the tensile strength of surgical knots made using the da Vinci robot. Four different types of flat square knots (strand-to-strand 4 throw, strand-to-strand 6 throw, loop-to-strand 4 throw, and loop-to-strand 6 throw) were made using the da Vinci-S system by 4 different surgeons, all experienced with the system. For the knots, we used braided polyglactin 910 (Vicryl 2-0). Hand-tied, flat, square, 4-throw strand-to-strand knots were used as reference. The tensile strength was measured for all knots using the Instron 5566 system calibrated to an accuracy of + or - .5% at 4 to 10 newtons (N) and + or - .4% at greater than 10 N. Compared with reference knots, only 1 of 4 surgeons could make knots as equally strong with the robot. For all surgeons, strand-to-strand knots had a significantly higher tensile strength than loop-to-strand knots when made with the robot. Adding 2 throws to the knot did not increase the knots strength in the robot. It is possible to make equally strong surgical knots with the da Vinci robot as by hand; however, despite previous experience with the robot, only 1 of 4 surgeons managed to do so. Adding 2 throws to R4SS and R4LS knots did not increase the tensile strength significantly for any of the 4 surgeons. It is important to train and tie knots using the da Vinci system with the same care as by hand and to be aware of possible differences in knot-tying technique with the robot and manually. With the robot, strand-to-strand knots were stronger than loop-to-strand knots, and should be preferred. Copyright 2010 AAGL. All rights reserved.

  6. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy?

    Science.gov (United States)

    Patel, Manish N; Aboumohamed, Ahmed; Hemal, Ashok

    2015-12-01

    To describe our robot-assisted nephroureterectomy (RNU) technique for benign indications and RNU with en bloc excision of bladder cuff (BCE) and lymphadenectomy (LND) for malignant indications using the da Vinci Si and da Vinci Xi robotic platform, with its pros and cons. The port placement described for Si can be used for standard and S robotic systems. This is the first report in the literature on the use of the da Vinci Xi robotic platform for RNU. After a substantial experience of RNU using different da Vinci robots from the standard to the Si platform in a single-docking fashion for benign and malignant conditions, we started using the newly released da Vinci Xi robot since 2014. The most important differences are in port placement and effective use of the features of da Vinci Xi robot while performing simultaneous upper and lower tract surgery. Patient positioning, port placement, step-by-step technique of single docking RNU-LND-BCE using the da Vinci Si and da Vinci Xi robot are shown in an accompanying video with the goal that centres using either robotic system benefit from the hints and tips. The first segment of video describes RNU-LND-BCE using the da Vinci Si followed by the da Vinci Xi to highlight differences. There was no need for patient repositioning or robot re-docking with the new da Vinci Xi robotic platform. We have experience of using different robotic systems for single docking RNU in 70 cases for benign (15) and malignant (55) conditions. The da Vinci Xi robotic platform helps operating room personnel in its easy movement, allows easier patient side-docking with the help of its boom feature, in addition to easy and swift movements of the robotic arms. The patient clearance feature can be used to avoid collision with the robotic arms or the patient's body. In patients with challenging body habitus and in situations where bladder cuff management is difficult, modifications can be made through reassigning the camera to a different port with

  7. Multiquadrant robotic colorectal surgery: the da Vinci Xi vs Si comparison.

    Science.gov (United States)

    Protyniak, Bogdan; Jorden, Jeffrey; Farmer, Russell

    2017-03-08

    The newly introduced da Vinci Xi Surgical System hopes to address the shortcomings of its predecessor, specifically robotic arm restrictions and difficulty working in multiple quadrants. We compare the two robot platforms in multiquadrant surgery at a major colorectal referral center. Forty-four patients in the da Vinci Si group and 26 patients in the Xi group underwent sigmoidectomy or low anterior resection between 2014 and 2016. Patient demographics, operative variables, and postoperative outcomes were compared using descriptive statistics. Both groups were similar in age, sex, BMI, pelvic surgeries, and ASA class. Splenic flexure was mobilized in more (p = 0.045) da Vinci Xi cases compared to da Vinci Si both for sigmoidectomy (50 vs 15.4%) and low anterior resection (60 vs 29%). There was no significant difference in operative time (219.9 vs 224.7 min; p = 0.640), blood loss (170.0 vs 188.1 mL; p = 0.289), length of stay (5.7 vs 6 days; p = 0.851), or overall complications (26.9 vs 22.7%; p = 0.692) between the da Vinci Xi and Si groups, respectively. Single-dock multiquadrant robotic surgery, measured by splenic flexure mobilization with concomitant pelvic dissection, was more frequently performed using the da Vinci Xi platform with no increase in operative time, bleeding, or postoperative complications. The new platform provides surgeons an easier alternative to the da Vinci Si dual docking or combined robotic/laparoscopic multiquadrant surgery.

  8. Robotic Partial Nephrectomy with the Da Vinci Xi

    Directory of Open Access Journals (Sweden)

    George J. S. Kallingal

    2016-01-01

    Full Text Available Purpose. The surgical expertise to perform robotic partial nephrectomy is heavily dependent on technology. The Da Vinci Xi (XI is the latest robotic surgical platform with significant advancements compared to its predecessor. We describe our operative technique and experience with the XI system for robotic partial nephrectomy (RPN. Materials and Methods. Patients with clinical T1 renal masses were offered RPN with the XI. We used laser targeting, autopositioning, and a novel “in-line” port placement to perform RPN. Results. 15 patients underwent RPN with the XI. There were no intraoperative complications and no operative conversions. Mean console time was 101.3 minutes (range 44–176 minutes. Mean ischemia time was 17.5 minutes and estimated blood loss was 120 mLs. 12 of 15 patients had renal cell carcinoma. Two patients had oncocytoma and one had benign cystic disease. All patients had negative surgical margins and pathologic T1 disease. Two postoperative complications were encountered, including one patient who developed a pseudoaneurysm and one readmitted for presumed urinary tract infection. Conclusions. RPN with the XI system can be safely performed. Combining our surgical technique with the technological advancements on the XI offers patients acceptable pathologic and perioperative outcomes.

  9. From Jacobeaus to the da Vinci: thoracoscopic applications of the robot.

    Science.gov (United States)

    Al-Mufarrej, Faisal; Margolis, Marc; Tempesta, Barbara; Strother, Eric; Najam, Farzad; Gharagozloo, Farid

    2010-02-01

    With the increasing recognition of the benefits of minimally invasive surgery, surgical technology has evolved significantly since Jacobeaus' first attempt at thoracoscopy 100 years ago. Currently, video-assisted thoracic surgery occupies a significant role in the diagnosis and treatment of benign and malignant diseases of the chest. However, the clinical application of video-assisted thoracic surgery is limited by the technical shortcomings of the approach. Although the da Vinci system (Intuitive Surgical) is not the first robotic surgical system, it has been the most successful and widely applicable. After early applications in general and urologic surgery, the da Vinci robot extended its arms into the field of thoracic surgery, broadening the applicability of minimally invasive thoracic surgery. We review the available literature on robot-assisted thoracic surgery in attempt to better define the current role of the robot in pulmonary, mediastinal, and esophageal surgeries.

  10. Performances on simulator and da Vinci robot on subjects with and without surgical background.

    Science.gov (United States)

    Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca

    2017-08-17

    To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.

  11. First experiences with the da Vinci operating robot in thoracic surgery.

    Science.gov (United States)

    Bodner, J; Wykypiel, H; Wetscher, G; Schmid, T

    2004-05-01

    The da Vinci surgical robotic system was purchased at our institution in June 2001. The aim of this trial was to evaluate the applicability of the da Vinci operation robot for general thoracic procedures. The da Vinci surgical system consists of a console connected to a surgical arm cart, a manipulator unit with two instrument arms and a central arm to guide the endoscope. The surgical instruments are introduced via special ports and attached to the arms of the robot. The surgeon, sitting at the console, triggers highly sensitive motion sensors that transfer the surgeon's movements to the tip of the instruments. The so-called 'EndoWrist technology' offers seven degrees of movement, thus exceeding the capacity of a surgeon's hand in open surgery. We evaluated the role of the robot for several thoracic procedures such as thymectomies, fundoplications, esophageal dissections, resection of mediastinal masses and a pulmonary lobectomy. A total of 10 thymectomies, 16 fundoplications, 4 esophageal dissections, 5 extirpations of benign mediastinal masses and 1 right lower lobectomy was performed with the robot. One resection of a paravertebral neurogenic tumor had to be converted due to surgical problems. A lesion to a left recurrent laryngeal nerve caused transient hoarseness after the extirpation of an ectopic parathyroid in the aortopulmonary window in one patient. The postoperative courses were uneventful and patients were discharged between postoperative days 3 and 8 (with the exception of patients who underwent dissection for esophageal cancer and the patient with conversion to an open access). Advanced general thoracic procedures can be performed safely with the da Vinci robot allowing precise dissection in remote and difficult-to-reach areas. This benefit becomes evident most elegantly in thymectomies, which at our institution have become a routine procedure with the robot. The rigid anatomy of the chest seems to be an ideal condition for robotic surgery. A major

  12. Evolution of robots throughout history from Hephaestus to Da Vinci Robot.

    Science.gov (United States)

    Iavazzo, Christos; Gkegke, Xanthi-Ekaterini D; Iavazzo, Paraskevi-Evangelia; Gkegkes, Ioannis D

    2014-01-01

    Da Vinci robot is increasingly used for operations adding the advantages of robots to the favor of medicine. This is a historical article with the aim to present the evolution of robots in the medical area from the time of ancient myths to Renaissance and finally to the current revolutionary applications. We endeavored to collect several elegant narratives on the topic. The use of imagination could help the reader to find similarities. A trip from the Greek myths of Hephaestus through Aristotle and Leonardo Da Vinci to the robots of Karel Capek and Isaac Asimov and finally the invention of the medical robots is presented.

  13. [The rational application of Da Vinci surgical system in thyroidectomy].

    Science.gov (United States)

    He, Q Q

    2017-08-01

    Da Vinci surgical system is the most advanced minimally invasive surgical platform in the world, and this system has been widely used in cardiac surgery, urology surgery, gynecologic surgery and general surgery. Although the application of this system was relatively late in thyroid surgery, the number of thyroidectomy with Da Vinci surgical system is increasing quickly. Having reviewed recent studies and summarized clinical experience, compared with traditional open operation, the robotic thyroidectomy has the same surgical safety and effectiveness in selective patients with thyroid cancer. In this paper, several aspects on this novel operation were demonstrated, including surgical indications and contraindications, the approaches, surgical procedures and postoperative complications, in order to promote the rational application of Da Vinci surgical system in thyroidectomy.

  14. Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model.

    Science.gov (United States)

    Sterbis, Joseph R; Hanly, Eric J; Herman, Barry C; Marohn, Michael R; Broderick, Timothy J; Shih, Samuel P; Harnett, Brett; Doarn, Charles; Schenkman, Noah S

    2008-05-01

    Robotic telesurgery has been demonstrated over long distances and offers theoretical benefits to urologic training and the care of patients in remote regions. The multiple arms and three-dimensional vision of the da Vinci robotic system provide a platform conducive to long-distance telementoring and telesurgery. Whereas prior telesurgical efforts have used dedicated lines for information transmission, the public Internet offers a less expensive alternative. It was the intent of this study to test the validity of using the da Vinci system in urologic telesurgery, and to conduct telerobotic nephrectomies using the public Internet. We performed four right nephrectomies in porcine models using the da Vinci robotic system. Telementoring and telesurgical approaches were used, with resident surgeons operating a console adjacent to the swine, while attending surgeons simultaneously operated a second console at distances of 1300 and 2400 miles from the operating room. All four procedures and both telementoring and telesurgical models were successful. Round-trip delays from 450 to 900 ms were demonstrated. Blood loss was minimal, and there were no intraoperative complications. This study represents the first use of the da Vinci Surgical System in urologic telesurgery and the first successful telesurgical nephrectomy in an animal model.

  15. [Combination of intraoperative ultrasonography for localizing insulinoma under Da Vinci robotic surgical system: experience of a single center in 50 cases].

    Science.gov (United States)

    Han, Xianlin; Wu, Wenming; Wang, Mengyi; Cong, Lin; Liao, Quan; Dai, Menghua; Zhang, Taipin; Zhao, Yupei

    2016-01-01

    To evaluate the effect and safety of enucleation of insulinoma under the Da Vinci robotic surgical system combination with intraoperative ultrasonography(IOUS) for the localization. The clinical materials of 50 insulinoma cases which underwent IOUS and assisted by the robotic surgical system from September 2012 to September 2014 in Peking Union Medical College Hospital were reviewed retrospectively. The patients were followed up by outpatient review and telephone until October 2014. The diagnostic accuracy rate, operation time, blood loss, complications and cure rate were analyzed by t-test. The locations of tumors were 13 in the head, 21 in the body and 13 in the tail of pancreas, 2 were multiple insulinoma, 1 was ectopic to mesenterium.The average operation time was 142 minutes; the average blood loss was 165 ml.Three(6.0%) patients were transformed to open.One patient experienced postoperative bleeding about 300 ml on the 7(th) day after operation and no infection and perioperative death.Thirty-five cases were of class A and 14 of class B according to the clinical grading of postoperative pancreatic fistula.The blood glucose 60 minutes after tumor dissection was significantly elevated than that before operation ((6.2±1.8)mmol/L vs.(3.7±1.2)mmol/L)(t=-6.89, P<0.01). The cure rate was 100% as all the patients' symptoms were disappeared during follow-up time. Combination IOUS is a highly sensitive method for the localization of insulinoma, which is helpful in localizing tumors precisely in insulinoma cases assisted by robotic surgical system and shortening operation time.It is safe and effective for insulinoma enucleation.

  16. Da Vinci robot-assisted anatomic left hemihepatectomy and biliary reconstruction.

    Science.gov (United States)

    Wang, Zhifei; Liu, Quanda; Chen, Junzhou; Duan, Weihong; Zhou, Ningxin

    2013-06-01

    Since the introduction of Da Vinci robotic surgery, more and more complicated surgeries can now be performed robotically, yet there have been very few on robotic hepatectomy, especially when billiary reconstruction is involved. The video shows our initial experience with an anatomic hepatectomy using Da Vinci surgical robot. In this case, we also conducted billiary reconstruction due to the anatomic abnormality of bile duct, while applying the choledochoscopy. The preoperative diagnosis is primary liver carcinoma, tumor thrombi in bile duct, and hepatitis B. First, the gallbladder was resected, and cystic artery and duct were identified. After opening of the common bile duct above the junction, the choledochoscopy was performed. Tumor thrombi were found in common bile duct and left hepatic duct, and they were all removed. Left branches hepatic artery and portal vein were dissected, ligated, and divided. Thrombi in the left hepatic duct were removed also. After marking the cutting line along the ischemic boarder, liver parenchyma was transected using robotic harmonic scalpel. Branches of ducts were encountered and managed by either direct coagulating or dividing after clipping. The left hepatic vein was visualized, exposed, and divided during hepatectomy. Two T tubes were placed into common hepatic duct and the proximal cutting end of right anterior bile duct which was found to join the left hepatic duct, respectively. The operation went on successfully. The operation time was 410 minutes, the blood loss was 200 mL. The pathologic diagnosis was introductal papillary adenocarcinoma of left hepatic duct. The patient went on well postoperatively and was followed up for 22 months till now. Postoperative computed tomography examination showed no recurrence. Da Vinci-assisted robotic hepatectomy can be performed safely in the hands of experienced hepatobilliary surgeons, and choledochoscopy can be combined for bile duct exploration. With the advantages of Da Vinci robot

  17. Maximizing use of robot-arm no. 3 in daVinci-assisted thoracic surgery.

    Science.gov (United States)

    Kajiwara, Naohiro; Maeda, Junichi; Yoshida, Koichi; Kato, Yasufumi; Hagiwara, Masaru; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2015-05-01

    We have previously reported on the importance of appropriate robot-arm settings and replacement of instrument ports in robot-assisted thoracic surgery, because the thoracic cavity requires a large space to access all lesions in various areas of the thoracic cavity from the apex to the diaphragm and mediastinum and the chest wall. (1 - 3) Moreover, it can be difficult to manipulate the da Vinci Surgical System using only arms No. 1 and No. 2 depending on the tumor location. However, arm No. 3 is usually positioned on the same side as arm No. 2, and sometimes it is only used as an assisting-arm to avoid conflict with other arms ( Fig. 1 ). In this report, we show how robot-arm No. 3 can be used with maximum effectiveness in da Vinci-assisted thoracic surgery. [Figure: see text].

  18. Parallel side-docking technique for gynecologic procedures utilizing the da Vinci robot.

    Science.gov (United States)

    Silverman, Suzanne; Orbuch, Laurence; Orbuch, Iris

    2012-09-01

    Minimally invasive approaches to gynecologic surgery have quickly gained favor. The da Vinci surgical system robot as an option for minimally invasive surgery offers many advantages. As the placement of the system between the legs can be prohibitive, we propose a modification of the standard docking procedure by aligning the system parallel to the operating room table. Our experience is that parallel side-docking allows access to the perineum without compromising docking time and range of motion.

  19. Da Vinci Robotic Surgery in a Pediatric Hospital.

    Science.gov (United States)

    Mattioli, Girolamo; Pini Prato, Alessio; Razore, Barbara; Leonelli, Lorenzo; Pio, Luca; Avanzini, Stefano; Boscarelli, Alessandro; Barabino, Paola; Disma, Nicola Massimo; Zanaboni, Clelia; Garzi, Alfredo; Martigli, Sofia Paola; Buffi, Nicolò Maria; Rosati, Ubaldo; Petralia, Paolo

    2017-05-01

    Since the use of robotic surgery (RS) revolutionized some adult surgery procedures such as radical prostatectomy, it has been progressively and increasingly introduced in pediatric surgery. The aim of this study is to evaluate how the Da Vinci® Si HD technology impacts a pediatric public hospital and to define the use of a robotic system in pediatric surgery. We prospectively included patients older than 6 months of age undergoing RS or conventional minimal access surgery (MAS): Study period ranges between February 2015 and April 2016. Surgical indications were defined after a detailed disease-specific diagnostic work-up. We analyzed surgical outcomes and the most relevant economic aspects. The 30-day postoperative complications were evaluated and retrospectively collected in an electronic database. From February 2015 to April 2016, we performed 77 procedures with RS and 84 with conventional MAS in patients with a median age of 77 and 98 months at surgery and a median weight of 20 and 23 kg, respectively. Median operative times were 130 and 109 minutes, respectively. We observed 9.1% of complications in the RS group and 6% in the MAS group and the difference was not statistically significant. Of note, 8 out of 77 RS procedures would have been performed with open classic surgery in case of conversion or failure of RS. This initial experience confirms that RS is as safe and effective as conventional MAS. A number of selected procedures performed with RS would only benefit from this approach, as it is not suitable for conventional MAS. Although economically demanding, in particular for a pediatric hospital, we firmly believe that centralization of care would allow pediatric surgeons adopting RS to perform complex reconstructive surgical procedures with great advantages for the patients and a minimal increase in overall costs for the health system.

  20. Da Vinci robot emergency undocking protocol.

    Science.gov (United States)

    O'Sullivan, O E; O'Sullivan, S; Hewitt, M; O'Reilly, B A

    2016-09-01

    The role of robot-assisted surgery across gynaecology is evolving with increasing numbers of procedures being undertaken with varying degrees of complexity. While the risk of conversion is low at approximately 1 %, the reasons for conversion are variable. These range from technical issues with the robot, surgical complications such as haemorrhage and anaesthetics issues such as an inability to ventilate the patient adequately. While many conversions to open or laparoscopic approach are not due to life-threatening indications, it is important that the theatre staff are aware of the indication and can perform an emergency undocking as effectively, efficiently and safely as possible when the need arises. Unfortunately, there is a paucity of the literature available outlining such protocols. For this reason, we developed an emergency undocking protocol clearly outlining the role of each theatre staff member and the need for clear concise communication.

  1. Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi.

    Science.gov (United States)

    Gorphe, Philippe; Von Tan, Jean; El Bedoui, Sophie; Hartl, Dana M; Auperin, Anne; Qassemyar, Quentin; Moya-Plana, Antoine; Janot, François; Julieron, Morbize; Temam, Stephane

    2017-12-01

    The latest generation Da Vinci® Xi™ Surgical System Robot released has not been evaluated to date in transoral surgery for head and neck cancers. We report here the 1-year results of a non-randomized phase II multicentric prospective trial aimed at assessing its feasibility and technical specificities. Our primary objective was to evaluate the feasibility of transoral robotic surgery using the da Vinci® Xi™ Surgical System Robot. The secondary objective was to assess peroperative outcomes. Twenty-seven patients, mean age 62.7 years, were included between May 2015 and June 2016 with tumors affecting the following sites: oropharynx (n = 21), larynx (n = 4), hypopharynx (n = 1), parapharyngeal space (n = 1). Eighteen patients were included for primary treatment, three for a local recurrence, and six for cancer in a previously irradiated field. Three were reconstructed with a FAMM flap and 6 with a free ALT flap. The mean docking time was 12 min. "Chopsticking" of surgical instruments was very rare. During hospitalization following surgery, 3 patients experienced significant bleeding between day 8 and 9 that required surgical transoral hemostasis (n = 1) or endovascular embolization (n = 2). Transoral robotic surgery using the da Vinci® Xi™ Surgical System Robot proved feasible with technological improvements compared to previous generation surgical system robots and with a similar postoperative course. Further technological progress is expected to be of significant benefit to the patients.

  2. From Leonardo to da Vinci: the history of robot-assisted surgery in urology.

    Science.gov (United States)

    Yates, David R; Vaessen, Christophe; Roupret, Morgan

    2011-12-01

    What's known on the subject? and What does the study add? Numerous urological procedures can now be performed with robotic assistance. Though not definitely proven to be superior to conventional laparoscopy or traditional open surgery in the setting of a randomised trial, in experienced centres robot-assisted surgery allows for excellent surgical outcomes and is a valuable tool to augment modern surgical practice. Our review highlights the depth of history that underpins the robotic surgical platform we utilise today, whilst also detailing the current place of robot-assisted surgery in urology in 2011. The evolution of robots in general and as platforms to augment surgical practice is an intriguing story that spans cultures, continents and centuries. A timeline from Yan Shi (1023-957 bc), Archytas of Tarentum (400 bc), Aristotle (322 bc), Heron of Alexandria (10-70 ad), Leonardo da Vinci (1495), the Industrial Revolution (1790), 'telepresence' (1950) and to the da Vinci(®) Surgical System (1999), shows the incredible depth of history and development that underpins the modern surgical robot we use to treat our patients. Robot-assisted surgery is now well-established in Urology and although not currently regarded as a 'gold standard' approach for any urological procedure, it is being increasingly used for index operations of the prostate, kidney and bladder. We perceive that robotic evolution will continue infinitely, securing the place of robots in the history of Urological surgery. Herein, we detail the history of robots in general, in surgery and in Urology, highlighting the current place of robot-assisted surgery in radical prostatectomy, partial nephrectomy, pyeloplasty and radical cystectomy. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  3. Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si.

    Science.gov (United States)

    Alessandrini, Marco; Pavone, Isabella; Micarelli, Alessandro; Caporale, Claudio

    2017-09-13

    Considering the emerging advantages related to da Vinci Xi robotic platform, the aim of this study is to compare for the first time the operative outcomes of this tool to the previous da Vinci Si during transoral robotic surgery (TORS), both performed for squamous cell carcinomas (SCC) of the base of tongue (BOT). Intra- and peri-operative outcomes of eight patients with early stage (T1-T2) of the BOT carcinoma and undergoing TORS by means of the da Vinci Xi robotic platform (Xi-TORS) are compared with the da Vinci Si group ones (Si-TORS). With respect to Si-TORS group, Xi-TORS group demonstrated a significantly shorter overall operative time, console time, and intraoperative blood loss, as well as peri-operative pain intensity and length of mean hospital stays and nasogastric tube positioning. Considering recent advantages offered by surgical robotic techniques, the da Vinci Xi Surgical System preliminary outcomes could suggest its possible future routine implementation in BOT squamous cell carcinoma procedures.

  4. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.

    Science.gov (United States)

    Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar

    2015-04-01

    The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.

  5. Operative technique and early experience for robotic-assisted laparoscopic nephroureterectomy (RALNU) using da Vinci Xi

    National Research Council Canada - National Science Library

    Darwiche, Fadi; Swain, Sanjaya; Kallingal, George; Punnen, Sanoj; Manoharan, Murugesan; Parekh, Dipen J; Gonzalgo, Mark L

    2015-01-01

    .... The da Vinci Xi surgical system was released in April of 2014. We describe our operative technique and early experience for RALNU using the da Vinci Xi system highlighting unique features of this surgical...

  6. Early clinical experience with the da Vinci Xi Surgical System in general surgery.

    Science.gov (United States)

    Hagen, Monika E; Jung, Minoa K; Ris, Frederic; Fakhro, Jassim; Buchs, Nicolas C; Buehler, Leo; Morel, Philippe

    2017-09-01

    The da Vinci Xi Surgical System (Intuitive Surgical Inc., Sunnyvale, CA, USA) has been released in 2014 to facilitate minimally invasive surgery. Novel features are targeted towards facilitating complex multi-quadrant procedures, but data is scarce so far. Perioperative data of patients who underwent robotic general surgery with the da Vinci Xi system within the first 6 month after installation were collected and analyzed. The gastric bypass procedures performed with the da Vinci Xi Surgical System were compared to an equal amount of the last procedures with the da Vinci Si Surgical System. Thirty-one foregut (28 Roux-en-Y gastric bypasses), 6 colorectal procedures and 1 revisional biliary procedure were performed. The mean operating room (OR) time was 221.8 (±69.0) minutes for gastric bypasses and 306.5 (±48.8) for colorectal procedures with mean docking time of 9.4 (±3.8) minutes. The gastric bypass procedure was transitioned from a hybrid to a fully robotic approach. In comparison to the last 28 gastric bypass procedures performed with the da Vinci Si Surgical System, the OR time was comparable (226.9 versus 230.6 min, p = 0.8094), but the docking time significantly longer with the da Vinci Xi Surgical System (8.5 versus 6.1 min, p = 0.0415). All colorectal procedures were performed with a single robotic docking. No intraoperative and two postoperative complications occurred. The da Vinci Xi might facilitate single-setups of totally robotic gastric bypass and colorectal surgeries. However, further comparable research is needed to clearly determine the significance of this latest version of the da Vinci Surgical System.

  7. SAGES TAVAC safety and effectiveness analysis: da Vinci ® Surgical System (Intuitive Surgical, Sunnyvale, CA).

    Science.gov (United States)

    Tsuda, Shawn; Oleynikov, Dmitry; Gould, Jon; Azagury, Dan; Sandler, Bryan; Hutter, Matthew; Ross, Sharona; Haas, Eric; Brody, Fred; Satava, Richard

    2015-10-01

    The da Vinci(®) Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) is a computer-assisted (robotic) surgical system designed to enable and enhance minimally invasive surgery. The Food and Drug Administration (FDA) has cleared computer-assisted surgical systems for use by trained physicians in an operating room environment for laparoscopic surgical procedures in general, cardiac, colorectal, gynecologic, head and neck, thoracic and urologic surgical procedures. There are substantial numbers of peer-reviewed papers regarding the da Vinci(®) Surgical System, and a thoughtful assessment of evidence framed by clinical opinion is warranted. The SAGES da Vinci(®) TAVAC sub-committee performed a literature review of the da Vinci(®) Surgical System regarding gastrointestinal surgery. Conclusions by the sub-committee were vetted by the SAGES TAVAC Committee and SAGES Executive Board. Following revisions, the document was evaluated by the TAVAC Committee and Executive Board again for final approval. Several conclusions were drawn based on expert opinion organized by safety, efficacy, and cost for robotic foregut, bariatric, hepatobiliary/pancreatic, colorectal surgery, and single-incision cholecystectomy. Gastrointestinal surgery with the da Vinci(®) Surgical System is safe and comparable, but not superior to standard laparoscopic approaches. Although clinically acceptable, its use may be costly for select gastrointestinal procedures. Current data are limited to the da Vinci(®) Surgical System; further analyses are needed.

  8. Prostatektomie radicale robot assistee (Da Vinci(R: abord transperitoneal

    Directory of Open Access Journals (Sweden)

    Rochat CH

    2006-01-01

    Full Text Available La prostatectomie robotisée à l’aide d’un micro-manipulateur (DaVinci(R Intuitive Surgical est le prolongement logique de la prostatectomie laparoscopique. Une meilleure vision et plus de précision permettent des prostatectomies de haute qualité pour des laparoscopeurs déjà expérimentés. Après avoir pratiqué toutes les voies d’abord en laparoscopie traditionnelle et en privilégiant à la fin de notre expérience la voie extra-péritonéale rétrograde, nous avons opté pour un retour à la voie trans-péritonéale lors de la prostatectomie robotisée. Cette voie offre plus d’espace de travail, l’installation des bras du robot est facilitée et il y a un gain de temps dans la préparation du retzius. Nous décrivons ici step-by-step le protocole opératoire de la prostatectomie laparoscopique transpéritonéale robot assistée.

  9. Initial experience with the new da Vinci single-port robot-assisted platform.

    Science.gov (United States)

    Ballestero Diego, R; Zubillaga Guerrero, S; Truan Cacho, D; Carrion Ballardo, C; Velilla Diez, G; Calleja Hermosa, P; Gutiérrez Baños, J L

    2017-06-01

    To describe our experience in the first cases of urological surgeries performed with the da Vinci single-port robot-assisted platform. We performed 5 single-port robot-assisted surgeries (R-LESS) between May and October 2014. We performed 3 ureteral reimplant surgeries, one ureteropyeloplasty in an inverted kidney and 1 partial nephrectomy. The perioperative and postoperative results were collected, as well as a report of the complications according to the Clavien classification system. Of the 5 procedures, 4 were performed completely by LESS, while 1 procedure was reconverted to multiport robot-assisted surgery. There were no intraoperative complications. We observed perioperative complications in 4 patients, all of which were grade 1 or 2. The mean surgical time was 262minutes (range, 230-300). In our initial experience with the da Vinci device, R-LESS surgery was feasible and safe. There are still a number of limitations in its use, which require new and improved R-LESS platforms. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Comparative analysis of the functionality of simulators of the da Vinci surgical robot.

    Science.gov (United States)

    Smith, Roger; Truong, Mireille; Perez, Manuela

    2015-04-01

    The implementation of robotic technology in minimally invasive surgery has led to the need to develop more efficient and effective training methods, as well as assessment and skill maintenance tools for surgical education. Multiple simulators and procedures are available for educational and training purposes. A need for comparative evaluations of these simulators exists to aid users in selecting an appropriate device for their purposes. We conducted an objective review and comparison of the design and capabilities of all dedicated simulators of the da Vinci robot, the da Vinci Skill Simulator (DVSS) (Intuitive Surgical Inc., Sunnyvale, CA, USA), dV-Trainer (dVT) (Mimic Technologies Inc., Seattle, WA, USA), and Robotic Surgery Simulator (RoSS) (Simulated Surgical Skills, LLC, Williamsville, NY, USA). This provides base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies. The DVSS leverages the real robotic surgeon's console to provide visualization, hand controls, and foot pedals. The dVT and RoSS created simulated versions of all of these control systems. They include systems management services which allow instructors to collect, export, and analyze the scores of students using the simulators. This study is the first to provide comparative information of the three simulators functional capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic surgeons. Each device has been the subject of multiple validation experiments which have been published in the literature. But those do not provide specific details on the capabilities of the simulators which are necessary for an understanding sufficient to select the one best suited for an organization's needs.

  11. The Da Vinci Xi and robotic radical prostatectomy-an evolution in learning and technique.

    Science.gov (United States)

    Goonewardene, S S; Cahill, D

    2017-06-01

    The da Vinci Xi robot has been introduced as the successor to the Si platform. The promise of the Xi is to open the door to new surgical procedures. For robotic-assisted radical prostatectomy (RARP)/pelvic surgery, the potential is better vision and longer instruments. How has the Xi impacted on operative and pathological parameters as indicators of surgical performance? This is a comparison of an initial series of 42 RARPs with the Xi system in 2015 with a series using the Si system immediately before Xi uptake in the same calendar year, and an Si series by the same surgeon synchronously as the Xi series using operative time, blood loss, and positive margins as surrogates of surgical performance. Subjectively and objectively, there is a learning curve to Xi uptake in longer operative times but no impact on T2 positive margins which are the most reflective single measure of RARP outcomes. Subjectively, the vision of the Xi is inferior to the Si system, and the integrated diathermy system and automated setup are quirky. All require experience to overcome. There is a learning curve to progress from the Si to Xi da Vinci surgical platforms, but this does not negatively impact the outcome.

  12. Robot asisted intuative laproscopy da vinci in gynaecology 1st experimental trail

    OpenAIRE

    Kira, Evgeniy; Politova, Alla; Alekperova, Aida; Haikina, Viktoria

    2011-01-01

    These are the first results of 95 robot assisted laproscopic operations in gynaecology with the use of intuative surgical technology da Vinci performed in Russia. The authors made initial analysis of different variants of surgical intervetions: panhysterectomy with lymphadenectomy, simple hysterectomy, myomectomy, sacrocolposcopy and others. The advantages and disadvantages of robot assisted laproscopic operations in gynaecological practice were investigated.

  13. Impact of IQ, computer-gaming skills, general dexterity, and laparoscopic experience on performance with the da Vinci surgical system.

    Science.gov (United States)

    Hagen, Monika E; Wagner, Oliver J; Inan, Ihsan; Morel, Philippe

    2009-09-01

    Due to improved ergonomics and dexterity, robotic surgery is promoted as being easily performed by surgeons with no special skills necessary. We tested this hypothesis by measuring IQ elements, computer gaming skills, general dexterity with chopsticks, and evaluating laparoscopic experience in correlation to performance ability with the da Vinci robot. Thirty-four individuals were tested for robotic dexterity, IQ elements, computer-gaming skills and general dexterity. Eighteen surgically inexperienced and 16 laparoscopically trained surgeons were included. Each individual performed three different tasks with the da Vinci surgical system and their times were recorded. An IQ test (elements: logical thinking, 3D imagination and technical understanding) was completed by each participant. Computer skills were tested with a simple computer game (hand-eye coordination) and general dexterity was evaluated by the ability to use chopsticks. We found no correlation between logical thinking, 3D imagination and robotic skills. Both computer gaming and general dexterity showed a slight but non-significant improvement in performance with the da Vinci robot (p > 0.05). A significant correlation between robotic skills, technical understanding and laparoscopic experience was observed (p < 0.05). The data support the conclusion that there are no significant correlations between robotic performance and logical thinking, 3D understanding, computer gaming skills and general dexterity. A correlation between robotic skills and technical understanding may exist. Laparoscopic experience seems to be the strongest predictor of performance with the da Vinci surgical system. Generally, it appears difficult to determine non-surgical predictors for robotic surgery.

  14. Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot

    Science.gov (United States)

    Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2017-03-01

    Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.

  15. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.

    Science.gov (United States)

    Ballantyne, Garth H; Moll, Fred

    2003-12-01

    The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.

  16. Structured training on the da Vinci Skills Simulator leads to improvement in technical performance of robotic novices.

    Science.gov (United States)

    Walliczek-Dworschak, U; Mandapathil, M; Förtsch, A; Teymoortash, A; Dworschak, P; Werner, J A; Güldner, C

    2017-02-01

    The increasing use of minimally invasive techniques such as robotic-assisted devices raises the question of how to acquire robotic surgery skills. The da Vinci Skills Simulator has been demonstrated to be an effective training tool in previous reports. To date, little data are available on how to acquire proficiency through simulator training. We investigated the outcome of a structured training programme for robotic surgical skills by robotic novices. This prospective study was conducted from January to December 2013 using the da Vinci Skills Simulator. Twenty participants, all robotic novices, were enrolled in a 4-week training curriculum. After a brief introduction to the simulator system, three consecutive repetitions of five selected exercises (Match Board 1, 2, 3 and Ring and Rail 1, 2) were performed in a defined order on days 1, 8, 15 and 22. On day 22, one repetition of a previously unpractised more advanced module (Needle Targeting) was also performed. After completion of each study day, the overall performance, time to completion, economy in motion, instrument collisions, excessive instrument force, instruments out of view, master workspace range and number of drops were analysed. Comparing the first and final repetition, overall score and time needed to complete all exercises, economy of motion and instrument collisions were significantly improved in nearly all exercises. Regarding the new exercise, a positive training effect could be demonstrated. While its overall entry score was significantly higher, the time to completion and economy of motion were significantly lower than the scores on the first repetition of the previous 5 exercises. It could be shown that training on the da Vinci Skills Simulator led to an improvement in technical performance of robotic novices. With regard to a new exercise, the training had a positive effect on the technical performance. © 2016 John Wiley & Sons Ltd.

  17. Use of the new da Vinci Xi® during robotic rectal resection for cancer: a pilot matched-case comparison with the da Vinci Si®.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Di Franco, Gregorio; Palmeri, Matteo; Caprili, Giovanni; D'Isidoro, Cristiano; Cobuccio, Luigi; Marciano, Emanuele; Di Candio, Giulio; Mosca, Franco

    2017-03-01

    The aim of this study was to compare the short-term outcomes of robotic rectal resection with total mesorectal excision (TME) for rectal cancer, with the use of the new da Vinci Xi® (Xi-RobTME group) and the da Vinci Si® (Si-RobTME group). Ten patients with histologically confirmed rectal cancer underwent robot-assisted TME with the use of the new da Vinci Xi. The outcomes of Xi-RobTME group were compared with a Si-RobTME group selected using a case-matched methodology. Overall operative times and mean hospital stays were shorter in the Xi-RobTME group. Surgeries were fully robotic with a complete take-down of the splenic flexure in all Xi-RobTME cases, while only four cases of the Si-RobTME group were fully robotic, with two cases of complete take-down of the splenic flexure. The new da Vinci Xi could offer some advantages with respect to the da Vinci Si in rectal resection for cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Historia de la robótica: de Arquitas de Tarento al robot da Vinci (Parte II)

    OpenAIRE

    F. M. Sánchez-Martín; Jimenez Schlegl, Pablo; Millán, Félix; Salvador-Bayarri, Jose; Monllau, V.; Palou, Juan; Villavicencio, Humberto

    2007-01-01

    HISTORY OF ROBOTICS: FROM ARCHYTAS OF TARENTUM UNTIL DA VINCI ROBOT. (PART II) Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. ...

  19. Total laparoscopic hysterectomy versus da Vinci robotic hysterectomy: is using the robot beneficial?

    Science.gov (United States)

    Soto, Enrique; Lo, Yungtai; Friedman, Kathryn; Soto, Carlos; Nezhat, Farr; Chuang, Linus; Gretz, Herbert

    2011-12-01

    To compare the outcomes of total laparoscopic to robotic approach for hysterectomy and all indicated procedures after controlling for surgeon and other confounding factors. Retrospective chart review of all consecutive cases of total laparoscopic and da Vinci robotic hysterectomies between August 2007 and July 2009 by two gynecologic oncology surgeons. Our primary outcome measure was operative procedure time. Secondary measures included complications, conversion to laparotomy, estimated blood loss and length of hospital stay. A mixed model with a random intercept was applied to control for surgeon and other confounders. Wilcoxon rank-sum, chi-square and Fisher's exact tests were used for the statistical analysis. The 124 patients included in the study consisted of 77 total laparoscopic hysterectomies and 47 robotic hysterectomies. Both groups had similar baseline characteristics, indications for surgery and additional procedures performed. The difference between the mean operative procedure time for the total laparoscopic hysterectomy group (111.4 minutes) and the robotic hysterectomy group (150.8 minutes) was statistically significant (p=0.0001) despite the fact that the specimens obtained in the total laparoscopic hysterectomy group were significantly larger (125 g vs. 94 g, p=0.002). The robotic hysterectomy group had statistically less estimated blood loss than the total laparoscopic hysterectomy group (131.5 mL vs. 207.7 mL, p=0.0105) however no patients required a blood transfusion in either group. Both groups had a comparable rate of conversion to laparotomy, intraoperative complications, and length of hospital stay. Total laparoscopic hysterectomy can be performed safely and in less operative time compared to robotic hysterectomy when performed by trained surgeons.

  20. Robot assisted partial nephrectomy (Da Vinci) in an angiomyolipoma associated to Wünderlich Syndrome.

    Science.gov (United States)

    Bolufer, Eduardo; López-Fontana, Gastón; Castillo, Octavio A

    2012-11-01

    To describe a case of renal angiomyolipoma treated by robotic assisted surgery. We report the case of a 26 year old females patient, in the context of third month pregnancy, who was diagnosed of spontaneous self-limited retroperitoneal hemorrhage due to renal angiomyolipoma. The patient was treated conservatively until normal delivery. At the 3rd month postpartum a robot-assisted (Da Vinci S) nephron sparing surgery (partial nephrectomy) was performed. Despite being a benign tumor, there are cases in which the renal angiomyolipoma requires surgical treatment. To our knowledge, after a thorough review of the literature, this would be the first reported case of angiomyolipoma treated with conservative surgery with robotic assistance (Da Vinci S-HD).

  1. Robotic right colectomy using the Da Vinci Single-Site® platform: case report.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Caprili, Giovanni; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco

    2013-09-01

    While single-port laparoscopy for abdominal surgery is technically challenging, the Da Vinci Single-Site® robotic surgery platform may help to overcome some of the difficulties of this rapidly evolving technique. The authors of this article present a case of single-incision, robotic right colectomy using this device. A 74-year-old female with malignant polyp of caecum was operated on with a single-site approach using the Da Vinci Single-Site® robotic surgery device. Resection and anastomosis were performed extra-corporeally after undocking the robot. The procedure was successfully completed in 200 min. No surgical complications occurred during the intervention and the post-operative stay and no conversion to laparotomy or additional trocars were required. To the best of our knowledge, this is the first case of right colectomy using the Da Vinci Single-Site® robotic surgery platform to be reported. The procedure is feasible and safe and its main advantages are restoration of triangulation and reduced instrument clashes. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Advancement of technology and its impact on urologists: release of the daVinci Xi, a new surgical robot.

    Science.gov (United States)

    Wilson, Timothy G

    2014-11-01

    The technology for robotic surgery continues to evolve. Robotic surgery has allowed us the opportunity to critically analyze outcomes and improve surgical technique both open and robotic. The new da Vinci Xi may allow us to do even more complex surgeries with minimally invasive techniques, but the true advantages remain to be seen. Copyright © 2014. Published by Elsevier B.V.

  3. da Vinci robotic partial nephrectomy for renal cell carcinoma: an atlas of the four-arm technique

    OpenAIRE

    Bhayani, Sam B.

    2008-01-01

    da Vinci robotic surgery is becoming a standard alternative to open and laparoscopic surgical techniques. Robotic partial nephrectomy has been described in limited numbers. In this article, a surgical atlas of the transperitoneal four-arm approach to robotic partial nephrectomy is outlined. Surgical pearls, pitfalls, and limitations are reviewed.

  4. Early Experience in Da Vinci Robot-Assisted Partial Nephrectomy: An Australian Single Centre Series

    Directory of Open Access Journals (Sweden)

    Francis Ting

    2015-01-01

    Full Text Available Introduction and Objectives. To demonstrate the safety and efficacy of the robot-assisted partial nephrectomy (RAPN technique in an Australian setting. Methods. Between November 2010 and July 2014, a total of 76 patients underwent 77 RAPN procedures using the Da Vinci Surgical System© at our institution. 58 of these procedures were performed primarily by the senior author (PB and are described in this case series. Results. Median operative time was 4 hours (range 1.5–6 and median warm ischaemic time (WIT was 8 minutes (range 0–30 including 11 cases with zero ischaemic time. All surgical margins were clear with the exception of one patient who had egress of intravascular microscopic tumour outside the capsule to the point of the resection margin. Complications were identified in 9 patients (15.8%. Major complications included conversion to open surgery due to significant venous bleeding (n=1, reperfusion injury (n=1, gluteal compartment syndrome (n=1, DVT/PE (n=1, and readmission for haematuria (n=1. Conclusion. This series demonstrates the safety and efficacy of the RAPN technique in an Australian setting when performed by experienced laparoscopic surgeons in a dedicated high volume robotic centre.

  5. Early Experience in Da Vinci Robot-Assisted Partial Nephrectomy: An Australian Single Centre Series.

    Science.gov (United States)

    Ting, Francis; Savdie, Richard; Chopra, Sam; Yuen, Carlo; Brenner, Phillip

    2015-01-01

    Introduction and Objectives. To demonstrate the safety and efficacy of the robot-assisted partial nephrectomy (RAPN) technique in an Australian setting. Methods. Between November 2010 and July 2014, a total of 76 patients underwent 77 RAPN procedures using the Da Vinci Surgical System© at our institution. 58 of these procedures were performed primarily by the senior author (PB) and are described in this case series. Results. Median operative time was 4 hours (range 1.5-6) and median warm ischaemic time (WIT) was 8 minutes (range 0-30) including 11 cases with zero ischaemic time. All surgical margins were clear with the exception of one patient who had egress of intravascular microscopic tumour outside the capsule to the point of the resection margin. Complications were identified in 9 patients (15.8%). Major complications included conversion to open surgery due to significant venous bleeding (n = 1), reperfusion injury (n = 1), gluteal compartment syndrome (n = 1), DVT/PE (n = 1), and readmission for haematuria (n = 1). Conclusion. This series demonstrates the safety and efficacy of the RAPN technique in an Australian setting when performed by experienced laparoscopic surgeons in a dedicated high volume robotic centre.

  6. Possible role of DaVinci Robot in uterine transplantation.

    Science.gov (United States)

    Iavazzo, Christos; Gkegkes, Ioannis D

    2015-01-01

    Minimally invasive surgery, specifically robotic surgery, became a common technique used by gynecological surgeons over the last decade. The realization of the first human uterine transplantation commenced new perspectives in the treatment of uterine agenesia or infertility in women with history of hysterectomy at a young age. Robot-assisted technique may enhance the safety of the procedure by facilitating the microvascular anastomosis, vaginal anastomosis, and ligaments' fixation. This study proposes the formation of a multicenter collaboration group to organize a protocol with the aim to clarify the possible role of robotic surgery in uterine transplantation.

  7. Development status of the ignition system for Vinci

    NARCIS (Netherlands)

    Frenken, G.; Vermeulen, E.; Bouquet, F.; Sanders, H.M.

    2002-01-01

    The development status of ignition system for the new cryogenic upper stage engine Vinci is presented. The concept differs from existing upper stage ignition systems as its functioning is engine independent. The system consists of a spark torch igniter, a highpressure igniter feed system and an

  8. Application of da Vinci(®) Robot in simple or radical hysterectomy: Tips and tricks.

    Science.gov (United States)

    Iavazzo, Christos; Gkegkes, Ioannis D

    2016-01-01

    The first robotic simple hysterectomy was performed more than 10 years ago. These days, robotic-assisted hysterectomy is accepted as an alternative surgical approach and is applied both in benign and malignant surgical entities. The two important points that should be taken into account to optimize postoperative outcomes in the early period of a surgeon's training are how to achieve optimal oncological and functional results. Overcoming any technical challenge, as with any innovative surgical method, leads to an improved surgical operation timewise as well as for patients' safety. The standardization of the technique and recognition of critical anatomical landmarks are essential for optimal oncological and clinical outcomes on both simple and radical robotic-assisted hysterectomy. Based on our experience, our intention is to present user-friendly tips and tricks to optimize the application of a da Vinci® robot in simple or radical hysterectomies.

  9. [Operation-assisted robot·da Vinci (lung)].

    Science.gov (United States)

    Nakamura, Hiroshige; Taniguchi, Yuji

    2014-07-01

    The most favorable advantage of robotic surgery is the markedly free movement of joint-equipped robotic forceps under 3-dimensional high-vision. Accurate operation makes complex procedures straightforward and may overcome weak points of previous thoracoscopic surgery. The efficiency and safety improves with acquiring skills. However, the spread of robotic surgery in the general thoracic surgery field has been delayed compared to those in other fields. The surgical indications include primary lung cancer, thymic diseases, and mediastinal tumors, but it is unclear whether technical advantages felt by operators are directly connected to merits for patients. Moreover, problems concerning the cost and education have not been solved. Although evidence is insufficient for robotic thoracic surgery, it may be an extension of thoracoscopic surgery, and reports showing its usefulness for primary lung cancer, myasthenia gravis, and thymoma have been accumulating. Now, important thing is to carry out clinical trial for advanced medical care and insurance acquisition. Although it is necessary to solve important problems such as safety, education, training, the cost for the future development, advancing robot technology has a possibility to markedly change general thoracic surgery.

  10. The Oberlin procedure for restoration of elbow flexion with the da Vinci robot: four cases.

    Science.gov (United States)

    Naito, Kiyohito; Facca, Sybille; Lequint, Thierry; Liverneaux, Phillipe A

    2012-03-01

    Robotics allows up to 40× visual magnification and 10× magnification of the surgeon's movements, and eliminates physiologic tremors. These properties should allow the development of mini-invasive limb surgery, especially of the brachial plexus. The purpose of this work was to test the feasibility of the restoration of elbow flexion according to the technique of Oberlin using a da Vinci robot. The authors' series included four patients (average age, 31 years) presenting with elbow flexion paralysis. They were operated on 8 months after injury using a da Vinci S robot. In three patients, the open technique (technique 1) was used, and the mini-invasive approach (technique 2) was used for the last one. Strength of elbow flexion was measured. After 1-year follow-up, all of the patients had recovered elbow flexion. No sensory or motor deficit was found in the ulnar nerve territory. There was no difficulty with technique 1; technique 2, however, required a conversion to technique 1 because of difficulty visualizing the operative field. The results of the authors' series show the feasibility of the robot-assisted technique for the Oberlin procedure. The lack of sensory feedback was not an issue. The development of specific retractors and instruments should improve the mini-invasive technique. Therapeutic, V.

  11. Opportunity cost in the economic evaluation of da Vinci robotic assisted surgery.

    Science.gov (United States)

    Fuertes-Guiró, Fernando; Girabent-Farrés, Montserrat; Viteri-Velasco, Eduardo

    2016-04-01

    This study aims to demonstrate the importance of the opportunity cost in using da Vinci robotic surgery, assisted by a comprehensive review of the literature to determine the differences in the total cost of surgery and operative time in traditional laparoscopic surgery and da Vinci robotic surgery. We identified the studies comparing the use of traditional laparoscopic surgery with robotics during the period 2002-2012 in the electronic economic evaluation databases, and another electronic search was performed for publications by Spanish hospitals in the same period to calculate the opportunity cost. A meta-analysis of response variables considering the total cost of the intervention and surgical time was completed using the items selected in the first revision, and their differences were analyzed. We then calculated the opportunity cost represented by these time differences using the data obtained from the studies in the second review of the literature. Nine items were selected in the first review and three in the second. Traditional laparoscopic surgery has a lower cost than the da Vinci (p surgery takes longer (8.0-65.5 min) than traditional surgery (p < 0.00001), and this difference represents an average opportunity cost for robot use of € 489.98, with a unit cost factor/time which varies according to the pathology dealt with, from € 8.2 to 18.7/min. The opportunity cost is a quantity that must be included in the total cost of using a surgical technology within an economic cost analysis in the context of an economic evaluation.

  12. Validation, correlation, and comparison of the da Vinci trainer(™) and the daVinci surgical skills simulator(™) using the Mimic(™) software for urologic robotic surgical education.

    Science.gov (United States)

    Liss, Michael A; Abdelshehid, Corollos; Quach, Stephen; Lusch, Achim; Graversen, Joseph; Landman, Jaime; McDougall, Elspeth M

    2012-12-01

    Virtual reality simulators with self-assessment software may assist novice robotic surgeons to augment direct proctoring in robotic surgical skill acquisition. We compare and correlate the da Vinci Trainer™ (dVT) and da Vinci Surgical Skills Simulators (dVSSS) in subjects with varying robotic experience. Students, urology residents, fellows, and practicing urologists with varying robotic experience were enrolled after local institutional review board approval. Three virtual reality tasks were preformed in sequential order (pegboard 1, pegboard 2, and tubes)-initially on the dVSSS and then on the dVT. The Mimic™ software used on both systems provides raw values and percent scores that were used in statistical evaluation. Statistical analysis was performed with the two-tailed independent t-test, analysis of variance, Tukey, and the Pearson rank correlation coefficient where appropriate. Thirty-two participants were recruited for this study and separated into five groups based on robotic surgery experience. In regards to construct validity, both simulators were able to differentiate differences among the five robotic surgery experience groups in the tubes suturing task (p≤0.00). Sixty-seven percent (4/6) robotic experts thought that surgical simulation should be implemented in residency training. The overall cohort considered both platforms easy to learn and use. Although performance scores were less in the dVT compared with the dVSSS, both simulators demonstrate good content and construct validity. The simulators appear to be equivalent for assessing surgeon proficiency and either can be used for robotic skills training with self-assessment feedback.

  13. Understanding the adoption dynamics of medical innovations: affordances of the da Vinci robot in the Netherlands.

    Science.gov (United States)

    Abrishami, Payam; Boer, Albert; Horstman, Klasien

    2014-09-01

    This study explored the rather rapid adoption of a new surgical device - the da Vinci robot - in the Netherlands despite the high costs and its controversial clinical benefits. We used the concept 'affordances' as a conceptual-analytic tool to refer to the perceived promises, symbolic meanings, and utility values of an innovation constructed in the wider social context of use. This concept helps us empirically understand robot adoption. Data from 28 in-depth interviews with diverse purposively-sampled stakeholders, and from medical literature, policy documents, Health Technology Assessment reports, congress websites and patients' weblogs/forums between April 2009 and February 2014 were systematically analysed from the perspective of affordances. We distinguished five interrelated affordances of the robot that accounted for shaping and fulfilling its rapid adoption: 'characteristics-related' affordances such as smart nomenclature and novelty, symbolising high-tech clinical excellence; 'research-related' affordances offering medical-technical scientific excellence; 'entrepreneurship-related' affordances for performing better-than-the-competition; 'policy-related' affordances indicating the robot's liberalised provision and its reduced financial risks; and 'communication-related' affordances of the robot in shaping patients' choices and the public's expectations by resonating promising discourses while pushing uncertainties into the background. These affordances make the take-up and use of the da Vinci robot sound perfectly rational and inevitable. This Dutch case study demonstrates the fruitfulness of the affordances approach to empirically capturing the contextual dynamics of technology adoption in health care: exploring in-depth actors' interaction with the technology while considering the interpretative spaces created in situations of use. This approach can best elicit real-life value of innovations, values as defined through the eyes of (potential) users

  14. Docking of the da Vinci Si Surgical System® with single-site technology.

    Science.gov (United States)

    Iranmanesh, Pouya; Morel, Philippe; Buchs, Nicolas C; Pugin, François; Volonte, Francesco; Kreaden, Usha Seshadri; Hagen, Monika E

    2013-03-01

    Strategies to spare operating room (OR) times are crucial to limiting the costs involved in robotic surgery. Among other factors, the pre-operative set-up and docking phases have been incriminated at first to be time consuming. The docking process on the standard multiport da Vinci Surgical System has not been shown to significantly prolong the overall OR time. This study aims to analyse whether the length of the docking process on the new da Vinci Si Surgical System with Single-Site™ technology remains acceptable. We prospectively analysed all of the robotic single-incision cholecystectomies performed at our institution for docking and operating times during 2011-2012. The docking task load was assessed each time in a self-administered fashion by the docking surgeon using the NASA TLX visual scale. Sixty-four robotic single-incision cholecystectomies were included and analysed. The mean operative time was 78 min. Two surgeons with previous robotic surgery experience and a group of three less experienced robotic surgeons were responsible for docking the system. They performed 45, 10 and nine dockings, respectively. The overall mean docking time was 6.4 min with no significant difference between the groups. The docking process represented approximately 8% of the operating time. The surgeon with the most procedures showed significant progress in his docking times. The different task load parameters did not show a statistical difference between the three groups, with the exception of the frustration parameter, which was higher in the group of less experienced surgeons. There were significant correlations between docking times and the assessment of the various task load parameters. The docking process for a robotic single-incision cholecystectomy is learned rapidly and does not significantly increase the overall OR time. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  16. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies.

    Science.gov (United States)

    Zorn, Kevin C; Gofrit, Ofer N; Orvieto, Marcelo A; Mikhail, Albert A; Galocy, R Matthew; Shalhav, Arieh L; Zagaja, Gregory P

    2007-11-01

    Previous reports have suggested that a 2% to 5% device failure rate (FR) be quoted when counseling patients about robot-assisted laparoscopic radical prostatectomy (RLRP). We sought to evaluate our FR on the da Vinci system. Since February 2003, more than 800 RLRPs have been performed at our institution using a single three-armed robotic unit. A prospective database was analyzed to determine the device FR and whether it resulted in case abortion or open conversion. Intuitive Surgical Systems provided data concerning the system's performance, including its fault rate. Error messages were classified as recoverable and non-recoverable faults. Between February 2003 and November 2006, 725 RLRP cases were available for evaluation. There were no intraoperative device failures that resulted in a case conversion. Technical errors resulting in surgeon handicap occurred in 3 cases (0.4%). Four patients (0.5%) had their procedures aborted secondary to system failure at initial set-up prior to patient entrance to the operating room. Data analysis retrieved from the da Vinci console reported on a total of 807 procedures since 2003. Only 4 cases (0.4%) were reported from the Intuitive Surgical database to result in either an aborted or a converted case, which compares favorably with our results. Since the last computer system upgrade (September 2005), the mean recoverable and non-recoverable fault rates per procedure were 0.21 and 0.05, respectively. For all the advanced features the da Vinci system offers, it is surprisingly reliable. Throughout our RLRP experience, device failure resulted in case conversion, procedure abortion, and surgeon handicap in 0, 0.5%, and 0.4% of procedures, respectively. As such, a lowered device FR of 0.5% should be used when counseling patients undergoing RLRP. To avoid futile general anesthesia, a policy should be enforced to ensure that the da Vinci system is completely set up before the patient enters the operating room.

  17. da Vinci Skills Simulator for Assessing Learning Curve and Criterion-based Training of Robotic Basic Skills

    NARCIS (Netherlands)

    Brinkman, W.M.; Luursema, J.M.; Kengen, B.; Schout, B.M.; Witjes, J.A.; Bekkers, R.L.M.

    2013-01-01

    OBJECTIVE: To answer 2 research questions: what are the learning curve patterns of novices on the da Vinci skills simulator parameters and what parameters are appropriate for criterion-based robotic training. MATERIALS AND METHODS: A total of 17 novices completed 2 simulator sessions within 3 days.

  18. [Da Vinci robot-assisted gastrectomy with lymph node dissection for gastric cancer: a case series of 9 patients].

    Science.gov (United States)

    Liu, Feng-lin; Lv, Chen-tao; Qin, Jing; Shen, Kun-tang; Chen, Wei-dong; Shen, Zhen-bin; Wang, Cong; Sun, Yi-hong; Qin, Xin-yu

    2010-05-01

    To evaluate the technical feasibility, effectiveness, and safety of robot-assisted gastrectomy(RAG) with lymphadenectomy using the Da Vinci system. A total of 9 patients in our institute from March 17 to April 24 2010 underwent RAG. Clinicopathologic characteristics and surgical outcomes were summarized. All operations were performed successfully without conversion to either open or laparoscopic approach. There were 5 total gastrectomies,2 distal gastrectomies, 1 proximal gastrectomy and 1 wedge gastrectomy with D(1) or D(2) lymphadenectomy. The total operative time was 150 to 440 minutes. Total blood loss ranged from 10 to 100 ml. The ranges of harvested lymph nodes were 19-24 for D(1) patients and 28-38 for D(2) patients. There was 1 case of postoperative gastric leakage, which were managed conservatively. RAG with lymphadenectomy can be applied safely and effectively for patients with gastric cancer.

  19. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  20. Instrument Failures for the da Vinci Surgical System: a Food and Drug Administration MAUDE Database Study.

    Science.gov (United States)

    Friedman, Diana C W; Lendvay, Thomas S; Hannaford, Blake

    2013-05-01

    Our goal was to analyze reported instances of the da Vinci robotic surgical system instrument failures using the FDA's MAUDE (Manufacturer and User Facility Device Experience) database. From these data we identified some root causes of failures as well as trends that may assist surgeons and users of the robotic technology. We conducted a survey of the MAUDE database and tallied robotic instrument failures that occurred between January 2009 and December 2010. We categorized failures into five main groups (cautery, shaft, wrist or tool tip, cable, and control housing) based on technical differences in instrument design and function. A total of 565 instrument failures were documented through 528 reports. The majority of failures (285) were of the instrument's wrist or tool tip. Cautery problems comprised 174 failures, 76 were shaft failures, 29 were cable failures, and 7 were control housing failures. Of the reports, 10 had no discernible failure mode and 49 exhibited multiple failures. The data show that a number of robotic instrument failures occurred in a short period of time. In reality, many instrument failures may go unreported, thus a true failure rate cannot be determined from these data. However, education of hospital administrators, operating room staff, surgeons, and patients should be incorporated into discussions regarding the introduction and utilization of robotic technology. We recommend institutions incorporate standard failure reporting policies so that the community of robotic surgery companies and surgeons can improve on existing technologies for optimal patient safety and outcomes.

  1. Comparison of intraoperative outcomes using the new and old generation da Vinci® robot for robot-assisted laparoscopic prostatectomy.

    Science.gov (United States)

    Shah, Ketul; Abaza, Ronney

    2011-11-01

    To review and compare intraoperative outcomes for robotic prostatectomy procedures performed on two generations of the da Vinci robotic surgery platform. We reviewed 100 consecutive robotic prostatectomy cases and compared intraoperative outcomes for procedures randomly performed on either the da Vinci S robot or first-generation standard robot. Baseline demographic data and intra-operative variables potentially impacting outcomes were reviewed and compared between the two groups. Mean total operative time was 191 min using the standard da Vinci robot (range 132-266) versus 169 min with S robot (range 98-230), representing a mean difference of 22 min (P = 0.002). This difference was statistically significant despite no difference in mean patient BMI of 30.6 (range 19-51) for standard versus 29.3 (range 21-37) for S (P = 0.31), no difference in mean prostate size of 54.6 g (range 26-101) for standard versus 57.3 g (range 32-151) for S (P = 0.55), and no difference in frequency of nerve-sparing (P = 0.99). There was also no difference in the portions of procedures performed by residents, which in some cases was none and some the entire procedure, but the standard was more often used for the surgeon's first case of the day (P = 0.006). There was no difference in blood loss (P = 0.08), positive margins (P = 0.87), or mean number of lymph nodes removed (10.7 vs 10.6). Both generations of da Vinci robotic technology are equally effective for PALP, but the S robot appears to allow shorter procedure times. Further such evaluations are necessary to guide institutions and public policy decision-makers on investments in newer generations of robotic technology as incremental advances continue. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  2. Sponsoring surgeons; an investigation on the influence of the da Vinci robot.

    Science.gov (United States)

    Criss, Cory N; Gadepalli, Samir K

    2017-08-26

    The integrity of the medical literature about robotic surgery remains unclear despite wide-spread adoption. We sought to determine if payment from Intuitive Surgical Incorporated (ISI) affected quality of the research produced by surgeons. Publicly available financial data from the CMS website regarding the top-20 earners from ISI for 2015 was gathered. Studies conducted by these surgeons were identified using PubMed. Inclusion criteria consisted of publications about the da Vinci® robot on patient outcomes. The primary outcome of our study was if the study conclusion was positive/equivocal/negative towards the robot. Secondary outcomes included authorship, sponsorship, study controls, and disclosure. The top earners received $3,296,844 in 2015, with a median of $141,959. Sub-specialties included general surgery (55%), colorectal (20%), thoracic (15%), and obstetrics/gynecology (10%). Of the 37 studies, there was 1 RCT, with observational studies comprising the rest. The majority of the studies (n = 16, 43%) had no control population, with 11 (30%) comparing to same institution/surgeon, Though ISI sponsored only 6 (16%) studies, all with positive conclusions, 27 (73%) studies had positive conclusions for robot use, 9 (24%) equivocal, and only 1 (3%) negative. Overall, 13 earners had lead authorship and 11 senior. This initial pilot study highlights a potential bias as current literature published by benefactors demonstrates low quality and highly positive conclusions towards approval of the robot. This substantiates the need for a large, systematic review of the potential influence of sponsoring surgeons on medical literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Full Robotic Colorectal Resections for Cancer Combined With Other Major Surgical Procedures: Early Experience With the da Vinci Xi.

    Science.gov (United States)

    Morelli, Luca; Di Franco, Gregorio; Guadagni, Simone; Palmeri, Matteo; Gianardi, Desirée; Bianchini, Matteo; Moglia, Andrea; Ferrari, Vincenzo; Caprili, Giovanni; D'Isidoro, Cristiano; Melfi, Franca; Di Candio, Giulio; Mosca, Franco

    2017-08-01

    The da Vinci Xi has been developed to overcome some of the limitations of the previous platform, thereby increasing the acceptance of its use in robotic multiorgan surgery. Between January 2015 and October 2015, 10 patients with synchronous tumors of the colorectum and others abdominal organs underwent robotic combined resections with the da Vinci Xi. Trocar positions respected the Universal Port Placement Guidelines provided by Intuitive Surgical for "left lower quadrant," with trocars centered on the umbilical area, or shifted 2 to 3 cm to the right or to the left, depending on the type of combined surgical procedure. All procedures were completed with the full robotic technique. Simultaneous procedures in same quadrant or left quadrant and pelvis, or left/right and upper, were performed with a single docking/single targeting approach; in cases of left/right quadrant or right quadrant/pelvis, we performed a dual-targeting operation. No external collisions or problems related to trocar positions were noted. No patient experienced postoperative surgical complications and the mean hospital stay was 6 days. The high success rate of full robotic colorectal resection combined with other surgical interventions for synchronous tumors, suggest the efficacy of the da Vinci Xi in this setting.

  4. Stray electrical currents in laparoscopic instruments used in da Vinci® robot-assisted surgery: an in vitro study.

    Science.gov (United States)

    Mendez-Probst, Carlos E; Vilos, George; Fuller, Andrew; Fernandez, Alfonso; Borg, Paul; Galloway, David; Pautler, Stephen E

    2011-09-01

    The da Vinci(®) surgical system requires the use of electrosurgical instruments. The re-use of such instruments creates the potential for stray electrical currents from capacitive coupling and/or insulation failure. We used objective measures to report the prevalence and magnitude of such stray currents. Thirty-seven robotic instruments were tested using an electrosurgical unit (ESU) at pure coagulation and cut waveforms at four different settings. Conductive gel-coated instruments were tested at 40W, 80W, and maximum ESU output (coagulation 120W, cut 300W). The magnitude of stray currents was measured by an electrosurgical analyzer. At coagulation waveform in open air, 86% of instruments leaked a mean of 0.4W. In the presence of gel-coated instruments, stray currents were detected in all instruments with means (and standard deviation) of 3.4W (± 2), 4.1W (± 2.3), and 4.1W (± 2.3) at 40W, 80W, and 120W, respectively. At cut waveform in open air, none of the instruments leaked current, while gel-coated instruments leaked a mean of 2.2W (± 1.3), 2.2W (± 1.9) and 3.2W (± 1.9) at 40W, 80W, and 300W, respectively. All tested instruments in our study demonstrated energy leakage. Stray currents were higher during coagulation (high voltage) waveforms, and the magnitude was not always proportionate to the ESU settings. Stray currents have the potential to cause electrical burns. We support the programmed end of life of da Vinci instruments on the basis of safety. Consideration should be given to alternate energy sources or the adoption of active electrode monitoring technology to all monopolar instruments.

  5. Face, content, and construct validity of four, inanimate training exercises using the da Vinci ® Si surgical system configured with Single-Site ™ instrumentation.

    Science.gov (United States)

    Jarc, Anthony M; Curet, Myriam

    2015-08-01

    Validated training exercises are essential tools for surgeons as they develop technical skills to use robot-assisted minimally invasive surgical systems. The purpose of this study was to show face, content, and construct validity of four, inanimate training exercises using the da Vinci (®) Si surgical system configured with Single-Site (™) instrumentation. New (N = 21) and experienced (N = 6) surgeons participated in the study. New surgeons (11 Gynecology [GYN] and 10 General Surgery [GEN]) had not completed any da Vinci Single-Site cases but may have completed multiport cases using the da Vinci system. They participated in this study prior to attending a certification course focused on da Vinci Single-Site instrumentation. Experienced surgeons (5 GYN and 1 GEN) had completed at least 25 da Vinci Single-Site cases. The surgeons completed four inanimate training exercises and then rated them with a questionnaire. Raw metrics and overall normalized scores were computed using both video recordings and kinematic data collected from the surgical system. The experienced surgeons significantly outperformed new surgeons for many raw metrics and the overall normalized scores derived from video review (p Vinci Single-Site surgery and actually testing the technical skills used during da Vinci Single-Site surgery. In summary, the four training exercises showed face, content, and construct validity. Improved overall scores could be developed using additional metrics not included in this study. The results suggest that the training exercises could be used in an overall training curriculum aimed at developing proficiency in technical skills for surgeons new to da Vinci Single-Site instrumentation.

  6. Da Vinci Xi and Si platforms have equivalent perioperative outcomes during robot-assisted partial nephrectomy: preliminary experience.

    Science.gov (United States)

    Abdel Raheem, Ali; Sheikh, Abulhasan; Kim, Dae Keun; Alatawi, Atalla; Alabdulaali, Ibrahim; Han, Woong Kyu; Choi, Young Deuk; Rha, Koon Ho

    2017-03-01

    The aims of this study were to compare the perioperative outcomes of da Vinci Xi to Si during robotic-assisted partial nephrectomy (RAPN) and to discuss the feasibility of our novel port placement scheme for the da Vinci Xi platform, to overcome the existing kinetic and technical difficulties we faced with the linear port placement in patients with a small body habitus. A retrospective data analysis of patients who underwent RPN using da Vinci Xi (n = 18) was carried out. The outcomes of the Xi group were compared with the Si group (n = 18) selected using a case-matched methodology. For da Vinci Xi, we applied the universal linear port placement in 12 patients and our modified port placement in the remaining 6 patients. The Xi group had a shorter mean docking time of 17.8 ± 2.6 min compared to the Si group of 20.5 ± 2.1 min (p = 0.002); otherwise, no significant difference was present with regard to the remaining perioperative variables (p > 0.05). The modified Xi port placement had a shorter mean console time of 70.8 ± 9.7 min compared to the universal linear port placement of 89.3 ± 17.2 min (p = 0.03). Moreover, it provided a broader field of vision with excellent robotic arms movement, minimizing collisions and allowing an easier and comfortable surgical assist. Da Vinci Xi appears to be feasible and safe during RPN with similar outcomes to Si. The novel Xi port placement makes surgery easier in patients with low BMI.

  7. Surgical anatomy of the supraglottic larynx using the da Vinci robot.

    Science.gov (United States)

    Goyal, Neerav; Yoo, Frederick; Setabutr, Dhave; Goldenberg, David

    2014-08-01

    Transoral robotic surgery (TORS) has facilitated organ-preserving surgery of the larynx. It has also presented a change in the surgical perspective. We performed cadaveric dissections using the robot to highlight the vascular and muscular anatomy of the supraglottic larynx. Cadaveric specimens underwent injection of their vasculature, and after injection a robotic surgical system was used to perform a transoral dissection of the supraglottic region. Care was taken to preserve anatomic landmarks and microvascular structures. Five fresh frozen cadaveric human heads were injected with silicone and used for the dissection. The superior laryngeal neurovascular bundle was identified and an absent superior laryngeal vein (SLV) was noted on 1 specimen. Using the robotic endoscope allowed us to visualize and identify the microvasculature of the head and neck. These dissections revealed anatomic variations in the superior laryngeal neurovascular bundle and also highlighted the differences in view using a surgical robotic system. Copyright © 2013 Wiley Periodicals, Inc.

  8. First series of total robotic hysterectomy (TRH) using new integrated table motion for the da Vinci Xi: feasibility, safety and efficacy.

    Science.gov (United States)

    Giannini, Andrea; Russo, Eleonora; Mannella, Paolo; Palla, Giulia; Pisaneschi, Silvia; Cecchi, Elena; Maremmani, Michele; Morelli, Luca; Perutelli, Alessandra; Cela, Vito; Melfi, Franca; Simoncini, Tommaso

    2017-08-01

    To present the first case series of total robotic hysterectomy (TRH), using integrated table motion (ITM), which is a new feature comprising a unique operating table by Trumpf Medical that communicates wirelessly with the da Vinci Xi surgical system. ITM has been specifically developed to improve multiquadrant robotic surgery such as that conducted in colorectal surgery. Between May and October 2015, a prospective post-market study was conducted on ITM in the EU in 40 cases from different specialties. The gynecological study group comprised 12 patients. Primary endpoints were ITM feasibility, safety and efficacy. Ten patients underwent TRH. Mean number of ITM moves was three during TRH; there were 31 instances of table moves in the ten procedures. Twenty-eight of 31 ITM moves were made to gain internal exposure. The endoscope remained inserted during 29 of the 31 table movements (94%), while the instruments remained inserted during 27 of the 31 moves (87%). No external instrument collisions or other problems related to the operating table were noted. There were no ITM safety-related observations and no adverse events. This preliminary study demonstrated the feasibility, safety and efficacy of ITM for the da Vinci Xi surgical system in TRH. ITM was safe, with no adverse events related to its use. Further studies will be useful to define the real role and potential benefit of ITM in gynecological surgery.

  9. Robot-assisted total mesorectal excision for rectal cancer: case-matched comparison of short-term surgical and functional outcomes between the da Vinci Xi and Si.

    Science.gov (United States)

    Morelli, Luca; Di Franco, Gregorio; Guadagni, Simone; Rossi, Leonardo; Palmeri, Matteo; Furbetta, Niccolò; Gianardi, Desirée; Bianchini, Matteo; Caprili, Giovanni; D'Isidoro, Cristiano; Mosca, Franco; Moglia, Andrea; Cuschieri, Alfred

    2017-07-21

    Robotic rectal resection with da Vinci Si has some technical limitations, which could be overcome by the new da Vinci Xi. We compare short-term surgical and functional outcomes following robotic rectal resection with total mesorectal excision for cancer, with the da Vinci Xi (Xi-RobTME group) and the da Vinci Si (Si-RobTME group). The first consecutive 30 Xi-RobTME were compared with a Si-RobTME control group of 30 patients, selected using a one-to-one case-matched methodology from our prospectively collected Institutional database, comprising all cases performed between April 2010 and September 2016 by a single surgeon. Perioperative outcomes were compared. The impact of minimally invasive TME on autonomic function and quality of life was analyzed with specific questionnaires. The docking and overall operative time were shorter in the Xi-RobTME group (p robotic approach with complete splenic flexure mobilization was used in 30/30 (100%) of the Xi-RobTME cases and in 7/30 (23%) of the Si-RobTME group (p  25 kg/m2 was necessary in ten patients (45 vs. 0%, p Vinci Xi seem to be mainly associated with a shorter docking and operative time and with superior ability to perform a fully-robotic approach. Clinical and functional outcomes seem not to be improved, with the introduction of the new Xi platform.

  10. [First experience in the thyroid and parathyroid surgery using the da Vinci® system].

    Science.gov (United States)

    Al Kadah, B; Siemer, S; Schick, B

    2014-01-01

    Endoscopic surgery for the treatment of thyroid and parathyroid pathologies is gaining increasing attention. The da Vinci® system has been already widely used in different fields of medicine including recently thyroid and parathyroid surgery. Herein we report our first experiences in endoscopic surgery of thyroid and parathyroid pathologies using the da Vinci® system. 8 patients presenting with struma nodosa in 6 cases and parathyroid adenomas in 2 cases have been treated using the da Vinci® system at the ENT department of Homburg/Saar University. The skin incision to introduce the instruments with the da Vinci® system were axilar or at the lateral segment of the clavicle. The neurovascular structures like inferior laryngeal nerve as well as the pathologies were clearly 3-dimensional visualized in all 8 cases. No paralysis of the vocal cord was observed. All patients had in histological examination a benign pathology. The endoscopic surgery of the thyroid and parathyroid gland can be performed using the da Vinci® system and offers an excellent, intraoperative, 3-dimensional visualization of the neurovascular structures. Additionally the da Vinci® system enables skin incisions within considerable distance from the thyroid and parathyroid gland. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Conventional laparoscopic and robot-assisted spleen-preserving pancreatectomy: does da Vinci have clinical advantages?

    Science.gov (United States)

    Kang, Chang Moo; Kim, Dong Hyun; Lee, Woo Jung; Chi, Hoon Sang

    2011-06-01

    Function-preserving minimally invasive pancreatectomy is thought to be an ideal approach for pancreatic benign and borderline malignant lesions requiring pancreatectomy. However, it is not that easy to accomplish this goal with the conventional laparoscopic approach. It requires extensive surgeon experience and learned techniques. A robot surgical system was recently introduced to overcome these limitations and it may potentially provide precise and safe laparoscopic surgery. Between March 2006 and July 2010, a total of 45 patients underwent laparoscopic or robot-assisted pancreatectomy performed by a single pancreatic surgeon to preserve the spleen. Twenty-five patients underwent the conventional laparoscopic approach (Lap group) and the other 20 patients underwent robot-assisted surgery (Robot group). The perioperative clinicopathologic variables (age, gender, length of resected pancreas, tumor size, tumor location, amount of bleeding, operation time, length of hospital stay, complications, mortality, and cost) were compared between the two groups, as well as the spleen preservation rate. Younger patients preferred robot-assisted surgery to conventional laparoscopic surgery (44.5±15.9 vs. 56.7±13.9 years, p=0.010), and the mean operation time was longer in the Robot group (258.2±118.6 vs. 348.7±121.8 min, p=0.016). The spleen-preserving rate of the Robot group was considerably superior to that of the Lap group (fail/success, 9/16 vs. 1/19, p=0.027). However, robot surgery cost the patients about USD 8,300 (USD 8,304.8±870.0), which was more than twice the amount for the Lap group (USD 3,861.7±1,724.3). There were no significant differences in other clinicopathologic variables. Robot-assisted pancreatic surgery could provide an increased chance for spleen preservation in spite of higher cost and longer operation time. More experiences are needed to specifically address the role of robot surgery in the advanced laparoscopic era.

  12. Video. Chopstick surgery: a novel technique enables use of the Da Vinci Robot to perform single-incision laparoscopic surgery.

    Science.gov (United States)

    Joseph, R A; Salas, N A; Johnson, C; Goh, A; Cuevas, S P; Donovan, M A; Kaufman, M G; Miles, B; Reardon, P R; Bass, B L; Dunkin, B J

    2010-12-01

    Single-incision laparoscopic surgery (SILS) is limited by the coaxial arrangement of the instruments. A surgical robot with "wristed" instruments could overcome this limitation but the "arms" collide when working coaxially. This video demonstrates a new technique of "chopstick surgery," which enables use of the robotic arms through a single incision without collision. Experiments were conducted utilizing the da Vincirobot (Sunnyvale, CA) in a porcine model with three laparoscopic ports (12 mm, 2-5 mm) introduced through a single "incision." Pilot work conducted while performing Fundamentals of Laparoscopic Surgery (FLS) tasks determined the optimal setup for SILS to be a triangular port arrangement with 2-cm trocar distance and remote center at the abdominal wall. Using this setup, an experienced robotic surgeon performed a cholecystectomy and nephrectomy in a porcine model utilizing the "chopstick" technique. The chopstick arrangement crosses the instruments at the abdominal wall so that the right instrument is on the left side of the target and the left instrument on the right. This arrangement prevents collision of the external robotic arms. To correct for the change in handedness, the robotic console is instructed to drive the "left" instrument with the right hand effector and the "right" instrument with the left. Both procedures were satisfactorily completed with no external collision of the robotic arms, in acceptable times and with no technical complications. This is consistent with results obtained in the box trainer where the chopstick configuration enabled significantly improved times in all tasks and decreased number of errors and eliminated instrument collisions. Chopstick surgery significantly enhances the functionality of the surgical robot when working through a small single incision. This technique will enable surgeons to utilize the robot for SILS and possibly for intraluminal or transluminal surgery.

  13. da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills.

    Science.gov (United States)

    Brinkman, Willem M; Luursema, Jan-Maarten; Kengen, Bas; Schout, Barbara M A; Witjes, J Alfred; Bekkers, Ruud L

    2013-03-01

    To answer 2 research questions: what are the learning curve patterns of novices on the da Vinci skills simulator parameters and what parameters are appropriate for criterion-based robotic training. A total of 17 novices completed 2 simulator sessions within 3 days. Each training session consisted of a warming-up exercise, followed by 5 repetitions of the "ring and rail II" task. Expert participants (n = 3) performed a warming-up exercise and 3 repetitions of the "ring and rail II" task on 1 day. We analyzed all 9 parameters of the simulator. Significant learning occurred on 5 parameters: overall score, time to complete, instrument collision, instruments out of view, and critical errors within 1-10 repetitions (P motion and excessive instrument force only showed improvement within the first 5 repetitions. No significant learning on the parameter drops and master workspace range was found. Using the expert overall performance score (n = 3) as a criterion (overall score 90%), 9 of 17 novice participants met the criterion within 10 repetitions. Most parameters showed that basic robotic skills are learned relatively quickly using the da Vinci skills simulator, but that 10 repetitions were not sufficient for most novices to reach an expert level. Some parameters seemed inappropriate for expert-based criterion training because either no learning occurred or the novice performance was equal to expert performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Clinical Experience of the Treatment of Solitary Pulmonary Nodules with Da Vinci Surgical System

    Directory of Open Access Journals (Sweden)

    Xiangdong TONG

    2014-07-01

    Full Text Available Background and objective A solitary pulmonary nodule (SPN is defined as a round intraparenchimal lung lesion less than 3 cm in size, not associated with atelectasis or adenopathy. The aim of this study is to learn clinical experience of the treatment of SPN with Da Vinci Surgical System. Methods A total of 9 patients with solitary pulmonary nodules (SPN less than 3 cm in diameter was treated with Da Vinci Surgical System (Intuitive Surgical, California in thoracic surgery department from General Hospital of Shenyang Militrary Region from November 2011 to March 2014. This group of patients included 3 males and 6 females, and the mean age was 51±9.9 yr (range: 41-74 yr. Most of the patients were no obvious clinical symptoms (7 cases were found by physical examination, others were with cough and expectoration. Their median medical history was 12 mo (range: 4 d-3 yr. All the lesions of patients were peripheral pulmonary nodules and the mean diameter of those was (1.4±0.6 cm(range: 0.8-2.8 cm. Wedge-shaped resection or lobectomy was performed depending on the result of rapid pathology and systemic lymph node dissection was done for malignant leision. We used general anesthesis with double lumens trachea cannula. We set the patients in lateral decubitus position with jackknife. The patient cart enter from top of the patient. The position of trocars would be set according to the position of lesion. A 12 mm incision was positioned at the 8th intercostal space in the posterior axillary line as vision port, and two 8 mm incisions were positioned at the 5th intercostal space between the anterior axillary line and midclavicular line, and the 8th infrascapular line as robotic instrument ports about 10 cm apart from the vision port. One additional auxiliary small incision for instrument without retracting ribs was set at the 7th intercostal space in the middle axillary line. Results There were 4 benign leisions and 5 malignancies identified. Wedge

  15. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery.

    Science.gov (United States)

    Volonté, Francesco; Pugin, Francois; Buchs, Nicolas Christian; Spaltenstein, Joël; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-04-01

    The increased distance between surgeon and surgical field is a significant problem in laparoscopic surgery. Robotic surgery, although providing advantages for the operator, increases this gap by completely removing force feedback. Enhancement with visual tools can therefore be beneficial. The goal of this preliminary work was to create a custom plugin for OsiriX to display volume-rendered images in the da Vinci surgeon's console. The TilePro multi-input display made the generated stereoscopic pairs appear to have depth. Tumor position, vascular supply, spatial location, and relationship between organs appear directly within the surgeon's field of view. This study presents a case of totally robotic right colectomy for cancer using this new technology. Sight diversion was no longer necessary. Depth perception was subjectively perceived as profitable. Total immersion in the operative field helped compensate for the lack of tactile feedback specific to robotic intervention. This innovative tool is a step forward toward augmented-reality robot-assisted surgery.

  16. Robot-assisted laparoendoscopic single-site partial nephrectomy with the novel da vinci single-site platform: initial experience.

    Science.gov (United States)

    Komninos, Christos; Tuliao, Patrick; Kim, Dae Keun; Choi, Young Deuk; Chung, Byung Ha; Rha, Koon Ho

    2014-06-01

    To report our initial clinical cases of robotic laparoendoscopic single-site (R-LESS) partial nephrectomy (PN) performed with the use of the novel Da Vinci R-LESS platform. Three patients underwent R-LESS PN from November 2013 through February 2014. Perioperative and postoperative outcomes were collected and intraoperative difficulties were noted. Operative time and estimated blood loss volume ranged between 100 and 110 minutes and between 50 and 500 mL, respectively. None of the patients was transfused. All cases were completed with the off-clamp technique, whereas one case required conversion to the conventional (multiport) approach because of difficulty in creating the appropriate scope for safe tumor resection. No major postoperative complications occurred, and all tumors were resected in safe margins. Length of hospital stay ranged between 3 and 7 days. The lack of EndoWrist movements, the external collisions, and the bed assistant's limited working space were noticed to be the main drawbacks of this surgical method. Our initial experience with R-LESS PN with the novel Da Vinci platform shows that even though the procedure is feasible, it should be applied in only appropriately selected patients. However, further improvement is needed to overcome the existing limitations.

  17. Technical review of the da Vinci surgical telemanipulator.

    Science.gov (United States)

    Freschi, C; Ferrari, V; Melfi, F; Ferrari, M; Mosca, F; Cuschieri, A

    2013-12-01

    The da Vinci robotic surgical telemanipulator has been utilized in several surgical specialties for varied procedures, and the users' experiences have been widely published. To date, no detailed system technical analyses have been performed. A detailed review was performed of all publications and patents about the technical aspects of the da Vinci robotic system. Published technical literature on the da Vinci system highlight strengths and weaknesses of the robot design. While the system facilitates complex surgical operations and has a low malfunction rate, the lack of haptic (especially tactile) feedback and collisions between the robotic arms remain the major limitations of the system. Accurate, preplanned positioning of access ports is essential. Knowledge of the technical aspects of the da Vinci robot is important for optimal use. We confirmed the excellent system functionality and ease of use for surgeons without an engineering background. Research and development of the surgical robot has been predominant in the literature. Future trends address robot miniaturization and intelligent control design. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Tandem mobile robot system

    Science.gov (United States)

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  19. [Da Vinci robot assisted radical prostatectomy: one year experience at the Hospital Clínico San Carlos].

    Science.gov (United States)

    Moreno Sierra, Jesús; Núñez Mora, Carlos; Galante Romo, Ma Isabel; Prieto Nogal, Sara; López García Asenjo, José; Silmi Moyano, Angel

    2008-04-01

    Hospital Clínico San Carlos in Madrid is the first Spanish public centre using the latest surgical technology: the Da Vinci robot. First operation was carried out in our department in October 9th 2006. Since then, numerous changes have happened which enabled us to overcome difficulties, to complete the learning curve. Between October 9th 2006 and November 30th 2007 we performed 30 radical prostatectomies with the Da Vinci robot. Mean patient age was 63 years (47-70 years) with an ASA (American society of anesthesia) risk below III in all cases, a Gleason score between 2 and 8 and a PSA < or = 15 (3.5-15). Mean prostatic volume measured by transrectal ultrasound was 36 cc (16-90 cc). Six trocars and a 15 mm Hg pneumoperitoneum were employed. Mean operative room occupation time was 5.9 hours (4-14 hours). Two cases were converted to open surgery and one to laparoscopy. No major intraoperative complications have happened. In the immediate post-operative period, 2 patients presented plexopathy and arthralgia, 1 infection at the site of one trocar, and 2 haematomas at the site of trocar insertion. Sixteen patients required transfusion (mean 1 red blood cells unit (0-4)). Bladder catheter was retrieved between 5th and 21st post-operative days (mean 11 days). Regarding continence: 10 patients were completely continent or present mild incontinence (0-1 pad) and 5 had moderate incontinence (2-5 pads). Three patients preserve sexual potency, the rest show different grades of dysfunction.

  20. A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy.

    Science.gov (United States)

    Beyer, Burkhard; Schlomm, Thorsten; Tennstedt, Pierre; Boehm, Katharina; Adam, Meike; Schiffmann, Jonas; Sauter, Guido; Wittmer, Corina; Steuber, Thomas; Graefen, Markus; Huland, Hartwig; Haese, Alexander

    2014-07-01

    The benefit of intraoperative neurovascular structure-adjacent frozen section examination (NeuroSAFE) of the prostate was demonstrated in open radical prostatectomy. In da Vinci robot-assisted prostatectomy (DVP), this approach is often avoided due to suspected difficulties in harvesting the prostate, loss in pneumoperitoneum, increased blood loss, and prolonged operating room (OR) time. To provide a detailed description of the technique, feasibility, and impact of the NeuroSAFE technique on OR time, blood loss, frequency of nerve sparing (NS), and positive surgical margins (PSMs) in DVP. We analyzed 1570 consecutive patients undergoing DVP from 2004 to 2012. NeuroSAFE was performed in 1178 patients. The prostate was intraoperatively harvested via an extension of the camera trocar incision without undocking the robotic arms. Blood spillage from the dorsal vein complex due to the loss of pneumoperitoneum was avoided by upward traction on the transurethral catheter. After prostate removal, pneumoperitoneum was reestablished by closing the extended incision with running sutures and repositioning the optical trocar. The NeuroSAFE procedure consisted of intraoperative bilateral frozen sections covering the entire neurovascular bundles adjacent prostate surface. We compared OR time, blood loss, NS frequency, and PSMs in non-NeuroSAFE versus NeuroSAFE DVP. There was no significant difference in blood loss (253.5 ± 204.4 ml vs 265.8 ± 246.7 ml; p=0.49) and OR time (220 min ± 51 vs 224 min ± 64; p=0.22). No complications associated with specimen harvesting occurred. NS rate increased significantly with versus without NeuroSAFE (overall 97% vs 81%; pT2 99% vs 90%, pT3a 94% vs 74%, pT3b 91% vs 30). PSM rate dropped significantly with NeuroSAFE (overall 16% vs 24%; pT2 8% vs 15%, pT3a 22% vs 39%, pT3b 49% vs 67%; all pVinci robot-assisted prostatectomy. We showed that there was no increased blood loss and operating room time. We maximized the nerve-sparing frequency and

  1. Ergonomic assessment of the da Vinci console in robot-assisted surgery

    Directory of Open Access Journals (Sweden)

    van’t Hullenaar Cas D.P.

    2017-04-01

    Full Text Available Robot-assisted surgery is considered to improve ergonomics over standard endoscopic surgery. Nevertheless, previous research demonstrated ergonomic deficits in the current console set-up.

  2. Learning experience using the double-console da Vinci surgical system in gynecology: a prospective cohort study in a University hospital.

    Science.gov (United States)

    Marengo, Francesca; Larraín, Demetrio; Babilonti, Luciana; Spinillo, Arsenio

    2012-02-01

    To report our preliminary experience with robotic-assisted laparoscopy in a variety of gynecological surgeries in a teaching hospital. A total of 33 patients who underwent robotic-assisted laparoscopic procedures for gynecological diseases were included in the study. All surgeries were performed using the double-console da Vinci surgical system. Patient's demographics, surgical procedures, operative time, perioperative complications, conversion rate, hospital stay and estimated blood loss were prospectively collected. All procedures were completed robotically except three (9%): two cases were converted to laparotomy and one case was converted to vaginal surgery. The mean age was 47 ± 11 and mean BMI was 23 kg/m². Mean time taken for docking the robot was 22 min. Mean operative time was 152 min. Mean anesthesia time was 196 min. Mean hemoglobin drop was 2 g/dL. Four complications occurred: one transitory ischemic attack, one port-site hernia managed through trocar incision, one periumbilical hematoma managed conservatively and one vaginal cuff hematoma who required laparoscopy. The mean hospital stay was 4 days. With the use of robotic technology, surgeons are able to offer minimally invasive surgery to a larger percentage of patients. Double console system seems a promising tool in surgical education, improving both resident training and participation in surgeries. A shorter adaption to robotics could be expected in teams with previous experience with standard laparoscopy, however, a stepwise start with simpler cases is the key to achieve a safe adaption to robotic surgery.

  3. A review of training research and virtual reality simulators for the da Vinci surgical system.

    Science.gov (United States)

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  4. Robot-assisted Radical Prostatectomy: How I Do It

    OpenAIRE

    Cemil Uygur; Fethullah Gevher

    2016-01-01

    In this article, we describe surgical technique for robot assisted radical prostatectomy using the four-arm da Vinci robotic surgical system (SI, Intuitive Surgical, Sunnyvale, CA, USA). We have continually refined our technique to improve patient outcomes.

  5. Nerve transfer to the deltoid muscle using the nerve to the long head of the triceps with the da Vinci robot: six cases.

    Science.gov (United States)

    Miyamoto, Hideaki; Leechavengvongs, Somsak; Atik, Teddy; Facca, Sybille; Liverneaux, Philippe

    2014-07-01

    Nerve transfer to the deltoid muscle using the nerve to the long head of the triceps is a reliable method for restoration of deltoid function. The aim of this retrospective study was to report the results of nerve transfer to the deltoid muscle using the nerve to the long head of the triceps procedure using a robot.  Our series included six patients (mean age 36.3 years) with total deltoid muscle paralysis. A da Vinci-S robot was placed in position. After dissection of the quadrilateral and triangular spaces, the anterior branch of the axillary nerve and the branch to the long head of the triceps were transected, and then robotically sutured with two 10-0 nylon stiches. In two cases, an endoscopic procedure was tried under carbon dioxide (CO2) insufflation.  In all patients except one, deltoid function against resistance (M4) was obtained at the last follow-up evaluation. The average shoulder abduction was 112 degrees. No weakness of elbow extension was observed. In two cases with the endoscopic technique, vision was blurred and conversion to open technique was performed.  The advantages of robotic microsurgery are motion scaling and disappearance of physiological tremor. Reasons for failure of the endoscopic technique could be explained by insufficient pressure. We had no difficulty using the robot without the sensory feedback. The robot-assisted nerve transfer to deltoid muscle using the nerve to the long head of the triceps was a feasible application for restoration of shoulder abduction after brachial plexus or axillary nerve injury. Therapeutic Study. Level of Evidence IV. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. The possible role of the da Vinci robot for patients with vulval carcinoma undergoing inguinal lymph node dissection.

    Science.gov (United States)

    Iavazzo, Christos; Iavazzo, Paraskevi Evangelia; Gkegkes, Ioannis D

    2017-06-01

    Inguinal lymph node dissection represents the gold standard of treatment for patients with vulval carcinoma. The application of minimally invasive techniques, such as robotics, in the surgical treatment of gynecologic cancer, reduced the rate of postoperative complications, which has an important impact on the quality of patients' life. Robotic inguinal lymph node dissection is a safe and oncologically effective but expensive and time-consuming approach in patients with penile cancer or melanoma. However, it is related with less postoperative complications, especially less lymphocele or lymphedema rates, and can improve the patients' quality of life while minimizing cost for health systems. The introduction of robot- assisted inguinal lymph node dissection in the treatment of vulval carcinoma may be identified as a provisional option for the gynecologic oncologist. Our intention was to present a brief review/commentary on the possible use of a robot-assisted technique on inguinal lymphadenectomy for patients with vulval cancer.

  7. Da Vinci Xi Robot–Assisted Penetrating Keratoplasty

    Science.gov (United States)

    Chammas, Jimmy; Sauer, Arnaud; Pizzuto, Joëlle; Pouthier, Fabienne; Gaucher, David; Marescaux, Jacques; Mutter, Didier; Bourcier, Tristan

    2017-01-01

    Purpose This study aims (1) to investigate the feasibility of robot-assisted penetrating keratoplasty (PK) using the new Da Vinci Xi Surgical System and (2) to report what we believe to be the first use of this system in experimental eye surgery. Methods Robot-assisted PK procedures were performed on human corneal transplants using the Da Vinci Xi Surgical System. After an 8-mm corneal trephination, four interrupted sutures and one 10.0 monofilament running suture were made. For each procedure, duration and successful completion of the surgery as well as any unexpected events were assessed. The depth of the corneal sutures was checked postoperatively using spectral-domain optical coherence tomography (SD-OCT). Results Robot-assisted PK was successfully performed on 12 corneas. The Da Vinci Xi Surgical System provided the necessary dexterity to perform the different steps of surgery. The mean duration of the procedures was 43.4 ± 8.9 minutes (range: 28.5–61.1 minutes). There were no unexpected intraoperative events. SD-OCT confirmed that the sutures were placed at the appropriate depth. Conclusions We confirm the feasibility of robot-assisted PK with the new Da Vinci Surgical System and report the first use of the Xi model in experimental eye surgery. Operative time of robot-assisted PK surgery is now close to that of conventional manual surgery due to both improvement of the optical system and the presence of microsurgical instruments. Translational Relevance Experimentations will allow the advantages of robot-assisted microsurgery to be identified while underlining the improvements and innovations necessary for clinical use. PMID:28660096

  8. History and Current Status of Robotic Totally Endoscopic Coronary Artery Bypass

    National Research Council Canada - National Science Library

    Lee, Jeffrey D; Srivastava, Mukta; Bonatti, Johannes

    2012-01-01

    Robotic totally endoscopic coronary artery bypass (TECAB) is a minimally invasive endoscopic surgical approach using the daVinci robotic telemanipulation system to perform coronary artery bypass grafting on the arrested or beating heart...

  9. Totally extraperitoneal (TEP) bilateral hernioplasty using the Single Site® robotic da Vinci platform (DV-SS TEP): description of the technique and preliminary results.

    Science.gov (United States)

    Cestari, A; Galli, A C; Sangalli, M N; Zanoni, M; Ferrari, M; Roviaro, G

    2017-06-01

    Laparoendoscopic single site totally extraperitoneal (TEP) hernia repair showed to be a feasible alternative to conventional laparoscopic hernia repair; nevertheless single site surgery, with the loss of instruments triangulation can be a demanding procedure. To overcome those hurdles, the Single Site® (SS) platform of the da Vinci (DV) Si robotic system enables to perform surgical procedures through a 25-mm skin incision, with a stable 3D vision and restoring an adequate triangulation of the surgical instruments. We present in details the technique and the preliminary results of DV-SS TEP, to our knowledge the first cases reported in literature. In March 2016, three consecutive male patients (mean age 46.6 years-mean BMI 25.3) with bilateral symptomatic inguinal hernia were submitted to DV-SS TEP in our institutions. Feasibility, codification of the technique, operative time and perioperative outcomes were recorded. All the procedures were completed as scheduled, with no conversion to other techniques. Mean operative time was 98.6 min, ranging between 155 and 55 min, reflecting the learning curve of the operating room team on this new procedure. No intraoperative or postoperative complications were experienced and all the patients were discharged within 24 h after surgery. Patients reported satisfactory postoperative course, with no recurrence of inguinal hernia and satisfaction in cosmetic result at 6-month follow-up. DV-SS TEP inguinal hernia repair showed to be feasible and effective surgical option for bilateral groin hernia repair. Patients' outcome was uneventful, with optimal cosmetic results. Further studies comparing this innovative technique to TEP or LESS TEP should be promoted.

  10. Sentinel Node Mapping Using Indocyanine Green and Near-infrared Fluorescence Imaging Technology for Uterine Malignancies: Preliminary Experience With the Da Vinci Xi System.

    Science.gov (United States)

    Siesto, Gabriele; Romano, Fabrizio; Fiamengo, Barbara; Vitobello, Domenico

    2016-01-01

    Sentinel lymph node (SLN) mapping has emerged as the new frontier for the surgical staging of apparently early-stage cervical and endometrial cancer. Different colorimetric and radioactive tracers, alone and in combination, have been proposed with encouraging results. Fluorometric mapping using indocyanine green (ICG) appears to be a suitable and attractive alternative to provide reliable staging [1-4]. In this video, we present the technique of SLN mapping in 2 cases (1 endometrial and 1 cervical cancer, respectively) using ICG and the near-infrared technology provided by the newest Da Vinci Xi robotic system (Intuitive Surgical Inc., Sunnyvale, CA). Together we report the results of our preliminary experience on the first 20 cases performed. The new robotic Da Vinci Xi system was available at our institution since May 2015. Upon institutional review board/ethical committee approval, all consecutive patients with early-stage endometrial and cervical cancer who were judged suitable for robotic surgery have been enrolled for SLN mapping with ICG. We adopted the Memorial Sloan Kettering Cancer Center SLN algorithm; the tracer was delivered into the cervix in all cases. Four milliliters (1.25 mg/mL) of ICG was injected divided into the 3- and 9-o'clock positions of the cervix alone, with 1 mL deep into the stroma and 1 mL submucosally at the skin incision. Sentinel lymph nodes were examined with a protocol including both ultrastaging with immunohistochemistry [3] and 1-step nucleic acid amplification assay [5,6] under a parallel protocol of study. During the study period, 20 cases were managed; 14 and 6 patients had endometrial and cervical cancer, respectively. SLN was detected in all cases (20/20, 100%). Bilateral SLNs were detected in 17 of 20 (85.0%) cases. Based on preoperative and intraoperative findings, 13 (65.0%) patients received systematic pelvic lymphadenectomy after SLN mapping. Three (15.0%) patients had microscopic nodal metastases on SLN. No

  11. Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon's experience: a cost analysis covering the initial 50 robotic cases with the da Vinci Si.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Lorenzoni, Valentina; Di Franco, Gregorio; Cobuccio, Luigi; Palmeri, Matteo; Caprili, Giovanni; D'Isidoro, Cristiano; Moglia, Andrea; Ferrari, Vincenzo; Di Candio, Giulio; Mosca, Franco; Turchetti, Giuseppe

    2016-09-01

    The aim of this study is to compare surgical parameters and the costs of robotic surgery with those of laparoscopic approach in rectal cancer based on a single surgeon's early robotic experience. Data from 25 laparoscopic (LapTME) and the first 50 robotic (RobTME) rectal resections performed at our institution by an experienced laparoscopic surgeon (>100 procedures) between 2009 and 2014 were retrospectively analyzed and compared. Patient demographic, procedure, and outcome data were gathered. Costs of the two procedures were collected, differentiated into fixed and variable costs, and analyzed against the robotic learning curve according to the cumulative sum (CUSUM) method. Based on CUSUM analysis, RobTME group was divided into three phases (Rob1: 1-19; Rob2: 20-40; Rob3: 41-50). Overall median operative time (OT) was significantly lower in LapTME than in RobTME (270 vs 312.5 min, p = 0.006). A statistically significant change in OT by phase of robotic experience was detected in the RobTME group (p = 0.010). Overall mean costs associated with LapTME procedures were significantly lower than with RobTME (p surgery's costs with experience. Efforts to reduce the dominant fixed cost are recommended to maintain the sustainability of the system and benefit from the technical advantages offered by the robot.

  12. [Application of Da Vinci surgical robot in the dissection of splenic hilar lymph nodes for gastric cancer patients with total gastrectomy].

    Science.gov (United States)

    Yang, Kun; Chen, Xinzu; Zhang, Weihan; Chen, Xiaolong; Hu, Jiankun

    2016-08-25

    To investigate the feasibility and safety of Da Vinci surgical robot in the dissection of splenic hilar lymph nodes for gastric cancer patients with total gastrectomy. Clinical data of two cases who underwent total gastrectomy for cardia cancer at our department in January 2016 were analyzed retrospectively. Two male patients were 62 and 55 years old respectively, with preoperative diagnosis as cT2-3N0M0 and cT1-2N0M0 gastric cancer by gastroscope and biopsy, and both received robotic total gastrectomy spleen-preserving splenic hilar lymph node dissection successfully. The operative time for splenic hilar lymph node dissection was 30 min and 25 min respectively. The intraoperative estimated blood loss was both 100 ml, while the number of total harvested lymph node was 38 and 33 respectively. One dissected splenic hilar lymph node and fatty tissues in two patients were proven by pathological examinations. There were no anastomotic leakage, pancreatic fistula, splenic infarction, intraluminal bleeding, digestive tract bleeding, aneurysm of splenic artery, and other operation-associated complications. Both patients suffered from postoperative pneumonia, and were cured by conservative therapy. The robotic spleen-preserving splenic hilar lymph node dissection is feasible and safe, but its superiority needs further evaluation.

  13. System for robot-assisted real-time laparoscopic ultrasound elastography

    Science.gov (United States)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  14. Change of practice patterns in urology with the introduction of the Da Vinci surgical system: the Greek NHS experience in debt crisis era

    Directory of Open Access Journals (Sweden)

    Dimitros Deligiannis

    2015-03-01

    Full Text Available Objective: To determine the attitudinal change for urologic surgery in Greece since the introduction of the da Vinci Surgical System (DVS. We describe contemporary trends at public hospital level, the initial Greek experience, while at the same time Greece is in economic crisis and funding is under austerity measures. Materials and Methods: We retrospectively analyzed annualized case log data on urologic procedures, between 2008 (installation of the DVS and 2013, from “Laiko’’ Hospital in Athens. We evaluated, using summary statistics, trends and institutional status regarding robot-assisted surgery (RAS. We also analyzed the relationship between the introduction of RAS and change in total volume of procedures performed. Results: 1578 of the urological procedures performed at “Laiko’’ Hospital were pooled, 1342 (85% being open and 236 RAS (15%. We observed a 6-fold increase in the number of RAS performed, from 7% of the total procedural volume (14/212 in 2008 to 30% (96/331 in 2013. For radical prostatectomy, in 2008 2% were robot-assisted and 98% open while in 2013, 46% and 54% respectively. Pyeloplasty was performed more often using the robot-assisted method since 2010. RAS-dedicated surgeons increased both RAS and the total number of procedures they performed. From 86 in 2008 to 145 in 2013, with 57% of them being RAS in 2013 as compared to 13 % in 2008. Conclusions: Robot-assisted surgery has integrated into the armamentarium for urologic surgery in Greece at public hospital level. Surgical robot acquisition is also associated with increased volume of procedures, especially prostatectomy, despite the ongoing debate over cost-effectiveness, during economic crisis and International Monetary Fund (IFN era.

  15. A Feasibility Study and Technical Tips for the Use of an Articulating Bipolar Vessel Sealer in da Vinci Robot-Assisted Gastrectomy.

    Science.gov (United States)

    Kong, Seong-Ho; Kim, Tae Han; Huh, Yeon Ju; Oh, Seung-Young; Ahn, Hye Seong; Park, So Yong; Choi, Yun Suk; Suh, Yun-Suhk; Lee, Hyuk-Joon; Yang, Han-Kwang

    2017-11-01

    The aim of this study was to evaluate the efficacy and safety of a new articulating bipolar energy device, the EndoWrist® One™ Vessel Sealer (VS), in da Vinci® robot-assisted gastrectomy. Patients (n = 17) with cT1/2 gastric cancer who underwent robotic gastrectomy using the VS were prospectively enrolled in the study group (VS group). The clinicopathological outcomes, including operative time, intraoperative blood loss, amount of postoperative drainage, postoperative biochemical analysis results, and complication rates, were prospectively collected and compared with those of patients who underwent robotic gastrectomy using conventional ultrasonic shear force ([US] group, n = 52) during the same time period. Although the VS provided a good direction for dissection because of the articulating function, the ancillary use of conventional bipolar coagulation was occasionally needed due to the blunt, nonactive end tip of the VS. The operative time, intraoperative blood loss, postoperative drainage, and absence of complication rates did not differ between the VS and US groups, but the C-reactive protein levels on the second postoperative day (8.06 versus 11.7, P = .002) and serum albumin levels on the fifth postoperative day (3.51 versus 3.32, P = .019) were superior in the VS group. Use of the VS in robotic gastrectomy was feasible and provided good configuration in the direction of dissection. The learning process for use of the VS in the initial series was relatively rapid, resulting in comparable results between the VS and US groups. Reduced inflammation and albumin loss were identified as possible benefits of the VS.

  16. Basic Operational Robotics Instructional System

    Science.gov (United States)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  17. Realization of a single image haze removal system based on DaVinci DM6467T processor

    Science.gov (United States)

    Liu, Zhuang

    2014-10-01

    Video monitoring system (VMS) has been extensively applied in domains of target recognition, traffic management, remote sensing, auto navigation and national defence. However the VMS has a strong dependence on the weather, for instance, in foggy weather, the quality of images received by the VMS are distinct degraded and the effective range of VMS is also decreased. All in all, the VMS performs terribly in bad weather. Thus the research of fog degraded images enhancement has very high theoretical and practical application value. A design scheme of a fog degraded images enhancement system based on the TI DaVinci processor is presented in this paper. The main function of the referred system is to extract and digital cameras capture images and execute image enhancement processing to obtain a clear image. The processor used in this system is the dual core TI DaVinci DM6467T - ARM@500MHz+DSP@1GH. A MontaVista Linux operating system is running on the ARM subsystem which handles I/O and application processing. The DSP handles signal processing and the results are available to the ARM subsystem in shared memory.The system benefits from the DaVinci processor so that, with lower power cost and smaller volume, it provides the equivalent image processing capability of a X86 computer. The outcome shows that the system in this paper can process images at 25 frames per second on D1 resolution.

  18. Elastography using multi-stream GPU: an application to online tracked ultrasound elastography, in-vivo and the da Vinci Surgical System.

    Directory of Open Access Journals (Sweden)

    Nishikant P Deshmukh

    Full Text Available A system for real-time ultrasound (US elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU based accelerated normalized cross-correlation (NCC elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE, which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM tracker, the system selects in-plane radio frequency (RF data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.

  19. Elastography Using Multi-Stream GPU: An Application to Online Tracked Ultrasound Elastography, In-Vivo and the da Vinci Surgical System

    Science.gov (United States)

    Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.

    2014-01-01

    A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954

  20. Feasibility of an endoscopic approach to the axillary nerve and the nerve to the long head of the triceps brachii with the help of the Da Vinci Robot.

    Science.gov (United States)

    Porto de Melo, P M; Garcia, J C; Montero, E F de Souza; Atik, T; Robert, E-G; Facca, S; Liverneaux, P-A

    2013-09-01

    Surgery to transfer the axillary nerve and the nerve of the long head of the triceps presents two obstacles: 1) the access portals are not standardized and 2) the nerves are for their larger part approached through large incisions. The goal of this study was to explore the feasibility of an endoscopic microsurgical approach. The posterior aspect of a cadaver shoulder was approached through three communicating mini-incisions. The Da Vinci robot camera was installed on a central trocart, and the instrument arms on the adjacent trocarts. A gas insufflation distended the soft tissues up to the lateral axillary space. The branches of the axillary nerve and the nerve to the long head of the triceps brachii muscle were identified. The dissection of the axillary nerve trunk and its branches was easy. The posterior humeral circumflex veins and artery were dissected as well without any difficulty. Finding the nerve to the long head of the triceps brachii was found to be more challenging because of its deeper location. Robots properties allow performing conventional microsurgery: elimination of the physiologic tremor and multiplication of the movements. They also facilitate the endoscopic approach of the peripheral nerves, as seen in our results on the terminal branches of the axillary nerve and the nerve to the long head of the triceps brachii. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. [Structured training strategy for robot surgery].

    Science.gov (United States)

    Xi, H Q; Zhang, K C; Wei, B; Chen, L

    2016-12-01

    With surgical strategy progresses towarding to precision and minimally invasive surgery, the Da Vinci robotic surgical system comes into being. Compared with conventional surgery, the Da Vinci robotic surgical system enjoys several advantages including clear operation field, flexibility and tremor filtration.Normative operation plays an important role in translating such advantages into clinical benefits.Training physicians systematically and comprehensively is very important. Compared with conventional training strategy, multi-modal simulation training is more preferred for the Da Vinci robotic surgical system training.Based on comprehensive literature retrieval and the current development of the robotic surgery, training modalities, learning curve, training of young surgeons as well as teamwork are included to provide evidence for future establishment and implement of structured training programs of the robotic surgery.

  2. The Minimally Invasive Manipulator : An ergonomic and economic non-robotic alternative for endoscopy?

    NARCIS (Netherlands)

    Bosma, Jesse; Jaspers, Joris; Aarts, Sanne

    Introduction: Since the da Vinci robotic system was introduced, it has been reported to have ergonomic advantages over conventional laparoscopy (COV). High investments associated with this system challenged us to design a more economical, mechanical alternative for improvement of laparoscopic

  3. The Curie-Da Vinci Connection: 5-Years' Experience With Laparoscopic (Robot-Assisted) Implantation for High-Dose-Rate Brachytherapy of Solitary T2 Bladder Tumors.

    Science.gov (United States)

    van der Steen-Banasik, Elzbieta M; Smits, Geert A H J; Oosterveld, Bernard J; Janssen, Theo; Visser, Andries G

    2016-08-01

    To report experience and early results of laparoscopic implantation for interstitial brachytherapy (BT) of solitary bladder tumors and the feasibility of a high-dose-rate (HDR) schedule. From December 2009 to April 2015, 57 patients with a T2 solitary bladder tumor were treated in Arnhem with transurethral bladder resection followed by external beam irradiation, applied to the bladder and regional iliac lymph nodes, 40 Gy in 20 fractions, 5 fractions per week, and within 1 week interstitial HDR BT, in selected cases combined with partial cystectomy and lymph node dissection. The BT catheters were placed via a transabdominal approach with robotic assistance from a Da Vinci robot after a successful initial experience with a nonrobotic laparoscopic approach. The fraction schedule for HDR was 10 fractions of 2.5 Gy, 3 fractions per day. This was calculated to be equivalent to a reference low-dose-rate schedule of 30 Gy in 60 hours. Data for oncologic outcomes and toxicity (Common Toxicity Criteria version 4) were prospectively collected. These modifications resulted in an average postoperative hospitalization of 6 days, minimal blood loss, and no wound healing problems. Two patients had severe acute toxicity: 1 pulmonary embolism grade 4 and 1 cardiac death. Late toxicity was mild (n=2 urogenital grade 3 toxicity). The median follow-up was 2 years. Using cumulative incidence competing risk analysis, the 2-year overall, disease-free, and disease-specific survival and local control rates were 59%, 71%, 87%, and 82%, respectively. The benefits of minimally invasive surgery for implantation of BT catheters and the feasibility of HDR BT in bladder cancer are documented. The patient outcome and adverse events are comparable to the best results published for a bladder-sparing approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  5. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    Minimal latency is important for augmented reality systems and teleoperation interfaces as even small increases in latency can affect user performance. Previously, we have developed an augmented reality system that can overlay stereoscopic video streams with computer graphics in order to improve...... visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...... affect the overall latency. To measure the photon-to-photon latency, we used a microcontroller to determine the time between the activation of a lightemitting diode in front of the endoscopic camera and the corresponding increase in intensity of the surgeon's display as measured by a phototransistor...

  6. Fallopian tube carcinoma in a patient with a pelvic kidney: surgical management with the da Vinci robot.

    Science.gov (United States)

    Hoffman, Mitchel S

    2012-06-01

    A patient with a known pelvic kidney and early fallopian tube carcinoma was managed with robotically assisted surgery. Associated conginital anomalies were noted and described. The final stage of the cancer was 1C, grade 3 and she is without evidence of recurrent cancer 2 years following completion of chemotherapy.

  7. Assistive and Rehabilitation Robotic System

    Directory of Open Access Journals (Sweden)

    Adrian Abrudean

    2015-06-01

    Full Text Available A short introduction concerning the content of Assistive Technology and Rehabilitation Engineering is followed by a study of robotic systems which combine two or more assistive functions. Based on biomechanical aspects, a complex robotic system is presented, starting with the study of functionality and ending with the practical aspects of the prototype development.

  8. [Laparoscopic colorectal surgery - SILS, robots, and NOTES.

    NARCIS (Netherlands)

    D'Hoore, André; Wolthuis, Albert M.; Mizrahi, Hagar; Parker, Mike; Bemelman, Willem A.; Wara, Pål

    2011-01-01

    Single incision laparoscopic surgery resection of colon is feasible, but so far evidence of benefit compared to standard laparoscopic technique is lacking. In addition to robot-controlled camera, there is only one robot system on the market capable of performing laparoscopic surgery. The da Vinci

  9. Comparative analysis of short - term functional outcomes and quality of life in a prospective series of brachytherapy and Da Vinci robotic prostatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Cristina; Roman Martin, Ana A.; Conde-Sanchez, J. Manuel; Congregado-Ruiz, C. Belen; Osman-Garcia, Ignacio; Medina-Lopez, Rafael A. [Virgen del Rocio Universitary Hospital, Seville (Spain)

    2017-03-15

    Introduction: There is a growing interest in achieving higher survival rates with the lowest morbidity in localized prostate cancer (PC) treatment. Consequently, minimally invasive techniques such as low-dose rate brachytherapy (BT) and robotic-assisted prostatectomy (RALP) have been developed and improved. Comparative analysis of functional outcomes and quality of life in a prospective series of 51BT and 42Da Vinci prostatectomies DV. Materials and Methods: Comparative analysis of functional outcomes and quality of life in a prospective series of 93 patients with low-risk localized PC diagnosed in 2011. 51 patients underwent low-dose rate BT and the other 42 patients RALP. IIEF to assess erectile function, ICIQ to evaluate continence and SF36 test to quality of life wee employed. Results: ICIQ at the first revision shows significant differences which favour the BT group, 79% present with continence or mild incontinence, whereas in the DV group 45% show these positive results. Differences disappear after 6 months, with 45 patients (89%) presenting with continence or mild incontinence in the BT group vs. 30 (71%) in the DV group. 65% of patients are potent in the first revision following BT and 39% following DV. Such differences are not significant and cannot be observed after 6 months. No significant differences were found in the comparative analysis of quality of life. Conclusions: ICIQ after surgery shows significant differences in favour of BT, which disappear after 6 months. Both procedures have a serious impact on erectile function, being even greater in the DV group. Differences between groups disappear after 6 months. (author)

  10. Robotic assisted laparoscopic colectomy.

    LENUS (Irish Health Repository)

    Pandalai, S

    2010-06-01

    Robotic surgery has evolved over the last decade to compensate for limitations in human dexterity. It avoids the need for a trained assistant while decreasing error rates such as perforations. The nature of the robotic assistance varies from voice activated camera control to more elaborate telerobotic systems such as the Zeus and the Da Vinci where the surgeon controls the robotic arms using a console. Herein, we report the first series of robotic assisted colectomies in Ireland using a voice activated camera control system.

  11. Robotic video photogrammetry system

    Science.gov (United States)

    Gustafson, Peter C.

    1997-07-01

    For many years, photogrammetry has been in use at TRW. During that time, needs have arisen for highly repetitive measurements. In an effort to satisfy these needs in a timely manner, a specialized Robotic Video Photogrammetry System (RVPS) was developed by TRW in conjunction with outside vendors. The primary application for the RVPS has strict accuracy requirements that demand significantly more images than the previously used film-based system. The time involved in taking these images was prohibitive but by automating the data acquisition process, video techniques became a practical alternative to the more traditional film- based approach. In fact, by applying video techniques, measurement productivity was enhanced significantly. Analysis involved was also brought `on-board' to the RVPS, allowing shop floor acquisition and delivery of results. The RVPS has also been applied in other tasks and was found to make a critical improvement in productivity, allowing many more tests to be run in a shorter time cycle. This paper will discuss the creation of the system and TRW's experiences with the RVPS. Highlighted will be the lessons learned during these efforts and significant attributes of the process not common to the standard application of photogrammetry for industrial measurement. As productivity and ease of use continue to drive the application of photogrammetry in today's manufacturing climate, TRW expects several systems, with technological improvements applied, to be in use in the near future.

  12. Robotic Cholecystectomy Using the Newly Developed Korean Robotic Surgical System, Revo-i: A Preclinical Experiment in a Porcine Model

    Science.gov (United States)

    Kang, Chang Moo; Chong, Jae Uk; Lim, Jin Hong; Park, Dong Won; Park, Sung Jun; Gim, Suhyeon; Ye, Hye Jin; Kim, Se Hoon

    2017-01-01

    One Korean company recently successfully produced a robotic surgical system prototype called Revo-i (MSR-5000). We, therefore, conducted a preclinical study for robotic cholecystectomy using Revo-i, and this is a report of the first case of robotic cholecystectomy performed using the Revo-i system in a preclinical porcine model. Revo-i consists of a surgeon console (MSRC-5000), operation cart (MSRO-5000) and vision cart (MSRV-5000), and a 40 kg-healthy female porcine was prepared for robotic cholecystectomy with general anesthesia. The primary end point was the safe completion of these procedures using Revo-i: The total operation time was 88 minutes. The dissection time was defined as the time from the initial dissection of the Calot area to the time to complete gallbladder detachment from the liver bed: The dissection time required 14 minutes. The surgical console time was 45 minutes. There was no gallbladder perforation or significant bleeding noted during the procedure. The porcine survived for two weeks postoperatively without any complications. Like the da Vinci surgical system, the Revo-i provides a three-dimensional operative view and allows for angulated instrument motion (forceps, needle-holders, clip-appliers, scissors, bipolar energy, and hook monopolar energy), facilitating an effective laparoscopic procedure. Our experience suggests that robotic cholecystectomy can be safely completed in a porcine model using Revo-i. PMID:28792158

  13. Robotic technology in surgery: current status in 2008.

    Science.gov (United States)

    Murphy, Declan G; Hall, Rohan; Tong, Raymond; Goel, Rajiv; Costello, Anthony J

    2008-12-01

    There is increasing patient and surgeon interest in robotic-assisted surgery, particularly with the proliferation of da Vinci surgical systems (Intuitive Surgical, Sunnyvale, CA, USA) throughout the world. There is much debate over the usefulness and cost-effectiveness of these systems. The currently available robotic surgical technology is described. Published data relating to the da Vinci system are reviewed and the current status of surgical robotics within Australia and New Zealand is assessed. The first da Vinci system in Australia and New Zealand was installed in 2003. Four systems had been installed by 2006 and seven systems are currently in use. Most of these are based in private hospitals. Technical advantages of this system include 3-D vision, enhanced dexterity and improved ergonomics when compared with standard laparoscopic surgery. Most procedures currently carried out are urological, with cardiac, gynaecological and general surgeons also using this system. The number of patients undergoing robotic-assisted surgery in Australia and New Zealand has increased fivefold in the past 4 years. The most common procedure carried out is robotic-assisted laparoscopic radical prostatectomy. Published data suggest that robotic-assisted surgery is feasible and safe although the installation and recurring costs remain high. There is increasing acceptance of robotic-assisted surgery, especially for urological procedures. The da Vinci surgical system is becoming more widely available in Australia and New Zealand. Other surgical specialties will probably use this technology. Significant costs are associated with robotic technology and it is not yet widely available to public patients.

  14. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  15. Comparison of Laparoscopic Pyeloplasty With and Without Robotic Assistance

    OpenAIRE

    Bernie, Jonathan E.; Venkatesh, Ramakrishna; Brown, James; GARDNER, THOMAS A.; Sundaram, Chandru P.

    2005-01-01

    Objectives: The benefits of laparoscopic surgery with robotic assistance (da Vinci Robotic Surgical System, Intuitive Surgical, Sunnyvale, CA) includes elimination of tremor, motion scaling, 3D laparoscopic vision, and instruments with 7 degrees of freedom. The benefit of robotic assistance could be most pronounced with reconstructive procedures, such as pyeloplasty. We aimed to compare laparoscopic pyeloplasty, with and without robotic assistance, during a surgeon's initial experience to det...

  16. Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis.

    Science.gov (United States)

    Maeso, Sergio; Reza, Mercedes; Mayol, Julio A; Blasco, Juan A; Guerra, Mercedes; Andradas, Elena; Plana, María N

    2010-08-01

    The main aim of this review was to compare the safety and efficacy of the Da Vinci Surgical System (DVSS) and conventional laparoscopic surgery (CLS) in different types of abdominal intervention. DVSS is an emerging laparoscopic technology. The surgeon directs the robotic arms of the system through a console by means of hand controls and pedals, making use of a stereoscopic viewing system. DVSS is currently being used in general, urological, gynecologic, and cardiothoracic surgery. This systematic review analyses the best scientific evidence available regarding the safety and efficacy of DVSS in abdominal surgery. The results found were subjected to meta-analysis whenever possible. Thirty-one studies, 6 of them randomized control trials, involving 2166 patients that compared DVSS and CLS were examined. The procedures undertaken were fundoplication (9 studies, one also examining cholecystectomy), Heller myotomy (3 studies), gastric bypass (4), gastrectomy (2), bariatric surgery (1), cholecystectomy (4), splenectomy (1), colorectal resection (7), and rectopexy (1). DVSS was found to be associated with fewer Heller myotomy-related perforations, a more rapid intestinal recovery time after gastrectomy-and therefore a shorter hospital stay, a shorter hospital stay following cholecystectomy (although the duration of surgery was longer), longer colorectal resection surgery times, and a larger number of conversions to open surgery during gastric bypass. The publications reviewed revealed DVSS to offer certain advantages with respect to Heller myotomy, gastrectomy, and cholecystectomy. However, these results should be interpreted with caution until randomized clinical trials are performed and, with respect to oncologic indications, studies include variables such as survival.

  17. Urologic robots and future directions.

    Science.gov (United States)

    Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan

    2009-01-01

    Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.

  18. Robot-assisted Radical Prostatectomy: How I Do It

    Directory of Open Access Journals (Sweden)

    Cemil Uygur

    2016-06-01

    Full Text Available In this article, we describe surgical technique for robot assisted radical prostatectomy using the four-arm da Vinci robotic surgical system (SI, Intuitive Surgical, Sunnyvale, CA, USA. We have continually refined our technique to improve patient outcomes.

  19. First report on joint use of a Da Vinci® surgical system with transfer of surgical know-how between two public hospitals.

    Science.gov (United States)

    Mattei, Agostino; Thoms, Michael; Ferrari, Matteo; La Croce, Giovanni; Danuser, Hansjörg; Schmid, Hans-Peter; Engeler, Daniel

    2014-01-01

    The costs of a Da Vinci® device for robot- assisted surgery, in particular for robot-assisted radical prostatectomy (RARP), can be a considerable issue for hospitals with limited caseloads. Since January 2011 the cantonal hospitals of Lucerne and St. Gallen (Switzerland) have shared a four-arm Da Vinci® device, transferring the surgical know-how by a Lucerne teaching surgeon to a St. Gallen surgeon. Complete pre- and perioperative data, including 3-month surgical RARP outcomes, were prospectively documented. For statistical analysis, Wilcoxon, exact Poisson and χ(2) tests were used. During the first year, the two hospitals (61 RARP patients in Lucerne, 19 RARP patients in St. Gallen) did not differ significantly in preoperative, perioperative or oncological and functional results except for prostate volume (median 33 [interquartile range 24-40] vs. 40 [interquartile range 33-57] ml; p = 0.02), operation time (mean 252 ± 49 vs. 351 ± 50 min; p = 0.0001), number of lymph nodes removed (median 16 [interquartile range 13-21] vs. 15 [interquartile range 8-16] nodes; p = 0.02), biopsy (p = 0.04) and specimen Gleason scores (p = 0.03), and length of hospital stay (median 8 [interquartile range 7-14] vs. 9 [interquartile range 8-18] days; p Vinci® device sharing with transfer of surgical know-how can reduce the costs of RARP without compromising surgical outcomes, even at the beginning of the learning curve. © 2014 S. Karger AG, Basel.

  20. Compliant robotic systems on graphs

    NARCIS (Netherlands)

    Groothuis, Stefan; Stramigioli, Stefano; Carloni, Raffaella

    2014-01-01

    In this paper, a modular method of modeling compliant robotic systems using graph theory is treated. Graph theoretic analyses ensure a structured way of describing a system and allow a straightforward extension to more complex systems. The graph models of a series elastic actuator, a variable

  1. The role of robotic surgical system in the management of vascular disease.

    Science.gov (United States)

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2015-03-01

    Full Text Available In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator (CTSM is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.

  3. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  4. Robotic surgery training with commercially available simulation systems in 2011: a current review and practice pattern survey from the society of urologic robotic surgeons.

    Science.gov (United States)

    Lallas, Costas D; Davis, John W

    2012-03-01

    Virtual reality (VR) simulation has the potential to standardize surgical training for robotic surgery. We sought to evaluate all commercially available VR robotic simulators. A MEDLINE(®) literature search was performed of all applicable keywords. Available VR simulators were evaluated with regard to face, content, and construct validation. Additionally, a survey was e-mailed to all members of the Endourological Society, querying the pervasiveness of VR simulators in robotic surgical training. Finally, each company was e-mailed to ask for a price quote for their respective system. There are four VR robotic surgical simulators currently available: RoSS™, dV-Trainer™, SEP Robot™, and da Vinci(®) Skills Simulator™. Each system is represented in the literature and all possess varying degrees of face, content, and construct validity. Although all systems have basic skill sets with performance analysis and metrics software, most do not contain procedural components. When evaluating the results of our survey, most respondents did not possess a VR simulator although almost all believed there to be great potential for these devices in robotic surgical training. With the exception of the SEP Robot, all VR simulators are similar in price. VR simulators have a definite role in the future of robotic surgical training. Although the simulators target technical components of training, their largest impact will be appreciated when incorporated into a comprehensive educational curriculum.

  5. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    A proof of safety is paramount for an autonomous robotic surgical system to ensure that it does not cause trauma to patients. However, a proof of safety is rarely constructed, as surgical systems are too complex to be dealt with by most formal verification methods. In this paper, we design...

  6. Ubiquitous Robotic Technology for Smart Manufacturing System

    National Research Council Canada - National Science Library

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    .... This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory...

  7. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  8. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  9. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  10. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  11. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    Science.gov (United States)

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  12. Hybrid robot climbing system design

    Science.gov (United States)

    Purna Irawan, Agustinus; Halim, Agus; Kurniawan, Hengky

    2017-09-01

    This research aims to develop a climbing hybrid robot, especially to design the structure of robot that quite strong and how to build an optimal mechanism for transmitting the motor’s rotation and torque to generate movement up the pole. In this research we use analytical methods using analysis software, simulation, a prototype, and robot trial. The result showed that robot could climb a pole by with maximum velocity 0.33m/s with a 20 kg load. Based on a weight diversity trial between 10 kg and 20 kg we obtained climb up load factor with value 0.970 ± 0.0223 and climb down load factor with value 0.910 ± 0.0163. Displacement of the frame structure was 7.58 mm. To minimize this displacement, the gate system was used so as to optimize the gripper while gripping the pole. The von Misses stress in the roller was 48.49 MPa, with 0.12 mm of displacement. This result could be a reference for robot development in further research.

  13. Execution monitoring for a mobile robot system

    Science.gov (United States)

    Miller, David P.

    1990-01-01

    Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.

  14. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Ryan A. Beasley

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  15. An Ultrasound Robotic System Using the Commercial Robot UR5

    Directory of Open Access Journals (Sweden)

    Kim eMathiassen

    2016-02-01

    Full Text Available The use of robots in health care has increased dramatically over the last decade. One area of research has been to use robots to conduct ultrasound examinations, either controlled by a physician or autonomously. This paper examines the possibility of using the commercial robot UR5 from Universal Robots to make a tele-operated robotic ultrasound system. Physicians diagnosing patients using ultrasound probes are prone to repetitive strain injuries, as they are required to hold the probe in uncomfortable positions and exert significant static force. The main application for the system is to relieve the physician of this strain by letting the them control a robot that holds the probe. A set of requirements for the system is derived from the state-of-the-art systems found in the research literature. The system is developed through a low-level interface for the robot, effectively building a new software framework for controlling it. Compliance force control and forward flow haptic control of the robot was implemented. Experiments are conducted to quantify the performance of the two control schemes. The force control is estimated to have a bandwidth of 16.6 Hz, while the haptic control is estimated to have a bandwidth of 65.4 Hz for the position control of the slave and 13.4 Hz for the force control of the master. Overall, the system meets the derived requirements and the main conclusion is that it is feasible to use the UR5 robot for robotic ultrasound applications.

  16. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  17. A Motion Planning System for Mobile Robots

    Directory of Open Access Journals (Sweden)

    TUNCER, A.

    2012-02-01

    Full Text Available In this paper, a motion planning system for a mobile robot is proposed. Path planning tries to find a feasible path for mobile robots to move from a starting node to a target node in an environment with obstacles. A genetic algorithm is used to generate an optimal path by taking the advantage of its strong optimization ability. Mobile robot, obstacle and target localizations are realized by means of camera and image processing. A graphical user interface (GUI is designed for the motion planning system that allows the user to interact with the robot system and to observe the robot environment. All the software components of the system are written in MATLAB that provides to use non-predefined accessories rather than the robot firmware has, to avoid confusing in C++ libraries of robot's proprietary software, to control the robot in detail and not to re-compile the programs frequently in real-time dynamic operations.

  18. Usefulness of robot-assisted thoracoscopic esophagectomy.

    Science.gov (United States)

    Osaka, Yoshiaki; Tachibana, Shingo; Ota, Yoshihiro; Suda, Takeshi; Makuuti, Yosuke; Watanabe, Takafumi; Iwasaki, Kenichi; Katsumata, Kenji; Tsuchida, Akihiko

    2018-02-03

    We started robot-assisted thoracoscopic esophagectomy using the da Vinci surgical system from June 2010 and operated on 30 cases by December 2013. Herein, we examined the usefulness of robot-assisted thoracoscopic esophagectomy and compared it with conventional esophagectomy by right thoracotomy. Patients requiring an invasion depth of up to the muscularis propria with preoperative diagnosis were considered for surgical adaptation, excluding bulky lymph node metastasis or salvage surgery cases. The outcomes of 30 patients who underwent robot-assisted surgery (robot group) and 30 patients who underwent conventional esophagectomy by right thoracotomy (thoracotomy group) up to December 2013 were retrospectively examined. Five ports were used in the robot-assisted thoracoscopic esophagectomy: 3rd intercostal (da Vinci right arm), 6th intercostal (da Vinci camera), 9th intercostal (da Vinci left arm), 4th and 8th intercostals (for assistance). There was no significant difference in patient characteristics. Robot group/right thoracotomy group: Operation time, 563/398 min; thoracic procedure bleeding volume, 21/135 ml; number of thoracic lymph node radical dissections, 25/23. Postoperative complications were recurrent nerve paralysis, 16.7/16.7%; pneumonia, 6.7%/10.0%; anastomotic leakage, 10.0/20.0%; surgical site infection, 0/10.0%; hospitalization, 17/30 days. For the robot group, the operation time was significantly longer, but the amount of intraoperative bleeding and postoperative hospitalization were significantly reduced. Robot-assisted thoracoscopic esophagectomy enables delicate surgical procedures owing to the 3D effect of the field of view and articulated forceps of the da Vinci. This procedure reduces bleeding and postoperative hospitalization and is less invasive than conventional esophagectomy by right thoracotomy.

  19. Combining of ETHOS Operating Ergonomic Platform, Three-dimensional Laparoscopic Camera, and Radius Surgical System Manipulators Improves Ergonomy in Urologic Laparoscopy: Comparison with Conventional Laparoscopy and da Vinci in a Pelvi Trainer.

    Science.gov (United States)

    Tokas, Theodoros; Gözen, Ali Serdar; Avgeris, Margaritis; Tschada, Alexandra; Fiedler, Marcel; Klein, Jan; Rassweiler, Jens

    2017-10-01

    Posture, vision, and instrumentation limitations are the main predicaments of conventional laparoscopy. To combine the ETHOS surgical chair, the three-dimensional laparoscope, and the Radius Surgical System manipulators, and compare the system with conventional laparoscopy and da Vinci in terms of task completion times and discomfort. Fifteen trainees performed the three main laparoscopic suturing tasks of the Heilbronn training program (IV: simulation of dorsal venous complex suturing; V: circular suturing of tubular structure; and VI: urethrovesical anastomosis) in a pelvi trainer. The tasks were performed conventionally, utilizing the three devices, and robotically. Task completion times were recorded and the surgeon discomfort was evaluated using questionnaires. Task completion times were compared using nonparametric Wilcoxon signed rank test and ergonomic scores were compared using Pearson chi-square test. The use of the full laparoscopic set (ETHOS chair, three-dimensional laparoscopic camera, Radius Surgical System needle holders), resulted in a significant improvement of the completion time of the three tested tasks compared with conventional laparoscopy (psystem nullified heavy discomfort for Tasks IV and V and minimized it (6.7%) for the most demanding Task VI. Especially for Task VI, all trainees gained benefit, by using the system, in terms of task completion times and discomfort. The limited trainee robotic experience and the questionnaire subjectivity could be a potential limitation. The ergonomic laparoscopic system offers significantly improved task completion times and ergonomy than conventional laparoscopy. Furthermore, it demonstrates comparable results to robotic surgery. The study was conducted in a pelvi trainer and no patients were recruited. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. Efficacy of the Da Vinci surgical system in colorectal surgery comparing with traditional laparoscopic surgery or open surgery

    Directory of Open Access Journals (Sweden)

    Jintang Huang

    2016-10-01

    Full Text Available In order to compare the curative effect of the Da Vinci surgical system (DVSS with laparoscopic surgery (LS or open surgery for colorectal resection, literature search was conducted in PubMed, Excerpt Medica Database (Embase, and Cochrane library up to January 15, 2016. Odds ratio (OR and weighted mean difference with their corresponding 95% confidence intervals were used as effect size for evaluation of different outcomes. In total, 10 studies consisting of 2767 patients were included for the meta-analysis. As a result, there were no significant differences between DVSS and LS/open surgery in the long-term oncologic outcomes (p > 0.05. However, DVSS achieved a significantly lower length of hospital stay and estimated blood loss (EBL, but a longer operation time. Moreover, DVSS showed a significantly reduced conversion to open surgery than LS (OR = 0.19, 95% confidence interval: 0.08–0.48. Subgroup analysis indicated that DVSS had different results in rectal adenocarcinoma and colon cancer subgroups on outcomes of conversion to open surgery and operation time. DVSS is superior to LS/open surgery in length of hospital stay and EBL, but needs longer operation time. Long-term outcomes of DVSS are comparable with the other approaches. From long-term perspective, DVSS has an equivalent effect to the other two techniques.

  1. The safety and effectiveness of Da Vinci surgical system compared with open surgery and laparoscopic surgery: a rapid assessment.

    Science.gov (United States)

    Yu, Jiajie; Wang, Yingqiang; Li, Youping; Li, Xianglian; Li, Cuicui; Shen, Jiantong

    2014-05-01

    The primary objectives of this rapid assessment were to assess the clinical evidence of Da Vinci surgical system (DVSS) comparing with open procedures and laparoscopic procedures, and in order to provide the evidence for health decision makers and clinician. A comprehensive search of electronic databases (EMbase, PubMed, The Cochrane Library, Web of Science, CNKI, VIP, CBM and Wanfang) and HTA websites were completed up to 9 October, 2013. Two reviews (Jiajie Yu and Yingqiang Wang) independently extracted data of the manuscripts, and assessed quality of included studies using AMSTAR tools. Qualitative description and GRADE were used to report the outcomes and evidence quality. A total of 17 studies were included: 3 were HTA and 14 were SR/meta-analysis. The included studies focused on prostatectomy, nephrectomy, hysterectomy colorectal surgery, and cardiac surgery. DVSS was shown to be associated with statistically significant reduction in length of hospital stay, blood loss, and transfusion rate compared with open and laparoscopic surgery, but increase in operative time when compared with open surgery. Based on the evidence included in this rapid assessment, DVSS has a limited impact on several clinical outcomes. Considering no available data from randomized controlled trials and much higher cost, decisions will be complex and need to be made carefully. Decision makers should cut down the quantity of purchasing and reasonable allocate them. © 2014 Chinese Cochrane Center, West China Hospital of Sichuan University and Wiley Publishing Asia Pty Ltd.

  2. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  3. Human Robotic Systems (HRS): Robotic ISRU Acquisition Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic ISRU Resource Acquisition project element will develop two technologies:Exploration Ground Data Systems (xGDS)Sample Acquisition on...

  4. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  5. Multiagent robotic systems' ambient light sensor

    Science.gov (United States)

    Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.

    2017-05-01

    Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling

  6. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design......, implementation and uses of a robot programming paradigm, focused on robot skills, that facilitates intuitive and explicit task-level programming by laymen, such as factory workers, as well as ad-hoc task planning in the skill domain. We show how these robot skills can be modeled and implemented, even...... on different robot systems. Furthermore, we show how laymen can intuitively program tasks on an advanced mobile manipulator, using the skills as the fundamental building blocks. Finally, we demonstrate how the same skills can be used for ad-hoc task planning, where the robot system instead constructs the task...

  7. Transition from video-assisted thoracic surgery to robotic pulmonary surgery

    Science.gov (United States)

    2017-01-01

    The “da Vinci Surgical System” is a robotic surgical system that utilizes multi-jointed robotic arms and a high-resolution three-dimensional video-monitoring system. We report on the state of transition from video-assisted thoracoscopic surgery (VATS) to robotic pulmonary surgery, the surgical outcomes of robotic surgery compared to VATS, and the future of robotic surgery. Surgery utilizing the da Vinci Surgical System requires a console surgeon and assistant who have been certified by Intuitive Surgical, Inc., the system manufacturer. On the basis of the available medical literature, a robotic lobectomy has a learning curve that extends over approximately 20 cases for a surgeon who has mastered VATS. Surgery using the da Vinci System is safe, is associated with lower morbidity and mortality rates than thoracotomy, leads to shorter postoperative hospital stays, and ensures improved postoperative quality of life. Currently, no prospective studies comparing it to VATS have been conducted. The various studies that have compared robotic surgery and VATS have reported different results. At the present time, the benefits to patients of robotic surgery compared to VATS remain unclear. Areas in which robotic surgery may be superior to VATS include the superior operability of robotic surgery that improves safety and decreases the incidence of complication. To show that the costly robotic surgery is superior to VATS, prospective multicenter randomized studies need to be conducted. The da Vinci robot-assisted surgical system has already been highly evaluated for its safety, with recent studies reporting satisfactory outcomes. It remains necessary to verify whether the benefits to patients justify the higher cost of robotic surgery. Future developments in the field of robotic engineering will likely lead to the creation of systems that are even less invasive and allow for more advanced surgical techniques. PMID:29078618

  8. Insight into the da Vinci® Xi - technical notes for single-docking left-sided colorectal procedures.

    Science.gov (United States)

    Ngu, James Chi-Yong; Sim, Sarah; Yusof, Sulaiman; Ng, Chee-Yung; Wong, Andrew Siang-Yih

    2017-12-01

    The adoption of robot-assisted laparoscopic colorectal surgery has been hampered by issues with docking, operative duration, technical difficulties in multi-quadrant access, and cost. The da Vinci® Xi has been designed to overcome some of these limitations. We describe our experience with the system and offer technical insights to its application in left-sided colorectal procedures. Our initial series of left-sided robotic colorectal procedures was evaluated. Patient demographics and operative outcomes were recorded prospectively using a predefined database. Between March 2015 and April 2016, 54 cases of robot-assisted laparoscopic left-sided colorectal procedures were successfully completed with no cases of conversion. The majority were low anterior resections for colorectal malignancies. Using the da Vinci® Xi Surgical System, multi-quadrant surgery involving dissection from the splenic flexure to the pelvis was possible without redocking. The da Vinci® Xi simplifies the docking procedure and makes single-docking feasible for multi-quadrant left-sided colorectal procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Teaching daVinci Robot(R Surgical System - A New Paradigm

    Directory of Open Access Journals (Sweden)

    Shah G

    2006-01-01

    Full Text Available Das rasche Wachstum des Bereichs Roboterchirurgie hat sich auch auf die akademischen Lehrprogramme ausgewirkt. Die herkömmliche Struktur der chirurgischen Ausbildungs- und Lehrtätigkeiten ist für die Vermittlung der Roboterchirurgie nicht besonders gut geeignet. Materialien und Methoden: Erfahrene Laparoskopie-Chirurgen können sich in speziellen Schulungskursen die Feinheiten der Roboterchirurgie relativ leicht aneignen. Dies gilt nicht für relativ unerfahrene chirurgische Praktikanten, wenngleich den Ausbildungsprogrammen auf jeden Fall die Verantwortung zukommt, auch das Fachgebiet der Robotertechnik zu lehren. Die Richtlinien des Amerikanischen Urologenverbands und des Accreditation Council on Graduate Medical Education werden geprüft und bei den Versuchen zur Bewältigung dieser Probleme herangezogen. Die einzelnen Verfahrensschritte, insbesondere die Prostatektomie, werden aus der Lehrendenperspektive betrachtet. Ergebnisse: Ein Curriculum der Roboterchirurgie kann in das Gesamtausbildungsprogramm erfolgreich integriert werden. Die Konsolenzeit wird auf die Erfahrung als Assistent am Krankenbett abgestimmt, ebenso wie die Entwicklung grundlegender laparoskopischer Fertigkeiten und eines Verständnisses der optischen Anatomie. Die Kompetenz als Klinikassistent ist erforderlich, bevor weitere Fortschritte zu den höheren Stufen der Konsolenbedienung erwogen werden können. Die chirurgischen Schritte werden in logische Fortschritte mit Fertigkeitseinheiten in verschiedenen Segmenten unterteilt, ehe eine Reihe von Segmenten zusammengesetzt werden kann, um signifikante Abschnitte der eigentlichen Operation zu ergeben. Schlußfolgerung: Das Lehren der Roboterchirurgie bringt neue und bislang unbekannte Schwierigkeiten mit sich. Diese neue Art der Chirurgie erfordert neue, innovative Lehrmethoden mit den obersten Zielen Sicherheit und Wirksamkeit. Es wird leichter werden, wenn auf dem Gebiet der Roboterchirurgie insgesamt mehr Erfahrungswerte vorliegen.

  10. [The advancement of robotic surgery--successes, failures, challenges].

    Science.gov (United States)

    Haidegger, Tamás

    2010-10-10

    Computer-integrated robotic surgery systems appeared more than twenty years ago and since then hundreds of different prototypes have been developed. Only a fraction of them have been commercialized, mostly to support neurosurgical and orthopaedic procedures.Unquestionably, the most successful one is the da Vinci surgical system, primarily deployed in urology and general laparoscopic surgery. It is developed and marketed by Intuitive Surgical Inc. (Sunnyvale, CA, USA), the only profitable company of the segment. The da Vinci made robotic surgery is known and acknowledged throughout the world, and the great results delivered convinced most of the former critics of the technology. Success derived from the well chosen business development strategy, proficiency of the developers, appropriate timing and a huge pot of luck. This article presents the most important features of the da Vinci system, the history of development along with its medical, economical and financial aspects, and seeks the answer why this particular system became successful.

  11. Modeling human operator involvement in robotic systems

    NARCIS (Netherlands)

    Wewerinke, P.H.

    1991-01-01

    A modeling approach is presented to describe complex manned robotic systems. The robotic system is modeled as a (highly) nonlinear, possibly time-varying dynamic system including any time delays in terms of optimal estimation, control and decision theory. The role of the human operator(s) is modeled

  12. USING ROBOT OPERATING SYSTEM FOR AUTONOMOUS CONTROL OF ROBOTS IN EUROBOT, ERC AND ROBOTOUR COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Grzegorz Granosik

    2016-11-01

    Full Text Available This paper presents application of the Navigation Stack available in Robot Operating System as a basis for the autonomous control of the mobile robots developed for a few different robot competitions. We present three case studies.

  13. Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel

    2015-07-03

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  14. Robotic system for glovebox size reduction

    Energy Technology Data Exchange (ETDEWEB)

    KWOK,KWAN S.; MCDONALD,MICHAEL J.

    2000-03-02

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction.

  15. Mechatronics design of a robotic systems

    OpenAIRE

    Buonocore, Luca Rosario

    2015-01-01

    The same coordination aspects are the key-points of the last proposed method about comunication: now, the robotic device have to cooperate in order to manage the object in the desired way with a good sensitivity and this can be done exploiting the torque end force sensor of the new system. A general introduction underlining the need to make a robot autonomous or at least able to operate in unstructured scenarios to cope with human end other robotic device. Project of ultralight robot ar...

  16. Microsurgical robotic system for vitreoretinal surgery.

    Science.gov (United States)

    Ida, Yoshiki; Sugita, Naohiko; Ueta, Takashi; Tamaki, Yasuhiro; Tanimoto, Keiji; Mitsuishi, Mamoru

    2012-01-01

    Robotics may improve vitreoretinal surgery by steadying hand motion, thereby reducing negative outcomes. This study aimed to develop a microsurgical robot for vitreoretinal surgery and to perform clinical procedures using robot-assisted interventions. A microsurgical system for vitreoretinal surgery was designed to meet specific requirements for the degree of freedom, accuracy, and workspace. The system was intended to provide micrometer accurate manipulation within the eye. The slave manipulator has a tool change mechanism for switching surgical instruments. The slave manipulator is controlled by the surgeon using a master manipulator consisting of multiple joints. The robotic system was used to carry out microcannulation experiments on a pig's eye. A surgeon was able to successfully perform microcannulation. This microsurgical robotic vitreoretinal surgical system showed superior operability compared with a traditional manual procedure, and it demonstrated sufficient potential to warrant further testing in animal trials to assess its clinical feasibility.

  17. The Curie–Da Vinci Connection: 5-Years' Experience With Laparoscopic (Robot-Assisted) Implantation for High-Dose-Rate Brachytherapy of Solitary T2 Bladder Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Steen-Banasik, Elzbieta M. van der, E-mail: E.vanderSteen-Banasik@radiotherapiegroep.nl [Radiotherapiegroep, Arnhem (Netherlands); Smits, Geert A.H.J. [Department of Urology, Rijnstate Hospital, Arnhem (Netherlands); Oosterveld, Bernard J.; Janssen, Theo; Visser, Andries G. [Radiotherapiegroep, Arnhem (Netherlands)

    2016-08-01

    Purpose: To report experience and early results of laparoscopic implantation for interstitial brachytherapy (BT) of solitary bladder tumors and the feasibility of a high-dose-rate (HDR) schedule. Methods and Materials: From December 2009 to April 2015, 57 patients with a T2 solitary bladder tumor were treated in Arnhem with transurethral bladder resection followed by external beam irradiation, applied to the bladder and regional iliac lymph nodes, 40 Gy in 20 fractions, 5 fractions per week, and within 1 week interstitial HDR BT, in selected cases combined with partial cystectomy and lymph node dissection. The BT catheters were placed via a transabdominal approach with robotic assistance from a Da Vinci robot after a successful initial experience with a nonrobotic laparoscopic approach. The fraction schedule for HDR was 10 fractions of 2.5 Gy, 3 fractions per day. This was calculated to be equivalent to a reference low-dose-rate schedule of 30 Gy in 60 hours. Data for oncologic outcomes and toxicity (Common Toxicity Criteria version 4) were prospectively collected. Results: These modifications resulted in an average postoperative hospitalization of 6 days, minimal blood loss, and no wound healing problems. Two patients had severe acute toxicity: 1 pulmonary embolism grade 4 and 1 cardiac death. Late toxicity was mild (n=2 urogenital grade 3 toxicity). The median follow-up was 2 years. Using cumulative incidence competing risk analysis, the 2-year overall, disease-free, and disease-specific survival and local control rates were 59%, 71%, 87%, and 82%, respectively. Conclusions: The benefits of minimally invasive surgery for implantation of BT catheters and the feasibility of HDR BT in bladder cancer are documented. The patient outcome and adverse events are comparable to the best results published for a bladder-sparing approach.

  18. Walking Robot Locomotion System Conception

    Science.gov (United States)

    Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.

    2014-09-01

    This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  19. Tandem robot control system and method for controlling mobile robots in tandem

    Science.gov (United States)

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  20. Robot Command Interface Using an Audio-Visual Speech Recognition System

    Science.gov (United States)

    Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy

    In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.

  1. Robotic guarded motion system and method

    Science.gov (United States)

    Bruemmer, David J.

    2010-02-23

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.

  2. Initial consecutive 125 cases of robotic assisted laparoscopic radical prostatectomy performed in Ireland's first robotic radical prostatectomy centre.

    LENUS (Irish Health Repository)

    Bouchier-Hayes, D M

    2012-03-01

    We examined the patient characteristics, operative proceedings and the outcomes of the initial series of 125 cases of robot-assisted laparoscopic radical prostatectomy (RALRP) in an independent hospital in Ireland, performed by two surgeons using the da Vinci(®) surgical system.

  3. ROBOT CHARACTER DESIGN SIMULATION SYSTEM USING 3D PARTS MODELS

    National Research Council Canada - National Science Library

    茂木, 龍太; Tsuji, Shota; Kanematsu, Yoshihisa; Mikami, Koji; Kondo, Kunio

    2017-01-01

    The purpose of this research is the design support for robot on animation. We have developed a simulation system that canto make a new robot design with a combine of the 3DCG robot parts and a deforming each part...

  4. Automatic Robot Safety Shutdown System

    Science.gov (United States)

    Lirette, M.

    1985-01-01

    Robot turned off if acceleration exceeds preset value. Signals from accelerometer on robot arm pass through filter and amplifier, eliminating high-frequency noise and hydraulic-pump pulsations. Data digitized and processed in computer. Unit controls other machines that perform repetitive movements, including rotary tables, tracked vehicles, conveyor lines, and elevators.

  5. Aerial Robotic System for Transportation and Logistics

    Science.gov (United States)

    Iwata, Kakuya; Hashimoto, Naohisa; Komoriya, Kiyoshi

    The status quo of a research on a novel aerial robotic system for transportation and logistics is presented. Under a new concept for an aerial robotic transportation system, three-Dimensional Transportation Robots (3DTR) were constructed with twin turbojet engines equipped by high performance noise reduction system and a flexibly jointed delta wing controlled by 2-axis actuators. This vehicle is also stable in the air due to its pendulum structure. The first flight was successfully conducted on November 22, 2005. Flight examination of 3DTR indicates its short take-off and landing (STOL) capability.

  6. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  7. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  8. Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

    Science.gov (United States)

    Yang, Moon Sul; Yoon, Tae Ho; Yoon, Do Heum; Kim, Keung Nyun; Pennant, William

    2011-01-01

    Objective In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da Vinci® Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da Vinci® Surgical System with few robotic arm collisions and minimal soft tissue damages. Da Vinci® Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application. PMID:21607188

  9. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  10. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  11. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  12. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  13. Dynamics of Tree-Type Robotic Systems

    CERN Document Server

    Shah, Suril Vijaykumar; Dutt, Jayanta Kumar

    2013-01-01

    This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.

  14. Distributed Computation in a Quadrupedal Robotic System

    Directory of Open Access Journals (Sweden)

    Daniel Kuehn

    2014-07-01

    Full Text Available Today's and future space missions (will have to deal with increasing requirements regarding autonomy and flexibility in the locomotor system. To cope with these requirements, a higher bandwidth for sensor information is needed. In this paper, a robotic system is presented that is equipped with artificial feet and a spine incorporating increased sensing capabilities for walking robots. In the proposed quadrupedal robotic system, the front and rear parts are connected via an actuated spinal structure with six degrees of freedom. In order to increase the robustness of the system's locomotion in terms of traction and stability, a foot-like structure equipped with various sensors has been developed. In terms of distributed local control, both structures are as self-contained as possible with regard to sensing, sensor preprocessing, control and communication. This allows the robot to respond rapidly to occurring events with only minor latency.

  15. Robotic system construction with mechatronic components inverted pendulum: humanoid robot

    Science.gov (United States)

    Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan

    2017-03-01

    Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.

  16. Robot-assisted, single-site, dismembered pyeloplasty for ureteropelvic junction obstruction with the new da Vinci platform: a stage 2a study.

    Science.gov (United States)

    Buffi, Nicolò Maria; Lughezzani, Giovanni; Fossati, Nicola; Lazzeri, Massimo; Guazzoni, Giorgio; Lista, Giuliana; Larcher, Alessandro; Abrate, Alberto; Fiori, Cristian; Cestari, Andrea; Porpiglia, Francesco

    2015-01-01

    Laparoendoscopic single-site surgery (LESS) has gained popularity in urology over the last few years. To report a stage 2a study of robot-assisted single-site (R-LESS) pyeloplasty for ureteropelvic junction obstruction (UPJO). This study is an investigative pilot study of 30 consecutive cases of R-LESS pyeloplasty performed at two participating institutions between July 2011 and September 2013. Dismembered R-LESS pyeloplasty was performed at two surgical centers. Feasibility (conversion rate), safety (complication rate and Clavien-Dindo classification), efficacy (clinical outcome) of the procedure were assessed. The median patient age was 37 yr (range: 19-65 yr) and median body mass index was 23 kg/m(2) (range: 19-29 kg/m(2)). The median operative time was 160 min (range: 101-300 min), the median postoperative stay was 5 d (range: 3-13 d), and the median time to catheter removal was 3 d (range: 2-10). Two cases required conversion, the first one to standard laparoscopic technique and the second one to standard robotic technique. No intraoperative complications were reported. In three cases, an additional 5-mm trocar was needed. The postoperative complications rate was 26% (n=8). Most of them were grade 1 complications (n=4; 13%), followed by grade 2 (n=3; 10%) and grade 3 (n=1; 3.3%) complications, according to the Clavien-Dindo classification. One patient needed a surgical reintervention with standard robotic technique 3 d after surgery for urinary leakage. The overall success rate, considered as the resolution of symptoms and the absence of functional impairment at postoperative imaging, was 93.3% (n=28) at a median follow-up of 13 mo (range: 3-21 mo). The main limitations of this study are the limited number of patients included and the short-term follow-up. Single-site robotic pyeloplasty is a feasible technique in selected patients, with good cosmetic results and excellent short-term clinical outcomes. Prospective studies are needed to further assess its role

  17. Robotic-assisted surgery for low rectal dissection: from better views to better outcome.

    Science.gov (United States)

    Ng, K H; Lim, Y K; Ho, K S; Ooi, B S; Eu, K W

    2009-08-01

    The use of robotics in colorectal surgery is relatively new. The first few cases of colonic surgery using da Vinci Surgical System were reported in 2002. Since then, several centres had reported on their experience, with favourable outcomes. Our department started to embark on robotics in colorectal surgery in December 2007. The aim of our paper was to share our early experience with robotics in colorectal surgery and provide an update on the current status of robotics. Preparations included formal training with the da Vinci Surgical System, certification of the surgeons, and obtaining Hospital Ethics committee approval. We used a hybrid technique of laparoscopic and robotic assistance in the resection of mid- to low-rectal cancer (total mesorectal excision). Laparoscopic approach was used to isolate the inferior mesenteric artery and for mobilisation of the left colon. The da Vinci robot was used in the dissection of the rectum down to the pelvic floor. We reviewed the outcomes of our early experience with emphasis on feasibility and safety. Over a period of three months, we performed eight cases of robotic-assisted colorectal surgery for cancer. The median age of the patients was 55 (range 42-80) years. The median operating time was 192.5 (range 145-250) minutes. There were no intraoperative or postoperative complications related to the use of robotics. The median length of hospital stay was five (range 4-30) days. Robotic-assisted laparoscopic colorectal surgery is a safe and feasible procedure.

  18. Robotically assisted totally endoscopic coronary artery bypass surgery

    OpenAIRE

    Canale, Leonardo Secchin; Mick, Stephanie; Mihaljevic, Tomislav; Nair, Ravi; Bonatti, Johannes

    2013-01-01

    Robotically assisted totally endoscopic coronary artery bypass surgery has emerged as a feasible and efficient alternative to conventional full sternotomy coronary artery bypass graft surgery in selected patients. This minimally invasive approach using the daVinci robotic system allows fine intrathoracic maneuvers and excellent view of the coronary arteries. Both on-pump and off-pump operations can be performed to treat single and multivessel disease. Hybrid approaches have the potential of o...

  19. Ubiquitous Robotic Technology for Smart Manufacturing System

    OpenAIRE

    Wenshan Wang; Xiaoxiao Zhu; Liyu Wang; Qiang Qiu; Qixin Cao

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of ...

  20. Analysis of the posture pattern during robotic simulator tasks using an optical motion capture system.

    Science.gov (United States)

    Takayasu, Kenta; Yoshida, Kenji; Mishima, Takao; Watanabe, Masato; Matsuda, Tadashi; Kinoshita, Hidefumi

    2018-01-01

    Surgeons are sometimes forced to maintain uncomfortable joint positions during robotic surgery despite the high degree of instrument maneuverability. This study aimed to use an optical motion capture system to analyze the differences in posture patterns during robotic simulator tasks between surgeons at two skill levels. Ten experienced and ten novice surgeons performed two tasks in a da Vinci Skills Simulator: Suture Sponge 1 (SP) and Tubes (TU). The participants' upper body motion during each task was captured, including the joint angles (axilla, elbow, and wrist), the percentage of time when the wrist height was lower than the elbow height (PTW), and the height of the elbow and wrist relative to the armrest. The novice group showed significantly more excess extension in both elbow angles and extension (>50°) in both wrist angles than did the experienced group. The novice group had significantly lower PTW than the experienced group on the right side in both tasks (both p motion capture system can detect the differences in posture patterns in the positional relationship between the elbow and wrist and the joint angles of the upper limb between two groups of surgeons at different skill levels during robotic simulator tasks.

  1. A Lane Following Mobile Robot Navigation System Using Mono Camera

    Science.gov (United States)

    Cho, Yeongcheol; Kim, Seungwoo; Park, Seongkeun

    2017-02-01

    In this paper, we develop a lane following mobile robot using mono camera. By using camera, robot can recognize its left and right side lane, and maintain the center line of robot track. We use Hough Transform for detecting lane, and PID controller for control direction of mobile robot. The validity of our robot system is performed in a real world robot track environment which is built up in our laboratory.

  2. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  3. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  4. Ubiquitous Robotic Technology for Smart Manufacturing System

    Science.gov (United States)

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  5. Ubiquitous Robotic Technology for Smart Manufacturing System

    Directory of Open Access Journals (Sweden)

    Wenshan Wang

    2016-01-01

    Full Text Available As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  6. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  7. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Fernando Alonso-Martín

    2015-07-01

    Full Text Available Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI, to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS, which uses natural language understanding mechanisms to provide two features: (i a non-grammar multimodal input (verbal and/or written text; and (ii a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper offers many possibilities in terms of HRI. For instance, it can enhance the robot’s pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction. Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  8. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  9. Selecting and commanding individual robots in a multi-robot system

    OpenAIRE

    Couture-Beil, Alex Sebastien

    2010-01-01

    In this thesis, we present a novel real-time computer vision-based system for facilitating interactions between a single human and a multi-robot system: a user first selects an individual robot from a group of robots, by simply looking at it, and then commands the selected robot with a motion-based gesture. We describe a novel multi-robot system that demonstrates the feasibility of using face contact and motion-based gestures as two non-verbal communication channels for human-robot interactio...

  10. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems.

    Science.gov (United States)

    Akinbiyi, Takintope; Reiley, Carol E; Saha, Sunipa; Burschka, Darius; Hasser, Christopher J; Yuh, David D; Okamura, Allison M

    2006-01-01

    Teleoperated robot-assisted surgical systems provide surgeons with improved precision, dexterity, and visualization over traditional minimally invasive surgery. The addition of haptic (force and/or tactile) feedback has been proposed as a way to further enhance the performance of these systems. However, due to limitations in sensing and control technologies, implementing direct haptic feedback to the surgeon's hands remains impractical for clinical application. A new, intuitive augmented reality system for presentation of force information through sensory substitution has been developed and evaluated. The augmented reality system consists of force-sensing robotic instruments, a kinematic tool tracker, and a graphic display that overlays a visual representation of force levels on top of the moving instrument tips. The system is integrated with the da Vinci Surgical System (Intuitive Surgical, Inc.) and tested by several users in a phantom knot tying task. The augmented reality system decreases the number of broken sutures, decreases the number of loose knots, and results in more consistent application of forces.

  11. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    OpenAIRE

    Florin Moldoveanu; Doru Ursutiu; Dan Floroian; Laura Floroian

    2010-01-01

    In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots) need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be const...

  12. Multi-Robot Systems in Military Domains (Les Systemes Multi-Robots Dans les Domaines Militaires)

    Science.gov (United States)

    2008-12-01

    David A. Schoenwald Snow White and the 700 Dwarves Brian H. Wilcox ANNEX C – MULTI-ROBOT SYSTEMS WORKSHOP 2002 RTO-TR-IST-032 C - 3 Part V...Multi-Robot System Andrew Drenner, Jan Burt, Brian Chapeau, Tom Dahlin, Bradley Kratochvil, Colin McMillen, Brad Nelson, Nikolaos Papanikolopoulos

  13. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  14. Dual arm robotic system with sensory input

    Science.gov (United States)

    Ozguner, U.

    1987-01-01

    The need for dual arm robots in space station assembly and satellite maintainance is of increasing significance. Such robots will be in greater demand in the future when numerous tasks will be assigned to them to relieve the direct intervention of humans in space. Technological demands from these robots will be high. They will be expected to perform high speed tasks with a certain degree of autonomy. Various levels of sensing will have to be used in a sophisticated control scheme. Ongoing research in control, sensing and real-time software to produce a two-arm robotic system than can accomplish generic assembly tasks is discussed. The control hierarchy and the specific control approach are discussed. A decentralized implementation of model-reference adaptive control using Variable Structure controllers and the incorporation of tactile feedback is considered.

  15. Robotic servicing system for space material experiment

    Science.gov (United States)

    Yamawaki, Toshihiko; Shimoji, Haruhiko; Abe, Toshio

    1994-01-01

    A containerless image furnace with an electrostatic positioning device has been developed as one of the material experiment facilities on the Japanese experimental module (JEM). It is characterized by heating/melting/cooling the sample whose position is kept without any contacts by actively controlled electrostatic force exerted between the sample and a set of electrodes. The experiment using the image furnace requires various servicing operations. We have been developing a robotic servicing system with an internal robot accommodated in the rack as an alternative to the crew. It aims to reduce the load on the crew by automating regular tasks and to increase the flexibility applicable to simple irregular tasks by introducing a remote teleoperation scheme. The present robot has poor capability to replace the crew. In order to compensate it, introducing of the concept of the robot friendliness and improving the controllability of the teleoperation by the ground operator aids are essential. In this paper, we identify the tasks to be performed by the robotic servicing system and discuss the way to compensate the capability of the robot. In addition we describe the evaluation tests using an experimental model.

  16. Da Vinci single site© surgical platform in clinical practice: a systematic review.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Di Franco, Gregorio; Palmeri, Matteo; Di Candio, Giulio; Mosca, Franco

    2016-12-01

    The Da Vinci single-site© surgical platform (DVSSP) is a set of single-site instruments and accessories specifically dedicated to robot-assisted single-site surgery. The PubMed database from inception to June 2015 was searched for English literature on the clinical use of DVSSP in general surgery, urology and gynecology. Twenty-nine articles involving the clinical application of DVSSP were identified; 15 articles on general surgery (561 procedures), four articles on urology (48 procedures) and 10 articles on gynecology (212 procedures). All studies have proven the safety and feasibility of the use of DVSSP. The principal reported advantage is the restoration of intra-abdominal triangulation, while the main reported limitation is the lack of the endowrist. Da Vinci systems have proven to be valuable assets in single-site surgery, owing to the combination of robot use with the dedicated single-incision platform. However, case-control or prospective trials are warranted to draw more definitive conc lusions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  18. Human Robotic Systems (HRS): Space Robotics Challenge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2013 and 2015, the DARPA Robotics Challenge explored through a competition the tasks and technologies for robots to operate in a natural and man-made...

  19. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  20. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  1. Leonardo da Vinci (1452-1519) and his depictions of the human spine.

    Science.gov (United States)

    Bowen, Garvin; Gonzales, Jocelyn; Iwanaga, Joe; Fisahn, Christian; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2017-12-01

    Few individuals in history have exerted so great an influence and made such extensive contributions to so many disciplines as Leonardo da Vinci. Da Vinci's inquisitive, experimental mentality led him to many discoveries, such as spinal cord function and the proper anatomy of several organ systems. Respected not only as an artist but also as an anatomist, he made many significant contributions to the field. This article explores da Vinci's drawings, in relation to the anatomy of the human spine.

  2. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  3. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  4. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Rossum's universal robots: not the machines.

    Science.gov (United States)

    Moran, Michael E

    2007-12-01

    One assumes in the era of rapidly expanding technology that robot implies mechanical beings. This is not how the word was used initially and represents one of those metamorphoses to another conceptualization. This is an investigation into Capek's original play, Rossum's Universal Robots, for an understanding of his intended meaning. Karel Capek was Czechoslovakian. His play was written in 1920, first performed in 1921, and presented in New York in 1922. It has come to symbolize Western society's feelings about robots. Capek's writing and the original play might clarify the definition of robot for the record, in light of some controversy as to whether the da Vinci Surgical System is a robot or not. THE PLAY: Rossum was a great physiologist who chemically synthesized living protoplasm and was capable of constructing artificial life forms: first, a dog; then, a man. His son was an engineer who quickly was able to manufacture large numbers of humanoids at lower costs " ... producing a robot has been brought down within 15 years from $10,000 to $150." This is the first foreshadowing of Moore's Law. But critically, these are not machines, even though his robots outperform humans. The story turns sinister as the robots eventually revolt and kill their creators. Like many things in our vocabulary, the term robot was initially used for a biologic organism that was created for servitude. Defined by the Robotic Institute of America (1979), a robot is ... "a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." This is far from the in tended use envisioned by Capek, but applies to the da Vinci Surgical System. As Alquist in R.U.R. concludes: "... if there are no more human beings left, at least let there be Robots!"

  6. Leonardo da Vinci's studies of the heart.

    Science.gov (United States)

    Shoja, Mohammadali M; Agutter, Paul S; Loukas, Marios; Benninger, Brion; Shokouhi, Ghaffar; Namdar, Husain; Ghabili, Kamyar; Khalili, Majid; Tubbs, R Shane

    2013-08-20

    Leonardo da Vinci's detailed drawings are justly celebrated; however, less well known are his accounts of the structures and functions of the organs. In this paper, we focus on his illustrations of the heart, his conjectures about heart and blood vessel function, his experiments on model systems to test those conjectures, and his unprecedented conclusions about the way in which the cardiovascular system operates. In particular, da Vinci seems to have been the first to recognize that the heart is a muscle and that systole is the active phase of the pump. He also seems to have understood the functions of the auricles and pulmonary veins, identified the relationship between the cardiac cycle and the pulse, and explained the hemodynamic mechanism of valve opening and closure. He also described anatomical variations and changes in structure and function that occurred with age. We outline da Vinci's varied career and suggest ways in which his personality, experience, skills and intellectual heritage contributed to these advances in understanding. We also consider his influence on later studies in anatomy and physiology. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Guillain-Barre Syndrome After Robotically Assisted Laparoscopic Prostatectomy: First Case Report

    Directory of Open Access Journals (Sweden)

    Jaschar Shakuri-Rad

    2015-03-01

    Full Text Available Guillain-Barre Syndrome is a well described acute demyelinating polyradiculoneuropathy with a likely autoimmune basis characterized by progressive ascending muscle paralysis. Classically, GBS is attributed to antecedent upper respiratory and gastrointestinal infections. We present the first case of GBS after Robotically Assisted Laparoscopic Prostatectomy using the daVinci® Surgical System.

  8. Robotic single port cholecystectomy (R-LESS-C: Experience in 36 patients

    Directory of Open Access Journals (Sweden)

    Cihan Uras

    2014-07-01

    Conclusion: R-LESS-C can be performed reliably with acceptable operative times and safety. The da Vinci Si robotic system may ease LESS-C. Two issues should be considered for routine use: expensive resources are needed and the incidence of incisional hernia may increase.

  9. Mearsurement and control system for agricultural robot

    Science.gov (United States)

    Sun, Tong; Zhang, Fangming; Ying, Yibin

    2006-10-01

    Automation of agricultural equipments in the near term appears both economically viable and technically feasible. This paper describes measurement and control system for agriculture robot. It consists of a computer, a pair of NIR cameras, one inclinometer, one potentionmeter and two encoders. Inclinometer, potentionmeter and encoders are used to measure obliquity of camera, turning angle of front-wheel and velocity of rear wheel, respectively. These sensor data are filtered before sending to PC. The test shows that the system can measure turning angle of front-wheel and velocity of rear wheel accurately whether robot is at stillness state or at motion state.

  10. A Novel Teaching System for Industrial Robots

    Directory of Open Access Journals (Sweden)

    Hsien-I Lin

    2014-03-01

    Full Text Available The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts’ Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  11. A novel teaching system for industrial robots.

    Science.gov (United States)

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  12. Robotic assisted minimally invasive surgery

    Science.gov (United States)

    Palep, Jaydeep H

    2009-01-01

    The term “robot” was coined by the Czech playright Karel Capek in 1921 in his play Rossom's Universal Robots. The word “robot” is from the check word robota which means forced labor. The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder) prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK), FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany) have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc.) redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist®. It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naïve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions. PMID:19547687

  13. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  14. Robotic giant hiatal hernia repair: 3 year prospective evaluation and review of the literature.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Mariniello, Maria Donatella; Pisano, Roberta; D'Isidoro, Cristiano; Belluomini, Mario Antonio; Caprili, Giovanni; Di Candio, Giulio; Mosca, Franco

    2015-03-01

    While conventional laparoscopic repair for giant hiatal hernias is considered difficult, robotic technology is likely to result in an improved postoperative course. We prospectively analysed patients with giant hiatal hernias who underwent robotic repair during a 3 year period. Preoperative data, operative variables, complications, clinical outcomes and anatomical recurrence after 1 year were evaluated. Six patients with giant hiatal hernias underwent robotic repair using the Da Vinci surgical system. The mean operative time was 182 min. The mean hospital stay was 6 days. No patients required reoperation for disease recurrence, and all claimed the absence of postoperative symptoms. Robotic approaches can minimize surgical trauma in patients with giant hiatal hernias and result in favourable outcomes in terms of anatomical recurrence and quality of life. With the availability of the da Vinci System, all patients with giant hiatal hernias can be offered a minimally invasive surgical option. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  16. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  17. Current state of virtual reality simulation in robotic surgery training: a review.

    Science.gov (United States)

    Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C

    2016-06-01

    Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

  18. Robotics virtual rail system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  19. Future of robotic surgery in urology.

    Science.gov (United States)

    Rassweiler, Jens J; Autorino, Riccardo; Klein, Jan; Mottrie, Alex; Goezen, Ali Serdar; Stolzenburg, Jens-Uwe; Rha, Koon H; Schurr, Marc; Kaouk, Jihad; Patel, Vipul; Dasgupta, Prokar; Liatsikos, Evangelos

    2017-12-01

    To provide a comprehensive overview of the current status of the field of robotic systems for urological surgery and discuss future perspectives. A non-systematic literature review was performed using PubMed/Medline search electronic engines. Existing patents for robotic devices were researched using the Google search engine. Findings were also critically analysed taking into account the personal experience of the authors. The relevant patents for the first generation of the da Vinci platform will expire in 2019. New robotic systems are coming onto the stage. These can be classified according to type of console, arrangement of robotic arms, handles and instruments, and other specific features (haptic feedback, eye-tracking). The Telelap ALF-X robot uses an open console with eye-tracking, laparoscopy-like handles with haptic feedback, and arms mounted on separate carts; first clinical trials with this system were reported in 2016. The Medtronic robot provides an open console using three-dimensional high-definition video technology and three arms. The Avatera robot features a closed console with microscope-like oculars, four arms arranged on one cart, and 5-mm instruments with six degrees of freedom. The REVO-I consists of an open console and a four-arm arrangement on one cart; the first experiments with this system were published in 2016. Medicaroid uses a semi-open console and three robot arms attached to the operating table. Clinical trials of the SP 1098-platform using the da Vinci Xi for console-based single-port surgery were reported in 2015. The SPORT robot has been tested in animal experiments for single-port surgery. The SurgiBot represents a bedside solution for single-port surgery providing flexible tube-guided instruments. The Avicenna Roboflex has been developed for robotic flexible ureteroscopy, with promising early clinical results. Several console-based robots for laparoscopic multi- and single-port surgery are expected to come to market within the

  20. Robotic Prostatectomy: Soon Number 1 in Europe?

    Directory of Open Access Journals (Sweden)

    Iselin CE

    2008-01-01

    Full Text Available Since 1990, laparoscopic surgery has undergone a tremendous evolution, pushed forward by the minimally invasive trend driven by our patients. Complex laparoscopic procedures, such as laparoscopic prostatectomy, have nevertheless faced significant difficulties, rendering them difficult to enter standard practice. However, robotic radical prostatectomy is expanding rapidly since the year 2000 especially in the USA, where actually approximately 70 % of radical prostatectomies are performed laparoscopically with the da Vinci system. This development is related to the facilitation the robot has brought to perform the difficult steps of laparoscopic prostatectomy. The functional outcome of robotic prostatectomy appears similar to the gold standard retropubic radical prostatectomy. This is also the case oncologically, although long-term data are needed for its final validation. The main problem of robotic prostatectomy is its high material cost, significantly superior to that of the conventional laparoscopic or retropubic technique. The near future will tell how European health systems will react to the American robotic epidemy.

  1. ROBOT-ASSISTED SYSTEM SIMULATION FOR OBJECT OSTEOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Mr. Evgeniy E. Levitskii

    2016-06-01

    Full Text Available The article considers the importance of creating robot-assisted system, namely of a manipulating robot, for object osteosynthesis. The article also considers classifications of robot-assisted systems used in foreign countries. The authors describe 3D model of human femoral bone, necessity of its creating and analyzing for further simulation of robot-assisted system mechanical part with hydraulic drive.

  2. Robotized Warehouse Systems: Developments and Research Opportunities

    NARCIS (Netherlands)

    K. Azadeh (Kaveh); M.B.M. de Koster (René); D. Roy (Debjit)

    2017-01-01

    textabstractRobotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of

  3. Automatic Positioning System of Small Agricultural Robot

    Science.gov (United States)

    Momot, M. V.; Proskokov, A. V.; Natalchenko, A. S.; Biktimirov, A. S.

    2016-08-01

    The present article discusses automatic positioning systems of agricultural robots used in field works. The existing solutions in this area have been analyzed. The article proposes an original solution, which is easy to implement and is characterized by high- accuracy positioning.

  4. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  5. The Co-Simulation Research of Single Leg Hydraulic Control System on Legged Robot

    National Research Council Canada - National Science Library

    YU, Bin; BA, Kaixian; LI, Chunhe; ZHU, Qixin; ZHAO, Hualong; KONG, Xiandong

    2016-01-01

    The hydraulic quadruped bionic robot has great carrying capacity, moving performance and environmental adaptiveness, making the hydraulic robot become an important branch of the bionic robot systems...

  6. Leonardo da Vinci and the Downburst.

    Science.gov (United States)

    Gedzelman, Stanley David

    1990-05-01

    Evidence from the drawings, experiments, and writings of Leonardo da Vinci are presented to demonstrate that da Vinci recognized and, possibly, discovered the downburst and understood its associated airflow. Other early references to vortex flows resembling downbursts are mentioned.

  7. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  8. Robot Control System based on Web Application and RFID Technology

    Directory of Open Access Journals (Sweden)

    Barenji Ali Vatankhah

    2015-01-01

    Full Text Available This paper discusses an integration driven framework for enabling the RFID based identification of parts to perform robotic distributor operations in the random mix based parts control based on web application. The RFID technology senses newly arriving parts to be distribution robot, the robot is able to recognize them and perform cooperative distributing via web-based application. The developed web application control system is implemented in the educational robotic arm. RFID system sends real time information from parts to the web application and web based application makes a decision for control of the robot arm, controller of robot controls the robot as based on the decision from web application. The proposed control system has increases the reconfiguration and scalability of robot system.

  9. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  10. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  11. Robotically assisted MRgFUS system

    Science.gov (United States)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  12. Patterns-of-care and health economic analysis of robot-assisted radical prostatectomy in the Australian public health system.

    Science.gov (United States)

    Basto, Marnique; Sathianathen, Niranjan; Te Marvelde, Luc; Ryan, Shane; Goad, Jeremy; Lawrentschuk, Nathan; Costello, Anthony J; Moon, Daniel A; Heriot, Alexander G; Butler, Jim; Murphy, Declan G

    2016-06-01

    To compare patterns of care and peri-operative outcomes of robot-assisted radical prostatectomy (RARP) with other surgical approaches, and to create an economic model to assess the viability of RARP in the public case-mix funding system. We retrospectively reviewed all radical prostatectomies (RPs) performed for localized prostate cancer in Victoria, Australia, from the Victorian Admitted Episode Dataset, a large administrative database that records all hospital inpatient episodes in Victoria. The first database, covering the period from July 2010 to April 2013 (n = 5 130), was used to compare length of hospital stay (LOS) and blood transfusion rates between surgical approaches. This was subsequently integrated into an economic model. A second database (n = 5 581) was extracted to cover the period between July 2010 and June 2013, three full financial years, to depict patterns of care and make future predictions for the 2014-2015 financial year, and to perform a hospital volume analysis. We then created an economic model to evaluate the incremental cost of RARP vs open RP (ORP) and laparoscopic RP (LRP), incorporating the cost-offset from differences in LOS and blood transfusion rate. The economic model constructs estimates of the diagnosis-related group (DRG) costs of ORP and LRP, adds the gross cost of the surgical robot (capital, consumables, maintenance and repairs), and manipulates these DRG costs to obtain a DRG cost per day, which can be used to estimate the cost-offset associated with RARP in comparison with ORP and LRP. Economic modelling was performed around a base-case scenario, assuming a 7-year robot lifespan and 124 RARPs performed per financial year. One- and two-way sensitivity analyses were performed for the four-arm da Vinci SHD, Si and Si dual surgical systems (Intuitive Surgical Ltd, Sunnyvale, CA, USA). We identified 5 581 patients who underwent RP in 20 hospitals in Victoria with an open, laparoscopic or robot-assisted surgical approach in the

  13. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  14. Robot-assisted submandibular gland excision via modified facelift incision.

    Science.gov (United States)

    Jung, Seung Wook; Kim, Young Kwan; Cha, Yong Hoon; Koh, Yoon Woo; Nam, Woong

    2017-12-01

    The conventional transcervical resection for submandibular gland disease has some risks and an unsatisfactory cosmetic result. Recently, robot-assisted surgery has been developed as a plausible substitute for conventional surgery which provides an excellent cosmetic outcome. The authors performed robot-assisted sialadenectomy via modified facelift incision using the da Vinci Xi surgical system (Intuitive Surgical Inc., CA, USA) with two endowrist arms (monopolar curved scissors and Maryland bipolar forceps) successfully in a 44-year-old female patient who suffered from sialolith and severe atrophic submandibular gland. If similar studies are done in the future, this robot-assisted sialadenectomy may become established as an alternative to existing disadvantageous surgical methods.

  15. Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Directory of Open Access Journals (Sweden)

    Pedro U. Lima

    2008-11-01

    Full Text Available This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior T?cnico (ISR/IST in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots and dynamic (moving robots obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams.

  16. Does Prior Laparoscopic and Open Surgery Experience Have Any Impact on Learning Curve in Transition to Robotic Surgery?

    Directory of Open Access Journals (Sweden)

    Cüneyt Adayener

    2016-12-01

    Full Text Available It has been 15 years since the Food And Drug Administration approved the Da Vinci® robotic surgery system. Robotic applications are being used extensively in urology, particularly in radical prostatectomy. Like all high-tech products, this system also has a high cost and a steep learning curve, therefore, preventing it from becoming widespread. There are various studies on the effect of open surgery or laparoscopy experience on the learning curve of robotic surgery. Analyzing these interactions well will provide valuable information on making the training period of robotic system more efficient.

  17. Robotic surgery in gynecology

    Science.gov (United States)

    Sinha, Rooma; Sanjay, Madhumati; Rupa, B.; Kumari, Samita

    2015-01-01

    FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon's console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D) vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over. PMID:25598600

  18. Robotic surgery in gynecology

    Directory of Open Access Journals (Sweden)

    Rooma Sinha

    2015-01-01

    Full Text Available FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon′s console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over.

  19. Outcomes of pancreatoduodenectomy with robotic surgery versus open surgery.

    Science.gov (United States)

    Zhou, Ning-xin; Chen, Jun-zhou; Liu, Quanda; Zhang, Xiaodong; Wang, Zhifei; Ren, Shiyan; Chen, Xiong-fei

    2011-06-01

    Pancreatoduodenectomy (PD) for pancreatic cancer is very challenging to many surgeons. Information regarding the advantage of using the Da Vinci robotic system over conventional open surgery for PD is rare. Therefore, a comparison of the outcomes of PD performed using the Da Vinci robotic system with outcomes using open surgery was conducted. Between January 2009 and December 2009 sixteen patients underwent PD, eight patients receiving robot-assisted surgery using the Da Vinci surgical robotic system (Group I) and eight being treated using conventional open surgery (Group II). There was no significant difference in radical resection (R0) rate between the two groups, 87.5% vs 100%, P = 0.05. The operative time in group I was longer than in group II, 718 ± 186 vs 420 ± 127 min, P = 0.011, while the surgical blood loss in group I was less than in group II, 153 ± 43 vs 210 ± 53 mL, P = 0.045. The length of bed time and hospital stay after surgery in group I were shorter than in group II, 27.5 ± 7.1 vs 96 ± 18.1 h, P = 0.000; 16.4 ± 4.1 vs 24.3 ± 7.1 days, P = 0.04, respectively). Complication rate of group I was lower than that of group II, 25% vs 75%, P = 0.05. It is feasible and safe to perform PD using the Da Vinci robot-assisted surgical system; patients recovered faster postoperatively with less blood loss during surgery. Copyright © 2011 John Wiley & Sons, Ltd.

  20. [Robotics in general surgery: personal experience, critical analysis and prospectives].

    Science.gov (United States)

    Fracastoro, Gerolamo; Borzellino, Giuseppe; Castelli, Annalisa; Fiorini, Paolo

    2005-01-01

    Today mini invasive surgery has the chance to be enhanced with sophisticated informative systems (Computer Assisted Surgery, CAS) like robotics, tele-mentoring and tele-presence. ZEUS and da Vinci, present in more than 120 Centres in the world, have been used in many fields of surgery and have been tested in some general surgical procedures. Since the end of 2003, we have performed 70 experimental procedures and 24 operations of general surgery with ZEUS robotic system, after having properly trained 3 surgeons and the operating room staff. Apart from the robot set-up, the mean operative time of the robotic operations was similar to the laparoscopic ones; no complications due to robotic technique occurred. The Authors report benefits and disadvantages related to robots' utilization, problems still to be solved and the possibility to make use of them with tele-surgery, training and virtual surgery.

  1. Robotic general surgery: current practice, evidence, and perspective.

    Science.gov (United States)

    Jung, M; Morel, P; Buehler, L; Buchs, N C; Hagen, M E

    2015-04-01

    Robotic technology commenced to be adopted for the field of general surgery in the 1990s. Since then, the da Vinci surgical system (Intuitive Surgical Inc, Sunnyvale, CA, USA) has remained by far the most commonly used system in this domain. The da Vinci surgical system is a master-slave machine that offers three-dimensional vision, articulated instruments with seven degrees of freedom, and additional software features such as motion scaling and tremor filtration. The specific design allows hand-eye alignment with intuitive control of the minimally invasive instruments. As such, robotic surgery appears technologically superior when compared with laparoscopy by overcoming some of the technical limitations that are imposed on the surgeon by the conventional approach. This article reviews the current literature and the perspective of robotic general surgery. While robotics has been applied to a wide range of general surgery procedures, its precise role in this field remains a subject of further research. Until now, only limited clinical evidence that could establish the use of robotics as the gold standard for procedures of general surgery has been created. While surgical robotics is still in its infancy with multiple novel systems currently under development and clinical trials in progress, the opportunities for this technology appear endless, and robotics should have a lasting impact to the field of general surgery.

  2. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  3. Instrumentation, sterilization, and preparation of robot

    Directory of Open Access Journals (Sweden)

    A Bhandari

    2005-01-01

    Full Text Available The da Vinci surgical system is being used for a wide range of surgical tasks. As the applications of this robot increase, more and more surgeons would like to acquire this piece of equipment. There are a wide range of expensive and sophisticated accessories and instruments that come along with this machine, that need special care and attention. The aim of this chapter is the make the user familiar with the various parts of the robot and to provide guidelines for the safe usage of this equipment.

  4. Adaptive LIDAR Vision System for Advanced Robotics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced robotic systems demand an enhanced vision system and image processing algorithms to reduce the percentage of manual operation required. Unstructured...

  5. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks:Asteroid Retrieval Capture Mechanism Development and Testbed;Mission Operations...

  6. Robotic surgery: urologic implications.

    Science.gov (United States)

    Moran, Michael E

    2003-11-01

    Current medical robots have nothing in common with the anthropomorphic robots in science fiction classics. They are in fact, manipulators, working on a master-slave principle. Robots can be defined as "automatically controlled multitask manipulators, which are freely programmable in three or more spaces." The success of robots in surgery is based on their precision, lack of fatigue, and speed of action. This review describes the theory, advantages, disadvantages, and clinical utilization of mechanical and robotic arm systems to replace the second assistant and provide camera direction and stability during laparoscopic surgery. The Robotrac system (Aesculap, Burlingame, CA), the First Assistant (Leonard Medical Inc, Huntingdon Valley, PA), AESOP (Computer Motion, Goleta, CA), ZEUS (Computer Motion), and the da Vinci (Intuitive Surgical, Mountain View, CA) system are reviewed, as are simple mechanical-assist systems such as Omnitract (Minnesota Scientific, St. Paul, MN), Iron Intern (Automated Medical Products Corp., New York, NY), the Bookwalter retraction system (Codman , Somerville, NJ), the Surgassistant trade mark (Solos Endoscopy, Irvine, CA), the Trocar Sleeve Stabilizer (Richard Wolf Medical Instruments Corp., Rosemont, IL), and the Endoholder (Codman, Somerville, NJ).

  7. Robotic neurorehabilitation system design for stroke patients

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available In this article, a neurorehabilitation system combining robot-aided rehabilitation with motor imagery–based brain–computer interface is presented. Feature extraction and classification algorithm for the motor imagery electroencephalography is implemented under our brain–computer interface research platform. The main hardware platform for functional recovery therapy is the Barrett Whole-Arm Manipulator. The mental imagination of upper limb movements is translated to trigger the Barrett Whole-Arm Manipulator Arm to stretch the affected upper limb to move along the predefined trajectory. A fuzzy proportional–derivative position controller is proposed to control the Whole-Arm Manipulator Arm to perform passive rehabilitation training effectively. A preliminary experiment aimed at testing the proposed system and gaining insight into the potential of motor imagery electroencephalography-triggered robotic therapy is reported.

  8. Emergent trends in robotics and intelligent systems where is the role of intelligent technologies in the next generation of robots?

    CERN Document Server

    Hartono, Pitoyo; Virčíková, Mária; Vaščák, Ján; Jakša, Rudolf

    2015-01-01

    What is the Role of Intelligent Technologies in the Next Generation of Robots ? This monograph gives answers to this question and presents emergent trends of Intelligent Systems and Robotics. After an introductory chapter celebrating 70 year of publishing the McCulloch Pitts model the book consists of the 2 parts „Robotics“ and „Intelligent Systems“. The aim of the book is to contribute to shift conventional robotics in which the robots perform repetitive, pre-programmed tasks to its intelligent form, where robots possess new cognitive skills with ability to learn and adapt to changing environment. A main focus is on Intelligent Systems, which show notable achievements in solving various problems in intelligent robotics. The book presents current trends and future directions bringing together Robotics and Computational Intelligence. The contributions include widespread experimental and theoretical results on intelligent robotics such as e.g. autonomous robotics, new robotic platforms, or talking robot...

  9. Der Telemanipulator daVinci als mechanisches Trackingsystem

    Science.gov (United States)

    Käst, Johannes; Neuhaus, Jochen; Nickel, Felix; Kenngott, Hannes; Engel, Markus; Short, Elaine; Reiter, Michael; Meinzer, Hans-Peter; Maier-Hein, Lena

    Der Telemanipulator daVinci (Intuitive Surgical, Sunnyvale, Kalifornien) ist ein M aster-Slave System für roboterassistierte minimalinvasive Chirurgie. Da er über integrierte Gelenksensoren verfügt, kann er unter Verwendung der daVinci-API als mechanisches Trackingsystem verwendet werden. In dieser Arbeit evaluieren wir die Präzision und Genauigkeit eines daVinci mit Hilfe eines Genauigkeitsphantoms mit bekannten Maßen. Der ermittelte Positionierungsfehler liegt in der Größenordnung von 6 mm und ist somit für einen Großteil der medizinischen Fragestellungen zu hoch. Zur Reduktion des Fehlers schlagen wir daher eine Kalibrierung der Gelenksensoren vor.

  10. Robotics and medicine: A scientific rainbow in hospital.

    Science.gov (United States)

    Jeelani, S; Dany, A; Anand, B; Vandana, S; Maheswaran, T; Rajkumar, E

    2015-08-01

    The journey of robotics is a real wonder and astonishingly can be considered as a scientific rainbow showering surprising priceless power in the era of future technologies. The astonishing seven technologies discussed in this paper are da Vinci Robotic surgical system and sperm sorters for infertility, Veebot for blood investigation, Hanako the robotic dental patient for simulating the dental patient and helping a trainee dentist, RP-7 robot who is around-the-clock physician connecting the physician and patient, Robot for Interactive Body Assistance (RIBA) who is a RIBA serving as a nurse, Bushbot serving as a brilliant surgeon, and Virtibot helping in virtual autopsy. Thus, robotics in medicine is a budding field contributing a great lot to human life from before birth to afterlife in seven forms thus gracefully portraying a scientific rainbow in hospital environment.

  11. Maximizing console surgeon independence during robot-assisted renal surgery by using the Fourth Arm and TilePro.

    Science.gov (United States)

    Rogers, Craig G; Laungani, Rajesh; Bhandari, Akshay; Krane, Louis Spencer; Eun, Daniel; Patel, Manish N; Boris, Ronald; Shrivastava, Alok; Menon, Mani

    2009-01-01

    We describe multiple uses of the fourth robotic arm and TilePro on the da Vinci S surgical system to maximize console surgeon independence from the assistant during robot-assisted renal surgery. We prospectively evaluated the use of the fourth robotic arm and TilePro on the da Vinci S during robot-assisted radical nephrectomy (RRN) and robot-assisted partial nephrectomy (RPN). The fourth robotic arm was used to provide kidney retraction, place the renal hilum on stretch, control vascular structures, apply and remove bulldog clamps during partial nephrectomy, and secure renal capsular stitches. TilePro was used to project intraoperative ultrasonography and preoperative CT images onto the console screen. From January 2006 to June 2008, 90 robot-assisted kidney procedures were performed, of which the fourth robotic arm was used in 46 cases (RRN, 18; RPN, 24; nephroureterectomy, 4). The fourth robotic arm facilitated consistent kidney retraction for dissection of the renal hilum and mobilization of the kidney. The robotic Hem-o-Lok clip applier effectively controlled renal hilar vessels during eight RPN cases and secured renal capsular stitches during two RPN cases. Bulldog clamps were successfully applied to the renal artery during RPN using the fourth arm in two cases. TilePro was used during 22 RPN cases to project intraoperative ultrasonographic images and preoperative CT images onto the console screen as a picture-on-picture image to guide tumor resection. Robotic instruments used with the fourth robotic arm may give the console surgeon greater independence from the assistant during robot-assisted kidney surgery by facilitating steps such as kidney retraction, hilar dissection, and vascular control. The TilePro feature of the da Vinci S can be used to project intraoperative ultrasonography and preoperative imaging onto the console screen, potentially guiding tumor localization and resection during RPN without the need to leave the console to view external images.

  12. Model tracking controller design of robot manipulator system with disturbances

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-06-01

    Full Text Available In the model tracking control of robot manipulator system, the treatment of nonlinear uncertainty in the system has always been an active research field. This article establishes a kinetic equation for robot manipulator system based on Lagrange equation and proposes a model tracking control system based on differential divisor. On this basis, this article proposes a model tracking control scheme for robot manipulator systems with disturbances. The proposed scheme is robust stable under the external disturbances. At last, the system simulation approach is employed to verify the effectiveness of this scheme on robot manipulator control.

  13. Application of robotics in general surgery: initial experience.

    Science.gov (United States)

    Nguyen, Ninh T; Hinojosa, Marcelo W; Finley, David; Stevens, Melinda; Paya, Mahbod

    2004-10-01

    Robotic surgery was recently approved for clinical use in general abdominal surgery. The aim of this study was to review our experience with the da Vinci surgical system during laparoscopic general surgical procedures. Eighteen patients underwent robotically assisted laparoscopic abdominal surgery between June 2002 and March 2003. Main outcome measures were operative time, room setup time, robotic arm-positioning and surgical time, blood loss, conversion to laparoscopy, length of stay, and morbidity. The types of robotically assisted laparoscopic procedures were excision of gastric leiomyoma (n = 1), Heller myotomy (n = 1), cholecystectomy (n = 2), gastric banding (n = 2), Nissen fundoplication (n = 4), and gastric bypass (n = 8). The mean room setup time was 63 +/- 14 minutes, and the mean robotic arm-positioning time was 16 +/- 7 minutes. Conversion to laparoscopy occurred in two (11%) of 18 cases because of equipment difficulty (n = 1) and technical difficulty (n = 1). Estimated blood loss was 91 +/- 71 mL. The mean operative time was 156 +/- 42 minutes, and the robotic operative time was 27% of the total operative time. The mean length of hospital stay was 2.2 +/- 1.5 days. There was one postoperative wound infection and one anastomotic stricture. Robotically assisted laparoscopic abdominal surgery is feasible and safe; however, the theoretical advantages of the da Vinci surgical system were not clinically apparent.

  14. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  15. Beam stripping extraction from the VINCY cyclotron

    Directory of Open Access Journals (Sweden)

    Ristić-Đurović Jasna L.

    2006-01-01

    Full Text Available The extraction system of a cyclotron guides an ion beam from a spiral acceleration orbit, through an extraction trajectory, into a high energy transport line. The two methods commonly used to direct an ion into the extraction path are deflection, by the electric field of an electrostatic deflector, and ion stripping, by a thin carbon foil. Compared to the electrostatic deflector system, the stripping extraction provides a fast and easy change of the extracted ion energy and is easier to manufacture operate, and maintain. However, the extraction trajectory and dynamics of an ion beam after stripping are highly dependant on the ion energy and specific charge. Thus, when a multipurpose machine such as the VINCY Cyclotron is concerned, it is far from easy to deliver a variety of ion beams into the same high energy transport line and at the same time preserve a reasonable compactness of the extraction system. The front side stripping extraction system of the VINCY Cyclotron provides high (~70 MeV and mid (~30 MeV energy protons, as well as a number of heavy ions in broad energy ranges. The back side stripping extraction system extracts low energy protons (~18 MeV and enables their simultaneous use with high energy protons at the front side of the machine.

  16. Surgery with cooperative robots.

    Science.gov (United States)

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  17. An ontology system for rehabilitation robotics

    OpenAIRE

    Doğmuş, Zeynep; Dogmus, Zeynep

    2013-01-01

    Representing the available information about rehabilitation robots in a structured form, like ontologies, facilitates access to various kinds of information about the existing robots, and thus it is important both from the point of view of rehabilitation robotics and from the point of view of physical medicine. Rehabilitation robotics researchers can learn various properties of the existing robots and access to the related publications to further improve the state-of-the-art. Physical medicin...

  18. Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Directory of Open Access Journals (Sweden)

    Pedro U. Lima

    2004-09-01

    Full Text Available This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Técnico (ISR/IST in Lisbon. The acronym of the project stands both for “Society of Robots” and “Soccer Robots”, the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots and dynamic (moving robots obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams.

  19. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  20. Research and development of compact wrist rehabilitation robot system.

    Science.gov (United States)

    Yamamoto, Ikuo; Inagawa, Naohiro; Matsui, Miki; Hachisuka, Kenji; Wada, Futoshi; Hachisuka, Akiko

    2014-01-01

    Compact rehabilitation robot system which can support movement of the wrist of patients has been developed. The robot system can detect and analyze the patient's intention to move the wrist by such a biological signal as muscle potential, then, assist the wrist exercise of patients. Also, both-wrist rehabilitation robot system by mirror effect has been successfully developed for practical use in the hospital and at home.

  1. Robotics.

    Science.gov (United States)

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  2. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  3. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  4. Aerial robotic data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  5. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  6. Robotic telementoring/telesurgical system and randomized evaluation study.

    Science.gov (United States)

    Patriciu, Alexandru; Challacombe, Benjamin; Dasgupta, Prokar; Kavoussi, Louis; Stoianovici, Dan

    2005-01-01

    The paper presents a new telementoring system incorporating audio-video communication and remote robotic control. The system was developed around an off the shelf ISDN video conferencing system enhanced with video annotation and remote robot control features. The user can remotely control a robot of perform needle alignment and insertion in a Percutaneous access procedure. Particular attention was devoted to ensure the safety of the procedure. The data connection is continuously monitored and in the event of a failure the robot control is switched to the local operator. Two series of randomized trials were performed between Baltimore and London. The accuracy and procedure time were evaluated for manual needle placement, local robotic needle placement and remotely controlled robotic needle placement. The test showed that while the procedure time is not improved by the robotic approach there is an improvement in the accuracy of the procedure. The study showed also that there is no significant difference between the locally controlled robotic needled placement and the remotely controlled robotic needle placement. Thus, the proposed system can be safely used for remote robotic percutaneous access procedures.

  7. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  8. Visual tracking of da Vinci instruments for laparoscopic surgery

    Science.gov (United States)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  9. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    OpenAIRE

    Flavio Roberti; Juan Marcos Toibero; Carlos Soria; Raquel Frizera Vassallo; Ricardo Carelli

    2009-01-01

    This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras) for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimen...

  10. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2010-02-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  11. Hybrid Collaborative Stereo Vision System for Mobile Robots Formation

    Directory of Open Access Journals (Sweden)

    Flavio Roberti

    2009-12-01

    Full Text Available This paper presents the use of a hybrid collaborative stereo vision system (3D-distributed visual sensing using different kinds of vision cameras for the autonomous navigation of a wheeled robot team. It is proposed a triangulation-based method for the 3D-posture computation of an unknown object by considering the collaborative hybrid stereo vision system, and this way to steer the robot team to a desired position relative to such object while maintaining a desired robot formation. Experimental results with real mobile robots are included to validate the proposed vision system.

  12. [A robot measurement system for spacesuit joint torque].

    Science.gov (United States)

    Du, Li-Bin; Gao, Xiao-Hui; Liu, Hong; Li, Tan-qiu

    2003-06-01

    To measure the joint torque of spacesuit so as to evaluate its dynamic force/torque performance. A method for measuring the spacesuit joint torque by use of robot technology was proposed in this paper. The design of the measuring strategy and measuring robot was put forward and a mathematical model of the system was given. Then the working space of the robot was analyzed. The robot designed is light, compact, easy to operate, and has a large working space. Experimental results demonstrated the effectiveness of the measuring principle and the reliability of the measuring system. The system can satisfy the requirements of the spacesuit joint torque measurement.

  13. Totally thoracoscopic surgery for the treatment of atrial septal defect without of the robotic Da Vinci surgical system.

    Science.gov (United States)

    Liu, Gaoli; Qiao, Yanli; Ma, Liming; Ni, Liangchun; Zeng, Shanguang; Li, Qingchen

    2013-05-01

    More and more surgeons and patients focus on the minimally invasive surgical techniques in the 21st century. Totally thoracoscopic operation provides another minimal invasive surgical option for patients with ASD (atrial septal defect). In this study, we reported our experience of 61 patients with atrial septal defect who underwent totally thoracoscopic operation and discussed the feasibility and safety of the new technique. From January 2010 to October 2012, 61 patients with atrial septal defect underwent totally thoracoscopic closure but not traditional median sternotomy surgery. We divided the 61 patients into two groups based on the operation sequence. The data of group A (the first 30 cases) and group B (the last 31 cases). The mean age of the patients was 35.1 ± 12.8 years (range, 6.3 to 63.5 years), and mean weight was 52.7 ± 11.9 kg (range, 30.5 to 80 kg). Mean size of the atrial septal defect was 16.8 ± 11.3 mm (range, 13 to 39 mm) based on the description of the echocardiography. All patients underwent totally thoracoscopy successfully, 36 patients with pericardium patch and 25 patients were sutured directly. 7 patients underwent concomitant tricuspid valvuloplasty with Key technique. No death, reoperation or complete atrioventricular block occurred. The mean time of cardiopulmonary bypass was 68.5 ± 19.1 min (range, 31.0 to 153.0 min), the mean time of aortic cross-clamp was 27.2 ± 11.3 min (range, 0.0 to 80.0 min) and the mean time of operation was 149.8 ± 35.7 min (range, 63.0 to 300.0 min). Postoperative mechanical ventilation averaged 4.9 ± 2.5 hours (range, 3.5 to 12.6 hours), and the duration of intensive care unit stay 20.0 ± 4.8 hours (range, 15.5 to 25 hours). The mean volume of blood drainage was 158 ± 38 ml (range, 51 to 800 ml). No death, residual shunt, lung atelectasis or moderate tricuspid regurgitation was found at 3-month follow-up. The totally thoracoscopic operation is feasible and safe for patients with ASD, even with or without tricuspid regurgitation. This technique provides another minimal invasive surgical option for patients with atrial septal defect.

  14. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.

    Science.gov (United States)

    Brown, Jeremy D; O Brien, Conor E; Leung, Sarah C; Dumon, Kristoffel R; Lee, David I; Kuchenbecker, Katherine J

    2017-09-01

    Most trainees begin learning robotic minimally invasive surgery by performing inanimate practice tasks with clinical robots such as the Intuitive Surgical da Vinci. Expert surgeons are commonly asked to evaluate these performances using standardized five-point rating scales, but doing such ratings is time consuming, tedious, and somewhat subjective. This paper presents an automatic skill evaluation system that analyzes only the contact force with the task materials, the broad-bandwidth accelerations of the robotic instruments and camera, and the task completion time. We recruited N = 38 participants of varying skill in robotic surgery to perform three trials of peg transfer with a da Vinci Standard robot instrumented with our Smart Task Board. After calibration, three individuals rated these trials on five domains of the Global Evaluative Assessment of Robotic Skill (GEARS) structured assessment tool, providing ground-truth labels for regression and classification machine learning algorithms that predict GEARS scores based on the recorded force, acceleration, and time signals. Both machine learning approaches produced scores on the reserved testing sets that were in good to excellent agreement with the human raters, even when the force information was not considered. Furthermore, regression predicted GEARS scores more accurately and efficiently than classification. A surgeon's skill at robotic peg transfer can be reliably rated via regression using features gathered from force, acceleration, and time sensors external to the robot. We expect improved trainee learning as a result of providing these automatic skill ratings during inanimate task practice on a surgical robot.

  15. Maximizing Use of Robot-Arm No. 3 in Da Vinci–Assisted Thoracic Surgery

    Science.gov (United States)

    Kajiwara, Naohiro; Maeda, Junichi; Yoshida, Koichi; Kato, Yasufumi; Hagiwara, Masaru; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2015-01-01

    We have previously reported on the importance of appropriate robot-arm settings and replacement of instrument ports in robot-assisted thoracic surgery, because the thoracic cavity requires a large space to access all lesions in various areas of the thoracic cavity from the apex to the diaphragm and mediastinum and the chest wall.1–3 Moreover, it can be difficult to manipulate the da Vinci Surgical System using only arms No. 1 and No. 2 depending on the tumor location. However, arm No. 3 is usually positioned on the same side as arm No. 2, and sometimes it is only used as an assisting-arm to avoid conflict with other arms (Fig. 1). In this report, we show how robot-arm No. 3 can be used with maximum effectiveness in da Vinci-assisted thoracic surgery. PMID:26011219

  16. Meeting the challenges of installing a mobile robotic system

    Science.gov (United States)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  17. Robotic surgical systems in maxillofacial surgery: a review

    Science.gov (United States)

    Liu, Hang-Hang; Li, Long-Jiang; Shi, Bin; Xu, Chun-Wei; Luo, En

    2017-01-01

    Throughout the twenty-first century, robotic surgery has been used in multiple oral surgical procedures for the treatment of head and neck tumors and non-malignant diseases. With the assistance of robotic surgical systems, maxillofacial surgery is performed with less blood loss, fewer complications, shorter hospitalization and better cosmetic results than standard open surgery. However, the application of robotic surgery techniques to the treatment of head and neck diseases remains in an experimental stage, and the long-lasting effects on surgical morbidity, oncologic control and quality of life are yet to be established. More well-designed studies are needed before this approach can be recommended as a standard treatment paradigm. Nonetheless, robotic surgical systems will inevitably be extended to maxillofacial surgery. This article reviews the current clinical applications of robotic surgery in the head and neck region and highlights the benefits and limitations of current robotic surgical systems. PMID:28660906

  18. Robotic-assisted laparoscopic surgery of the colon and rectum: a literature review.

    Science.gov (United States)

    Pedraza, Rodrigo; Ramos-Valadez, Diego Iván; Haas, Eric M

    2011-01-01

    Although it has been almost a decade since the implementation of robotic colorectal surgery, this modality remains under development. The aim of this study is to briefly describe, based on a literature review, the current role of robotic surgery of the colon and rectum. This emerging technique has revealed some benefits such as an improvement in visualization in 3D, image magnification up to 10 times the actual size, and better maneuverability with wrist-like movements offered by the da Vinci® Surgical System. This system is composed of the robotic console in which the surgeon performs the movements to be accomplished by the robot. The latter presents up to three articulated arms for instrumentation as well as the camera arm. Even though the safety and feasibility of robotic colon surgery has been demonstrated, there is no complete manifestation of the advantages of this technique due to the wide surgical field in the abdominal cavity and freedom of movement achieved with other minimally invasive techniques. Robotic rectal surgery represents a different scenario since the advantages of the da Vinci® system are maximally expressed in the confined pelvic cavity. Consequently, in some specialized centers, the robotic modality represents the first therapeutic choice for resectable rectal cancer. Robotic-assisted laparoscopy has demonstrated to be a feasible and safe approach in colorectal surgery and presents some advantages over other techniques in regards to perioperative outcomes. Nonetheless, costs and availability represent the main limitations of this technology.

  19. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    localization and mapping SSH Secure shell URDF Unified robot description format XML Extensible markup language xiv THIS PAGE INTENTIONALLY LEFT...package. A package may contain ROS runtime execution programs, which are called nodes, a ROS-independent library , datasets, configuration files, third...Parameter Server. It is useful for running large projects, which may have many packages, nodes, libraries , parameters, and even other launch files

  20. Advanced real-time multi-display educational system (ARMES): An innovative real-time audiovisual mentoring tool for complex robotic surgery.

    Science.gov (United States)

    Lee, Joong Ho; Tanaka, Eiji; Woo, Yanghee; Ali, Güner; Son, Taeil; Kim, Hyoung-Il; Hyung, Woo Jin

    2017-12-01

    The recent scientific and technologic advances have profoundly affected the training of surgeons worldwide. We describe a novel intraoperative real-time training module, the Advanced Robotic Multi-display Educational System (ARMES). We created a real-time training module, which can provide a standardized step by step guidance to robotic distal subtotal gastrectomy with D2 lymphadenectomy procedures, ARMES. The short video clips of 20 key steps in the standardized procedure for robotic gastrectomy were created and integrated with TilePro™ software to delivery on da Vinci Surgical Systems (Intuitive Surgical, Sunnyvale, CA). We successfully performed the robotic distal subtotal gastrectomy with D2 lymphadenectomy for patient with gastric cancer employing this new teaching method without any transfer errors or system failures. Using this technique, the total operative time was 197 min and blood loss was 50 mL and there were no intra- or post-operative complications. Our innovative real-time mentoring module, ARMES, enables standardized, systematic guidance during surgical procedures. © 2017 Wiley Periodicals, Inc.

  1. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  2. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  3. Robotic Surgical Training in an Academic Institution

    Science.gov (United States)

    Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.

    2001-01-01

    Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons

  4. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  5. [Current status of robotic surgery for gastric cancer].

    Science.gov (United States)

    Suda, Koichi; Ishida, Yoshinori; Uyama, Ichiro

    2014-11-01

    Robotic surgery was launched in Japan in 2000.In particular, the development of the da Vinci S Surgical System was a major breakthrough. It was introduced in Japan for the first time through our hospital in January 2009. Since then, the number of surgical robots used has been dramatically increasing, with up to approximately 160 robots all over the country. To date, we have performed more than 500 robotic surgeries, including 180 gastrectomies, at our hospital. Our data suggest that compared with the conventional laparoscopic approach, the use of the da Vinci Surgical System in minimally invasive gastrectomy for gastric cancer might improve short-term outcomes, particularly in terms of preventing postoperative local complications. Thus, we believe that use of surgical robots become increasingly beneficial for more extensive resections and operations that require more advanced skills, even though a couple of issues remain to be solved, such as long operative time, high cost, and limited experience and evidence. In this article, the current status and future perspectives regarding robotic gastrectomy for gastric cancer are presented based on our experience and a review of the literature.

  6. A pilot study of surgical training using a virtual robotic surgery simulator.

    Science.gov (United States)

    Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N

    2013-01-01

    Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.

  7. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  8. 10th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Mondada, Francesco; Correll, Nikolaus; Mermoud, Grégory; Egerstedt, Magnus; Hsieh, M; Parker, Lynne; Støy, Kasper

    2013-01-01

    Distributed robotics is a rapidly growing, interdisciplinary research area lying at the intersection of computer science, communication and control systems, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 43 original contributions presented at the Tenth International Symposium on Distributed Autonomous Robotic Systems (DARS 2010), which was held in November 2010 at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The selected papers in this volume are authored by leading researchers from Asia, Australia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into four parts, each representing one critical and long-term research thru...

  9. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  10. Automatic rendezvous system testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Tobbe, Patrick A.; Naumann, Charles B.

    1991-01-01

    The Flight Robotics Laboratory of MSFC provides sophisticated real time simulation capability in the study of human/system interactions of remote systems. This paper will describe the Flight Robotics Facility of NASA/MSFC, the hardware-in-the-loop simulation configuration, and test results.

  11. A Segway RMP-based robotic transport system

    Science.gov (United States)

    Nguyen, Hoa G.; Kogut, Greg; Barua, Ripan; Burmeister, Aaron; Pezeshkian, Narek; Powell, Darren; Farrington, Nathan; Wimmer, Matt; Cicchetto, Brett; Heng, Chana; Ramirez, Velia

    2004-12-01

    In the area of logistics, there currently is a capability gap between the one-ton Army robotic Multifunction Utility/Logistics and Equipment (MULE) vehicle and a soldier"s backpack. The Unmanned Systems Branch at Space and Naval Warfare Systems Center (SPAWAR Systems Center, or SSC), San Diego, with the assistance of a group of interns from nearby High Tech High School, has demonstrated enabling technologies for a solution that fills this gap. A small robotic transport system has been developed based on the Segway Robotic Mobility Platform (RMP). We have demonstrated teleoperated control of this robotic transport system, and conducted two demonstrations of autonomous behaviors. Both demonstrations involved a robotic transporter following a human leader. In the first demonstration, the transporter used a vision system running a continuously adaptive mean-shift filter to track and follow a human. In the second demonstration, the separation between leader and follower was significantly increased using Global Positioning System (GPS) information. The track of the human leader, with a GPS unit in his backpack, was sent wirelessly to the transporter, also equipped with a GPS unit. The robotic transporter traced the path of the human leader by following these GPS breadcrumbs. We have additionally demonstrated a robotic medical patient transport capability by using the Segway RMP to power a mock-up of the Life Support for Trauma and Transport (LSTAT) patient care platform, on a standard NATO litter carrier. This paper describes the development of our demonstration robotic transport system and the various experiments conducted.

  12. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  13. Interactions between Art and Mobile Robotic System Engineering

    OpenAIRE

    Mondada, F.; Legon, S.

    2001-01-01

    The field of mobile robotics offers a new medium for public entertainment and art. Mobile robots can move, react, and interact in the real world, generating behaviors that can be used as a new artistic medium quite different from sculptures, drawings or video. This new medium, like other technological media such as video or the Internet, requires considerable technical know-how to be exploited successfully. The successful design of a mobile robot demands a strong interdisciplinary and systems...

  14. Nonlinear dynamics, symmetries, and robot system design

    Science.gov (United States)

    McKee, Gerard T.; Hasinski, Richard J.; Schenker, Paul S.

    1998-10-01

    In this paper we investigate a model for self-organizing modular robotic systems based upon dynamical systems theory. Sonar sensing is used as a case study, and the effects of nonlinear interactions between sonar sensing modules are examined. We present and analyze an initial set of results based upon an implementation of the model in simulation. The results show that the sonar sensors organize the relative phase of their sampling in response to changes in the demand placed on them for sensory data. Efficient sampling rates are achieved by the system adapting to take advantage of features in the environment. We investigate the types of phase patterns that emerge, and examine their relationship with symmetries present in the environment.

  15. Robot vision system programmed in Prolog

    Science.gov (United States)

    Batchelor, Bruce G.; Hack, Ralf

    1995-10-01

    This is the latest in a series of publications which develop the theme of programming a machine vision system using the artificial intelligence language Prolog. The article states the long-term objective of the research program of which this work forms part. Many but not yet all of the goals laid out in this plan have already been achieved in an integrated system, which uses a multi-layer control hierarchy. The purpose of the present paper is to demonstrate that a system based upon a Prolog controller is capable of making complex decisions and operating a standard robot. The authors chose, as a vehicle for this exercise, the task of playing dominoes against a human opponent. This game was selected for this demonstration since it models a range of industrial assembly tasks, where parts are to be mated together. (For example, a 'daisy chain' of electronic equipment and the interconnecting cables/adapters may be likened to a chain of dominoes.)

  16. Current status of robot-assisted surgery.

    Science.gov (United States)

    Ng, Ada T L; Tam, P C

    2014-06-01

    The introduction of robot-assisted surgery, and specifically the da Vinci Surgical System, is one of the biggest breakthroughs in surgery since the introduction of anaesthesia, and represents the most significant advancement in minimally invasive surgery of this decade. One of the first surgical uses of the robot was in orthopaedics, neurosurgery, and cardiac surgery. However, it was the use in urology, and particularly in prostate surgery, that led to its widespread popularity. Robotic surgery, is also widely used in other surgical specialties including general surgery, gynaecology, and head and neck surgery. In this article, we reviewed the current applications of robot-assisted surgery in different surgical specialties with an emphasis on urology. Clinical results as compared with traditional open and/or laparoscopic surgery and a glimpse into the future development of robotics were also discussed. A short introduction of the emerging areas of robotic surgery were also briefly reviewed. Despite the increasing popularity of robotic surgery, except in robot-assisted radical prostatectomy, there is no unequivocal evidence to show its superiority over traditional laparoscopic surgery in other surgical procedures. Further trials are eagerly awaited to ascertain the long-term results and potential benefits of robotic surgery.

  17. Improved OTEC System for a Submarine Robot

    Science.gov (United States)

    Chao, Yi; Jones, Jack; Valdez, Thomas

    2010-01-01

    An ocean thermal energy conversion (OTEC), now undergoing development, is a less-massive, more-efficient means of exploiting the same basic principle as that of the proposed system described in "Alternative OTEC Scheme for a Submarine Robot" (NPO-43500), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 50. The proposed system as described previously would be based on the thawing-expansion/freezing-contraction behavior of a wax or perhaps another suitable phase-change material (PCM). The power generated by the system would be used to recharge the batteries in a battery- powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. At one phase of its operational cycle, the previously proposed system would utilize the surface ocean temperature (which lies between 15 and 30 C over most of the Earth) to melt a PCM that has a melting/freezing temperature of about 10 C. At the opposite phase of its operational cycle, the system would utilize the lower ocean temperature at depth (e.g., between 4 and 7 C at a depth of 300 m) to freeze the PCM. The melting or freezing would cause the PCM to expand or contract, respectively, by about 9 volume percent. The PCM would be contained in tubes that would be capable of expanding and contracting with the PCM. The PCM-containing tubes would be immersed in a hydraulic fluid. The expansion and contraction would drive a flow of the hydraulic fluid against a piston that, in turn, would push a rack-and-pinion gear system to spin a generator to charge a battery.

  18. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  19. Leonardo Da Vinci and stroke - vegetarian diet as a possible cause.

    Science.gov (United States)

    Oztürk, Serefnur; Altieri, Marta; Troisi, Pina

    2010-01-01

    Leonardo da Vinci (April 15, 1452 to May 2, 1519) was an Italian Renaissance architect, musician, anatomist, inventor, engineer, sculptor, geometer, and painter. It has been gleaned from the many available historical documents that da Vinci was a vegetarian who respected and loved animals, and that he suffered from right hemiparesis in the last 5 years of his life. A vegetarian diet has both positive and negative influences on the cerebrovascular system. In this report, a possible relation between a vegetarian diet and stroke is discussed from various perspectives as related to Leonardo da Vinci's stroke. Copyright (c) 2010 S. Karger AG, Basel.

  20. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  1. A RIDING FUZZY CONTROL SYSTEM FOR A MOUNTAIN AGRICULTURAL ROBOT

    OpenAIRE

    Wang, Yuanjie; Yang, Fuzeng; Zhou, Yu; Pan, Guanting; He, Jinyi; Lan, Yubin

    2013-01-01

    A fuzzy control system was designed to command driving directions for a mountain agriculture robot. First, a fuzzy control system program was developed based on the scheme of the robot driving control system. Then, the core part of the system--the fuzzy controller--was designed. Finally, a system model was created and a simulation test was conducted through the application of the Fuzzy Toolbox in MATLAB and SIMULINK. The results showed that the system is effective.

  2. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    Science.gov (United States)

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  3. Implementation of a robotic flexible assembly system

    Science.gov (United States)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  4. Toward robotic socially believable behaving systems

    CERN Document Server

    Jain, Lakhmi

    2016-01-01

    This volume is a collection of research studies on the modeling of emotions in complex autonomous systems. Several experts in the field are reporting their efforts and reviewing the literature in order to shed lights on how the processes of coding and decoding emotional states took place in humans, which are the physiological, physical, and psychological variables involved, invent new mathematical models and algorithms to describe them, and motivate these investigations in the light of observable societal changes and needs, such as the aging population and the cost of health care services. The consequences are the implementation of emotionally and socially believable machines, acting as helpers into domestic spheres, where emotions drive behaviors and actions. The contents of the book are highly multidisciplinary since the modeling of emotions in robotic socially believable systems requires a holistic perspective on topics coming from different research domains such as computer science, engineering, sociology...

  5. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  6. Modular Robot System for Maintenance Tasks in Large Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Prithvi Sekhar Pagala

    2013-11-01

    Full Text Available Large scientific facilities such as particle accelerators are scenarios that require continuous maintenance and specific type of interventions. The intervening personnel are sometimes required to work exposed to residual radiation. The inclusion of robotic systems into these environmental conditions are being encouraged to increase the availability of the facility and reduce personal radiation doses. However, this scenario presents challenging conditions for robotic systems in terms of structural, equipment and environmental conditions. This paper addresses the design of a modular robotic system as an alternative to conventional robots to overcome the challenges. This work also explores the various capabilities of the design along with its future possibilities. The SMART heterogeneous modular robot systems, prototype and simulation results are presented.

  7. Control System Design for a Surface Cleaning Robot

    Directory of Open Access Journals (Sweden)

    Zhai Yuyi

    2013-05-01

    Full Text Available Abstract This paper aims to study a control system for a surface cleaning robot and the focus of the study is the surface cleaning robot controller design. The structural framework of the propulsion control system of the surface robot is designed based on the principle of PWM speed control. The function of each module in the control system is divided and described in detail. A kind of thinking based on an AVR microprocessor and its software and hardware design proposals are presented. Through RS485 and PC communication according to the agreed protocol, the control system achieves robot forward, backward, turn and work operations by the use of a DC motor or stepper motor, and it can therefore more successfully realize the work of a surface cleaning robot.

  8. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    Science.gov (United States)

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy

  10. The development of robotic surgery in the Middle East

    Science.gov (United States)

    Rabah, Danny M.; Al-Abdin, Osman Zin

    2012-01-01

    Objectives We provide an overview of the development of robotic surgery in the Middle East since its first introduction in April 2003 in the Kingdom of Saudi Arabia (KSA). Methods We searched MEDLINE using 20 keywords/phrases and identified 44 reports, of which only 15 were relevant. Five of these articles were duplicated when using two different keywords. Therefore, no more than 10 articles were found that were relevant to the scope of this review. Results After completing the MEDLINE search to identify articles related to robotic surgery in the Middle East, we noted that all of the nine case series (Level of evidence 3a) reported took place in the KSA, with no other reported series from other Middle-Eastern countries. To the best of our knowledge, there are no operating robotic surgery systems (da Vinci, Intuitive Surgical, CA, USA) in the Middle East other than in the KSA, Qatar and Egypt. The number of robotic surgery cases and newly adapted robotic procedures is increasing. Two major institutions in the KSA have expanded to robotic-assisted pyeloplasty in all of their cases since January 2005. Conclusion There are 10 da Vinci robots in the KSA, with over 35 trained surgeons, yet very few index cases. The cancer incidence rate, lack of practitioners’ referrals, and demographic age distribution are all factors that contribute significantly to the few index cases reported. By consolidating the robotic surgery procedures in high-volume speciality centres, hospitals can increase their case loads by promoting the multidisciplinary use of the robotic system. Even though growth is relatively slow, we believe that robotic surgery is gaining momentum, and its benefits and innovation will soon be grasped in other countries in the Middle East. PMID:26557999

  11. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  12. Can Robotic Thyroidectomy Be Performed Safely in Thyroid Carcinoma Patients?

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    2014-09-01

    Full Text Available Since the adoption of the Da Vinci robotic system for remote access thyroid surgery, robotic thyroidectomy (RT has become a popular surgical option for patients who want to avoid neck scars. Surgeons in South Korea pioneered this surgical technique and have reported successful outcomes. Although many studies have reported that RT is a feasible and safe therapeutic alternative, concerns over the surgical and oncological safety of RT remain. This article reviews the advantages and disadvantages of RT and compares the surgical safety and oncological completeness of RT with conventional open thyroidectomy.

  13. The influence of ancient Greek thought on fifteenth century anatomy: Galenic influence and Leonardo da Vinci.

    Science.gov (United States)

    Tubbs, Richard Isaiah; Gonzales, Jocelyn; Iwanaga, Joe; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2017-05-29

    Leonardo da Vinci (1452-1519) can be called one of the earliest contributors to the history of anatomy and, by extension, the study of medicine. He may have even overshadowed Andreas Vesalius (1514-1564), the so-called founder of human anatomy, if his works had been published within his lifetime. While some of the best illustrations of their time, with our modern knowledge of anatomy, it is clear that many of da Vinci's depictions of human anatomy are inaccurate. However, he also made significant discoveries in anatomy and remarkable predictions of facts he could not yet discover with the technology available to him. Additionally, da Vinci was largely influenced by Greek anatomists, as indicated from his ideas about anatomical structure. In this historical review, we describe da Vinci's history, influences, and discoveries in anatomical research and his depictions and errors with regards to the musculoskeletal system, cardiovascular system, nervous system, and other organs.

  14. A modular real-time vision system for humanoid robots

    Science.gov (United States)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  15. Pneumatic Actuation of a 2-Link Robotic System

    African Journals Online (AJOL)

    2012r

    2014-10-16

    Oct 16, 2014 ... nanorobotics, are still in the testing phase but they demand precision. The investigation of a 2-link pneumatic robotic system, using robotic and electric actuators, will be made. For the sake of representation, the prototype will be made of available materials in the market to fulfil its requirements. An insight.

  16. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  17. A fully sensorized cooperative robotic system for surgical interventions.

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M; Aceves, Marco A; Gorrostieta, Efren; Kalender, Willi A

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ± 0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ± 0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements.

  18. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Directory of Open Access Journals (Sweden)

    Saúl Tovar-Arriaga

    2012-07-01

    Full Text Available In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms. The implemented control allows the robot to compensate for small patient movements.

  19. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery.

    Science.gov (United States)

    Chan, Jason Y K; Wong, Eddy W Y; Tsang, Raymond K; Holsinger, F Christopher; Tong, Michael C F; Chiu, Philip W Y; Ng, Simon S M

    2017-11-01

    The aim of this study was to describe the early results of a phase 1 safety and feasibility clinical trial of the first clinical use of a novel robot for transoral robotic surgery (TORS)-the da Vinci SP (Intuitive Surgical Inc., Sunnyvale, CA, USA). Study design of this study is prospective clinical trial. The methods used in this study are prospective innovation, development, exploration, assessment, and long-term study phase 1 clinical trial. Early results of six patients underwent TORS with the da Vinci SP (Intuitive Surgical Inc., Sunnyvale, CA, USA) demonstrate access the nasopharynx, oropharynx, larynx, and hypopharynx. There were no conversions of the robotic surgical system. There were no serious adverse events or adverse events related to the use of the robot at 30-day follow-up for all six patients. The early results of this safety and feasibility trial of the da Vinci SP (Intuitive Surgical Inc., Sunnyvale, CA, USA) clearly demonstrate that the device is safe and that it is feasible in performing TORS to access the nasopharynx, oropharynx, larynx, and hypopharynx.

  20. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  1. Sensorization of a surgical robotic instrument for force sensing

    Science.gov (United States)

    Shahzada, Kaspar S.; Yurkewich, Aaron; Xu, Ran; Patel, Rajni V.

    2016-03-01

    This paper presents the development and application of an approach for sensorizing a surgical robotic instrument for two degree-of-freedom (DOF) lateral force sensing. The sensorized instrument is compatible with the da Vinci® Surgical System and can be used for skills assessment and force control in specific surgical tasks. The sensing technology utilizes a novel layout of four fiber Bragg grating (FBG) sensors attached to the shaft of a da Vinci® surgical instrument. The two cross-section layout is insensitive to error caused by combined force and torque loads, and the orientation of the sensors minimizes the condition number of the instrument's compliance matrix. To evaluate the instrument's sensing capabilities, its performance was tested using a commercially available force-torque sensor, and showed a resolution of 0.05N at 1 kHz sampling rate. The performance of the sensorized instrument was evaluated by performing three surgical tasks on phantom tissue using the da Vinci® system with the da Vinci Research Kit (dVRK): tissue palpation, knot tightening during suturing and Hem-O-Lok® tightening during knotless suturing. The tasks were designed to demonstrate the robustness of the sensorized force measurement approach. The paper reports the results of further evaluation by a group of expert and novice surgeons performing the three tasks mentioned above.

  2. Human Robotic Systems (HRS): National Robotics Initiative (NRI) & Robotics Technology Pipeline Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2012, NASA funded 9 grants to research institutions and universities, after reviews by NSF panels and NASA robotics experts.  The 9 research grantees...

  3. Reliability Architecture for Collaborative Robot Control Systems in Complex Environments

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2016-02-01

    Full Text Available Many different kinds of robot systems have been successfully deployed in complex environments, while research into collaborative control systems between different robots, which can be seen as a hybrid internetware safety-critical system, has become essential. This paper discusses ways to construct robust and secure reliability architecture for collaborative robot control systems in complex environments. First, the indication system for evaluating the real-time reliability of hybrid internetware systems is established. Next, a dynamic collaborative reliability model for components of hybrid internetware systems is proposed. Then, a reliable, adaptive and evolutionary computation method for hybrid internetware systems is proposed, and a timing consistency verification solution for collaborative robot control internetware applications is studied. Finally, a multi-level security model supporting dynamic resource allocation is established.

  4. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  5. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot...

  6. Declarative Rule-based Safety for Robotic Perception Systems

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs....... The language allows developers to increase trustworthiness in the robot perception system, which we argue would increase compliance with safety standards. We demonstrate the usage of the language to improve reliability in a perception pipeline and evaluate it against manually written rules on embedded hardware...

  7. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  8. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    OpenAIRE

    Charles V. Smith Iii; John C. Licato; Michael V. Doran; Thomas G. Thomas Jr.

    2010-01-01

    Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed require...

  9. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  10. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  11. An architecture for robotic system integration

    Science.gov (United States)

    Butler, P. L.; Reister, D. B.; Gourley, C. S.; Thayer, S. M.

    An architecture was developed to provide an object-oriented framework for the integration of multiple robotic subsystems into a single integrated system. By using an object-oriented approach, all subsystems can interface with each other, and still be able to be customized for specific subsystem interface needs. The object-oriented framework allows the communications between subsystems to be hidden from the interface specification itself. Thus, system designers can concentrate on what the subsystems are to do, not how to communicate. This system was developed for the Environmental Restoration and Waste Management Decontamination and Decommissioning Project at Oak Ridge National Laboratory. In this system, multiple subsystems are defined to separate the functional units of the integrated system. For example, a Human-Machine Interface (HMI) subsystem handles the high-level machine coordination and subsystem status display. The HMI also provides status-logging facilities and safety facilities for use by the remaining subsystems. Other subsystems have been developed to provide specific functionality, and many of these can be reused by other projects.

  12. Effects of Visual Force Feedback on Robot-Assisted Surgical Task Performance

    Science.gov (United States)

    Reiley, Carol E.; Akinbiyi, Takintope; Burschka, Darius; Chang, David C.; Okamura, Allison M.; Yuh, David D.

    2009-01-01

    Background Direct haptic (force or tactile) feedback is negligible in current surgical robotic systems. The relevance of haptic feedback in robot-assisted performances of surgical tasks is controversial. We studied the effects of visual force feedback (VFF), a haptic feedback surrogate, on tying surgical knots with fine sutures similar to those used in cardiovascular surgery. Methods Using a modified da Vinci robotic system (Intuitive Surgical, Inc.) equipped with force-sensing instrument tips and real-time VFF overlays in the console image, ten surgeons each tied 10 knots with and 10 knots without VFF. Four surgeons had significant prior da Vinci experience while the remaining six surgeons did not. Performance parameters, including suture breakage and secure knots, peak and standard deviation of applied forces, and completion times using 5-0 silk sutures were recorded. Chi-square and Student’s t-test analyses determined differences between groups. Results Among surgeon subjects with robotic experience, no differences in measured performance parameters were found between robot-assisted knot ties executed with and without VFF. Among surgeons without robotic experience, however, VFF was associated with lower suture breakage rates, peak applied forces, and standard deviations of applied forces. VFF did not impart differences in knot completion times or loose knots for either surgeon group. Conclusions VFF resulted in reduced suture breakage, lower forces, and decreased force inconsistencies among novice robotic surgeons, although elapsed time and knot quality were unaffected. In contrast, VFF did not affect these metrics among experienced da Vinci surgeons. These results suggest that VFF primarily benefits novice robot-assisted surgeons, with diminishing benefits among experienced surgeons. PMID:18179942

  13. Robotic liver resection: initial experience with three-arm robotic and single-port robotic technique.

    Science.gov (United States)

    Kandil, Emad; Noureldine, Salem I; Saggi, Bob; Buell, Joseph F

    2013-01-01

    Robotic-assisted surgery offers a solution to fundamental limitations of conventional laparoscopic surgery, and its use is gaining wide popularity. However, the application of this technology has yet to be established in hepatic surgery. A retrospective analysis of our prospectively collected liver surgery database was performed. Over a 6-month period, all consecutive patients who underwent robotic-assisted hepatic resection for a liver neoplasm were included. Demographics, operative time, and morbidity encountered were evaluated. A total of 7 robotic-assisted liver resections were performed, including 2 robotic-assisted single-port access liver resections with the da Vinci-Si Surgical System (Intuitive Surgical Sunnyvalle, Calif.) USA. The mean age was 44.6 years (range, 21-68 years); there were 5 male and 2 female patients. The mean operative time (± SD) was 61.4 ± 26.7 minutes; the mean operative console time (± SD) was 38.2 ± 23 minutes. No conversions were required. The mean blood loss was 100.7 mL (range, 10-200 mL). The mean hospital stay (± SD) was 2 ± 0.4 days. No postoperative morbidity related to the procedure or death was encountered. Our initial experience with robotic liver resection confirms that this technique is both feasible and safe. Robotic-assisted technology appears to improve the precision and ergonomics of single-access surgery while preserving the known benefits of laparoscopic surgery, including cosmesis, minimal morbidity, and faster recovery.

  14. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  15. A miniature bidirectional RF communication system for micro gastrointestinal robots.

    Science.gov (United States)

    Wang, Wenxing; Yan, Guozheng; Ding, Guoqing

    2003-01-01

    This paper reports a miniature, low power, two-channel, bidirectional wireless communication system that can be used in the first generation of micro gastrointestinal (GI) robots. The system consists of a miniature RF transceiver embedded in the GI robot and a control station outside the body. ISM band radio frequency (approx. 433 MHz) was used to achieve half duplex communication between the GI robot and the control station. The Frequency Shift Keying (FSK) modulation scheme was adopted to ensure a reliable and high-speed digital RF link. Animal tests have been carried out to prove the performance of the communication system.

  16. Vision-based robotic system for object agnostic placing operations

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Nalpantidis, Lazaros; Andersen, Nils Axel

    2016-01-01

    to operate within an unknown environment manipulating unknown objects. The developed system detects objects, finds matching compartments in a placing box, and ultimately grasps and places the objects there. The developed system exploits 3D sensing and visual feature extraction. No prior knowledge is provided......Industrial robots are part of almost all modern factories. Even though, industrial robots nowadays manipulate objects of a huge variety in different environments, exact knowledge about both of them is generally assumed. The aim of this work is to investigate the ability of a robotic system...

  17. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  18. Robotic surgery twice performed in the treatment of hilar cholangiocarcinoma with deep jaundice: delayed right hemihepatectomy following the right-hepatic vascular control.

    Science.gov (United States)

    Zhu, Zhenyu; Liu, Quanda; Chen, Junzhou; Duan, Weihong; Dong, Maosheng; Mu, Peiyuan; Cheng, Di; Che, Honglei; Zhang, Tao; Xu, Xiaoya; Zhou, Ningxin

    2014-10-01

    To explore and find a new method to treat hilar cholangiocarcinoma with deep jaundice assisted by Da Vinci robot. A hilar cholangiocarcinoma patient of type Bismuch-Corlette IIIa was found with deep jaundice (total bilirubin: 635 µmol/L). On the first admission, we performed Da Vinci robotic surgery including drainage of left hepatic duct, dissection of right hepatic vessels (right portal vein and right hepatic artery), and placement of right-hepatic vascular control device. Three weeks later on the second admission when the jaundice disappeared we occluded right-hepatic vascular discontinuously for 6 days and then sustained later. On the third admission after 3 weeks of right-hepatic vascular control, the right hemihepatectomy was performed by Da Vinci robot for the second time. The future liver remnant after the right-hepatic vascular control increased from 35% to 47%. The volume of left lobe increased by 368 mL. When the total bilirubin and liver function were all normal, right hemihepatectomy was performed by Da Vinci robot 10 weeks after the first operation. The removal of atrophic right hepatic lobe with tumor in bile duct was found with no pathologic cancer remaining in the margin. The patient was followed up at our outpatient clinic every 3 months and no tumor recurrence occurs by now (1 y). Under the Da Vinci robotic surgical system, a programmed treatment can be achieved: first, the hepatic vessels were controlled gradually together with biliary drainage, which results in liver's partial atrophy and compensatory hypertrophy in the other part. Then a radical hepatectomy could be achieved. Such programmed hepatectomy provides a new treatment for patients of hilar cholangiocarcinoma with deep jaundice who have the possibility of radical heptolobectomy.

  19. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  20. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  1. System and method for seamless task-directed autonomy for robots

    Science.gov (United States)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas; Walton, Miles

    2012-09-18

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.

  2. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  3. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  4. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  5. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  6. [Robotics in gynecology. Background, feasibility and applicability].

    Science.gov (United States)

    Ayala Yáñez, Rodrigo; Olaya Guzmán, Emilio José; Haghenbeck Altamirano, Francisco Javier

    2012-06-01

    Robotic surgery is a technology that emerged from the fusion and improvement of laparoscopy, robotics and telepresence. All these three technologies underwent a long experimentation process in which several applications and innovations were tested until the only system approved for use in humans was developed: the Da Vinci system by Intuitive Surgical Inc. Gynecology, being one of the pioneer branches of Medicine involved in the development of laparoscopy, is one of the fields with the greatest possibilities for robotics, which offers great diversity of applications in hysterectomies, myomectomies, endometriosis, and in the fields of urogynecology and, most importantly, oncology. There are no publications in Mexico with a proper description of the clinical experience with gynecologic robotic surgery, though a great amount of clinical experience has been accumulated in institutions that already have such equipment. A serious evaluation of the cost-benefit ratio is required because of the high cost of this technology. Evaluate and analyze the accumulated experience on this technology of foreign institutions in order to assess the benefits, cost and effectiveness of robotic surgery. The key to the optimal use of robotic technology is to diminish costs and speed the learning curve, and this implies the entry of other systems into the market as well as institutions with a high volume of patients and determined to invest in a highly trained and skilled surgical team. In order to recommend its implementation in our country an assessment of the efficiency and advantages of robotic technology considering institutional needs is mandatory.

  7. Virtual reality robotic surgery simulation curriculum to teach robotic suturing: a randomized controlled trial.

    Science.gov (United States)

    Kiely, Daniel J; Gotlieb, Walter H; Lau, Susie; Zeng, Xing; Samouelian, Vanessa; Ramanakumar, Agnihotram V; Zakrzewski, Helena; Brin, Sonya; Fraser, Shannon A; Korsieporn, Pira; Drudi, Laura; Press, Joshua Z

    2015-09-01

    The objective of this randomized, controlled trial was to assess whether voluntary participation in a proctored, proficiency-based, virtual reality robotic suturing curriculum using the da Vinci(®) Skills Simulator™ improves robotic suturing performance. Residents and attending surgeons were randomized to participation or non-participation during a 5 week training curriculum. Robotic suturing skills were evaluated before and after training using an inanimate vaginal cuff model, which participants sutured for 10 min using the da Vinci(®) Surgical System. Performances were videotaped, anonymized, and subsequently graded independently by three robotic surgeons. 27 participants were randomized. 23 of the 27 completed both the pre- and post-test, 13 in the training group and 10 in the control group. Mean training time in the intervention group was 238 ± 136 min (SD) over the 5 weeks. The primary outcome (improvement in GOALS+ score) and the secondary outcomes (improvement in GEARS, total knots, satisfactory knots, and the virtual reality suture sponge 1 task) were significantly greater in the training group than the control group in unadjusted analysis. After adjusting for lower baseline scores in the training group, improvement in the suture sponge 1 task remained significantly greater in the training group and a trend was demonstrated to greater improvement in the training group for the GOALS+ score, GEARS score, total knots, and satisfactory knots.

  8. Robot arm force control through system linearization by nonlinear feedback

    Science.gov (United States)

    Tarn, T. J.; Bejczy, A. K.; Yun, Xiaoping

    1988-01-01

    Based on a differential geometric feedback linearization technique for nonlinear time-varying systems, a dynamic force control method for robot arms is developed. It uses active force-moment measurements at the robot wrist. The controller design fully incorporate the robot-arm dynamics and is so general that it can be reduced to pure position control, hybrid position/force control, pure force control. The controller design is independent of the tasks to be performed. Computer simulations show that the controller improves the position error by a factor of ten in cases in which position errors generate force measurements. A theorem on linearization of time-varying system is also presented.

  9. A unified teleoperated-autonomous dual-arm robotic system

    Science.gov (United States)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam Sing; Backes, Paul G.; Lloyd, John

    1991-01-01

    A description is given of complete robot control facility built as part of a NASA telerobotics program to develop a state-of-the-art robot control environment for performing experiments in the repair and assembly of spacelike hardware to gain practical knowledge of such work and to improve the associated technology. The basic architecture of the manipulator control subsystem is presented. The multiarm Robot Control C Library (RCCL), a key software component of the system, is described, along with its implementation on a Sun-4 computer. The system's simulation capability is also described, and the teleoperation and shared control features are explained.

  10. [Robots in general surgery: present and future].

    Science.gov (United States)

    Galvani, Carlos; Horgan, Santiago

    2005-09-01

    Robotic surgery is an emerging technology. We began to use this technique in 2000, after it was approved by the Food and Drug Administration. Our preliminary experience was satisfactory. We report 4 years' experience of using this technique in our institution. Between August 2000 and December 2004, 399 patients underwent robotic surgery using the Da Vinci system. We performed 110 gastric bypass procedures, 30 Lap band, 59 Heller myotomies, 12 Nissen fundoplications, 6 epiphrenic diverticula, 18 total esophagectomies, 3 esophageal leiomyoma resections, 1 pyloroplasty, 2 gastrojejunostomies, 2 transduodenal sphincteroplasties, 10 adrenalectomies and 145 living-related donor nephrectomies. Operating times for fundoplications and Lap band were longer. After the learning curve, the operating times and morbidity of the remaining procedures were considerably reduced. Robot-assisted surgery allows advanced laparoscopic procedures to be performed with enhanced results given that it reduces the learning curve as measured by operating time and morbidity.

  11. System for Self-Navigating Autonomous Robots

    OpenAIRE

    Andersen, Thor Eivind Svergja; Rødseth, Mats Gjerset

    2016-01-01

    The purpose of the thesis was to build an Arduino-based robot, whose intended use was to map unknown areas, as well as to develop a server application that controls several robots and uses the gathered information to form a map of the area. Additionally, the wireless communication in the existing solution was to be updated using state-of-the-art technology. An Arduino-robot was designed and built using materials acquired from Sparkfun, Elfa Distrelec and the Cybernetic Workshops at NTNU. ...

  12. ROBODEXS; Multi-robot Deployment & Extraction System

    Science.gov (United States)

    2012-04-03

    These ranged from a scissor lift underbelly “robot elevator”, to a side-mounted clamshell box, to a rear-mounted scoop that was developed in theater...damage to the robot during lifting and increases the risk of injury to the Soldier. ROBODEXS has been designed to automatically deploy and extract...actuator to clamp the robot to the tray and then lift it to a vertical stowed position over the stroke of the actuator (Figure 3, right). When the actuator

  13. Human Robotic Systems (HRS): Robonaut 2 Technologies Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Robonaut 2 (R2) Technology Project Element within Human Robotic Systems (HRS) is to developed advanced technologies for infusion into the Robonaut 2...

  14. Implementation of Automation for Control of Robotic Systems

    National Research Council Canada - National Science Library

    Cosenzo, Keryl A; Parasuraman, Raja; Novak, Anthony; Barnes, Michael

    2006-01-01

    .... The role of the human operator in the human-robot environment is not well understood; however, most contemplated systems will require active human control or supervision with the possibility of intervention...

  15. An interactive Virtual Reality simulation system for robot control and operator training

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.; Stansfield, S.A.

    1993-11-01

    Robotic systems are often very complex and difficult to operate, especially as multiple robots are integrated to accomplish difficult tasks. In addition, training the operators of these complex robotic systems is time-consuming and costly. In this paper, a virtual reality based robotic control system is presented. The virtual reality system provides a means by which operators can operate, and be trained to operate, complex robotic systems in an intuitive, cost-effective way. Operator interaction with the robotic system is at a high, task-oriented, level. Continuous state monitoring prevents illegal robot actions and provides interactive feedback to the operator and real-time training for novice users.

  16. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  17. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  18. The Norwegian research programme on advanced robotic systems

    Directory of Open Access Journals (Sweden)

    Olav Egeland

    1991-04-01

    Full Text Available The Norwegian research programme on advanced robot systems has been focused on sensory control of robots for industrial applications and telerobotics for underwater operations. This paper gives an overview of experimental work and ongoing research. An exciting area in sensory control is visual servoing where camera images at video rate are used to grasp moving objects. Also compliant motion in partially unknown environments is a research topic. New robot control systems have been developed to apply sensory control to robotic manipulators at an acceptable sampling rate. In telerobotics the main work has been on the combination of remote control and local sensory loops in the manipulator. Also in this case visual servoing anti force control are important. The generation and updating of a world model used in a graphic display of the worksite using sensory information has been tested in combination with large delay times in the communication channel. The use of visual and acoustic data for the control of remotely operated vehicles and autonomous underwater vehicles is studied for use in robotic systems. Light-weight robot manipulators with redundant degrees of freedom and high performance joints are being designed for mobile robot applications.

  19. Progress in EEG-Based Brain Robot Interaction Systems.

    Science.gov (United States)

    Mao, Xiaoqian; Li, Mengfan; Li, Wei; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  20. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  1. Current Status of Robot-Assisted Laparoscopic Surgery in Pediatric Urology

    OpenAIRE

    Song, Sang Hoon; Kim, Kun Suk

    2014-01-01

    Laparoscopic procedures for urological diseases in children have been proven to be safe and effective. However, the availability of laparoscopic procedures is still partly limited to experienced, high-volume centers because the procedures are technically demanding. The da Vinci robot system is being used for an increasing variety of reconstructive procedures because of the advantages of this approach, such as motion scaling, greater optical magnification, stereoscopic vision, increased instru...

  2. Detecting new objects and building models with active robot system

    OpenAIRE

    Stergaršek Kuzmič, Eva

    2010-01-01

    An important element of a cognitive robotic system is the ability to detect novel objects and learn their representations, which are suitable for later recognition and manipulation. The basic assumption of our work is that the detection and segmentation of new objects can be facilitated by an active robotic system, which can not only observe the objects but can also manipulate them. Manipulation supports object segmentation and the accumulation of object features, which provides the basis for...

  3. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Hajime Aoyama

    2007-06-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  4. Development of Mine Detection Robot System

    Directory of Open Access Journals (Sweden)

    Yuichi Satsumi

    2008-11-01

    Full Text Available The Mine Detection Robot supports the mine removal work in countries where mines are buried, such as Afghanistan. The development started from September, 2003. Considering running on rough terrains, the robot has four crawlers, and hydraulic motors in front and rear were serially connected by piping so that they could rotate synchronously. Two work arms were mounted on the robot, one was a horizontal multi-joint SCARA type with motorized 2-link arm, while the other was a vertical multi-joint manipulator with 6 degrees of freedom. Also, domestic evaluation tests were carried out from February to March, 2005, followed by overseas validation tests in Croatia from February to March, 2006. These tests were conducted with a mine detecting senor mounted on the Robot, and the detection performance was evaluated by its mine detection rate.

  5. Microfluidic-Based Robotic Sampling System for Radioactive Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; Julia L. Tripp; Tara E. Smith; Veronica J. Rutledge; Troy G. Garn; John Svoboda; Larry Macaluso

    2014-02-01

    A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample system and identified system modifications to optimize performance.

  6. Robotics

    Science.gov (United States)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  7. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  9. Material handling robot system for flow-through storage applications

    Science.gov (United States)

    Dill, James F.; Candiloro, Brian; Downer, James; Wiesman, Richard; Fallin, Larry; Smith, Ron

    1999-01-01

    This paper describes the design, development and planned implementation of a system of mobile robots for use in flow through storage applications. The robots are being designed with on-board embedded controls so that they can perform their tasks as semi-autonomous workers distributed within a centrally controlled network. On the storage input side, boxes will be identified by bar-codes and placed into preassigned flow through bins. On the shipping side, orders will be forwarded to the robots from a central order processing station and boxes will be picked from designated storage bins following proper sequencing to permit direct loading into trucks for shipping. Because of the need to maintain high system availability, a distributed control strategy has been selected. When completed, the system will permit robots to be dynamically reassigned responsibilities if an individual unit fails. On-board health diagnostics and condition monitoring will be used to maintain high reliability of the units.

  10. Completely Intracorporeal Robotic-Assisted Laparoscopic Ileovesicostomy

    Directory of Open Access Journals (Sweden)

    MaryEllen T. Dolat

    2014-01-01

    Full Text Available We present a report of a completely intracorporeal robotic-assisted laparoscopic ileovesicostomy with long term follow-up. The patient was a 55-year-old man with paraplegia secondary to tropical spastic paresis resulting neurogenic bladder dysfunction. The procedure was performed using a da Vinci Surgical system (Intuitive Surgical, Sunnyvale, CA and took 330 minutes with an estimated blood loss of 100 mL. The patient recovered without perioperative complications. He continues to have low pressure drainage without urethral incontinence over two years postoperatively.

  11. Michelangelo in Florence, Leonardo in Vinci.

    Science.gov (United States)

    Herberholz, Barbara

    2003-01-01

    Provides background information on the lives and works of Michelangelo and Leonardo da Vinci. Focuses on the artwork of the artists and the museums where their work is displayed. Includes museum photographs of their work. (CMK)

  12. Audio-Visual Perception System for a Humanoid Robotic Head

    OpenAIRE

    Raquel Viciana-Abad; Rebeca Marfil; Perez-Lorenzo, Jose M.; Juan P. Bandera; Adrian Romero-Garces; Pedro Reche-Lopez

    2014-01-01

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can...

  13. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  14. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  15. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  16. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  17. Novel application of simultaneous multi-image display during complex robotic abdominal procedures

    Science.gov (United States)

    2014-01-01

    Background The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant’s monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. Results The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. Conclusion We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations. PMID:24628761

  18. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  19. "Da Vinci kood" ja Eesti / Reet Rast

    Index Scriptorium Estoniae

    Rast, Reet, 1964-

    2010-01-01

    Möödunud kuu kunstisündmuseks oli "Da Vinci koodi avamine" Kadrioru Kunstimuuseumis ja Tallinna Ülikoolis. 5.-12. veebruarini eksponeeriti Kadrioru kunstimuuseumis Leonardo da Vinci arvatavat autoportreed. Lõuna-Itaalia erakogust leitud maali analüüsimisega tegelesid Tallinna Ülikooli maali ja maalitehnoloogia õppejõud Orest Kormašov, kes valmistas klassikalise portreeskulptuuri, arvutisimulatsiooni teostas Eesti Kunstiakadeemia graafilise disaini tudeng Helen Kokk

  20. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  1. A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.

    Science.gov (United States)

    Kim, Myungjoon; Lee, Chiwon; Park, Woo Jung; Suh, Yun Suhk; Yang, Han Kwang; Kim, H Jin; Kim, Sungwan

    2016-05-20

    Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. The NMI was operated for 185 min and reflected the surgeon's decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. Various experiments were conducted and it is verified that the proposed assistant

  2. Robotics

    Indian Academy of Sciences (India)

    explaining how the robot functioning is controlled. A brief description of the measurements involved is also discussed. Introduction. Basically, the developments in two other related subjects, in- strumentation and control engineering played a major role in aiding the rapid development of the field of robotics. By instru-.

  3. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  4. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  5. Audio-visual perception system for a humanoid robotic head.

    Science.gov (United States)

    Viciana-Abad, Raquel; Marfil, Rebeca; Perez-Lorenzo, Jose M; Bandera, Juan P; Romero-Garces, Adrian; Reche-Lopez, Pedro

    2014-05-28

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  6. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  7. NASA Center for Intelligent Robotic Systems for Space Exploration

    Science.gov (United States)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  8. A Robotic System to Scan and Reproduce Object

    Directory of Open Access Journals (Sweden)

    Cesare Rossi

    2011-01-01

    Full Text Available An application of a robotic system integrated with a vision system is presented. The robot is a 3-axis revolute prototype, while the vision system essentially consists in a laser scanner made up of a camera and a linear laser projector. Both the robotic and the video system were designed and built at DIME (Department of Mechanical Engineering for Energetics, University of Naples Federico II. The presented application essentially consists of a laser scanner that is installed on the robot arm; the scanner scans a 3D surface, and the data are converted in a cloud of points in the robot’s workspace. Then, starting from those points, the end-effector trajectories adopted to replicate the scanned surface are calculated; so, the same robot, by using a tool, can reproduce the scanned object. The software was developed also at the DIME. The adopted tool was a high-speed drill, installed on the last link of the robot arm, with a spherical milling cutter in order to obtain enough accurate surfaces by the data represented by the cloud of points. An algorithm to interpolate the paths and to plan the trajectories was also developed and successfully tested.

  9. BellBot - A Hotel Assistant System Using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-01-01

    Full Text Available There is a growing interest in applying intelligent technologies to assistant robots. These robots should have a number of characteristics such as autonomy, easy reconfiguration, robust perception systems and they should be oriented towards close interaction with humans. In this paper we present an automatic hotel assistant system based on a series of mobile platforms that interact with guests and service personnel to help them in different tasks. These tasks include bringing small items to customers, showing them different points of interest in the hotel, accompanying the guests to their rooms and providing them with general information. Each robot can also autonomously handle some daily scheduled tasks. Apart from user-initiated and scheduled tasks, the robots can also perform tasks based on events triggered by the building's automation system (BAS. The robots and the BAS are connected to a central server via a local area network. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively in different environments.

  10. ROBOTIC SURGERY FOR GIANT PRESACRAL DUMBBELL-SHAPE SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2015-03-01

    Full Text Available Objective: To demonstrate the feasibility of using da Vinci robotic surgical system to perform spinal surgery. Methods: Magnetic resonance imaging (MRI of a 29-year-old female patient complaining right pelvic pain for 1 month revealed a 17x8x10 cm non-homogeneous dumbbell shape encapsulated mass with cystic change located in the pelvic cavity and caused an anterior displacement of urinary bladder and colon. Results: There was no systemic complication and pain decrease 24 hours after surgery and during 2 years of follow up. The patient started a diet 6 hours after the surgery and was discharged 72 hours after the surgery. The pathological diagnosis of the tumor was schwannoma. Conclusions: Giant dumbbell shape presacral schwannomas are rare tumours and their surgical treatment is challenging because of the complex anatomy of the presacral. Clinical application of da Vinci robotic surgical system in the spinal surgical field is currently confined to the treatment of some specific diseases or procedures. However, robotic surgery is expected to play a practical future role as it is minimally invasive. The advent of robotic technology will prove to be a boon to the neurosurgeon.

  11. Surgical robot simulation with BBZ console.

    Science.gov (United States)

    Bovo, Francesco; De Rossi, Giacomo; Visentin, Francesco

    2017-01-01

    This paper presents a lean approach to training in robot assisted surgery. Minimally Invasive Surgical procedures can be decomposed in a sequence of tasks, each surgical task can be further decomposed in basic gestures. Each surgical gesture seems similar to perform rather in laparoscopic than in robot assisted technique, but surgeon posture, tools dexterity, force and vision feedback are different. As a consequence, performing a robot-assisted procedure needs specific training. Currently, the most used robot in in abdominal and pelvic surgery is the da Vinci Surgical System and a different set of skills is needed to master the human-machine interface of this device. The training with the real robot is very expensive due to the high initial cost of purchasing and maintaining the robotic surgical system, and the ethic involved in vivo practice. For these reasons, different training systems based on virtual reality were developed. The simulation physics realism and the objective metrics collected during the task execution are the main features for the effectiveness of a virtual reality based training device. Availability of training systems is another issue. To help surgeons to train in virtual reality, BBZ presents a compact, lightweight and portable console, suitable also for "home" training.

  12. The Thorvald II Agricultural Robotic System

    Directory of Open Access Journals (Sweden)

    Lars Grimstad

    2017-09-01

    Full Text Available This paper presents a novel and modular approach to agricultural robots. Food production is highly diverse in several aspects. Even farms that grow the same crops may differ in topology, infrastructure, production method, and so on. Modular robots help us adapt to this diversity, as they can quickly be configured for various farm environments. The robots presented in this paper are hardware modular in the sense that they can be reconfigured to obtain the necessary physical properties to operate in different production systems—such as tunnels, greenhouses and open fields—and their mechanical properties can be adapted to adjust for track width, power requirements, ground clearance, load capacity, and so on. The robot’s software is generalizing to work with the great variation of robot designs that can be realized by assembling hardware modules in different configurations. The paper presents several novel ideas for agricultural robotics, as well as extensive field trials of several different versions of the Thorvald II platform.

  13. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    OpenAIRE

    I. A. Zikratov; A. V. Gurtov; T. V. Zikratova; Kozlova, E. V.

    2014-01-01

    This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for inform...

  14. Successful intracardiac robotic surgery: initial results from Japan.

    Science.gov (United States)

    Watanabe, Go

    2010-01-01

    : The purpose of this study is to report our 2-year experience of performing endoscopic intracardiac procedures using the da Vinci Surgical System. Our teams at Kanazawa University and Tokyo Medical University groups began using the da Vinci Surgical System (Intuitive Surgical, Inc, Sunnyvale, CA) in 2005. This series represents the first Japanese application of robotic technology for totally endoscopic open-heart surgery. : From January 2008 to February 2009, 10 patients (mean age: 46.8 ± 16.3 years, 70% women) underwent endoscopic atrial septal defect closure and resection of the left atrial myxoma using the da Vinci Surgical System and peripheral cardiopulmonary bypass technique. Of the 10 patients, nine were classified as New York Heart Association class II and 1 patient exhibited atrial arrhythmias. In addition, two patients required mitral valve plasty (n = 2) and tricuspid annuloplasty (n = 1). : Mean da Vinci Surgical System working time was 140.7 ± 57.4 minutes. Mean cardiopulmonary bypass and aortic cross clamp times were 103.1 ± 37.1 and 30.0 ± 16.9 minutes, respectively. There were no conversions to sternotomy or small thoracotomy. There were no hospital deaths. Mean intensive care unit and hospital stays were 1 day and 3.1 ± 0.3 days, respectively. All patients appreciated the cosmetic result and fast recovery. : Closed-chest atrial septal defect closure and myxoma resection performed using robotic techniques achieved excellent results and rapid postoperative recovery and provided an attractive cosmetic advantage over median sternotomy.

  15. A multimodal emotion detection system during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F; Salichs, Miguel A

    2013-11-14

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human-robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human-robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately.

  16. A Multimodal Emotion Detection System during Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2013-11-01

    Full Text Available In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS. Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA, which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA, has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE and Computer Expression Recognition Toolbox (CERT. Once these new components (GEVA and GEFA give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System. Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual separately.

  17. A Multimodal Emotion Detection System during Human-Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.

    2013-01-01

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598

  18. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  19. The development of robot system for pressurizer maintenance in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Chang Hoi; Jung, Seung Ho; Seo, Yong Chil; Lee, Young Kwang; Go, Byung Yung; Lee, Kwang Won; Lee, Sang Ill; Yun, Jong Yeon; Lee, Hyung Soon; Park, Mig Non; Park, Chang Woo; Cheol, Kwon

    1999-12-01

    The pressurizer that controls the pressure variation of primary coolant system, consists of a vessel, electric heaters and a spray, is one of the safety related equipment in nuclear power plants. Therefore it is required to inspect and maintain it regularly. Because the inside of pressurizer os contaminated by radioactivity, when inspection and repairing it, the radiation exposure of workers is inevitable. In this research two robot system has been developed for inspection and maintenance of the pressurizer for the water filled case and the water sunken case. The one robot system for the water filled case consists of two links, movable gripper using wire string, and support frame for the attachment of robot. The other robot is equipped propeller in order to navigate on the water. It also equipped high performance water resistance camera to make inspection possible. The developed robots are designed under several constraints such as its weight and collision with pressurizer wall. To verify the collision free robot link length and accessibility to the any desired rod heater it is simulated by 3-dimensional graphic simulation software(RobCard). For evaluation stress of the support frame finite element analysis is performed by using the ANSYS code. (author)

  20. Systems of Geo Positioning of the Mobile Robot

    Science.gov (United States)

    Momot, M. V.; Proskokov, A. V.; Nesteruk, D. N.; Ganiyev, M.; Biktimirov, A. S.

    2017-07-01

    Article is devoted to the analysis of opportunities of electronic instruments, such as a gyroscope, the accelerometer, the magnetometer together, the video system of image identification and system of infrared indicators during creation of system of exact positioning of the mobile robot. Results of testing and the operating algorithms are given. Possibilities of sharing of these devices and their association in a single system are analyzed. Conclusions on development of opportunities and elimination of shortcomings of the received end-to-end system of positioning of the robot are drawn.

  1. Model-based development of robotic systems and services in construction robotics

    DEFF Research Database (Denmark)

    Schlette, Christian; Roßmann, Jürgen

    2017-01-01

    More and more of our indoor/outdoor environments are available as 3D digital models. In particular, digital models such as the CityGML (City Geography Markup Language) format for cities and the BIM (Building Information Modeling) methodology for buildings are becoming important standards for proj......-scale working environments. In Virtual Testbeds for construction robotics, such large-scale working environments can then be systematically accessed as mental models for the model- respectively 3D simulation-based development and control of robotic systems and services....

  2. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  3. Research of smart real-time robot navigation system

    Science.gov (United States)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  4. Motion Planning in Multi-robot Systems using Timed Automata

    DEFF Research Database (Denmark)

    Andersen, Michael. S.; Jensen, Rune S.; Bak, Thomas

    This paper dscribes how interacting timed automata can be used to model, analyze, and verify motion planning problems for systems with multiple mobile robots. The method assumes an infra-structure of simple unicycle type robots, moving om a planar grid. The motion of the robots, including simple...... kinematics, is captured in an automata formalism that allows formal composition and symbolic reasoning. The verification software UppAal is used to verify specification requirements formulated in computational tree logic (CTL), generating all feasible trajectories that satisfy specifications. The results...... of the planning are demonstrateted in a testbed that allows execution of the planned paths and motion primitives by synchronizing the planning results from UppAal with actual robotic vehicles. The planning problem may be modified online by moving obstacles in the physical environment, which causes a re...

  5. Robot-assisted urological surgery: Current status and future perspectives.

    Science.gov (United States)

    Ghani, Khurshid R; Trinh, Quoc-Dien; Sammon, Jesse; Jeong, Wooju; Dabaja, Ali; Menon, Mani

    2012-03-01

    To discuss the current status of robot-assisted urological surgery. We searched PubMed for articles published from 2008 using the search terms 'advances', 'robotic surgery equipment' and 'instrumentation'. We also searched PubMed for articles describing the latest developments in reconstructive techniques for lower and upper urinary tract procedures. Finally, we searched PubMed for original articles containing the terms 'robotic surgery training' and 'credentialing'. With each release of hardware or ancillary instrumentation, the reconstructive abilities of the da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA, USA) improve. Recent developments in reconstructive capabilities of robotic urological surgery include posterior reconstruction during robot-assisted radical prostatectomy, barbed sutures for urethrovesical anastomosis, sliding-clip renorrhaphy for robot-assisted partial nephrectomy, and repair of pelvic organ prolapse. The safe implementation of robotic surgery is aided by new guidelines in credentialing and proctoring, and the introduction of virtual reality simulators for training. Robotic urological surgery is rapidly developing and expanding globally. To achieve the highest levels of safety for patients, surgeons must ensure that the implementation of robotic surgery is an integrative and effective process.

  6. A New Method to Calibrate Robot Visual Measurement System

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2013-01-01

    Full Text Available This paper presents a new method to calibrate the robot visual measurement system. In the paper, a laser tracker is used to calibrate the robot twist angles. Each axis of the robot is moved to many positions and the positions measured by the laser tracker fit a plane. The normal vectors of the planes are the directions of the Z axes. According to the definition of the robot kinematics model parameters, the errors of the twist angles can be calculated. The joint angles zero offsets are calibrated by the constraint that the rotation relationship between the world frame and the robot base frame is relatively constant. A planar target with several parallel lines is used to obtain the pose of the camera relative to the planar target by the lines in the target plane and the vanishing line of the plane. The quantum behaved particle swarm optimization (QPSO algorithm is used to calculate the parameters. Experiments are performed and the results show that the accuracy of the robot visual measurement system is improved about 10 times after being calibrated.

  7. Distributed consensus with visual perception in multi-robot systems

    CERN Document Server

    Montijano, Eduardo

    2015-01-01

    This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: ·         distributed consensus algorithms; ·         data association and robustne...

  8. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  9. A robotic assistant system for cardiac interventions under MRI guidance

    Science.gov (United States)

    Li, Ming; Mazilu, Dumitru; Wood, Bradford J.; Horvath, Keith A.; Kapoor, Ankur

    2010-02-01

    In this paper we present a surgical assistant system for implanting prosthetic aortic valve transapically under MRI guidance, in a beating heart. The system integrates an MR imaging system, a robotic system, as well as user interfaces for a surgeon to plan the procedure and manipulate the robot. A compact robotic delivery module mounted on a robotic arm is used for delivering both balloon-expandable and self-expanding prosthesis. The system provides different user interfaces at different stages of the procedure. A compact fiducial pattern close to the volume of interest is proposed for robot registration. The image processing and the transformation recovery methods using this fiducial in MRI are presented. The registration accuracy obtained by using this compact fiducial is comparable to the larger multi-spherical marker registration method. The registration accuracy using these two methods is less than 0.62+/-0.50 deg (mean +/- std. dev.) and 0.63+/-0.72 deg (mean +/- std. dev.), respectively. We evaluated each of the components and show that they can work together to form a complete system for transapical aortic valve replacement.

  10. BROMETH: Methodology to design safe reconfigurable medical robotic systems.

    Science.gov (United States)

    Ben Salem, Mohamed Oussama; Mosbahi, Olfa; Khalgui, Mohamed; Jlalia, Zied; Frey, Georg; Smida, Mahmoud

    2017-09-01

    This research paper deals with the development of a medical robotized control system for supracondylar humeral fracture treatment. Concurrent access to shared resources and applying reconfiguration scenarios can jeopardize the safety of the system. A new methodology is proposed in this paper, termed BROMETH, to guarantee the safety of such critical systems from their specification to their deployment, and passing through certification and implementation. The solution is applied to a real case study named Browser-based Reconfigurable Orthopedic Surgery (abbrev. BROS), a robotized platform dedicated to the treatment of supracondylar fractures, to illustrate the paper's contribution. This work starts from a medical issue, namely supracondylar humeral fracture treatment, to establish a new informatics solution, namely a new methodology to design safe reconfigurable medical robotic systems. The results of the experiments performed on real SCH fracture radiographies were quite satisfactory. Clinical experiments can then be performed after deploying the system on real hardware. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Safeguards and security considerations for automated and robotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S.E.; Jaeger, C.D.

    1994-09-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A&R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S&S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S&S into the design of future A&R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S&S guidance and design considerations for automation and robotics.

  12. [Use of the Zeus robotic surgical system for cardiac surgery].

    Science.gov (United States)

    Sawa, Yoshiki; Monta, Osamu; Matsuda, Hikaru

    2004-11-01

    The development of closed chest cardiopulmonary bypass systems has opened the door for totally endoscopic cardiac surgery. We used the robotic surgical system ZEUS for closure of the atrial septal defect (ASD) in three patients. Under one-lung ventilation, Port-Access cardiopulmonary bypass system of the drainage from the right internal jugular vein and the the right femoral vein and the return to the right femoral artery was started after port placement at the forth intercostal space of the right thoracic wall. ASD direct closure was achieved by using robotic surgical system ZEUS under cardiac arrest. The three patients were discharged in 7 days after the operation uneventfully. The robotic surgical system ZEUS can make cardiac surgeries less invasive than ever.

  13. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  14. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  15. Control design and analysis for underactuated robotic systems

    CERN Document Server

    Xin, Xin

    2014-01-01

    The last two decades have witnessed considerable progress in the study of underactuated robotic systems (URSs). Control Design and Analysis for Underactuated Robotic Systems presents a unified treatment of control design and analysis for a class of URSs, which include systems with multiple-degree-of-freedom and/or with underactuation degree two. It presents novel notions, features, design techniques, and strictly global motion analysis results for these systems. These new materials are shown to be vital in studying the control design and stability analysis of URSs. Control Design and Analysis for Underactuated Robotic Systems includes the modelling, control design, and analysis presented in a systematic way particularly for the following examples: l  directly and remotely driven  Acrobots l  Pendubot l  rotational pendulum l  counter-weighted Acrobot 2-link underactuated robot with flexible elbow joint l  variable-length pendulum l  3-link gymnastic robot with passive first joint l  n-link planar robo...

  16. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  17. MONA, LISA and VINCI Soon Ready to Travel to Paranal

    Science.gov (United States)

    2000-11-01

    First Instruments for the VLT Interferometer Summary A few months from now, light from celestial objects will be directed for the first time towards ESO's Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). During this "First Light" event and the subsequent test phase, the light will be recorded with a special test instrument, VINCI (VLT INterferometer Commissioning Instrument). The main components of this high-tech instrument are aptly named MONA (a system that combines the light beams from several telescopes by means of optical fibers) and LISA (the infrared camera). VINCI was designed and constructed within a fruitful collaboration between ESO and several research institutes and industrial companies in France and Germany . It is now being assembled at the ESO Headquarters in Garching (Germany) and will soon be ready for installation at the telescope on Paranal. With the VLTI and VINCI, Europe's astronomers are now entering the first, crucial phase of an exciting scientific and technology venture that will ultimately put the world's most powerful optical/IR interferometric facility in their hands . PR Photo 31/00 : VINCI during tests at the ESO Headquarters in Garching. The VLT Interferometer (VLTI) ESO Press Photo 31/00 ESO Press Photo 31/00 [Preview; JPEG: 400 x 301; 43k] [Normal; JPEG: 800 x 602;208xk] [Full-Res; JPEG: 1923 x 1448; 2.2Mb] PR Photo 31/00 shows the various components of the complex VINCI instrument for the VLT Interferometer , during the current tests at the Optical Laboratory at the ESO Headquarters in Garching (Germany). It will later be installed in "clean-room" conditions within the Interferometric Laboratory at the Paranal Observatory. This electronic photo was obtained for documentary purposes. VINCI (VLT INterferometer Commissioning Instrument) is the "First Light" instrument for the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory (Chile). Early in 2001, it will be used for the first tests

  18. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  19. Integration of a RFID System in a Social Robot

    Science.gov (United States)

    Corrales, A.; Salichs, M. A.

    This article presents the integration of a system of detection and identification of RFID tags in a social robot, with the goal of improving its sensorial system and to accomplish several specific tasks, such as: recognition of objects or navigation. For this purpose, basic skills of reading and writing have been designed, following the pattern of the basic element skill of the robot software architecture. The system has been implemented physically adding two RFID interrogators with built-in antenna to the sensorial robot system. The application has been implemented and tested as a skill in the detection of products such as medicines and diverse objects in order to assist visually impaired people, users of the third age and people who cannot read.

  20. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  1. Brain, mind, body and society: autonomous system in robotics.

    Science.gov (United States)

    Shimoda, Motomu

    2013-12-01

    In this paper I examine the issues related to the robot with mind. To create a robot with mind aims to recreate neuro function by engineering. The robot with mind is expected not only to process external information by the built-in program and behave accordingly, but also to gain the consciousness activity responding multiple conditions and flexible and interactive communication skills coping with unknown situation. That prospect is based on the development of artificial intelligence in which self-organizing and self-emergent functions have been available in recent years. To date, controllable aspects in robotics have been restricted to data making and programming of cognitive abilities, while consciousness activities and communication skills have been regarded as uncontrollable aspects due to their contingency and uncertainty. However, some researchers of robotics claim that every activity of the mind can be recreated by engineering and is therefore controllable. Based on the development of the cognitive abilities of children and the findings of neuroscience, researchers have attempted to produce the latest artificial intelligence with autonomous learning systems. I conclude that controllability is inconsistent with autonomy in the genuine sense and autonomous robots recreated by engineering cannot be autonomous partners of humans.

  2. Artificial endocrine controller for power management in robotic systems.

    Science.gov (United States)

    Sauzé, Colin; Neal, Mark

    2013-12-01

    The robots that operate autonomously for extended periods in remote environments are often limited to gather only small amounts of power through photovoltaic solar panels. Such limited power budgets make power management critical to the success of the robot's mission. Artificial endocrine controllers, inspired by the mammalian endocrine system, have shown potential as a method for managing competing demands, gradually switching between behaviors, synchronizing behavior with external events, and maintaining a stable internal state of the robot. This paper reports the results obtained using these methods to manage power in an autonomous sailing robot. Artificial neural networks are used for sail and rudder control, while an artificial endocrine controller modulates the magnitude of actuator movements in response to battery or sunlight levels. Experiments are performed both in simulation and using a real robot. In simulation a 13-fold reduction in median power consumption is achieved; in the robot this is reduced to a twofold reduction because of the limitations of the simulation model. Additional simulations of a long term mission demonstrate the controller's ability to make gradual behavioral transitions and to synchronize behaviors with diurnal and seasonal changes in sunlight levels.

  3. IMPERA: Integrated Mission Planning for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Daniel Saur

    2015-10-01

    Full Text Available This paper presents the results of the project IMPERA (Integrated Mission Planning for Distributed Robot Systems. The goal of IMPERA was to realize an extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main challenge was the development of a multi-robot planning and plan execution architecture. The robot team consists of three heterogeneous robots, which have to explore an unknown environment and collect lunar drill samples. The team activities are described using the language ALICA (A Language for Interactive Agents. Furthermore, we use the mission planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems to provide an intuitive interface to generate team activities. Therefore, we define the basic skills of our team with ALICA and define the desired goal states by using a logic description. Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed by the team. The paper describes the basic components for communication, coordinated exploration, perception and object transportation. Finally, we evaluate the planning engine pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of pRoPhEt MAS in more dynamic environments.

  4. Robots for minimally invasive diagnosis and intervention

    OpenAIRE

    Huda, Nazmul; YU, Hongnian; Cang, Shuang

    2016-01-01

    Minimally invasive diagnosis and interventions provide many benefits such as higher efficiency, safer, minimum pain, quick recovery etc. over conventional way for many procedures. Large robots such as da-Vinci are being used in this purpose, whereas research of miniature robots for laparoscopic and endoscopic use, is growing in the recent years. A comprehensive literature search is performed using keywords’ laparoscopic robot, capsule endoscope, surgical medical robot etc. primarily for the t...

  5. Robotic mitral valve surgery: overview, methodology, results, and perspective

    Science.gov (United States)

    2016-01-01

    Robotic mitral valve repair began in 1998 and has advanced remarkably. It arose from an interest in reducing patient trauma by operating through smaller incisions with videoscopic assistance. In the United States, following two clinical trials, the FDA approved the daVinci Surgical System in 2002 for intra-cardiac surgery. This device has undergone three iterations, eventuating in the current daVinci XI. At present it is the only robotic device approved for mitral valve surgery. Many larger centers have adopted its use as part of their routine mitral valve repair armamentarium. Although these operations have longer perfusion and arrest times, complications have been either similar or less than other traditional methods. Preoperative screening is paramount and leads to optimal patient selection and outcomes. There are clear contraindications, both relative and absolute, that must be considered. Three-dimensional (3D) echocardiographic studies optimally guide surgeons in operative planning. Herein, we describe the selection criteria as well as our operative management during a robotic mitral valve repair. Major complications are detailed with tips to avoid their occurrence. Operative outcomes from the author’s series as well as those from the largest experiences in the United States are described. They show that robotic mitral valve repair is safe and effective, as well as economically reasonable due to lower costs of hospitalization. Thus, the future of this operative technique is bright for centers adopting the “heart team” approach, adequate clinical volume and a dedicated and experienced mitral repair surgeon. PMID:27942486

  6. Eestisse jõuab Leonardo da Vinci arvatav autoportree

    Index Scriptorium Estoniae

    2010-01-01

    Kadrioru Kunstimuuseumis eksponeeritakse 5.-12. veebruarini Leonardo da Vinci arvatavat autoportreed. Toimub maali pidulik avamine ja maali analüüse tutvustav rahvusvaheline konverents "Da Vinci kood" Tallinna Ülikoolis

  7. Future robotic platforms in urologic surgery: recent developments.

    Science.gov (United States)

    Herrell, S Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted currently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and to allow for previously impossible needle access and ablation delivery. Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and transurethral bladder tumor, a purpose-specific robotic system for LESS, and a needle-sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator.

  8. Future robotic platforms in urologic surgery: Recent Developments

    Science.gov (United States)

    Herrell, S. Duke; Webster, Robert; Simaan, Nabil

    2014-01-01

    Purpose of review To review recent developments at Vanderbilt University of new robotic technologies and platforms designed for minimally invasive urologic surgery and their design rationale and potential roles in advancing current urologic surgical practice. Recent findings Emerging robotic platforms are being developed to improve performance of a wider variety of urologic interventions beyond the standard minimally invasive robotic urologic surgeries conducted presently with the da Vinci platform. These newer platforms are designed to incorporate significant advantages of robotics to improve the safety and outcomes of transurethral bladder surgery and surveillance, further decrease the invasiveness of interventions by advancing LESS surgery, and allow for previously impossible needle access and ablation delivery. Summary Three new robotic surgical technologies that have been developed at Vanderbilt University are reviewed, including a robotic transurethral system to enhance bladder surveillance and TURBT, a purpose-specific robotic system for LESS, and a needle sized robot that can be used as either a steerable needle or small surgeon-controlled micro-laparoscopic manipulator. PMID:24253803

  9. The navigation system of the JPL robot

    Science.gov (United States)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  10. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  11. Design on a Composite Mobile System for Exploration Robot

    Directory of Open Access Journals (Sweden)

    Weiyan Shang

    2016-01-01

    Full Text Available In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been studied. Firstly, a simplified dynamic model has been established, and then by affecting factors analysis on ride performance, an optimization model for suspension parameters has been presented. Using NSGA-II method, a set of nondominated solutions for suspension parameters has been gotten, and by weighing the importance of the objective function, an optimal solution has been selected to be applied on suspension design. As the wheel-tracked exploration robot has been designed and manufactured, the property test has been conducted. By testing on physical prototype, the robot’s ability to surmount complex terrain has been verified. Design of the wheel-tracked robot will provide a stable platform for field exploration tasks, and in addition, the certain configuration and suspension parameters optimization method will provide reference to other robot designs.

  12. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  13. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  14. The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery.

    Science.gov (United States)

    Feng, Allen L; Razavi, Christopher R; Lakshminarayanan, Pranav; Ashai, Zaid; Olds, Kevin; Balicki, Marcin; Gooi, Zhen; Day, Andrew T; Taylor, Russell H; Richmon, Jeremy D

    2017-11-01

    Assess the feasibility of a novel robotic platform for use in microvascular surgery. Prospective feasibility study. Robotics laboratory. The Robotic ENT (Ear, Nose, and Throat) Microsurgery System (REMS) (Galen Robotics, Inc., Sunnyvale, CA) is a robotic arm that stabilizes a surgeon's instrument, allowing precise, tremor-free movement. Six microvascular naïve medical students and one microvascular expert performed microvascular anastomosis of a chicken ischiatic artery, with and without the REMS. Trials were blindly graded by seven microvascular surgeons using a microvascular tremor scale (MTS) based on instrument tip movement as a function of vessel width. Time to completion (TTC) was measured, and an exit survey assessed participants' experience. The interrater reliability of the MTS was calculated. For microvascular-naïve participants, the mean MTS score for REMS-assisted trials was 0.72 (95% confidence interval [CI] 0.64-1.07) and 2.40 (95% CI 2.12-2.69) for freehand (P 0.05). For the microvascular expert, the mean REMS-assisted MTS score was 0.71 (95% CI 0.15-1.27) and 0.86 (95% CI 0.35-1.37) for freehand (P > 0.05). TTC was 353 seconds for the REMS-assisted trial and 299 seconds for freehand. All participants thought the REMS was more accurate and improved instrument handling and stability. The intraclass correlation coefficient for MTS ratings was 0.914 (95% CI 0.823-0.968) for consistency and 0.901 (95% CI 0.795-0.963) for absolute value. The REMS is a feasible adjunct for microvascular surgery and a potential teaching tool capable of reducing tremor in novice users. Furthermore, the MTS is a feasible grading system for assessing microvascular tremor. NA. Laryngoscope, 127:2495-2500, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Controlling the cooperative behavior of a system of automous mobile robots

    OpenAIRE

    Stilwell, Daniel J.

    1993-01-01

    A novel material transport system is presented that uses 'swarms' of small autonomous mobile robots to collectively lift and move palletized loads. The robots are relatively unsophisticated in design and have no advanced sensory or communications capability. There is no central or supervisory controller directing the robots. Each robot must be able react to its environment autonomously, yet cooperate within a team of similarly designed robots. Reactive and behavior-based pri...

  16. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data